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The relative stability of perfect face-centered-cubicsfccd
and hexagonal-close-packedshcpd hard-sphere crystals has
been explored by different researchers over several
decades.1–10 Molecular simulations show that the free energy
difference between the phases is small, and while the results
vary in detail somewhat, the clear consensus prevails that fcc
is the more stable phase at all densities. So far the compari-
son has been done only on defect-free close-packed hard-
sphere crystals. Even though the existence of point defects
results in a measurable shifting of the free energy of fcc
hard-sphere crystals at melting,10 there exists no published
results comparing the stability of hard-sphere crystals con-
taining vacancies. Interest in this question is heightened by
the recent results of Pronk and Frenkel,11 who found a sur-
prising difference in the elastic constants of fcc and hcp
hard-sphere crystals. In light of these results, one might
question whether there are significant differences in the sus-
ceptibility of the free energy to other types of changes, and,
in particular, to changes involving the formation of vacan-
cies. If so, the difference in the response of the free energy to
vacancy formation might be enough to alter the relative sta-
bility of the phases.

In this paper we address this issue and examine the ef-
fect of monovacancies on the free energy difference of close-
packed hard-sphere crystals. We consider only noninteracting
monovacancy defects, as the concentration of other point de-
fects such as interstitials and divacancies is much
smaller.12,13The monovacancy free energy and concentration
are obtained via Monte Carlo simulations with a biased in-
sertion method interpreted in a grand-canonical formalism
proposed by Pronk and Frenkel.12 We conducted such simu-
lations using 216 particles positioned at 63636 lattice sites
in a rhombohedral box. Previous studies have found that
finite-size effects on the vacancy free energy are negligible
for systems of this size, even in comparison to the small
effects of interest here.14 Initial configurations of fcc and hcp
crystals were obtained by stacking hexagonal layers inABC
and AB arrangements, respectively; the hcp stacking was
compressed slightly, in accord with the finding of Pronk and
Frenkel.11 Simulations were performed for densitiesrs3

swhere r is the number density ands is the hard-sphere
diameterd within the range from 1.0376smeltingd to 1.2.

First we investigate the effect of monovacancies on the
free energy of each crystal structure, calculated by

Dfa = f1,axv,a, s1d

whereDfa is for crystal structurea the difference in the free
energy per lattice site between a perfect hard-sphere crystal
and one containing monovacancies,f1,a is the change in free
energy when creating a monovacancy by deleting a particle
from its lattice site, andxv,a is the fraction of the crystal
lattice sites that are vacant in an equilibrium system.12 Table
I presents the complete results. Polsonet al.10 reported the
value of Df fcc as s3310−3dkBT near melting,rs3=1.0409
swherekB is Boltzmann’s constant andT is the temperatured.
Our data agree with their result. Even though free-energy
changes are small, both crystal structures clearly show a shift
of the free energy by abouts2.3310−3dkBT at the melting
point due to the presence of vacancies.

Second, we compare the difference in the effect of the
vacancies to the difference between the free energies of the
defect-free crystalline phases. The latter quantity was ob-
tained atrs3=1.0409 using the value reported by Bolhuiset
al.,7 while differences at other densities were obtained by
thermodynamic integration using Speedy’s equation of state.9

Comparisons are made of the Helmholtz free energy for dif-
ferent crystals at the same density; negligible changes are
introduced if instead considering the Gibbs free energy of
crystals at the same pressure. Results are included in Table I.
The close-packing hcp-fcc free-energy difference reported by
Bolhuis et al.7 is included to show that the lower-density

TABLE I. Relative free energiessper lattice sited of hard-sphere crystals for
several densities. Under “Free energy,”Df fcc is the difference between the
free energy of a perfect fcc crystal and one with an equilibrium number of
monovacancy defects, whileDfhcp is the same for hcp crystals. The third
column is the difference between the two to the left of it, and describes the
net effect of monovacancies on the relative stability of fcc and hcp phases.
The last column is the free-energy difference between the defect-free crys-
tals. Confidence limitss67%d are indicated.

rs3
Free energy3106skBTd

Df fcc Dfhcp Df fcc−Dfhcp fhcp− f fcc

1.0376 2248±18 2251±20 −3±27 860±200a

1.05 1393±11 1391±11 2±16 897±200a

1.1 170.1±10.0 168±11 2.1±15 1015±200a

1.2 0.2624±0.0017 0.2621±0.0016 0.0003±0.0023 1152±200a

1.414 940±300b

aReference 7 atrs3=1.0409 with thermodynamic integration using the
equation of state of Ref. 9.
bReference 7.
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values given by integration of the equation of state are rea-
sonable. Table I shows that the change in the free energy in
each phase due to monovacancies is considerably larger than
the free energy difference between the phases. However, the
effect of the monovacancies on the free energy is almost
exactly the same for both phases. The difference in the effect
is listed asDf fcc−Dfhcp in the table and is very small—within
the confidence limits of the calculations, the difference is
zero. Moreover, the confidence limits of the vacancy effects
are themselves still smaller than the difference in free energy
of the defect-free phasessgiven in the rightmost columnd, so
there is no question that the presence of monovacancies does
not change the relative stability of the phases.

We conclude that the relative stability of stress-free fcc
and hcp crystals is not affected by the presence of monova-
cancies, and fcc remains the more stable phase over all solid-
phase densities.
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