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In this paper, a lattice Boltzmann method �LBM� for weakly ionized isothermal plasmas is presented by
introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found
that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically
realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process
of singly ionized helium plasmas with a 1–3% degree of ionization under an electric field. The obtained results
agree well with theoretical values.
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I. INTRODUCTION

As the governing equation for all transport phenomena of
plasmas, the Boltzmann transport equation describes the evo-
lution of the distribution function of each species of particles
in the plasma. All macroscopic variables of the plasma, such
as number density and macroscopic velocity, can be retrieved
through proper moments of the distribution function. Less
than two decades ago, lattice Boltzmann method �LBM�
emerged as an alternative method to simulate fluids flows
�1�. LBM first originated from its Boolean counterpart, the
lattice gas automata �LGA�, but it has been proved that it can
be derived directly from the continuous Boltzmann equation
by discretization in both time and phase spaces �2�. Although
LBM has achieved great success for the simulation of many
kinds of fluid flows such as MHD flows �3,4�, very little
research has been conducted for the lattice Boltzmann simu-
lation of plasmas �5�.

Many achievements of LBM development �especially
multicomponent models �6–10�� can be inherited in the
plasma simulation, since plasmas are mixtures of different
types of particles. Among those models, the finite difference
lattice Boltzmann �FDLB� models �7,8�, can be used for the
asymmetric system, which is the system in which the com-
posite particles have different properties. However, the direct
use of the FDLB models for plasma simulation is not suffi-
cient due to some exclusive characteristics of plasmas. For
example, in plasma simulation, the time step should be less
than the electron oscillation period. If original plasma param-
eters are used, however, a very large nondimensional relax-
ation time will result. This relaxation time will significantly
reduce the effects of the collision term on the evolution of
the distribution function and thus lead to an ill-favored trans-
port behavior of the electrons. Therefore, to overcome this, a
relaxation time that is more suitable to the LBM must be
obtained.

In this paper, to resolve the aforementioned problem, a
rescaling scheme for the Boltzmann transport equation is
proposed, which can be used for weakly ionized isothermal
plasmas. Also, due to the huge difference between the lattice
speeds of electrons and heavier particles �ions and neutrals�,

a second-order interpolation scheme is employed to find the
on-node values of the discretized distribution functions for
heavier particles. The developed LBM has been used to
simulate electrostatic behaviors of weakly ionized isothermal
plasmas and the obtained results show good agreement with
theoretical solutions.

II. MATHEMATICAL MODEL

In this paper, the following assumptions are used:
�1� Inelastic collisions, such as ionization and recombina-

tion, are not considered.
�2� The plasma is isothermal, but different species can

have different temperatures.
�3� The plasma consists of electrons, neutrals, and singly

ionized ions �three species�:
The Boltzmann transport equation for plasmas is written

as follows:

�fs

�t
+ vs · �fs + as · �vs

f s = ��fs

�t
�

coll
. �1�

The subscript s denotes the type of species and can take e, i,
and n for electrons, ions, and neutrals, respectively. In this
equation, vs is the microscopic velocity, fs= fs�x ,v , t� is the
number density distribution function, and as is the accelera-
tion due to the Lorentz force, which is expressed as

as =
qsE

ms
�2�

if electrostatic behaviors of plasmas are considered. Here, E
is electric field, qs is the charge of species s, and ms is the
mass of species s.

By only considering the binary collisions in the plasma
and applying the similar splitting technique adopted for the
binary gas mixture �6�, the collision term for species s can be
written as

��fs

�t
�

coll
= Jse + Jsi + Jsn, �3�

where Jse, Jsi, and Jsn are the terms that represent the colli-
sions with electrons, ions, and neutrals, respectively. It is
well known that if the degree of ionization is very low �say*Corresponding author. hski@msu.edu
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1–3%�, the elastic collisions with neutral particles is the
dominant collision mechanism for all species. Therefore, Jse

and Jsi are negligible in the weakly ionized plasmas. For the
collisions with neutral particles, the Bhatnagar-Gross-Krook
�BGK� model is used, which assumes that the particles relax
to their equilibrium states during the characteristic time pe-
riod, which is called the relaxation time �s. Then, the Boltz-
mann equations for electrons, ions, and neutrals can be writ-
ten as

�fe

�t
+ ve · �fe + ae · �ve

fe = −
fe − fen

eq

�en
, �4�

�f i

�t
+ vi · �f i + ai · �vi

f i = −
f i − f in

eq

�in
, �5�

�fn

�t
+ vn · �fn = −

fn − fnn
eq

�nn
, �6�

where �en , �in , and �nn are the relaxation times for electron-
neutral, ion-neutral, and neutral-neutral collisions, respec-
tively; fen

eq , f in
eq , and fnn

eq are the equilibrium distribution func-
tions of electrons, ions, and neutrals, respectively, due to the
collisions with neutrals and can be written as

fsn
eq�usn� =

ns

2��s
2 exp�−

�vs − usn�2

2�s
2 � . �7�

Note that the collisions with the species other than neutral
particles can be easily added in the model. In Eq. �7�, �s

=�kBTs /ms is the sound speed of species s �where kB is the
Boltzmann constant and Ts is the temperature of species s�;
usn is the barycentric velocity of the binary collision with the
neutral particle as follows:

usn =
�sus + �nun

�s + �n
, �8�

where us is the macroscopic velocity of species s �un: mac-
roscopic velocity of neutrals�; �s is the mass density of spe-
cies s ��n: density of neutrals�. Note that unn=un, but uen
�ue and uin�ui. That is due to the fact that the frequency of
self-collisions between charged particles is very low in
weakly ionized plasmas and the charged particles cannot re-
lax to their macroscopic velocity during the relaxation time
period ��en or �in� when they collide with neutral particles.

Similar to the concept of density dependent relaxation
time �11�, �sn in Eqs. �4�–�6� are written as �12�

�sn =
1

�snnn�v̄s	
. �9�

Here, �sn is the cross section of the elastic collision between
species s and neutrals and calculated as �sn=��rs+rn�2,
where rs and rn are the radii of species s and n, respectively;
�v̄s	 is the average speed of species s, and �v̄s	= ��8 /
���kBTs /m��1/2 �12�. Note that the relaxation time presented
in Eq. �9� is independent of temperature because only iso-
thermal plasmas are considered in this study.

One important point to note at this point is that electron
temperature is too high to use the standard LBM even for

low-temperature plasmas. For example, electron sound speed
�e at Te=0.8 eV is 3.75�105 m /s, which is extremely large
considering the fact that the speed of sound in the LBM
should be in the order of one �13�. Therefore, to overcome
this problem, we choose the electron sound speed as follows:

�̃e = � kBTe

m̃e
�1/2

= 1. �10�

Here, tilde notation is used for rescaled variables. To satisfy
Eq. �10� without changing temperature, the rescaled mass of
electron should be obtained from Eq. �10� �m̃e=kBTe, unit not
correct�, which is extremely large compared to the actual
mass of electron. In addition to that, we propose the follow-
ing rules to rescale other variables:

�1� The charge or mass ratio of electron is invariable:
e /me= ẽ / m̃e.

�2� The mass ratio of different species is invariable:
me /mi= m̃e / m̃i and me /mn= m̃e / m̃n.

�3� Mass density of each species is invariable: mene
= m̃eñe, mini= m̃iñi, and mnnn= m̃nñn.

�4� For the relaxation time rescaling, the time required to
relax velocity is proportional to the magnitude of the veloc-
ity.

If we define 	=�e / �̃e �where �e=�kBTe /me and �̃e

=�kBTe / m̃e=1�, other variables are rescaled based on these
rules in terms of 	. The relations between the original vari-
ables and rescaled variables are listed in Table I. From the

fourth rule, the relaxation time is rescaled as �̃en= �1 /	��en

since velocity is rescaled as 1 /	. Note that in this rescaling
scheme, time scale �other than relaxation time� is unchanged
but length scale �both domain size and grid spacing� is
squeezed by a factor of 1 /	, which is different from the
concept of superparticle used in the particle-in-cell �PIC�
method �14� for plasmas, where a superparticle is regarded as
a finite-sized cloud of real particles and both time and space
scales are unchanged. In the present approach, however, all
variables are rescaled using the rules before the LBM simu-
lation, and the same rules are used again to recover original
variables after the LBM simulation is completed. For the
following discretization procedure, it is assumed that the res-
caling is used and tilde notation will be dropped.

Now Eqs. �4�–�6� can be discretized using the standard
LBM procedure. The forcing terms in Eqs. �4� and �5� are
evaluated as follows �15,16�:

TABLE I. Relation between original parameters and modified
parameters.

Parameter Scaling

Mass of species s m̃s=	2ms

Number density of species s ñs=ns / 	2

Unit charge ẽ=	2e

Time step �t̃=�t

Grid spacing, domain size ��x̃=�3�̃e�t̃� �x̃=�x / 	, l̃= l / 	

Relaxation time �̃sn=�sn / 	
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as · �vs
f s 
 as · �vs

f s
eq = −

as · �vs − us�
�s

2 fs
eq, �11�

where fs
eq is the equilibrium distribution function of species s

due to self-collision.

fs
eq�us� =

ns

2��s
2 exp�−

�vs − us�2

2�s
2 � . �12�

Note that the self-collision equilibrium distribution function
�SCEDF� is used here rather than the cross-collision equilib-
rium distribution function �CCEDF�. This selection will be
justified in the discussion section. Equations �4�–�6� can be
discretized as follows �17�:

fe

�x + ee


�t,t + �t� = fe

�x,t� −

1

�en
�fe


�x,t� − fen
eq,
�x,t��

+
�tae · �ee


 − ue�
�e

2 fe
eq,
, �13�

f i

�x + ei


�t,t + �t� = f i

�x,t� −

1

�in
�f i


�x,t� − f in
eq,
�x,t��

+
�tai · �ei


 − ui�
�i

2 f i
eq,
, �14�

fn

�x + en


�t,t + �t� = fn

�x,t� −

1

�nn
�fn


�x,t� − fnn
eq,
�x,t�� ,

�15�

where �t is the time step; �en , �in , �nn are dimensionless re-
laxation times; superscript 
 denotes the 
th component in
the phase space; and es


 is the 
th component of the dis-
cretized microscopic velocity of species s.

es

 = ��0,0� , 
 = 0

�cos �
,sin �
�cls, �
 = �
 − 1��/2, 
 = 1,2,3,4

�2�cos �
,sin �
�cls, �
 = �
 − 5��/2 + �/4, 
 = 5,6,7,8,
� �16�

where cls=�3�s is the lattice speed of species s. Note that in
the implementation of the present model, it was assumed that
the momentum of particles conserves at each collision
�18,19� so that the time-implicit treatment of the external
force term �17� can be avoided. The discretized equilibrium
distribution function fsn

eq,
 is expressed as �17�

fsn
eq,
 = w
ns1 +

3�es

 · usn�
cls

2 +
9�es


 · usn�2

2cls
4 −

3usn
2

2cls
2 � ,

�17�

where w
 is 4 /9 for 
=0, 1 /9 for 
=1,2 ,3 ,4, and 1 /36 for

=5,6 ,7 ,8.

In the multicomponent LBM, if the same grid is used for
all species the time steps for different species are all different
because each time step is determined by �t=�x /cls. Using
several different time steps is very undesirable for a number
of reasons, so in this study we use a single time step based
on the lattice speed of electrons. Then, during a time step �t,
electrons travel a distance of ee


�t to the neighboring node
while ions and neutrals travel a distance of ei


�t and en

�t.

Since the lattice speeds of ions and neutrals are significantly
smaller than that of electrons, the travel distance of those
heavy particles will be very small compared to the electron

travel distance. As a result, if the same grid is used for all
species, ions and neutrals cannot reach the same nodal point
as the electrons do and an interpolation scheme �2,20–23�
needs to be used for heavier particles. In this study, similar to
the interpolation scheme used in �21,22�, a second-order in-
terpolation method is introduced to find the on-node values
of the discretized distribution functions for ions and neutrals.
In Fig. 1, q and o denote two neighboring nodes of p along
the 
th direction �pointing from o to p�. The ions �neutrals�
that are originally located at o , p ,q arrive at o� , p� ,q� after a
streaming step. The distribution function at p can be obtained
by using fs


�o��, fs

�p��, and fs


�q�� �after-collision distribu-
tion functions at p� and q�� as follows:

fs

�p� = fs


�p�� −
fs


�q�� − fs

�o��

2

�ei

�

�ee

�

+
fs


�q�� − 2fs

�p�� + fs


�o��
2

�ei

�2

�ee

�2

. �18�

If we define = �ei

� / �ee


�=�Time /Temi, we obtain

fs

�p� = �1 − �fs


�p�� − 0.5�1 − �fs

�q��

+ 0.5�1 + �fs

�o�� . �19�

Note that fs

�p�
 fs


�p�� because  is very small.

FIG. 1. Schematic of the second-order interpolation method for
ion �neutral� distribution function.
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Once distribution functions are updated, the number den-
sity and velocity of each species and charge density can be
obtained as follows:

ns�x� = �



fs

�x� , �20�

ns�x�us�x� = �



fs

�x�es


�x� , �21�

�v�x� = e�ni�x� − ne�x�� . �22�

The electric field E is updated by solving the following
equation:

�2� = −
�v

�0
, �23�

where �0 is the electric permittivity of the vacuum, � is the
electric potential, and ��=−E. Equation �23� is solved by a
Poisson solver.

III. RESULTS

To validate the model, helium plasma with a 1% degree
of ionization in a 3.71�3.71 mm domain �before rescaling�
is considered, and a 256�256 grid is used. It is assumed that
the temperature of electrons is 0.8008 eV and the tempera-
ture of ions and neutrals is 500 K. The corresponding num-
ber of densities of three species are ne=ni=1016 �m−3� and
nn=1018 �m−3� according to the Saha equation �12�:

FIG. 2. Snapshots of the electron number density under an externally applied uniform electric field at �a� t=0 ns, �b� t=3.35 ns, �c� t
=6.70 ns, and �d� t=10.05 ns �direction of E field: left→ right�.
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ni

nn

 3.00 � 1027T3/2 1

ni
exp�−

U

T
� , �24�

where U is the first ionization energy of helium �U
=24.59 eV� and T is the electron temperature in eV.

As the first validation, we consider the electron diffusion
problem under an externally applied uniform electric field by
neglecting the internally generated electric field �due to elec-
trons and ions�. In this case, the diffusivity �D� and drift
velocity �vd� of the electrons can be obtained theoretically
�24�,

D =
�v̄e	2�en

3
, �25�

vd = −
eEext�en

me
. �26�

These theoretical results can be used to validate the
model. The initial density distribution of electrons is as-
sumed to be Gaussian as follows:

ne�x,t = 0� = ne0�1 + 0.01 exp−
�x − xc�2 + �y − yc�2

r2 �� ,

�27�

where r=0.290 mm and �xc ,yc� represents the center point of
the domain. A uniform electric field of 0.025 V /m is applied
in the positive x direction and the rescaling method is used.
Figure 2 shows the snapshots of the evolution of the elec-
tron number density and Fig. 3 is the electron number den-
sity along the line of y=yc. In Fig. 3, the initial number
density profile �marked with A at the vertex� and the number
density profile at 3.35 ns �marked with B at the vertex� are
shown. As expected, electrons move in the opposite direction
to the electric field and the drift velocity obtained from this
simulation agrees very well with the theoretical value pre-
dicted by Eq. �26�. The difference is about 0.843%. The plas-
mas with ionization degrees of 2% and 3% are also simu-

lated under the same conditions as described above. Since
the higher ionization degree is caused by a higher electron
temperature, the sound speed of the electron is also higher
and a smaller relaxation time �en results. Therefore, accord-
ing to Eq. �26�, the plasma with a higher ionization degree
will show a smaller drift velocity. Errors in the drift velocity
for 2% and 3% ionized plasmas are 0.86% and 0.87%, re-
spectively, compared to Eq. �26�.

In order to calculate the diffusivity from the simulation
result, the curve �B� is moved to the initial location �small
solid circles in Fig. 3� and is compared with the solution to
Fick’s law with the theoretical diffusivity D given in Eq.
�25�.

�ne

�t
= D�2ne. �28�

It is apparent that the result obtained by the rescaling method
agrees very well with Fick’s law solution �solid line in
Fig. 3�.

We also simulated the problem without the rescaling and
the results are shown as squares in Fig. 3 and also in Fig. 4.
Clearly, without rescaling, the result is very inaccurate and
nonphysical peaks appear in the solution. The appearance of
these nonphysical peaks can be explained as follows. In the
case of electrons, the large nondimensional relaxation time
leads to a near-zero collision term in the lattice Boltzmann
equation, and therefore, the effect of collision step is almost
negligible. In other words, virtually only the streaming step
is left in the implementation of LBM. This is evident from
Fig. 4, where the subpeaks move with the constant lattice
speeds and the magnitudes do not change. We can also see
that the subpeaks of higher ionization degree move faster
than those of lower ionization degree because the sound
speed is higher in the former case. The magnitudes of all
three subpeaks are also checked: the ratio of the magnitude
of a subpeak to that of the primary peak is 1:4, which is the
ratio of weight coefficients in the D2Q9 model employed in
this study. Figure 5 is the contour plot of the electron number
density at t=1.116 ns obtained without the rescaling. The
dashed lines in the plot represent the discretized phase space
and the particles stream to their neighboring nodes along the
directions denoted by the numbers. The numbers in paren-
theses are the weight coefficients used in the discretization of
the equilibrium distribution function. In Fig. 5, it seems as
though the LBM simulation was conducted without the col-
lision step. Therefore, the presented rescaling method not
only recovers the correct transport phenomena but is also
required in the simulation of weakly ionized plasmas.

One thing to recall at this point is the fact that the external
force in the lattice Boltzmann equation �Eq. �11�� was evalu-
ated by using SCEDF rather than CCEDF. To justify this we
used both CCEDF and SCEDF for the same simulation and
the results are shown in Fig. 6. Since it is a simple
convection-diffusion problem, the ratio ne /ne0 cannot be
smaller than 1. However, it is seen that when CCDEF is used
the number density away from the peak can take values
smaller than the initial value. As shown in Fig. 6, the mini-
mum value is roughly 0.9997, which means that the number

FIG. 3. Evolution of the electron number density under an ex-
ternally applied uniform electric field �direction of E field: left
→ right�.
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density drops by about 3% of the initial perturbation of elec-
tron number density. On the other hand, physically realistic
results were obtained with the use of SCEDF.

The grid independency and computational efficiency of
the model are also studied by conducting the same simula-
tion on three different grids �64�64, 128�128, and 256
�256�. The error at time t was calculated as follows:

error =��
i,j
ne

LB�i, j,t� − ne
A�xi,yj,t�

ne
A�xi,yj,t�

�2�mn , �29�

where m and n are grid numbers in x and y directions, re-
spectively; ne

LB�i , j , t� is the electron number density at node
�i , j� obtained by the present model; and ne

A�xi ,yj , t� repre-
sents the electron number density at the corresponding space
point obtained from the following analytical solutions:

ne�x,y,t� = ne0 +
0.01ne0

�1 + t/t0�
exp−

�x − xc�2 + �y − yc�2

r2�1 + t/t0� � ,

�30�

where t0=r2 /4D and the diffusivity D can be calculated from
Eq. �25�. Figure 7 shows that, as expected, second-order con-
vergence is observed from the simulation results.

In order to test the computational efficiency of the multi-
component model, CPU times per time step are measured on
a single-CPU PC for the present three-component model
with the interpolation and a simple LBE model for electrons
only. The electrostatic equation is not considered in the test.
Test results show that the three-component model takes 4.07
times more CPU time than the electron-only model.

FIG. 4. Electron number density distribution at �a� t=1.116 ns
and �b� t=3.347 ns �without the rescaling of variables�.

FIG. 5. Contour plot of the electron number density at t
=1.116 ns �no rescaling is used�.

FIG. 6. Electron number density distribution �at t=6.69 ns� ob-
tained by using different equilibrium distribution functions for the
external force term.
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Figure 8 presents the effect of the internal electric field on
the diffusion process. In this case, the external electrical field
is not applied and only the internally generated electric field
is considered during the diffusion process. It can be seen that
the diffusion process is enhanced by the internally generated
electric field.

As a second validation of the model, we consider the
electrostatic wave problem by neglecting all collision terms
in Eqs. �4�–�6�. If the collision term in the Boltzmann equa-
tion is neglected, the Boltzmann equation becomes the Vla-
sov equation for collisionless plasmas. The initial spatial dis-
tribution of the electron number density is perturbed slightly
as follows:

ne�x,t = 0� = ne01 – 0.01 cos�2�x

lx
�� , �31�

where lx is the length of the physical domain �3.71 mm�. The
periodic boundary condition is employed for both the
streaming step for the LBM and the Poisson equation for the
electric potential. For this problem, we used both with and
without the rescaling. It is possible because all the collision
terms are neglected. Figure 9 shows the evolution of electron
number density and x-component velocity at the center point
of the domain. It is clear that the results obtained with the
rescaling scheme agree very well with the ones obtained us-
ing original variables. In addition, the wave period measured
from the figure agrees well with the theoretical value of the
electron oscillation period �2� /�pe �12��. The maximum
relative error between the theoretical and simulation results
is 0.22%. Therefore, both the standard LBM and the rescaled
LBM can be used for the collisionless Vlasov equation.

IV. CONCLUSION

In summary, a lattice Boltzmann method for weakly ion-
ized isothermal plasmas has been presented. A rescaling
scheme has been presented to convert the relaxation time
based on plasma physics to the proper relaxation time for
LBM simulation, so that the effects of collisions are taken
into account correctly in the LBM. To use a single time step
based on electrons, an interpolation method has been em-
ployed for ions and neutrals. Simulation results agree well
with theoretical predictions. Also, it has been shown that for
a collisionless Vlasov equation the rescaling scheme need
not be used.
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FIG. 7. Relative errors in the electron number density vs time
for three different grids. The errors are calculated at the center of
the domain with comparison to the analytical solution.

FIG. 8. Electron number density distribution. �Circle: without
internal electric field; squares: with internal electric field, both at
0.223 ns. The solid line shows the initial distribution.�

FIG. 9. Time evolution of number density and x-component
velocity of electrons at the center of the computational domain.
�Solid lines: simulation results obtained without the rescaling
scheme; circles and squares: simulation results obtained with the
rescaling scheme.�
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