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It is well known that time-dependent information is rep-
resented via sequences of stereotyped spike waveforms in
the nervous system. Mathematical modeling and analysis of
waveform sequences (or spike trains) have been one of the
central problems in the field of computational neuroscience.
This problem is significantly challenging since population
neuronal activity is often stochastic, highly correlated, and
nonstationary across time. A great deal of effort has been
devoted to characterizing this activity by using state-of-the-
art methodologies, such as artificial neural networks, signal
processing methods, adaptive filtering theory, parametric
and nonparametric probabilistic models, Bayesian inference,
metric-based analysis, and information-theoretic methods.
Advances in technology have enabled us to record larger-
scale neuronal ensemble activity, and current research has
devoted a lot to integrating and analyzing increasingly large-
volume, high-dimensional, and fine-grain experimental data.

The main focus of this special issue is to provide an
international forum for researchers to present themost recent
developments and innovative ideas in the field. We aim
to incorporate new contributions in theories, algorithms,
and applications. A total of 17 submissions, which cover a
broad spectrum of spike train modeling and analysis, were
received for this special issue. Each submissionwas rigorously
reviewed by external referees as well as the Guest Editor. To
ensure the high quality of papers, we finally accepted 6 articles
for this special issue. The following is a brief summary for
each of these accepted articles.

The paper “An overview of Bayesian methods for neural
spike train analysis” by Z. Chen presents a tutorial overview
of Bayesian methods and their representative applications
in neural spike train analysis, at both single neuron and
population levels. On the theoretical side, the focus is
on various approximate Bayesian inference techniques as
applied to latent state and parameter estimation. On the
application side, the topics include spike sorting, tuning curve
estimation, neural encoding and decoding, deconvolution of
spike trains from calcium imaging signals, and inference of
neuronal functional connectivity and synchrony.

The paper “A tensor-product-kernel framework for mul-
tiscale neural activity decoding and control” by L. Li et al.
proposes a tensor-product-kernel framework for integrating
multiscale neural activity and applies it to an offline stimulus
decoding and an open-loop control task in brain-machine
interface. Choosing the kernels is equivalent to identifying
a proper spatiotemporal scale among neural activity such as
spike trains and local field potentials. This work provides a
general framework to leverage heterogeneous neural activi-
ties recorded from neuroscience experiments.

The paper “Homogenous chaotic network serving as a
rate/population code to temporal code converter” by M. V.
Kiselev addresses an important relationship between rate
coding and temporal coding in neuroscience and shows that
conversation from the rate code to temporal code can be
implemented by a homogeneous chaotic neural network.
The paper demonstrates this approach using simulated leaky
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integrate-and-fire neurons and spiking network in line with
the selective polychromous neuronal groups. It shows that
the quality of conversation is dependent on a wide range of
parameters, such as the stimulus diversity, intensity, back-
ground noise, and excitatory connection delays.

The paper “Prediction of human’s ability in sound local-
ization based on the statistical properties of spike trains along
the brainstem auditory pathway” by R. Krips and M. Furst
demonstrates that aspects of the human ability to perform
auditory localization are compatible with a theory of optimal
estimation applied to responses of the auditory nerve and
superior olivary complex.The nature of this fit is suggestive of
the sources of information used to perform this computation.

The paper “Spike sorting by joint probabilistic modeling of
neural spike trains and waveforms” by B. A. Matthews and
M. A. Clements develops a novel probabilistic method for
automatic neural spike sorting which uses stochastic point
process models of neural spike trains and parameterized
action potential waveforms. A novel likelihood model for
observed firing times as the aggregation of hidden neural
spike trains is derived as well as an iterative procedure for
clustering the data and finding the parameters that maximize
the likelihood.

The paper “Sparse data analysis strategy for neural spike
classification” by V. Vigneron and H. Chen deals with the
problem of identifying single neuronal units from mul-
tichannel extracellular recordings. This study proposes a
family of metrics based on different levels of parsimony to
separate spike waveform data into single unit waveforms.
It demonstrates that the proposed method can provide an
effective spike-sorting tool to visually analyze the spike data
and to produce robust results for noisy, imbalanced, and
highly correlated spike waveform data.

In summary, these six papers offer many examples of
active research topics in neural spike train analysis. We thank
all authors for submitting their papers to this special issue.
We also thank all reviewers for providing their expertise and
making valuable comments during the reviewing process.
It is our hope that these papers would provide novel ideas
and methodological development to the neural spike train
modeling community, and the results would be useful for
better understanding of neuronal mechanisms in the brain
and providing more effective applications.
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Many of the multichannel extracellular recordings of neural activity consist of attempting to sort spikes on the basis of shared
characteristics with some feature detection techniques. Then spikes can be sorted into distinct clusters. There are in general two
main statistical issues: firstly, spike sorting can result in well-sorted units, but by with no means one can be sure that one is dealing
with single units due to the number of neurons adjacent to the recording electrode. Secondly, the waveform dimensionality is
reduced in a small subset of discriminating features.This shortening dimension effort was introduced as an aid to visualization and
manual clustering, but also to reduce the computational complexity in automatic classification. We introduce a metric based on
common neighbourhood to introduce sparsity in the dataset and separate data into more homogeneous subgroups. The approach
is particularly well suited for clustering when the individual clusters are elongated (that is nonspherical). In addition it does need
not to select the number of clusters, it is very efficient to visualize clusters in a dataset, it is robust to noise, it can handle imbalanced
data, and it is fully automatic and deterministic.

1. Introduction

Neurophysiologists assume that the brain encodes informa-
tion in the firing rate of neurons, that is, the number of
“spikes” over a temporal interval.Whilemany powerful imag-
ing techniques have been used in neuroscience, extracellular
recording remains the only choice that provides resolution of
neuron activity in the brain. However, multiple extracellular
recordings are useful only when the spikes generated by
different neurons can be correctly sorted.

Lewicki [1] reviewed numerous methods that have been
proposed to classify spikes. The usual assumptions for spike
sorting are (1) that all spikes generated by a specific neuron
are characterized by a similar waveform, (2) that this wave-
form is unique, and (3) that this waveform is conserved for
each neuron during a stationary recording [2]. Analysis of
neural recordings requires first detecting action potentials,
spikes, from noise, which is achieved with thresholding
discrimination by manual or semiautomatic classification
methods. The second process is spikes sorting and produces
a number of “spike trains” corresponding to the temporal
sequence of real signals [3–5].

Amongdifferentmethods used for spike sorting, template
matching is one of the most popular procedures. The usual
practice to produce templates is to use a “supervisor,” that is,
an experienced and knowledgeable operator, to preliminarily
classify the waveforms following a selection of templates
corresponding to distinct neurons. Few methods have dealt
with unsupervised template creation. Atiya [3] for instance
used the Isodata clustering algorithm to estimate typical
spike shapes and then compared all possible combinations
of templates to find the combination with the highest like-
lihood. Letelier and Weber [6] applied Bayesian probability
theory to quantify the probability of both the form and the
number of spike shapes. Zouridakis and Tam [7] proposed
a procedure based on fuzzy 𝑘-means clustering algorithms
to create reliable spike templates. Some authors [8–10] used
independent component analysis (ICA) for distinguishing
the spikes according to their sources; the independence
assumption of the firing neurons helps to identify spikes from
the same source. In [11] the occurrence time information
of spikes and features related to the shape simultaneously is
applied to estimate the interspike interval for eachneuron and
sort the spikes using a Monte Carlo algorithm. Pouzat et al.
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Figure 1: Effects of an algorithm of arrangement on a data set.

[12] used an empirical characterization of the recording noise
to optimize the action potentials clustering and for assessing
the quality of each cluster. Zhang et al. [13] reconstructed
the spike templates according to the clustering results from
principal component analysis (PCA) and substractive clus-
tering techniques. Probabilistic methods have been proposed
[14, 15] and have focused on the modeling of each group in
specific subspaces of low dimensionality.

Several approaches are associated with a visualization
objective such as factorial methods [16, 17]. The latter meth-
ods can be global when they are based on the proximity
between various groups such as graphmethods or localwhen
they evaluate the proximity between the individuals, like the
hierarchical methods, they can also combine the local and
global relations, as in the case of seriation.

A taxonomy of the methods was proposed by Carroll and
Arabie [18] which associates a particular mode of seriation
with each type of table.

Seriation aims to display and to reveal natural clusters
and their dependencies in a dataset only by reordering rows
and columns so that the adjacent rows and, respectively,
columns are the most similar. This situation is illustrated by
Figure 1 where, starting from a table of relations presented
by Figure 1(a), the lines and the columns permuted to form
a partition in which the similar elements were gathered
together, thus forming groups (Figure 1(b)), and, in order
to better appreciate the presence of the diagonal structure
per block, this ordered matrix is pixelized (Figure 1(c)). Such
an approach could be connected with a local technique of
ordered clustering in so far as information is brought on one
hand about the local relations between individuals because
of an order in the data and on the other hand about the
total structure of the data. Seriation has other advantages
outlined by several authors such as Arabie et al. [19], like the
no need of prior knowledge on the number of clusters and
direct visualization of the structure on the table of values.

These advantages might disappear when the data are
noisy or imbalanced or when groups of data are superim-
posed. The presence of noisy data prevents a clear visual-
ization of the various blocks and distinguishing the clusters
becomes a difficult task. Our approach is based on symmetric
binary matrices of similarities (or dissimilarities) linked to
common neighborhood. Such matrices indicate similarities

between pairs of observations and can be computed by dif-
ferent measures depending on the nature of the dataset such
as Euclidean distances or more generally 𝑝-norm, correlation
coefficients [20], or divergences [21] for example. A criterion
derived from the problems of data compression selects the
most compact ordered matrix—in the form of diagonal
blocks—in order to obtain themost informative visualization
off the intrinsic data structure. In some situations, too great
a parsimony generates the ousting of underrepresented data
forming very small clusters. To mitigate this nondetection,
we propose a multiscale approach combining various levels
of sparsity of the data.

This paper is organized in the following way: in Section 2,
seriation is presented according to two different points of
view, one as a mathematical optimization problem to be
solved and the other on its algorithmic bases. Section 3
details our original approach as well as amultiscale algorithm
of the proposed arrangement, called Parsimonious Block-
Clustering. Experiments on simulations and benchmark data
are presented in Section 4.

2. Method

2.1.TheOptimization Problem. Seriation seeks an order in the
data that reveals the locality/proximity between adjacent lines
or columns to thus reveal a structure. This order is obtained
by successive permutations of lines and columns which
makes it possible to tackle seriation optimization problem
(The number of possible combinations of permutations of
lines and of columns is 𝑛!𝑝! for a rectangular 𝑛 × 𝑝 table
or 𝑛! in the case of a symmetrical matrix of dissimilarity.)
through two different angles: one being to determine all the
best possible permutations, the other being related to the
complexity of the solution (𝑛𝑝-complete problem).

The seriation approach can be applied to any type of
matrices but we focus in this work on dissimilarity matrices.
Let us consider a set of 𝑁 samples (𝑥

1
, . . . , 𝑥

𝑁
) described

by a symmetrical matrix of dissimilarity 𝐷 = (𝑑
𝑖𝑗
)
𝑖,𝑗∈(1,...,𝑁)

of size 𝑁 × 𝑁 where each element 𝑑
𝑖𝑗
gives a “measure” of

dissimilarity between the pair of observations (𝑥
𝑖
, 𝑥
𝑗
). Let Ψ

define a permutation function which orders the elements of
matrix 𝐷, according to a given criterion 𝐶. The objective of
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the seriation is thus to find the optimal permutationΨ∗which
optimizes the arrangement criterion 𝐶, such that

Ψ
∗
= argmax

Ψ

C (Ψ (𝐷)) . (1)

These criteria are based on a measure of similarity
𝑠(⋅) between the successive elements of the matrix 𝐷 and
maximize max∑𝑛−1

𝑖=1
𝑠(𝑖, 𝑖 + 1).

This measure of similarity is declined in a different way
according to the authors as one can observe in Table 1.
McCormick et al. [22] and Arabie and Hubert [23], for
example, seek to maximize a measure of effectiveness (cf. C

6

criterion in Table 1) based on the sum of the scalar products
in lines and columns of the data matrix; this measure was
generalized thereafter by Climer and Zhang [20]. Other
authors, such as Hubert et al. [24] or Chen [25], based their
optimization on the divergence measure between the matrix
of dissimilarity and an anti-Robinson structure seeking to
gather the values of the smallest dissimilarities around the
diagonal (cf.C

4
criterion). On the other hand, some authors

such as Caraux and Pinloche [26] (cf. C
1
andC

2
criteria) or

Brusco and Steinley [27] (cf.C
3
criterion) rather seek to place

the smallest dissimilarities out of the diagonal (Robinson
structure). Lastly, in the framework of data compression,
Johnson et al. [28] proposed tominimize a criterion based on
the number of sequences of consecutive elements (on a line)
different from 0 (cf. C

5
criterion). Many authors proposed

new criteria of arrangement like Niermann [29] who seeks
to compare each observation with its adjacent neighbors
through vicinity criteria (cf. C

7
criterion) or Batagelj [30]

or Doreian et al. [31] who propose criteria of structural
equivalence orDhillon et al. [32] who usemutual information
and an entropy-based criterion.

These recent approaches require a prior knowledge of
the number of clusters formed by the individuals and the
variables whose determination is not trivial.

2.2. A Family of Embedded Binary Matrices. To deal with
the problem of imbalanced datasets, noisy data, overlapping
clusters, and outliers, we propose a new algorithm based
on a family of embedded binary matrices which stands for
different degrees of sparsity of the data. The binary matrices
are ordered according to an algorithm named Parsimonious
Block-Clustering (PB-clus). This algorithm makes it possible
to select the level of parsimony to produce the optimal
compact block structure.

In our approach, the degree of vicinity is defined as a
“threshold value” equal to the number of common neighbors
between pairs of observations after which pairs of obser-
vations are eliminated. The larger the number of common
neighbours imposed is, the more parsimonious the matrix
will be (filled with zeros). Hence, the degree of parsimony
is associated with the degree of common vicinity. Let us
consider a data matrix𝑋with elements inR𝑝 and𝑋𝑑 = (𝑥𝑑

𝑖𝑗
),

𝑖, 𝑗 ∈ {1, . . . , 𝑛} the dissimilarity matrix associated to 𝑋, the
choice of the distance function depending on the type of data:
it can be an Euclidean distance between individuals 𝑖 and
𝑗 (and more generally 𝑝-norm), a correlation, or any other
function characterizing the concept of proximity between

pairs of observations (see Table 1). Let 𝐴 = (𝑎
𝑖𝑗
), 𝑖, 𝑗 ∈

{1, . . . , 𝑛}, and the (0,1)-matrix with elements

𝑎
𝑖𝑗
=
{

{

{

1 if 𝑥𝑑
𝑖𝑗
≤ 𝜖

0 if 𝑥𝑑
𝑖𝑗
> 𝜖,

(2)

where 𝜖 is the threshold characterizing the proximity of the
pairs of observations. Its value can be given arbitrarily; we
propose to fix it at the first quartile of the distribution of
the distances between pairs of observations. In addition, the
matrix of similarity is symmetrical; that is, 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
. Let the

Gram matrix 𝐵 = 𝐴𝑇𝐴 where each element 𝑏
𝑖𝑗
is the number

of neighbors of the two data 𝑖 and 𝑗. This matrix corresponds
to a matrix of common vicinity.

Definition 1. A binary matrix 𝐵
𝜆
𝑚

= (𝑏
𝜆
𝑚

𝑖𝑗
), 𝑖, 𝑗 ∈ {1, . . . , 𝑛},

parsimonious with a degree 𝜆
𝑚
(with 𝑚 ∈ {1, . . . ,𝑀}) is

characterized by

𝑏
𝜆
𝑚

𝑖𝑗
= {

1 if 𝑏
𝑖𝑗
≥ 𝜖

0 if 𝑏
𝑖𝑗
< 𝜖,

(3)

where 𝑏
𝑖𝑗
represent the elements of theGrammatrix𝐵defined

previously. The set (𝐵
𝜆
𝑚

, . . . , 𝐵
𝜆
𝑀

, ) forms a family of binary
matrices whose level of parsimony is related to the number of
common neighbors.

Taking into consideration this definition, the greater 𝜆
𝑚

the fewer the number of pairs of observations which satisfy
this condition. The associated matrix will contain a greater
number of zeros and will thus be more parsimonious. The
sequence (𝜆

𝑚
) 𝑚 ∈ {1, . . . ,𝑀} such that 𝜆

1
< ⋅ ⋅ ⋅ < 𝜆

𝑀

makes it possible to establish an order relation ⊂ between the
𝑀 elements of the set 𝐵

𝜆
𝑚

𝑚 ∈ {1, . . . ,𝑀}:

𝐵
𝜆
𝑀

⊂ 𝐵
𝜆
𝑀−1

⊂ ⋅ ⋅ ⋅ ⊂ 𝐵
𝜆
1

, (4)

in which themost parsimoniousmatrix is contained in all the
other matrices of its family. One of the advantages of such
a matrix is the cancellation of the extreme values and of the
noise when the level of parsimony increases, which facilitates
the arrangement of the matrix as well as the appearance
of adiagonal block structure. In relation to this family of
matrices, a question remains: how to obtain the “best” level
of parsimony, that is, the one which will make it possible to
obtain a comprehensive visualization of the data structure?

The ordered matrix 𝐵∗
𝜆
𝑚
,ord = (𝑏

𝜆
𝑚

𝑖𝑗,ord)ord
, 𝑖, 𝑗 ∈ {1, . . . , 𝑛},

𝑚 ∈ 𝐼with the set 𝐼 ∈ {1, . . . ,𝑀} contained in a set of ordered
matrices, verifies that

B∗
𝜆
𝑚
,ord = argmin

𝑚∈𝐼

C
𝜆
𝑚

= argmin
𝑚∈𝐼

𝑛−2

∑
𝑖=1

𝑛−1

∑
𝑗=𝑖+1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜆
𝑚

𝑖𝑗,ord − 𝑏
𝜆
𝑚

𝑖(𝑗+1),ord
󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜆
𝑚

𝑖𝑗
− 𝑏
𝜆
𝑚

𝑖(𝑗+1)

󵄨󵄨󵄨󵄨󵄨󵄨

.

(5)

This criterion is based on the idea that the fewer the
alternations between the 0 and the 1 on the lines of the
matrix considered, the more compact a structure this matrix
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Table 1: Criteria of arrangement used within the framework of the clustering one-mode.

Type Criterion to optimize depending on the dissimilarity matrix𝐷 = {𝑑
𝑖𝑗
}
𝑖,𝑗∈{1,...,𝑛}

Structural criteria

𝐶
1
=

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑑
𝑖𝑗
|𝑖 − 𝑗|

2

𝐶
2
=

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

(𝑑
𝑖𝑗
− 𝛼|𝑖 − 𝑗|

2
)

𝐶
3
=

𝑛−2

∑
𝑖=1

𝑛−1

∑
𝑗=𝑖+1

𝑛

∑
𝑘=𝑗+1

(𝑑
𝑖𝑗
− 𝛼|𝑖 − 𝑗|

2
)

𝐶
4
= ∑
1≤𝑖<𝑗<𝑘≤𝑛

𝑓(𝑑
𝑖𝑘
, 𝑑
𝑖𝑗
) + ∑
1≤𝑖<𝑗<𝑘≤𝑛

𝑓(𝑑
𝑘𝑗
, 𝑑
𝑖𝑗
) with

𝑓(𝑥, 𝑦) = sign(𝑥 − 𝑦)
𝑓(𝑥, 𝑦) == |𝑥 − 𝑦| sign(𝑥 − 𝑦)
𝑓(𝑥, 𝑦) = I

𝑥>𝑦

𝑓(𝑥, 𝑦) = |𝑥 − 𝑦|I
𝑥>𝑦

𝐶
5
=

𝑛−1

∑
𝑗=𝑖+1

𝑛

∑
𝑘=𝑗+1

|𝑑
𝑖𝑗
− 𝑑
𝑖,𝑗+1

|

Similarity criteria

𝐶
6
=

𝑛

∑
𝑖,𝑗=1

𝑑
𝑖𝑗
(𝑑
𝑖,𝑗−1

+ 𝑑
𝑖,𝑗+1

+ 𝑑
𝑖+1,𝑗

+ 𝑑
𝑖−1,𝑗

)

𝐶
7
=

𝑛

∑
𝑖,𝑗=1

𝑓
𝑖𝑗

with

𝑓
𝑖,𝑗
=

min(𝑛,𝑖+1)

∑
𝑘=max(1,𝑖−1)

min(𝑛,𝑗+1)

∑
ℓ=max(𝑖,𝑗−1)

(𝑑
𝑖𝑗
− 𝑑
𝑘ℓ
)
2

𝑓
𝑖,𝑗
=

min(𝑛,𝑖+1)

∑
𝑘=max(1,𝑖−1)

(𝑑
𝑖𝑗
− 𝑑
𝑘𝑗
)
2
+

min(𝑛,𝑗+1)

∑
ℓ=max(𝑖,𝑗−1)

(𝑑
𝑖𝑗
− 𝑑
𝑖ℓ
)
2

will have. Indeed, in Table 2, if one considers the quantity
∑
𝑛

𝑖=1
∑
𝑛−1

𝑗=1
|𝑏
𝜆
𝑚

𝑖𝑗,ord − 𝑏
𝜆
𝑚

𝑖(𝑗+1),ord| accounting for the number of
changes between the 0 and the 1 of an ordered matrix of
degree 𝜆

𝑚
and the quantity |𝑏𝜆𝑚

𝑖𝑗,ord − 𝑏
𝜆
𝑚

𝑖(𝑗+1),ord| associated with
the nonarranged matrix of the same degree, it is notable that
the number of changes between the 0 and the 1 stays smaller in
the case of the ordered matrices. As the degree of parsimony
increases, the number of alternations between the 0 and
the 1 falls: in the example, the numerator ∑𝑛

𝑖=1
∑
𝑛−1

𝑗=1
|𝑏
𝜆
𝑚

𝑖𝑗,ord −

𝑏
𝜆
𝑚

𝑖(𝑗+1),ord| is equal to 9 for a level 𝜆 = 1 and to 3 when
the degree of parsimony is 3. In order for the selection
criteria not to be biased in favour of an infinite sparsity,
C
𝜆
𝑚

is standardized by the number of alternations between
the 0 and the 1 of the nonordered binary matrix associated
with the same degree of parsimony. Thus, according to
the example of Table 2, the level of parsimony retained is
𝜆 ≥ 2.

Let us note that, at this level, a structure with two groups
is selected and a piece of data that can be regarded as extreme
data is excluded. This criterion derives from the concept of
run used in data compression [28, 33], characterizing the
biggest sequences of 1 on a line in a Boolean matrix. The
chosen criterionC

𝜆
𝑚

is related to the full number of changes
present in the nonordered binary matrix of the same degree
of parsimony so that it is not skewed in favour of an infinite
parsimony or conversely, of too low a parsimony.

2.3. The Pb-Clus Geometry-Based Criterion. There are a
plethora of criteria for the task of seriation [34] but the
reordering algorithm that we proposed is based on the inner
product because of its geometric interpretation. Since our
work is based on symmetric matrices, the Tanimoto’s norm
(is also based on the dot product but adapted for binary data.)
defined by 𝑥𝑇

𝑖
𝑥
𝑗
/(𝑥𝑇
𝑖
𝑥
𝑖
+ 𝑥𝑇
𝑗
𝑥
𝑗
− 𝑥𝑇
𝑗
𝑥
𝑖
) can be used for binary

matrices 𝐵𝜆𝑚 of parsimony degrees 𝜆
𝑚
(∀𝑚 ∈ {1, . . . ,𝑀})

defined in Section 2.2.
The permutation function Ψ which seeks to optimize the

sum of the consecutive scalars can be written as

Ψ
∗
= argmax

Ψ

𝑛−1

∑
𝑖=1

𝑏
𝜆
𝑚

Ψ(𝑖)

𝑇

𝑏
𝜆
𝑚

Ψ(𝑖+1)

󵄩󵄩󵄩󵄩󵄩
𝑏
𝜆
𝑚

Ψ(𝑖)

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑏
𝜆
𝑚

Ψ(𝑖+1)

󵄩󵄩󵄩󵄩󵄩
− 𝑏
𝜆
𝑚

Ψ(𝑖)

𝑇

𝑏
𝜆
𝑚

Ψ(𝑖+1)

. (6)

This criterion is based on the principle of connected
components: when several observations share the same neigh-
borhood then these observations will belong to the same
cluster or to the nearest clusters. The algorithm is based on
a branch and bound method meaning that an exhaustive
search is made in various subsets that are determined by
the geometric properties of the dot product: the algorithm
first searches the independent vectors which the separated
clusters produce, then considers the connected component of
each of these vectors and finally, and reorders the correlated
vectors in each group. These steps can be done for a binary
neighborhood matrix 𝐵

𝜆
with level 𝜆 in the following way.
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Table 2: An example of calculation of the 𝐶
𝜆
𝑚

criterion calculated from the matrix of the introductory example cf Figure 1(a).

Matrix of common neighbors 𝐵 =

2 0 0 3 0 0

0 1 0 0 0 0

0 0 3 0 3 3

2 0 0 3 0 0

0 0 3 0 3 3

0 0 3 0 3 3

Parsimony level 𝜆 ≥ 1 𝜆 ≥ 2 𝜆 ≥ 3

Binary matrices of common neighbors 𝐵 =

1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 1 1

1 0 0 1 0 0

0 0 1 0 1 1

0 0 1 0 1 1

𝐵 =

1 0 0 1 0 0

0 0 0 0 0 0

0 0 1 0 1 1

1 0 0 1 0 0

0 0 1 0 1 1

0 0 1 0 1 1

𝐵 =

1 0 0 1 0 0

0 0 0 0 0 0

0 0 1 0 1 1

1 0 0 0 0 0

0 0 1 0 1 1

0 0 1 0 1 1

∑
6

𝑖=1
∑
5

𝑗=1
|𝑏
𝜆
𝑚

𝑖,𝑗
− 𝑏
𝜆
𝑚

𝑖,𝑗+1
| 17 15 9

(calculus per line) (3 + 2 + 3 + 3 + 3 + 3) (3 + 0 + 3 + 3 + 3 + 3) (0 + 0 + 3 + 0 + 3 + 3)

Sorted binary matrices 𝐵sor
1
=

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 1 0

0 0 1 1 1 0

0 0 1 1 1 0

0 0 0 0 0 1

𝐵sor
2
=

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 1 0

0 0 1 1 1 0

0 0 1 1 1 0

0 0 0 0 0 0

𝐵sor
3
=

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∑
6

𝑖=1
∑
5

𝑗=1
|(𝑏
𝜆
𝑚

𝑖,𝑗
)sort − (𝑏

𝜆
𝑚

𝑖,𝑗+1
)sort| 9 85 3

(calculus per line) (1 + 1 + 2 + 2 + 2 + 1) (1 + 1 + 2 + 2 + 2 + 0) (1 + 1 + 11 + 0 + 0 + 0)
Criterion 𝐶

𝜆
𝑚

𝐶
𝜆
𝑚
≥1
= 9/17 = 1.89 𝐶

𝜆
𝑚
≥2
= 8/15 = 1.88 𝐶

𝜆
𝑚
≥1
= 3/9 = 3.03

(1) Compute a matrix of dot products (inner products or
Tanimoto’s product) for each pair of columns of 𝑋

𝜆

without considering the columns full of zeros.
(2) Select a column and find its connected components.

Then find an orthogonal vector of the previous
column and extract its connected components. This
procedure is performed until there are no more
vectors. In this way, several independent submatrices
are built.

(3) In each submatrix, place the most correlated vector
alongside the first column and keep on doing this
process until the submatrix is reordered.

(4) Gather the rearranged submatrices and apply this
order to 𝐵

𝜆
.

The most informative visualization in terms of block-
matrix is derived from the concept of run in compression
approaches which characterizes a maximal sequences of
nonzero entries in a row of a Boolean matrix [33]. It is
intuitive that the fewer changes between series of ones and
zeros are on each row the better the reorderedmatrix is. Since
the sizes of the binary neighborhood matrices are different,
this quantity is normalized by the minimum between the
number of zeros or the number of ones of each rows so that

C
𝜆
=

𝑛
𝜆

∑
𝑖=1

card
𝑖
(0, 1) + card

𝑖
(1, 0)

min (card
𝑖
(0, 0) , card

𝑖
(1, 1))

, (7)

where 𝑛
𝜆
is the number of nonzero columns of the reordered

matrix 𝐵
𝜆
.

The algorithm enables us to find all the connected
components of a cluster and to display relationships between
clusters. This algorithm is straight forward deterministic
algorithm, meaning that for a current move, the previous
permutations are not challenged. Such an approach does not
pretend to be optimal compared with the other approaches
proposed in the literature but remains efficient and very fast
even for large datasets and performs well when the data are
noisy.

Since the proposed algorithm is a forward procedure (see
Table 1), the final rearrangement obtained depends strongly
on the first column selected in each submatrix. To deal with
this problem, we propose to select a central observation for
each submatrix to initialize the algorithm. The initialization
is based on the idea that if we find a central observation in
each cluster, then all connected components can be gathered.
So, the first column is selected according to the number of
strong correlated vectors which has to be maximum.

Lastly, Pb-Clus has a higher cost of calculation than the
other methods of seriation since the arrangement is carried
out not on only one matrix but on 𝑀 matrices relative
to different degrees of parsimony. In the case of a matrix
of size 𝑛 × 𝑛 with 𝐾 groups of same size 𝑛/𝐾, there are
at most 𝐾(𝑛/𝐾)! calculations. As the degree of parsimony
increases, the matrix is filled with columns (lines) of zeros,
which decreases the number of elements to be arranged, and
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Figure 2: (a) Projection of the data in their space (b) visualizations of the centralmatrix ordered by Pb-Clus with a sparsity level of 16 common
neighbors and (c) 8 common neighbors.

consequently the computing time.The calculation cost would
remain significantly lower than𝑀 ⋅ 𝐾(𝑛/𝐾)!.

3. Experiments on Simulated Data

3.1. Case of Non-Separated Clusters. For this experiment,
the data are simulated from three different 2-dimensional
Gaussian mixtures with large variances and two clusters are
superposed as illustrated in Figure 2(a). The first cluster is
formed of 5% of the data (15 observations) while the two
others account for 32% and 63% of the data, respectively
(i.e., 100 and 200 observations). The central partition linked
to this situation is represented in Figure 2(b) with a sparsity
threshold of 16 common neighbors.

For this level of parsimony,more than 6% of the data were
excluded which results in the removal of the smallest cluster.
For a level of 8 common neighbors, it is possible to recover
the third cluster.

Even if the central visualization Figure 2(c) is a bit less
clear than previously, it is still informative and three different
clusters can be seen. Moreover, the superposition of two
clusters can be identified since in the central visualization, the
two relative squares are inscribed in a bigger square which
means correlations or proximities between these two groups.
Lastly, among the seriated data, 98% have been correctly
classified.

3.2. Influence of the Level of Superimposition of Clusters. In
this second experiment, we seek to evaluate the influence
of the level of covering of clusters in the search for a data
structure. With this intention, we simulated 3 Gaussian
distributions in a 2-dimensional space so that their respective
averages check: 𝑚

1
= (𝑥, 𝑦)

𝑇, 𝑚
2
= (𝑥, −𝑦)

𝑇, 𝑚
3
= (0, −𝑦)

𝑇

with 𝑦 ∈ [0, 0.3], and 𝑦 ∈ [0, 0.225]. Consequently, the
relative position of the averages varies and this variation
determines the level of superposition of the groups. Thus,
when 𝑥 = 0 and 𝑦 = 0, the 3 groups are mixed and
that corresponds to a superposition of 100%. In the opposite
case of separate groups where the covering rate is zero, the
averages of the clusters check: 𝑚

1
= (0.3, 0.225)

𝑇, 𝑚
2
=

(0.3, −0.225)
𝑇, 𝑚
3

= (0, −0.225)
𝑇. Table 3 presents the

evolution of the sparsity level and its associated ousting rate,
according to the covering of the groups.

First of all, one notices that the greater the superposition
of the clusters is the more the C

𝜆
criterion selects a parsi-

monious representation of the data. Indeed, when the visible
data structure becomes less marked, this effect is balanced by
a greater sparsity in the data with a bigger common vicinity.
In the same way, as the data structure becomes increasingly
complex, the rate of classification related to the subsets of
seriated data decreases as well as the quality of visualization.
In our example, beyond a rate of covering of the data of
40%, the rate of classification becomes weak (<60%) since the
algorithm Pb-Clus no longer detects a structure in the data
and this, whatever the level of parsimony imposed.

3.3. Case of Noisy Data. In this experiment, 30% of the data
are replaced by a uniform noise in a hypercube [−1, 1]4 and
the rest of the data are distributed from a mixture of three
closed four dimensional Gaussian distributions as illustrated
in Figure 3(a). Figure 4(c) depicts the central visualization
which brings out a natural structure of three clusters in the
dataset even if the data are noisy.

Figure 3(b) presents the evolution of the compactness
criterion S

𝜆
according to the various degrees of parsimony,

namely, the number of common neighbors. The central
partition (Figure 3(c)) selected is the one for which the C

𝜆

criterion is minimal. This corresponds to a common vicinity
of 59.This sparsity results in the ousting of 16%of the data and
only 84% of the initial data make it possible to obtain a block
diagonal representation; the subsets of excluded data are
entirely made of noisy data. The rate of correct classification
among the seriated data amounts to 99%, which implies that
these subsets of seriated data are a structural visualization
of the 3 clusters. In order to evaluate the performance of
our approach, three methods of seriation based on distance
matrices were applied: hierarchical clustering (HC) for the
seriation (Figure 4(a)), the approach of Chen based on
an anti-Robinson structure [25] (Figure 4(b)), and another
method of anti-Robinson seriation by simulated annealing
[35] (Figure 4(c)).
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Table 3: Influence of the degree of covering of the clusters on the structure detection.

Degree of covering (en%) 0 6.7 13.3 20.0 26.6 33.3 40.0 46.6 53.30 73.3 100
𝑥 0.30 0.28 0.26 0.24 0.22 0.10 0.18 0.16 0.14 0.08 0
𝑦 0.225 0.21 0.195 0.18 0.165 0.15 0.135 0.120 0.09 0.06 0
Degree of parsimony 5 6 9 35 33 34 35 35 35 35 34
% of evinced values 0.00 0.00 0.00 0.26 0.23 0.34 0.37 0.35 0.39 0.35 0.43
Value of 𝐶

𝜆
1.95 2.01 2.42 2.64 2.90 2.82 3.34 3.29 3.32 3.54 3.65

Classification rate 0.99 0.99 0.99 0.99 0.95 0.90 0.86 0.60 0.49 0.44 0.39
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(a) Visualizations of the Gaussian mixture disturbed in the data space
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(b) Evolution of theC𝜆 criterion according to the number of common
neighbors

(c) The centralmatrix ordered byPb-
Clus with a sparsity threshold of 67
common neighbors

Figure 3: Seriation in the case of noisy data.

Among the methods of seriation used, we notice that
only the central partition provided by Pb-Clus brings a clear
visualization of the three clusters. The representation of this
structure in three distinct groups is possible thanks to the
family of parsimonious binary matrices. Indeed, the higher
the degree of parsimony in the matrices, the greater the
decrease in the quantity of noisy data taken into account.

3.4. Influence of the Noise Level. This second experiment
aims to demonstrate the behavior of Pb-Clus in the case

of very noisy data. For this purpose, we simulated three 2-
dimensional Gaussian distributions of 50 observations each
with the following means 𝑚

1
= (−0.4, −0.3)

𝑇, 𝑚
2

=

(−0.4, −0.3)
𝑇, and 𝑚

3
= (0, 0.3)

𝑇, respectively, and matrix
of variance-covariance 𝑆 = diag(0.1, 0.1). These groups are
voluntarily separated in order to be able to evaluate the
sensitivity of the algorithm to the noise. The noisy data were
generated according to a uniform law on the support [−1, 1]2.
To evaluate the impact of the noise on visualization, we varied
the quantity of noise from 10% to 200% of the number of data
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(a) Hierarchical method of cluster-
ing

(b) Method of Chen (c) Method based on an anti-
Robinson representation

Figure 4: Visualizations of the pixelized distance matrix seriated.

20% added noise 40% added noise 60% added noise 80% added noise 100% added noise

120% added noise 140% added noise 160% added noise 180% added noise 200% added noise

Noise level (en%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Degree of parsimony 4 5 12 10 6 10 8 11 12 10 18
Evinced values (%) 4 5 12 10 6 10 8 11 12 10 18
Evinced values (%) 0.06 0.12 0.16 0.09 0.12 0.04 0.23 0.11 0.11 0.12 0.04
Classification rate 1 1 1 1 1 1 1 1 0.99 0.99 0.99

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

19 24 33 21 31 35 35 31 31 35
0.12 0.12 0.13 0.19 0.07 0.16 0.13 0.11 0.07 0.08
0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.98 0.98

Noise level (en%)
Degree of parsimony
Evinced values (%)
Classification rate

Figure 5: Visualization of the data structures according to various levels of noise added to the initial data.

in the initial sample. Figure 5 presents how the visualization
of the data evolves with additional noise.

One notes that the group visualization degrades little
with the additional noise. Indeed, in Figure 5, the structure is
degraded only when the disturbed data represent more than
half of the whole data.

3.5. Comparison on Classical Datasets. In this section, we
compare the performance of PBClus in terms of visualization
firstly with two other methods of seriation, one using hierar-
chical classification (HC) and the other using a criterion of
divergence related to an anti-Robinson structure described
in Hahsler et al. [36] and, secondly, with an unsupervised
classification method based on the Euclidean distances, the
𝑘-means. The 5 chosen datasets are detailed below.

(i) Fisher’s irises database collects 3 different species of
iris in the Gaspé peninsula: setosa, virginica and the
versicolor. Each species is represented by 50 flowers

which are described by 4 morphometric characteris-
tics based on the width and the length of their sepals
and their petals. This database is extremely popular
in the statistical community because of difficulty of
distinguishing the virginica and the versicolor.

(ii) The ruspini data come from work of Ruspini [37] on
clustering: they are made of 75 points in 2 dimen-
sions and divided into 4 homogeneous and balanced
classes.

(iii) The townships data are binary data reporting the pres-
ence or the absence of 9 descriptive characteristics
of 16 cities, such as the presence or the absence of
universities, agricultural cooperatives, and railroads.
There is no information on the number of groups
structuring the data.

(iv) Old Faithful geyser data evaluate the time between
two eruptions of geysers of the national park of
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Table 4: Comparison of 3 methods of seriation, PB-Clus, HC, and Chen approach according to Moore and Neumann criteria on the data
benchmarks.

Method PB-Clus seriation HC seriation Chen seriation
Criterion Moore Neumann Moore Neumann Moore Neumann

Dataset
Iris 1 371.2 471.1 31 728.8 10 893.1 19 357.8 7 304.0
Townships 244.5 91.8 1 109.9 441.5 849.0 342.0
Ruspini 1 290.1 442.2 8 724.9 3 036.4 6 503.7 2 277.1
Faithful 2 634.1 889.4 34 045.5 11 503.5 23 390.0 9 894.2
Geysers 2 514.9 850.4 68 205.3 2 302.1 12 866.8 4 501.4

Yellowstone of Wyoming (USA) and their duration.
They are characterized by 272 observations [38].

(v) The geysers data represent a full version of the preced-
ing data that were collected by Azzalini and Bowman
[39]. These relate to the 299 eruptions which were
studied (same types of measurements as previously)
between 1st and 15th August, 1985.

The quality of the visualization is calculated from two cri-
teria proposed by Niermann [29] and presented in Section 2;
the partition obtained will be evaluated by cross-validation
with the true label when available or with the labels estimated
by the 𝑘-means. As the latter supposes a prior knowledge of
the number of groups of the mixture, we use the number of
clusters detected by Pb-Clus in order to obtain comparable
partitions.

The right-hand column of Figure 6 represents the con-
secutive dot products of elements 𝑖 and 𝑖 + 1 ordered out
of the 5 previous databases. These curves of consecutive dot
product give an evaluation of the proximity between two
adjacent observations and points of rupture for the passage
of one cluster to another, whichmakes it possible to select the
number of clusters in the mixture and to obtain a partition of
the data. In Figure 6 the left-hand column of represents the
central visualization of the parsimoniousmatrix orderedwith
the algorithm PB-Clus. In the case of the Fisher’s irises, the
observation of its centralmatrix of degree of common vicinity
8 shows a total structure of two clusters.

One finds here the particular structure of the irises in
which the versicolor and the virginica are not very distinct
species. In addition, this partition in 3 groups is confirmed
by the 2 break points present on the curves of its consecutive
dot products. These 2 graphs demonstrate the performance
of our parsimonious approach for the visualization of the
data, especially as the methods of clustering which select
one optimal model with 3 iris classes are rare (cf. mixture
models of Raftery and Dean [40]). In the case of the Ruspini
and the Old Faithful data, ruptures on the curve of the
consecutive dot products are clear and large which show the
total disconnection of the clusters between them. The same
conclusion is visible on their ordered central matrix of degree
5 for the Ruspini data and of degree 2 for the Faithful data.

On the contrary, the Geysers and the Townships data
present small breaking points. In the case of Geysers data,
they are explained by the proximity of the clusters. Then, in

the case of the Townships data, the curve of the consecutive
scalars shows that the first city is, certainly, connected to the
7 following cities but less strongly than these 7 cities between
each other. The central visualization of the parsimonious
ordered matrix of degree 2 with Pb-Clus brings a better com-
prehension of the relationships between the cities. Indeed,
it is noticed that the first data is strongly correlated with
two distinct blocks of cities. This is confirmed by an analysis
of Hahsler et al. who showed the existence of a structure
with 3 groups: urban cities, country towns, and transition
cities. This first evaluation based on our visual perception
is supplemented by the measure of quality based on seri-
ation criteria evaluating the vicinity in the ordered matrix.
Table 4 evaluates the performances of 3 methods of seriation,
the best method being the one whose criterion is minimum.
It is noticed that the 2 criteria of Niermann are minimum for
a parsimonious approach for all the databases.

Lastly, Table 5 presents the tables of cross-classification
with the true label for the irises of Fisher and with the
labels obtained by 𝑘-means in the case of the data Ruspini,
Townships, Geysers, and Faithful. Let us note that in the case of
the irises andGeysers data, we threshold the scalars in order to
obtain a label for each data. Concerning the Fisher irises, the
correct classification rate of PB-Clus is 89.0%, slightly weaker
than that obtained by the 𝑘-means (90.6%). This difference
in rate is related to the data located at the intersection of
the virginica and the versicolor and with initialization of our
algorithm. For the other data files, one observes that the
partitions obtained by Pb-Clus and the 𝑘-means agree almost
perfectly, the rates of classification bordering 98%.

4. Experimental Methods

In this section, we approach the task of classifying spike
waveforms using PB-Clus.

4.1. Animal Training and Behavioral Tasks. The detection
of neural spike activity is a technical challenge that is a
prerequisite for studying many types of brain function (for
more details see Vigneron et al. [41]).

The study, approved by the Institutional Animal Care
and Use Committee at the National Chiao Tung University,
was conducted according to the standards established in the
Guide for the Care andUse of LaboratoryAnimals. Fourmale
rats weighing 250–300 g (BioLASCO Taiwan Corp., Ltd.)
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Figure 6: (a)–(e) rearranged matrices obtained with the PB-Clust (f)–(j) consecutive scalars resulting from the rearranged matrices.

were individually housed applying a 12 h light/dark cycle, with
access to food and water ad libitum.

Dataset was collected from the motor cortex of awake
animals performing a simple reward task. In this task, male
rats (BioLACO Taiwan Co.,Ltd) were trained to press a
lever to initiate a trial in return for a water reward. The

animals were water restricted 8-hours/day during training
and recording session but food was always provided to the
animal ad lib every day.

4.2. Chronic Animal Preparation and Neural Ensemble Re-
cording. The animals were anesthetized with pentobarbital
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Table 5: Tables of cross-validation of the data benchmarks.

(a)

Fisher Iris Township
Known
classes

Clusters PB-Clus Known
classes

Clusters k-means Known classes Clusters PB-Clus
1 2 3 1 2 3 1 2 3 4

Setosa 50 0 0 Setosa 50 0 0 Urban cities 8 0 0 0
Versicolor 0 50 0 Versicolor 0 49 1 Transitions 0 4 0 0
Virginica 0 17 33 Virginica 0 13 37 Country towns 0 0 2 0

Unclassified 0 1 0 1
Classification rate = 0.88 Classification rate = 0.90 Classification rate = 0.94

(b)

Ruspini Faithful Geysers
Clusters
k-means

Clusters PB-Clus Clusters
k-means

Clusters PB- Clus Clusters
k-means

Clusters PB-Clus
1 2 3 4 1 2 1 2 3

Group 1 50 0 0 0 Group 1 168 4 Group 1 88 2 7
Group 2 0 35 0 0 Group 2 0 100 Group 2 0 105 0
Group 3 0 0 15 0 Group 3 0 0 97
Group 4 0 0 0 20

Classification rate = 1.00 Classification rate = 0.98 Classification rate = 0.97

(50mg/kg i.p.) and placed on a standard stereotaxic apparatus
(Model 9000, David Kopf, USA). The dura was retracted
carefully before the electrode array was implanted. The pairs
of 8 microwire electrode arrays (no.15140/13848, 50m in
diameter; California Fine Wire Co., USA) were implanted
into the layer V of the primary motor cortex (M1). The area
related to forelimbmovement is located anterior 2–4mmand
lateral 2–4mm frombregma. After implantation, the exposed
brain should be sealed with dental acrylic and a recovery time
of a week is needed.

During the recording sessions, the animal was free to
move within the behavior task box (30 cm × 30 cm × 60 cm),
where rats only pressed the lever via the right forelimb,
and then they received 1-mL water reward as shown in
Figure 7. A multichannel Acquisition Processor (MAP,
Plexon Inc., USA) was used to record neural signals. The
recorded neural signals were transmitted from the head-
stage to an amplifier, through a band-pass filter (spike
preamp filter: 450–5 kHz; gain: 15,000–20,000), and sampled
at 40 kHz per channel. Simultaneously, the animal’s behavior
was recorded by the video tracking system (CinePlex, Plexon
Inc., USA) and examined to ensure that it was consistent for
all trials included in a given analysis.

4.3. Preprocessing. Neural activity was collected from 400–
700ms before to 200–300ms after lever release for each
trail. Action potentials (spikes) crossing set thresholds were
detected and sorted and the firing rate for each neuron was
computed in 33ms time bins. Since the signals are collected
with 10 nanometers invasive probes, the noise effects are
limited.

Figure 7: The experimental setup (top). Light-color (red virtual
ring) was belted up the right forelimb to be recognized the trajectory
by video tracking system. The sequence images captured the rat
performing the lever press tasks in return for a reward of water
drinking (bottom).

The experiment wasmade on 16 channels which collected
EEG signals from microprobes which are implanted in the
layer V of the M1 region of a rat.

4.4. Manual Scatterplot Classification. A method for classi-
fication is by plotting a selection of 2 or 3 spike features in
a scatter diagram. This results in a 2- or 3-D graph with
separate groups.The groups can only be assigned when there
is enough spacing between the groups. Elliptic shaped areas
are drawn around the groups isolating the classes.
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(a) Intrinsic structure of the data obtained by
PB-Clus on channel 2
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Figure 8: Results obtained by PB-Clus and 2 unsupervised approaches MDA and PCA-EM on channel 2.

Table 6: Number and type of spikes recorded in the 16 channels.

Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of spikes — 799 60 405 727 489 300 229 475 224 533 538 21 1833 1491 421
Types of spikes — 2 2 2 1 2 4 1 1 2 2 2 1 2 1 4

4.5. Spike Waveforms Classification. To both reduce the size
of these patterns and to cluster the spike mixture in a finite
number of classes, we use two different tools: a seriation
approach (PB-Clus) and a subspace clustering approach [42],
named MDA (Mixture Discriminant analysis). Statistical
discriminant analysis methods such as MDA aims to find
both a parsimonious and discriminative fit for the data in
order to ease the clustering and the visualization of the
clustered data in a Gaussian mixture model context. MDA,
developed by Hastie and Tibshirani [43], is a generalization
of LDA (Linear Discriminant Analysis) in which each class
is modeled by a mixture of Gaussians (see [44, chp. 4] for
more details). This modelization gives more flexibility in
the classification rule than LDA and allows MDA to take
into account heterogeneity in a class. Breiman et al. [45],
MacLachlan and Basford [46] have actually contributed and
tested this generative approach on many fields. This latent
subspace orientation is chosen such as it best discriminates

the groups. The quality of the partition obtained by both
approaches will be measured by the Fisher index which is
defined by the ratio between the within (𝑆

𝑤
) and the between

(𝑆
𝐵
) scatter matrices:

𝐹index =
𝑆
𝑤

𝑆
𝐵

=
∑
𝐾

𝑘=1
∑
𝑖∈𝐶
𝑘

(𝑥
𝑖
− 𝑚
𝑘
) (𝑥
𝑖
− 𝑚
𝑘
)
𝑡

∑
𝐾

𝑘=1
𝑛
𝑘
(𝑚
𝑘
− 𝑥) (𝑚

𝑘
− 𝑥)
𝑡

, (8)

where 𝑚
𝑘

= (1/𝑛
𝑘
) ∑
𝐾

𝑖∈𝐶
𝑘

𝑥
𝑖
is the empirical mean of

the observed column vector 𝑥
𝑖
in the class 𝑘 and 𝑥 =

(1/𝑛)∑
𝐾

𝑘=1
𝑛
𝑘
𝑚
𝑘
is the mean column vector of the obser-

vations. Besides, both methods will be compared with a
traditional approach of clustering which first reduces the
dimension by principal component analysis (PCA) and then
clusters the data in the projected space and refers in this paper
to PCA-EM. Clustering accuracy will be computed between
the partition obtained by both approaches and that obtained
by a 𝑘-means approach.
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4.6. Results for Some Prominent Channels. This first study
aims to satisfy the existence of 4 classes of spikes. For this
experiment, the clustering task was made channel by channel
and, in each channel, we consider all the different events
which correspond to movements of the rat. Finally, for each
event, many spikes were recorded. Each normalized spike
waveform is a time series that are of 32 dimensions.

Table 6 presents the number of spikes recorded in each
of 16 channels and also the a priori number of kinds of spikes
found by the preprocessing task. Besides, in the preprocessing
task, as PCA components are computed so that different types
of spikes are separated, we are going to first consider the
projection on the 2 first components of PCA on each channel.

Figure 9 stand for the projection of the spikes of all the
events of a selection of channels on the two first components.
Whereas Table 6 describes the number of supposed types of
spikes and given the preprocessing task, we expect to visualize
on Figure 9 the intrinsic structure of the dataset where the
number of separated clusters corresponds to those obtained
in Table 6. However, it is difficult to visualize in Figure 9
a partition of several clusters in the data for each channel,
whereas different clusters for channels 2, 7, and 16 can be
observed in Figures 9(a), 9(e), and 9(k); such distinctions
cannot be generalized since, on the other channels, it is
not possible to visualize a group structure in the projected
data.Without the label information of the preprocessing task,
nothing enables us to suppose the true existence of different
clusters. Furthermore it can be observed in Figure 9(b)—
which stands for the projection of data of channel 3 plotted
with the labeled spikes elaborated by the preclassification
task—that the manual labels give no sense to a partition of
the 2 groups of the data.

Consequently, from now, the proposed labels will not be
taken into account and the main purpose of this work is
to check the relevance of the preprocessing task. This study
focuses on channels 2 and 7whose datasets appear structured.

4.6.1. On Channel 2. The possible existence of two types
of spikes in the axes of PCA in Figure 9(a) is satisfied by
both the seriation and the subspace clustering approaches. In
Figure 8(a) which represents the rearranged observations
obtained by the Algorithm 1, one can observe 2 differ-
ent blocks, one for each types of spikes in the data. In
Figure 8(b) which stands for the projection of the data in
the discriminative axes estimated by MDA algorithm, it can
be observed that the clusters appear to be well separated
compared with those obtained in the PCA axis. Figure 8(c)
illustrates the projection of the data in the discriminative axes
estimated by algorithm, it can be observed that the clusters
appear to be well separated compared with those obtained
in the PCA axis. Figure 8(c) which stands for the response
of the supervised classification by PCA-EM approach has
a similar representation of the data as those obtained by
their projection in the 2 first principal components of PCA
illustrated in Figure 9(a). In addition, Table 7 represents the
Fisher index which has been computed for the different
approaches previously presented. For the PB-Clus partition,
the Fisher index is lower than those obtained by PCA-EMand

Table 7: Fisher index computed in channel 2 for PCA-EM, PB-Clus,
and MDA.

Methods PCA-EM PB-Clus MDA
𝐹index 864.5 210.1 588.7

MDA. It can be explained by the fact that PB-Clus introduces
sparsity in the data, which produces smaller clusters that
are more compact than those produced by PCA. Besides,
the Fisher index for the MDA approach is equal to 588.7,
which is equivalent to the result obtained by the PCA-EM
classification (𝐹index = 585.0) and lower than the PCA’s
one (𝐹index = 864.5). Finally, to check the validity of the
partition obtained by both methods, a cross-validation on
the 𝑘-means results obtained by the work of [25] has been
made. The contingency table and the clustering accuracy are
presented in Table 8 and for each approach, it can be noted
that 99% of the labeled data match with the PCA-EM labels.
Consequently, it seems that, in channel 2, there are 2 different
kinds of spikes and their respective shape obtained by both
PB-Clus and MDA approaches is detailed in Figure 10.

4.6.2. On Channel 7. According to Figure 9(e), it can be
observed on the first two components of PCA that there are
at least 3 different groups of spikes. This remark is satisfied
by the seriation approach, since Figure 11(a) which represents
the intrinsic structure obtained byPB-Clus stresses 3different
kinds of spikes. In the same way, 3 components have been
selected by using the Bayesian information criterion (BIC)
for the mixture model in the case of PCA-EM, whereas both
the preprocessing task and MDA, with the computation of
BIC, have found 4 types of spikes. Figure 11(b) represents
the projection of the clustered data on the 3 discriminant
axes estimated by PCA-EM. In addition, since the 𝑘-means
approach is based on the results of the preprocessing task,
the prediction of the class membership of this dataset is made
amongst 4 classes as can be seen in Figure 11(c).

Since the number of clusters varies between the different
methods, data have been modeled by mixture models with
3 and then 4 components for both PCA-EM and MDA
approaches, in order to be able to compare all the approaches.
In Table 9 the Fisher index has been computed for the
different cases. As expected, this criterion is much lower in
the case of PB-Clus since it includes parsimony in the data
whereas the ones obtained for MDA or PCA-EM remain
high for a mixture of 3 components. Finally, the contingency
table and the clustering accuracy are presented in Table 10.
It can be observed that for the first case, PB-Clus detects the
types 1, 2, and 4 of spikes whereas the 3 rd type of spike is
mixed with the first one. Furthermore, the classification rate
reaches 91% on the spikes retained by PB-Clus when 40% of
the data are ousted because of a high level of sparsity. In the
second case, the partition obtained byMDA is comparable to
these obtained by the PCA-EM classification except for type
1 which is mainly spread on type 3.

Finally, Figures 12(a) and 12(b) show the different spikes
clustered by the PB-Clus andMDAalgorithms.Thedifference
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Figure 9: Projection of spikes of each channel on the 2 first components of PCA.
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Figure 11: Results obtained by unsupervised approach PB-Clus and 2 supervised approaches MDA and PCA-EM on channel 7.
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Figure 12: Clustered spikes obtained by PB-Clus and MDA for the channel 7.

between the two approaches is clearly seen on the 3 rd type
of spikes (blue in Figure 12) which is detected by MDA
whereas it is not by PB-Clus. This could be explained by
the weak dissimilarity between the shape of the 1st and the
3 rd type of spikes (resp., black and blue in Figure 12) which
is not taken into account by the measure of similarity, the

euclidean distance, used in PB-Clus. Different measures of
similarity have been tried on PB-Clus such as Spearman
correlation or maximum distances but have not brought any
more information or any improvement for the visualization.

To conclude, given these results, the existence of 4
different types of clusters does not seem really relevant
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Require: seq := vector of expected number of neighbors
Require: listeC := vector of criterion values
(1) for all 𝑖 ∈ seq do
(2) Compute the binary matrix 𝐵

𝜆
of common neighbors for 𝜆 = seq (𝑖)

(3) Compute 𝐵
𝜆
the scalar products matrix of 𝐵

𝜆

(4) 𝜆 ← sort(𝑆
𝜆
) (sort the individuals)

(5) 𝐶
𝜆
← crit(𝐵

𝜆
, 𝑆
𝜆
), compute the criterion

(6) listeC ← merge(listeC, 𝐶
𝜆
)

(7) end for
(8) 𝜆∗ ←arg min

𝜆
(listeC)

(9) 𝐵
𝜆
∗ ← min(listeC)

(10) 𝑂
𝜆
∗ ← ordre(𝑆

𝜆
∗ )

The PB-Clus algorithm returns the minimum of the criterion 𝐵
𝜆
∗ ,

the related number of common neighbors and the optimal sorting matrix 𝑂
𝜆
∗ .

(1) procedure sort(𝑆
𝜆
)

(2) 𝑉 := colinear(𝑖.𝑜𝑏𝑠, 𝑆
𝜆
)

(3) liste := list of individuals whose common neighbors (𝑐𝑛) is non-zero (𝑐𝑛 = 0)
(4) 𝑖.max := the individual for which 𝑐𝑛 is maximum
(5) 𝑖.perm := 0 (list containing the ranking value of the individuals)
(6) repeat
(7) 𝑖.perm←merge(𝑖.perm, liste[𝑉.col])
(8) if length(𝑉.cor) ≥ 1 then
(9) 𝑆

𝑗
← 𝑆
𝑗
[𝑐(𝑉.cor, 𝑉.ind), 𝑐(𝑉.cor, 𝑉.ind)]

(10) liste← liste[𝑐(𝑉.cor, 𝑉.ind)]
(11) if length(𝑉.cor) > 1 then
(12) 𝑉 ← colinear(1, 𝐵

𝜆
)

(13) end if
(14) else
(15) 𝑆

𝑗
← 𝑆
𝑗
[𝑉.ind, 𝑉.ind]

(16) liste = liste[𝑉.ind]
(17) if length(𝑉.cor) > 1 then
(18) 𝑖.max = arg max

𝑗
𝑐𝑛(𝑆
𝑗
)

(19) 𝐵
𝜆
= 𝐵
𝜆
[𝑉.ind, 𝑉.ind]

(20) 𝑉 = colinear(𝑖.max, 𝐵
𝜆
)

(21) end if
(22) end if
(23) until length(liste) > 1
(1) procedure colinear(𝑖, 𝑆) returns 3 different lists
(2) 𝑠

𝑖
:= 𝑖th line of 𝑆

(3) 𝑉.col := list of individuals that are colinear with 𝑠
𝑖

(4) 𝑉.cor := list of individuals that are correlated with 𝑠
𝑖

(5) 𝑉.ind := list of individuals that are independent of 𝑠
𝑖

Algorithm 1: PB-Clus algorithm.

Table 8: Contingency tables for PB-Clus and MDA partitions with
𝑘-means classification in channel 2.

PB-Clus MDA
k-means
classes

Clusters k-means
classes

Clusters
1 2 1 2

Type 1 214 0 Type 1 515 2
Type 2 0 79 Type 2 5 277
Classification rate = 100% Classification rate = 99.12%

since some types of spikes, in particular types 3 and 4, are
often mixed with the first type in both PB-Clus and MDA

Table 9: Fisher index computed in channel 7 for PCA-EM, PB-Clus,
and MDA.

Methods PCA-EM PB-Clus MDA
𝐹index for 3 clusters 614.1 287.9 483.6
𝐹index for 4 clusters 392.2 — 324.1

approaches. Consequently, either the preprocessing task is
biased since the different types of spikes do not really exist
or the 32 dimensions of the studied spikes are not sufficient
to discriminate the 4 different types of spikes.
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Table 10: Contingency tables for PB-Clus and MDA partitions with 𝑘-means classification for the channel 7.

PB-Clus MDA

𝑘-means classes Clusters
𝑘-means classes Clusters

1 2 3 1 2 3 4
Type 1 183 11 0 Type 1 181 0 17 6
Type 2 0 0 7 Type 2 1 36 0 0
Type 3 5 0 0 Type 3 0 0 33 4
Type 4 1 5 1 Type 4 0 0 0 22

Classification rate = 91% Classification rate = 90.1%

5. Conclusion

Controlled numerical experiments using spike and noise
data extracted from neural recordings indicate significant
improvements in detection and classification accuracy com-
paredwith amplitude and linear template-based spike sorting
techniques. Algorithm 1makes it possible to visualize subsets
of spike data and their dependencies. With this intention,
we proposed a family of embedded parsimonious matrices
of different levels of parsimony whose level is directly deter-
mined by the number of common neighbors between pairs
of observations. This is an effective tool for the analysis of
data, which offers better results visually than the traditional
clustering methods, in particular when the data are noisy or
imbalanced or when the groups are superposed.

Moreover, this parsimonious approach facilitates the
interpretation of the data and offers a quality of partitioning
comparable with the 𝑘-means method with the advantage
of not posing any assumption about the number of clusters.
In addition, choosing a level of parsimony in the data
corresponds to seeking explicative subsets of a structure.
This new point of view can be connected with an approach
by levels of density, commonly called level sets, which was
initially approached byHartigan [47] and then byNolan [48].
A comparison of these two approaches and the search for a
theoretical bond are part of our research tasks in progress.
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This paper details a novel probabilistic method for automatic neural spike sorting which uses stochastic point process models
of neural spike trains and parameterized action potential waveforms. A novel likelihood model for observed firing times as the
aggregation of hidden neural spike trains is derived, as well as an iterative procedure for clustering the data and finding the
parameters that maximize the likelihood. The method is executed and evaluated on both a fully labeled semiartificial dataset
and a partially labeled real dataset of extracellular electric traces from rat hippocampus. In conditions of relatively high difficulty
(i.e., with additive noise and with similar action potential waveform shapes for distinct neurons) the method achieves significant
improvements in clustering performance over a baseline waveform-only Gaussian mixture model (GMM) clustering on the
semiartificial set (1.98% reduction in error rate) and outperforms both the GMM and a state-of-the-art method on the real dataset
(5.04% reduction in false positive + false negative errors). Finally, an empirical study of two free parameters for our method is
performed on the semiartificial dataset.

1. Introduction

Trace signals from extracellular electrodes implanted in a
population of neurons are extremely valuable for studying
the behavior of neurons and are used as the primary input
source for motor and communication prostheses based on
brain-computer interfaces [1, 2]. Given a trace of extracellular
electric potential signals, neural spike sorting is the task
of detecting neuronal action potential events in the form
of “spikes” in the extracellular signal and identifying which
neurons or neuronal clusters produced each spike in the trace.
Many approaches to the spike sorting problem are based on
discriminating between neuronal units by extracting features
from spike waveforms and forming clusters in the feature
space. This includes manual spike sorting approaches, where
an expert visually identifies clusters of spike waveforms, and
automatic approaches, which are typically based on rigorous
signal processing and statistical modeling for clustering or
classification. Many studies and practical implementations
confirm the effectiveness of waveform-based spike sorting
approaches; thorough reviews are given in [3, 4]. While
approaches that use only the waveform shape have been
successful, these methods are particularly susceptible to

some very common sources of errors in intracortical BCIs.
Distinct neurons having similar waveform shapes, changes
in time-domain, and parameterized waveform shapes due
to movement of the electrodes and excessive background
noise all have a direct negative impact on the performance
of waveform-only spike sorting methods.

An ensemble of neural spike trains, one for each neuron
or neuronal cluster in the vicinity of the electrode, is typically
the most important result of the spike sorting operation
[5]. Estimates of the firing rates of neural spike trains, as
well as stochastic point process models of the spike trains
themselves, are used to make inferences about populations
of neurons [6–8] and for decoding in intracortical BCIs [9–
13]. While modeling and analysis of spike trains is usually
associated with neural decoding, a number of recent studies
have advocated incorporating neural spike trains (and other
temporal information) into the process of spike sorting.
A complete maximum-likelihood framework based on a
variant of hidden Markov models (HMMs) is described in
[14] to model neuronal bursting behavior. The sparse HMM
framework proposed in [14] models counts of neural firing
events in equally spaced time frames. In another study,
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extracellular traces were divided into short-duration time
segments to model the nonstationarity of neuronal action
potential waveform features [15]; Viterbi decoding was then
used to find the optimal clustering across time segments. Sev-
eral studies have explicitly incorporated models of interspike
interval (ISI) durations into spike sorting [16, 17]. Stationary
models of spike amplitudes and ISI durations are used in [16],
while HMMs are incorporated in [17] to model the time-
varying firing behavior of each neuron. Finally, a joint model
of waveforms and firing rates, as modulated by a function of a
known covariate quantity, was introduced in [18]. In [16, 17],
Markov chain Monte Carlo distribution sampling was used
for model inference.

In this paper, we detail a novel, probabilistic framework
for neural spike sorting, based on stationary, stochastic ISI
models of neural spike trains. A preliminary version of this
work was presented previously in conference proceedings
[19, 20]. Our method for spike sorting introduces a joint
probabilistic model of parameterized spike waveforms and
the occurrence times of an ensemble of neural spike trains.
We derive a novel likelihood model and a procedure for
clustering and parameter estimation and then evaluate the
model on both fully labeled semiartificial neural data and
partially labeled real data.

In Section 2 we describe our methods in detail. In
Section 2.1, we define neural spike sorting as a latent-variable
problem with three variables: the set of observed waveforms,
the observed firing times, and hidden neuronal cluster labels.
We give likelihood expressions for the three variables, and
formulate the solution as maximizing their joint likelihood.
We model the set of observed firing times as the aggregation
of an ensemble of neural spike trains, one for each neu-
ronal cluster, using a stationary, stochastic interspike interval
model for each spike train. We then express the likelihood of
the observed firing times as the joint likelihood of 𝐾 neural
spike trains. In Section 2.2, with the likelihoodmodel defined,
we derive a novel iterative method for clustering the data
by finding the model parameters that maximize the joint
likelihood of the firing times, waveforms, and hidden labels.
For computational efficiency, the clustering method depends
on iterating forward in time and keeping a short history
of recent firing times at each stage. Section 2.3 gives detail
about our choices for the probability distributions used in the
likelihood model, and Section 2.4 explains the meaning and
use of the procedure’s two hyperparameters.

Finally, in Section 3, we evaluate our method on publicly
available datasets. We first use realistic, semiartificial data
(i.e., real spike waveforms, with synthesized firing times),
with a complete set of labels, to evaluate the performance of
our spike sorting procedure versus a state-of-the-art method.
We then evaluate our procedure on a completely real dataset,
consisting of extracellular traces, and an intracellular trace for
one neuron.

2. Methods

The task of neuronal action potential identification, or spike
sorting, can be seen as a latent variable problem where

the set of detected firing times and corresponding action
potential waveforms are observed in an extracellular electric
trace, and the identity of the underlying neurons is a hidden
variable. In the remainder of this section, we describe a new
approach to the spike sorting problem, where we model the
set of observed, threshold-crossing neuronal firing times as
the aggregation of multiple hidden point processes, one for
each neuron. We use an iterative procedure to estimate the
maximum likelihood sequence of states based on the set of
observed action potential waveforms and firing times.

2.1. Likelihood Model. Let the vector z = {𝑧
𝑖
}
𝑁

𝑖=1
be the time

occurrences of𝑁 observed, threshold-crossing events corre-
sponding to firings of a population of 𝐾 cortical neuronal
clusters in the vicinity of the electrode. Let X = {x

𝑖
}
𝑁

𝑖=1

be the set of corresponding parameterized action potential
waveforms, where each vector x

𝑖
has dimension 𝐷, and let

c be an 𝑁-length, discrete-valued vector containing the set
of unknown neuronal labels corresponding to each observed
event.

We define the posterior probability 𝑃(c | X, z) as follows:

𝑃 (c | X, z) = 𝑃 (X, z, c)
𝑃 (X, z)

∝ 𝑃 (X, z, c) , (1)

where we note that the term 𝑃(X, z) in (1) does not vary with
respect to c.

The optimal sequence ĉ thus satisfies

ĉ = arg max
c

𝑃 (X, z, c) . (2)

The graphical model in Figure 1 illustrates the assump-
tions about the statistical dependencies between the observed
variables X and z and the latent variable c that we will use
in our modeling framework. The figure illustrates that the
observed variables in X and z depend on the hidden labels
in C, but not on each other. On this basis, we express the
likelihood 𝑃(X, z, c) as follows:

𝑃 (X, z, c) = 𝑃 (X, z | c) 𝑃 (c) (3)

= 𝑃 (X | c) 𝑃 (z | c) 𝑃 (c) , (4)

where the terms 𝑃(X | c) and 𝑃(z | c) express the likelihood
of the observed set of extracted neuronal waveforms and
their corresponding occurrence times, respectively, given a
sequence of neuronal labels c, and 𝑃(c) is the likelihood of
the sequence itself.

In all experiments, we model the parameterized action
potential waveform for each neuronal cluster as a single,
multivariate Gaussian with parameters 𝜃 = {𝜇,Σ}, such that
the waveform likelihood for cluster 𝑗 is given by 𝑝(x; 𝜃

𝑗
) =

N(x; 𝜇
𝑗
,Σ
𝑗
) and the likelihood for the complete set of

waveforms is given by

𝑝 (X | c) =
𝑁

∏
𝑖=1

𝑝 (x
𝑖
; 𝜃
𝑐
𝑖

) . (5)

We characterize the temporal behavior of a population of
𝐾 neuronal clusters by modeling the set of neuronal firing
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Figure 1: Statistical dependencies for parameterized waveforms X,
occurrence times z, and labels c.
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Figure 2: Lattice structure for clustering and parameter estimation.

times z as the aggregation of 𝐾 independent point processes
(t
1
, t
2
, . . . , t

𝐾
), where each t

𝑘
= {𝑧
𝑗
}
𝑗∈𝑐
𝑘

is the subset of
z corresponding to firings of the 𝑘th neuronal cluster. It
is convenient to model the likelihood 𝑃(t

𝑘
) based on the

distribution of interspike interval durations. Let 𝑓
𝑘
(𝜏; 𝜙isi)

be a probability density function with parameter set 𝜙isi,
characterizing the distribution of the continuous, univariate
time period 𝜏 = 𝑡

𝑘,𝑖
−𝑡
𝑘,𝑖−1

between two consecutive firings of
neuronal cluster 𝑘 occurring at times 𝑡

𝑘,𝑖
and 𝑡
𝑘,𝑖−1

. Assuming
that interspike interval durations are independent and iden-
tically distributed, the likelihood 𝑃(t

𝑘
) can be expressed as

𝑃 (t
𝑘
) = 𝑤
𝑘
(𝑡
𝑘,1
; 𝜙init)

𝑁
𝑘

∏
𝑖=2

𝑓
𝑘
(𝑡
𝑘,𝑖
− 𝑡
𝑘,𝑖−1

; 𝜙isi) 𝑔𝑘 (𝑡𝑘,𝑁
𝑘

; 𝜓) ,

(6)

where 𝑁
𝑘
is the number of neuronal firings in t

𝑘
, 𝑤
𝑘
(𝑡; 𝜙init)

is the distribution of the first firing time 𝑡
𝑘,1
, and 𝑔

𝑘
(𝑡
𝑘,𝑁
𝑘

) =

∫
∞

𝑇
𝑓
𝑘
(𝑥−𝑡
𝑘,𝑁
𝑘

; 𝜙
𝑘
)𝑑𝑥 is the distribution of the last firing time

𝑡
𝑘,𝑁
𝑘

, where 𝑇 is the total time length of the dataset [21]. We
model the likelihood 𝑃(z | c) of the complete set of firing
times in terms of the joint occurrence of all class-conditional
firing times; that is, 𝑃(z | c) = 𝑃(t

1
, t
2
, . . . , t

𝐾
). Since we have

assumed that these𝐾 point processes are independent, we say

𝑃 (z | 𝑐) = 𝑃 (t
1
, t
2
, . . . , t

𝐾
) =

𝐾

∏
𝑘=1

𝑝 (t
𝑘
) . (7)

The last term in (4), 𝑃(c), is the likelihood of the set of
neuronal firing labels. It is important to note that since we

have assumed that each neuronal cluster fires independently,
all temporal modeling is expressed in terms of firing times
and interspike intervals. Thus, unlike a hidden Markov
model, we do not apply any explicit statistical modeling to
the sequence of labels, and the likelihood 𝑃(c) is simply given
by

𝑃 (c) =
𝑁

∏
𝑖=1

𝑃 (𝑐
𝑖
) . (8)

2.2. Clustering and Parameter Estimation. We can represent
the dynamic relationship between X, c, and z with the lattice
structure depicted in Figure 2. Figure 2 depicts a dataset
consisting of 𝐾 = 3 neuronal clusters, with 𝑁 = 5

observed firing times in z and corresponding action potential
waveforms inX. The lattice structure is similar in appearance
to the commonly used HMM trellis but has some important
differences. Particularly, since we do not explicitly model
transitions between states and all temporal modeling is based
on 𝑃(z | c), uneven horizontal spacing is used to illustrate
observed interarrival durations in z.

For the spike sorting task, we seek to exploit both the
action potential waveform shape in X and the temporal
information in z. To find themaximum likelihood sequence ĉ
as defined in (2)we use an approximate, iterative procedure to
find the best path through the state space depicted in Figure 2.
The procedure is initialized with a clustering based on the set
of action potential waveforms only.

Given a set of parameters 𝜆 = {𝜃, 𝜙init, 𝜙isi}, we determine
themaximum likelihood state sequence ĉ by deriving a recur-
sive expression for the joint likelihood𝑃(X, z, c). Let the nota-
tion 𝑃({x

𝑖
}
𝑛

𝑖=1
, {𝑧
𝑖
}
𝑛

𝑖=1
, {𝑐
𝑖
}
𝑛

𝑖=1
) indicate the joint likelihood of

the first 𝑛 data points, such that the likelihood of the full set of
𝑁 data points is given by𝑃(X, z, c) = 𝑃({x

𝑖
}
𝑁

𝑖=1
, {𝑧
𝑖
}
𝑁

𝑖=1
, {𝑐
𝑖
}
𝑁

𝑖=1
).

We decompose 𝑃({x
𝑖
}
𝑛

𝑖=1
, {𝑧
𝑖
}
𝑛

𝑖=1
, {𝑐
𝑖
}
𝑛

𝑖=1
) as follows:

𝑃 ({x
𝑖
}
𝑛

𝑖=1
, {𝑧
𝑖
}
𝑛

𝑖=1
, {𝑐
𝑖
}
𝑛

𝑖=1
)

= 𝑃 (x
𝑛
, 𝑧
𝑛
, 𝑐
𝑛
, {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

= 𝑃 (x
𝑛
, 𝑧
𝑛
, 𝑐
𝑛
| {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

⋅ 𝑃 ({x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

= 𝑃 (x
𝑛
| 𝑐
𝑛
, {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

⋅ 𝑃 (𝑧
𝑛
| 𝑐
𝑛
, {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

⋅ 𝑃 (𝑐
𝑛
| {x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
)

⋅ 𝑃 ({x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
) ,

(9)

where we have used the statistical dependency assumptions
given in (4) and (5) and illustrated in Figure 1. Assuming that
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action potential waveforms in x
𝑛
and hidden labels in 𝑐

𝑛
do

not depend on any previous samples, we obtain

𝑃 ({x
𝑖
}
𝑛

𝑖=1
, {𝑧
𝑖
}
𝑛

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
, 𝑐
𝑛
= 𝑗)

= 𝑃 (x
𝑛
| 𝑐
𝑛
= 𝑗) ⋅ 𝑃 (𝑧

𝑛
| 𝑐
𝑛
= 𝑗, 𝜁
𝑗
) ⋅ 𝑃 (𝑐

𝑛
= 𝑗)

⋅ 𝑃 ({x
𝑖
}
𝑛−1

𝑖=1
, {𝑧
𝑖
}
𝑛−1

𝑖=1
, {𝑐
𝑖
}
𝑛−1

𝑖=1
) .

(10)

Note in (10) that we have expressed the likelihood of
an 𝑛-length label sequence ending in state 𝑗 and that we
have introduced a new variable 𝜁

𝑗
. Given a label sequence

ending in state 𝑗, the likelihood 𝑃(𝑧
𝑛
| 𝑐
𝑛
= 𝑗, 𝜁

𝑗
) depends

on 𝜁
𝑗
< 𝑧
𝑛
, which we define as the most recent, previous

occurrence time of state 𝑗. To find 𝜁
𝑗
, some bookkeeping

is necessary. Specifically, at each iteration we retain the 𝐿

highest likelihood label sequences or paths through the lattice
structure illustrated in Figure 2 (the number of paths, 𝐿,
is determined empirically). Each path contains only the
most recent spikes occurring within a history time window,
starting at time 𝑧

𝑛
− 𝜏win and ending at 𝑧

𝑛
. The length 𝜏win of

the history window is constant and is determined empirically.
The likelihood in (10) is computed for the best 𝐿 paths
retained from the previous iteration. For a given path, the
duration 𝑧

𝑛
− 𝜁
𝑗
is modeled with an interarrival distribution

𝑓
𝑗
as expressed in the second term of (6). If no previous

occurrences of state 𝑗 are found in a given path, we say that
𝜁
𝑗
= −∞ and the distribution 𝑤

𝑗
(expressed in the first term

in (6)) for the first firing time is used instead, with thewindow
length 𝜏win as its argument. This is expressed in (11):

𝑝 (𝑧
𝑛
| 𝑐
𝑛
= 𝑗, 𝜁
𝑗
)

= {
𝑤
𝑗
(𝜏win 𝜙init) , 𝜁

𝑗
= −∞

𝑓
𝑗
(𝑧
𝑛
− 𝜁
𝑗
𝜙isi) , otherwise.

(11)

Iterative Procedure. Though our spike sorting method uses
both spike waveforms and firing times, we must initialize
the procedure using spike waveforms only. We model the
waveforms in X as a Gaussian mixture model (GMM) and
find the maximum likelihood waveform parameters using
the expectation-maximization (EM) algorithm to produce
an initial clustering. Based on the initial clustering, we
estimate parameters 𝜙isi,𝑗 for the interarrival distribution 𝑓

𝑗

and 𝜙init,𝑗 for the first-firing distribution 𝑤
𝑗
, for each neuron

𝑗. For the first firing and interarrival distributions 𝑤
𝑗
and

𝑓
𝑗
, we use the exponential and lognormal probability density

functions, respectively. We then assign each data point x
𝑖
to

the maximum a posteriori GMM component to produce a
clustering and estimate parameters 𝜆 = {𝜃, 𝜙isi, 𝜙init} based
on the clustering. The 3-step procedure is then as follows.

(1) Decode with parameters 𝜆 and produce a segmenta-
tion.

(2) Estimate parameters 𝜆new based on the segmentation.

(3) Reiterate until convergence.

2.3. Probability Distributions. A breakdown of the probabil-
ity distributions and their parameters used in all experiments
is given in Table 1. We model parameterized action potential
waveforms for each cluster as single, multivariate Gaussians
and model interarrival durations with the conditional dis-
tribution expressed in (11). For 𝑤

𝑗
, the distribution of the

“first firing” after a long duration, we use a simple Poisson
distribution 𝑤

𝑗
(𝑘; 𝛽𝑡) = (𝛽𝑡)

𝑘
𝑒−𝛽𝑡/𝑘!|

𝑘=1
, with duration

parameter 𝛽 and event count 𝑘 = 1. For the ISI distribution
𝑓
𝑗
, we use a log-normal density with parameters 𝜇 and 𝜎

2.
The log-normal density has been shown to have a superior
empirical fit to neuronal ISI durations having a necessary
minimum refractory period [16, 17].

2.4. Parameters 𝐿 and 𝜏. In addition to the distribution
parameters 𝜆 = [𝜃, 𝜙init, 𝜙isi], our procedure has two free
parameters 𝐿 and 𝜏, which are determined empirically; these
are the number of paths and the history window length,
respectively. The number of paths 𝐿 is typically chosen
according to a trade-off of accuracy against speed and
memory usage. We choose the window length 𝜏 such that
the “𝜁

𝑗
= −∞” condition in (11) occurs rarely. 𝜏 is chosen

to be larger than an interarrival duration 𝑡
𝑘,𝑖

− 𝑡
𝑘,𝑖−1

for
any neuron 𝑘 with high probability. To estimate 𝜏 we fit a
lognormal distribution to each neuronal cluster based on an
initial waveform-only clustering of the data and choose 𝜏

𝑘

to cover 99% of the area under the lognormal ISI curve for
neuron 𝑘. The history window 𝜏 is then simply 𝜏 = max

𝑘
𝜏
𝑘
.

The general expression for the log-normal density function
for a variable 𝑡 with parameters 𝜇 and 𝜎2 is given by

𝑡 ∼ LogNorm (𝑡; 𝜇, 𝜎
2
) =

1

𝑡𝜎√2𝜋
exp[−1

2
(
log 𝑡 − 𝜇

𝜎
)

2

] .

(12)

Given a set of univariate, Gaussian-distributed data 𝑥 ∼

N(𝑥; 𝜇, 𝜎2), if 𝜒 is the logarithm of 𝑥 then, by definition,
𝜒 is log-normal distributed, such that 𝜒 = log(𝑥) ∼

LogNorm(𝜒; 𝜇, 𝜎2). The log-normal parameters 𝜇 and 𝜎2 are
then the mean and variance of exp(𝜒), respectively. The log-
normal distribution is supported on the range [0,∞) and has
been used successfully to model neuronal interspike interval
durations [16, 17].

3. Experimental Results

Given a real, continuous extracellular trace, it is typically
impracticable to obtain a complete set of ground truth labels
since it cannot be directly observed which neuron caused
each action potential spike in the trace.Thismakes evaluation
for spike sorting difficult in most nontrivial cases. Synthetic
extracellular traces, which are often partially composed of
real data, provide fully labeled datasets useful for develop-
ment and evaluation of spike sorting methods. When fully
authentic data are desired, however, it is possible to collect
data using both an extracellular electrode and a carefully
placed intracellular electrode in one neuronal cell to obtain
a partial ground truth labeling. Spikes on an intracellular
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Table 1: Breakdown of parameter set 𝜆 = [𝜃, 𝜙init, 𝜙isi] and
probability distributions for joint waveform and firing rate spike
sorting.

Waveform Gaussian 𝜃
𝑗
= {𝜇
𝑗
,Σ
𝑗
}

First firing [𝑤
𝑗
] Poisson 𝜙init,𝑗 = {𝛽

𝑗
}

ISI [𝑓
𝑗
] Log-normal 𝜙isi,𝑗 = {𝜇

𝑗
, 𝜎
2

𝑗
}

electrode identify the firing times of one neuron with near
certainty. In Sections 3.1 and 3.2, we apply our spike sorting
method to two publicly available sets of cortical extracellular
traces to demonstrate its performance. One of these datasets
is real and partially labeled, and the other is semiartificial and
fully labeled. Finally, in Section 3.3, we perform an empirical
study of the parameters 𝐿 and 𝜏 using the semiartificial, fully
labeled dataset.

3.1. WaveClus Semiartificial Dataset. We evaluate our spike
sorting methods with labeled data collected, in part, from
the publicly availableWaveClus artificial dataset [22]. We use
randomly selected action potential waveforms from “Exam-
ple 1” and “Example 2” subsets, hereafter referred to as “Easy1”
and “Difficult1,” respectively. Each data subset consists of
𝐾 = 3 neuronal clusters with characteristic action potential
waveform shapes drawn from a library of templates. The 3
characteristic waveforms in the “Difficult1” set are similar
to each other in shape and are generally more difficult to
separate than in the “Easy1” set. All of the WaveClus datasets
contain realistic additive background noise at varying power
levels. For our spike sorting experiments, we added additional
Gaussian noise to the baseline data at various SNR levels. We
use principal components analysis (PCA) for dimensionality
reduction in all experiments. Scatter plots of the first 2
principal components are given in Figure 3 for both data
subsets under various noise conditions.

All subsets of the WaveClus dataset contain 3 neuronal
clusters with artificial firing times having identical firing rate
statistics. For our experiments, we generated firing times
according to a Monte Carlo sampling of 3 independent log-
normal distributions, resulting in a dataset of 2483 firing
times 24 seconds in length. A minimum 3-millisecond
interval durationwas enforced tomodel the refractory period
for all clusters.

Table 2 gives the simulation parameters, 𝜇 and 𝜎
2, we

used to generate interspike interval durations, along with the
mean, in milliseconds, of the generated data. The parameters
listed in Table 2 were determined by computing the sample
mean and variance of putative log interarrival times taken
from another publicly available dataset. (These data were
collected in the Laboratory of Dario Ringach at UCLA and
downloaded from the CRCNS website.) Plots of interspike
interval histograms are given in Figure 4.

Results.To evaluate the accuracy of ourmethod for spike sort-
ing, we compute the classification accuracy of the best match
between the set of true clusters and the set of putative clusters
identified by our procedure.Quantitative performance results
for the WaveClus dataset are given for the baseline GMM

Table 2: Simulation parameters for interspike interval data.

Cluster Parameters Mean ISI (ms)
𝜇 𝜎2

1 1.5814 2.4203 24.5342
2 2.1610 1.9380 30.0564
3 1.9651 2.7068 33.9112

Table 3: Classification error rates for the WaveClus semiartificial
dataset.

Dataset SNR GMM WaveClus
method Proposed

Easy1

Clean 0.93% 0.00% 0.97%
10 dB 0.72% 0.00% 0.77%
5 dB 0.89% 0.00% 0.85%
0 dB 0.81% 0.21% 0.85%
−5 dB 1.25% 0.52% 0.97%
−10 dB 8.18% 3.47% 6.20%

Difficult1

Clean 3.18% 0.45% 2.58%
10 dB 4.83% 0.94% 3.46%
5 dB 6.89% 1.36% 5.32%
0 dB 19.77% 20.0% 37.21%

procedure and for our joint waveform and firing rate method
in Table 3. We compare our proposed approach to a GMM
baseline clustering (i.e., the waveform-only initialization)
and to the state-of-the-art superparamagnetic clustering or
“WaveClus” method [22]. Gaussian noise was added to both
the “Easy1” and “Difficult1” datasets at various SNR levels
with the original WaveClus dataset labeled “Clean” in the
table.

Overall, we find that our method, which extends the
waveform-only baseline by incorporating a hidden point
process model for each neuron, reduces the error rate in the
presence of noise. The error rate for the “Easy1” dataset at
higher SNR levels (SNR > 0 dB) is not significantly changed
from the baseline initialization by our joint waveform and
firing ratemethodwith respect to the initial clustering, which
was already quite low (less than 1.0% error). The absolute
difference in error rate for the baseline GMM clustering and
our proposed method is less than 0.05% (i.e., 1 out of 2483
spikes in the dataset) at higher SNR levels. Since this dataset
was particularly easy to classify, we added noise at −5 dB and
−10 dB SNR. In the presence of high noise (−10 dB SNR), we
reduce the error rate from 8.18% to 6.20% by incorporating
temporal information.

A similar trend is seen with the “Difficult1” dataset, but
at higher SNR levels. At 10 dB SNR and 5 dB SNR, we reduce
the error rate with respect to the baseline by 1.37% and 1.57%,
respectively. However, when SNR is reduced to 0 dB for the
“Difficult1” dataset, we see a significant increase in the error
rate. The WaveClus method, however, performs significantly
better on this dataset overall.
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Figure 3: First 2 PCA coefficients of action potential wave forms plus noise at various SNR levels for the “Easy1” and “Difficult1” semi-artificial
data sets.
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Figure 4: Inter-spike interval histograms for both the “Easy1” and “Difficult1” data sets. Spike firing times were generated according to a
log-normal ISI distribution with parameters listed in Table 2, and a minimum refractory period of 3msec.

3.2. Continuous Extracellular Traces. To evaluate our meth-
ods on real, continuous data, we use a publicly available
dataset of cortical electrical traces taken from hippocampus
of anesthetized rats, hereafter referred to as “HC1” [23]. The
HC1 dataset consists of traces of extracellular (EC) electric
potentials, as well as intracellular (IC) traces for 1 of 𝐾

neurons in the vicinity of the EC electrodes. We use two
subsets of the HC1 dataset, each 4 minutes in length, to
evaluate our spike sorting procedure. Both the EC and IC
electric potential signals for Datasets 1 and 2 were recorded at
a sample rate of 20 kHz.We use a high-pass filter to eliminate
waveform drift for the extracellular signals. A plot of a 1.79
s segment of simultaneously recorded EC and IC signals

from Dataset 1 is given in Figure 5. Three peaks in the lower
panel of Figure 5 indicate firing times of the “IC neuron” and
correspond to 3 of the peaks in the EC signal in the upper
panel.

Methodology.Wedetect neuronal action potentials as “spikes”
in the extracellular signal exceeding a threshold of 5𝜎, where
𝜎 is an estimate of the standard deviation as defined in
[22]. In all spike sorting experiments, we extract observed
action potential events as 4ms waveforms centered at the
peak point in each extracellular spike. To locate spikes on
the intracellular channel in each data subset, we take the first
backward difference of the IC signal and apply a peak-picking
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Table 4: Classification error rates (FP + FN) for the HC1 dataset.

Dataset SNR GMM WaveClus Method Proposed
Wavelets PCA

Dataset 1

Clean 10.64% 32.02% 17.98% 5.60%
15 dB 9.73% 24.5% 16.79% 4.77%
10 dB 9.73% 31.84% 21.47% 4.95%
5 dB 11.28% 31.93% 32.02% 6.51%
0 dB 10.19% 32.11% 31.56% 9.27%
−5 dB 20.09% 32.11% 32.02% 15.23%
−10 dB 31.93% 67.98% 31.93% 32.11%

Dataset 2

Clean 2.09% 8.49% 6.56% 1.86%
15 dB 1.96% 7.56% 6.20% 1.76%
10 dB 1.99% 7.59% 6.27% 1.89%
5 dB 2.29% 19.62% 11.04% 2.06%
0 dB 3.51% 19.42% 14.29% 3.45%
−5 dB 6.99% 19.65% 19.52% 5.87%
−10 dB 32.55% 19.59% 19.56% 30.53%
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Figure 5: Simultaneous extracellular (EC) and intracellular (IC)
electric potential traces taken from Dataset 1 of completely real data
set HC1. True firing times of the “IC neuron” are known with near
certainty.

algorithm to it. EC action potentials occurring within 1ms
of an IC spike are labeled as belonging to the IC neuron. In
Dataset 1, we detected 1090 total extracellular firings and 396
intracellular firings. In Dataset 2, we detect 3017 EC firings
and 1100 IC firings. In each dataset, there are𝐾 = 3 neuronal
clusters.

For EC waveforms, we use principal components anal-
ysis (PCA) for dimensionality reduction. We keep the first
3 principal components as features for X, the matrix of
observed action potential waveforms. For our spike sorting
experiments, we add Gaussian noise to the waveform at
various SNR levels before applying PCA. Scatter plots of the
first two principal components at various SNR levels are given

in Figure 6; extracellular waveform features corresponding
to firings of the IC neuron are distinguished with black “X”
markers.

Evaluation. Given only a partial labeling of the data, we can
evaluate the performance of a spike sorting result in terms
of false positive (FP) and false negative (FN) errors for the
labeled IC neuron. When a spike corresponding to the IC
neuron ismisclassified, a FN error is counted; inversely, when
a spike is erroneously classified as belonging to the IC neuron,
a FP error is counted. The error rate is defined as the sum of
the FN and FP counts, divided by the number of EC firings.

Results.Quantitative performance results, in terms of the total
(FP + FN) error rate, are given in Table 4. For the WaveClus
method, we use both a wavelet-based parameterization (the
default choice for the WaveClus software package) of action
potential waveforms and PCA features for a more direct
comparison with the other results.

Our proposed joint waveform and firing rate approach
performs the best in all cases except at the lowest SNR level
for both data sets 1 and 2. The WaveClus method results in
very high FN error counts, but low FP counts (only the total
error rate, FP + FN, is shown in Table 4). We see a larger
improvement over the GMM baseline (nearly 5% at some
levels) for Dataset 1, which is ostensibly the more difficult set
of the two, as evidenced by higher overall error rates for all
classifiers.

3.3. Empirical Study of Parameters. Our clustering approach
involves retaining a large number of paths, 𝐿, and a time
history window of length 𝜏 of recent firings. In all of our
previously reported results, we have used a fixed value of
𝐿 = 10000 paths chosen on the basis of computational
and memory constraints. The value of 𝜏 was determined to
cover 99% of the area of the estimated interspike interval
probability density curve, as described in Section 2.4. In this
section, we perform an empirical study on the impact of our
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Figure 6: PCA waveform features plus noise for Dataset 2 of HC1. Features for the “IC neuron” are shown with black “X” markers.

two free parameters 𝐿 and 𝜏 on spike sorting performance on
theWaveClus dataset. We first study the impact of increasing
𝐿 on classification accuracywith 𝜏 determined as described in
Section 2.4.Then, with a fixed value of 𝐿 (we chose 𝐿 = 1000)
we study the effect of 𝜏 on the accuracy over a reasonable
range. To evaluate, we simply compute the classification
accuracy for the best match between the set of true clusters
and the putative result.

In Figure 7, we plot the classification error rate for our
spike sorting method with the value of 𝜏 determined empir-
ically for values of 𝐿 ranging from 100 to 10000 paths on a
logarithmically scaled ordinate axis. For the Easy1 dataset and
at higher SNR levels, the performance is largely unaffected
by the number of paths 𝐿. For Difficult1 dataset, the value of
𝐿 has a much more significant impact on the outcome. The
impact is more pronounced for lower SNR levels, reducing
the error rate for Difficult1, 5 dB SNR case, from 7.5% to
5.3% across the extremes of the range. The results in Figure 7
illustrate a trade-off of accuracy against computation and
memory requirements, both of which increase with 𝐿, and
suggest that except in difficult, high-noise conditions, the
number of paths 𝐿 can be effectively reduced with minimal
impact on performance.

To evaluate the impact of the history window length 𝜏, we
apply our spike sorting procedure to theWaveClus data over a
range of values, this time holding the number of paths 𝐿 fixed.
Choosing a value of 𝐿 = 1000, we implement our procedure

for values of 𝜏 ranging up to 300ms. Plots of the error rates
obtained on the WaveClus dataset are given in Figure 8. As
with 𝐿, the accuracy is less sensitive to the value of 𝜏 in easier,
low noise conditions.

4. Discussion

Our probabilistic method for spike sorting is motivated by
the idea that both the spike waveforms and their corre-
sponding firing times constitute observed data useful for
making inferences about the underlying hidden process of
which neurons produced them. In doing so, we incorporate
relevant data largely unused bymany traditional spike sorting
approaches. We combine a single Gaussian model of spike
waveforms and a first-order renewal process model of firing
times for each neuron into a joint probabilistic model of
several neurons in the vicinity of an electrode. The observed
firing times are modeled as the aggregation of𝐾 independent
point processes.

Our method is designed to improve accuracy over
waveform-only spike sorting methods, especially under con-
ditions to which these methods are particularly sensitive,
such as the presence of high noise and having similar wave
shapes for distinct neurons. Our method consists of a joint
probabilistic model of multivariate single Gaussians for the
first two principal components of neural spike waveforms
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Figure 7: Error rate versus 𝐿, the number of paths.
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Figure 8: Error rate versus the window length 𝜏.
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and log-normal and Poisson ISI models for the neural spike
trains. To study the impact of incorporating neural spike
trainmodels we compared the performance of ourmethod to
a waveform-only clustering of multivariate Gaussians using
the expectation-maximization GMM (EM-GMM) algorithm
and the state-of-the-art WaveClus algorithm. First, we evalu-
ated all methods on a modified version of the semiartificial
WaveClus dataset, for which all neuronal labels and firing
times are known with certainty. While the state-of-the-art
WaveClus method outperforms our method on this dataset,
we achieved significant reductions in the error rate versus the
EM-GMM waveform-only model in two general cases: (1)
“Easy” waveforms (i.e., distinct wave shapes for distinct neu-
rons) in the presence of high additive background noise and
(2) “Difficult” waveforms with relatively low noise. In both of
these cases, there is significant overlap in the waveform fea-
ture space, but the firing times,which are determined through
detecting threshold-crossing spikes, are not significantly
impacted. Under these conditions, our model uses all of the
information and converges on a better result after an iterative
procedure.

In the second dataset, composed of completely real
data, our method consistently achieves better performance
than both the baseline waveform-only EM method and the
WaveClus method. It should be restated here that error rates
reported on this dataset reflect only one out of three neurons
and are only a partial measure of total classification or
clustering performance. We achieve considerable reductions
in the error rate versus the baseline on Dataset 1 at all noise
levels and on Dataset 2 in relatively high noise (i.e., −5 dB
SNR). As with the “Easy” data set from the semiartificial
WaveClus data, when the baseline EM-GMMmethod already
achieves a low error rate, our proposedmethod achieves only
a small improvement. With Dataset 1 and the high noise or
“Difficult” configurations of the WaveClus set, the baseline
error is already relatively high, and our model reduces it
significantly (as much as 1.98% for the WaveClus data and
5.04% for Dataset 1). However, in extremely high noise
(−10 dB for both real datasets and 0 dB for the “Difficult”
WaveClus dataset) our method obtains high error rates
(greater than 30% error rate). The likely cause for the failure
in extremely high noise is that our method is sensitive to its
initial clustering (recall that the waveform-only EM-GMM
method is actually used to provide the initial clustering
for our proposed procedure) and our iterative parameter
estimation procedure described in Section 2.2 is unable to
converge. Therefore, our spike sorting procedure, which uses
models of neural spike trains, achieves the most impact-
ful reductions in error rate on problems of intermediate
difficulty.

Contributions of this work include modeling the likeli-
hood of the observed point process of firing times as the
joint likelihood of an ensemble of spike trains; amathematical
derivation of the joint likelihood of waveforms, firing times,
and labels in terms of previous data points; and the derivation
of an iterative clustering and parameter estimation procedure
using a piecewise ISI likelihood expression. Our procedure
for clustering and parameter estimation operates by alter-
nately maximizing the data likelihood and estimating new

parameters based on the result. While the basic idea is simi-
lar to expectation-maximization or Viterbi-based parameter
estimation in HMMs, our procedure is suboptimal with
respect to the data likelihood. Since our approach depends
on retaining a large number of the highest likelihood paths,
performance, then, depends on the available computational
resources. For this reason, we studied the impact of the
number of stored paths on spike sorting performance and
found that, except in themost difficult, high-noise conditions,
we could reduce the number of paths by a factor of 10 without
a significant loss in accuracy.

It should be noted that some issues important to the
spike sorting problem, and to clustering problems in gen-
eral, have not been directly addressed here. Using datasets
each containing the same number of neurons, we have not
addressed determining the number of neurons automatically.
Since we initialize our procedure with a waveform-only
GMM clustering, determining the number of clusters using
the Aikake information criterion (AIC), the Bayesian infor-
mation criterion (BIC), or several other methods requires
only a simple extension. However, the iterative clustering
procedure can potentially prune out clusters dynamically.
A measured approach to pruning out clusters (including
initializing with a high number of clusters) is a topic for
future study. Overlapping spikes, changes in waveform shape
due to electrode drift, and waveform attenuation, especially
due to bursting activity, are also important topics for future
research. Though our findings suggest that our algorithm,
which incorporates firing information, might be particularly
robust to electrode drift and waveform attenuation, since it
improves over the baseline with difficult waveform shapes
and high noise, this should be verified experimentally in
future research.

4.1. Comparisons to Related Work. In this paper, we have
proposed and demonstrated a novel spike sorting method
motivated by the idea that both observed spike waveforms
and observed information about the timing of spike events
are potentially useful for the spike sorting task. A number of
other recent studies have introduced spike sorting methods
based on this general idea and, in this section, we contrast
these approaches and their merits to ours.

In [14], Sahani introduced a statistical model of neuronal
action potentials, particularly well suited for “bursts” of
neural firings, that is, sequences of very rapidly occurring
action potentials. The method for spike sorting proposed
in [14], termed Sparse Hidden Markov Models (SHMMs),
is a special case of the well-known hidden Markov model
(HMM), but with the restriction that the majority of outputs
are expected to be in a null state corresponding to nonfirings.
The SHMM, as applied to modeling neural firings in [14]
involves partitioning the neural firing activity into relatively
long (0.5ms) equal length time bins. Transitions between
states are then restricted in the HMM transition matrix
in such a way as to model neural bursting behavior. The
SHMM has multiple nonnull states to model changes in the
amplitude expected during bursting behavior and multiple
null states which effectively keep track of how much time
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has passed since the last firing. In this study, the author
recommends using simpler models for nonbursting neural
cells. Sahani’s approach is different from ours in several
important ways. Instead of explicitly modeling transitions
between states using a discrete set of transition probabilities
as with anHMM,we incorporate temporal information using
a likelihoodmodel of the continuous-valued interval between
firings. This means that we model the precise timing of
firing events, rather than grouping them into short time bins.
Furthermore, our approach models the joint likelihood of an
ensemble of point processes, which differs significantly from
both the SHMMapproach used in [14] and the general HMM
approach as well.

Bar-Hillel et al. introduced a nonstationary method for
spike sorting designed to account for the apparent nonsta-
tionary nature of spike waveform data [15]. The method,
referred to in the study as a “chain of Gaussian mixtures,”
first segments neural firing data into short frames, which are
either equal in length or contain an equal number of neural
firings. The authors fit a separate GMM to the data in each
frame (thus assuming stationaritywithin the frame), compute
a set of transition probabilities between frames, and finally
solve for the best maximum a posteriori clustering across
the whole dataset using a variant of the Viterbi algorithm.
This study directly incorporates temporal information into
the spike sorting operation and is particularly well suited
to account for waveform drift, where the amplitude and
shape of the spike waveform are affected by movements in
the electrode over time. While this method incorporates
temporal information into spike sorting, it does so not
by modeling either time occurrences of neural firings or
the neural firing rate. Rather, the method is essentially a
nonstationarymodel of spike waveforms, in which waveform
parameters change over time. Similar toHMMs, the approach
in [15] explicitly models transitions between time frames,
which is very different from our approach. Furthermore,
although our approach is explicitly designed to model tem-
poral information in the extracellular signal, it is actually a
stationary probabilistic model. As discussed in Section 2.3, all
of the parameters 𝜆 = {𝜃, 𝜙isi, 𝜙init} for the joint model belong
individually to stationary distributions. The ISI and “first
firing” distributions, which account for temporal information
in the data, are both stationary models of point processes.

Ventura introduced a method in [18], in which neural
firing rates are incorporated into the spike sorting operation.
The method consists of a probabilistic model of spike wave-
forms and an analyticmodel 𝜆

𝑖
(𝑐) of the firing rate for neuron

𝑖 as modulated by covariate information in the value 𝑐, such
as an applied stimulus or a tuning curve or some other known
experimental condition that impacts neural firing rates. The
firing rate model 𝜆

𝑖
(𝑐) in Ventura’s method, which can be

either parametric or nonparametric, is used to determine the
probability of each possible combination of the𝐾 neurons in
the vicinity of the electrode firing in short, equal length time
bins. Modeling all possible combinations of spikes makes the
method particularly well suited to accounting for overlapping
spike waveforms. Since firing activity is incorporated in the
form of 𝜆

𝑖
(𝑐), given in units of spike per msec, the method

implicitly models neural firing as an inhomogeneous Poisson

process. The paper introduces an expectation-maximization
procedure for estimating all of the parameters of the model.
In experiments with simulated data, Ventura showed that a
parametric model of firing rates 𝜆

𝑖
(𝑐) could be used when

the form of the firing with respect to the covariate quantity is
known and that a nonparametric model can be used in more
general cases. Ventura’s approach is based on simultaneously
performing spike sorting and tuning in an integrated pro-
cedure and, as such, it depends directly on modeling some
known experimental condition or covariate quantity; this
is in contrast with our proposed approach which does not
depend onmodeling or observing any covariate information.
Instead, we assume only a general analytic form of the
observed firing times as point processes. Also, an important
part of our approach is explicitly modeling the distribution of
the observed firing times.Weused the lognormal distribution
in this paper for its facility in modeling the necessary
minimum refractory period, but our method is not limited
to this or any other distribution assumptions.

A probabilistic model of spike peak amplitudes and
firings was presented by Pouzat et al. in [16]. In that study,
the authors advocatemodeling the temporal behavior of spike
timings using a probability distribution for the interspike
interval duration. Also, since it is known that spike amplitude
depends on the elapsed time since the last firing, the paper
models variation in spike peak amplitude based on ISI
durations as well. Much of the development in this study
focuses on the use of Markov chain Monte Carlo (MCMC)
methods, which allow considerable flexibility in the choice
of probability distributions for the data. The MCMCmethod
consists of simulating the posterior density of the model
parameters and sampling from that distribution for param-
eter estimation. The authors use a lognormal distribution
for neural firing ISIs and evaluate their model on simulated
data. In another study [17], the authors extend the MCMC
methodology for spike sorting, this time using an HMM. In
[17], sequences of ISI duration observations for each neuron
were modeled with a 3-state HMM having the lognormal
distribution as the emission probability density function for
each state. The HMM method was applied to a real dataset,
exhibiting bursty neural firings recorded from Purkinje cells
in rats, achieving high accuracy. While these two studies use
continuous-valued ISI distributions for temporal modeling,
they use MCMC sampling for parameter estimation, in
lieu of an analytical development for the model. While the
MCMCmethodology generally allows considerable freedom
in constructing compound probabilistic models, methods
developed analytically are inherently simpler and more
transparent. A key contribution of our approach is the
mathematical development of a recursive likelihood model
of the data, including a piecewise ISI term, and an iterative
procedure for clustering and parameter estimation based on
that model.

4.2. Summary. We have developed a model of observed,
threshold-crossing neuronal firing times as the aggregation of
𝐾 point processes and incorporated it into a joint waveform-
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and ISI-based framework. We developed an analytic expres-
sion of the joint likelihood of the observed and hidden data
and formulated a recursive expression for the likelihood
at any time 𝑛 in terms of previous data. The ISI likeli-
hood at time 𝑛 is a piecewise expression that depends on
whether previous spikes occur in a time history window. We
developed an iterative procedure for clustering the data and
estimating parameters based on finding the best path through
a lattice structure. Our method outperformed the baseline,
waveform-only GMM in noisy and otherwise difficult signal
conditions on a semiartificial data. On a completely real
dataset, our proposed approach outperformed both the
baseline and a state-of-the-art method. We showed that we
can obtain improvements in accuracy and computational
efficiency by tuning our model’s 2 hyperparameters. Our
future work includes developingmore sophisticatedmethods
of pruning the search space for the best path and developing
a more rigorous clustering method.
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Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or
prostheses with the brain’s motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings
including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by
enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous
amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we
propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information
available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different
domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to
identify the nonlinear functional relationship between themultiscale neural responses and the stimuli using general purpose kernel
adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a
single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes
the tensor-product kernel achieves promising results in emulating the responses to natural stimulation.

1. Introduction

Brain machine interfaces (BMIs) provide new means to
communicate with the brain by directly accessing, interpret-
ing, and even controlling neural states. They have attracted
attention as a promising technology to aid the disabled (i.e.,
spinal cord injury, movement disability, stroke, hearing loss,
and blindness) [1–6]. When designing neural prosthetics
and brain machine interfaces (BMIs), the fundamental steps
involve quantifying the information contained in neural

activity, modeling the neural system, decoding the intention
of movement or stimulation, and controlling the spatiotem-
poral neural activity pattern to emulate natural stimulation.
Furthermore, the complexity and distributed dynamic nature
of the neural system pose challenges for the modeling tasks.

The development of recording technology enables access
to brain activity from multiple functional levels, including
the activity of individual neurons (spike trains), local field
potentials (LFPs), electrocorticogram (ECoG), and elec-
troencephalogram (EEG), collectively forming a multiscale
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characterization of brain state. Simultaneous recording of
multiple types of signals could facilitate enhanced neural sys-
tem modeling. Although there are underlying relationships
among these brain activities, it is unknown how to leverage
the heterogeneous set of signals to improve the identification
of the neural-response-stimulus mappings. The challenge is
in defining a framework that can incorporate these heteroge-
nous signal formats coming from multiple spatiotemporal
scales. In ourwork, wemainly address integrating spike trains
and LFPs for multiscale neural decoding.

Spike trains and LFPs encode complementary informa-
tion of stimuli and behaviors [7, 8]. In most recordings, spike
trains are obtained by detecting transient events on a signal
that is conditioned using a high-pass filter with the cutoff
frequency set at about 300–500Hz, while LFPs are obtained
by using a low-pass filter with 300Hz cutoff frequency [9].
Spike trains represent single- or multiunit neural activity
with a fine temporal resolution. However, their stochastic
properties induce considerable variability, especially when
the stimulation amplitude is small; that is, the same stimuli
rarely elicit the same firing patterns in repeated trials. In
addition, a functional unit of the brain contains thousands
of neurons. Only the activity of a small subset of neurons can
be recorded and, of these, only a subset may modulate with
respect to the stimuli or condition of interest.

In contrast, LFPs reflect the average synaptic input to a
region near the electrode [10], which limits specificity but
provides robustness for characterizing the modulation
induced by stimuli. Furthermore, LFPs naturally provide
population-level measure of neural activity. Therefore, an
appropriate aggregation of LFPs and spike trains enables
enhanced accuracy and robustness of neural decoding mod-
els. For example, the decoder can coordinate LFPs or spike
patterns to tag particularly salient events or extract different
stimulus features characterized by multisource signals. How-
ever, heterogeneity between LFPs and spike trains compli-
cates their integration into the same model. The information
in a spike train is coded in a set of ordered spike timings
[11, 12], while an LFP is a continuous amplitude time series.
Moreover, the time scale of LFPs is significantly longer than
spike trains. Whereas recent work has compared the decod-
ing accuracy of LFPs and spikes [13], only a small number of
simple models have been developed to relate both activities
[14]. However, the complete relationship between LFPs and
spike trains is still a subject of controversy [15–17], which
hinders principled modeling approaches.

To address these modeling issues, this paper proposes a
signal processing framework based on tensor-product kernels
to enable decoding and even controlling multiscale neural
activities. The tensor-product kernel uses multiple heteroge-
nous signals and implicitly defines a kernel space constructed
by the tensor product of individual kernels designed for
each signal type [18]. The tensor-product kernel uses the
joint features of spike trains and LFPs. This enables kernel-
basedmachine learningmethodologies to leveragemultiscale
neural activity to uncover the mapping from the neural
system states and the corresponding stimuli.

The kernel least mean square (KLMS) algorithm is used
to estimate the dynamic nonlinear mapping from the two

types of neural responses to the stimuli. The KLMS algo-
rithm exploits the fact that the linear signal processing in
reproducing kernel Hilbert spaces (RKHS) corresponds to
nonlinear processing in the input space and is used in the
adaptive inverse control scheme [19] designed for control-
ling neural systems. Utilizing the tensor-product kernel, we
naturally extend this scheme to multiscale neural activity.
Since the nonlinear control is achieved via linear processing
in the RKHS, it bypasses the local minimum issues normally
encountered in nonlinear control.

The validation of the effectiveness of the proposed tensor-
product-kernel framework is done in a somatosensory stim-
ulation study. Somatosensory feedback remains underdevel-
oped in BMI, which is important for motor and sensory
integration during movement execution, such as propriocep-
tive and tactile feedback about limb state during interaction
with external objects [20, 21]. A number of early experi-
ments have shown that spatiotemporally patterned micros-
timulation delivered to somatosensory cortex can be used to
guide the direction of reaching movements [22–24]. In
order to effectively apply the artificial sensory feedback in
BMI, it is essential to find out how to use microstimula-
tion to replicate the target spatiotemporal patterns in the
somatosensory cortex, where neural decoding and control
are the critical technologies to achieve this goal. In this
paper, our framework is applied to leverage multiscale neural
activities to decode both natural sensory stimulation and
microstimulation. Its decoding accuracy is compared with
decoders that use a single type of neural activity (LFPs or
spike trains).

In the neural system control scenario, this tensor-
product-kernel methodology can also improve the controller
performance. Controlling the neural activity via stimulation
has raised the prospect of generating specific neural activity
patterns in downstream areas, evenmimicking natural neural
responses, which is central both for our basic understanding
of neural information processing and for engineering “neural
prosthetic” devices that can interact with the brain directly
[25]. From a control theory perspective, the neural circuit is
treated as the “plant,” where the applied microstimulation
is the control signal and the plant output is the elicited
neural response represented by spike trains and LFPs. Most
conventional control schema cannot be directly applied to
spike trains because there is no algebraic structure in the
space of spike trains. Therefore, most existing neural control
approaches have been applied to binned spike trains or
LFPs [25–31]. Here, we will utilize the kernel-based adaptive
inverse controller for spike trains proposed in our previous
work [19] as an input-output (system identification) based
control scheme. This methodology can directly be extended
to the tensor-product kernel to leverage the availability of
multiscale neural signals (e.g., spike trains and LFPs) and
improves the robustness and accuracy of the stimulation op-
timization by exploiting the complementary information of
the heterogenous neural signals recorded frommultiple sour-
ces.

The adaptive inverse control framework controls pat-
terned electrical microstimulation in order to drive neural
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responses to mimic the spatiotemporal neural activity pat-
terns induced by tactile stimulation. This framework creates
new opportunities to improve the ability to control neural
states to emulate the natural stimuli by leveraging the com-
plementary information from multiscale neural activities.
This better interprets the neural system internal states and
thus enhances the robustness and accuracy of the optimal
microstimulation pattern estimation.

The rest of the paper is organized as follows. Sec-
tion 2 introduces kernels for spike trains and LFPs and
the tensor-product kernel that combines them. The kernel-
based decoding model and the adaptive inverse control
scheme that exploit kernel-based neural decoding technology
to enable control in RKHS are introduced in Sections 3
and 4, respectively. Section 5 discusses the somatosensory
stimulation emulation scenario and illustrates the test results
by applying tensor-product kernel to leverage multiscale
neural activity for decoding and controlling tasks. Section 6
concludes this paper.

2. Tensor-Product Kernel for Multiscale
Heterogeneous Neural Activity

The mathematics of many signal processing and pattern
recognition algorithms is based on evaluating the similarity
of pairs of exemplars. For vectors or functions, the inner
product defined on Hilbert spaces is a linear operator and
a measure of similarity. However, not all data types exist
in Hilbert spaces. Kernel functions are bivariate, symmetric
functions that implicitly embed samples in a Hilbert space.
Consequently, if a kernel on a data type can be defined, then
algorithms defined in terms of inner products can be used.
This has enabled various kernel algorithms [18, 32–34].

To begin, we define the general framework for the various
kernel functions used here, keeping in mind that the input
corresponds to assorted neural data types. Let the domain
of a single neural response dimension, that is, a single LFP
channel or one spiking unit, be denoted by X and consider
a kernel 𝜅 : X × X → R. If 𝜅 is positive definite, then
there is an implicit mapping 𝜙 : X → H that maps any
two sample points, say 𝑥, 𝑥󸀠 ∈ X, to corresponding elements
in the Hilbert space 𝜙(𝑥), 𝜙(𝑥󸀠) ∈ H such that 𝜅(𝑥, 𝑥󸀠) =
⟨𝜙(𝑥), 𝜙(𝑥󸀠)⟩ is the inner product of these elements in the
Hilbert space. As an inner product, the kernel evaluation
𝜅(𝑥, 𝑥

󸀠) quantifies the similarity between 𝑥 and 𝑥󸀠.
A useful property is that this inner product induces a

distance metric,

𝑑 (𝑥, 𝑥
󸀠
) =

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥) − 𝜙 (𝑥

󸀠
)
󵄩󵄩󵄩󵄩󵄩H

= √⟨𝜙 (𝑥) − 𝜙 (𝑥󸀠) , 𝜙 (𝑥) − 𝜙 (𝑥󸀠)⟩

= √𝜅 (𝑥, 𝑥) + 𝜅 (𝑥󸀠, 𝑥󸀠) − 2𝜅 (𝑥, 𝑥󸀠).

(1)

For normalized and shift-invariant kernels where, for all
𝑥, 𝜅(𝑥, 𝑥) = 1, the distance is inversely proportional to the
kernel evaluation 𝑑(𝑥, 𝑥󸀠) = √2 − 2𝜅(𝑥, 𝑥󸀠).

To utilize two ormore dimensions of the neural response,
a kernel that operates on the joint space is required.There are
two basic approaches to construct multidimensional kernels
from kernels defined on the individual variables: direct sum
and tensor-product kernels. In terms of kernel evaluations,
they consist of taking either the sum or the product of the
individual kernel evaluations. In both cases, the resulting
kernel is positive definite as long as the individual kernels are
positive definite [18, 35].

Let X
𝑖
denote the neural response domain of the 𝑖th

dimension and consider a positive-definite kernel 𝜅
𝑖
: X
𝑖
×

X
𝑖
→ R and corresponding mapping 𝜙

𝑖
: X
𝑖
→ H

𝑖
for

this dimension. Again, the similarity between a pair of sam-
ples 𝑥 and 𝑥󸀠 on the 𝑖th dimension is 𝜅

𝑖
(𝑥
(𝑖)
, 𝑥󸀠
(𝑖)
) = ⟨𝜙

𝑖
(𝑥
(𝑖)
),

𝜙
𝑖
(𝑥
󸀠

(𝑖)
)⟩.

For the sum kernel, the joint similarity over a set of di-
mensionsI is

𝜅
Σ
(x, x󸀠) = ∑

𝑖∈I

𝜅
𝑖
(𝑥
(𝑖)
, 𝑥
󸀠

(𝑖)
) . (2)

This measure of similarity is an average similarity across all
dimensions. When the sum is over a large number of dimen-
sions, the contributions of individual dimensions are diluted.
This is useful for multiunit spike trains or multichannel
LFPs when the individual dimensions are highly variable,
which if used individually would result in a poor decoding
performance on a single trial basis.

For the tensor-product kernel, the joint similarity over
two dimensions 𝑖 and 𝑗 is computed by taking the product
between the kernel evaluations 𝜅

[𝑖,𝑗]
([𝑥
(𝑖)
, 𝑥
(𝑗)
], [𝑥󸀠
(𝑖)
, 𝑥󸀠
(𝑗)
]) =

𝜅
𝑖
(𝑥
(𝑖)
, 𝑥󸀠
(𝑖)
) ⋅ 𝜅
𝑗
(𝑥
(𝑗)
, 𝑥󸀠
(𝑗)
). The new kernel 𝜅

[𝑖,𝑗]
corresponds

to a mapping function that is the tensor product between
the individual mapping functions 𝜙

[𝑖,𝑗]
= 𝜙
𝑖
⊗ 𝜙
𝑗
where 𝜙

[𝑖𝑗]

(𝑥
(𝑖,𝑗)
) ∈ H

[𝑖𝑗]
. This is the tensor-product Hilbert space. The

product can be taken over a set of dimensions I and the
result is a positive-definite kernel over the joint space: 𝜅

Π

(x, x󸀠) = ∏
𝑖∈I𝜅𝑖(𝑥(𝑖), 𝑥

󸀠

(𝑖)
).

The tensor-product kernel corresponds to a stricter mea-
sure of similarity than the sum kernel. Due to the product, if
for one dimension 𝜅

𝑖
(𝑥
(𝑖)
, 𝑥󸀠
(𝑖)
) ≈ 0 then 𝜅

Π
(x, x󸀠) ≈ 0. The

tensor-product kernel requires the joint similarity; that is, for
samples to be considered similar in the joint space they must
be close in all the individual spaces. If even one dimension
is dissimilar the product will appear dissimilar. If some of
the dimensions are highly variable, then they will have a del-
eterious effect on the joint similarity measure. On the other
hand, the tensor product is a more precise measure of sim-
ilarity that will be used later to combine multiscale neural
activity.

More generally, an explicit weight can be used to adjust
the influence of the individual dimensions on the joint kernel.
Any convex combinations of kernels are positive definite,
and learning the weights of this combination is known as
multiple kernel learning [36–38]. In certain cases of the
constituent kernels, namely, that they are infinitely divisible
[39], a weighted product kernel can also be applied [40].
However, the optimization of theseweightings is not explored
in the current work.
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Figure 1: Schematic representation of the construction of the RKHS defined by the tensor-product kernel from the individual spike and
LFP kernel spaces, along with the mapping from the original data. Specifically, s

𝑖
denotes a window of multiunit spike trains; x

𝑛
denotes a

window of multichannel LFPs; 𝜅
𝑠
(⋅, ⋅) denotes the spike train kernel with implicit mapping function 𝜙(⋅); and 𝜅

𝑥
(⋅, ⋅) denotes the LFP kernel

with implicit mapping function 𝜑(⋅).

In general, a joint kernel space, constructed via either
direct sum or tensor product, allows the homogeneous pro-
cessing of heterogenous signal types all within the framework
of RKHSs.We use direct sum kernels to combine the different
dimensions of multiunit spike trains or multichannel LFPs.
For the spike trains, using the sum kernel across the different
units enables an “average” population similarity over the
space of spike trains where averages cannot be computed.
Then a tensor-product kernel combines the two kernels: one
for the multiunit spike trains and one for the multichannel
LPFs; see Figure 1 for an illustration. The kernels for spike
trains and LFPs can be selected and specified individually
according to their specific properties.

In conclusion, composite kernels are very different from
those commonly used in kernel-based machine learning, for
example, for the support vector machine. In fact, here a pair
of windowed spike trains and windowed LFPs is mapped
into a feature function in the joint RKHS. Different spike
train and LFP pairs are mapped to different locations in this
RKHS, as shown in Figure 1. Due to its versatility, Schoenberg
kernels defined for both the spike timing space and LFPs are
employed in this paper and discussed below.

2.1. Kernel for Spike Trains. Unlike conventional amplitude
data, there is no natural algebraic structure in the space of
spike trains. The binning process, which easily transforms
the point processes into discrete amplitude time series, is
widely used in spike train analysis and allows the application
of conventional amplitude-based kernels to spike trains [41]
at the expense of losing the temporal resolution of the
neural responses. This means that any temporal information
in spikes within and between bins is disregarded, which is
especially alarming when spike timing precision can be in
the millisecond range. Although the bin size can be set small
enough to preserve the fine time resolution, it will sparsify

the signal representation, increase the artifact variability,
and cause high-dimensionality in the model, which requires
voluminous data for proper training.

According to the literature, it is appropriate to consider
a spike train to be a realization of a point process, which
describes the temporal distribution of the spikes. Generally
speaking, a point process 𝑝

𝑖
can be completely characterized

by its conditional intensity function 𝜆(𝑡 | 𝐻𝑖
𝑡
), where 𝑡 ∈ 𝜏 =

[0, 𝑇] denotes the time coordinate and𝐻𝑖
𝑡
is the history of the

process up to 𝑡. A recent research area [42, 43] is to define
an injective mapping from spike trains to RKHS based on
the kernel between the conditional intensity functions of two
point processes [42]. Among the cross-intensity (CI) kernels,
the Schoenberg kernel is defined as

𝜅 (𝜆 (𝑡 | 𝐻
𝑖

𝑡
) , 𝜆 (𝑡 | 𝐻

𝑗

𝑡
))

= exp(−
󵄩󵄩󵄩󵄩󵄩
𝜆 (𝑡 | 𝐻𝑖

𝑡
) − 𝜆 (𝑡 | 𝐻

𝑗

𝑡
)
󵄩󵄩󵄩󵄩󵄩

2

𝜎2
)

= exp(−
∫
𝜏
(𝜆 (𝑡 | 𝐻𝑖

𝑡
) − 𝜆 (𝑡 | 𝐻

𝑗

𝑡
))
2

d𝑡
𝜎2

) ,

(3)

where 𝜎 is the kernel size. The Schoenberg kernel is selected
in this work because of its modeling accuracy and robustness
to free parameter settings [44]. The Schoenberg kernel is
a Gaussian-like kernel defined on intensity functions that
is strictly positive definite and sensitive to the nonlinear
coupling of two intensity functions [42]. Different spike
trains will then be mapped to different locations in the
RKHS. Compared to kernels designed on binned spike trains
(e.g., spikernel [41]), the main advantage of the Schoenberg
kernel is that the precision in the spike event location is
better preserved and the limitations of the sparseness and
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high-dimensionality for model building are also avoided, re-
sulting in enhanced robustness and reduced computational
complexity, especially when the application requires fine time
resolution [44].

In order to be applicable, the methodology must lead to
a simple estimation of the quantities of interest (e.g., the
kernel) from experimental data. A practical choice used in
our work estimates the conditional intensity function using a
kernel smoothing approach [42, 45], which allows estimating
the intensity function from a single realization and nonpara-
metrically and injectively maps a windowed spike train into
a continuous function. The estimated intensity function is
obtained by simply convolving 𝑠(𝑡)with the smoothing kernel
𝑔(𝑡), yielding

𝜆̂ (𝑡) =

𝑀

∑
𝑚=1

𝑔 (𝑡 − 𝑡
𝑚
) , {𝑡

𝑚
∈ T : 𝑚 = 1, . . . ,𝑀} , (4)

where the smoothing function 𝑔(𝑡) integrates to 1. Here 𝜆̂(𝑡)
can be interpreted as an estimation of the intensity function.
The rectangular and exponential functions [42, 46] are both
popular smoothing kernels, which guarantee injective map-
pings from the spike train to the estimated intensity function.
In order to decrease the kernel computation complexity, the
rectangular function 𝑔(𝑡) = (1/T)(𝑈(𝑡) − 𝑈(𝑡 −T)) (T ≫

the interspike interval) is used in our work, where 𝑈(𝑡) is a
Heaviside function. This rectangular function approximates
the cumulative density function of spikes counts in the win-
dow 𝑇 and compromises the locality of the spike trains; that
is, the mapping places more emphasis on the early spikes
than the later ones. However, our experiments show that this
compromise only causes a minimal impact on the kernel-
based regression performance.

Let 𝑠𝑛
𝑖
(𝑡) denote the spike train for the 𝑖th sample of the

𝑛th spiking unit. The multiunit spike kernel is taken as the
unweighted sum over the kernels on the individual units

𝜅
𝑠
(s
𝑖
(𝑡) , s
𝑗
(𝑡)) = ∑

𝑛

𝜅
𝑠
(𝑠
𝑛

𝑖
(𝑡) , 𝑠
𝑛

𝑗
(𝑡)) . (5)

2.2. Kernels for LFPs. In contrast with spike trains, LFPs
exhibit less spatial and temporal selectivity [15]. In the time
domain, LFP features can be obtained by sliding a window
on the signal, which describes the temporal LFP structure.
The length of the window is selected based on the duration
of neural responses to certain stimuli; the extent of the
duration can be assessed by its autocorrelation function, as
we will discuss in Section 5.3.1. In the frequency domain, the
spectral power and phase in different frequency bands are
also known to be informative features for decoding, but here
we concentrate only on the time-domain decompositions. In
the time domain, we can simply treat single channel LFPs
as a time series and apply the standard Schoenberg kernel
to the sequence of signal samples in time. The Schoenberg

kernel, defined in continuous spaces, maps the correlation
time structure of the LFP 𝑥(𝑡) into a function in RKHS,

𝜅
𝑥
(𝑥
𝑖
(𝑡) , 𝑥
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(𝑡))

= exp(−
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝜎2
𝑥

)

= exp(−
∫
T
𝑥

(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))
2

d𝑡

𝜎2
𝑥

)

= exp(−(∫
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𝑗
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2

𝑥
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−1

) ,

(6)

whereT
𝑥
= [0 𝑇

𝑥
].

Let 𝑥𝑛
𝑖
(𝑡) denote the LFP waveform for the 𝑖th sample of

the 𝑛th channel. Similar to the multiunit spike kernel, the
multichannel LFP kernel is defined by the direct sum kernel

𝜅
𝑥
(x
𝑖
(𝑡) , x
𝑗
(𝑡)) = ∑

𝑛

𝜅
𝑥
(𝑥
𝑛

𝑖
(𝑡) , 𝑥
𝑛

𝑗
(𝑡)) . (7)

2.3. Discrete Time Sampling. Assuming a sampling rate with
period 𝜏, let x

𝑖
= [𝑥1
𝑖
, 𝑥1
𝑖+1
, . . . , 𝑥1

𝑖−1+𝑇/𝜏
, 𝑥2
𝑖
, . . . , 𝑥𝑁

𝑖−1+𝑇/𝜏
] de-

note the 𝑖th multichannel LFP vector obtained by sliding the
𝑇-length window with step 𝜏. Let s

𝑖
= {𝑡
𝑚
−(𝑖−1)𝜏, 𝑡

𝑚
∈ [(𝑖−

1)𝜏, (𝑖 − 1)𝜏 + 𝑇] : 𝑚 = 1, . . . ,𝑀} denote the corresponding
𝑖th window of the multiunit spike timing sequence. The time
scale, both in terms of the window length and sampling rate,
of the analysis for LFPs and spikes is very important and
needs to be defined by the characteristics of each signal. The
tensor-product kernel allows the time scales of the analysis for
LFPs and spike trains to be specified individually; that is, the
window length 𝑇 and sampling rate for spike trains and LFPs
could be different. The suitable time scale can be estimated
through autocorrelation coefficients of the signal as will be
explained below.

3. Adaptive Neural Decoding Model

For neural decoding applications, a regression model with
multiscale neural activities as the input is built to reconstruct
a stimulus. The appeal of kernel-based filters is the usage of
the linear structure of RKHS to implement well-established
linear adaptive algorithms and to obtain a nonlinear filter
in the input space that leads to universal approximation
capability without the problem of local minima. There are
several candidate kernel-based regressionmethods [32], such
as support vector regression (SVR) [33], kernel recursive least
squares (KRLS), and kernel least mean square (KLMS) [34].
The KLMS algorithm is preferred here because it is an online
methodology of low computation complexity.
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Input: {𝑥
𝑛
, 𝑑
𝑛
}, 𝑛 = 1, 2, . . . , 𝑁

Initialization: initialize the weight vector Ω(1): codebook (set of centers)C(0) = {} and coefficient vector 𝑎(0) = []
Computation:
For 𝑛 = 1, 2, . . . , 𝑁
(1) compute the output

𝑦
𝑛
= ⟨Ω(𝑛), 𝜙(𝑥

𝑛
)⟩ =

size(C(𝑛−1))

∑
𝑗=1

𝑎
𝑗
(𝑛 − 1)𝜅(𝑥

𝑛
,C
𝑗
(𝑛 − 1))

(2) compute the error, 𝑒
𝑛
= 𝑑
𝑛
− 𝑦
𝑛

(3) compute the minimum distance in RKHS between 𝑥
𝑛
and each 𝑥

𝑖
∈ C(𝑛 − 1),

𝑑(𝑥
𝑛
) = min

𝑗

(2 − 2𝜅(𝑥
𝑛
,C
𝑗
(𝑛 − 1)))

(4) if 𝑑(𝑥
𝑛
) ≤ 𝜀, then keep the codebook unchanged:C(𝑛) = C(𝑛 − 1), and update the coefficient of the center closest to 𝑥

𝑛
:

𝑎
𝑘
(𝑛) = 𝑎

𝑘
(𝑛 − 1) + 𝜂𝑒(𝑛), where 𝑘 = argmin

𝑗

√2 − 2𝜅(𝑥𝑛,C𝑗(𝑛 − 1))

(5) otherwise, store the new center:C(𝑛) = {C(𝑛 − 1), 𝑥
𝑛
}, 𝑎(𝑛) = [𝑎(𝑛 − 1), 𝜂𝑒

𝑛
]

(6) Ω(𝑛 + 1) =
size(C(𝑛))

∑
𝑗=1

𝑎
𝑗
(𝑛)𝜙(C

𝑗
(𝑛))

end

Algorithm 1: Quantized kernel least mean square (QKLMS) algorithm.

The quantized kernel least mean square (Q-KLMS) is
selected in our work to decrease the filter growth. Algo-
rithm 1 shows the pseudocode for the Q-KLMS algorithm
with a simple online vector quantization (VQ)method, where
the quantization is performed based on the distance between
the new input and each existing center. In this work, this
distance between a center and the input is defined by their
distance in RKHS, which for a shift-invariant normalized
kernel for all 𝑥𝜅(𝑥, 𝑥) = 1 is ‖𝜙(𝑥

𝑛
) − 𝜙(𝑥

𝑖
)‖
2

2
= 2−2𝜅(𝑥

𝑛
, 𝑥
𝑖
).

If the smallest distance is less than a prespecified quantization
size 𝜀, the new coefficient 𝜂𝑒

𝑛
adjusts the weight of the closest

center; otherwise a new center is added. Compared to other
techniques [47–50] that have been proposed to curb the
growth of the networks, the simple online VQ method is
not optimal but is very efficient. Since, in our work, the
algorithm must be applied several times to the same data for
convergence after the first iteration over the data, we choose
𝜀 = 0, whichmerges the repeated centers and enjoys the same
performance as KLMS.

We use the Q-KLMS framework with the multiunit
spike kernels, the multichannel LFP kernels, and the tensor-
product kernel using the joint samples of LFPs and spike
trains. This is quite unlike previous work in adaptive filtering
that almost exclusively uses the Gaussian kernel with real-
valued time series.

4. Adaptive Inverse Control of the
Spatiotemporal Patterns of Neural Activity

As the name indicates, the basic idea of adaptive inverse con-
trol is to learn an inverse model of the plant as the controller
in Figure 2(a), such that the cascade of the controller and the
plant will perform like a unitary transfer function, that is, a
perfect wire with some delay. The target plant output is used
as the controller’s command input.The controller parameters
are updated to minimize the dissimilarity between the target

output and the plant’s output during the control process,
which enables the controller to track the plant variation and
cancel system noises. The filtered-𝜖 LMS adaptive inverse
control diagram [51] shown in Figure 2(a) represents the
filtered-𝜖 approach to find𝐶(𝑧). If the ideal inverse controller
𝐶(𝑧) is the actual inverse controller, the mean square of the
overall system error 𝜖

𝑘
would be minimized. The objective

is to make 𝐶(𝑧) as close as possible to the ideal 𝐶(𝑧). The
difference between the outputs of 𝐶(𝑧) and 𝐶(𝑧), both driven
by the command input, is therefore an error signal 𝜖󸀠. Since
the target stimulation is unknown, instead of 𝜖󸀠, a filtered
error 𝜖, obtained by filtering the overall system error 𝜖

𝑘

through the inverse plantmodel 𝑃̂−1(𝑧), is used for adaptation
in place of 𝜖󸀠.

If the plant has a long response time, a modeling delay
is advantageous to capture the early stages of the response,
which is determined by the sliding window length that is
used to obtain the inverse controller input. There is no
performance penalty from the delay Δ as long as the input to
𝐶(𝑧) undergoes the same delay.The parameters of the inverse
model 𝑃̂−1(𝑧) are initially modeled offline and updated dur-
ing the whole system operation, which allows 𝑃̂−1(𝑧) to in-
crementally identify the inverse system and thus make 𝜖
approach 𝜖󸀠. Moreover, the adaptation enables 𝑃̂−1(𝑧) to track
changes in the plant. Thus, minimizing the filter error ob-
tained from 𝑃̂

−1
(𝑧) makes the controller follow the system

variation.

4.1. Relation toNeuralDecoding. In this control scheme, there
are only two models, 𝐶(𝑧) and 𝑃̂−1(𝑧), adjusted during the
control process, which share the same input (neural activ-
ity) and output types (continuous stimulation waveforms).
Therefore, bothmodels perform like neural decoders and can
be implemented using the Q-KLMS method we introduced
in the previous section. Since all the mathematical models
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Figure 2: Adaptive inverse control diagram.

in this control scheme are kernel-based models, the whole
control scheme can be mapped into an RKHS space, which
holds several advantages as follows. (1) No restriction is
imposed on the signal type. As long as a kernel can map the
plant activity to RKHS, the plant can be controlled with this
scheme. (2) Both the plant inverse, 𝑃̂−1(𝑧), and the controller
𝐶(𝑧) have linear structure in RKHS, which avoids the danger
of converging to local minima.

Specifically, the controller 𝐶(𝑧) and the plant inverse
𝑃̂−1(𝑧) are separatelymodeled with the tensor-product kernel
that we described in Section 2, and the model coefficients
are updated with Q-KLMS. This structure is shown in Fig-
ure 2(b). The model coefficients W

𝐶̂
and W

𝑃̂
−1 represent

the weight matrix of 𝐶(𝑧) and 𝑃̂−1(𝑧) obtained by Q-
KLMS, respectively. As this is a multiple-input multiple-
output model, W

𝐶̂
and W

𝑃̂
−1 are the concatenation of the

filter weights for each stimulation channel.
The variables x, y, and z denote the concatenation of

the windowed target spike trains and LFPs as the command
input of the controller, the estimated stimulation, and the

plant output, respectively. x
Δ
is delayed target signal, which is

aligned with the plant output z. 𝜙(⋅) represents the mapping
function from input space to the RKHS associated with the
tensor-product kernel.

The overall system error is defined as 𝜖
𝑘
= 𝜙(x

Δ
) − 𝜙(z),

which means that the controller’s parameter adaptation seeks
to minimize the distance in the RKHS between the target
spike train/LFP and the output of the plant inverse 𝑃̂−1(𝑧).
In this way, since the inverse model 𝑃̂−1(𝑧) has a linear
structure in RKHS, the filtered error for stimulation channel
𝑗 ∈ 1, . . . ,𝑀 is

𝜖 (𝑗) =W𝑃̂
−1

𝑗
𝜙 (x
Δ
) −W𝑃̂

−1

𝑗
𝜙 (z) . (8)

The controller model 𝐶(𝑧) has a single input x, cor-
responding to the concatenation of the spike trains and
LFPs, and has an𝑀-channel output y, corresponding to the
microstimulation. Q-KLMS is used to model 𝐶(𝑧) with 𝑁
input samples. The target spike trains are repeated among
different trials, which means that the repeated samples will
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Figure 3: Neural elements in tactile stimulation experiments. To the left is the rat’s hand with representative cutaneous receptive fields.When
the tactor touches a particular “receptive field” on the hand, VPL thalamus receives this information and relays it to S1 cortex. To emulate
“natural touch” with microstimulation, the optimized spatiotemporal microstimulus patterns are injected into the same receptive field on
VPL thalamus through a microarray so that the target neural activity pattern can be replicated in somatosensory regions (S1) to convey the
natural touch sensation to the animal.

be merged on the same kernel center of the first pass through
the data by the quantization and thus the network size of the
inverse controller is fixed (𝑁 centers). Only the coefficient
matrix a is updated with the filtered error 𝜖 during the whole
control operation. The output of 𝐶(𝑧) can be calculated by
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(9)

where c𝑐
𝑛
is the 𝑛th center and 𝑎

𝑚𝑛
is the coefficient assigned

to the 𝑛th kernel center for the𝑚 channel of the output.

5. Sensory Stimulation Experiment

5.1. Experimental Motivation and Framework. We applied
these methods to the problem of converting touch in-
formation to electrical stimulation in neural prostheses. So-
matosensory information originating in the peripheral ner-
vous system ascends through the ventral posterior lateral
(VPL) nucleus of the thalamus on its way to the primary

somatosensory cortex (S1). Since most cutaneous and pro-
prioceptive information is relayed through this nucleus, we
expect that a suitably designed electrode array could be used
to selectively stimulate a local group of VPL neurons so as
to convey similar information to cortex. Electrophysiological
experiments [52] suggest that the rostral portion of the rat
VPL nucleus carries a large amount of proprioceptive infor-
mation, while themedial and caudal portions codemostly for
cutaneous stimuli. Since the body maps for both VPL thal-
amus and S1 are known and fairly consistent, it is possible to
implant electrode arrays in somatotopically overlapping areas
of both regions.

We applied the proposed control method to generate
multichannel electrical stimulation in VPL so as to evoke
a naturalistic neural trajectory in S1. Figure 3 shows a
schematic depiction of our experiment, whichwas conducted
in rats. After implanting arrays in both VPL and S1, the
responses to natural stimulation, delivered by a motorized
tactor, were recorded in S1. Then, we applied randomly
patterned microstimulation in the VPL while recording the
responses in S1. Using these responses, we then trained our
controller to output themicrostimulation patterns that would
most accurately reproduce the neural responses to natural
touch in S1. To solve this control problem,we first investigated
how reliably the two types of stimulation, natural touch and
electrical microstimulation, can be decoded.

5.2. Data Collection. All animal procedures were approved
by the SUNY Downstate Medical Center IACUC and con-
formed to National Institutes of Health guidelines. A sin-
gle female Long-Evans rat (Hilltop, Scottsdale, PA) was
implanted with two microarrays while under anesthesia.
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Figure 4: Bipolar microstimulation patterns applied in sensory
stimulation experiment.

After induction using isoflurane, urethane was used to
maintain anesthetic depth. The array in VPL was a 2 × 8

grid of 70% platinum 30% iridium 75𝜇m diameter micro-
electrodes (MicroProbes Inc.), with 500𝜇mbetween the rows
and 250𝜇m interelectrode spacing within the rows. The
microelectrodes had a 25 : 1 taper on the distal 5mm with a
tip diameter of 3 𝜇m.The approximate geometric surface area
of the conducting tips was 1250 𝜇m2. The shank lengths were
custom designed to fit the contour of the rat VPL [52]. Both
rows were identical and the shaft lengths for each row, from
medial to lateral, were (8, 8, 8, 8, 8, 7.8, 7.6, 7.4)mm.The long
axis of the VPL array was oriented along the rat’s mediolateral
axis.

The cortical electrode array (Blackrock Microsystems)
was a 32-channel Utah array.The electrodes are arranged in a
6×6 grid excluding the 4 corners, and each electrode is 1.5mm
long. A single craniotomy that exposed the cortical insertions
sites for both arrays was made, and, after several probing
insertions with a single microelectrode (FHC) in an area
1mm surrounding the stereotaxic coordinates for the dig-
it region of S1 (4.0mm lateral and 0.5mmanterior to bregma)
[53, 54], the Utah array was inserted using a pneumatic pis-
ton.The electrodes cover somatosensory areas of the S1 cortex
and the VPL nucleus of the thalamus [52]. Neural recordings
were made using a multichannel acquisition system (Tucker
Davis).

Spike and field potential data were collected while the
rat was maintained under anesthesia. The electrode voltages
were preamplified with a gain of 1000, filtered with cutoffs at
0.7Hz and 8.8 kHz, and digitized at 25 kHz. LFPs are further
filtered from 1 to 300Hz using a 3rd-order Butterworth filter.
Spike sorting is achieved using 𝑘-means clustering of the first
2 principal components of the detected waveforms.

The experiment involves delivering microstimulation to
VPL and tactile stimulation to the rat’s fingers in separate
sections. Microstimulation is administered on adjacent pairs
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Figure 5: Rat neural response elicited by tactile stimulation. The
upper plot shows the normalized derivative of tactile force. The
remaining two plots show the corresponding LFPs and spike trains
stimulated by tactile stimulation.

(bipolar configurations) of the thalamic array. The stimula-
tion waveforms are single symmetric biphasic rectangular
current pulses; each rectangular pulse is 200 𝜇s long and has
an amplitude of either 10𝜇A, 20𝜇A, or 30 𝜇A. Interstimulus
intervals are exponentially distributed with mean interval
of 100ms. Stimulus isolation used a custom built switching
headstage. The bipolar microstimulation pulses are delivered
in the thalamus. There are 24 patterns of microstimulation: 8
different sites and 3 different amplitude levels for each site, as
shown in Figure 4. Each pattern is delivered 125 times.

The experimental procedure also involves delivering 30–
40 short 100ms tactile touches to the rat’s fingers (repeated
for digit pads 1–4) using a hand-held probe.The rat remained
anesthetized for the recording duration. The applied force is
measured using a lever attached to the probe that pressed
against a thin-film resistive force sensor (Trossen Robotics)
when the probe tip contacted the rat’s body. The resistive
changes were converted to voltage using a bridge circuit and
were filtered and digitized in the same way as described
above.The digitized waveforms were filtered with a passband
between 1 and 60Hz using a 3rd-order Butterworth filter.The
first derivative of this signal is used as the desired stimulation
signal, which is shown in Figure 5.

5.3. Decoding Results. We now present the decoding results
for the tactile stimulus waveform andmicrostimulation using
Q-KLMS operating on the tensor-product kernel.The perfor-
mance using the multiscale neural activity, both spike trains
and LFPs, is compared with the decoder using single-type
neural activity. This illustrates the effectiveness of the tensor-
product-kernel-based framework to exploit the complemen-
tarity information from multiscale neural activities.
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Figure 6: Autocorrelation of LFPs and spike trains for window size estimation.

5.3.1. Time Scale Estimation. The tensor-product kernel
allows the time scales of the analysis for LFPs and spike trains
to be specified individually, based on their own properties.
In order to find reasonable time scales, we estimate the au-
tocorrelation coefficients of LFPs and spike trains, which
indicates the response duration induced by the stimulation.
For this purpose, spike trains are binned with bin size of
1ms.TheLFPs are also resampledwith sampling rate 1000Hz.
The autocorrelation coefficients of each signal average over
channels are calculated by

𝜌
ℎ
=
∑
𝑇

𝑡=ℎ+1
(𝑦
𝑡
− 𝑦) (𝑦

𝑡−ℎ
− 𝑦)

∑
𝑇

𝑡=1
(𝑦
𝑡
− 𝑦)
2

. (10)

The 95% confidence bounds of the hypothesis that the auto-
correlation coefficient is effectively zero are approximately
estimated by ±2SE𝜌, where

SE𝜌 = √
(1 + 2∑

ℎ−1

𝑖=1
𝜌2
𝑖
)

𝑁
.

(11)

The average confidence bounds for LFPs and spike trains are
[−0.032 0.032] and [−0.031 0.031], respectively.The autocor-
relation coefficients of LFPs fall into the confidence interval
after 20ms, while the autocorrelation coefficients of spike
trains die out after 9ms, as shown in Figure 6. Therefore, the
decoder inputs are obtained by sliding the windowwith a size
of 𝑇
𝑠
= 9ms for spike trains and 𝑇

𝑥
= 20ms for LFPs. In

addition, the time discretization for the stimuli is 5ms.
The learning rates for each decoder are determined by the

best cross-validation results after scanning the parameters.
The kernel sizes 𝜎

𝑠
and 𝜎
𝑥
are determined by the average dis-

tance in RKHS of each pair of training samples. The normal-
ized mean square error (NMSE) between the estimated stim-
ulus (y) and the desired stimulus (d) is utilized as an accuracy
criterion.
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Figure 7: Qualitative comparison of decoding performance of the
first tactile stimulation trial among LFP decoder, spike decoder, and
spike and LFP decoder.

Table 1: Comparison among neural decoders.

Property Input
LFP and spike LFP Spike

NMSE (mean/STD) 0.48/0.05 0.55/0.03 0.63/0.11

5.3.2. Results for Decoding Tactile Stimulation. NMSEs of
tac-tile stimulation are obtained across 8 trial data sets. For
each trial, we use 20 s data to train the decoders and compute
an independent test error on the remaining 2.5 s data. The
results are shown in Table 1, where we can observe that the
LFP and spike decoder significantly outperformed both the
LFP decoder and the spike decoder with 𝑃 value <0.05.

In order to illustrate the details of the decoding perfor-
mance, a portion of the test results of the first trial are shown
in Figure 7. It is observed that the output of the spike decoder
fluctuates and misses some pulses (e.g., around 0.65 s) due
to the sparsity and variability of spike trains. In contrast, the
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Figure 8: Performance comparison of the microstimulation recon-
struction performance among spike decoder, LFPdecoder, and spike
and LFP decoder in terms of NMSE for each microstimulation
channel.

output estimated by LFP decoder is smooth and more robust
than the spike decoder, but the decoded signal undershoots
the maximum force deflections. The LFP and spike decoder
performed better than the LFP decoder by reincorporating
the precise pulse timing information from spike trains.

5.3.3. Results for Decoding Electrical Microstimulation. We
also implemented a decoder to reconstruct the microstimu-
lation pattern. First, we mapped the 8 different stimulation
configurations to 8 channels. We dismissed the shape of
each stimulus, since the time scale of the stimulus width is
only 200𝜇s. The desired stimulation pattern of each channel
is represented by a sparse time series of the stimulation
amplitude.

NMSEs are obtained with ten subsequence decoding
results. We used 120 s data to train the decoders and compute
an independent test error on the remaining 20 s data. The
spike and LFP decoder also outperformed both the LFP
decoder and the spike decoder. The comparison of results
is shown in Figure 8, which indicates that spike and LFP
decoder is able to obtain the best performance amongst the
stimulation channels, especially for channels 2, 4, 6, and 7.
It is observed that stimulations on channels 4, 5, 6, 7, and 8
cannot be decoded from the LFP decoder at all, since the fine
time information is averaged out in LFPs. For the spike trains
decoder, the stimulation channels are not well discriminated.
However, the combination of spike trains and LFPs enriched
the stimulation information, which contributes to better
discrimination of stimulation patterns among channels and
also enables the model to capture the precise stimulation
timing.

5.4. Open Loop Adaptive Inverse Control Results. The chal-
lenge of implementing a somatosensory prosthesis is to
precisely control the neural response in order to mimic
the neural response induced by natural stimulation. As
discussed, the kernel-based adaptive inverse control diagram
with tensor-product kernel is applied to address this problem.
The adaptive inverse control model is based on a decoder
which maps the neural activity in S1 to the microstimulation

delivered in VPL. We proceed to show how the adaptive
inverse control model can emulate the neural response to
“natural touch” using optimized microstimulation.

In the same recording, open loop adaptive inverse control
via optimized thalamic (VPL) microstimulations is imple-
mented. First, the inverse controller𝐶(𝑧) is trained with 300 s
of the data generated by recording the response to randomly
patterned thalamic microstimulation. Then, the first 60 s of
the neural response recorded during tactile stimulation at
each touch site is used as the target pattern and control input.
When this entire neural response sequence is fed offline
to the controller, it generates a corresponding sequence of
multichannel microstimulation amplitudes.

However, the generatedmicrostimulation sequence needs
further processing to meet the restrictions of bipolar micros-
timulation, before it applied to VPL. The restrictions and
processing are the following.

(1) The minimal interval between two stimuli 10ms is
suggested by the experimental setting.Themean shift
algorithm [55] is used to locate the local maxima
of a subsequence of stimuli (10ms) for each single
channel. The maximum amplitude and correspond-
ing timing are used to set the amplitude and time of
stimuli.

(2) At any given time point, only a single pulse across all
channels can be stimulated. Therefore, at each time
point, only the maximum value across channels is
selected for stimulation. The values at other channels
are set to zero.

(3) The maximum/minimum stimulation amplitude is
set in the range [8 𝜇A–30 𝜇A], which has been sug-
gested as the effective and safe amplitude range in
previous experiments.

After this processing, the generatedmultichannelmicros-
timulation sequence (60 s in duration) is ready to be applied
to the microstimulator immediately following computation.

The neural response to the microstimulation is recorded
and compared with the target natural response. Ideally, these
two neural response sequences should be time-locked and
be very similar. In particular, the portions of the controlled
response inwindows corresponding to a natural touch should
match. As this corresponds to a virtual touch delivered by the
optimizedmicrostimulation, we define the term virtual touch
to refer to the sequence of microstimulation patterns—the
output of the controller—corresponding to a particular target
natural touch.

Portions of the neural response for both natural and
virtual touches are shown in Figure 9. The responses are
aligned to the same time scale, even though they were not
recorded concurrently. It is clear that the multiunit neural
responses recorded during the controlled microstimulation
share similar spatiotemporal patterns as those in the tar-
get set. Each virtual touch is achieved by a sequence of
microstimulation pulses that evokes synchronized bursting
across the neurons. In addition, microstimulation pulses
are delivered in between touch times to mimic population
spiking that is not associated with the touch timing.
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Figure 9: Neural responses to natural and virtual touches for touch on digit 1 (d1), along with the microstimulation corresponding to the
virtual touches. Each of the four subfigures corresponds to a different segment of the continuous recording. In each subfigure, the timing of the
touches, spatiotemporal pattern of spike trains and LFPs are shown in the top two panels; the bottom panel shows the spatiotemporal pattern
of microstimulation, where different colors represent different microstimulation channels. The neural responses are time-locked, but not
concurrently recorded, as the entire natural touch response is given as input to the controller which generates the optimizedmicrostimulation
patterns. When the optimized microstimulation is applied in the VPL, it generates S1 neural responses that qualitatively match the natural,
that is, the target, response.
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Figure 10: Correlation coefficients between the controlled neural system output and the corresponding target neural response stimulated
by actual touch. Boxplot of correlation coefficients represents the results of 6 test trials. Each trial is corresponding to a particular touch site
(digits: d1, d2, d4, p3, p1, and mp).

To evaluate performance, we concentrate on the following
two aspects of virtual touches.

(i) Touch Timing. Whether the neural response to virtual
touch is capable of capturing the timing information of the
actual target touch is studied.

(ii) Touch Site. Whether the actual target touch site infor-
mation can be discriminately represented by neural activity
controlled by the microcirculation is studied.

For touch timing, we estimate the correlation coefficients
(CC) over time between virtual touch responses and the
corresponding target natural touch responses. To simplify
the spike train correlation estimation, we bin the data using
5ms bins.The correlation coefficients of both spike trains and
LFPs are calculated. Figure 10 shows the boxplot plot of the
correlation coefficients (CC) over 6 test trials, each of which
corresponds to a particular natural touch site, a forepaw digit
or pad (d1, d2, d4, p3, p1, or mp). It is observed that the
maximum correlation coefficient is at lag zero for each trial,
meaning that the virtual touch response is correctly time-
locked. For each touch site, we estimate the similarity between
the natural touch response and virtual touch response in the
following two cases.

(i) Matched Virtual. Pairs consist of a virtual touch trial and a
natural touch trial corresponding to the same touch site.

(ii) Unmatched Virtual. Pairs consist of a virtual touch trial
and a natural touch trial corresponding to different touch
sites.

We extract all the neural responses in the 300ms window
after touch onset and calculate the correlation coefficients
between natural touch responses and virtual touch response
across each pair of trials. The one-tailed Kolmogorov-
Smirnov test (KS) is implemented to test the alternative

Table 2: Average and standard deviation of the correlation coeffi-
cient (CC) between natural touch spike train responses and virtual
touch spike train responses (matched or unmatched). The P value is
for the one-sided KS test between the matched and unmatched CC
distributions.

Touch site CC
Matched virtual Unmatched virtual P value

d1 0.42 ± 0.06 0.35 ± 0.06 0.00
d2 0.40 ± 0.05 0.37 ± 0.06 0.01
d4 0.40 ± 0.05 0.37 ± 0.05 0.02
p3 0.38 ± 0.05 0.37 ± 0.06 0.11
p2 0.40 ± 0.07 0.36 ± 0.05 0.00
mp 0.41 ± 0.07 0.37 ± 0.06 0.00

hypothesis that the distribution of the correlation coefficients
for the matched virtual case is higher than the distribution
for the unmatched virtual case (the null hypothesis is that the
distributions are the same).The correlation coefficients and𝑃
value of KS test for spike trains and LFPs are shown in Tables
2 and 3. The similarity between natural touch responses
and virtual touch responses in the unmatched virtual case
is found to be significantly lower than the matched virtual
case for most touch sites (𝑃 value <0.05) except for touch
site p3. Without psychophysical testing, it is unclear how
effective the microstimulations are in producing true sensory
sensations. Nonetheless, these are promising results to show
the effectiveness of a controller utilizing themultiscale neural
decoding methodology.

6. Conclusions

This work proposes a novel tensor-product-kernel-based
machine learning framework, which provides a way to
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Table 3: Average and standard deviation of the correlation coeffi-
cient (CC) between natural touch LFP responses and virtual touch
LFP responses (matched or unmatched). The P value is for the one-
sidedKS test between thematched andunmatchedCCdistributions.

Touch site CC
Matched virtual Unmatched virtual P value

d1 0.42 ± 0.20 0.28 ± 0.23 0.00
d2 0.46 ± 0.13 0.28 ± 0.22 0.00
d4 0.41 ± 0.19 0.26 ± 0.21 0.00
p3 0.38 ± 0.18 0.29 ± 0.22 0.07
p2 0.33 ± 0.19 0.26 ± 0.23 0.20
mp 0.34 ± 0.17 0.25 ± 0.21 0.00

decode stimulation information from the spatiotemporal
patterns of multiscale neural activity (e.g., spike trains and
LFPs). It has been hypothesized that spike trains and LFPs
contain complementary information that can enhance neural
data decoding. However, a systematic approach to combine,
in a single signal processing framework, these two distinct
neural responses has remained elusive. The combination
of positive definite kernels, which can be defined in both
the spike train space and the LFP space, seems to be a
very productive approach to achieve our goals. We have
basically used two types of combination kernels to achieve
the multiscale combination: sum kernels to “average” across
different spike channels, as well as across LFP channels, which
combine evidence for the neural event in each modality,
and product kernels across the spike and LFP modalities
to emphasize events that are represented in both multiscale
modalities. The results show that this approach enhances
the accuracy and robustness of neural decoding and control.
However, this paper should be interpreted as a first step of
a long process to optimize the joint information contained
in spike trains and LFPs. The first question is to understand
why this combination of sum and product kernels works.
Our analyses show that the sum kernel (particularly for the
spike trains) brings stability to the neural events because it
decreases the variability of the spike responses to stimuli.
On the other hand, the product kernel requires that the
neural event presents at both scales to be useful for decoding,
which improves specificity. If we look carefully at Figure 6,
we can understand the effect of decoding with the product
kernel. Notice that the correlation times of spikes and LFPs
are very different (LFPs have a much longer correlation
time).Moreover, composite kernel definition can be naturally
configured to different brain areas and even neuronal types
with distinctive firing patterns. Each pattern will lead to
different correlation profiles, which will immediately tune
the properties of the kernels across brain areas and neural
populations. If only LFPs are used, we can expect that the
response time of the decoder will be very long andmiss some
events. The product kernel in fact limits the duration of the
LFP kernel to that of the spike kernel and brings stability to
the spike kernel. This explains exactly the decoding results.
Therefore, results show that the proposed tensor-product-
kernel framework can effectively integrate the information

from spikes and LFPs into the same model and enhance the
neural decoding robustness and accuracy.

Furthermore, we applied the tensor-product-kernel
framework in a more complex BMI scenario: how to emulate
“natural touch” with microstimulation. Our preliminary
results show that the kernel-based adaptive inverse control
scheme employing tensor-product-kernel framework also
achieves better optimization of the microstimulation than
spikes and LFPs alone (results not shown). This result can
be expected because the inverse controller is basically a
decoder. However, we have to realize that not all the tasks
of interest reduce to neural decoding, and we do not even
know if neural control can be further improved by a different
kernel design. This is where further research is necessary to
optimize the joint kernels. For instance, we can weight both
the channel information and the multiscale information to
maximize the task performance using metric learning [40].

Overall, this tensor-product-kernel-based framework
proposed in this work provides a general and practical
framework to leverage heterogeneous neural activities in
decoding and control scenario, which is not limited to spike
trains and LFPs applications.
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[10] G. Buzsáki and A. Draguhn, “Neuronal oscillation in cortical
networks,” Science, vol. 304, no. 5679, pp. 1926–1929, 2004.

[11] D. L. Snyder and M. I. Miller, Random Point Processes in Time
and Space, Springer, 1991.

[12] R. E. Kass, V. Ventura, and E. N. Brown, “Statistical issues in the
analysis of neuronal data,” Journal of Neurophysiology, vol. 94,
no. 1, pp. 8–25, 2005.

[13] R. D. Flint, E. W. Lindberg, L. R. Jordan, L. E. Miller, and M.
W. Slutzky, “Accurate decoding of reaching movements from
field potentials in the absence of spikes,” Journal of Neural
Engineering, vol. 9, no. 4, Article ID 046006, 2012.

[14] R. C. Kelly, M. A. Smith, R. E. Kass, and T. S. Lee, “Local
field potentials indicate network state and account for neuronal
response variability,” Journal of Computational Neuroscience,
vol. 29, no. 3, pp. 567–579, 2010.

[15] J. Liu andW. T. Newsome, “Local field potential in cortical area
MT: stimulus tuning and behavioral correlations,” Journal of
Neuroscience, vol. 26, no. 30, pp. 7779–7790, 2006.

[16] P. Berens, G. Keliris, A. Ecker,N. Logothetis, andA. Tolias, “Fea-
ture selectivity of the gamma-band of the local field potential in
primate primary visual cortex,” Frontiers in Neuroscience, vol. 2,
Article ID 199207, 2008.

[17] D. Xing, C.-I. Yeh, andR.M. Shapley, “Spatial spread of the local
field potential and its laminar variation in visual cortex,” Journal
of Neuroscience, vol. 29, no. 37, pp. 11540–11549, 2009.

[18] B. Schölkopf and A. J. Smola, Learning With Kernels: Support
VectorMachines, Regularization, Optimization, and Beyond, Ser.
Adaptive Computation andMachine Learning, MIT Press, 2002.

[19] L. Li, I. M. Park, A. Brockmeier et al., “Adaptive inverse control
of neural spatiotemporal spike patterns with a reproducing
kernel Hilbert space (RKHS) framework,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 21, no. 4, pp.
532–543, 2013.
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The minimum audible angle test which is commonly used for evaluating human localization ability depends on interaural time
delay, interaural level differences, and spectral information about the acoustic stimulus. These physical properties are estimated at
different stages along the brainstem auditory pathway.The interaural time delay is ambiguous at certain frequencies, thus confusion
arises as to the source of these frequencies. It is assumed that in a typical minimum audible angle experiment, the brain acts as an
unbiased optimal estimator and thus the human performance can be obtained by deriving optimal lower bounds. Two types of
lower bounds are tested: the Cramer-Rao and the Barankin. The Cramer-Rao bound only takes into account the approximation
of the true direction of the stimulus; the Barankin bound considers other possible directions that arise from the ambiguous phase
information.These lower bounds are derived at the output of the auditory nerve and of the superior olivary complex where binaural
cues are estimated. An agreement between human experimental data was obtained only when the superior olivary complex was
considered and the Barankin lower bound was used.This result suggests that sound localization is estimated by the auditory nuclei
using ambiguous binaural information.

1. Introduction

Adrian’s classic research on neural activity [1] presented three
essential observations which are as relevant today as they
werewhen he first introduced them: (1) as individual neurons
produce action potential which propagate through the brain,
the information of the neural activity is encoded by spiking
events; (2) the rate of the spikes is dependent upon the
external stimuli that drives the neural cell; and (3) there is an
adaptation mechanism that adjusts the cell response; that is,
the neural activity is reduced for constant stimuli. Anymodel
that purports to characterize a neural activity must take into
account these basic principles.

In this study we refer to auditory systems in which
irregular neuronal activity was demonstrated during in vivo
recordings [2]. In vivo observations have also shown that
a specific neuron might respond with a single spike or
several spikes to a given stimuli as shown in [2]. Kiang’s

[2] observation is not in agreement with that of Adrian [1],
who suggested that the stimuli information is coded by the
average rate of the neural response. This contradiction raises
the possibility that the timing of the spikes relative to the
stimulus should be considered as well.

The origin of the stochastic activity of neurons is poorly
understood. This activity results in both intrinsic noise
sources that generate stochastic behavior on the level of the
neuronal dynamics and extrinsic sources that arise from net-
work effects and synaptic transmission [3]. Another source of
noise that is specific to neurons arises from the finite number
of ion channels in a neuronal membrane patch [4, 5].

There are a number of different ways that have emerged
to describe the stochastic properties of neural activity. One
possible approach relates to the train of spikes as a stochastic
point process. For example, in their earlier studies, Alaoglu
and Smith [6] and Rodieck et al. [7] suggested that the
spontaneous activity of the cochlear nucleus can be described
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as a homogeneous Poisson process. Further investigations
of the auditory system described the neural response as
a nonhomogeneous Poisson point process (NHPP) whose
instantaneous rate depends on the input stimuli [8, 9].

A meaningful characterization of neural activity can be
derived by using stochastic properties in order to predict
human performance. Up to the 19th century, when medical
science was still in its infancy and the concept of neural
activity was unknown, the only method of understanding
and researching the brain was through a black-box approach
based on psychoacoustical experiments. While these psy-
choacoustical experiments provided valuable information,
they were regarded as limited since they only produced
qualitative information. It was argued that the activities and
the contents of themind could not bemeasured and therefore
could not be objective. This view began to change in the
early 1800s when ErnstWeber (1795–1878) demonstrated two
measures for quantifying psychological data that he obtained
from testing subjects psychoacoustically: (1) the two-point
threshold, in which the smallest distance noticeable to touch
at various parts of the body is measured, and (2) the just-
noticeable difference (JND), in which the smallest difference
in weight a person is capable of distinguishing is measured.

In the mid-20th century, several classes of standard
adaptive tests for psychoacoustic measurements were intro-
duced for evaluating auditory resolution [10–12]. These
measurements are used for comparing the relationship
between prediction of neural models and psychoacoustical
performances. In such psychoacoustical tests, subjects are
asked to distinguish between close values of one of the
signal’s parameters, such as the signal’s frequency or level
in monaural stimulation, and the interaural level difference
(ILD), or the interaural time difference (ITD) in binaural
stimulation. The results of such experiments are the JND
of the investigated parameter. Such experiments have been
repeatedly performed and reported in the literature (e.g., [13–
20]).

Comparing the behavioural JND and the neural activity
is possible if one assumes that the neural system estimates
the measured parameters. Siebert [21, 22] obtained such a
comparison when the JND of a single tone’s frequency and
level was compared to the neural activity of the auditory
nerve. Siebert’s findings were based on the assumption that
the auditory nerve (AN) response behaves as a NHPP, and
the brain acts as an unbiased optimal estimator of the physical
parameters. Thus, the JND is equal to the standard deviation
of the estimated parameter and can be derived by lower
bounds such as the Cramer-Rao lower bound. Heinz et al.
[23, 24] generalized Siebert’s results to a larger range of
frequencies and levels. Colburn and his colleagues [25–29]
obtained similar evaluations for binaural signals, where the
JND of ITD and ILD was compared to the neural activity of
the auditory nerves of both ears.

This approach was extended to analyze brainstem nuclei
such as the superior olivary complex (SOC) and the inferior
colliculus (IC). These nuclei receive inputs from both ears,
integrate the information, and send it by means of neural
spike trains to the upper nuclei in the auditory pathway
[30–36].

The neural cells in the SOC and IC are frequently
described as coincidence detector (CD) cells. These cells
receive independent excitatory and inhibitory inputs and
generate a spike if the number of excitatory inputs exceeds
the number of inhibitory inputs by a known number during
a short interval. Krips and Furst [37] showed that the CD cells
behave as NHPP if their inputs are NHPP.Therefore, the JND
of the binaural parameters such as ITD and ILD, which are
presumably estimated at the level of the SOC or IC, can be
derived on the basis of the CD cell outputs [38].

Two main types of CD cells are identified in the brain-
stem auditory pathway: excitatory-excitatory (EE) cells and
excitatory-inhibitory (EI) cells. EE cells receive excitatory
inputs fromboth (right and left) anteroventral cochlear nuclei
(AVCN) and they fire when both inputs are received within a
time interval of less than 50 𝜇sec [36, 39–41]. These types of
cells are sensitive mainly to ITD. EI cells, on the other hand,
are sensitive to the balance of intensity at the ears because the
excitation, due to ipsilateral stimuli, is reduced by increasing
levels of contralateral stimuli [40, 42–45].

The human ability to localize sound depends on ITD,
ILD, and spectral information of the acoustic stimulus. The
goal of this paper is to test whether the prediction of human
performance in this task is possible from the AN response or
whether the processing of higher auditory brainstem nuclei is
required. We compare the prediction of human performance
based on the stochastic properties of the spike trains at the
level of the auditory nerve and at the level of the SOC.

2. Minimum Audible Angle

Theminimum audible angle (MAA) test is a commonmeans
of evaluating human localization ability. In this test, two
successive signals from different directions are aimed at a
listener.The order of the two signals is random.The listener is
instructed to indicate the direction of the two signals relative
to each other. For example, in the horizontal plane, the subject
is asked if the signal moved from right to left, or vice versa.

MAA experiments have been conducted with various
experimental setups and testing procedures for different
stimuli conditions [11, 46–50]. For a single-tone MAA in the
horizontal plane, Mills’ measurements [11] have become the
generally accepted standard. MAA as a function of frequency
at an azimuth of 0∘ is redrawn fromMills’ [11] measurements
in Figure 1.TheMAA exhibits the following properties: (1) an
increase of MAA as a function of frequency above 1 kHz and
(2) an oscillatory behavior as a function of frequency with
local maxima at about 1.5 and 8 kHz.

In a typical MAA experiment, the audio signal 𝑆(𝑡, 𝜃)
enters both ears from a direction 𝜃 relative to the nose. The
incoming sounds to each ear are transformed as a function
of the shape and size of the head, torso, and the pinna of the
outer ears. These anatomical features are known as the head-
related-transfer-function (HRTF) that can be measured and
synthesized in the form of linear time-invariant filters.

In Figure 2, typical right and left HRTFs for an elevation
of 0∘ are presented. They were obtained from Knowles
Electronic Manikin for Acoustics Research (KEMAR) [51].
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Figure 1: MAA experimental results as a function of frequency for
a reference azimuth of 0∘, (redrawn from [1]).

Both gain (Figure 2(a)) and phase (Figure 2(b)) are demon-
strated in Figure 2 by color-coded scales. They are plotted
as a function of both frequency (𝑓) and direction (𝜃). The
maximum gain for the right HRTF is obtained at high
frequencies when the speaker is located in front of the right
ear, that is, a direction of 90∘. Similarly, maximum gain for
the left HRTF is obtained when the speaker is located in front
of the left ear, which corresponds to a direction of 270∘. At
frequencies above 1 kHz, the phase becomes ambiguous since
different directions yield similar phases.

Formally, the signals that are conveyed to the left and right
cochleae are

𝑆L (𝑡, 𝜃) = 𝑆 (𝑡, 𝜃) ∗HRIRL (𝑡, 𝜃) ,

𝑆R (𝑡, 𝜃) = 𝑆 (𝑡, 𝜃) ∗HRIRR (𝑡, 𝜃) ,
(1)

where ∗ represents a convolution and HRIRL(𝑡, 𝜃) and
HRIRR(𝑡, 𝜃) are the left and right head-related impulse
responses, respectively.

In this study, we refer only to signals that are composed
of simple tones, that is, 𝑆(𝑡) = 𝐴 sin(2𝜋𝑓𝑡), where 𝐴 is the
signal amplitude and 𝑓 represents its frequency. The effects
of the HRTF on such a signal are phase shifts and amplitude
alterations that yield

𝑆L (𝑡, 𝜃) = 𝐴L (𝜃) sin (2𝜋𝑓𝑡 + 𝜑L (𝜃)) ,

𝑆R (𝑡, 𝜃) = 𝐴R (𝜃) sin (2𝜋𝑓𝑡 + 𝜑R (𝜃)) .
(2)

Therefore, the resulting interaural differences are a phase
difference (IPD) that is obtained by

IPD (𝜃) = 𝜑R (𝜃) − 𝜑L (𝜃) , (3)

which corresponds to ITD by

ITD (𝜃) = IPD (𝜃)
2𝜋𝑓

, (4)

and interaural level difference (ILD) in dB is given by

ILD (𝜃) = 20 log
10
(
𝐴R (𝜃)

𝐴L (𝜃)
) = 20 log

10
(𝛿) , (5)

where 𝛿 = 𝐴R(𝜃)/𝐴L(𝜃).

3. Estimating MAA on the Basis of the
Stochastic Properties of Neural Spike Trains

We assume that during an MAA experiment, the brain’s task
is to estimate 𝜃. The resultant unbiased estimator is 𝜃, which
yields

𝐸 [𝜃 | 𝜃
∗
] = 𝜃
∗
, (6)

where 𝜃∗ is the true direction of the incoming signal.
Generally, in a psychoacoustical JND experiment, the yielded
JND value is obtained when 𝑑󸀠 = 1, where in an MAA
experiment

𝑑
󸀠
=
𝐸 [𝜃 | 𝜃∗] − 𝐸 [𝜃 | (𝜃∗ + Δ𝜃)]

std (𝜃 | 𝜃∗)
=

Δ𝜃

std (𝜃 | 𝜃∗)
. (7)

Therefore, 𝑑󸀠 = 1, yields the relations:

Δ𝜃 = MAA = std (𝜃 | 𝜃∗) . (8)

In an optimal system, the standard deviation of the
estimator, std(𝜃 | 𝜃∗), can be obtained by the Cramer-
Rao lower bound (CRLB). This bound is achievable when
the estimator uses information from the vicinity of the true
value, 𝜃∗. However, in estimating the direction of sine waves
when their phase information is ambiguous (Figure 2), the
brain might consider different directions as the true ones.
For example, when a continuous 2 kHz tone reaches both ears
from either one of the sides or from the front of the head, the
produced ITD in all cases will be 0. Thus, when the signal is
coming from either of those directions, an optimal estimator
can choose any of those possibilities. Since the Barankin
lower bound (BLB) [52] takes into account different possible
values of the estimated parameter other than those located
in the proximity of the true one, the BLB might be a better
choice in deriving a lower bound of std(𝜃 | 𝜃∗).

Let us define CRLB(𝜃∗) and BLB(𝜃∗) as the CRLB and the
BLB of 𝜃∗, respectively. In general,

MAA = std (𝜃 | 𝜃∗) ≥ BLB (𝜃∗) ≥ CRLB (𝜃∗) . (9)

In order to derive both CRLB(𝜃∗) and BLB(𝜃∗), one
should consider the probability density function of the
estimator 𝜃 | 𝜃∗. The stochastic properties of the estimator
𝜃 | 𝜃∗ are initiated by the probabilistic behavior of the
neural spike trains along the auditory pathway. Thus, the
lower bounds can be derived from the probability density
function of the neural spike trains.

The stochastic properties of the neural spike are described
by the probability of getting 𝑁 successive spikes during
𝑇 seconds at the time instances {𝑡

1
, . . . , 𝑡

𝑁
} following an

acoustic stimulus. As was stated earlier [8, 9], this behavior
can be described as NHPP; therefore,

𝑝 (𝑡
1
, . . . , 𝑡

𝑁
) =

1

𝑁!

𝑁

∏
𝑛=1

𝜆 (𝑡
𝑛
, Θ) exp{−∫

𝑇

0

𝜆 (𝑡, Θ) 𝑑𝑡} ,

(10)
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Figure 2: A sample HRTF gain in dB (a) and phase in degrees (b) as a function of azimuth and frequency for 0∘ elevation.

where 𝜆(𝑡, Θ) is the instantaneous rate of the neural point
process and Θ is a vector that includes all the physical
parameters of the audio signal. In this study, since we relate
to MAA, we choose Θ = 𝜃 as the direction of the incoming
signal.

In NHPP, both lower bounds, CRLB and BLB, depend
only on the instantaneous rate. The CRLB for a NHPP was
derived by Bar David [53] and is given by

CRLB (𝜃∗) = {∫
𝑇

0

1

𝜆 (𝑡, 𝜃∗)
[
𝜕𝜆 (𝑡, 𝜃)

𝜕𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃=𝜃∗
]

2

𝑑𝑡}

−1/2

. (11)

For deriving BLB, we define a vector of 𝐿 that includes all
the nontrue but possible values Φ = [𝜃

1
, . . . , 𝜃

𝐿
]. In [37] the

BLB was derived for an NHPP which is given by

BLB (𝜃∗) = CRLB (𝜃∗) + (Φ − CRLB (𝜃∗) ⋅ 𝐴) Δ−1

× (Φ − CRLB (𝜃∗) ⋅ 𝐴)𝑇,
(12)

where𝐴 = [𝐴
1
, . . . , 𝐴

𝐿
] is a vector of length 𝐿, when each𝐴

𝑙

is given by

𝐴
𝑙
= ∫
𝑇

0

[
𝜆 (𝑡, 𝜃

𝑙
)

𝜆 (𝑡, 𝜃∗)
− 1] ⋅

𝜕𝜆 (𝑡, 𝜃)

𝜕𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃=𝜃∗
𝑑𝑡. (13)

The matrix Δ = 𝐵 − 𝐴𝑇CRLB(𝜃∗)𝐴, where 𝐵 is a symmetric
matrix whose size is 𝐿 × 𝐿. Each element in the matrix 𝐵 is
obtained by

𝐵
𝑖𝑗
= exp(∫

𝑇

0

[ − 𝜆 (𝑡, 𝜃
𝑖
) − 𝜆 (𝑡, 𝜃

𝑗
) + 𝜆 (𝑡, 𝜃

∗
)

+
𝜆 (𝑡, 𝜃

𝑖
) 𝜆 (𝑡, 𝜃

𝑗
)

𝜆 (𝑡, 𝜃∗)
] 𝑑𝑡) .

(14)

The vector Φ is essential in BLB derivation. If the size
of the vector is predetermined, the actual values 𝜃

1
, . . . , 𝜃

𝐿

can be obtained by deriving BLB for all the possibilities.
The L directions that yield the maximum BLB are then
chosen for vector Φ. Such a straightforward approach is a
time-consuming process that requires calculating enormous
number of possible sets. For example, for 𝐿 = 4 with a
resolution of 1∘, there are 3604 sets to consider. In order to
reduce the number of calculations, a two-stage procedure was
designed. In the first stage, for every frequency, BLBpredicted
MAAs based on a single ambiguity. In a 1∘ resolution, a total
of 360 BLB derivations were obtained. In the second stage,
for every frequency, the number of ambiguous directions
(𝐿) was defined and the vector [𝜃

1
, . . . , 𝜃

𝐿
] of the ambiguous

directions was chosen according to directions that yielded
maximumMAA in the first stage.
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4. MAA Prediction Based on
Auditory Nerve Response

Since the auditory nerve (AN) is the initial stage in the
auditory neural pathway, we first tested the prediction of
MAA on the basis of its response.

There are about 30,000AN fibers that innervate each
ear. The different location of each fiber’s attachment on
the cochlear partition determines its frequency sensitivity
since each point along the cochlea has a different resonance
frequency.

The auditory nerve’s instantaneous rate (IR) for a simple
tone stimulus 𝑠(𝑡) = 𝐴 ⋅ sin(2𝜋𝑓𝑡 +𝜑) is commonly expressed
with an exponential function [21, 24, 25, 29, 38] which is
obtained by

𝜆AN (𝑡) = 𝛾 (𝑓, 𝐴) ⋅ exp {𝛾 (𝑓, 𝐴) ⋅ 𝐵 (𝑓)

⋅ sin (2𝜋𝑓𝑡 + 𝜑 + 𝜙 (𝑓))} .
(15)

Generally, 𝛾(𝑓, 𝐴) is a nonlinear function of both the level
and frequency of the stimulus. Its minimum value equals the
fiber’s spontaneous rate while its maximum value is equal
to the fiber’s saturation rate. For stimuli whose levels are in
the mid-range (20 ≤ 𝐴 ≤ 50 dB SPL), as used in this MAA
experiment, 𝛾(𝑓, 𝐴) is proportional to the stimulus level; that
is, 𝛾(𝑓, 𝐴) = 𝐴⋅𝛾

0
(𝑓), where 𝛾

0
(𝑓) is different for every fiber as

determined by the location along the cochlear partition that
the fiber innervates.

The function 𝐵(𝑓) governs the synchronization of the
fiber response which decreases with the increase of both
frequency and the level of the simple tone stimuli. In this
study we refer only to the dependence of the synchronization
on frequency. The AN synchronization data [30, 54, 55] is
commonly modelled by a sigmoid function of the form

𝐵 (𝑓) = 1.5
𝑒
−𝛽⋅𝑓

1 + 𝑒−𝛽⋅𝑓
, (16)

where 𝛽 is a constant that determines the loss of the fiber’s
synchrony as a function of frequency. We chose 𝛽 = 10−5

which corresponds to a loss of synchrony at around 3 kHz [38,
54–56].

Since in a MAA experiment both ears are involved, the
derivation of MAA will take into account those fibers from
the right and left cochleae that are most sensitive to the
stimulus frequency. We ignore all other fibers whose IRs are
significantly reduced in comparison to the most sensitive
fiber. Since the AN fibers are statistically independent [2],
therefore the 𝑑󸀠 theorem can be applied in order to obtain
the MAA from𝑁 fibers:

(𝑑
󸀠
)
2

=

𝑁

∑
𝑛=1

(𝑑
󸀠

𝑛
)
2

, (17)

where𝑁 is the number of independent nerve fibers and 𝑑󸀠
𝑛
is

the 𝑑󸀠 (see (7)) that was derived for the 𝑛th fiber. Since MAA
is obtained when 𝑑󸀠 = 1, this implies that

MAA = std (𝜃 | 𝜃∗)

=
1

√∑
𝑁R(𝑓)
𝑛=1

{std𝑛R (𝜃 | 𝜃∗)}
−2

+ ∑
𝑁L(𝑓)
𝑛=1

{std𝑛L (𝜃 | 𝜃∗)}
−2

,

(18)

where std𝑛R(𝜃 | 𝜃∗) and std𝑛L(𝜃 | 𝜃∗) are the standard
deviations of the estimator as obtained by the right and
left 𝑛th AN fibers, respectively, while 𝑁R(𝑓) and 𝑁L(𝑓)are
the number of fibers of the right and left auditory nerve,
respectively. When the optimal estimation is considered, the
standard deviation is replaced by the correspondent CRLB
(see (11)) or BLB (see (12)).

Figure 3 represents the prediction ofMAAbased on aBLB
derivation with a single ambiguity (𝐿 = 1) as a function of
both frequency and direction. The derivations were obtained
by substituting (15) in (12). Equation (15) was derived for both
right and left stimulations by using the correspondent HRIRs
(see (2) that yields 𝜆R(𝑡, 𝜃) and 𝜆L(𝑡, 𝜃), the right and left
auditory nerve instantaneous rates, respectively. In practice,
only the fibers with a characteristic frequency equal to the
stimulus frequency contribute to the MAA prediction. For
the sake of simplicity, we chose 𝑁R(𝑓) = 𝑁L(𝑓) = 𝑁

0
;

𝛾
0
(𝑓) = 1 and 𝐴 = 1. The number of fibers 𝑁

0
was chosen

so that CRLB at 500Hz yielded MAA of 1∘.
Throughout the frequency range, high values of MAA

were obtained at the rear of the head (𝜃= 180∘, 𝜃=−180∘).This
is most likely due to front-back confusion. At approximately
2 kHz and its harmonics (4 and 8 kHz), relatively high values
ofMAAwere obtained at approximately 𝜃 = 90∘ and 𝜃 = −90∘.
This most likely corresponds to the confusion between right
and left. At directions that did not correspond to ambiguity,
the values of the bound decreased with frequency.

Figure 4 represents the simulation results of MAA,
derived by both lower bounds, CRLB and BLB, as a function
of frequency when the reference direction was in front (𝜃∗ =
0). BLBwas derivedwith atmost 4 possible directions (𝐿 = 4).
As can be expected, the estimated MAA according to BLB is
greater than the CRLB estimates for all frequencies. At low
frequencies, below 1 kHz, MAA according to BLB is about
10 times greater than the one yielded by CRLB. However, a
more interesting difference between the two predictions is
their dependence on frequency. CRLB derivation yielded a
constantMAAof up to about 1 kHz and amonotonic decrease
with increasing frequency for frequencies above 1 kHz. The
BLB derivation yielded multiple peaks of MAA, in particular
around 2, 4, 7, and 9 kHz.

The front-back confusion that exists throughout the
whole frequency range is probably the reason for the differ-
ence in the MAA estimate according to the BLB and CRLB at
low frequencies. Peaks at high frequencies (2, 4, 7, 9 kHz) can
be attributed to the ambiguities that correspond to the similar
phase obtained from tones coming from the sides or from the
front of the head. According to the anthropometric data of
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the KEMARdummy head [51], the headwidth is about 14 cm,
which corresponds to a wavelength of tones with frequencies
between 1.6 and 2.4 kHz [57]. These are the frequencies that
yielded maximumMAA according to the BLB derivation.

While comparing the computational results of Figure 4
to the human performance shown in Figure 1, it seems
that neither CRLB nor BLB is good predictors of human
performance. By deriving MAA from CRLB, the depen-
dence on frequency is totally different from data based on
human performance. According to CRLB, MAA decreases
monotonically as opposed to an oscillatory dependence in
human experimental data. Although BLB reveals an oscil-
latory behaviour as a function of frequency, the predicted
MAA has more oscillations as a function of frequency than
human performance. In the next section we test whether
this contradiction can be resolved by taking into account the
binaural processing performed by CD cells in the brainstem
nuclei such as SOC and IC.

5. MAA Prediction Based on the Superior
Olivary Complex CD Cells

Figure 5 presents a schematic representation of part of the
brainstem auditory pathway that is involved in binaural
processing. The acoustic stimulus entering both ears inner-
vates the auditory nerves. In Figure 5, the auditory nerves
are represented by the left and right IRs, 𝜆(L)AN and 𝜆

(R)
AN,

respectively. The ANs stimulate both right and left SOCs. In
each SOC, the two types of CD cells, EE and EI, are indicated.

Both EE and EI cells receive two independent inputs, one
from each ear as Figure 5 indicates. Following [38], the output
of both EE and EI cells is NHPP if the time interval (Δ)
in which the two inputs can interact satisfies the condition
Δ ≪ min{𝜏R, 𝜏L}, where 𝜏R and 𝜏L are refractory periods of
the right and left inputs.

The IR of the EE cells is obtained by

𝜆EE (𝑡, 𝜃) = 𝜆
(L)
AN (𝑡, 𝜃) ∫

𝑡

𝑡−Δ EE

𝜆
(R)
AN (𝑡
󸀠
, 𝜃) 𝑑𝑡

󸀠

+ 𝜆
(R)
AN (𝑡, 𝜃) ∫

𝑡

𝑡−Δ EE

𝜆
(L)
AN (𝑡
󸀠
, 𝜃) 𝑑𝑡

󸀠
.

(19)

Since both right and left EE cells receive similar inputs,
their output IRs are also identical; that is,

𝜆
(R)
EE (𝑡, 𝜃) = 𝜆

(L)
EE (𝑡, 𝜃) = 𝜆EE (𝑡, 𝜃) . (20)

A possible coincidence window length is Δ EE =20𝜇sec
[58]. The value of this length, which was previously used in
theoretical models [24, 25, 29], satisfies the condition Δ EE ≪
min{𝜏R, 𝜏L}, since the refractory period at the auditory nerve
is in the order of 500 𝜇sec to 1m sec [59–62].

EI cells receive excitatory and inhibitory inputs. An EI in
the right SOC (Figure 5) receives an excitatory input from the
left side and an inhibitory input from the right side that yields

𝜆
(R)
EI (𝑡, 𝛼) = 𝜆L (𝑡, 𝛼) (1 − ∫

𝑡

𝑡−Δ EI

𝜆R (𝑡
󸀠
, 𝛼) 𝑑𝑡

󸀠
) . (21)
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brainstem auditory pathway.

On the other hand, an EI cell in the left SOC receives the
antisymmetric inputs, that is, an excitatory input from the
right side and an inhibitory input from the left side (Figure 5)
that yields

𝜆
(L)
EI (𝑡, 𝛼) = 𝜆R (𝑡, 𝛼) [1 − ∫

𝑡

𝑡−Δ EI

𝜆L (𝑡
󸀠
, 𝛼) 𝑑𝑡

󸀠
] . (22)

A possible coincidence window length is Δ EI = 200𝜇sec
[34].This length is ten times longer than what was used in EE
cells. However, it satisfies the condition Δ EI < min{𝜏R, 𝜏L},
which guarantees that EI cells behave as NHPP if their inputs
also behave as NHPP [37].

In derivingMAA from the SOC CD cells, we assume that
the outputs of the EE andEI cells are statistically independent.
Therefore, MAA can be derived by using the 𝑑󸀠 theorem (see
(17)) which implies that

MAA = std (𝜃 | 𝜃∗)

= (
𝑁
(R)
EE (𝑓)

{std(R)EE (𝜃 | 𝜃∗)}
2
+

𝑁
(L)
EE (𝑓)

{std(L)EE (𝜃 | 𝜃∗)}
2

+
𝑁
(R)
EI (𝑓)

{std(R)EI (𝜃 | 𝜃∗)}
2

+
𝑁
(L)
EI (𝑓)

{std(L)EI (𝜃 | 𝜃∗)}
2
)

−1/2

,

(23)

where std(R)EE (𝜃 | 𝜃∗), std(L)EE (𝜃 | 𝜃∗), std(R)EI (𝜃 | 𝜃∗), and
std(L)EI (𝜃 | 𝜃

∗) are the standard deviations of the estimator that
were obtained by the right and left EEs and the right and left
EI cells, respectively. The values 𝑁(R)EE (𝑓), 𝑁

(L)
EE (𝑓), 𝑁

(R)
EI (𝑓),

and 𝑁(L)EI (𝑓) are the number of the right and left EE and EI
cells at the SOC. When the optimal estimation is considered,
the standard deviations are replaced by the correspondent
lower bounds, CRLB (see (11)) or BLB with 𝐿 = 4 (see (12)).

The relevant instantaneous rates are obtained by substituting
the EE IRs (see (19)) and the EI IRs (see (21) and (22)).

In order to demonstrate the difference between the MAA
derivations as obtained by EE and EI cells, we calculated
(23) with either a single EE cell (𝑁(R)EE (𝑓) = 𝑁

(R)
EE (𝑓) =

1; 𝑁
(R)
EI (𝑓) = 𝑁

(L)
EI (𝑓) = 0) or a single EI cell (𝑁(R)EE (𝑓) =

𝑁
(R)
EE (𝑓) = 0; 𝑁

(R)
EI (𝑓) = 𝑁

(L)
EI (𝑓) = 1). Figure 6 exhibits the

resulting derivations as a function of frequency for a reference
azimuth of 0∘. According to CRLB, both EE and EI yielded
a monotonic decrease as a function of frequency. But EE
yielded a MAA with an order of magnitude greater than the
one predicted from the EI response. On the other hand, the
MAA that the EI yielded was similar to the one obtained by
the AN response (Figure 4). One can then conclude that at
the SOC level, EI processing caused minor information loss.
However, due to EE processing some of the information that
was included in the AN was lost.

When theMAA prediction was based on the BLB deriva-
tion (Figure 6(b)), both EE and EI yielded an oscillatory
behavior as a function of frequency. When EE response was
considered, the predicted MAA revealed local maxima at
around 1.3 and 8 kHz, whereas the EI response yielded local
maxima at 3.5 and 8 kHz.

It is clear from Figure 6 that both EE and EI are required
in order tomatch the experimental results (Figure 1). Figure 7
represents the predicted MAA according to BLB with the
following choice EE and EI cells:

𝑁
(R)
EE (𝑓) = 𝑁

(L)
EE (𝑓) =

{{

{{

{

200 𝑓 < 1250Hz
25 1250 ≤ 𝑓 < 4000

0 𝑓 ≥ 4000

𝑁
(R)
EI (𝑓) = 𝑁

(L)
EI (𝑓) = {

0 𝑓 < 4000

3 𝑓 ≥ 4000.

(24)

Note that (24) is consistent with physiological data indicating
that EE cells mostly innervate signals with low frequencies,
while EI cells are most sensitive to signals with high frequen-
cies (e.g., [31, 32]). The predicted MAA has 2 peaks at about
the same locations as the experimental data.

6. Discussion

Thestochastic properties of neural spike trains in the auditory
pathway were used in order to predict human performance
in sound localization. We have shown that it is possible to
predict human performance in an MAA experiment based
on simple tones.

As in any JND experiment, predicting human perfor-
mance was based on two main assumptions: (1) the brain is
an unbiased optimal processor and (2) the neural spike trains
behave as NHPP. The methodology involved deriving lower
bounds based on the stochastic properties of neural spike
trains [21, 22, 24, 25, 38].

When JND is predicted by deriving a lower bound, its
significance is obtained by comparing it to experimental
results as a function of a physical parameter. In this paper,
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we compared the bound prediction of MAA as a function of
the stimulus frequency.

In an MAA experiment with simple tones, the informa-
tion about the origin of the stimulus might be ambiguous
at high frequencies. We have shown that the ambiguous

interpretation of the HRTF phase data is probably the reason
for the oscillatory behaviour of MAA as a function of
frequency in human performance.This was demonstrated by
the usage of two lower bounds, CRLB and BLB. In general,
one can expect that the predictions of BLBwill be greater than
those obtained by CRLB. But the derivation demonstrated in
this study reveals a totally different dependency on frequency.
CRLB that took into account only the approximate true origin
of the stimulus failed to predict oscillatory behavior. On the
other hand, BLB, which considered ambiguity, succeeded in
predicting the oscillatory behavior.

We further compared the predictions that were based on
the AN outputs with those obtained by the SOC outputs.
Although, both BLB predictions yielded an oscillatory behav-
ior, it seems that the SOC output obtained a better prediction
in respect to psychoacoustical data.When the AN output was
considered, MAA local maxima were derived at frequencies
1.5, 2, 4, 7, and 9 kHz (Figure 4). When SOC was considered,
some of the local maxima disappeared. It seems that loss of
information due the SOC processing reduced the effect of the
phase ambiguity.

The SOC outputs were derived by CD cells that processed
the binaural information. The main task of CD cells is
probably to extract binaural cues, with EE cells most likely
extracting ITD and the EI cells extracting ILD [31, 32,
38]. Both ITD and ILD contribute to estimating the signal
direction. In fact, our calculation of MAA, as derived by
BLB, has shown that both EE and EI cells are required for
predicting the experimental results.
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We expect that the brain as an optimal system seeks to
achieve a monotonic descending dependency of MAA as a
function of frequency as predicted by CRLB. However, the
physical constraints (i.e., the ambiguous phases) prevent the
brain from achieving this goal.

WhenMAAwas derived from theANresponse or a single
EI response, the predictedMAA according to BLB derivation
was ten times greater than that predicted by CRLB at low
frequencies (below 1.5 kHz). This difference was explained
by the front-back confusion. However, this effect was almost
eliminated when the EE response was considered. At low fre-
quencies, the nerve response is synchronized to the stimulus;
that is, 𝐵(𝑓) → 1 in (16). Although the synchronization
exists in the AN response, it was not sufficient for overcoming
the front-back confusion. However, it played an important
role at the SOC level where ITDwas efficiently extracted [38].
Therefore, at the SOC level, at low frequencies, both lower
bounds, CRLB and BLB, yielded almost the same MAA.

The methodology used in this study was to express the
lower bounds by analytical expressions as derived in [21, 24,
25, 38]. This was possible, since we assumed that the neural
spike trains behave as NHPP at AN. However, in using this
assumption, the discharge history including the refractory
period, which is a basic characteristic of every neuron [63–
68], was ignored. Other models of neural spike trains that
take into account the refractory period might be a better
choice for describing the neural spike trains [66, 69–73]. Yet,
the usage of the NHPPmodel and the outcome lower bounds
approach has been successful in predicting several additional
properties of the auditory system. Consider, for example,
(1) the prediction of level and frequency discrimination as
a function of the stimulus duration, level, and frequency
[21, 24], and (2) ITD and ILD as a function of frequency [38].
In these studies it seems that the NHPP approach is adequate
for describing steady-state responses of continuous stimuli
[74–76].

This study aimed to show the potential in using lower
bounds in order to predict human performance in psychoa-
coustical experiments and particularly the importance of
considering ambiguous information. However, we do not
claim that the simple model presented in this paper is the
exact biological model. Further research is required in order
to quantitatively predict human performances. Such studies
should include a generalized cochlear model, a synapse
model, and models of the brainstem nuclei.
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At present, it is obvious that different sections of nervous system utilize different methods for information coding. Primary afferent
signals inmost cases are represented in formof spike trains using a combination of rate coding andpopulation codingwhile there are
clear evidences that temporal coding is used in various regions of cortex. In the present paper, it is shown that conversion between
these two coding schemes can be performed under certain conditions by a homogenous chaotic neural network. Interestingly, this
effect can be achieved without network training and synaptic plasticity.

1. Introduction

Nervous system codes information in form of sequences
of spikes or spike trains. Therefore, analysis of information
processing in the brain is impossible without understanding
principles of information coding and principles of conver-
sion between different coding schemes, because it is well
known that nervous system uses different coding schemes for
transmitting information about stimuli, patterns, muscular
commands, and so on. These coding schemes are based on
two main approaches. In the first class of coding methods,
the exact relative position of different spikes on the time axis
is not taken into account, only their frequency or the sets of
neurons emitting them are important. On the contrary, the
other codingmethods utilize exact delays between individual
spikes. Let us call these two classes of codes asynchronous and
synchronous codes.

There are several schemes of asynchronous coding and
they are often used in combination. Rate coding is used
in many afferent and efferent parts of nervous system. In
this approach, intensity of a stimulus or command sent to a
muscle is represented as number of spikes per unit time. It
is the most explored coding method. Another asynchronous
coding method, population coding, is based on representa-
tion of a stimulus as episodes of increased activity of a certain
neuronal ensemble specific for this stimulus. It may be used

to code the fact of presence of some stimulus as well as its
strength, as a number of active neurons. For example, it is
known [1] that visual image moving direction is encoded
as activity of the respective neuronal ensembles in middle
temporal visual area of primates’ brain. Rate and population
coding can be considered as two sides of the general coding
scheme when presence and/or intensity of some stimulus is
expressed by increasing firing rate in certain population of
neurons. We will call this scheme rate/population coding. In
a specific variant of this scheme (sometimes referred to as
position coding), numeric parameter of a stimulus is coded
as position of the most active neurons in the ensemble. It was
noted that this type of coding has a number of advantages
compared to rate coding [2].

Synchronous coding (usually called temporal coding [3])
is based on the idea that precise relative timing of individual
spikes inside spike trains emitted by different neurons can
contain information about stimuli. This representation may
have different forms. The fact of presence of some stimulus
can be represented as a stable combination of spikes emitted
by certain neurons with fixed delays of spikes with respect to
other spikes (and therefore we can call this kind of temporal
coding the spatiotemporal coding). Continuous value can be
encoded as a time interval between two spikes, as a phase
shift between two spike trains, or a spike phase relative to
some global synchronizing signal. For example, hippocampal
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CA1 pyramidal cells code body spatial location by their firing
phase relatively to theta rhythm [4]. This coding method can
be called the phase coding. The fact that temporal resolution
of the neural code often has millisecond order of magnitude
[5] is an evidence of wide usage of temporal coding in
the brain. Most commonly used synaptic plasticity model,
spike-timing dependent plasticity (STDP [6]), assumes this
information coding scheme. Models of working memory
based on neuronal polychronization effect [7, 8] are also
naturally based on this codingmethod. Let us note that in this
paper we will consider spatiotemporal variant of temporal
coding only.

At present, it is evident that different sections of the
nervous system utilize different information coding schemes.
Primary afferent information encoded using rate- or pop-
ulation-based schemes is passed for processing to the cortex
zones where temporal coding is widely used. But commands
to muscles again should be represented as rate coded sig-
nals. It is also very probable that future intelligent systems
and devices based on spiking neural networks (SNNs), for
example, in robotics, will include components using vari-
ous coding schemes. Therefore, SNNs performing functions
of converter between different information coding forms
should be a necessary part of nervous system as well as
of these devices. However, in contrast with vast literature
devoted to information coding in SNNs, the number of works
considering conversion between different coding schemes is
surprisingly few. For example, in [9] it was discussed how
cortical bursting neurons could translate phase informa-
tion contained in precisely timed spike sequences into rate
coded signal. Relationship between rate and phase coding
schemes in ensembles of hippocampal pyramidal neurons
and translation from former to latter was explored in [10].
The question about which kind of networks could perform
translation from rate/population coding to spatiotemporal
coding seems to remain insufficiently explored until now.
General approach to solution of this problem was presented
by Izhikevich in [11] in relation to the so-called polychronous
neuronal groups (PNGs). The idea is that desired conversion
is performed by polychronous neuronal groups (populations
of neurons which are being activated emit spike trains with
precisely reproduced delays between individual spikes) exist-
ing or spontaneously emerging in chaotic neural network.
However, this work as well as the subsequent works devoted
to polychronization neither considered, to the extent of my
knowledge, concrete conditions under which this conversion
could be realized nor reported an experimental evidence of
its realization. Achievement of these goals was motivation for
the research reported here. The present work also uses poly-
chronization effect as a basis, like [11], but, besides that, as we
will see, it is shown in it that the network performing conver-
sion from rate/population coding to spatiotemporal coding

(1) may consist of leaky integrate-and-fire (LIF) neurons
which are much simpler than the neuron model used
in [11],

(2) may not be plastic (while STDP plasticity was used in
[11], it was noted there that synaptic plasticity can be
harmful because it makes the conversion unstable),

(3) does not need to be involved in global rhythmic
activity like theta rhythm in [4].

2. Materials and Methods

In this researchwe utilized one of the simplest and in the same
time the most widely used neuron model, leaky integrate-
and-fire (LIF) neuron with absolute refractory period (see,
e.g., [6]).

There are two kinds of neurons in the network: excita-
tory and inhibitory neurons. Axons of the excitatory and
inhibitory neurons are connected only to excitatory or
inhibitory synapses of other neurons, respectively. It is essen-
tial that postsynaptic spike emission is a result of collective
activity of sufficient number (we set this number equal to 6)
of presynaptic neurons. In order to use dimensionless units,
we assume that the threshold membrane potential value is
always equal to 1. To satisfy the above mentioned condition,
the maximum excitatory synaptic weight value was selected
equal to 0.19. Every individual synaptic weight was randomly
selected using uniform distribution in the range (0, 0.19).
Inhibitory synapse weights were also assigned with randomly
generated values uniformly distributed in the range (0,𝑊−).
Value of the maximum inhibitory weight 𝑊− was used as a
regulator necessary for maintaining balance of excitation and
inhibition in the network while numbers of inhibitory and
excitatory neurons were fixed. Namely, we used the network
consisting of 700 excitatory and 300 inhibitory neurons in
all the experiments. In case of small 𝑊− even slight input
signal or infrequent spontaneous firing causes avalanche of
spike emissions leading the network to the state of constant
self-sustaining activity with very high firing frequency. Great
𝑊
− values cause immediate suppression of network reaction

to any external signal. For every network configuration there
exists a threshold value of 𝑊− above which self-sustaining
network activity is impossible under any conditions. We
selected value of 𝑊− slightly higher than this threshold. In
our case, it corresponded to𝑊− = 10.

Time of spike propagation from neuron to neuron lied in
the range 1–10ms for excitatory connections and 1–3ms for
inhibitory connections that is close to physiological values.
Setting the spike propagation delays is considered below.

For sake of generality, the network should not have any
structure a priori taking into account properties of input
signal. In fact, the considered network has no intrinsic
structure at all; it is completely homogenous and chaotic
in the sense that all neurons of the same kind and all
connections between the same kinds of neurons (excitatory
→ excitatory, excitatory → inhibitory, etc.) have the same
distributions of weights, delays, connection probabilities, and
so forth. Besides, neuron’s axon can never be connected to a
synapse of the same neuron.

Source of external signals received by the network is an
array of its input nodes. Neurons are connected to them via
excitatory or inhibitory synapses.Through these connections
(we will call them afferent connections) neurons receive the
signal consisting of noise (random spikes with constantmean
frequency) and stimuli represented as short episodes of high
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frequency spiking of certain groups of input nodes. The total
number of input nodes was always the same and was equal to
1000. Ratio of excitatory and inhibitory input nodes was the
same as for neurons, 700/300.

Provided that the described conditions are met, selection
of sets of presynaptic neurons and input nodes was absolutely
random for every neuron.

Many SNN computer simulation experiments show that
distribution of synaptic delays is an equally important factor
determining network behavior as distribution of synaptic
weights. For example, it is crucial that the propagation
delay of inhibitory connections would be substantively less
than of excitatory connections; it is necessary to prevent
development of the powerful permanent global oscillatory
network activity which can suppress network reaction to
external stimuli (as it follows, e.g., from theoretical model
considered in [12]). However, if this requirement is satisfied,
the exact distribution of inhibitory connection delays does
not influence network properties significantly. On the con-
trary, selection of excitatory connection delays was found
to be very important so that we consider it more in detail.
As it was mentioned above, in our approach the key role in
realization of rate/population to temporal coding conversion
is played by PNGs. In [8], it was proposed to use SNNs
artificially enriched by potential PNGs due to specially tuned
excitatory propagation delays. Namely, excitatory neurons
were considered as located at random points on surface of
sphere or N-dimensional hypersphere and connection delays
weremade proportional to the spherical distance between the
neurons connected. Since PNGs are characterized by great
number of short paths between the same pair of neurons
such that the total delay in every path is (almost) identical,
this distribution of delays gives much greater number of
PNGs than totally random distribution. Similar to [8], in
this work we used 4-dimensional sphere neuron placement.
Experimental results considered in next section confirm
importance of this choice.

The input signal consisted of sequence of different stimuli
mixed with noise. Every stimulus was 30ms long and was
presented after network reaction to previous stimulus that
faded away completely (that was achieved due to proper
selection of 𝑊−—as was discussed earlier). Every stimulus
was a sequence of randomly generated spikes from set of
input nodes corresponding to this stimulus. The stimuli
were characterized by significantly higher spike frequency
comparatively to the background noise.

Advantage of the LIF neuron model is that it is very
simple. Model of its soma includes only two parameters: the
length of refractory period 𝑇 and the membrane potential
decay constant 𝜏. The former limits the maximum firing
frequency and is usually selected equal to few milliseconds.
We set𝑇 = 6ms.The latter determines the size of time period
during which arriving presynaptic spikes act together to
produce postsynaptic spike.This parameter varies in different
kinds of neurons [6], however, obviously, it cannot be great in
neurons forming PNGs which are based on very exact firing
timings. For this reason we set it to 3ms.

The general structural properties of the network are
summarized in Table 1.

Table 1: Parameters determining balance of excitation and inhibi-
tion in the network.

Excitatory
neurons

Inhibitory
neurons

Amount 700 300
Maximum synaptic weight
(for postsynaptic neurons) 0.19 10

Number of excitatory afferent
synapses/total effective weight1 300/28.5 300/28.5

Number of inhibitory afferent
synapses/total effective weight 10/50 30/150

Number of nonafferent excitatory
synapses/total effective weight 100/9.5 100/9.5

Number of nonafferent inhibitory
synapses/total effective weight 10/50 3/15

Synaptic propagation delays
(for postsynaptic neurons), ms 2–10 1–3
1It is the mean weight multiplied by the number of synapses.

Inhibitory input 
nodes

Inhibitory 
neurons

Excitatory input 
nodes

Excitatory 
neurons

Figure 1: Excitatory (green) and inhibitory (red) neurons, input
nodes, and synaptic connections. Size of blocks corresponds to
relative amounts of neurons and input nodes. Thickness of arrows
reflects total effective weights of the respective connections.

This table displays another important feature of the
described network related to the role of inhibitory neu-
rons. These neurons should not block network response to
external stimuli but should efficiently stop network self-
sustaining activity after end of stimulation. To reach this
goal, the inhibitory neurons are themselves strongly inhibited
by afferent signals, so that they almost do not fire during
stimulation. But their mutual inhibition is much weaker
than their inhibitory effect on the excitatory neurons (they
have only 3 nonafferent inhibitory synapses, while excitatory
neurons have 10). Therefore, just after the stimulus end the
inhibitory neurons begin to fire extensively and suppress the
whole network activity.The relative strength of excitation and
inhibition in the network is shown schematically on Figure 1.
The effect of this distribution of interneuron connections is
depicted on Figure 2. It shows averaged firing frequency of
excitatory and inhibitory neurons at different moments after
beginning of stimulus presentation.
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Figure 2: Dynamics of mean firing rate of excitatory (green)
and inhibitory (red) neurons after stimulus presentation. Stimulus
duration is 30ms.

Now let us return to the final goal of this work. We
see that the input signal is encoded in form of increased
firing frequency of certain populations of the network input
nodes. If every presentation of some stimulus activates a
PNG specific for this stimulus it means, in our approach,
that this stimulus is recoded to temporal form, since neurons
belonging to active PNG fire in strict sequence with exact
timings. Therefore, pursuing our goal we should solve the
problem of finding PNGs in the network, and, in particular,
the PNGs specific for the given patterns.

Basically, there are two different approaches to determi-
nation of PNGs inside a neural network [13].The firstmethod
is based on analysis of the network structural properties such
as synaptic delays and weights. In the second method the
recordings of firing times of neurons are analyzed in order to
determine stable repeating time-locked sequences of spikes
associated with active PNGs. We used the second approach
but implemented an alternative algorithm for PNGdetection.

Inmy terms, PNG is defined by a sequence (neuron id, fir-
ing time). Only excitatory neurons are included in PNGs. Let
us consider the stimulus 𝐴. Let 𝑃

𝐴𝑖
be a set of pairs (neuron

id, time after the beginning of 𝑖th presentation of the stimulus
𝐴) corresponding to all spikes emitted before presentation
of next stimulus. Set of all such sets corresponding to the
stimulus𝐴will be denoted asP

𝐴
= {𝑃
𝐴𝑖
}.Then the algorithm

for finding in P
𝐴
a PNG with support 𝑛(𝐺(P

𝐴
, 𝑛)) is the

following:
(1) create thematrix𝐶

𝑎𝑡
, initializing by 1𝑠 all its elements,

for which ⟨𝑎, 𝑡⟩ ∈ 𝑃
𝐴1
, and by 0𝑠, all the rest elements.

(2) Iteratively for each 𝑖, 2 ≤ 𝑖 ≤ 𝑁
𝐴
, find the shift 𝑠, for

which the value of ∑
⟨𝑎,𝑡+𝑠⟩∈𝑃

𝐴𝑖

𝐶
𝑎𝑡
is the greatest, then

increment by 1 those 𝐶
𝑎𝑡
, for which ⟨𝑎, 𝑡 + 𝑠⟩ ∈ 𝑃

𝐴𝑖
.

(3) If ∀𝑡∀𝑎𝐶
𝑎𝑡
< 𝑛, then𝐺(P

𝐴
, 𝑛) = 0, else if ̆𝑡 is the least

𝑡, for which 𝐶
𝑎𝑡
≥ 𝑛, then ⟨𝑎, 𝑡 − ̆𝑡⟩ ∈ 𝐺(P

𝐴
, 𝑛) ⇔

𝐶
𝑎𝑡
≥ 𝑛.

This algorithm can be illustrated by the following simple
example (Figure 3). The upper row of this figure represents
3 fragments of firing history of 4 neurons (𝑥-axis represents
time), each fragment includes 4 time steps. Filled squares
denote firing.The lower row displays thematrix𝐶

𝑎𝑡
after step

1 of the algorithm and after 2 iterations on step 2. Gray squares
in its final variant correspond to 𝐺(P

𝐴
, 2).

Using this algorithm the PNGs 𝐺(P
𝐴
, 𝑛) are found. But

we are interested only in the PNGs specifically reacting to

only one stimulus. Let us define activity of the PNG 𝐺 in
the history fragment 𝑃

𝐴𝑖
as 𝐴
𝐴𝑖
(𝐺) = max

𝑠
|shift(𝐺, 𝑠) ∩ 𝑃

𝐴𝑖
|,

where shift(𝐺, 𝑠) is built from 𝐺 by addition of 𝑠 to second
elements in all pairs in 𝐺. Then the strength of reaction of 𝐺
to the stimulus 𝐴 can be defined as 𝑅

𝐴
(𝐺) = min

𝑖
𝐴
𝐴𝑖
(𝐺),

and the measure of selectivity of 𝐺(P
𝐴
, 𝑛) as 𝑆(𝐴, 𝑛) =

𝑁
𝐴
/|{⟨𝐵, 𝑖⟩ : 𝐴

𝐵𝑖
(𝐺(P

𝐴
, 𝑛)) ≥ 𝑅

𝐴
(𝐺(P

𝐴
, 𝑛))}|. It is evident

that if reaction of 𝐺(P
𝐴
, 𝑛) to any stimulus different from

𝐴 is weaker than 𝑅
𝐴
(𝐺(P

𝐴
, 𝑛)), then 𝑆(𝐴, 𝑛) = 1. It can be

readily seen that the algorithm determining PNGs and their
selectivity has complexity 𝑂(𝑇𝑁

𝐹
𝑁
𝑆
𝑁2
𝑃
), where 𝑇 is time

between presentation of consecutive stimuli,𝑁
𝐹
is number of

all stimuli presentations, 𝑁
𝑆
is total number of spikes in the

whole firing protocol analyzed, and𝑁
𝑃
is number of different

stimuli.
Recoding process was declared as successful if for every

stimulus a PNG with selectivity 1 was found. For every
PNG we recorded its size and strength of its reaction to
the corresponding stimulus (in the relative units, divided
by the size of this PNG). The latter parameter has meaning
of the minimum part of the PNG becoming active after
stimulus presentation. Besides that, it is important to know
to what degree these PNGs are independent; how the fact
that a neuron that belongs to one PNG changes probability
to find it inside some other PNG. If PNGs are independent
it means that network has enough informational capacity
to be able to convert greater number of different stimuli
without loss of accuracy. Also, in case of numerous stimuli,
independent PNGs are less similar and therefore permitmore
reliable recognition of encoded stimulus. To characterize the
degree of independence of two PNGs we use sets of neurons
belonging to them, 𝑆

1
and 𝑆

2
. If the PNGs are independent

then size of the intersection of 𝑆
1
and 𝑆
2
equals approximately

(|𝑆
1
||𝑆
2
|)/𝑁+, where 𝑁+ is the total number of excitatory

neurons. As a measure of dependence between two PNGs we
take the ratio of real size of their intersection and this value.
Proximity of the calculated number to 1 is an indication of
their independence.

In all described experiments, determination of PNGs and
measurement of their parameters were performed for 100
presentations of every stimulus. Results of these experiments
are discussed in next section.

3. Results and Discussion

In the discussed experiments we varied 3 basic parameters
of the input signal: number of different stimuli, intensity
of stimuli (in terms of spike rate and population size), and
signal/noise ratio. Only stimulus duration was always equal
to 30ms. It is close to duration of shortest stimuli recognized
by living neural systems [14, 15].

The main goal of these experiments is to demonstrate
that the desired conversion can be performed by the network
described in previous section and that the effect is stable
and observed under wide range of conditions, not just for
carefully prepared specific signal. For this purpose it is quite
sufficient to use star experiment design scheme starting
from some point and varying different parameters separately;
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Figure 3: Determination of PNG with support 2 on 3 fragments of firing history of 4 neurons.

here we are not interested in exact dependencies of conver-
sion characteristics on signal parameters, coupling effect of
parameters, and so forth. The starting point corresponded
to 10 stimuli, 100 input nodes per one stimulus, 300Hz
stimulus spike frequency, and 3Hz background noise (that
corresponds to signal/noise ratio = 10). Effect of variation of
different parameters is considered in the following subsec-
tions.

3.1. Informational Capacity

3.1.1. Dependence of Conversion Quality on Number of Differ-
ent Stimuli. The experiments were performed with number
of different stimuli varying from 3 to 1000 (which is greater
than the number of excitatory neurons in the network!). In
all the experiments the conversion was successful; a PNG
with selectivity equal to 1 was found for every stimulus.
The detailed results for this experiment series are shown on
Figure 4.

The most unexpected result is weak dependence of
conversion quality on number of stimuli converted, even
when there are more stimuli than excitatory neurons in the
network. Average size of the polychronous groups perform-
ing the conversion was about 130. At least 20–25% of the
respective PNG is activated after every presentation of the
stimulus converted. All these PNGs are almost independent,
although all points on the bottom plot are slightly above 1:
it means that if a neuron belongs to some PNG it has a
bit more chances to enter some other PNGs. Nevertheless,
proximity of the average relative PNG intersection to 1 in all
experiments is an indication that the network could convert
successfully the number of stimuli significantly greater than
the number of its neurons (however, in order to prove it
experimentallymuch longer computation is required because
computation time of the PNG detection algorithm described
above is proportional to square of the number of different
stimuli and even for 1000 stimuli the computation time was
about 1.5 days).

3.2. Dependence of Conversion Quality on Stimulus Intensity.
In case of uncorrelated presynaptic activity, LIF neuron
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Figure 4: Conversion from rate/population coding to temporal
coding in case of various numbers of different stimuli. The 𝑥-axis
displays the number of stimuli using logarithmic scale. Length of
the vertical lines drawn from the experimental points corresponds
to standard deviation of the respective measured parameter.

behaves like a unit with sigmoid transfer function (with
respect to spike rate). It is silent (in models without spon-
taneous firing) when presynaptic spikes are rare and fires
with the maximum possible frequency determined by its
refractory period in case of very frequent presynaptic spikes.
Transfer between these “nothing” and “all” states may be
more or less sharp: it depends on membrane potential decay
time 𝜏 and average contribution of one presynaptic spike to
membrane potential. In our case when 𝜏 is small (3ms) and
average synapse contribution is below 0.1 (while threshold
membrane potential is set to 1), the sigmoid is rather sim-
ilar to step function. For example, by decreasing stimulus
spike frequency to 100Hz, we observed that considerable
number of stimulus presentations did not cause any network
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Table 2: Effect of increased stimulus intensity.

Number of
input nodes
per stimulus

PNG size Relative PNG
reaction strength

Relative PNG
intersection

100 165 ± 72 0.207 ± 0.02 1.09 ± 0.28

300 121 ± 55 0.247 ± 0.12 1.15 ± 0.6

reaction. The same effect took place when we decreased
number of input nodes per stimulus to 30. Naturally, under
these conditions the network cannot operate as a converter.
Probably, ability of the network to convert weaker stimuli
could be facilitated by using more complex neuron models
with threshold membrane potential adaptation [16] or based
on homeostatic synaptic plasticity [17].

On the contrary, increasing intensity of stimuli due to
enlarging subset of input nodes corresponding to one stim-
ulus only improves the conversion quality. In experiments
with 300 input nodes per stimulus all stimuli had PNGs
with absolute selectivity, and reaction strength of these PNGs
was significantly greater than that for 100 input nodes per
stimulus, although some PNGs showed tendency to stick
together under this condition. The corresponding data are
gathered in Table 2.

3.3. Influence of Background Noise. In the last series of the
experiments we varied level of background noise in the range
1Hz–30Hz. It was senseless to perform experiments with
noisemore intensive than 30Hz because under this condition
inhibition level in the network became insufficient and the
network demonstrated ceaseless strong activity.The results of
these experiments show that the conversion process is very
stable with respect to noise. Although, naturally, conversion
under condition of strong noise (30Hz noise corresponds to
the signal/noise ratio equal to 1) has lower quality in terms
of PNG response strength and degree of PNG independence,
but, nevertheless, for all stimuli in all experiments PNGs with
absolute selectivity were found.

The respective experimental data are represented in
Figure 5.

3.4. Randomization of Excitatory Connection Delays. Proba-
bly, the most unexpected result obtained in this study is that
synaptic plasticity was found to be unnecessary for achieving
our goal. Indeed, the inventor of the term “polychronization”,
Izhikevich, used synaptic plasticity (in fact, two kinds of it:
long-term and short-term) in his experiments ([7] together
with Szatmáry, [11], and others). Plasticity helped to highlight
relatively rare neuron connections constituting PNGs in the
ocean of other chaotic connections. We can hypothesize that
since in our case the special selection of excitatory synaptic
delays discussed abovemakes relative amount of PNGsmuch
greater, itmakes the positive effect of plasticity less important.
In order to confirm this hypothesis, we performed experi-
ments similar to ones considered above but with randomized
values of delays in excitatory connections. Namely, after the
network had been created using the rules described in the

previous section, the delays of all its excitatory synapses
were randomly permuted that made the network completely
chaotic. Under these conditions, PNGs were detected but
they lost their selectivity. To illustrate it quantitatively, we
measured part of stimuli for which selective PNGs were
found. Values of this parameter for different number of
stimuli are shown in Figure 6. For each number of stimuli
the experiment was repeated 10 times. We see that only the
easiest experiment with 3 different stimuli was successful
from the point of view of our selectivity criterion. It would
be interesting to understand why the observed dependence
is not monotonous but detailed exploration of properties of
completely chaotic networks has no direct relation to main
subject of this research.

Also, it should be noted that in this study we used the
very simple simulation of input signal; it is possible that
future research where we plan to work with more realistic
sensory signals will require implementation of some forms of
synaptic plasticity in mymodel. Indeed, the primary purpose
of this study was to demonstrate how a simple homogenous
SNN can convert signal from rate/population coding form
to temporal code. But, if to consider this work in context
of research efforts directed at simulation of integration and
processing of multimodal real-world sensory information
flows, then the next step should be creation of software
model of sufficiently rich informational environment for
the studied SNNs and reproduction of the reported results
under thesemore realistic conditions. It wouldmake possible
incorporation of working memory mechanisms based on
PNGs [7, 8] as the next layer of the whole SNN-based
information processing system because these mechanisms
assume temporal coding of stimuli memorized.

4. Conclusions

Thus, it was discovered in this work that under certain
conditions chaotic and homogenous network consisting
of simple LIF neurons can convert signal encoded using
rate/population-based scheme to a form based on temporal
coding. It is important because each of these two forms of
information coding is very common for many (but differ-
ent) parts of central nervous system. It is interesting that
synaptic plasticity and learning are not required for successful
recoding. Presence of global synchronizing signal propagated
across the whole network is also not necessary.

In my approach the recoding process is considered as
selective activation of a polychronous neuronal group specific
for the given stimulus encoded using rate/population coding
scheme.Therefore, it is essential that the network is enriched
by potential PNGs due to special selection of propagation
delays in excitatory interneuron connections; namely, these
delays have values proportional to distances between the
neurons as if they were placed at random points of imag-
inary sphere (see the details in [8]). Appropriate choice of
numbers of inhibitory synapses for excitatory and inhibitory
neurons, their weights, and propagation delays (see Table 1
and Figure 1) are also very significant, because inhibitory
neurons play an important role in this construction; they
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Figure 5: Conversion from rate/population coding to temporal coding under conditions of different background noise intensity (in Hz). It
is displayed on the 𝑥-axes using logarithmic scale. Length of vertical lines corresponds to standard deviation of the respective parameter.
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Figure 6: Part of stimuli for which PNGs with selectivity equal to
1 were found in case of SNN with randomized delays. The 𝑥-axis
displays the number of stimuli using logarithmic scale. Each point
corresponds to 10 experiments.

should stop uncontrolled growth of excitation leading to
permanent senseless activity of the network while permitting
the pronounced network reaction to stimulus presentation
(Figure 2).

In our approach, the selective PNGs are determined by a
specially designed novel algorithm. It has linear complexity
with respect to the main dimensions of the problem except
the number of different stimuli (it has complexity propor-
tional to square of this parameter).

The described above computational experiments con-
firmed that stable and quality conversion is performed by the
described network in great range of stimuli parameters.
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Neural spike train analysis is an important task in computational neuroscience which aims to understand neural mechanisms and
gain insights into neural circuits. With the advancement of multielectrode recording and imaging technologies, it has become
increasingly demanding to develop statistical tools for analyzing large neuronal ensemble spike activity. Here we present a tutorial
overview of Bayesian methods and their representative applications in neural spike train analysis, at both single neuron and
population levels. On the theoretical side, we focus on various approximate Bayesian inference techniques as applied to latent
state and parameter estimation. On the application side, the topics include spike sorting, tuning curve estimation, neural encoding
and decoding, deconvolution of spike trains from calcium imaging signals, and inference of neuronal functional connectivity and
synchrony. Some research challenges and opportunities for neural spike train analysis are discussed.

1. Introduction

Neuronal action potentials or spikes are the basic lan-
guage that neurons use to represent and transmit informa-
tion. Understanding neuronal representations of spike trains
remains a fundamental task in computational neuroscience
[1, 2]. With the advancement of multielectrode array and
imaging technologies, neuroscientists have been able to
record a large population of neurons at a fine temporal and
spatial resolution [3]. To extract (“read out”) information
from or inject/restore (“write in”) signals to neural circuits
[4], there are emerging needs for modeling and analyzing
neural spike trains recorded directly or extracted indirectly
from neural signals, as well as building closed-loop brain-
machine interfaces (BMIs). Many good examples and appli-
cations can be found in the volumes of the current or other
special issues [5, 6].

In recent years, cutting-edge Bayesian methods have
gained increasing attention in the analysis of neural data and
neural spike trains. Despite its well-established theoretic
principle since the inception of Bayes’ rule [7], Bayesian ma-
chinery has not been widely used in large-scaled data analysis

until very recently. This was partially ascribed to two facts:
first, the development of new methodologies and effective
algorithms; second, the ever-increasing computing power.
Themajor theoretic ormethodological development has been
reported in the field of statistics, and numerous algorithms
were developed in applied statistics andmachine learning for
successful real-world applications [8]. It is time to push this
research frontier to neural data analysis. With this purpose
in mind, this paper provides a tutorial review on the basic
theory and the state-of-the-art Bayesian methods for neural
spike train analysis.

The rest of the paper is organized as follows. Section 2
presents the background information about statistical infer-
ence and estimation, Bayes’ theory, and statistical characteri-
zation of neural spike trains. Section 3 reviews several impor-
tant Bayesian modeling and inference methods in light of
different approximation techniques. Section 4 reviews a few
representative applications of Bayesian methods for neural
spike train analysis. Finally, Section 5 concludes the paper
with discussions on a few challenging research topics in
neural spike train analysis.



2 Computational Intelligence and Neuroscience

2. Background

2.1. Estimation and Inference: Statistic versus Dynamic.
Throughout this paper, we denote by 𝑌 the observed vari-
ables, by𝑋 the hidden variables and by 𝜃 an unknown param-
eter vector, and by ⊤ the transpose operator for vector or
matrix. We assume that 𝑝(𝑌 | 𝑋, 𝜃) has a regular and well-
defined form of the likelihood function. For neural spike
train analysis, 𝑌 typically consists of time series of single or
multiple spike trains. Given a fixed time interval (0, 𝑇], by
time discretization we have 𝑌 = {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝐾
} (where 𝐾 =

𝑇/Δ andΔ denotes the temporal bin size). A general statistical
inference problem is stated as follows: given observations 𝑌,
estimate the unknown hidden variable 𝑋 with a known 𝜃, or
estimate 𝜃 alone, or jointly estimate 𝜃 and 𝑋. The unknown
variables 𝜃 and 𝑋 can be either static or dynamic (e.g., time-
varying with a Markovian structure). We will review the
approaches that tackle these scenarios in this paper.

There are two fundamental approaches to solve the infer-
ence problem: likelihood approach and Bayesian approach.
The likelihood approach [9] computes a point estimate
by maximizing the likelihood function and represents the
uncertainty of estimate via confidence intervals. The maxi-
mum likelihood estimate (m.l.e.) is asymptotically consistent,
normal, and efficient, and it is invariant to reparameterization
(i.e., functional invariance). However, the m.l.e. is known
to suffer from overfitting, and therefore model selection is
required in statistical data analysis. In contrast, the Bayesian
philosophy lets data speak for themselves and models the
unknowns (parameters, latent variables, and missing data)
and uncertainties (which are not necessarily random) with
probabilities or probability densities. The Bayesian approach
computes the full posterior of the unknowns based on the
rules of probability theory; the Bayesian approach can resolve
the overfitting problem in a principled way [7, 8].

2.2. Bayesian Inference. The foundation of Bayesian inference
is given by Bayes’ rule, which consists of two rules: product
rule and sum rule. Bayes’ rule provides a way to compute
the conditional, joint, andmarginal probabilities. Specifically,
let 𝑋 and 𝑌 be two continuous random variables (r.v.); the
conditional probability 𝑝(𝑋 | 𝑌) is given by

𝑝 (𝑋 | 𝑌) =
𝑝 (𝑋, 𝑌)

𝑝 (𝑌)
=

𝑝 (𝑌 | 𝑋) 𝑝 (𝑋)

∫𝑝 (𝑌 | 𝑋) 𝑝 (𝑋) 𝑑𝑋
. (1)

If𝑋 = {𝑋
𝑖
} is discrete, then (1) is rewritten as

𝑝 (𝑋
𝑖
| 𝑌) =

𝑝 (𝑋
𝑖
, 𝑌)

𝑝 (𝑌)
=

𝑝 (𝑌 | 𝑋
𝑖
) 𝑝 (𝑋

𝑖
)

∑
𝑗
𝑝 (𝑌 | 𝑋

𝑗
) 𝑝 (𝑋

𝑗
)
. (2)

In Bayesian language, 𝑝(𝑌 | 𝑋), 𝑝(𝑋), and 𝑝(𝑋 | 𝑌) are
referred to as the likelihood, prior and posterior, respectively.
The Bayesian machinery consists of three types of basic oper-
ations: normalization, marginalization, and expectation, all
of which involve integration. And the optimization problem
consists in maximizing the posterior 𝑝(𝑋 | 𝑌) and find-
ing the maximum a posteriori (MAP) estimate 𝑋MAP =

arg
𝑋
max𝑝(𝑋 | 𝑌). Notably, except for very few scenarios

(i.e., Gaussianity), most integrations are computationally
intractable or costly when dealing with high-dimensional
problems. Therefore, for the sake of computational tractabil-
ity, various types of approximations are often assumed at dif-
ferent stages of the inference procedure.

More specifically, for the state and parameter estimation
problem, Bayesian inference aims to infer the joint posterior
of the state and the parameter using Bayes’ rule

𝑝 (𝑋, 𝜃 | 𝑌) ≈ 𝑝 (𝑋 | 𝑌) 𝑝 (𝜃 | 𝑌)

=
𝑝 (𝑌 | 𝑋, 𝜃) 𝑝 (𝑋) 𝑝 (𝜃)

𝑝 (𝑌)

=
𝑝 (𝑌 | 𝑋, 𝜃) 𝑝 (𝑋) 𝑝 (𝜃)

∬𝑝 (𝑌 | 𝑋, 𝜃) 𝑝 (𝑋) 𝑝 (𝜃) 𝑑𝑋𝑑𝜃
,

(3)

where the first equation assumes a factorial form of the
posterior for the state and the parameter (first-stage approx-
imation) and 𝑝(𝑋) and 𝑝(𝜃) denote the prior distributions
for the state and parameter, respectively. The denominator of
(3) is a normalizing constant known as the partition function.
When dealing with a prediction problem for unseen data 𝑌∗,
we compute the posterior predictive distribution

𝑝 (𝑌
∗
| 𝑌) = ∬𝑝 (𝑌

∗
| 𝑌, 𝜃, 𝑋) 𝑝 (𝑋 | 𝑌) 𝑝 (𝜃 | 𝑌) 𝑑𝑋𝑑𝜃

(4)

or its expected mean 𝑌̂∗ = E
𝑝(𝑌
∗
|𝑌)
[𝑌∗] = ∭𝑌∗𝑝(𝑌∗ | 𝑌,

𝜃, 𝑋)𝑝(𝑋 | 𝑌)𝑝(𝜃 | 𝑌)𝑑𝑋𝑑𝜃 𝑑𝑌∗.
Sometimes, instead ofmaximizing the posterior, Bayesian

inference attempts to maximize the marginal likelihood (also
known as “evidence”) 𝑝(𝑌) as follows:

𝑝 (𝑌) = ∬𝑝 (𝑌 | 𝑋, 𝜃) 𝑝 (𝑋) 𝑝 (𝜃) 𝑑𝑋𝑑𝜃. (5)

The second-stage approximation in approximate Bayesian
inference deals with the integration in computing (3), (4), or
(5), which will be reviewed in Section 3.

Note. Maximum likelihood inference can be viewed as a
special case of Bayesian inference, in which 𝜃 is represented
by a Dirac-delta function centered at the point estimate
𝜃m.l.e.; namely, 𝑝(𝜃) = 𝛿(𝜃 − 𝜃m.l.e.). Nevertheless, Bayesian
inference can still be embedded into likelihood inference to
estimate 𝑝(𝑋) given a point estimate of 𝜃. The 𝑝(𝑋) can
either have an analytic form (with finite natural parameters)
or be represented byMonteCarlo samples; the latter approach
may be viewed as a specific case of Monte Carlo expectation-
maximization (EM) methods.

2.3. Characterization of Neural Spike Trains. Neural spike
trains can be modeled as a simple (temporal) point process
[10]. For a single neural spike train observed in (0, 𝑇], we
often discretize it with a small bin size Δ such that each bin
contains no more than one spike. The conditional intensity
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Table 1: Probability distributions for modeling neuronal spike count observations.

Distribution Mean statistic Variance Note for observations 𝑌
Binomial (𝑝) E[𝑌] = 𝑝 𝑝(1 − 𝑝) 𝑌 ∈ {0, 1}

Poisson (𝜆) E[𝑌] = 𝜆 𝜆 𝑌 ≥ 0, 𝑌 ∈ Z+

Negative binomial (𝑟, 𝑝) E[𝑌] = 𝑝𝑟/(1 − 𝑝) 𝑝𝑟/(1 − 𝑝)
2

𝑌 ≥ 0, 𝑌 ∈ Z+ (overdispersed Poisson)
Skellam (𝜇

1
, 𝜇
2
) E[𝑌] = 𝜇

1
− 𝜇
2

𝜇
1
+ 𝜇
2

𝑌 ∈ Z (difference between two Poissons)

function (CIF), denoted as 𝜆(𝑡 | 𝐻
𝑡
), is used to characterize

the spiking probability of a neural point process as follows:

𝜆 (𝑡 | 𝐻
𝑡
) = lim
Δ→0

Pr {spike in (𝑡, 𝑡 + Δ] | 𝐻𝑡}
Δ

, (6)

where𝐻
𝑡
denotes all history information available up to time

𝑡 (that may include spike history, stimulus covariate, etc.).
When 𝜆(𝑡 | 𝐻

𝑡
) is history independent, then the stochastic

process is an inhomogeneous Poisson process. For notation
simplicity, we sometimes use 𝜆

𝑡
to replace 𝜆(𝑡 | 𝐻

𝑡
) when no

confusion occurs. When Δ is sufficiently small, the product
𝜆(𝑡 | 𝐻

𝑡
)Δ is approximately equal to the probability of

observing a spike within the interval ((𝑡−1)Δ, 𝑡Δ]. Assuming
that the CIF 𝜆

𝑡
is characterized by a parameter 𝜃 and

an observed or latent variable 𝑋, then the point process
likelihood function is given as [11–13]

𝑝 (𝑌 | 𝑋, 𝜃) = exp{∫
𝑇

0

log 𝜆 (𝜏 | 𝜃, 𝑋) 𝑑𝑦 (𝜏)

− ∫
𝑇

0

𝜆 (𝜏 | 𝜃, 𝑋) 𝑑𝜏} ,

(7)

where 𝑑𝑦(𝑡) is an indicator function of the spike presence
within the interval ((𝑡 − 1)Δ, 𝑡Δ]. In the presence of multiple
spike trains from𝐶neurons, assuming thatmultivariate point
process observations are conditionally independent at any
time 𝑡 given a new parameter 𝜃, one then has

𝑝 (Y
1:𝐶
| 𝑋, 𝜃) =

𝐶

∏
𝑐=1

𝑝 (𝑌
𝑐
| 𝑋, 𝜃)

=

𝐶

∏
𝑐=1

exp{∫
𝑇

0

log 𝜆
𝑐
(𝜏 | 𝜃, 𝑋) 𝑑𝑦

𝑐
(𝜏)

−∫
𝑇

0

𝜆
𝑐
(𝜏 | 𝜃, 𝑋) 𝑑𝜏} .

(8)

Since neural spike trains are fully characterized by the
CIF, themodeling goal is then turned tomodel the CIF, which
can have a parametric or nonparametric form. Identifying
the CIF and its associated parameters is essentially a neural
encoding problem (Section 4.2). A convenient modeling
framework is the generalized linear model (GLM) [14, 15],
which can model the binary (0/1) or spike count measure-
ments. Within the exponential family, one can use the logit
link function tomodel the binomial distribution, which has a
generic form of log(𝑝

𝑡
/(1 − 𝑝

𝑡
)) = 𝜃⊤𝑋; one can also use the

log link function to model the Poisson distribution, which
has a generic form of log(𝜆

𝑡
) = 𝜃⊤𝑋.

In addition, researchers have used the negative binomial
distribution to model spike count observations to capture the
overdispersion phenomenon (where the variance is greater
than the mean statistic). In many cases, for the purpose of
computational tractability, researchers often use a Gaussian
approximation for Poisson spike counts through a variance
stabilization transformation. Table 1 lists a few population
probability distributions for modeling spike count observa-
tions.

Another popular statistical model for characterizing pop-
ulation spike trains is themaximum entropy (MaxEnt)model
with a log-linear form [16, 17]. Given an ensemble of 𝐶
neurons, the ensemble spike activity can be characterized by
the following form:

𝑝 (𝑋) =
1

Z (𝑋)
exp(

𝐶

∑
𝑖=1

𝜃
𝑐
⟨𝑥
𝑐
⟩ +

𝐶

∑
𝑖,𝑗

𝜃
𝑖𝑗
⟨𝑥
𝑖
𝑥
𝑗
⟩)

≡
1

Z (𝑋)
exp(

𝐶+𝐶
2

∑
𝑖=1

𝜃
𝑖
𝑓
𝑖
(𝑋)) ,

(9)

where 𝑥
𝑖
∈ {−1, +1}, ⟨⋅⟩ denotes the sample average, ⟨𝑥

𝑐
⟩

denotes the mean firing rate of the 𝑐th neuron, 𝑓
𝑖
(𝑋) denotes

a generic function of 𝑋 (where the couplings 𝜃
𝑖
have to

match the measured expectation values ⟨𝑓
𝑖
(𝑋)⟩), and Z(𝑋)

denotes the partition function. The basic MaxEnt model (9)
assumes the stationarity of the data and includes the first- and
second-order moment statistics but no stimulus component,
but these assumptions can be relaxed to further derive an
extended model.

An important issue for characterizing neural spike trains
is model selection and the associated goodness-of-fit assess-
ment. For goodness-of-fit assessment of spike train models,
the reader is referred to [11, 18]. In addition, standard statis-
tical techniques such as cross-validation, leave-one-out, and
the receiver-operating-characteristic (ROC) curve may be
considered. The model selection issue can be resolved by the
likelihood principle based on well-established criteria (such
as the Bayesian information criterion or Akaike’s information
criterion) [9, 11] or resolved by the Bayesian principle.
Bayesian model selection and variable selection will be
reviewed in Section 3.4.

3. Bayesian Modeling and Inference Methods

The common strategy of Bayesian modeling is to start with
specific prior distributions for the unknowns. The prior
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distributions are characterized by some hyperparameters,
which can be directly optimized or modeled by the second-
level hyperpriors. If the prior is conjugate to the likelihood,
then the posterior has the same form as the prior [8]. Hier-
archical Bayesian modeling characterizes the uncertainties of
all unknowns at different levels.

In this section, we will review some, either exact or
approximate, Bayesian inference methods. The approximate
Bayesian inference methods aim to compute or evaluate
the integration by approximation. There are two types of
approaches to accomplish this goal: deterministic approx-
imation and stochastic approximation. The deterministic
approximation can rely on Gaussian approximation, deter-
ministic sampling (e.g., sigma-point approximation [19, 20])
or variational approximation [21–23]. The stochastic approx-
imation uses Monte Carlo sampling to achieve a point mass
representation of the probability distribution. These two
approaches have been employed to approximate the likeli-
hood or posterior function inmany inference problems, such
as model selection, filtering and smoothing, and state and
parameter joint estimation. Detailed coverage of these topics
can be found in many excellent books (e.g., [24–28]).

3.1. Variational Bayes (VB). VB is based on the idea of vari-
ational approximation [21–23] and is also referred to as
ensemble learning [24]. To avoid overfitting in maximum
likelihood estimation,VB aims tomaximize themarginal log-
likelihood or its lower bound as follows:

log𝑝 (𝑌) = log∫𝑑𝜃∫𝑑𝑋𝑝 (𝜃) 𝑝 (𝑋, 𝑌 | 𝜃)

= log∫𝑑𝜃∫𝑑𝑋𝑞 (𝑋, 𝜃)
𝑝 (𝜃) 𝑝 (𝑋, 𝑌 | 𝜃)

𝑞 (𝑋, 𝜃)

≥ ∫𝑑𝜃∫𝑑𝑋𝑞 (𝑋, 𝜃) log
𝑝 (𝜃) 𝑝 (𝑋, 𝑌 | 𝜃)

𝑞 (𝑋, 𝜃)

= ⟨log𝑝 (𝑋, 𝑌, 𝜃)⟩
𝑞
+H
𝑞
(𝑋, 𝜃) ≡ F (𝑞 (𝑋, 𝜃)) ,

(10)

where𝑝(𝜃) denotes the parameter prior distribution,𝑝(𝑋, 𝑌 |
𝜃) defines the complete data likelihood, and 𝑞(𝑋, 𝜃) is called
the variational posterior distribution which approximates the
joint posterior of the unknown state and parameter 𝑝(𝑋, 𝜃 |
𝑌). The term H

𝑞
represents the entropy of the variational

posterior distribution 𝑞, and F(𝑞(𝑋, 𝜃)) is referred to as the
free energy. The lower bound is derived based on the Jensen’s
inequality [29]. Maximizing the free energy F(𝑞(𝑋, 𝜃)) is
equivalent to minimizing the Kullback-Leibler (KL) diver-
gence [29] between the variational posterior and true pos-
terior (denoted by KL(𝑞 ‖ 𝑝)); since the KL divergence is
nonnegative, we have F(𝑞) = log𝑝(𝑌) − KL(𝑞 ‖ 𝑝) ≤

log𝑝(𝑌).The optimization problem in (10) can be resorted to
theVB-EMalgorithm [23] in a similar fashion as the standard
EM algorithm [30].

A common (but not necessary) VB assumption is a facto-
rial form of the posterior 𝑞(𝑋, 𝜃) = 𝑞(𝑋)𝑞(𝜃), although one
can further impose certain structure within the parameter
space. In the case of mean-field approximation, we have

𝑞(𝑋, 𝜃) = 𝑞(𝑋)∏
𝑖
𝑞(𝜃
𝑖
). With selected priors 𝑝(𝑋) and 𝑝(𝜃),

one canmaximize the free energy by alternatively solving two
equations: 𝜕F/𝜕𝑋 = 0 and 𝜕F/𝜕𝜃 = 0. Specifically, VB-
EM inference can be viewed as a natural extension of the EM
algorithm, which consists of the following two steps.

(i) VB-E step: given the available information of 𝑞(𝜃),
maximize the free energyF with respect to the func-
tion 𝑞(𝑋) and update the posterior 𝑞(𝑋).

(ii) VB-M step: given the available information of 𝑞(𝑋),
maximize the free energyF with respect to the func-
tion 𝑞(𝜃) and update the posterior 𝑞(𝜃). The posterior
update will have an analytic form provided that the
prior 𝑝(𝜃) is conjugate to the complete-data likeli-
hood function (the conjugate-exponential family).

These two steps are alternated repeatedly until the VB
algorithm reaches the convergence (say, the incremental
change ofF value is below a small threshold). Similar to the
iterative EM algorithm, the VB-EM inference has local max-
ima in optimization. To resolve this issue, one may use multi-
ple random initializations or employ a deterministic anneal-
ing procedure [31]. The EM algorithm can be viewed as a
variant of theVB algorithm in that theVB-Mstep replaces the
point estimate (i.e., 𝑞(𝜃) = 𝛿(𝜃 − 𝜃MAP)) from the traditional
M-step with a full posterior estimate. Another counterpart of
the VB-EM is the maximization-expectation (ME) algorithm
[32], in which the VB-E step uses the MAP point estimate
𝑞(𝑋) = 𝛿(𝑋 − 𝑋MAP), while the VB-M step updates the full
posterior.

It is noted that when the latent variables and parameters
are intrinsically coupled or statistically correlated, the mean-
field approximation will not be accurate, and consequently
the VB estimate will be strongly biased. To alleviate this
problem, the latent-space VB (LSVB) method [33, 34] aims
to maximize a tighter lower bound of the marginal log-
likelihood from (10) as follows:

log𝑝 (𝑌) ≥ ∫𝑑𝑋𝑞 (𝑋) log
𝑝 (𝑋, 𝑌)

𝑞 (𝑋)

= ∫𝑑𝑋𝑞 (𝑋) log
∫𝑑𝜃𝑝 (𝑋, 𝑌, 𝜃) 𝑝 (𝜃)

𝑞 (𝑋)

≡ F (𝑞 (𝑋)) ≥ max
𝑞(𝜃)

F (𝑞 (𝑋) 𝑞 (𝜃)) .

(11)

The reader is referred to [33, 34] for more details and algo-
rithmic implementation.

Note. (i) Depending on specific problems, the optimization
bound of VB methods may not be tight, which may cause
a large estimate bias or underestimated variance [35]. Desir-
ably, a data-dependent lower bound is often tighter (such as
the one used in Bayesian logistic regression [25]). (ii) It was
shown in [36] that the VB method for statistical models
with latent variables can be viewed as a special case of local
variational approximation, where the log-sum-exp function
is used to form the lower bound of the log-likelihood. (iii)
TheVB-EM inferencewas originally developed for the proba-
bilistic models in the conjugate-exponential family, but it can
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be extended to more general models based on approximation
[37].

3.2. Expectation Propagation (EP). EP is a message-passing
algorithm that allows approximate Bayesian inference for
factor graphs (one type of probabilistic graphical model that
shows how a function of several variables can be factored into
a product of simple functions and can be used to represent
a posterior distribution) [38]. For a specific r.v. 𝑋 (either
continuous or discrete), the probability distribution 𝑝(𝑋) is
represented as a product of factors as follows:

𝑝 (𝑋) = ∏
𝑎

𝑓
𝑎
(𝑋) . (12)

The basic idea of EP is to “divide-and-conquer” by approxi-
mating the factors one by one as follows:

𝑓
𝑎
(𝑋) 󳨀→ 𝑓

𝑎
(𝑋) (13)

and then use the product of approximated term as the final
approximation as follows:

𝑞 (𝑋) = ∏
𝑎

𝑓
𝑎
(𝑋) . (14)

As a result, EP replaces the global divergence KL(𝑝(𝑋) ‖

𝑞(𝑋)) by the local divergence between two product chains as
follows:

KL (𝑝 (𝑋) ‖ 𝑞 (𝑋))

= KL(𝑓
𝑎
(𝑋)∏
𝑏 ̸=𝑎

𝑓
𝑏
(𝑋) ‖ 𝑓

𝑎
(𝑋)∏
𝑏 ̸=𝑎

𝑓
𝑏
(𝑋))

≈ KL(𝑓
𝑎
(𝑋)∏
𝑏 ̸=𝑎

𝑓
𝑏
(𝑋) ‖ 𝑓

𝑎
(𝑋)∏
𝑏 ̸=𝑎

𝑓
𝑏
(𝑋)) .

(15)

To minimize (15), the EP inference procedure is planned
as follows.

Step 1. Use message-passing algorithms to pass messages
𝑓
𝑎
(𝑋) between factors.

Step 2. Given the received message 𝑓
𝑏
(𝑋) for factor 𝑎 (for

all 𝑏 ̸=𝑎), minimize the local divergence to obtain 𝑓
𝑎
(𝑋), and

send it to other factors.

Step 3. Repeat the procedure until convergence.

Note. (i) EP aims to find the closest approximation 𝑞 such
that KL(𝑝 ‖ 𝑞) is minimized, whereas VB aims to find the
variational distribution to minimize KL(𝑞 ‖ 𝑝) (note that the
KL divergence is asymmetric, and KL(𝑝 ‖ 𝑞) and KL(𝑞 ‖ 𝑝)
have different geometric interpretations [39]). (ii) Unlike the
global approximation technique (e.g., momentmatching), EP
uses a local approximation strategy to minimize a series of
local divergence.

3.3. Markov Chain Monte Carlo (MCMC). MCMC methods
are referred to as a class of algorithms for drawing random
samples from probability distributions by constructing a
Markov chain that has the equilibrium distribution as the
desired distribution [40]. The designed Markov chain is
reversible and has detailed balance. For example, given a tran-
sition probability 𝑃, the detailed balance holds between each
pair of state 𝑖 and 𝑗 in the state space if and only if𝜋

𝑖
𝑃
𝑖𝑗
= 𝜋
𝑗
𝑃
𝑗𝑖

(where 𝜋
𝑖
= Pr(𝑋

𝑡−1
= 𝑖) and 𝑃

𝑖𝑗
= Pr(𝑋

𝑡−1
= 𝑖, 𝑋

𝑡
= 𝑗)). The

appealing use of MCMC methods for Bayesian inference is
to numerically calculate high-dimensional integrals based on
the samples drawn from the equilibrium distribution [41].

Themost commonMCMCmethods are the randomwalk
algorithms, such as theMetropolis-Hastings (MH) algorithm
[42, 43] and Gibbs sampling [44]. The MH algorithm is the
simplest yet the most generic MCMC method to generate
samples using a random walk and then to accept them with a
certain acceptance probability. For example, given a random-
walk proposal distribution 𝑔(𝑍 → 𝑍

󸀠) (which defines a
conditional probability of moving state 𝑍 to 𝑍󸀠), the MH
acceptance probabilityA(𝑍 → 𝑍󸀠) is

A (𝑍 󳨀→ 𝑍
󸀠
) = min(1,

𝑝 (𝑍󸀠) 𝑔 (𝑍󸀠 󳨀→ 𝑍)

𝑝 (𝑍) 𝑔 (𝑍 󳨀→ 𝑍󸀠)
) , (16)

which gives a simple MCMC implementation. Gibbs sam-
pling is another popular MCMC method that requires no
parameter tuning. Given a high-dimensional joint distribu-
tion 𝑝(𝑍) = 𝑝(𝑧

1
, . . . , 𝑧

𝑛
), Gibbs sampler draws samples

from the individual conditional distribution 𝑝(𝑧
𝑖
| 𝑍
−𝑖
) in

turn while holding others fixed (where 𝑍
−𝑖
denote the 𝑛 − 1

variables in 𝑍 except for 𝑧
𝑖
).

For high-dimensional sampling problems, the random-
walk behavior of the proposal distribution may not be effi-
cient. Imagine that there are two directions (increase or
decrease in the likelihood space) for a one-dimensional
search; there will be 2𝑛 search directions in an 𝑛-dimensional
space. On average, it will take about 2𝑛/𝑛 steps to hit the exact
search direction. Notably, some sophisticated MCMC algo-
rithms employ side information to improve the efficiency of
the sampler (i.e., the “mixing” of the Markov chain). Exam-
ples of non-random-walk methods include successive over-
relaxation, hybrid Monte Carlo, gradient-based Langevin
MCMC, and Hessian-based MCMC [24, 45–47].

Many statistical estimation problems (e.g., change point
detection, clustering, and segmentation) consist in identify-
ing the unknown number of statistical objects (e.g., change
points, clusters, and boundaries), which are categorized as
the variable-dimensional statistical inference problem. For
this kind of inference problem, the so-called reversible jump
MCMC(RJ-MCMC)methodhas been developed [48], which
can be viewed as a variant of MH algorithm that allows
proposals to change the dimensionality of the space while
satisfying the detailed balance of the Markov chain.

Note. As discussed in Section 2.2, since the fundamental
operations of Bayesian statistics involve integration, the
MCMC methods appear naturally as the most generic tech-
niques for Bayesian inference. On the one hand, the recent
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decades have witnessed an exponential growth in theMCMC
literature for its own theoretic and algorithmic developments.
On the other hand, there has been also an increasing trend
in applying MCMCmethods to neural data analysis, ranging
from spike sorting, tuning curve estimation, and neural
decoding to functional connectivity analysis, some of which
will be briefly reviewed in Section 4.

3.4. Bayesian Model Selection and Variable Selection. Statisti-
cal model comparison can be carried on by Bayesian infer-
ence. From Bayes’ rule, the model posterior probability is
expressed by

𝑝 (M
𝑖
| 𝐷) ∝ 𝑝 (𝐷 |M

𝑖
) 𝑝 (M

𝑖
) . (17)

Under the assumption of equal model priors, maximizing
the model posterior is equivalent to maximizing the model
evidence (or marginal likelihood) as follows:

𝑝 (𝐷 |M
𝑖
) = ∫
𝜃

𝑝 (𝐷, 𝜃 |M
𝑖
) 𝑑𝜃

= ∫
𝜃

𝑝 (𝐷 | 𝜃,M
𝑖
) 𝑝 (𝜃 |M

𝑖
) 𝑑𝜃.

(18)

The Bayes factor (BF), defined as the ratio of evidence
between two models, can be computed as [49]

BF =
𝑝 (𝐷 |M

1
)

𝑝 (𝐷 |M
2
)
=
∫𝑝 (𝐷, 𝜃

1
|M
1
) 𝑑𝜃
1

∫𝑝 (𝐷, 𝜃
2
|M
2
) 𝑑𝜃
2

=
∫𝑝 (𝜃

1
|M
1
) 𝑝 (𝐷 | 𝜃

1
,M
1
) 𝑑𝜃
1

∫𝑝 (𝜃
2
|M
2
) 𝑝 (𝐷 | 𝜃

2
,M
2
) 𝑑𝜃
2

.

(19)

Specifically, the BF is treated as the Bayesian alternative to
𝑃 values for testing hypotheses (in model selection) and for
quantifying the degree the observed data support or conflict
with a hypothesis [50]. As discussed previously in Section 3.1,
the marginal likelihood may be intractable for a large class of
probabilistic models. In practice, the BF is often computed
based on numerical approximation, such as the Laplace-
Metropolis Estimator [51] or sequential Monte Carlo meth-
ods [52]. In addition, for a large sample size, the logarithm of
the BF can be roughly approximated by the Bayesian informa-
tion criterion (BIC) [9], whose computation is much simpler
without involving numerical integration.

Bayesian model selection can also be directly imple-
mented via the so-called MCMCmodel composition (MC3).
The basic idea of MC3 is to simulate a Markov chain {M(𝑡)}

with an equilibrium distribution as 𝑝(M
𝑖
| 𝐷). For each

model M, define a neighborhood nbd(M) and a transition
matrix 𝑞 by setting 𝑞(M → M󸀠) = 0 for allM󸀠 ∉ nbd(M).
Draw a new sample M󸀠 from 𝑞(M → M󸀠) and accept the
new sample with a probability

min{1,
𝑝 (M󸀠 | 𝐷)

𝑝 (M | 𝐷)
} . (20)

Otherwise the chain remains unchanged. Once the Markov
chain converges to the equilibrium, one can construct the
model posterior based on Monte Carlo samples.

Within a fixed model class, it is often desirable to have
a compact or sparse representation of the model to alleviate
overfitting. Namely, many coefficients of the model parame-
ters are zeros. A very useful approach for variable selection
is the so-called automatic relevance determination (ARD)
that encourages sparse Bayesian learning [24, 26, 53]. More
specifically, ARD provides a way to infer hyperparameters in
hierarchical Bayesian modeling. Given the likelihood 𝑝(𝑌 |

𝜃) and the parameter prior 𝑝(𝜃 | 𝜔) (where 𝜔 denotes the
hyperparameters), one can assign a hyperprior 𝑝(𝜔 | 𝜂) for 𝜔
such that the marginal distribution 𝑝(𝜃) = ∫𝑝(𝜃 | 𝜔)𝑝(𝜔)𝑑𝜔
is peaked and long-tailed (thereby favoring a sparse solution).
The hyperprior 𝑝(𝜔) can be either identical or different for
each element in 𝜃. In the most general form, we can write

𝑝 (𝜃) = ∏
𝑖

𝑝 (𝜃
𝑖
) = ∏
𝑖

∫𝑝 (𝜃
𝑖
| 𝜔
𝑖
) 𝑝 (𝜔

𝑖
| 𝜂
𝑖
) 𝑑𝜔
𝑖
. (21)

The hyperprior parameters 𝜂 = {𝜂
𝑖
} can be fixed or optimized

from data. Upon completing Bayesian inference, the esti-
matedmean and variance statistics of some coefficients 𝜃

𝑖
will

be close to zero (i.e., with the least relevance) and therefore
can be truncated. The ARD principle has been widely used
in various statistical models, such as linear regression, GLM,
and the relevance vector machine (RVM) [26].

3.5. Bayesian Model Averaging (BMA). BMA is a statistical
technique aiming to account for the uncertainty in the model
selection process [54]. By averaging many different com-
peting statistical models (e.g., linear or Cox regression and
GLM), BMA incorporates model uncertainties into parame-
ter inference and data prediction.

Consider an example of GLM involving choosing inde-
pendent variables and the link function. Every possible
combination of choices defines a different model, say
{M
0
,M
1
, . . . ,M

𝐾
} (where M

0
denotes the null model).

Upon computing 𝐾 Bayes factors BF
10
= 𝑝(𝐷 | M

1
)/𝑝(𝐷 |

M
0
), BF
20
= 𝑝(𝐷 | M

2
)/𝑝(𝐷 | M

0
), . . ., and BF

𝐾0
= 𝑝(𝐷 |

M
𝐾
)/𝑝(𝐷 | M

0
), the posterior probability 𝑝(M

𝑘
| 𝐷) is

computed as [54]

𝑝 (M
𝑘
| 𝐷) =

𝜋
𝑘
BF
𝑘0

∑
𝐾

𝑖=0
𝜋
𝑖
BF
𝑖0

, (22)

where 𝜋
𝑘
= 𝑝(M

𝑘
)/𝑝(M

0
) denotes the prior odds for model

M
𝑘
againstM

0
. In the case of GLM, the marginal likelihood

can be approximated by the Laplace method [55].

3.6. Bayesian Filtering: Kalman Filter, Point Process Filter, and
Particle Filter. Bayesian filtering aims to infer a filtered or
predictive posterior distribution of temporal data in a
sequential fashion, which is often cast within the framework
of state space model (SSM) [13, 56, 57]. Without loss of
generality, let x

𝑡
denote the state at discrete time 𝑡 and let y

0:𝑡

denote the cumulative observations up to time 𝑡. The filtered



Computational Intelligence and Neuroscience 7

posterior distribution of the state, conditional on the obser-
vations y

0:𝑡
, bears a form of recursive Bayesian estimation as

follows:

𝑝 (x
𝑡
| y
0:𝑡
) =

𝑝 (x
𝑡
) 𝑝 (y
0:𝑡
| x
𝑡
)

𝑝 (y
0:𝑡
)

=
𝑝 (x
𝑡
) 𝑝 (y
𝑡
, y
0:𝑡−1

| x
𝑡
)

𝑝 (y
𝑡
, y
0:𝑡−1

)

=
𝑝 (x
𝑡
) 𝑝 (y
𝑡
| x
𝑡
, y
0:𝑡−1

) 𝑝 (y
0:𝑡−1

| x
𝑡
)

𝑝 (y
𝑡
| y
0:𝑡−1

) 𝑝 (y
0:𝑡−1

)

=
𝑝 (x
𝑡
) 𝑝 (y
𝑡
| x
𝑡
, y
0:𝑡−1

) 𝑝 (x
𝑡
| y
0:𝑡−1

) 𝑝 (y
0:𝑡−1

)

𝑝 (y
𝑡
| y
0:𝑡−1

) 𝑝 (y
0:𝑡−1

) 𝑝 (x
𝑡
)

=
𝑝 (y
𝑡
| x
𝑡
, y
0:𝑡−1

) 𝑝 (x
𝑡
| y
0:𝑡−1

)

𝑝 (y
𝑡
| y
0:𝑡−1

)

=
𝑝 (y
𝑡
| x
𝑡
) 𝑝 (x
𝑡
| y
0:𝑡−1

)

𝑝 (y
𝑡
| y
0:𝑡−1

)
,

(23)

where the first four steps are derived from Bayes’ rule and the
last equality of (23) assumes the conditional independence
between the observations. The one-step state prediction, also
known as theChapman-Kolmogorov equation [58], is given by

𝑝 (x
𝑡
| y
0:𝑡−1

) = ∫𝑝 (x
𝑡
| x
𝑡−1
) 𝑝 (x
𝑡−1
| y
0:𝑡−1

) 𝑑x
𝑡−1
, (24)

where the probability distribution (or density) 𝑝(x
𝑡
| x
𝑡−1
)

describes a state transition equation and the probability dis-
tribution (or density) 𝑝(y

𝑡
| x
𝑡
) is the observation equation.

Together (23) and (24) provide the fundamental relations
to conduct state space analyses. The above formulation of
recursive Bayesian estimation holds for both continuous and
discrete variables, for either x or y or both. When the state
variable is discrete and countable (in which we use 𝑆

𝑡
to

replace x
𝑡
), the SSM is also referred to as a hidden Markov

model (HMM), with associated 𝑝(𝑆
𝑡
| 𝑆
𝑡−1
) and 𝑝(y

𝑡
| 𝑆
𝑡
).

Various approximate Bayesian methods for the HMM have
been reported [23, 59, 60]. When the hidden state consists of
both continuous and discrete variables, the SSM is referred
to as a switching SSM, with associated 𝑝(x

𝑡
| x
𝑡−1
, 𝑆
𝑡
) and

𝑝(y
𝑡
| x
𝑡
, 𝑆
𝑡
) [27, 61]. In this case, the inference and prediction

involve multiple integrals or summations. For example, the
prediction equation (24) will be rewritten as

𝑝 (x
𝑡
| y
0:𝑡−1

, 𝑆
0:𝑡−1

) = ∫∑
𝑆
𝑡−1

𝑝 (x
𝑡
| x
𝑡−1
, 𝑆
𝑡
) 𝑝 (𝑆
𝑡
| 𝑆
𝑡−1
)

× 𝑝 (x
𝑡−1
| y
0:𝑡−1

, 𝑆
0:𝑡−1

) 𝑑x
𝑡−1

(25)

whose exact or naive implementation can be computationally
prohibitive given a large discrete state space.

When the state and observation equations are both con-
tinuous and Gaussian, the Bayesian filtering solution yields
the celebratedKalman filter [62], in which the posteriormean

and posterior variance are updated recursively. In fact, based
on a Gaussian approximation of nonnegative spike count
observations, the Kalman filter has been long used in spike
train analysis [63, 64]. However, such a naive Gaussian
approximation does not consider the point process nature of
neural spike trains. Brown and his colleagues [65–67] have
proposed a point process filter to recursively estimate the state
or parameter in a dynamic fashion.Without loss of generality,
assume that the CIF (6) is characterized by a parameter 𝜃 via
an exponential form, namely, 𝜆

𝑡
≡ 𝜆(𝑡 | 𝜃

𝑡
) = exp(𝜃⊤

𝑡
𝑋
𝑡
), and

assume that the parameter follows a random-walk equation
𝜃
𝑡
= 𝜃
𝑡−1
+𝑤
𝑡
(where𝑤

𝑡
denotes randomGaussian noise with

zero mean and variance 𝜎2); then one can use a point process
filter to estimate the time-varying parameter 𝜃 at arbitrarily
fine temporal resolution (i.e., the bin size can be as small as
possible for the discrete-time index 𝑡) as follows:

𝜃
𝑡+1|𝑡

= 𝜃
𝑡|𝑡
(one-step mean prediction) , (26)

𝑉
𝑡+1|𝑡

(𝜃) = 𝑉
𝑡+1|𝑡

(𝜃) + 𝜎
2
(one-step variance prediction) ,

(27)

𝜃
𝑡+1|𝑡+1

= 𝜃
𝑡+1|𝑡

+ 𝑉
𝑡+1|𝑡

(𝜃)
∇
𝜃
𝜆 (𝜃
𝑡+1|𝑡

)

𝜆 (𝜃
𝑡+1|𝑡

)

× [𝑑𝑦
𝑡+1
− 𝜆 (𝜃

𝑡+1|𝑡+1
) Δ]

= 𝜃
𝑡+1|𝑡

+ 𝑉
𝑡+1|𝑡

(𝜃)𝑋
𝑡+1

× [𝑑𝑦
𝑡+1
− 𝜆 (𝜃

𝑡+1|𝑡+1
) Δ] (posterior mode) ,

(28)

𝑉
𝑡+1|𝑡+1

(𝜃) = [(𝑉
𝑡+1|𝑡

(𝜃))
−1

+ 𝑋
𝑡+1
𝑋
⊤

𝑡+1
𝜆 (𝜃
𝑡+1|𝑡

) Δ]
−1

(posterior variance) ,
(29)

where 𝜃
𝑡+1|𝑡+1

and 𝑉
𝑡+1|𝑡+1

(𝜃) denote the posterior mode
and posterior variance for the parameter 𝜃, respectively.
Equations (26)–(29) are reminiscent of Kalman filtering.
Equations (26) and (27) for one-step mean and variance
predictions are the same as Kalman filtering, but (28) and
(29) are different fromKalman filtering due to the presence of
non-Gaussian observations and nonlinear operation in (28).
In (28), [𝑑𝑦

𝑡+1
− 𝜆(𝜃

𝑡+1|𝑡+1
)Δ] is viewed as the innovations

term, and 𝑉
𝑡+1|𝑡

𝑋
𝑡+1

may be interpreted as a “Kalman gain.”
The quantity of the Kalman gain determines the “step size”
in error correction. In (29), the posterior state variance is
derived by inverting the secondderivative of the log-posterior
probability density log𝑝(𝜃

𝑡
| 𝑌) based on a Gaussian approx-

imation of the posterior distribution around the posterior
mode [65–67]. For this simple example, we have

log𝑝 (𝜃
𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)

∝ −
1

2
(𝜃
𝑡
− 𝜃
𝑡−1|𝑡−1

)
⊤

𝑉
−1

𝑡+1|𝑡
(𝜃
𝑡
− 𝜃
𝑡−1|𝑡−1

)

+ [log 𝜆
𝑡
𝑑𝑦
𝑡
− 𝜆
𝑡
Δ] ,
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𝜕 log𝑝 (𝜃
𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)

𝜕𝜃
𝑡

= −(𝜃
𝑡
− 𝜃
𝑡−1|𝑡−1

)
⊤

𝑉
−1

𝑡+1|𝑡

+
1

𝜆
𝑡

∇
𝜃
𝜆
𝑡
[𝑑𝑦
𝑡
− 𝜆
𝑡
Δ] ,

𝜕2 log𝑝 (𝜃
𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)

𝜕𝜃
𝑡
𝜕𝜃⊤
𝑡

= −𝑉
−1

𝑡+1|𝑡
+ [(

𝜕2𝜆
𝑡

𝜕𝜃
𝑡
𝜕𝜃⊤
𝑡

1

𝜆
𝑡

− (
𝜕𝜆
𝑡

𝜕𝜃
𝑡

)

2
1

𝜆2
𝑡

)

× [𝑑𝑦
𝑡
− 𝜆
𝑡
Δ] − (

𝜕𝜆
𝑡

𝜕𝜃
𝑡

)

2
1

𝜆
𝑡

Δ] .

(30)

Setting the first-order derivative 𝜕 log𝑝(𝜃
𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)/𝜕𝜃
𝑡

to zero and rearranging terms yield (28), and setting
𝑉
𝑡+1|𝑡+1

(𝜃) = −[𝜕2 log𝑝(𝜃
𝑡
| 𝑌
0:𝑡
, 𝐻
𝑡
)/(𝜕𝜃
𝑡
𝜕𝜃⊤
𝑡
)]
−1 yields (29).

The Gaussian approximation is based on the first-order
Laplace method. In theory one can also use a second-
ordermethod to further improve the approximation accuracy
[68]. However, in practice the performance gain is relatively
small in the presence of noise and model uncertainty while
analyzing real experimental data sets. Although the above
example only considers a univariate point process (i.e., a
single neuronal spike train), it is straightforward to extend the
analysis to multivariate point processes (multiple neuronal
spike trains). When the number of the neurons increases,
the accuracy of Gaussian approximation of log-posterior also
improves due to the Law of large numbers.

An alternative way for estimating a non-Gaussian poste-
rior is to use a particle filter [69]. Several reports have been
published in the context of neural spike train analysis [70, 71].
The basic idea of particle filtering is to employ sequential
Monte Carlo (importance sampling and resampling) meth-
ods and draw a set of independent and identically distributed
(i.i.d.) samples (i.e., “particles”) from a proposal distribution;
the samples are propagated through the likelihood function,
weighted, and reweighted after each iteration update. In the
end, one can use Monte Carlo samples (or their importance
weights) to represent the posterior. For example, to evaluate
the expectation of a function 𝑓(x

𝑡
) with respect to the

posterior 𝑝(x
𝑡
| y
0:𝑡
), we have

E [𝑓 (x
𝑡
)] = ∫𝑓 (x

𝑡
)
𝑝 (x
𝑡
| y
0:𝑡
)

𝑞 (x
𝑡
| y
0:𝑡
)
𝑞 (x
𝑡
| y
0:𝑡
) 𝑑x
𝑡

= ∫𝑓 (x
𝑡
)𝑊 (x

𝑡
) 𝑞 (x
𝑡
| y
0:𝑡
) 𝑑x
𝑡

≈
∑
𝑁
𝑐

𝑖=1
𝑓 (x(𝑖)
𝑡
)𝑊(x(𝑖)

𝑡
)

∑
𝑁
𝑐

𝑖=1
𝑊(x(𝑖)
𝑡
)

= 𝑓 (x
𝑡
) ,

(31)

where 𝑊(x
𝑡
) = 𝑝(x

𝑡
| y
0:𝑡
)/𝑞(x
𝑡
| y
0:𝑡
) denotes the impor-

tance weight function and {x(𝑖)
𝑡
}
𝑁
𝑐

𝑖=1
denotes the 𝑁

𝑐
particles

drawn from the proposal distribution 𝑞(x
𝑡
| y
0:𝑡
). When

the sample size 𝑁
𝑐
is sufficiently large (depending on the

dimensionality of x), the estimate 𝑓(x
𝑡
) will be an unbiased

estimate ofE[𝑓(x
𝑡
)]. Based on sequential important sampling

(SIS), the importance weights of each sample can be recur-
sively updated as follows [69]:

𝑊(x(𝑖)
𝑡
) = 𝑊(x(𝑖)

𝑡−1
)
𝑝 (y
𝑡
| x(𝑖)
𝑡
) 𝑝 (x(𝑖)

𝑡
| x(𝑖)
𝑡−1
)

𝑞 (x(𝑖)
𝑡
| x(𝑖)
0:𝑡−1

, y
𝑡
)

. (32)

In practice, choosing a proper proposal distribution 𝑞(x
𝑡
|

x
0:𝑡−1

, y
𝑡
) is crucial (see [69] for detailed discussions). In the

neuroscience literature, Brockwell et al. [70] used a transition
prior 𝑝(x

𝑡
| x
𝑡−1
) as the proposal distribution, which yields a

simple form of update from (32) as follows:

𝑊(x(𝑖)
𝑡
) = 𝑊(x(𝑖)

𝑡−1
) 𝑝 (y

𝑡
| x(𝑖)
𝑡
) . (33)

That is, the importance weights 𝑊(x(𝑖)
𝑡
) are only scaled by

the instantaneous likelihood value. Despite its simplicity,
the transition prior proposal distribution completely ignores
the information of current observation y

𝑡
. To overcome

this limitation, Ergun et al. [71] used a filtered (Gaussian)
posterior density derived from the point process filter as the
proposal distribution, and they reported a significant perfor-
mance gain in estimation while maintaining the algorithmic
simplicity (i.e., sampling from a Gaussian distribution). In
addition, the VB approach can be integrated with particle
filtering to obtain a variational Bayesian filtering algorithm
[72].

Note. (i) If the online operation is not required, we can esti-
mate a smoothed posterior distribution 𝑝(x

𝑡
| y
0:𝑇
) to obtain

a more accurate estimate. The above Bayesian filters can be
extended to the fixed-lag Kalman smoother, point process
smoother, and particle smoother [63, 66, 69]. (ii) For neural
spike train analysis, the formulation of Bayesian filtering is
applicable not only to simple point processes but also to
marked point processes [73] or even spatiotemporal point
processes.

3.7. Bayesian Nonparametrics. The contrasting methodolog-
ical pairs “frequentist versus Bayes” and “parametric versus
nonparametric” are two examples of dichotomy in modern
statistics [74]. The historical roots of Bayesian nonparamet-
rics are dated back to the late 1960s and 1970s. Despite its
theoretic development over the past few decades, successful
applications of nonparametric Bayesian inference have not
been widespread until recently, especially in the field of
machine learning [75]. Since nonparametric Bayesianmodels
accommodate a large number of degrees of freedom (infinite-
dimensional parameter space) to exhibit a rich class of proba-
bilistic structure, such approaches are very powerful in terms
of data representation. The fundamental building blocks
are two stochastic processes: Dirichlet process (DP) and
Gaussian process (GP). Although detailed technical reviews
of these topics are far beyond the scope of this paper, we
would like to point out the strengths of these methods in two
aspects of statistical data analysis.

(i) Data clustering, partitioning, and segmentation:
unlike the finite mixture models, nonparametric
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Bayesian models define a prior distribution over the
set of all possible partitions, in which the number
of clusters or partitions may grow as the increase
of the data samples in both static and dynamic set-
tings, including the infinite Gaussian mixture model,
Dirichlet process mixtures, Chinese restaurant pro-
cess, and infinite HMM [74–76]. The model selection
issue is resolved implicitly in the process of infinite
mixture modeling.

(ii) Prediction and smoothing: unlike the fixed finite-
dimensional parametric models, the GP defines pri-
ors for the mean function and covariance function,
where the covariance kernel function determines
the smoothness and stationarity between the data
points. Since the predictive posterior is Gaussian, the
prediction uncertainty can be computed analytically
[28, 77].

Therefore, Bayesian nonparametrics offer greater flexi-
bility for modeling complex data structures. Unfortunately,
most inference algorithms for Bayesian nonparametric mod-
els involve MCMC methods, which can be computationally
prohibitive for large-scale neural data analysis. Therefore,
exploiting the sparsity structure of specific neural data and
designing efficient inference algorithms are two important
directions in practical applications [78].

4. Bayesian Methods for Neural Spike
Train Analysis

In this section, we review some representative applications of
Bayesianmethods for neural spike train analysis, with specific
emphases on the real experimental data. Nevertheless, the list
of the references is by no means complete, and some other
complementary references can be found in [79, 80]. Specifi-
cally, the strengths of the Bayesian methods are highlighted
in comparison with other standard methods; the potentially
issues arising from these methods are also discussed.

4.1. Spike Sorting and Tuning Curve Estimation. To charac-
terize the firing property of single neurons, it is necessary to
first identify and sort the spikes from the recorded multiunit
activity (MUA) (which is referred to as the discrete ensemble
spikes passing the threshold criterion) [81–83]. However,
spike sorting is often a difficult and error-prone process. Tra-
ditionally, spike sorting is formulated as a clustering problem
based on spike waveform features [84]. Parametric and
nonparametric Bayesian inference methods have been devel-
oped for mixture modeling and inference (e.g., [25, 26]),
especially for determining the model size [85, 86]. Unlike
the maximum likelihood estimation (which produces a hard
label for each identified spike), Bayesian approaches produce
a soft label (posterior probability) for individual spike; such
uncertaintiesmay be considered in subsequent analyses (such
as tuning curve estimation and decoding). Spike sorting can
also be formulated as a dynamic model inference problem, in
the context of state space analysis [87] or in the presence of
nonstationarity [88]. Recent studies have suggested that spike
sorting should take into account not only spike waveform

features but also the neuronal tuning property [89, 90],
suggesting that these two processes shall be integrated.

At the single neuron level, a Poisson neuronal firing
response is completely characterized by its tuning curve or
receptive field (RF).Naturally, estimating the neuronal tuning
curve is the second step following spike sorting. Standard
tuning curve or RF estimation methods include the spike-
triggered average (STA) and spike-triggered covariance
(STC). The Bayesian versions of the STA and STC have been
proposed [91, 92]. Binning and smoothing are two important
issues in firing rate estimation Bayesian methods provide
a principled way to estimate the peristimulus time histogram
(PSTH) [93]. For estimating a time-varying firing rate profile
similar to PSTH, the Bayesian adaptive regression splines
(BARS) method offers a principled solution for bin size selec-
tion and smoothing based on the RJ-MCMC method [94].
Notably, BARS ismore computationally intensive. For similar
estimation performance (validated on simulated data), a
more computationally efficient approach has been developed
using Bayesian filtering-based state space analysis [95]. In
addition, Metropolis-type MCMC approaches have been
proposed for high-dimensional tuning curve estimation [96,
97].

4.2. Neural Encoding and Decoding. The goal of neural
encoding is to establish a statistical mapping (which can
be either a biophysical or data-driven model) between the
stimulus input and neuronal responses, and the goal of neural
decoding is to extract or reconstruct information of the
stimulus given the observed neural signals. For instance, the
encoded and decoded variables of interest can be a rodent’s
position during spatial navigation, the monkey’s movement
kinematics in a reach-to-grasp task, or specific visual/audi-
tory/olfactory stimuli during neuroscience experiments.

Without loss of generality, let {𝑋, 𝑌̃} denote the observed
stimuli and neuronal responses, respectively, at the encoding
stage, and let 𝜃 denote the model parameter of a specific
encoding model M; then the posterior distribution of the
model (and model parameters) is written as

𝑝 (𝜃,M | 𝑋, 𝑌̃) ∝ 𝑝 (𝑋, 𝑌̃ | 𝜃,M) 𝑝 (𝜃 |M) 𝑝 (M) . (34)

Once the modelM is determined, one can infer the posterior
mean by 𝜃 = ∫ 𝜃𝑝(𝜃 | 𝑋, 𝑌̃,M)𝑑𝜃. Depending on the selected
likelihood or prior, variations of Bayesian neural encoding
methods have been developed [98–100].

Given the parameter posterior 𝑝(𝜃 | 𝑋, 𝑌̃,M) from
the encoding analysis, decoding analysis aims to infer the
latent variable 𝑋 given new data 𝑌 at the decoding stage
(with preselected M). Within the Bayesian framework, it is
equivalent to finding the𝑋MAP [101] as follows:

𝑋MAP = argmax
𝑋

𝑝 (𝑋 | 𝜃, 𝑌,M)

= argmax
𝑋

∫𝑝 (𝑌 | 𝑋, 𝜃,M) 𝑝 (𝜃 | 𝑋, 𝑌̃,M) 𝑝 (𝑋) 𝑑𝜃

≈ argmax
𝑋

𝑝 (𝑌 | 𝑋, 𝜃,M) 𝑝 (𝑋) ,

(35)
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which consists of two numerical problems:maximization and
integration. In the approximation in the last step of (35), we
have used 𝑝(𝜃 | 𝑋, 𝑌̃,M) ≈ 𝛿(𝜃 − 𝜃), where 𝜃 denotes the
estimated mean or mode statistic from 𝑝(𝜃 | 𝑋, 𝑌̃,M). The
optimization problem is more conveniently written in the log
domain as follows:

log𝑝 (𝑋 | 𝑌, 𝜃) ∝ log𝑝 (𝑌 | 𝑋, 𝜃) + log𝑝 (𝑋) . (36)

If 𝑋 follows a Markovian process, this can be solved by
recursive Bayesian filtering [65, 67] (Section 3.6). When 𝑋
is non-Markovian but 𝑝(𝑋) and the likelihood are both log-
concave, this can be resorted to a global optimization problem
[57, 102]. Imposing prior information and structure (e.g.,
sparsity, spatiotemporal correlation) onto 𝑝(𝑋) is important
for obtaining either a meaningful solution or a significant
optimization speedup [103, 104]. In contrast, when 𝑝(𝑋) is
flat or noninformative, the MAP solution will be similar to
the m.l.e.

In the literature, the majority of neural encoding or
decoding models fall within two parametric families: linear
model (e.g., [63, 105]) andGLM (e.g., [64, 106, 107]), although
nonparametric encoding models have also been considered
[108, 109]. Methods for Bayesian neural decoding include (i)
Kalman filtering [63], (ii) point process filtering [65–67, 110,
111], (iii) particle filtering [70, 71], and (iv) MCMC methods
[112]. The areas of experimental neuroscience data include
the retina, primary visual cortex, primary somatosensory
cortex, auditory periphery (auditory nerves and midbrain
auditory neurons), primary auditory cortex, primary motor
cortex, premotor cortex, hippocampus, and the olfactory
bulb.

It is important to point out thatmost spike-count or point
process based decoding algorithms rely on the assumptions
that neural spikes have been properly sorted (some neural
decoding algorithms (e.g., [113]) are based on detected MUA
instead of sorted single unit activity). Recently, there have
been a few efforts in developing spike-sorting-free decoding
algorithms, by either estimating the cell identities as missing
variables [114] or modeling the spike identities by their
proxy based on a spatiotemporal point process [115, 116].
Although this work has been carried out using likelihood
inference, it is straightforward to extend it to the Bayesian
framework. In the example of decoding the rat’s position from
recorded ensemble hippocampal spike activity [115, 116], we
used a model-free (without 𝜃) and data-driven Bayes’ rule as
follows:

𝑝 (𝑋 | 𝑌,𝑋, 𝑌̃) ∝ 𝑝 (𝑌 | 𝑋,𝑋, 𝑌̃) 𝑝 (𝑋) , (37)

in which 𝑝(𝑋) denotes the prior and the likelihood 𝑝(𝑌 | 𝑋,
𝑋, 𝑌̃) is evaluated nonparametrically (namely, nonparamet-
ric neural decoding). By assuming that the joint/marginal/
conditional distributions (𝑝(𝑋, 𝑌) and 𝑝(𝑋, 𝑌̃), 𝑝(𝑋) and
𝑝(𝑋), and 𝑝(𝑌 | 𝑋) and 𝑝(𝑌̃ | 𝑋)) are stationary during

both encoding and decoding phases, the MAP estimate of
decoding analysis is obtained by

𝑋MAP

= arg
𝑋

max𝑝 (𝑌 | 𝑋,𝑋, 𝑌̃) 𝑝 (𝑋)

≈ arg
𝑋

max𝑓 (𝑌 󵄨󵄨󵄨󵄨󵄨𝑝 (𝑋 | 𝑋) , 𝑝 (𝑋, 𝑌 | 𝑋, 𝑌̃)) 𝑝 (𝑋) ,

(38)

where 𝑓 is a nonlinear function that involves the marginal
and joint pdf ’s in the argument [115, 116], in which the pdf ’s
are constructed based on a kernel density estimator (KDE).
Alternatively, the nonparametric pdf in (38) can be replaced
by a parametric form [115] as follows:

𝑋MAP ≈ arg
𝑋

max𝑓 (𝑌 󵄨󵄨󵄨󵄨𝑝 (𝑋 | 𝜃) , 𝑝 (𝑋, 𝑌 | 𝜃) ) 𝑝 (𝑋) , (39)

where 𝑝(𝑋 | 𝜃) = ∫𝑝(𝑋, 𝑌 | 𝜃)𝑑𝑌 is the parametric marginal
and 𝜃 is the point estimate obtained from the training samples
{𝑋, 𝑌̃}.

Note. (i) Neural encoding and decoding analyses are estab-
lished upon the assumption that the neural codes are well
understood—namely, how neuronal spikes represent and
transmit the information of the external world. Whether
being a rate code, a timing code, a latency code, or an inde-
pendent or correlated population code, Bayesian approach
provides a universal strategy to test the coding hypothesis
or extract the information [117]. (ii) The sensitivity of spike
trains to noise may affect the effectiveness to the encoding-
decoding process. From an information-theoretic perspec-
tive, various sources of spike noise, such as misclassified
spikes (false positives) and misdetected, or misclassified
spikes (false negatives), may affect differently the mutual
information between the input (stimulus) and output (spikes)
channel [118, 119]. In designing a Bayesian decoder, it is
important to take into account the noise issue. A decoding
strategy that is robust to the noise assumption will presum-
ably yield the best performance [115, 116].

4.3. Deconvolution of Neural Spike Trains. Fluorescent cal-
cium imaging tools have become increasingly popular for
observing the spiking activity of large neuronal populations.
However, extracting or deconvolving neural spike trains from
the raw fluorescence movie or video sequences remains a
challenging estimation problem. The standard 𝑑𝐹/𝐹 or
Wiener filtering approaches do not capture the true statistics
of neural spike trains and are sensitive to the noise statistics
[120].

A principled approach is to formulate the deconvolution
problem of a filtered point process via state space analysis
and Bayesian inference [121, 122] (see also [123] for another
type of Bayesian deconvolution approach using MCMC).
Let 𝐹

𝑡
denote the measured univariate fluorescence time

series, which is modeled as a linear Gaussian function of the
intracellular calcium concentration ([Ca2+]) as follows:

𝐹
𝑡
= 𝛼[Ca2+]

𝑡
+ 𝛽 + 𝜖

𝑡
, (40)



Computational Intelligence and Neuroscience 11

where 𝛽 denotes a constant baseline and 𝜖
𝑡
∼ N(0, 𝜎2)

denotes the Gaussian noise with zero mean and variance 𝜎2.
The calcium concentration can be modeled as a first-order
autoregressive (AR) process corrupted by Poisson noise as
follows:

𝛼[Ca2+]
𝑡
= 𝛼[Ca2+]

𝑡−1
+ 𝑛
𝑡
, (41)

where 𝑛
𝑡
∼ Poisson (𝜆Δ) and the bin size Δ is chosen to

assure that themean firing rate is independent of the imaging
frame rate.

Let 𝜃 = {𝛼, 𝛽, 𝛾, 𝜎
2, 𝜆}; given the above generative bio-

physical model, Bayesian deconvolution aims to seek the
MAP estimate of spike train as follows:

n̂ = arg max
𝑛
𝑡
∈N
0

𝑝 (n | F, 𝜃)

= arg max
𝑛
𝑡
∈N
0

𝑝 (F | n, 𝜃) 𝑝 (n | 𝜃)

= arg max
𝑛
𝑡
∈N
0

𝑇

∏
𝑡=1

𝑝 (𝐹
𝑡
| Ca2+
𝑡
, 𝜃)

𝑇

∏
𝑡=1

𝑝 (𝑛
𝑡
| 𝜃) .

(42)

Within the state space framework, Vogelstein and colleagues
[121] proposed a particle filtering method to infer the pos-
terior probability of spikes at each imaging frame, given
the entire fluorescence traces. However, the Monte Carlo
approach is computationally expensive and may not be suit-
able for analyses of a large population of neurons. To meet
the real-time processing requirement, they further proposed
an approximate yet fast solution by replacing the Poisson
distribution by an exponential distribution with the same
mean (therefore relaxing the nonnegative integer constraint
to the nonnegative real number) [122]. And the approximate
solution is given by the following optimization problem:

n̂ = argmax
𝑛
𝑡
≥0

𝑇

∑
𝑡=1

−
1

2𝜎2
(𝐹
𝑡
− 𝛼Ca2+

𝑡
− 𝛽)
2

− 𝑛
𝑡
𝜆Δ

= arg max
Ca2+
𝑡
−𝛾Ca2+
𝑡−1
≥0

𝑇

∑
𝑡=1

−
1

2𝜎2
(𝐹
𝑡
− 𝛼Ca2+

𝑡
− 𝛽)
2

− (Ca2+
𝑡
− 𝛾Ca2+

𝑡−1
) 𝜆Δ.

(43)

The approximation of exponential form makes the optimiza-
tion problem concave with respect to Ca2+, from which the
global optimum can be obtained using constrained convex
optimization [102]. Once the estimate of the calcium trace is
obtained, the MAP spike train can be simply inferred by a
linear transformation.

In a parallel fashion, the parameter 𝜃 can be similarly
estimated by Bayesian inference as follows:

𝜃MAP = argmax
𝜃

∫𝑝 (F | Ca2+, 𝜃) 𝑝 (Ca2+ | 𝜃) 𝑑Ca2+

≈ argmax
𝜃

𝑝 (F | n̂, 𝜃) 𝑝 (n̂ | 𝜃) ,
(44)

where the approximation in the second step assumes that the
major mass in the integral is around the MAP sequence n̂

(or equivalently the Ca2+ traces).Therefore, the joint estimate
(n̂, 𝜃MAP) can be computed iteratively from (43) and (44) until
convergence.

Note. The output of Bayesian deconvolution yields a proba-
bility vector between 0 and 1 of having a spike in a given time
frame. Selection of different thresholds on the probability
vector leads to different detection errors (a tradeoff between
the false positives and false negatives). Nevertheless, the
Bayesian solution is much more superior to the standard
least-squares method. It is noteworthy that a new fast decon-
volution method has recently been proposed based on finite
rate of innovation (FRI) theory, with reported performance
better than the approximate Bayesian solution [124].

4.4. Inference of Neuronal Functional Connectivity and Syn-
chrony. Identifying the functional connectivity of simultane-
ously recorded neuronal ensembles is an important research
objective in computational neuroscience. This analysis has
many functional applications such as in neural decoding [125]
and in understanding the collective dynamics of coordinated
spiking cortical networks [126]. Compared to the stan-
dard nonparametric approaches such as cross-correlogram
and joint peristimulus time histogram (JPSTH), parametric
model-based statistical approaches offer several advantages
in neural data interpretation [127].

To model the spike train point process data, without loss
of generality we use the following logistic regression model
with a logit link function. Specifically, let 𝑐 be the index
of a target neuron, and let 𝑖 = 1, . . . 𝐶 be the indices of
triggered neurons (whose spike activity is assumed to trigger
the firing of the target neuron). The Bernoulli (binomial)
logistic regression GLM is written as

logit (𝜋
𝑡
) = 𝜃
⊤

𝑐
𝑋
𝑡
= 𝜃
𝑐

0
+

𝐽

∑
𝑗=1

𝜃
𝑐

𝑗
𝑥
𝑗,𝑡

= 𝜃
𝑐

0
+

𝐶

∑
𝑖=1

𝐾

∑
𝑘=1

𝜃
𝑐

𝑖,𝑘
𝑥
𝑖,𝑡−𝑘

,

(45)

where dim(𝜃
𝑐
) = 𝐽+1 = 𝐶×𝐾+1 for the augmented param-

eter vector 𝜃
𝑐
= {𝜃𝑐
0
, 𝜃𝑐
𝑖,𝑘
} and 𝑋

𝑡
= {𝑥
0
, 𝑥
𝑖,𝑡−𝑘

}. Here, 𝑥
0
≡ 1,

and 𝑥
𝑖,𝑡−𝑘

denotes the raw spike count from neuron 𝑖 at the
𝑘th time-lag history window (or a predefined smooth basis
function such as in [125]). The spike count is nonnegative;
therefore 𝑥

𝑖,𝑡−𝑘
≥ 0. Alternatively, (45) can be rewritten as

𝜋
𝑡
=

exp (𝜃⊤
𝑐
𝑋
𝑡
)

1 + exp (𝜃⊤
𝑐
𝑋
𝑡
)
=

exp (𝜃𝑐
0
+ ∑
𝐽

𝑗=1
𝜃𝑐
𝑗
𝑥
𝑗,𝑡
)

1 + exp (𝜃𝑐
0
+ ∑
𝐽

𝑗=1
𝜃𝑐
𝑗
𝑥
𝑗,𝑡
)
, (46)

which yields the probability of a spiking event at time 𝑡.
Equation (46) defines a spiking probability model for neuron
𝑐 based on its own spiking history and that of the other
neurons in the ensemble. Here, exp(𝜃𝑐

0
) can be interpreted

as the baseline firing probability of neuron 𝑐. Depending on
the algebraic (positive or negative) sign of coefficient 𝜃𝑐

𝑖,𝑘
,

exp(𝜃𝑐
𝑖,𝑘
) can be viewed as a “gain” factor (dimensionless,>1 or

<1) that influences the relative firing probability of neuron 𝑐
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from another neuron 𝑖 at the previous 𝑘th time lag.Therefore,
a negative value of 𝜃𝑐

𝑖,𝑘
will strengthen the inhibitory effect; a

positive value of 𝜃𝑐
𝑖,𝑘

will enhance the excitatory effect. Two
neurons are said to be functionally connected if any of their
pairwise connections is nonzero (or the statistical estimate is
significantly nonzero).

For inferring the functional connectivity of neural
ensembles, in addition to the standard likelihood approaches
[127, 128], various forms of Bayesian inference have been
developed for the MaxEnt model, GLM, and Bayesian net-
work [129–132]. In a similar context, a Bayesian method has
been developed based on the deconvolved neuronal spike
trains from calcium imaging data [133].

Bayesian methods also proved useful in detecting higher-
order correlations among neural assemblies [134, 135].
Higher-order correlations are often characterized by synchro-
nous neuronal firing at a timescale of 5–10ms.These findings
have been reported in experimental data from prefrontal
cortex, somatosensory cortex, and visual cortex across many
species and animals. Consider a set of 𝐶 neurons. Each
neuron is represented by two states: 1 (firing) or 0 (silent).
At any time instant, the state of the 𝐶 neurons is represented
by the vector 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝐶
) (the time index is omitted

for simplicity), and in total there are 2𝐶 neuronal states. For
instance, a general joint distribution of three neurons can be
expressed by a log-linear model [134]

𝑝 (𝑥
1
, 𝑥
2
, 𝑥
3
) = exp (𝜃

0
+ 𝜃
1
𝑥
1
+ 𝜃
2
𝑥
2
+ 𝜃
3
𝑥
3

+ 𝜃
12
𝑥
1
𝑥
2
+ 𝜃
13
𝑥
1
𝑥
3

+𝜃
23
𝑥
2
𝑥
3
+ 𝜃
123
𝑥
1
𝑥
2
𝑥
3
) ,

(47)

which is a natural extension of the MaxEnt model described
in (9). A nonzero coefficient of 𝜃

123
would imply the presence

of third-order correlation among the three neurons. In
experimental data, the number of synchronous events may
be scarce in single trials, and the interaction coefficients
may also be time-varying. State space analysis and Bayesian
filtering offer a principled framework to address these issues
[135]. However, the computational bottleneck is the curse of
dimensionality when the value of𝐶 is moderately large (220 ≈
106). In the presence of finite data sample size, it is reasonable
to impose certain structural priors onto the parameter space
for the Bayesian solution.

5. Discussion

We have presented an overview of Bayesian inference meth-
ods and their applications to neural spike train analysis.
Although the focus of current paper is on neural spike trains,
the Bayesian principle is also applicable to other modalities
of neural data (e.g., [136]). Due to space limitation, we only
cover representative methods and applications in this paper,
and the references are reflective of our personal choices from
the humongous literature.

In comparison with the standard methods, Bayesian
methods provide a flexible framework to address many fun-
damental estimation problems at different stages of neural
data analysis. Regardless of the specific Bayesian approach to

be employed, the common goal of Bayesian solutions consists
in replacing a single point estimate (or hard decision label)
with a full posterior distribution (or soft decision label). As a
tradeoff, Bayesian practioners have to encounter the increas-
ing cost of computational complexity (especially while using
MCMC), which may be prohibitive for large-scale spike train
data sets. Furthermore, special attention shall be paid to select
the optimal technique among different Bayesian methods
that ultimately lead to quantitatively different approximate
Bayesian solutions.

Despite the significant progresses made to date, there
remain many research challenges and opportunities for
applying Bayesian machinery to neural spike trains, and we
will mention a few of them below.

5.1. Nonstationarity. Neural spiking activity is highly non-
stationary at various timescales. Sources that account for
such nonstationarity may include the animal’s behavioral
variability across trials, top-down attention, learning,motiva-
tion, or emotional effects across time. These effects are time-
varying across behaviors. In addition, individual neuronal
firing may be affected by other unobserved neural activity,
such as throughmodulatory or presynaptic inputs from other
nonrecorded neurons. Therefore, it may be important to
consider these latent variables while analyzing neural spike
trains [137]. Bayesianmethods are a natural solution tomodel
and infer such latent variables. Traditional mixed-effects
models can be adapted to a hierarchical Bayesian model to
capture various sources of randomness.

5.2. Characterization of Neuronal Dependencies. Neural
responses may appear correlated or synchronous at different
timescales. It is important to characterize such neuronal
dependencies in order to fully understand the nature of neu-
ral codes. It is also equally important to associate the neu-
ral responses to other measurements, such as behavioral
responses, learning performance, or local field potentials.
Commonly, correlation statistics or information-theoretic
measures have been used (e.g., [138]). Other advanced sta-
tistical measures have also been proposed, such as the log-
linear model [139], Granger causality [140], transfer entropy
[141], or copula model [142]. Specifically, the copula offers
a universal framework to model statistical dependencies
among continuous, discrete, or mixed-valued r.v., and it has
an intrinsic link to themutual information; Bayesianmethods
may prove useful for selecting the copula class or the copula
mixtures [143]. However, because of the nonstationary nature
of neural codes (Section 5.1), it remains a challenge to identify
the “true” dependencies among the observed neural spike
trains, and it remains important to rule out and rule in neural
codes under specific conditions.

5.3. Characterization and Abstraction of Neuronal Ensemble
Representation. Since individual neuronal spike activity is
known to be stochastic and noisy, in the single-trial analysis
it is anticipated that the information extracted from neuronal
populations is more robust than that from a single neuron.
How to uncover the neural representation of population
codes in a single-trial analysis has been an active research
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topic in neuroscience. This is important not only for abstrac-
tion, interpretation, and visualization of population codes
but also for discovering invariant neural representations and
their links to behavior. Standard dimensionality reduction
techniques (e.g., principle component analysis, multidimen-
sional scaling, or locally linear embedding) have been widely
used for such analyses. However, thesemethods have ignored
the temporal component of neural codes. In addition, no
explicit behavioral correlate may become available in certain
modeling tasks. Recently, Bayesian dynamic models, such as
the Gaussian process factor analysis (GPFA) [144] and VB-
HMM [145–147], have been proposed to visualize population
codes recorded from large neural ensembles across different
experimental conditions. To learn the highly complex struc-
ture of spatiotemporal neural population codes, it may be
beneficial to borrow the ideas from the machine learning
community and to integrate the state-of-the-art unsupervised
and supervised deep Bayesian learning techniques.

5.4. Translational Neuroscience Applications. Finally in the
long run, it is crucial to apply basic neuroscience knowledge
derived from quantitative analyses of neural data to trans-
lational neuroscience research. Many clinical research areas
may benefit from the statistical analyses reviewed here, such
as design of neural prosthetics for patients with tetraplegia
[107], detection and control of epileptic seizures, optical
control of neuronal firing in behaving animals, or simulation
of neural firing patterns to achieve optimal electrotherapeutic
effect [148]. Bridging the gap between neural data analysis
and their translational applications (such as treating neuro-
logical or neuropsychiatric disorders) would continue to be
a prominent mission accompanying the journey of scientific
discovery.
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