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Abstract 

 

Creating green energy solutions has become crucial to society. However, to achieve a clean and 

renewable energy system, significant developments must be made not only in energy conversion 

technologies (such as solar panels and wind turbines), but also in the feasibility and capabilities of 

stationary, electric-energy storage (EES). Many types of EES systems have been considered such as 

pumped hydroelectric storage, compressed air energy storage (CAES), flywheels, and electrochemical 

storage. Among them, electrochemical storage such as batteries has the advantage of being more 

efficient compared to other candidates because it is more suitable in scalability, efficiency, lifetime, 

discharge time, weight, and/or mobility of the system. Currently, lithium (Li)-ion rechargeable batteries 

have become very important in recent years due to their great promise as power source, but the batteries 

are limited by their materials’ performance. Accordingly, the development of high performance 

materials has been main focus in materials science research. Here, the achievements of cathode, anode, 

and current collector are described that they are synthesized via top-down approach to enhance their 

performance in Li-ion batteries.  

In cathode research, in spite of that there have been many reports dealing with nanostructured 

cathode materials, none of previous works have been reported the morphology transition of cathode 

materials via chemical etching. In this study, we found that a selective chemical etching method using 

PVP and AgNO3 is very promising for obtaining significantly improved electrochemical performance 

of the cathode materials even at high voltage range. This etching method spontaneously turns to layered 

morphology with a layer thickness of 10 nm. Furthermore, we found that the concurrent modification 

of layered LiCoO2 with a nanoscale Co3O4 coating layer by chemical etching to minimize the capacity 

loss and to maximize the rate capability of the cathode without the loss of the electrode density.  

In anode research, a novel architecture consisting of Si nanowires internally grown from pores in 

the etched graphite with high electrode density of 1.5 g/cm3 is introduced. In previous works, various 

nano-engineering concepts were introduced to overcome a volume related problem of Si during cycling. 

However, although these strategies exhibited a superior performance such as high capacity and good 

cycling stability, they cannot be satisfied with electrode density which is highly required to determine 

high energy density in practical approach. In this point of view, this work provides new strategy to 

design electrode material with practically required electrode density and high volumetric capacity. 

Simply, porous graphite as template for Si nanowires growth is designed via hydrogenation and Si 

nanowires are internally grown from pores in etched graphite via Vapor-Liquid-Solid process. 

Especially, porous graphite, which first is reported as top-down approach, plays a key role of good 

electrochemical performance in this work. In this system, not only porous graphite can offer free space 



to accommodate the volume change of Si nanowires, but also efficiently improve the electron transport 

between active materials.  

In current collector research, more advanced nanostructure anodes of uniform 3D Cu-Si core shell 

structured arrays with 250 and 500 nm diameter are produced using top-down processes. This 

nanostructured anodes improved in cycle stability and rate performance, even at 20 C rate. As a current 

collector, each Cu nanopillar substrate provides a high surface area for better mass accommodation of 

Si deposition while the space between them enhances the electrochemical reaction between the 

electrode and electrolyte and accommodates the volume change during cycling. In addition, because 

the fabrication of the Cu nanopillar substrate only involves conventional top-down processes, the 

nanopillars can be generated through a facile and fast process with control of the surface area and simple 

modulation of the nanopillar density or diameter. Remarkably, the well-patterned nanopillar substrate 

imparts a significantly enhanced connection between the current collector and active materials without 

a binder, and also provides free space to accommodate Si expansion without pulverization during 

cycling.  

As an additional part, owing to an introduction of devices that required a flexible energy storage, 

Li-ion batteries (LIBs) as a leading candidate have been widely considered due to high electrochemical 

performance. To approach a flexible property in LIBs, the system has highly required an electrode with 

flexible characteristic, therefore, graphene based composites has been strongly attractive due to the 

large surface area and electron transport with high mechanical strength. Also, as another field in anode 

material, vanadium sulfides (VS4) have been paid much attention due to high specific capacity and rate 

capability of lithium storage in these days. Accordingly, the composite consisting of grapheme and VS4 

is synthesized and characterized to describe the mechanism for lithium storage and high electrochemical 

performance in LIBs. 
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Chapter I 

Stationary Electric Energy Storage – Battery 

 

1. Introduction: The need of electric energy storage system 

Current oil- and nuclear-based energy systems have become global issues. Recent news headlines 

are evidence of this, from the BP-Gulf oil spill and nuclear meltdown at the Fukushima Daiichi nuclear 

power plant to global demands for reduced Greenhouse Gas (GHG) emissions.1-3 These challenges can 

be addressed through the introduction of smart cities that are based on using a stable smart grid with a 

clean energy power system.4 Harnessing a green energy from renewable energy sources and storing it 

in electric energy storage (EES) for electric power has been widely considered an optimal solution for 

future smart city power system. In this system, energy can be generated from clean and renewable 

energy resource such as solar, wind, and wave, but it is not constant and reliable due to its dependence 

on weather, facing a fluctuation in output, unavailability, and unpredictability.5 Hence, the use of a large 

scale stationary EES combined with energy generation system (solar panel, wind turbine, and water 

turbine) has been also considered to improve a reliability and overall use of the power system, which 

provides various kinds of grid services such as frequency regulation, spinning reserve, and power 

quality.6 

EES can be highly employed for load leveling services that saves an electric energy whenever the 

renewable system generates too much for a given demand and supply to grid system when there is too 

little generation, as shown in Figure 1.7 For the more impact of EES in smart cities, it should provide 

grid stability through flexibility, fast energy injection and extraction as well as enhance power quality 

with supply security. To meet the above requirements, many types of ESS systems have been 

extensively investigated, which are described depending on how the electrical energy is stored (Figure 

2).8-9 

Among them, potential energy storage such as commercial pumped hydro storage (PHES) and 

compressed air energy storage (CAES) has been conventionally considered because their power can 

reach up to GW level for bulk energy storage with a low life cycle capital cost (50-200 $/kWh).10 In 

PHES, it uses a stored water at a relatively high elevation (water potential) to produce electricity. During 

periods when electric demand is low, the extra electric energy is used to pump water back to the upper 

reservoir, and then the stored water is allowed to activate a turbine generating a high value electricity 

(a few tens of GW to MW) for peak hour.11 This system has a conversion efficiency of about 65-80%, 

and its capacity is dependent on height and volume of the stored water. CAES also has been considered 

as a good candidate for EES system because it stores a large amount of electric energy with more than 
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100 MW. This system has a fast energy conversion and storage process, so it has been designed for 

daily working of the partial and quick load conditions.12-13 CAES stores the energy by compressing air 

as an elastic potential energy. It has a separate compression and expansion process. During low demand, 

the extra electric energy is stored in the form of compressed air under air storage space. When the 

demand is high, the compressed air is converted to an electric energy through an energy conversion 

process using a high pressure turbine. CAES has an eco-friendly system, long storage period (> 1 year), 

low capital cost ($50 to $110 per kWh), and the storage efficiency in the range of 70-89%. 

In kinetic energy storage system, flywheel technologies have been attractive over the past few 

decades for bulk energy storage applications.14 This system utilizes the energy in the angular momentum 

of a spinning mass. The energy is stored by spinning of flywheel by motor. When needed, the motor 

generates electric energy from the rotational energy of the flywheel. The overall system is dependent 

on the size and speed of the rotor, and the power rating is determined by the motor-generator. The main 

advantage of flywheel is a long life time with several hundreds of thousands of full cycles, and 

additionally it has a high efficiency of 90-95%. This system is mainly applied to the high power/short 

duration EES applications (e.g. 100s of kW/10s of second), which provides a support power during 

interruption for short time or shifting one power source to another. Table 1 describes EES technologies 

that have been commonly considered. Depending on the application of the system, each storage design 

is more suitable either in efficiency, lifetime, discharge time, weight, and/or mobility of the system. The 

limitation for each technology is also summarized. For examples, PHES requires an available sites for 

two large reservoir with different water elevations, long lead-time (> 10 years), and high cost for the 

construction as well as an environmental consideration.15 CAES’s main barrier is to select a favorable 

geography and to require gas turbine system containing a combustion process with fossil fuel, resulting 

in a contaminating emission.15-16 The disadvantages of the flywheel technology are a high rate of self-

discharge caused by a high frictional loss, a high initial cost, and a low energy density.17 These 

drawbacks of the above systems make them useful in limited range of applications. 

Among these various energy storage systems, electrochemical storage such as batteries has the 

advantage of being more efficient compared to pumped hydroelectric and CAES storage as described 

below. It can be located anywhere without a geographical consideration, which allows it to be installed 

near residential area. Its size can be designed in applications ranging from a few kWh to several MWh. 

It can be simultaneously applied to both power and energy management applications.9, 18 A battery 

works by directly converting chemical energy to electrical energy by employing different chemical 

reactions. The many different combinations of anode, cathode and electrolyte materials to produce 

different cell chemical reactions thereby produces numerous types of batteries such as the Li-ion, lead-

acid, Na-S, and vanadium redox batteries. Presently, the Li-ion rechargeable battery is the most common 

type of battery used in consumer portable electronics due to its high energy density per weight or volume 
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and its good recharge efficiency. However, the Li-ion battery for use in stationary energy storage 

applications is limited by its high cost (> $1,000/kWh). For renewable energy to be stored without 

government subsidy, the storage process must be kept below $200/kWh.19 Considering many aspects 

including cost, life-time, efficiency, power, and energy density, many battery systems have been applied 

for large-size energy storage applications. In this review, we categorized battery system depending on 

the degree of development for stationary applications, and offer a comprehensive description on each 

battery to provide a better understanding. In detail, each system will be demonstrated with principle of 

operation, its status and challenges in the applied chemistry. 

 

2. Battery for EES applications 

2.1. Lead-acid battery 

After the development of an original lead-acid battery by Gaston Planté in 1859, it has been 

adapted in various applications from engine starting in electric vehicles (EVs) to EES in renewable 

energy system.20-24 This system consists of lead dioxide (PbO2) as a positive electrode and metallic lead 

(Pb) with high surface area as a negative electrode. The configuration of lead-acid battery and its 

discharge/charge mechanism named double-sulfate reaction is illustrated in Figure 3 [25, 26].25-26 It 

utilizes an electrode reaction of Pb oxidation (Pb → Pb2+ + 2e-) and of PbO2 reduction (Pb4+ + 2e- → 

Pb2+) during discharging, resulting in the formation PbSO4 product on both electrodes. This process is 

reversible on charge state. The overall reaction is described as followings: 

Negative electrode: 

Pb ↔ Pb2+ + 2e- 

Pb2+ + SO4
2- ↔ PbSO4 

Positive electrode: 

PbO2 + 4H+ + 2e- ↔ Pb2+ + 2H2O 

Pb2+ + SO4
2- ↔ PbSO4 

Overall reaction: 

Pb + PbO2 + 2H2SO4 ↔ 2PbSO4 + 2H2O 

As shown in process, the sulfuric acid (H2SO4) in an aqueous electrolyte is consumed to produce 

PbSO4 and H2O products during discharge, and it can be an additional active component that limits the 

electrochemical performance of the lead-acid battery system. The overall reaction in a cell provides a 
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standard voltage of 2.1 V, and the acceptable end-voltage on a moderate discharging is 1.75 V per cell. 

Open circuit voltage changes depending on an electrolyte concentration, which indicates that the state 

of charge in the lead-acid battery system can be determined by measuring a relative density of sulfuric 

acid. However, when the cell is overcharged at the higher value than ~2.39 V, the aqueous electrolyte 

decomposes by evolution of hydrogen (2H+ + 2e- → H2) and oxygen (H2O - 2e- → 1/2O2 + 2H+) at the 

negative and positive electrode, respectively. This leads to loss of water in electrolyte, requiring 

maintenance by additional supplement. Lead-acid battery has been introduced in various electronic 

power applications due to its advantage of ease manufacturing in 1 Ah to ~1000 Ah-sized products. 

This battery can also provide a moderate value of power and energy rating with kW to a few ten’s MWs, 

a good electrical efficiency (>70%), and a long lifetime (3-12 yrs.) as well as a relative low-cost range.21, 

27 In addition, the cell components (especially lead) can be efficiently recycled at high rate with 97% 

from used batteries. However, the cycle-life of the lead acid battery can be limited. Lead sulfate layer 

can be formed on the surface of negative electrode during high discharge rate, which is not completely 

reversible during recharging process.28-29 This eventually reduces the electrode area for the 

electrochemical reactions, resulting in poor cycle life performance. In addition, charging of the cell at 

a high current rate produces a hydrogen generation, which also causes a poor round-trip efficiency and 

explosion hazard.21, 30 

To improve cycle-life extension of a lead acid battery, carbon is attempted to be used in negative 

electrodes because its small content (0.15-0.25 wt%) on the negative electrode was reported to reduce 

the PbSO4 accumulation on the electrode’s surface.31-33 When the negative lead electrode is completely 

replaced by high-surface-are carbon, called lead-carbon (PbC) asymmetric system, the nucleation and 

growth of PbSO4 are eliminated by no chemical reaction on the negative electrode, which greatly 

enhances a cycle-life performance.34 On the other hands, as an advanced lead acid system, the split 

design of the negative electrode (known as ultra-battery) is demonstrated as shown in Figure 4. This 

system uses Pb being parallel connected with the modified carbon as the negative one with one PbO2 

positive electrode, in which provides a high capacity and significantly long cycle-life.35 Compared to 

the traditional lead acid battery, the split design of the ultra-battery system exhibits an improvement 

with 50% discharge power, 60% charge power, and ~17000 cycles. 

Despite of such improvements in in lead acid ultra-battery system, the low cost and high durations 

are still further required for stationary EES applications. In the case of capital cost, the value of ultra-

battery system ($500/kWh) is higher than that of valve-regulated lead-acid system ($200/kWh), but it 

is possible to reduce a cost by increasing production’s scale. For now, the lead acid battery system is 

only applied in EES applications that require relatively short discharge duration. If the main barriers of 

the lead acid batteries can be overcome, it can be available for a large scale energy storage with a high 

power and energy. 
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2.2. Na-S battery 

As an introduction of sodium-sulfur (NAS) battery system in 1970s, this technology has been 

considered to be an attractive candidate for a large-scale EES application due to the abundant sodium 

(Na) with its low redox potential, high theoretical specific energy (~760Wh kg-1), and cycling 

flexibility.9, 36-37 The NAS system is constructed in a tubular design, as shown in Figure 5. This system 

is composed of Na as an anode, S as a cathode, and beta-alumina (Al2O3) as a solid electrolyte and 

separator. The cell needs to be operated at high temperatures between 300 and 350 °C, which are 

required to maintain Na and S in molten states and make efficient Na ion transportation through the 

ceramic solid electrolyte.38 

During discharge process, Na at a negative electrode is oxidized, giving a Na+ ions. These Na+ ions 

move through the solid electrolyte and react with S at a positive electrode, forming a sodium 

pentasulfide (Na2S5). The Na2S5 is separated from the remaining S and yields two-phase liquid mixture. 

However, the two-phase liquid mixture is gradually transformed to the single phase sodium polysulfide 

with high sulfur content (Na2S5-x) when the remaining S is completely consumed. The above chemical 

reactions are reversible during the charge process, and the overall reactions are as follows: 

Negative electrode: 

2Na ↔ 2Na+ + 2e- 

Positive electrode: 

xS + 2Na+ + 2e- ↔ Na2Sx 

Overall reaction:  

2Na + xS ↔ Na2Sx 

At the temperature of 350 °C, the NAS battery exhibits the constant voltage of 2.07 V until 60 ~ 

75 % of discharge process, representing two phase mixture of S and Na2S5. After that, the voltage starts 

to linearly decrease (corresponding to the formation of single Na2Sx), and approach to 1.78 V at the end 

of discharge.39 In this battery system, the solid state electrolyte based on beta-alumina ceramic (β-Al2O3 

or βʺ-Al2O3) has been mainly used due to its adequate ionic conductivity of 0.2~0.4 Scm-1 at 300 °C.40-

42 The crystal structure and electrochemical behavior of the βʺ-Al2O3 has been further stabilized and 

improved by introducing Li+ or Mg2+ ions into the structure with ideal composition.43 The solid 

electrolyte is one of the key elements determining a battery performance and cost. The sealing material 

for the solid electrolyte is also very important elements for the NAS battery system. If the both 

electrodes with liquid state are in direct contact with each other at a high temperature, it causes severe 

fire and explosion. For instance, NAS battery incident occurred in 2011 because the molten active 
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materials flowed over sealing material between block, causing a continuous short-circuit between 

battery cells.44 Glass-ceramic sealants based on borosilicate have been widely considered to prevent the 

direct contact between two molten electrodes. These have high strength and chemical stability, no phase 

transformation, little stress variation during thermal operation, and controllable thermal expansion 

displaying a favorable performance.45-46 Bi-doped borosilicate is also introduced for an attractive sealant 

due to its well-matched thermal expansion between glasses and solid electrolyte.47 Another main issue 

for NAS batteries is that the discharged products such as sodium polysulfide are electronic insulator. 

Hence, the discharge products should be presented in carbon source materials as electronic conductor 

to provide an efficient electron-transport, and additionally, highly corrosive behavior of the molten 

cathodes requires anti-corrosive current collector.43, 48 

The use of NAS battery has been considered for load-leveling or peak shaving in large scale EES 

applications with ~65% market share.49 However, this system still further requires the safety and initial 

cost-reduction (~$350/kWh) along with cell engineering.10 Moreover, one of the main issue is to reduce 

the operation temperature, which allows one to select more cost-effective materials in a cell with better 

materials’ durability and to handle efficient thermal management. To solve this problem, extensive 

works have been performed to decrease the operating temperature by the use of polymers or organic 

solvents as the catholytes.50-54 For example, the utilization of a solid electrolyte with a catholyte solvent 

enhanced the interfacial conduction and the mobility of components in the cathode.55 At present, since 

NAS battery has been widely applied in a large scale EES application, the advanced technology can 

provide a reduction of battery cost and improvement of its reliability for large scale EES if the above 

problems are solved. 

 

2.3. Li-ion battery 

At the present, Li-ion batteries (LIBs) have been considered for the use in a large scale EES market. 

Conventionally, this battery system uses Li transitional metal oxides as the cathodes, carbons as the 

anodes, and non-aqueous carbonated liquids as the electrolytes as shown in Figure 6.56 During charge 

process, Li ion is transferred across the electrolyte from the anode host structure to the cathode electrode, 

and this chemical reactions is very reversible. The overall reaction is described as followings: 

Positive electrode: 

Li1-xCoO2 + xLi+ + xe- ↔ LiCoO2 

Negative electrode: 

LixC6 ↔ xLi+ + xe- + C6 
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Overall reaction: 

LiC6 + CoO2 ↔ C6 + LiCoO2 

The Li-ion battery system can operate at ~3.7 V with exhibiting high specific energy densities of ~150 

Wh kg-1 and ~400 Wh l-1. This high energy density performance makes it attractive for the use in weight 

or volume sensitive applications.57 Also, the Li-ion battery exhibits a low self-discharge of below 8% 

per month, a long cycle-life of greater than 1000 cycles, and wide operation temperature ranges (-20 ~ 

60 °C for charge / -40 ~ 65 °C for discharge).58 Its main drawbacks are high cost, low temperature 

tolerance, and the protective system for cell degradation and thermal runaway from electrolyte 

decomposition.56 Although the use of a solid polymer as the electrolyte in Li-ion battery system become 

enhancing a safety and more flexibility, but the design cost is increased with a decreased scalability. 

Nowadays, although Li-ion batteries took a large possession of area in portable electronic devices, 

but there are several kinds of challenges for stationary EES applications. The first consideration is its 

high energy cost (>$600/kWh) that is 2~5 times higher than the required cost for stationary 

applications.10, 59-60 Also, thermal management should be efficiently operated in a large scale application 

with MW levels, which is closely related to a safety and extended cycle-life. The generated heat from 

the Li-ion battery has induced a thermal instability of a flammable organic electrolyte, and this issue 

would be more important in a large scale EES application.61 Recently, to meet cost and safety 

requirements for EES applications, Li-ion batteries is designed with using LiFePO4 as the cathode and 

Li4Ti5O12 as the anode.62-64 Li4Ti5O12 is well known to have zero straining Li-intercalation/de-

intercalation behavior with a specific capacity of 175 mAh g-1, exhibiting a voltage plateau at 1.55 V 

vs. Li. Although the voltage of Li4Ti5O12 is relatively high for anode applications, it shows an excellent 

cycling stability and safety compared to those of the commercially used carbon anode (0.2 V vs. Li) 

because the Li4Ti5O12’s operating voltage is beyond the electrolyte decomposition voltage (<0.8 V vs. 

Li). As the cathode, LiFePO4 has been considered to be a promising candidate due to its low cost, 

plentiful, and environmentally benign elements. In addition, LiFePO4 has a durable crystal structure 

composed of bonding between iron and oxygen, which leads to a stable and reversible electrochemical 

performances for many cycles of Li intercalations into its structure as well as a thermal runaway at high 

temperature [65-68].65-68 Its capacity is good (~170 mAh g-1), but its working voltage is relatively low 

(~3.45 V vs. Li) The Li-ion battery system can be enabled as a large scale EES system if the further 

requirements are well combined within in cost-effective range. 

2.4. Redox flow battery: All-vanadium 

For a large scale EES system with the range from 10 kW to 10 MW, redox flow battery (RFB) is 

an attractive candidate when considering its cost, mobility, depth of discharge, fast response and safety 

and comparing them to those of LIBs and NAS system.69 RFB has exhibited a high energy efficiency 
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that is induced by redox couples’ electrochemical reactions in liquid solutions. Among a variety of 

redox couples, all vanadium redox flow battery (VRFB) provides an excellent electrochemical 

performance.70 A typical VRFB system consists of two external reservoirs containing a soluble 

electroactive species (V4+/V5+ as the positive chemicals and V2+/V3+ as the negative chemicals) and two 

stacked electrodes. These two sections are separated by an ion-exchange membrane and have pumping 

circulation system (Figure 7). The electrochemical reaction is as followings during discharge: 

Negative electrode:  

V2+ → V3+ + e- 

Positive electrode: 

VO2
+ + 2H+ + e- → VO2+ + H2O 

Overall reaction: 

VO2
+ + 2H+ + V2+ → VO2+ + H2O + V3+ 

The standard open circuit voltage (OCV) is 1.26 V, and the voltage is increased to 1.6 V at the 

fully charged state in the cell system with 2 M VOSO4 in 2.5 M H2SO4 electrolyte.71 The VRFB system 

can be applied in a temperature range of 10~40 °C.72 Since the same vanadium species with different 

oxidation states are used in each cell, the VRFB system doesn’t have cross contamination problems. It 

enables the electrolyte to be recycled in the cell, leading to a long cycle-life and the reduction cost of 

the battery system. Also, the fast electrochemical reaction of vanadium redox couples allow the VRFB 

to be highly discharged/charged at a short time.70 However, VRFB has several drawbacks for practical 

applications. The main problem is its lower specific energy density (25~30 Wh kg-1). The energy density 

of the VRFB is highly related to the concentration of vanadium ions in the liquid H2SO4 solution, and 

its maximum concentration is limited by the precipitation of solid vanadium compound.73-76 Several 

approaches have been tried to increase the solubility of vanadium in the liquid solution. However, the 

vanadium concentrations in the electrolyte and its effects on the electrochemical performances (state of 

charge, energy density) are still remains as main challenge in VRFB. The highly oxidizing ability of 

V5+ should be addressed to maintain overall system in fully charged positive electrolyte because it easily 

degrades membrane and positive electrode materials.18, 77 The V5+ oxidizing ability limits the choice of 

materials for membrane and positive electrode; New Selemion anion exchange membrane or Nafion 

cation exchange membrane are used, and carbon or graphite felt is used as the electrodes. 

At the present, although all-VRFB system has been widely used in applications for load-leveling 

and uninterruptible power supply (UPS) due to its excellent electrochemical reversibility, its cost 

reduction is still essential for stationary EES applications. Vanadium is still expensive ($7 - $14 per 
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pound). Moreover, the membrane is the highest price component of the VRFB system, which should be 

considered with low-cost alternatives.38 It is reported that a modified perfluorinated membrane is 

developed to reduce the cost, and its performance demonstrates an energy efficiency of 80 % in 5~10 

kW battery stacks.78 If the ion exchange membrane is continuously developed with enhanced 

electrochemical properties such as low vanadium ion permeability, good chemical stability, and 

oxidation resistance toward V5+, it can further reduce the cost of VRFB and improve its performance. 

Another issue for the further development of VRFB is carbon-based electrode materials [79-81].79-81 

The current electrode materials can generate a current density up to 100 mA cm-2 with a good energy 

efficiency, but further improvement is needed to increase stack power density with the reduction of 

stack cost per kW power output.82 In addition to the electrode/membrane materials, the design of overall 

system is also important to improve electrochemical performance and build cost-effective system.38 In 

the present design, the parasitic current appears because the electrodes in stacks cell are fed with 

pumped electrolyte in parallel, which leads to self-discharge and energy loss. The shunt current is also 

exited due to the voltage difference between stack cells, inducing a corrosion of materials of cell stack 

with capacity loss.83 Accordingly, if VRFB system is designed to eliminate electrical leakage currents 

with the improvements of other components, it can further improve the electrochemical performances 

as well as cost reductions for stationary EES applications. 

 

3. Recent Progress in Battery for EES applications 

Although the commercialized batteries are widely installed in stationary applications, their energy 

density is still insufficient for a large scale EES due to the intrinsic limitations in the current electrode 

materials for the batteries. Major research trend has moved to potentially high capacity electrodes such 

as metal anodes and air cathodes. Additionally, to be competitive EES systems, the cost of batteries 

should be reduced with keeping or enhancing their electrochemical performances. Therefore, the new 

battery technology is highly required to provide successful EES requirement parameters such as high 

energy density, low cost, increased safety, and environmental compatibility. In next chapter, we will 

review the suggested technologies with principles and developed components for stationary EES 

systems. 

 

3.1. Metal-Air battery: Zn-Air 

Metal-air batteries have attracted attention due to their higher energy density than other battery 

systems mentioned in previous chapters (Figure 8). Metal-air batteries generally consist of a metal 

anode, air-cathode, a separator, and metal-ion conducting electrolyte (Figure 9). During discharge 
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process, metal anode is oxidized with providing free electrons, and the oxygen accepts the released 

electrons at the cathode electrode, forming an oxygen-containing species as reduction products. The 

oxidized metal ions and oxygen-reduced species migrate through electrolyte, and they are combined to 

form metal oxides. These reactions are reversible with forming metal at the anode and oxygen 

generation at the cathode, respectively, when charging of the battery. The main considerations of metal-

air batteries are a low efficiency of the anode utilization and a slow kinetics of the cathode [84, 85].84-

85 For the air cathode, the use of a catalyst is required to improve an oxygen reduction reaction (ORR) 

at the liquid-gas-solid interface. Due to a low solubility of oxygen in liquid electrolyte, the degree of 

oxygen transport in electrolyte also plays a key role of improving an electrochemical performance.86-87 

For the metal anode, the precipitated metal oxides, hydroxides, or other species on the metal anode 

surface impedes a discharge process due to a retardance of electrolyte contact.84 

Recently, among various metal-air batteries, zinc (Zn)-air battery system has been considered for 

the stationary EES application due to high abundance, low cost, and environmental compatibility of Zn. 

In Zn-air battery, the air cathode electrode consists of a catalytic active layer and gas diffusion layer as 

schematically illustrated in Figure 10.  

When oxygen is introduced into the porous electrode, the catalyst of the electrode accelerates ORR 

to form hydroxyl ions in alkaline electrolyte. The hydroxyl ions move to zinc anode and contribute to 

the formation of zinc oxides (final product) during discharge process. The additional chemical reaction 

possibly occurs, leading to the evolution of a hydrogen gas in negative electrode, and the suppression 

of hydrogen evolution is needed to increase the capacity of this system.88-89 The overall reactions are 

described below: 

Negative electrode:  

Zn → Zn2+ + 2 e- 

Zn2+ + 4 OH- → Zn(OH)4
2-     E0 = 1.25 V 

Zn(OH)4
2- → ZnO + H2O + 2 OH- 

Zn + 2 H2O → Zn(OH)2 + H2 (possible) 

Positive electrode: 

O2 + 2 H2O + 4 e- → 4 OH-      E0 = 0.4 V 

Overall reaction:  

2 Zn + O2 → 2 ZnO     E0 = 1.65 V 
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The theoretical specific energy density of Zn-air battery is 1350 Wh kg-1, but the operating voltage 

is less than theoretical value due to the internal polarization of cell.90-91 There are several challenges 

such as the electrochemical stability of the cathode electrode during charge, dendrite formation at zinc 

electrode, zinc dissolution, limited oxygen solubility in electrolyte, and higher value of charge 

polarization than that of discharge one.92 Therefore, these challenges should be addressed to apply Zn-

air battery system into EES applications. Each challenge part and its solution will be discussed below. 

Negative Electrode: Pure Zn metal is utilized as the negative electrode in Zn-air battery system, 

where Zn metal is oxidized and transformed to zinc oxide when discharging. The morphology of Zn 

electrode is transformed during cycling of the battery due to the uncontrolled dissolution of Zn in 

electrolyte. This continuous precipitation creates and grows a dendrite that eventually touch the positive 

electrode, which results in a short-circuit.93 In order to efficiently utilize zinc electrode, the modification 

of its surface area has been mainly considered to optimize reaction rate with an alkaline electrolyte.94-

96 In addition to Zn’s precipitation problem, the evolution of hydrogen (H2) gas caused by the corrosion 

of Zn is also a major drawback, resulting in an increase pressure of the battery during cycling. To 

overcome these problems, zinc alloy with other metals has been attempted.97-98 However, because the 

introduced metals such as Hg and Pb are toxic and can cause the environmental problem, Ni or In based 

alloy have been used to efficiently utilize zinc electrode with high electrochemical performance.99 Also, 

the method of coating Zn surface with other materials has been introduced to prevent a direct contact 

between Zn and electrolyte, which increase discharge capacity with a low gas evolution.100-101 

Separator: A separator plays a key role of transporting a sole hydroxyl ion (OH-) from air electrode 

to zinc electrode. It should have a high ionic conductivity, proper porosity, non-electronic conductivity, 

high adsorption of electrolyte, stability in alkaline solution, and retardance of Zn dendrite formation. 

Among the various kinds of separator candidates, polyethylene oxide and polyvinyl alcohol have been 

widely used due to their appropriate properties in alkaline based applications. Mesoporous membrane 

(MCM-41) is recently developed.92, 102-105 This new membrane enables Zn-air cell to increase power 

density and volumetric energy density, which are comparable to the commercial value such as 

Duracell’s DA 675 model. 

Electrolyte: Potassium hydroxide (KOH) is widely used as the electrolyte for Zn-air battery due to 

its high ion-conductivity, and its conductivity can be further improved by the increase in concentration 

of KOH.106 However, the use of more than critical concentration (~30% of KOH) can lead to viscosity 

increase of the electrolyte and ZnO formation. The hydroxyl ions in the electrolyte are very sensitive 

and reactive with carbon dioxide, which contributes to the formation of carbonate. This results in a 

capacity loss of the battery. Hence, the use of absorbents in a cell has been considered to reduce CO2 

concentration,107-109 which leads to significant reduction of CO2 below 20 ppm with compact device 

design.106-108 
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Positive Electrode: Air cathode of Zn-air cell is comprised of a catalyst for ORR and porous carbon 

structure. The porous structure of the electrode can provide a high diffusion pathway for oxygen in air 

and house catalyst materials. However, when cell operates, the porous electrode structure can be 

clogged or collapsed by discharged or decomposed products such as potassium carbonate, resulting in 

capacity loss.93 For air electrode substrate, a variety of carbon materials have been investigated. Carbon 

black is widely considered as the most conventional support. Carbon nanostructures such as 1D-

nanotubes or nanofibers, 2D-graphene nanosheets are also introduced due to their efficient electron 

transport, structural integrity with the well-dispersed catalyst, and facile diffusion of oxygen.109-111 It is 

also known that electrode kinetics is dependent of the degree of defect site of the electrode materials. 

For example, the structure with large number of edge-plane site such as pyrolytic graphite and multi-

walled carbon nanotubes exhibits a high activity toward ORR.112 Furthermore, the surface treatment or 

doping process on carbon can also improve the electrochemical behavior.113-116 Especially, for nitrogen 

doping on carbon, this dopant can increase the degree of defect with more exposure of edge site in 

graphitic carbon, influencing a highly stable and active ORR catalyst. Based on DFT calculation for 

high performance induced by doping, it is suggested that edge site of carbon can lower the barrier of 

oxygen adsorption and electron transport.117 

Catalyst: Catalyst is an essential element in air electrode. This reduces an oxygen reduction 

polarization for the sluggish ORR. For potential catalysts, noble metal such as Pt and Pt-alloy has played 

a role of contributing a high ORR activity. However, due to the high cost of noble metals, carbon based 

catalyst has been investigated.118-120 In addition, the transition metal oxides with various structure such 

as spinel and perovskite has been also widely investigated for the potential catalysts.121-123 Among those 

candidates, Mn-based oxides with thin-film type produces an improved ORR activity that is comparable 

to that of noble metal catalysts, but they exhibits the low electric conductivity and instability in alkaline 

solution, especially at 2 V for oxygen evolution reaction (OER) during charge.124 To overcome these 

problems, the addition of nitrogen-doped carbon nanotubes is introduced, which leads to 96% of 

retention in OER current density after 50 cycles as well as an increase of electric conductivity.125 

 

3.2. Advanced redox flow battery 

Although there has been a continuous attention on redox flow battery for stationary EES 

applications, its poor electrochemical performances (low voltage and low energy density) has been 

remained as one of the main challenges. To overcome this problem, the advanced RFB systems have 

been researched, which is discussed in this section. 

Organic-Inorganic Aqueous System: The scalability and cost of active materials are one of main 

issues for their use in EES applications. For this reason, a metal-free organic-inorganic aqueous flow 
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battery system is recently proposed.126 This system is comprised of 9,10-anthraquinone-2,7-disulphonic 

acid (AQDS) in sulfuric acid as the negative electrode, Br2 in HBr as the positive electrode, and Nafion 

212 membrane between Toray carbon paper. This battery system exhibits a relatively low open-circuit 

potential with 0.92 V at 90% of state of charge. However, it shows not only highly reversible 

electrochemical performances, but also an excellent galvanic discharge maintained with > 99% over 

long time scale even at 0.5 A cm-2. These remarkable results are attributed to the high reversibility of 

AQDS with aromatic π-system, high rate kinetic properties, and stability. Moreover, the addition of 

hydroxyl group can increase cell voltage and solubility as well as density.127 Therefore, metal free flow 

system can provide a low capital cost of storage chemicals per kWh with enhanced electrochemical 

performances, which is attractive for cost-effective and large-scale energy storage applications. 

Non-Aqueous System: Conventional aqueous-based RFB systems have a low energy density due 

to the low electrochemical window of aqueous electrolytes and the low concentration of redox species 

in electrolytes. When the electrolyte has wider electrochemical windows, the choices of redox couples 

would be more open, including high voltage redox couples and multi-electron transfer redox species. 

This would be possible in non-aqueous RFB (NRFB) system.128 The main difference between aqueous 

and non-aqueous RFB system is the electrolyte and supporting ions. In aqueous RFB, strong acids such 

as H2SO4 and HCl are used as the electrolyte, and proton is migrated across the membrane to balance 

electrical neutrality. In non-aqueous RFB system, organic solvent is utilized to dissolve redox species 

(metal-ligand complex), and ionic liquids are added to increase the ionic conductivity of the electrolyte 

in NRFB [129-131].129-131 In general, NRFB exhibits higher operating voltages (> 2V) than aqueous-

based RFB. However, since the solubility of redox species in non-aqueous electrolyte is lower (< 0.1M) 

than that of the aqueous-based electrolytes, the NRFB’s other electrochemical performances such as 

capacity and coulobmic efficiency are not satisfactory even at small current density. To overcome these 

drawbacks of the NRFB system, many research works have been performed. Among them, major two 

approaches are discussed below. 

The first approach is to use metal-ligands complex as the electrolyte in NRFB. In a complex, metal 

takes part in a redox reaction, and ligand determines its solubility in organic solvent. Thus, if the 

combination of metal and ligands is well optimized, it can provide a high operating voltage with 

efficient solubility, resulting in higher energy density. Among various candidates, vanadium complex 

redox system has been widely studied.132-133 Single vanadium metal is coordinated with acetylacetonate 

(V(acac)3) in the electrolyte that consists of acetonitrile (CH3CN) as the organic solvent and 

tetraethylammonium tetrafluoroborate (TEABF4) as the supporting electrolyte. Since the same 

electrolytes are used in both electrodes in the above system, its energy efficiency can be improved. The 

redox reaction is as follows during discharge: 

Negative electrode: 
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V(acac)3 + e- → V(acac)3
-     E0 = 0.46 V vs. Ag/Ag+ 

Positive electrode: 

V(acac)3 → V(acac)3
+ + e-     E0 = -1.72 V vs. Ag/Ag+ 

Overall reaction: 

2 V(acac)3 → V(acac)3
+ + V(acac)3

- 

The theoretical operating voltage is 2.18 V, which is ~60% higher than that of aqueous vanadium 

RFB that use 2M H2SO4. If either charged complex is migrated to the opposite electrode, this cross-

over can induce a self-discharge by a neutral intermediate, leading to the loss of charge-efficiency. 

However, it is not required to regenerate electrolyte solution in this battery system. However, the water 

and oxygen contaminations are critical for the battery performances.134 

When the system contains oxygen, the reduction ability of V(acac)3 is decreased accompanying by 

a degradation of solvent and supporting electrolyte. Moreover, because V3+ center is easily converted 

to VO double bond in water, V(acac)3 transfers to vanadyl acetylacetonate (VO(acac)2), as follwoing 

equation: 

V(acac)3 + H2O → VO(acac)2 + Hacac + H+ + e- 

where Hacac is a protonated acetylacetonate. 

Therefore, the membrane should be immersed in the electrolyte for long time to remove water and 

oxygen before cell fabrication. 

The second approach to overcome the limitations of non-aqueous system such as complex 

preparation and low solubility of redox species is all organic redox system.135 This system is comprised 

of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as the catholyte, N- methylphthalimide as the 

anolyte, and NaClO4 as the charge carrier dissolved in acetonitrile, respectively. As a result, the 

electrochemical window is evaluated to be ~1.60 V, and the coulombic efficiency (C.E.) is ~90% in the 

20 cycles. Another all-organic RFB is also reported, which consists of 2,5-di-tert-butyl-1,4-bis(2-

methoxyethoxy) benzene (DBBB) as the catholyte, the derivatives from quinoxaline as the anolyte, and 

lithium salt in organic solvent as the electrolyte.136 The both systems provide a moderate voltage of < 

2.0 V, but the value still remains with the solubility of active materials as limitations in all-organic 

system. 

 

3.3. Aqueous lithium flow battery 
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Because Li metal has still highest specific capacity (3860 mAh g-1), it is the most attractive anode 

for the batteries, but the efficient utilization of Li is still main challenge to obtain a high energy density 

in battery. Instead of using oxygen as the cathode for Li-air battery, the use of water as the cathode in 

Li-water battery system has been also considered. However, the Li-water battery is not rechargeable 

because the water loss occurred by evolution of H2 and O2 during discharge and charge process, 

respectively. Recently, aqueous Li-flow battery has been introduced, which use water-soluble redox 

couples in the positive electrode, as shown in Figure 11.137 The electrochemical reaction is as followings 

during discharge: 

Negative electrode: 

Li → Li+ + e- 

Positive electrode: 

Mn+(aq) + e- → M(n-1)+(aq) 

Overall reaction: 

Li + Mn+(aq) → Li+ + M(n-1)+(aq) 

where M is transition metal ion. 

In positive electrode, the dissolved redox species in water are circulated in the flow-through mode, 

which can be individually stored in a tank. To achieve high working voltages in a cell, it is required to 

select high redox potentials for positive electrode. The possible candidates in positive electrode are 

suggested in Figure 12.138 

Among the various candidates of water soluble redox species, Fe(CN)6
3-/Fe(CN)6

4-(aq) redox 

couple has been tested as the cathode for aqueous Li flow battery.139 This battery system uses Li super 

ionic conductor ceramic as the solid-electrolyte, which physically separate anode part (containing Li 

metal and non-aqueous liquid electrolyte) and aqueous liquid catholyte but allow Li-ion transportation 

between them. This configuration provides a working voltage of ~3.40 V at the current density of 0.5 

mA cm-2. Its cycle retention is maintained with 99 % coulombic efficiency after 20 cycles, indicating a 

good reversibility with high charge/discharge efficiency. However, the cell performance is limited by 

solid electrolyte at high current density, which is attributed to a relatively low Li ion conductivity (1 × 

10-4 S cm-1) of the solid ceramic electrolyte compared to mass transport rate of aqueous cathode species. 

Fe3+/Fe2+(aq) redox couple in aqueous solutions has been also investigated for its use for the 

cathode in aqueous Li flow battery system.140 This battery system has the working voltage of ~3.35 V 

at a current density of 0.2 mA cm-2. However, the working voltage is gradually dropped to below 3 V 
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at the end of discharge because the insufficient reduction of Fe3+ appeared, which was caused by the 

formation of β-FeOOH via slow hydrolysis of dilute FeCl3 aqueous in fuel tank.141-142 To overcome this 

problem, HCl is added to adjust the acidity with initial value (pH = 1.7) in stock solution, and 

(NH4)2S2O8 as oxidizing agent is added to easily oxidize Fe2+ to Fe3+ with fast time, as following 

reaction: 

2 Fe2+ + S2O8
2- → 2 Fe3+ + 2 SO4

2- 

As a result, the working voltage and capacity are significantly recovered. 

Aqueous Li flow battery is promising for stationary EES applications due to its high voltage and 

flexibility of a large-scale design, but there remains the selection of solid-electrolyte as main key 

challenge. If the solid electrolyte possesses high conductivity, stability, and scalability with low cost, 

this system can be more attractive for future large-scale EES applications. 

 

3.4. Waste-Li-liquid flow battery 

For stationary EES applications, a cost reduction of battery system is critical, which requires below 

$150 per kWh in long term consideration. To respond this request, a new battery system, named the 

Waste-Li-Liquid (WLL) flow battery, is recently proposed as shown in Figure 13.143 This is a system 

where Li metal is harvested from waste Li-ion batteries, and the harvested Li metal (anode) is 

discharged with the liquid solutions (cathodes) to produce electric energy. In the WLL battery system, 

the charge cathode and discharge cathode sections are separated by a solid/liquid hybrid electrolyte to 

extend the choices for electrode materials including liquid phase, solid phase, or a combination of both 

liquid and solid phases. In the charge cathode section, there are three options for supplying the Li metal 

to the anode section: (a) using waste Li-ion battery materials containing Li ions such as the graphite 

anode–LixC6, cathodes made of LixFePO4, or the organic liquid electrolyte, 1M LiPF6 in EC:DEC, (b) 

using the discharged products such as LiOH (aq) created by discharging the battery, or (c) collecting Li 

from both sources simultaneously. As for the discharge cathode section, by using the harvested lithium 

metal as the anode, water and other liquid solutions containing aqueous, non-aqueous, and mixed 

solvents can be used as cathodes to produce electric energy. 

It was reported that by using a hybrid electrolyte strategy, Li metal was harvested by charging the 

liquid solutions containing waste Li-ion battery materials, and the harvested Li metal was discharged 

with water as the cathode, producing 2.7 V vs. Li+/Li0 at 0.1 mA cm-2 (Figure 14). The discharged 

product, LiOH, can be re-cycled for Li metal harvest. Various liquid solutions can be used as the 

cathodes for the WLL battery system, and their voltage versus Li metal can be tuned by combining 

various solvents, solutes, redox couples, and counter anions. The cell performances can be limited by 
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the low Li-ion conductivity of the solid electrolyte. Li1+x+yTi2-xAlxP3-ySiyO12 is commercially available 

solid electrolyte that provides Li-ion conductivity in the range of 10-4 S cm-1.143 The further development 

of the solid electrolyte is required not only for WLL battery system but also for other batteries such as 

Li-Ni,144 Li-liquid,137, 139-140, 145-146 and Li-air.147-149 When used the Li metal as the anode, the formation 

of Li dendrite and its chemical instability has been issued, which causes a safety problem in batteries 

system. To address this point, Li metal anode in WLLB can be replaced by Li intercalation compounds 

such as graphite and Li4Ti5O12 (LTO).150 When LTO is adapted as the anode in the WLL battery, the 

working voltage is relatively low of ~ 1.8 V, but it exhibits good cycle retention with 91.2% of 

coulombic efficiency. This is due to the LTO’s high electrochemical potential of ~1.5 V vs. Li, which 

eliminate the possibility of the organic electrolyte decomposition. 

The proposed WLL battery system is enable the harvesting of Li metal from waste Li-ion batteries 

at room temperature and produce electricity by using the harvested metal as the anode and the liquid 

solution as the cathode. In addition, particular liquid chemistries to be used as cathodes found to be 

most effective (higher discharge voltage at higher current rate) for the proposed battery system can be 

selected from the combination of solvents, redox couples, and counter anions. Furthermore, if this type 

of batteries are successful in terms of using liquid phases as cathodes, one can eliminate the complicated, 

expensive solid electrode processes that are required when using solid state materials as electrodes for 

Li-ion batteries. Hence, this approach would be cost effective and could easily make its entry into the 

large-scale battery market for stationary electric energy storage devices. It would be challenged, but 

along with the fundamental study of liquid solutions as cathodes, the results of the other studies in the 

WLL battery system, including the solid electrolyte, the cell components, overall system design, and 

the battery prototype, would demonstrate the effectiveness of the Waste-Li-Liquid (WLL) flow battery 

for stationary energy storage applications. 

 

4. Conclusion 

A clean and renewable energy system that is completely independent of fossil fuels may not be 

possible within 20 or 30 years, but society must move in this direction in order for future generations 

to inherit a cleaner Earth. Achieving successful stationary EES technology is essential for a renewable 

energy system. Among many candidates for EES system, batteries are attractive technology because it 

more suitable in geographical location, power and energy density, efficiency, weight, and mobility of 

the system. To commercialize batteries in stationary EES market, the key parameter is the capital cost 

that is defined as the cost per unit energy divided by the cycle life. Additionally, the long cycle 

performance of the battery is another key parameter for successful EES applications. The required EES 

parameters for many types of battery systems are summarized in Table 2. Unfortunately, there is no 
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single battery technology that meets all of the EES requirements. There always exists trade-off between 

one parameter and another one. Hence, the detail analysis of the candidates should be accompanied to 

select the appropriate energy storage system in terms of being mature, lifetime, cost, energy density and 

cycle efficiency. The appropriate selection of the batteries for EES applications can be mainly 

determined by the scale. For example, LIB is proper for the small-size EES application such as mobile 

phone, while RFB is more appropriate for a large-scale application. Department of Energy (DOE) in 

U.S.A reported the cost and performance targets for near-term and long-term EES system for the large 

electricity applications. In near term, the developed battery technologies such as RFB, Na-S, lead-

carbon, and LIB are needed to be further developed with a capital cost of <$250/kWh and over system 

efficiency of >75%. In long term, the new battery technologies based on advanced system and materials 

are required to be developed with the cost of <$150/kWh and efficiency of >80%. Also, abundance of 

the electro-active materials that are used in batteries is another key factor for its applications in 

stationary EES system. For example, when considering the present estimate of global extractable Li 

reserve, the amount of Li may be enough to produce LIB for the whole fleet of electric vehicle cars. 

However, when LIB starts to be applied in stationary EES system, tremendous amounts of Li sources 

need to be spent, which makes it less available. Furthermore, it is also essential to understand and 

identify the electronic and chemical properties of the electro-active materials and their effects on the 

battery performances for the realization batteries in stationary EES applications. 

In conclusion, large scale batteries have been gradually implemented in stationary EES application 

area.  However, the increased use of the batteries in EES system has been limited by their high cost 

and unsatisfactory electrochemical performances. If new battery systems or further development of 

present battery systems can be introduced with suitable characteristics for large scale EES system, it 

will bring society one step closer to achieving successful stationary energy storage technology for a 

renewable energy system. 
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Figure 1. The description of load leveling with the adoption of electric energy storage system. 
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Figure 2. Classification of electrical energy storage for large scale stationary applications 
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Table 1. The characteristics of potential and kinetic energy storage system: pumped hydro, compressed air and flywheel. Ref. [9, 10, 18] 

Energy 

storage 

technology 

Power rating 

(MW) 

Discharging 

duration (h)

Efficiency 

(%) 

Capital 

cost 

($/kWh) 

Cycle cost 

output 

($/kWh) 

Life 

(yrs.) 
Maturity Safety issues Limitations 

Pumped 

hydro 

10’s MW to 

GW 
>8 65-80 80-200 0.001-0.02 30 Commercial Exclusion area 

Location limited / long 

lead-time 

 (>10 yrs.) 

Compressed 

air 

100’s MW to 

GW 
0.1-15 60-79 50-110 0.03-0.06 30 

Demonstration 

stage with limited 

commercial 

Pressure vessels

Location limited / need 

gas turbine system / 

contaminant emission 

Flywheel 1-100kW 0.1-1 >90 300-5000 0.05-0.4 20 Commercial Containment 

Low energy density and 

efficiency / high initial 

cost / high-self 

discharge 
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Table 2. The chemistry and characteristics of developed electrochemical energy storage system. Ref. [18, 151] 

Battery 

system 

Redox reaction Cell 

voltage 

(V) 

Efficiency 

(%) 

Lifetime 

(yrs.) 

Cycle life 

(yrs.) 

Energy and power 

density 
Energy and power cost 

Limitation 
Positive 

electrode 

Negative 

electrode 
Wh/kg W/kg $/kWh S/kW 

Lead-acid PbO2 Pb 2.1 >70% 3-12 500-1000 30-50 75-300 200-400 300-600 

Limited cycle-

life 

Toxic 

Na-S S Na ~2 75-90 5-15 2500 150-240 150-230 300-500 1000-3000
High operating 

temperature 

Li-ion LiCoO2 C6 3.6 85-98 5-15 
1000-

10000 
75-200 150-315 500-2500 175-4000 High cost 

Redox flow 

(all V) 
V4+/V5+ V2+/V3+ 1.26 75-85 10 12000 10-30 - 150-1000 600-1500 

Low energy 

density 
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Figure 3. (a) Configuration of lead-acid battery, and (b) Graphical representation of discharge-charge 

reaction mechanism. Redrawn based on ref. [21] 
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Figure 4. Schematic view of the ultra-battery consisting of lead-acid cell and asymmetric supercapacitor. 

Redrawn based on ref. [35] 
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Figure 5. Schematic illustration of tubular Na-S battery with the detailed structure. Redrawn based on 

ref. [9] 
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Figure 6. The schematic view of Li-ion battery consisting of intercalation compounds during discharge. 
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Figure 7. Schematic view of all vanadium redox flow battery during discharge. 
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Figure 8. The comparison of theoretical specific energy density of electrochemical energy storage 

system. 
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Figure 9. The general description of metal-air battery system with oxygen reduction reaction phase. 
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Figure 10. The detailed illustration of zinc-air battery. 
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Figure 11. The configuration of aqueous lithium flow battery and the electrochemical reaction process. 
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Figure 12. Various candidates of cathode in aqueous lithium flow battery. 
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Figure 13. Schematic view of waste Li-liquid flow battery consisting of waste battery material, Li metal, 

and water. 
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Figure 14. (a) Disassembled waste Li-ion battery, (b) Waste battery materials with LixC6, LixFePO4, 

and LiPF6 in EC/DEC, (c) Charge voltage curve for Li metal harvest from liquid solution with waste 

materials, (d) Li metal on surface of stainless steel after harvest process of Li, and (e) The comparison 

of discharge curve between pure Li metal and harvested Li from waste Li-ion battery when using pure 

DI water as cathode. 
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Chapter II 

The Details in Li-ion Batteries 

 

1. Li-ion Batteries’ Trend in 2014 

Commercial Li-ion batteries (LIB) is currently operated at 3.6~3.7V, which are comprised of 

cathode, which is generally designed with transition metal oxides, and anode such as graphite and 

hard/soft carbon.1-2 The performance of LIB is dependent on the type of cathode materials, and lithium 

cobalt oxides (LiCoO2, LCO) is usually used in mobile application,3 while lithium manganese oxides 

(LiMn2O4, LMO) or lithium iron phosphate (LiFePO4, LFP) has been applied to electric vehicle (EV) 

due to fluent resource, and low manufacture cost.4-5 For a cell configuration, the laminate type of cell 

has been developed to use in practical application due to high thermal stability and capacity with low 

internal resistance.6 The electromotive force of LIB is ~3 times higher than that of Ni-based 

rechargeable batteries such as nickel metal hydride (NiMH) system (Table 1).7 At present, the cost of 

cathode material accounts for 30~40% in LIB production, as shown in Figure 1a,8 and their specific 

capacity is around 150 mAh/g in the present system. However, the development of cathode materials 

with > 250 mAh/g is still needed to be developed for smaller LIB system with high capacity. Also, in 

anode part, graphite has been mainly used due to superior stability and reversibility in various 

applications, but the development of alternative anode with 500~800 mAh/g is needed to balance the 

cell when increasing the capacity of cathode materials is considered.  

LIB can be categorized depending on the cell type: 1) prismatic, 2) cylindrical, 3) polymer cell. 

(Table 2),9 and their application fields are described in Figure 2. In case of Li-ion polymer cell, it is 

expected that considering its growth rate with 34.6% per year, the value is superior to cylindrical (-

2.6%) and prismatic (-2.4%) value, expecting 51.4% in 2016 (Figure 3).10  

 

1.1. Electric vehicles 

In world battery market, mobile applications exhibit the market formation with $645 billion in 

2012, and secondary batteries account for 24.3% of the market share.11 Also, energy storage system 

(ESS) and EV market enable an market expansion of the secondary batteries to approach $1,046 billion 

in 2017, and the portion of LIB is expected to rapidly increase with 39.5% (Table 3).11 Elon Musk (CEO 

in Tesla) has suggested 35,000 units of sales target for electric vehicles (EVs), but the supply of 

secondary batteries is difficult to meet the highly growing demand of Tesla EVs at present.12 

Accordingly, to solve this problem, Tesla has a plan to establish Giga-factory for secondary batteries 

production via $2 billion investment, and Panasonic company will invest 50% of total fund.13 Also, 
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because of a strategic corporation between Tesla and Panasonic, various kinds of global EV companies 

may have a strategic alliance with secondary batteries suppliers to expand their investment toward EV 

market.  

Among main problems – cost, mileage, charge – that obstructs the market expansion of EV, the 

solutions of cost and mileage have been expected to gradually increase in 2014, and the EV sales is 

expected to increase from 1.62 million units in 2012 to 10.25 million units in 2018 with 36% of average 

annual increase.11 Also, because of the release of Tesla model S and BMW i3, the global sales of EV 

will be continuously grown. Recently, with an additional plant establishment for plug-in hybrid electric 

vehicle (PHEV) in General Motors,14 the activation of LIB market is positively expected because PHEV 

have started to adapt LIB as a main source of power supply. In addition, the enhanced environmental 

regulation in USA and Europe will be a positive factor for the expansion of EV market from 2015. In 

other words, the supply of environmental vehicles such as EV can be an urgent task due to limitation of 

mileage increase in gasoline system. Global automobile supplier has drawn attention to secondary 

batteries suppliers because the improvement of battery performance becomes an important factor to 

dominate EV market in advance and helps to increase a mileage of electric vehicles.  

In hybrid electric vehicle (HEV) market, NiMH has been verified as a reliable power resource, but 

LIB has been taken into account as more suitable alternative due to long cycle-life, high energy density, 

little self-discharge, and negligible memory effect. Also, LIB has 60% of lighter than that of NiMH. 

Despite of these advantages, a main reason for slow progress in commercialization is short mileage. In 

case of vehicles with internal combustion engine (ICE), they can travel more than 500 km, while EV, 

for example, Leep in Nissan and Model S in Tesla, is possible to drive up to 120 km and 426 km after 

full charge, respectively.15-16 In other words, the short-mileage in EV means that a regular charge is 

highly required, giving problems such as a shortage of EV charge infrastructure and fast charging within 

a few minutes. If there exists constraints of time and space for charging a battery, the estimates of EV 

can be devaluated for customers. Accordingly, EV companies should devise various solutions such as a 

fast battery replacement and battery charge-only system with a standardization of high voltage and 

current supply. Also, in a view of production cost, the value of EV is about 2.5 times higher than that 

of ICE vehicle.17 In turn, it is difficult to satisfy the growing demand from customers for a short period. 

In order to solve this problem, it is basically required that a cost for manufacture system and charging 

a battery should be reduced.  

With a rapid increase of EV market, a battery price is expected to gradually decline, according to 

the report that 11.1% of annual decline rate is achieved for LIB cost from 2003 to 2011.17 In 2011, 

Department of Energy (DOE) in U.S.A. has suggested that a cost of EV/PHEV is needed to reduce from 

$700~950/kWh to $300/kWh for 1 million sales until 2015.18 For the reduction of battery cost, it is 

necessary to deal with an efficient battery pack design, the use of high energy materials as well as low 
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manufacturing cost. Also, according to DOE report of battery manufacture, the manufacturing cost can 

be efficiently reduced up to 30~40% when annual battery production is increased from 10,000 to 

100,000 units.19 In real, because a proportion of battery cost have occupied with 30~40% of total price 

in EV, battery suppliers should have a certain level of economic of scale to reduce a total battery cost, 

which includes a fluent resource of electrode materials as well as good economic feasibility. Currently, 

NiMH battery has still influenced on EV system, but LIB influence will be greater due to its good 

performances if a release of PHEV is gradually increased (Figure 4).  

Nowadays, automotive OEM suppliers continues forming various value chains for materials and 

parts through a diversity of secondary batteries suppliers (Figure 5).20 The global companies producing 

a mid-to large sized battery will continue to expand their occupancy until 2015 to follow a growing EV 

market. General focus of mid-to large sized battery market is still demand rather than supply at present, 

which is also induced by a fast development of ESS.  

According to a guideline in battery manufacturers, they recommend that the working condition of 

EV batteries (LMO/graphite) should be controlled in the range of -20~55 °C for discharge and 0~45 °C 

for charge, respectively. Especially, LIB containing Li4Ti5O12 (LTO) as anode can be discharged even 

at -30 °C condition. The driving voltage windows of LIB is generally operated within a range of 

1.5~4.2V (LCO/graphite, Li(NixCoyAlz)O2 (NCA)/graphite, Li(NixCoyMnz)O2 (NCM)/graphite, 

LMO/graphite: 2.5~4.5V, LMO/LTO: 1.5~2.7V, LFP/graphite: 2.0~3.7V).21 Table 4 describes the cell 

materials depending on EV type and battery companies. At present, a blend strategy such as LMO/NCM 

has been currently applied to meet EV’s requirements in cathode system, and anode is also same 

tendency as cathode. Also, the specification of battery pack, which is currently adapted in PHEV 

companies, is demonstrated in Table 5.11  

 

1.2. Energy storage system 

The trend transition in LIB market from IT application to medium/large size application will be 

accelerated with the growing ESS market which will be grown from 23 GWh in 2013 to 90.9 GWh in 

2020 with 21.7% of annual growth rate.22 In turn, a demand of ESS is expected to surge under the 

increased demand for energy efficiency and expansion of renewable energy. Also, the subsidy policy in 

U.S.A, Germany, and Japan will drive the growth of an initial ESS market. Accordingly, based on these 

tendency, ESS market utilizing LIB is expected to record the highest growth with 2,020 GWh from 1.4 

GWh in 2013 (46.8% of annual growth rate).23  

In detail, ESS system is strongly required to meet the following reasons; 1) an efficient load 

management at power peak, 2) a stable power supply in electrical grid, 3) a management of black-out, 
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4) an efficient electricity supply for customers’ requirement, and 5) a good power quality from 

renewable energy. The representative field of ESS adapting LIB will be an uninterruptible power supply 

(UPS) which has formed $ 10 billion market,24 because of LIB’s cost-competitiveness. Existing UPS 

has utilized a lead-acid battery, but the market situation starts to change. This is induced by an 

establishment of LIB production line for EV because LIB design applied to EV can have a possibility 

to cover the required specifications in UPS system. The price of lead-acid battery is $300/kWh which 

is 40% higher than $500/kWh of LIB.11 However, when considering the price per 1kW, which assumes 

that its value corresponds to maintain UPS system for 30 min, lead-acid battery requires $360/kW, but 

LIB does $263/kW.24 In turn, LIB can be sufficiently considered in existing UPS market due to 27 % 

of cost reduction. Also, LIB weight per capacity is 1/3 of lead-acid battery, and LIB can be 1/5 lighter 

than that of lead-acid batteries with 1/3 of space reduction.24 Finally, because of long life-cycle of LIB 

(10 years) compared to lead acid battery (5 years), lead-acid batteries in UPS can be replaced by LIB, 

which the exchange speed will be faster than expected.  

ESS can be classified in terms of time, output and techniques. A product having a response within 

1h is named as short period ESS, and long period ESS is referred for a product with > 2h response 

(Table 6.1 and 2).24 LIB, a lead-acid battery, supercapacitor and flywheel are used in short period ESS, 

while LIB, flow battery, sodium-sulphur battery, compressed-air, and pump-hydro energy storage are 

applied to long period ESS. Currently, only LIB can be applicable to both conditions, and the market 

perspectives of ESS equipped with LIB can be positively expected to increase due to little limitation of 

capacity design and installation. Also, the effect of cost saving can be expected because LIB can be 

efficiently adapted in ESS through the technologies that has been currently utilized in IT and EV 

applications. Moreover, an electricity project will be accelerated in smart grid via an increase of electric 

charge. Therefore, the demand of LIB will increase exponentially because it is recognized as an essential 

energy storage in ESS. 

 

2. Materials in Li-ion Batteries 

The market of LIB materials in ESS and small IT application is expected to grow faster from $83 

billion in 2013 to $205 billion in 2020. The proportion of LIB components is 36% of cathode, 13% of 

anode, 14% of separator, 9% of electrolyte, 12% of copper foil, 4% of aluminum foil, 12% of others.8 

For LIB cost, materials account for 50~60%, and the capacity, cycle-life, and stability can be determined 

depending on how materials are combined.17 Table 7 describes the main companies producing each 

materials, LIB parts, and cell makers with their market share (Figure 6).25  
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2.1. Cathodes 

Cathode materials has the highest proportion in the LIB material cost, as shown in Figure 1b, and 

they are classified into layered, spinel, and olivine depending on a structure (Table 8). The 

representative material in layered structure is LiCoO2, Li(NixCoyMnz)O2 (NCM), and Li(NixCoyAlz)O2 

(NCA),26 which metal oxide slabs and lithium ion are alternatively stacked. Cobalt, nickel, and 

manganese element in this structure are generally regarded as a characteristic of high energy density, 

capacity, and structure stability for material design, respectively. For example, NCA and NCM are well-

constructed through each element combination. The NCM price is cheaper than that of NCA, and its 

side reactions do not occur even at high-voltage charge (> 4.3V), showing an excellent life 

characteristics. However, the electronic conductivity of NCM is lower than that of LCO, resulting in 

poor rate capability.27 Cathode materials with layered structure have different characteristics depending 

on the type of metal and ratio in crystal structure. For spinel structure, LMO, which has been proposed 

by Thackeray et al. in 1983,28 is a representative, and its oxygen framework is the same as that of layered 

structure. Unlike layered structure, the collapse of crystal structure is not shown when Li ion is extracted 

during cycling. Also, not only it can be operated at ~ 4V with high power density induced by 3-

dimensional pathway of Li-ion, but also LMO has a cost competitiveness due to low Mn price. Despite 

of these advantages, it has a shortcoming of the capacity reduction at high temperatures.26, 29 In olivine 

structure, LFP is a representative, and has been attractive due to its low cost, high thermal stability and 

environment friendliness.30 LFP describes excellent electrochemical properties due to a unique structure 

stability. However, its discharge voltage exhibits 3.45 V whose value is lower than that of spinel and 

layered based cathode material,5 giving a decrease of electric power and restriction on the use in 

practical application. Recently, carbon coating and the addition of Mn in LFP structure have been tried 

to increase an electrical conductivity and discharge voltage, respectively.31-32 Depending on the 

characteristic of cathode materials, LCO and NCA is mainly applicable to small IT devices and 

electrically-drive tools, respectively, while NCM and LMO has been used in ESS or EV applications.  

 

2.2. Anodes 

Like cathode, anode is also an important part to determine a capacity, power, and safety in battery. 

Especially, the energy density of LIB is mainly determined by the degree of irreversible capacity of 

anode. Natural and artificial graphite, which are largely used in a practical use, have been mainly applied 

to general-purpose product and high-end products such as smart phone. Generally, artificial graphite 

describes higher capacity than that of natural one (Table 9).8 Also, artificial graphite has cost-

profitability because its manufacturing process is relatively difficult. Anode materials account for 18% 

in LIB material cost, which has $0.68 billion of scale in 2012. Graphite occupies 96% of possession in 
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anode materials, and 62% of total use is natural graphite.17 The price of artificial graphite, natural 

graphite, soft carbon, silicon is $25, $12, $15, $30 per kg, respectively, and natural graphite is most 

competitive in terms of a price.33 For a trend of LIB cost reduction, natural graphite has continuously 

occupied anode market due to its low cost, but artificial graphite has been slightly expanded to EV 

market due to its stability and longevity. HEV has utilized a mixture consisting of 80% of an amorphous 

carbon (hard carbon or soft carbon) and 20% of graphite for high power, while a mixture with 80% of 

graphite and 20% of an amorphous carbon is applied to high energy requirement.17 Accordingly, the 

demand of graphite market is judged to lead to the increase.  

However, because a practical capacity of graphite is not high value, new electrode material should 

be studied to solve low capacity of graphite. As a result, alloy materials such as silicon, germanium, 

and tin have been suggested, but it is difficult to drive a cycle due to a desorption phenomenon caused 

by volume expansion/contraction during cycling. Nowadays, with various strategies of volume 

exchange, silicon/carbon composite has been considered as a commercially available solution to 

increase battery capacity, but the amount of silicon contained is extremely limited in practical approach.  

In addition to the mentioned anode materials, Li4Ti5O12 (LTO) with 1.5V operating voltage has 

been currently studied, showing little decomposition of the electrolyte. With the combination with 5V 

cathode electrode, the 3V-cell based studies have been conducted for the realization of high power and 

energy density.34 In case of metal oxide, it has high cycle stability and power density, but is difficult to 

commercialize due to low electric conductivity and large initial irreversible capacity. To address these 

problems, carbon coating and morphology control have made attempts to improve a battery 

performance.35  

 

2.3. Separator 

Separator has a function to separate cathode and anode electrode for a prevention of electrical 

contact between the electrodes. Also, it enables lithium ion to penetrate through the pores during 

electrochemical reaction, and accounts for 15% in LIB material cost. Depending on how separator is 

produced, it can be classified into dry- and wet-based process.17 IT devices adapt a separator from a 

mixed process, while EV system utilizes one from dry-process due to an excellent high-temperature 

stability. Generally, separator has a thickness of ~ 20 μm, which is porosity film based on polyolefin.8 

Also, the very small pores are produced to pass through lithium ions only, and the separator porosity 

has greatly influenced on the output characteristics of the battery.36 For existing small applications, 

separator is mainly comprised of polyethylene or polypropylene, and the research of increasing porosity 

has been studied to enhance a cycle-life and high power characteristics in automobiles’ LIB. Importantly, 

separator is critical component to influence on stability in battery, i.e., induces rapid thermal shrinkage 
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when batteries are exposed to heat above 150 °C, finally, resulting in an internal short-circuit. Therefore, 

in order to prevent explosion of the battery, the thermal contraction is also required for cell stability, 

and the surface coating with inorganic materials has been applied to realize the required thermal 

property.37 Recently, because smart device such as tablet PC have required thinner characteristic, a level 

of 16 μm is needed to follow the growing demand.  

 

2.4. Electrolyte 

Electrolyte can be considered as an intermediate allowing a transport of lithium ion during 

charge/discharge. It consists of co-solvent, which is mixed with a low viscosity solvent and a high 

permittivity solvent, and a lithium salt prepared by dissolving a predetermined concentration.38 Lithium 

hexafluorophosphate (LiPF6) is generally used as lithium salt due to high ionic conductivity and good 

stability. To stabilize an interface between electrode and electrolyte, the additives is added, and a 

fluorine-based electrolytes is currently being used to improve an electrolyte stability with poor flame 

retardancy.39 For the development of advanced electrolyte, it is strongly considered that electrolyte 

should be designed with i) non-fluorine-based flame retardant property, ii) electrochemical stability 

within operating voltage, iii) thermal stability at high operating temperature, and iv) securing the ion 

conductivity at low temperature. Additionally, a polymer electrolyte is considered due to little leakage 

and high stability, but its ion conductivity is low. Therefore, to address this problem, a plasticizer is 

added to make gel condition which can improve a rate of ionic conductivity in polymer electrolyte.40 

 

2.5. Current collector 

Current collector is thin metal foil which receives electrons from or to external circuit, and is a 

substrate for electrode slurry coating. An aluminum and copper are generally used in cathode and anode, 

respectively. The main characteristics of the current collector are surface roughness and thickness. In 

case of thickness, its value is normally in the range of 8~10 μm, but the thickness under 6 μm is 

gradually required to meet the growing demand of thinner characteristic in various applications.  

 

3. The properties changes at high temperature and voltage in LIB 

When the operating temperature approach the range of 90~120 °C in LIB, SEI film starts to 

exothermically decompose.41 If the temperature approach 120 °C, the combustion gas begins to occur 

by the additional reaction between carbon electrode and organic electrolyte. Finally, at above 200 °C, 

electrolyte starts to decompose with large amount of combustion gas, resulting in a flame reaction 
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produced by disturbance reaction with oxygen produced by cathode decomposition. If LIB is charged 

at less than 0 °C, lithium metal is accumulated on the surface of carbon electrode. As the temperature 

is further lowered, the battery is on short-circuit state.21  

In a view of cathode, if the operating voltage is too low or batteries are over-discharged, the battery 

performance is negatively influenced by structure collapse of cathode material. In addition, if extremely 

low-voltage or over-discharge state is reached, the combustion gas is generated in the electrolyte 

reduction, posing a potential safety risk in battery system. When batteries are operated at high voltage 

or extremely overcharged condition, a significant amount of heat is generated by cathode decomposition. 

In addition, battery capacity is gradually reduced by the accumulation of lithium metal on anode, finally 

safety problems are caused by internal short circuit and electrolyte decomposition, which occurs at > 

4.5 V charge.21  
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Table 1. The characteristics comparison between NiMH and LIB. 

 NiMH LIB 

Operating voltage (V) 1.2 3.6 

Power density (kW/kg) 1.0~1.5 3.0~4.0 

Energy density (Wh/kg) 40~50 60~100 

Life (years) 5 10 

Self-discharge/memory effect O / O Little / X 

Stability Normal Need a protection circuit 

Relative cost 1 3 
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Figure 1. (a) The proportion of material cost in Lithium-ion batteries and (b) the scale of LIB material 

market.8 
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Table 2. Li-ion batteries configuration and characteristics 

 Prismatic cell Cylindrical cell Li-ion polymer cell 

Main purpose Mobile phone, PDA, Digital camera 
Laptop PC, Camcorder, Electric-drive 

tool, Electric bicycles  

Mobile phone, PDA, Audio, Bluetooth, 

Tablet PC 

Capacity  91~107 mAh/cm2 27~143 mAh/cm2 94~117 mAh/cm2 

Characteristics 

- Variety type 

- Easy compatibility with communication 

devices 

- Stable discharge 

- Long cycle-life 

- Shape flexibility  

- High energy density with light weight 

Main manufacturer 
Sanyo, Sony, BYD, Samsung SDI, LG 

Chem. 

Sanyo, Sony, Panasonic, Samsung SDI, 

LG Chem. 

Sanyo, Sony, Panasonic, Samsung SDI, 

LG Chem. 
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Figure 2. (a) The proportion of secondary batteries depending on applications, (b, c, and d) the 

application proportion of cylindrical, prismatic, and pouch type, respectively.  
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Figure 3. The market trend of global lithium-ion batteries: shipments depending on a cell type.22 
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Table 3. The market share and expectation of secondary batteries.11 

 2012 2013 2014 2015 2016 2017 
'07~'12 

CAGR 

World total 645 698 765 832 928 1,046 10.2% 

LIB 157 202 251 301 359 414 21.4% 

LIB 

Applications

Mobile IT 128 136 139 145 150 148 2.9% 

Electric vehicles 12 17 25 37 54 80 46.1% 

Energy storage 17 49 87 119 155 186 61.4% 

Lead-acid 444 450 455 461 467 472 1.2% 

Capacitor 4 5 13 28 61 121 97.8% 

Ni based system 34 33 37 32 31 28 -3.8% 

Others  6 8 9 10 10 11 12.9% 

(Unit. ×102 million dollars) 
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Table 4. The cell materials in electric vehicles depending on the battery companies.22 

 Film pouch Can prismatic 

EV type HEV PHEV BEV HEV PHEV BEV xEV 

Company 
LG 

Chem 
AESC 

LG 

Chem 
AESC

LG 

Chem 
Panasonic BEC HVE Toshiba PEVE Panasonic LEJ BYD 

Samsung 

SDI 

Cathode 
LMO 

NCM 

LMO 

LNO 

LMO 

NCM 

LMO 

LNO 

LMO 

NCM 
NCM NCM 

NCM 

KMO 
LNMO LNO NCM 

LMO 

NCM 
LFP 

NCM 

LMO 

Anode 
GP 

HC 
SC 

GP 

HC 
GP 

GP 

HC 
GP HC 

HC 

SC 
LTO GP 

GP 

SC 

GP 

Mix 
GP GP 

Separator PP dry 3Layer PP dry PP dry PP dry 3Layer PE wet 3Layer Celrose 3Layer 3Layer PE wet PP dry
PE wet 

3Layer 

OEM 
Hyundai

Kia 
Nissan GM Nissan

Renault

Ford 
Toyota Hoda Nissan Toyota Toyota Toyota Mitsubishi BYD BMW 
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Table 5. The specifications of PHEV depending on automobile manufacturers.11 

Manufacturer Model 

Cell Pack    

Supplier 
Cathode Capacity 

Supplier 
Energy Capacity Voltage 

Chemistry Ah kWh Ah V 

Fisker Karma A123 LFP 20 A123 20 60 333 

GM Volt LG LMO/NCM 15 GM 16 45 356 

Mitsubishi Outlander LEJ LFP 21 LEJ 12 42 286 

Volvo V60 LG LMO/NCM 15 LG 11 30 367 

Porsche Panamera Samsung NCM/LMO 26 Bosch 9.4 26 362 

BMW i8 Samsung NCM/LMO 26 BMW 8.5 26 327 

Ford C-Max Sanyo NCM 24 Ford 7.6 24 317 

Ford Fusion Sanyo NCM 24 Ford 7.6 24 317 

Audi A3 Sanyo NCM 24 Sanyo 7.5 24 313 

Honda Accord Blue Energy NCM 21 Honda 6.6 21 314 

Daimler S class LEJ LFP 21 Magna 6.5 21 310 

Toyota Prius Sanyo NCM 22 Toyota 4.5 21.5 209 
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Figure 4. The perspective of NiMH and LIB market for HEV.  
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Figure 5. The value-chain configuration between battery and vehicle makers.20 

 

 

 

  



63 

 

Table 6.1. The classification of ESS 

 Less than 10 kW 10~100 kW 100 kW ~ 1 MW 1~10 MW 10 ~ 100 MW 

30 min UPS (lead-acid battery, LIB, supercapacitor, flywheel) 
UPS for industry (lead-

acid battery, LIB) 
Utility frequency control (LIB) 

1 ~ 2h The quality improvement of renewable energy and ESS for back-up (lead-acid battery, LIB) 

More than 5h 
Smart grid for home use 

(LIB) 

Smart grid for industry 

(LIB) 

Correspondence of 

industrial electricity peak 

(LIB)  

Utility load-leveling 

[pump-hydro (> 100MW), compressed-air (>20 

MW), sodium-sulphur battery, flow battery 

Off-grid renewable energy supply (LIB) 

 

Table 6.2. The classification and properties of ESS 

 Type Principle Advantages Disadvantages  Efficiency (%) 

Short period 

ESS 

LIB Redox reaction High energy density and efficiency High cost 95 

Lead-acid Low cost Toxicity  70 

Supercapacitor Adsorption of ions High power density, stability, long cycle-

life 

Low energy density and high cost 95 

Flywheel Rotation High power density, large capacity, long 

cycle-life 

Low energy density, high cost, sensitive 

to vibration 

90 

Long period 

ESS 

Flow battery Redox reaction Low cost, large capacity, long cycle-life Low energy density, low efficiency 60~80 

Sodium-sulphur High power density, low cost High operating temperature, low 

efficiency  

75~85 

Compressed-air Pressure Large capacity High cost, limited location 60 
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Table 7. The main companies of LIB materials, parts, and cell makers.17  

 South Korea International 

Cathode 

L&F / Ecopro / Hanwha Chemical 

Daejung Chemicals & Metals / Phoenix Materials 

Wooree ETI / Elbatek / Samsung Fine Chemicals 

Umicore / Nichia / Toda Kogyo 

 

 

Anode Poscochemtech / GS Caltex / Aekyung Petrochemical Co. 
Hitachi Chemical / BTR Energy / Mitsubishi Chemical 

Total Carbon / Nippon Carbon / SEC Carbon 

Electrolyte Panaxetec / Soulbrain / Foosung / Leechem 
Mitsubishi Chemical / Ube Industries / Stella Chemifa 

Kanto Denka 

Separator SK Innovation / CS Tech Co. / TopTech Asahi Kasei / Celgard / Toray Tonen 

Cell makers Samsung SDI / LG Chem / SK Innovation 

Panasonic / AESC / Hitachi Vehicle Energy / B456 

BYD / GS Yuasa / PEVE / Lithium Energy Japan 

JCS 

Instrument PNE Solution / CIS / KapJin /ETH / PNT - 

Parts 

Protection circuit: Powerlogics / Nexcontech / Seowon Intech 

Copper foil: Iljin Materials / Furukawa Electric / Nippon Foil Mfg / Nippon Denkai 

Others: Elentec / Wisepower / Snag-A Frontec / Sangsin EDP 
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Figure 6. The market share of main companies producing (a) cathode, (b) anode, (c) electrolyte, and 

(d) separator in 2009. 
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Table 8. The classification of cathode materials 

 Layered Spinel Olivine 

Chemical composition LiMO2 (M = Co, Ni, Mn) LiM2O4 (M = Mn, Ni) LiMPO4 (M = Fe, Mn, Co) 

Representative LiCoO2, LiNixCoyMnzO2, LiNixCoyAlzO2 LiMn2O4 LiFePO4 

Advantages High energy density High power density Low cost (Fe), high stability 

Disadvantages High cost Short cycle-life (Mn dissolution) Low power (low operating voltage) 

Energy density High Medium Low 

Power Medium High Low 

Cycle-life High Low Low 

Price High Medium Low 

Stability Low Medium High 

R&D direction 

Ternary (Ni, Mn, Co) composition development

Co replacement for cost 

The content increase of Ni for capacity 

The content increase of Mn for stability 

The Mn substitution to other 

transition metal 
Fe substitution with Mn 
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Table 9. The comparison of various graphite. 

 Artificial graphite Natural graphite Amorphous carbon 

Specific capacity (mAh/g) 280~360 360~370 235~315 

Surface area (m2/g) <1 3~8 2~5 

Cycle-life High Low Medium 

Price ($/kg) 25 12 15 

Manufacturer 

POSCO CHEMTECH 

Hitachi Chemiclal 

JFE Chemical 

AEKYUNG PETROCHEMICAL 

Shanghai Shanshan 

BTR Energy 

GS Caltex 

Nippon Carbon 

JFE Chemical 
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Chapter III 

High-Performance, Layered, 3D-LiCoO2 Cathodes with a Nanoscale Co3O4 Coating via Chemical 

Etching 

 

1. Introduction 

Currently, a dominant cathode material of Li-ion battery for 3/4G smart cellular phones is 

surprisingly LiCoO2 due to high capacity, low self-discharge, excellent cycle life, and high energy 

density (3 Wh/cc).1-2 LiCoO2 has the hexagonal α-NaFeO2 phase consisting of the layered rock-salt 

structure with the order of Li+ and Co3+ on alternating (111) plane in cubic structure.3-5 However, its 

major drawbacks are fast capacity decaying at higher rates and rapid capacity fade above 4.4V (vs. 

lithium metal). These problems are based on the anisotropic properties of LiCoO2 structure showing 

lattice distortion by the expansion and contraction which results from the large concentration of Co4+ 

during cycling.6-7 During de-lithiation of LixCoO2, the c-axis expands up to ∼2.6% at x = ~0.5 (∼4.2 

V vs. Li). In addition, the phase changes at ∼4.5V with ~3% contraction. It has been suggested that 

the phase change at ∼4.5V is sufficiently large to cause mechanical stresses among the grains. This 

electrochemical grinding coupled with Co4+ dissolution and structural degradation by lithiation/de-

lithiation results in capacity loss.7-9 In order to minimize Co4+ dissolution, the metal oxides, such as 

ZrO2,10 TiO2,10 B2O3,10 Al2O3,6, 10-12 MgO,11 SnO2,11 ZnO,13 and AlPO4
14 have been investigated. These 

kinds of metal oxides play a key role of protective layer for preventing a direct interaction between the 

electrolyte solution and LiCoO2, resulting in decreasing the cobalt dissolution above 4.3 V during 

cycling.7, 15-16  

In this regard, LiCoO2 with different morphologies such as 1D, 2D, and 3D can also be considered 

for improving its rate performance, resulting from sufficient contact area between electrolyte and active 

materials.17 However, their electrochemical performances were not noticeably improved. Li et al. 

reported that 1D-LiCoO2 nanotubes were fabricated by anodic aluminium oxides (AAO) and showed 

high discharging capacity, 185 mAh/g at 10 mA/g.18 Jiao et al. reported that 3D-mesoporous LiCoO2 

(LT-LiCoO2) was synthesized using hard template (KIT-6) at low temperature and the cycle retention 

was improved, compared to normal LT-LiCoO2.19 These nanomaterials may decrease the charging time, 

but conversely, decrease the electrode density due to the inherent bulky nature.  

Here, we report for the first time the concurrent modification of the pristine to the layered 3D-

LiCoO2 with a nanoscale Co3O4 coating layer by chemical etching to minimize the capacity loss and to 

maximize the rate capability of the cathode without the loss of the electrode density. This simple process 
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is also expected to use to design other materials for improving the performance of active electrode 

materials in Li-ion batteries. 

 

2. Experimental section 

2.1. The layered 3D-LiCoO2 preparation 

The chemical etching process of LiCoO2 consists of several steps: 10 g of bare LiCoO2 powder 

(average particle size was ~10 μm) was added in distilled water at 50 °C, then 1 wt% PVP is mixed for 

coating on the surface of bare LiCoO2 for 5 min at 400 rpm. After coating, 1 wt% silver nitrate solution 

(10 mM AgNO3 aq.) was added to make a protective layer. Before etching, the resultant was collected 

by filtration and followed by drying. Subsequently, the powder was etched in 10 wt% HF solution for 

60 min at 400 rpm, and followed by washing, with deionized water for several times. The product was 

completely vacuum-drying at 120 °C for overnight to remove possible water contaminant. 

 

2.2. Analysis instrument 

The morphology transformation is characterized by using a scanning electron microscope (SEM, 

Nanonova 230, FEI), and high resolution transmission electron microscopy (HR-TEM) (JEOL JEM-

2100F), operating at 200 kV is used for analyzing the diffraction plane of each sample. Powder analysis 

is performed on X-ray diffractometer (XRD, D/Max2000, Rigaku). The mole of lithium of LixCoO2 

after chemical etching is measured by inductively coupled plasma mass spectrometry (ICP-MS, Varian, 

USA). X-ray photoelectron spectroscopy (XPS) analysis is performed with a Thermo Scientific Kα 

spectrometer (monochromatic AlKα, 1486.6 eV). The peak deconvolution of XPS data was done 

statistically with chi-square value which was ranged between 2 and 3. Therefore, the deconvoluted peak 

value can be trusted. 

 

2.3. Coin-cell preparation 

For characterization of electrochemical properties, the cathodes were made of as-etched powder, 

carbon black (super P), and poly(vinylidene fluoride) (PVDF) as binder (90:5:5 weight ratio) in N-

methyl-2-pyrrolidone (NMP) to make a slurry. The coin-type half cells (2016R-type) consist of lithium 

metal as the anode, polyethylene separator, and 1.15 M LiPF6 in ethylene carbonate/dimethyl 

carbonate/diethylene carbonate (EC/DMC/DEC, 3:4:3 v/v/v) as electrolyte. This process was done 

according to ref. 1. 
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3. Results and discussion 

We describe a simple route for producing a 3D-LiCoO2 structure with layered morphology and 

Co3O4 coating layer via chemical etching for improving the electrochemical performance of the pristine 

LiCoO2. The process of the layered 3D-LiCoO2 is as followings (Figure 1, upper): 1) In order to 

generate uniform protecting materials for etching toward LiCoO2, PVP is used for capping agent to bind 

with Ag+ ions and for reducing them to Ag0 particles on the surface of bare LiCoO2, 2) the obtained 

sample is immersed to HF-based aqueous etching solution for the optimized time to etch bare LiCoO2 

with Ag particles, 3) the etched sample is dried to remove the residual water at 120 °C for 

electrochemical test. 

SEM images of the as-etched samples confirm the morphology transition from the pristine to the 

layered 3D-LiCoO2. Figure 1a shows the smooth surface of bare LiCoO2 apparently changes to layer-

by-layer morphology in which each layer thickness is ~ 10 nm after chemical etching. (Figure 1b) (also 

see the low magnification images of bare and the layered 3D-LiCoO2 in the Supporting Information, 

Figure S1). This morphology transition may be explained as follows: After Ag0 particles are formed on 

the surface of PVP-coated LiCoO2, they prevent the Ag0 loaded LiCoO2 region from being etched in 

HF etching solution. Since Ag0 nanoparticles deposited on the surface of LiCoO2 have a strong tendency 

to form the interconnected alignments by aggregation with neighboring Ag0 particles, continuous Ag0 

layer (Figure S2) was made in HF solution, in turn, which act as a protecting layer to make the layered 

3D-LiCoO2 structures.20 If the continuous Ag0 alignments are not formed, the morphology is not the 

layered structure but the randomly etched one (Figure S2). Figure 1c exhibits the lattice fringe of the 

(101) plane with d-spacing value of 2.41 Å, corresponding to R3-m phase of LiCoO2, while as-etched 

LiCoO2 has a lattice fringe of (220) plane, corresponding to a d-spacing value of 2.83 Å of spinel Co3O4 

(Figure 1d). Therefore, it is suggested that the Co3O4 coating layer with a few nanometer-scale 

thickness was presented after chemical etching process. Additional evidence for the Co3O4 layer 

formation can be observed in Fast-Fourier Transform (FFT) of the TEM image (at point 3) near the 

particle surface. The presence of (02-2) and (20-2) planes of the cubic spinel phase that is quite different 

from the FFT patterns at points 1 and 2 confirm the C3O4 coating layer (Figure S3). This phenomenon 

is originated from the complete loss of lithium in the LiCoO2 that directly exposed with the etching 

solution. Inductively coupled plasma-mass spectrometry (ICP-MS) of the etched sample confirmed the 

lithium content of x = 0.73 in LixCoO2 and suggested the following reaction: LiCoO2 + 2x HF → 2x LiF 

+ Li1-2xCoyO2±δ (+ x H2O). Residual LiF phase was removed by excess of HF solution. 

Powdery X-ray diffraction pattern of the pristine sample shows a presence of O3(I)-type hexagonal 

α-NaFeO2 structure, where alternating planes that contain Li and Co ions are separated by closely 

packed oxygen layers (Figure. 2a). However, the layered 3D-LiCoO2 sample shows shifted diffraction 

peaks to lower diffraction angles, indicating the O3(II)-type hexagonal phase formation (Figure. 2b).3, 
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21 The values of the estimated lattice constants a and c of the bare LiCoO2 were 2.816Ǻ, and 14.043Ǻ, 

respectively (c/a = 4.986). The a and c values represented the distance between the interlayers (one 

third of c-axis in the hexagonal unit cell) and the neighbors of interlayers (metal-metal distance), a-axis 

in the hexagonal cell. The layered sample showed that a = 2.806 and c = 14.322 (c/a = 5.104), indicating 

a very large elongation along the c-axis. It means that there was more facile lithium intercalation in the 

3a sites.22-23 No detection of Co3O4 phase from the XRD indicates that the Co3O4 amount formed on 

LiCoO2 surface is < 1 wt%, and the coating thickness is expected to be within 5 nm based upon previous 

coating study.24 In order to increase the coating thickness of Co3O4, an etching time needs to be 

increased. However, upon increasing the etching time beyond 60 min., severe capacity loss was 

observed. We believe that such a degraded performance is related to deformation of structure from the 

enhanced loss of lithium content x in LixCoO2 and increased formation of Co3O4. Accordingly, we 

believe that an optimized etching time was 60 min. 

X-ray photoelectron spectroscopy (XPS) results suggest the mechanism of Co3O4 formation. 

Typically, Co2p spectra of bare LiCoO2 show clearly the 2p3/2 and 2p1/2 peaks at 777.5-782.5 eV and 

792.5-797.5 eV, respectively.23 If lithium ion is extracted, Co4+ peaks at 781.5, and 796.8 eV are newly 

developed. However, these peaks are not shown in the deconvoluted peak after chemical etching, which 

does not mean the oxidation from Co3+ to Co4+, but the presence of Co3O4 by the reduction from Co3+ 

to Co2+ state (Figure S4). This reduction is elucidated by the analysis of O1s spectra of Co3O4. O1s 

spectra of Co3O4 peaks suggest generally all oxygen associated with “2-” formal charge in the range of 

527.7-530.5 eV (Figure 3a).25 However, the peak at 531.9 eV indicates the ionization of oxygen ions 

(O2- to O-) after chemical etching of bare LiCoO2, resulting in the reduction of Co3+ to Co2+ (Figure 

3b). The existence of O- species is possible to form the covalent bond of Co2+ and oxygen. Therefore, 

the Co3O4 could be formed on the surface of LiCoO2 by chemical etching. 

Figure 4a shows the cell voltage profiles of the pristine and the layered 3D-LiCoO2 cathodes with 

increasing discharge C-rates from 1 to 7C in a 2016 R-type lithium half-cell between 3 and 4.6V (1C 

corresponds to 150 mA g-1 and charge rate was set at 0.1C). From the voltage profiles, it is evident that 

the capacity retention of the pristine is significantly improved by the chemical etching at higher C rates. 

The layered 3D-LiCoO2 shows the discharge capacities of 183, 174, 162 and 142 mAh g-1 at 1, 3, 5 and 

7 C rates, respectively, and capacity retention at 7C is 78%. This cell test was conducted in an electrode 

density of 3.5 g/cc with containing only 5 wt% carbon black. Previous studies on nanostructured LiCoO2 

ignored the importance of the electrode density and used > 30 wt% carbon black, which is 6 times larger 

than the amount used in this study. For instance, the 3D desert-rose form of the LiCoO2 particles with 

a size > 10 μm that was hydrothermally prepared at 200 °C showed 110 mAh g-1 at a rate of 7C.26 Chen 

et al. reported 1D plate-like LiCoO2 nanoparticles with a size of 20-100 nm after being prepared at 

600 °C. The cathode showed a first discharge capacity of 130 mAh g-1 and decreased to ~100 mAh g-1 
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after 14 cycles at a rate of 1000 mAh g-1.27 Under a same test condition of the layered sample, the 

pristine sample shows rapid capacity decaying at higher rates with 174, 140, 98 and 64 mAh g-1, 

respectively. Note that the capacity of the layered 3D-LiCoO2 exhibits ~2.2 times higher than that of 

bare LiCoO2 at a 7 C rate. The average working voltage (the voltage corresponding to the half value of 

the discharge capacity) has also the same tendency to the discharging capacity. An average working is 

affected by the cell polarization and IR drop, which lead to working voltage decrease. The rate capability 

of bulk sized cathodes is generally low due to the high level of polarization at high charge/discharge 

rates. Therefore, nanostructured ball and flakes were introduced to overcome these shortcomings. This 

strategy was highly effective in greatly enhancing average working voltage of the cathode materials, as 

evidenced by Figure 4. 3D-LiCoO2 exhibits much improved average working voltages at higher C rates, 

showing 3.94, 3.82, 3.68, and 3.53 V at 1, 3, 5 and 7C, respectively. However, the pristine exhibits 3.88, 

3.62, 3.49, and 3.29 V (Figure 4a. inset). Also, note that smaller IR drops in the layered 3D-LiCoO2 

than that of the pristine which has high polarization at high discharge rate resulting from slow lithium 

diffusion or low electric conductivity in the active materials. These results indicate that the layer-by-

layered 3D-LiCoO2 have a larger surface contact area with the electrolytes, which can facilitate fast Li-

ion transport into the structure. In addition, an increased interlayer distance between the layers that can 

increase the facile Li-ion transport into the structure is also important factor. Figure 4b exhibits a plot 

of the discharge capacity of the pristine and the etched samples in coin-type half cells at 21 °C under 

1C rate cycling between 3 and 4.6V (charge and discharge rates are same). Note that capacity retention 

of the layered 3D-LiCoO2 is significantly improved after 50 cycles, showing 62.3 %. However, the 

pristine sample shows only 24%. This result is indicative of showing a role of Co3O4 coating layer, 

which not only minimizes the Co4+ dissolution at higher voltages in spite of formation of highly reactive 

layered morphology with the electrolytes, but also Co3O4 prevents the side reactions with the 

electrolytes.28 

 

4. Conclusion 

In conclusion, we developed a simple method for modifying the pristine to the 3D-LiCoO2 cathode 

material with concurrent formation of nanosacle Co3O4 coating layer via chemical etching. After 

etching treatment, bare LiCoO2 turned into 3D-LiCoO2 consisting of layer-by-layer structures. 

Significantly improved electrochemical properties even at 4.6V were based on the formation of Co3O4 

coating layer that reduced the Co4+ dissolution. The layered 3D-LiCoO2 promotes fast Li-ion pathways 

for lithium ion transport and electronic conduction, thus improved rate capabilities are seen compared 

to the pristine. 
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Figure 1. Upper: Schematic view of preparation of the pristine to the layered 3D-LiCoO2 cathode 

material: 1) the loading Ag particle on the surface of PVP-coated LiCoO2 by reduction from Ag+ ions, 

2) the formation of potholes by chemical etching in HF solution. Lower: a) SEM image of bare LiCoO2, 

b) SEM image of the layered 3D-LiCoO2 and c, d) TEM images of bare LiCoO2 and the as-etched 

LiCoO2, respectively, after etching in HF solution for 1 h, followed by vacuum drying at 120 °C for 

overnight. 
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Figure 2. Powdery X-ray diffraction patterns of a) the pristine, and b) the layered 3D-LiCoO2. 
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Figure 3. O1s XPS spectra of a) Co3O4 and b) the layered 3D-LiCoO2. 
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Figure 4. Electrochemical evaluation of bare LiCoO2 (black) and the layered 3D-LiCoO2 (red). a) 

voltage profiles at 1 (square), 3 (triangle), 5 (circle) and 7 C (diamond) rate between 3 and 4.6 V in 

coin-type lithium half cells (2016R-type) (inset: average voltage at each C-rate), b) plot of discharging 

capacity vs. cycle number at a rate of 1 C (triangle: bare LiCoO2, square: the layered 3D-LiCoO2) 
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Supporting Information 

 

 

 

 

 

 

 

 

Figure S1. The low magnifiaction SEM images of a) bare LiCoO2 and b) as-etched 3D-LiCoO2. 

 

 

  



81 

 

 

 

 

 

 

 

 

 

 

Figure S2. a) The etched LiCoO2 without the continuous Ag0 alignment, b) the layered 3D-LiCoO2 

with the continuous Ag0 alignment. 
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Figure S3. TEM image of as-etched LiCoO2 and fast-fourier transform (FFT) images of a, b, and c 

areas. 
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Figure S4. The deconvolution of XPS spectrum of Co2p region of 2D-LiCoO2. 
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Chapter IV 

Etched Graphite with Internally Grown Si Nanowires from Pores as an Anode for High Density Li-Ion 

Batteries 

 

1. Introduction 

In these days, to meet the requirements for usages in hybrid electric vehicles (HEVs) and plug-in 

hybrid electric vehicles (PHEVs) as well as high energy storage system, the increasing energy density 

has been a key issue in rechargeable lithium ion batteries.1-2 Currently available commercial Li-ion cell 

(~150 Wh/kg based on mass of battery pack) consisting of LiCoO2 and graphite as cathode and anode, 

respectively, cannot meet with the electrically powered applications which require higher cell operating 

voltage and/or capacity.3 On cathode side, for example, although the surface chemistry plays a key role 

of solving an intrinsic problem such as capacity fade, the available capacity of LixMO2 (M = transition 

metal) is limited to < 200 mAh/g with a cut-off voltage of 4.3V.2, 4 

To be concomitant with increasing the capacity of cathode materials, the alternative high capacity 

anode materials instead of graphite (372 mAh/g) should be considered to balance the cell. Among 

various kinds of anode candidates, silicon (Si) has been intensively paid attention to the alternative 

material to achieve high gravimetric capacity, 3579 mAh/g for Li15Si4 at room temperature (RT). 

However, despite of its capacity merit, it has severe drawback, i.e., large expansion and contraction 

during cycling (Si + x Li+ + x e- ↔ LixSi).5-8 This volume change (> 300% at RT) leads to pulverization, 

resulting in contact loss between current collector and carbon black and active particles. This loss 

eventually resulted in a significant capacity loss during cycling.  

In order to circumvent this problem, various nano-engineering strategies have been proposed to 

minimize the volume-related problems using Si nanoparticles,9 yolk-shell Si nanoparticle,10 Si 

nanoparticles in nitrogen-doped carbon sphere,11 Si nanowires,12 carbon coated Si nanowires,13 Si 

nanotubes,14 3D porous Si nanoparticles,15 and porous Si-C composites.16 Although these strategies 

exhibited very high capacity and good cycle stability, considering very low of electrode density (< 0.9 

g/cm3) of Si upon fully lithiation, the composite with graphite (1.7 g/cm3) is the most efficient way to 

reach high energy density.  

In this regard (also, as shown in Table S1), physical blending of graphite and Si has been widely 

considered to produce Si/graphite composites, but this method led to a capacity decrease during cycling 

due to the contact loss between electrode materials.17-18 Also, the chemically bridged Si/graphite 

composite with phenyl group was reported to overcome a capacity retention, but it also showed a rapid 
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capacity fading from 1052 mAh/g at 2nd cycle to 540 mAh/g at 50th cycle with capacity retention of 

52 %.19 

Herein, we report a novel architecture consisting of Si nanowires internally grown from pores in 

the etched graphite particles (namely, SiNWs-PG) with a high electrode density of 1.5 g/cm3. These 

novel composites demonstrate high volumetric capacity density of 1363 mAh/cm3 with 90% coulomb 

efficiency and high rate capability of 568 mAh/cm3 at 5C rate. One of the uniqueness of these 

composites is that porous graphite structure can offer free space to accommodate the volume change of 

internal embedded Si nanowires, and provide a fast electron transfer pathway between graphite and Si, 

resulting in the improved electrochemical performance. 

 

2. Experimental section 

2.1. The preparation of Si nanowires embedded in porous graphite  

For polymer solution containing Ni ion, 1 wt% polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP, 

MnPS=440 kg mol-1, MnP2VP=353 kg mol-1, Polymer Source) was dissolved in tetrahydrofuran 

(THF)/toluene (2:8, v/v) for 24 h, followed by the addition of NiCl2·6H2O. Bare graphite was stirred in 

the prepared polymer solution for 2 h, then, the as-prepared samples were precipitated in excess hexane. 

The obtained powders were dried at 100 ˚C for 24h. To produce porous graphite, the obtained samples 

were annealing at 500 ˚C for 20 min under Ar atmosphere (100 sccm) for Ni nanoparticles formation, 

then etched at 1000 ˚C for 1 h under H2 flow (100 sccm) for porous structure. To replace the remaining 

Ni nanoparticle with Au as catalyst for Si nanowires growth, the porous graphite with Ni nanoparticles 

was immersed in 10 ml of 0.001M HAuCl4·3H2O solution, followed by washing with several times and 

drying at 110 ˚C. Then, SiH4 was introduced into the tube furnace at 550 ˚C for 30 min with 25 sccm 

(The SiC products were produced at same flow condition without catalyst exchange). 

 

2.2. Fabrication of lithium ion half-cell 

The electrode for half-cell tests was made of bare graphite, porous graphite, SiNWs-BG and 

SiNWs-PG as active materials, styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose 

(CMC) as binder in a weight ratio of 85:5:10 without any conductive materials. The homogenous slurry 

are spread onto a copper foil, and dried at 110 ˚C for 1 h. The coin-type half-cells (2016R) contained 

active materials with 1.5 g/cm3, Li metal as counter electrode, and polyethylene separator and 

electrolyte solution of 1.15 M LiPF6 in ethylene carbonate (EC): ethyl methyl carbonate (EMC): 

dimethyl carbonate (DMC) = 3:4:3 vol.% with 5% fluoroethylene carbonate (FEC) (Panax starlyte, 

Korea). 
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3. Results and discussion 

Figure 1 shows a schematic view of the synthesis process of SiNWs-PG. First, spherical micelles 

bearing Ni ions on graphite (~20 μm diameter) were prepared by the selective complex formation of Ni 

ions and pyridine unit in a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer. The 

micelle formation was induced by the difference in solubility between PS and Ni ion bearing P2VP in 

a selective solvent for PS, in which spherical micelles consisting of PS corona and P2VP core were 

formed in solution.20 The micelles containing Ni ions were then transformed to self-assembled Ni 

nanoparticles after removal of polymer by heat treatment at 500 ˚C, followed by etching process in 

hydrogen atmosphere at 1000 ˚C for 1h.21 As a final step, Si nanowires were grown in 3D-

interconnected pores of graphite particles via Vapour-Liquid-Solid (VLS) process after exchange of 

catalyst from Ni to Au. The morphology of porous graphite and internally grown SiNWs was 

characterized by scanning electron microscopy (SEM). The Ni ion containing micelles deposited 

uniformly with a size of 30~40 nm on the graphite particle surface can be observed (Figure 1b). The 

as-prepared samples were annealed at 500 °C for 20 min to form Ni nanoparticles. Note that the catalytic 

gasification of carbon, called etching process, is more favorable at edge plane rather than basal plane 

of graphene.21 Therefore, microcarbon microbeads (MCMB) with the lamellar structure were used as a 

graphite source.22 At 1000 °C, Ni nanoparticles on the graphite surface etch the edge plane via catalytic 

hydrogenation reaction (Ni + Cgraphite + 2 H2 → Ni + CH4), where carbon atoms are absorbed into the 

Ni nanoparticles by carbon dissociation from graphene edge, resulting in a formation of porous 

structures with the remaining Ni nanoparticles (Figure 1c). As a result of etching process, graphite loses 

up to 20% of its original weight and the pore sizes ranging from 200 nm to 1 µm were obtained, whereas 

the specific surface area was increased to 6.5 m2/g compared to bare sample (1.2 m2/g). The cross-

sectioned images in Figure S1 showed the pores developed inside MCMB prepared by hydrogenation 

accompanying nickel penetration. As a second step, Si NWs in a scalable manner were grown in the 

porous graphite via VLS process. In VLS process, the catalyst plays an important constituent to serves 

as a preferential site for crystal nucleation and growth. If porous graphite with residual nickel is exposed 

at above the Ni-Si eutectic temperature,23 Si nanowires can be expected to grow from the inside pores 

by SiH4 gas decomposition. Upon annealing at 1200°C, the nanowires was starting to grow. However, 

X-ray diffraction (XRD) patterns revealed that silicon carbide (SiC) was formed with Ni-Si alloy as 

liquid droplet on the tip of the nanowires (Figure S2). As a consequence, lower annealing temperatures 

are required to prevent SiC formation, therefore, Ni catalyst is needed to replace with Au because the 

eutectic point of Au-Si alloy can suppress SiC product. Considering the standard reduction potential 

between nickel and gold, Ni was dissolved in 1mM HAuCl4·H2O solution via a galvanic displacement 

reaction, and Au was deposited on the porous graphite at the same time. After exchanging a catalyst, 

porous graphite with Au were annealed at 550°C under SiH4 flowing with 25 sccm for growing Si 

nanowires. As can be seen from SEM images in Figure 1d, Si nanowires are grown from porous 
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graphite. In the controlled experiment (SiH4 flow with 15 sccm at 550 ˚C for 30 min) to observe the 

evidence for the Si NWs grown from the pores in the etched graphite (Figure S3a and b), it can be 

clearly seen that Si nanowires are well grown from the pores. TEM results revealed that the catalyst are 

clearly shown on the top of Si nanowires and crystalline Si nanowires in SiNWs-PG is covered with 

1~2 nm amorphous SiO2 which is naturally produced after air exposure (Figure S3c and d). 

To understand the variation of graphite structure after hydrogenation process, it is characterized 

by XRD and Raman spectroscopy. Figure 2a shows a comparison of XRD patterns between bare and 

porous graphite. Note that the intensity ratio of (002) to (110) peaks at 26.4°, 77.4°, respectively, is 

indicative of the orientation degree of graphitic layers. Bare graphite has the value of 120.2 while the 

hydrogenated sample has the value of 46.5, which means that graphitic layers in porous graphite are 

less oriented with the more exposure of edge planes.24 Also, Raman spectra (Figure 2b) displays two 

major peaks at ~1350 cm-1 and ~1580 cm-1, which are assigned to D band and G band, respectively. In 

general, D band is related to a breathing mode of A1g symmetry and this peak is not shown in perfect 

graphite structure. It becomes only active if the structure has the presence of disorder. Also, G band is 

attributed to E2g symmetry, which is associated with the in-plane bond stretching of sp2 hybridized 

carbons.25 ID/IG ratio of porous graphite is 1.69 compared to bare graphite, 0.55, indicating that the 

disordered structure of sp2 carbon is well developed in porous graphite. Also, this result is consistent 

with SEM image (Figure 1c), showing that the edge planes are highly exposed with many pores. After 

the exchange of catalyst exchange, and followed by Si nanowires growth, the final product is 

predominantly composed of crystalline Si without showing Ni and SiC, as confirmed in Figure 2c. C1s 

region in XPS spectra is deconvoluted into three peaks at 284.1, 284.8, and 285.1 eV, which correspond 

to Si-C, C in graphite, and C-H bond, respectively. Considering a bonding of SiNWs-PG, XPS C1s 

result suggests that Si nanowires are chemically embedded in porous graphite, which is confirmed by 

the peak at 284.1 eV attributed to Si-C bond (Figure 2d).26 

Considering an embedding process between Si nanowires and porous graphite, the electrochemical 

performance of SiNWs-PG can be expected to significantly improve compared to the directly Si 

nanowires grown on bare graphite (SiNWs-BG) without etching process at the same condition of Si 

nanowires growth as shown in Figure S4. Both samples are limited to 20 wt% silicon. Figure 3a exhibits 

voltage profiles of bare graphite, porous graphite, SiNWs-BG and SiNWs-PG at 0.05C between the 

voltage range of 0.005~1.4 V in coin-type lithium half-cells (2016R) (1C = 450 mA/cm3 for bare and 

porous graphite, 1C = 1050 mA/cm3 for SiNWs-BG and SiNWs-PG). The test was performed in 

comparable electrode density to commercially available electrode density of 1.5 g/cm3. As shown in 

Figure 3a (see Figure S5 for specific capacity plot), the 1st volumetric charge capacity based on porous 

graphite is 497 mAh/cm3, of which value is slightly higher than bare graphite (441 mAh/cm3). This 

higher capacity of the porous graphite than bare one is due to the facts that i) lithium ion diffusion can 
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be easily available through edge plane rather than basal plane of graphite after hydrogenation, and ii) 

the remaining Ni nanoparticles after hydrogenation efficiently improves the electron conduction 

correlated with charge transfer reaction.22 Also, SiNWs-PG is found to exhibit a higher capacity than 

SiNWs-BG. The 1st charge capacity of SiNWs-BG and SiNWs-PG shows 1005 mAh/cm3 with 81% 

coulomb efficiency and 1230 mAh/cm3 with 91% at 0.05C, respectively. The main reason for higher 

performance of SiNWs-PG, especially coulomb efficiency is that the chemically bonded structure in 

SiNWs-PG improves efficiently the electron transport and contact between active materials compared 

to SiNWs-BG that Si nanowires are separately placed on bare graphite. The volumetric charge capacity 

of SiNWs-PG shows 2.8 times greater than bare graphite, and the coulomb efficiency is comparable to 

bare graphite (94 %). 

Figure 3b shows the cycle retention of each material shown in Figure 3a at 0.2C rate (also, see 

Figure S6 for the voltage profiles of 10th, 30th, and 100th cycles). Until 15 cycles, the slight fluctuation 

for bare graphite may be caused by the internal resistance such as insufficient SEI formation, whereas 

porous graphite shows good stability resulting from the efficient Li ion diffusion through the more 

exposed edge plane. As a result, porous graphite shows 463 mAh/cm3 with the capacity retention of 

93 %, comparable to bare graphite (416 mAh/cm3 with 94 %) after 100 cycles. For SiNWs-BG (60% 

cycle retention after 100 cycles), the charging capacity gradually decreased due to the poor connectivity 

between Si nanowires and bare graphite, which is related to the volume change within the high density 

electrode. While SiNWs-PG demonstrates little capacity fading after 100 cycles, showing a volumetric 

charge capacity of 1014 mAh/cm3 and 100 % coulomb efficiency after 10 cycles. The initial capacity 

decreases out to 10 cycles is originated from SEI formation on the exposure of the inner pore region.27 

Remarkably, without using conducting agent (carbon black), cycling stability of SiNWs-PG cycle is 

superior to chemically bridged Si/Graphite composites,19 blended SiNWs/graphite composites (15:85, 

w/w) including 20 wt% carbon black for electrode,28 and comparable to physically bonded 

Si/B4C/graphite composites with 40 wt% Si and 30 wt% conductive skeleton.29 

Figure 3c shows excellent rate capability of SiNWs-PG compared to SiNWs-BG from 0.1C to 5C, 

which was done at same C-rate for charging and discharging, respectively (1C = 1050 mA/cm3, see 

Figure S5c and d for rate capability and the voltage profile at the end cycle of each C-rate with specific 

capacity). The charge capacities of SiNWs-BG at the end of each rate of 0.1C, 0.2C, 0.5C, 1C, 3C, and 

5C are 840 mAh/cm3, 648 mAh/cm3, 355 mAh/cm3, 169 mAh/cm3, 38 mAh/cm3 and 7 mAh/cm3, while 

the value of SiNWs-PG are 1175 mAh/cm3, 1054 mAh/cm3, 974 mAh/cm3, 841 mAh/cm3, 747 

mAh/cm3, and 571 mAh/cm3, respectively. The capacity retention at 5C is 49 % capacity retention 

compared to the value at 0.1C. Also, the voltage profile of SiNWs-PG at the end cycle of each C-rate is 

shown in Figure 3d. 
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Based on the electrochemical performance of SiNWs-PG, the morphology maintenance and 

electrode of the product after cycling is well described to understand the reason for such excellent 

cycling stability and rate performance. SEM image of SiNWs-PG confirmed the confinement of 

internally grown Si nanowires in the pores (Figure S7a and b) and the volume expansion of SiNWs-

PG electrode is limited to be only 65.5% calculated from the variation of electrode thickness with 19 

μm (Figure S7c and d). These results confirmed that SiNWs-PG can maintain the interconnecting 

conductive network with the embedded Si nanowires without conductive carbon additives which is 

required to deliver high rate performance, resulting in the effective electron transport pathway, and 

porous graphite contributed the structural integrity of Si nanowires. 

 

4. Conclusion 

In conclusion, Si nanowires grown in pores in etched graphite was successfully demonstrated as a 

new strategy with high electrode density (1.5g/cm3) for an increasing volumetric capacity of the graphite. 

This strategy involved the graphite hydrogenation by Ni nanoparticles for porous structure, followed 

by Si nanowires growth inside porous graphite by VLS process after catalyst exchange. Especially, 

porous graphite as a template for Si nanowires played a key role of not only providing a free space to 

accommodate volume change of the internally grown Si nanowires during cycling, but also providing 

good electron conducting pathway. 
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Figure 1. Top: Schematic view for the synthesis process of Si nanowires internally grown in porous 

graphite. Bottom: SEM images of (a) bare graphite, (b) loaded polystyrene-b-poly(2-vinylpyridine) 

micelles bearing Ni ion on graphite surface, (c) porous graphite after hydrogenation at 1000˚C for 1h, 

and (d) Si nanowires grown from porous graphite after catalyst exchange from Ni to Au, followed by 

VLS process using SiH4 at 550˚C for 30 min (For low magnification images, see Figure S1). 
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Figure 2. (a and b) XRD patterns (asterisks: Ni nanoparticles) and Raman spectra of bare graphite and 

porous graphite, respectively (black: bare graphite, red: porous graphite). (c and d) XRD pattern and 

XPS C1s spectra of SiNWs-PG. In the XPS analysis, the deconvoluted peaks at 284.1, 284.8, and 285.1 

eV indicates Si-C, C in graphite, and C-H bonding, respectively. 
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Figure 3. (a) Voltage profiles of bare graphite, porous graphite, SiNWs-BG and SiNWs-PG at 0.05C 

rate and (b) plot of volumetric charge (delithiation) capacity as a function of cycle number and coulomb 

efficiency at 0.2C rate between 0.005 and 1.4V in coin-type half-cell at 24 ˚C (1C = 450 mAh/cm3 for 

bare graphite and porous graphite, 1C = 1050 mAh/cm3 for SiNWs-BG and SiNWs-PG) (c) Rate 

capability of SiNWs-BG and SiNWs-PG with increasing C rate from 0.1 to 5C rate between 0.005 and 

1.4V in coin-type half-cell at 24 ˚C and (d) voltage profiles of (c) at each C rate (charge and discharge 

rates were same). 
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Supporting Information 

 

 

Figure S1. Cross-sectioned SEM images of (a) bare MCMB and (b) etched MCMB, and low magnified 

SEM images of (c) bare graphite, (d) loaded polystyrene-b-poly(2-vinylpyridine) micelles bearing Ni 

ion on graphite surface, (e) porous graphite after hydrogenation at 1000 ˚C for 1h, and (f and g) Si 

nanowires grown from porous graphite after catalyst exchange from Ni to Au, followed by VLS process 

using SiH4 at 550 ˚C for 30 min (g is expanded image of (f)). 
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Figure S2. SEM images of SiC nanowires on porous graphite by VLS process with silane 

decomposition at (a) 1200 °C, (b) 1300 °C, and (c) XRD pattern of (a) sample. The peak positions 

corresponding to graphite (green), SiC (pink) and Ni2Si (blue) are shown. 
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Figure S3. (a and b) SEM images of Si nanowires from the pores in the controlled experiment with 

SiH4 flow with 15 sccm at 550 ˚C for 30 min and (c) bright-field TEM image of Si nanowires grown in 

porous graphite. The dark region on the top of Si nanowires indicates the alloy catalyst after VLS 

process. (c) highly magnified TEM image of the circled region in (b), and crystalline Si nanowire with 

an amorphous SiO2 layer is shown. 
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Figure S4. (a and b) the low and high magnified SEM images of the directly Si nanowires grown on 

bare graphite without etching process at the same condition for Si nanowire growth (SiH4 flow with 25 

sccm at 550°C for 30 min) 
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Figure S5. (a) Voltage profile of bare graphite, porous graphite, and SiNWs-PG at 0.05C rate, (b) plot 

of volumetric charge (delithiation) capacity as a function of cycle number and coulomb efficiency at 

0.2C rate between 0.005 and 1.4V in coin-type half-cell at 24 ˚C (1C = 300 mA/g for bare graphite and 

porous graphite, 1C = 700 mAh/g for SiNWs-BG and SiNWs-PG), (c) Rate capability of SiNWs-BG 

(black) and SiNWs-PG (red) with increasing C rate from 0.1 to 5C rate between 0.005 and 1.4V in coin-

type half-cell at 24 ˚C, and (d) voltage profiles of (c) at the end cycle of each C rate (charge and 

discharge rates were same). 
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Figure S6. Voltage profiles of bare graphite (black line), etched graphite (blue line), SiNWs-BG (cyan 

line) and SiNWs-PG (red line) after 10th (dot), 30th (dash), and 100th (solid) cycle. 
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Figure S7. (a and b) SEM images of Si nanowires grown from porous graphite at different position, 

and cross-sectional SEM images of SiNWs-PG electrode before (c) and after (d) 100 cycling. 
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Table. S1. The specification and electrochemical performance of silicon/graphite composites in previous works. 

Synthesis 
Silicon 

morpholgy 

Si 

contents

Loading 

level 

Electrode 

density Electrolyte 
Test 

condition 

1st 

lithiation

1st 

de-

lithiation

C.E. Cycle 

retention 
Ref. 

% mg/cm2 g/cm3 mAh/g mAh/g % 

Mechanical 

milling 
Particles 25 6-8 - 

1M LiPF6 in 

EC/DEC 

(1:1, w/w) 

0.005-1.5V 

0.2mA/cm2 for 

1st three cycles, 

0.5mA/cm2 for 

following cycles 

~1050 ~900 85.7 
Decreasing /

33 cycles 
130 

Sol-gel + ball 

milling 
Particles 19.2 3-4 - 

1M LiPF6 in 

EC/DEC 

(50:50, v/v)

0-1.5V at 

0.21mA/cm2 
1033.7 832.2 80.5 

Decreasing /

25 cycles 
231 

Milling + 

heating 
Particles - - - 

1M LiPF6 in 

EC/DEC 

(1:1, v/v) 

0-1.2V at 

0.2mA/cm2 
~650 ~510 78.5 

Stable / 

40 cycles 
332 

Milling + 

heating 
Particles 15 - - 

LiClO4 in 

EC+DMC 

(1:1, v/v) 

0.02-1.5 V at 

0.18mA/cm2 
~1210 ~810 67 

Slightly 

decreasing /  

22cycles 

433 

Ball milling 
Particles 

(on MCMB) 
20 - - 

1M LiPF6 in 

EC/DMC 

(1:1, v/v) 

0.01-3V at 0.05 

mA/cm2 
1175 1066 90.7 

Slightly 

decreasing / 

25 cycles 

534 
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CVD Particles 

0.050 

at.% 

(EDX) 

- - 

1M LiPF6 in 

EC/DMC 

(1:1, v/v) 

0.035-2.0V at 

40 mA/g 
821 367 44.7 

Stable / 30 

cycles 
635 

CVD Particles 7.1 3.5-4 - 

1M LiPF6 in 

EC/DMC + 

2%VC 

0.005-1.0V at 

50mA/g 
690 520 75.4 

Slightly 

decreasing / 

140 cycles 

736 

Mechanical 

milling 

Particle 

(alloy) 
40 - - 

1M LiPF6 in 

EC/DEC 

(1:1, v/v) 

0.005-1.5V at 

0.1C 
1160 830 71.6 

Stable / 50 

cycles 
837 

Milling Particles < 30 3.3 - - 
0.04-1.5V at 

2mA/cm2 
~600 ~580 96 

Slightly 

decreasing / 

40 cycles 

938 

Thermal 

process 
Particles 20 - - 

1M LiPF6 in 

EC/DMC 

(1:1, v/v) 

0.02-1.5V at 

0.2mA/cm2 
- - - 

Slightly 

decreasing / 

50 cycles 

1039 

Spray + 

thermal 

process 

Particles 

(on MCMB) 
10 - - 

1M LiPF6 in 

EC/EMC/D

MC (1:1:1) 

0-1.2V at 

various rate 
868.1 630.9 62 

Decreasing / 

10 cycles 
1140 

PECVD Particles 2.88 - - 

1M LiPF6 in 

EC/EMC/D

MC (1:1:1, 

v/v) 

0-2V at 0.01C - - 78 
Decreasing / 

30 cycles 
1241 

Mechanoche

mical milling
Particles - - - 

1M LiPF6 in 

EC/DEC 

(1:1, v/v) 

0.005-1.5V 1430 1130 79 
Decreasing / 

50 cycles 
1342 
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Milling + 

thermal 

process 

Particles 15 - - 

1M LiPF6 in 

EC/EMC 

(3:7, v/v) 

0-1.5V at 

0.3mA/cm2 
849 721 85 

Decreasing / 

15 cycles 
1443 

Milling + 

thermal 

process 

Particles 20 - - 

1M LiPF6 in 

EC/DMC 

(1:1, w/w) 

0.1-1C at 

0.4mA/mg 
~1300 ~1100 84.6 

Stable / 30 

cycles 
1544 

Milling 
Particles 

(on MCMB) 
50 - - 

1M LiPF6 in 

EC/DMC 

(3:7, v/v) 

- ~500 ~310 62 
Stable / 400 

cycles 
1645 

Milling Particles 33 - - 

1M LiPF6 in 

EC/DEC 

(1:1, v/v) 

0.01-3V at 

35mA/g 
~2250 ~1900 84.4 

Decreasing / 

20 cycles 
1746 

Ball milling Particles 20 - - 

1M LiPF6 in 

EC/DEC/E

MC (1:1:1, 

v/v) 

0.01-1.5V at 

0.15 mA/cm2 
~500 ~350 70 

Decreasing / 

40 cycles 
1847 

LPCVD Particles ~10.7 - - 
1M LiPF6 in 

EC/DEC 
- - - - 

Decreasing / 

11 cycles 
1948 

Milling + 

thermal 

process 

Particles 24.4 - - 

1M LiPF6 in 

EC/DEC 

(1:2, v/v) 

0.02-1.2V at 

160mA/g 
- ~833 - 

Stable / 30 

cycles 
2049 

Silicon 

precursor 

decompositio

n 

Particles 9.2 6-12 1.4-1.6 

1M LiPF6 in 

EC/DMC 

(1:1, v/v) 

0.01-1.5V at 

30mA/g 
705 590 83.7 

Decreasing / 

11 cycles 
2150 
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Ball milling Particles 30.1 2.25 - 

1.3M LiPF6 

in EC/DEC 

(3:7, v/v) 

0.001-1.5V at 

100mA/g 
~1420 ~1000 70.4 

Decreasing / 

30 cycles 
2251 

Ball milling 
Particles 

(alloy) 
- - - 

1M LiPF6 in 

EC/DMC 

0.02-1.2V at 

250μA/cm2 
1693 704 41.6 

Slightly 

decreasing / 

30 cycles 

2352 

Coating + 

thermal 

process 

Particles 10 12.7 - 

1M LiPF6 in 

DEC/EC/D

MC (1:1:1, 

v/v) 

0.01-2.0V at 

0.2mA/cm2 
890 567 63.7 

Stable / 20 

cycles 
2453 

Ball milling 
Particles 

(alloy) 
- - - 

1M LiPF6 in 

EC/DEC/E

MC (1:1:1, 

v/v) 

0.01-1.5 at 

0.15mA/cm2 
646.2 420 65 

Slightly 

decreasing / 

40 cycles 

2554 

Ball milling Particles 9 - - 

1M LiPF6 in 

EC/DMC 

(1:1, w/w) 

0.005-3V at 

1/30C 
718 533 74 

Decreasing / 

10 cycles 
2655 

Mixing with 

specific 

binder 

Particles 20 - - 

1M LiPF6 in 

EC/DEC 

(3:7,v/v) 

0.024-1.5V at 

0.1, 0.2 and 

0.5C 

- - - 
Decreasing / 

50 cycles 
2756 

Mixing + 

thermal 

process 

Particles 10 - - 

1M LiPF6 in 

EC/DMC/E

MC (1:1:1, 

v/v) 

0.005-1V 

0.25mA/cm2 
750 660 88 

Stable / 

14 cycles 
2857 
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Mixing + 

thermal 

process 

Particles 20 - - 

1M LiPF6 in 

EC/DEC 

(1:1, v/v) 

0.02-1.5V with 

CC-CV 
814 700 86 

Stable / 50 

cycles 
2958 

Milling + 

thermal 

process 

Particles 29.1 - - 

0.13M 

LiBOB + 

0.84M LiPF6 

in 

EC/DMC/E

MC (1:1:1, 

v/v) + 2wt% 

VC 

0.02-1.5V at 

50mA/g and 

168mA/g 

850 640 75.3 

Variation, 

decreasing / 

200 cycles 

3059 

Chemical 

synthesis 
Particles 15.5 - - 

1M LiPF6 in 

EC/DEC 

(1:1, w/w) 

0.01-1V at 

25mA/g 
1503 1056 70.2 

Decreasing / 

50 cycles 
3119 

Mechanical 

milling + 

pyrolysis 

Particles 

(alloy) 
- - - 

1M LiPF6 in 

EC/DMC 

(1:1, w/w) 

0.02-1.5V at 

0.1mA/cm2 
1450.3 956.4 66 

Decreasing / 

50 cycles 
3260 

Milling Particles - - - 

1.3M LiPF6 

in 

EC/DEC/FE

C (2:6:2, 

v/v) 

0.001-1.5V at 

100mA/g 
~1500 ~1100 73.3 

Decreasing / 

50cycles 
3361 

Milling Particles ~20 7 1 
1M LiPF6 in 

EC/EMC 

0.008-1.5V with 

CC-CV 
657 568 86.4 

Decreasing / 

30 cycles 
3417 
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(1:2, v/v) + 

1wt% VC 

Mixing Nanowires 15 - - 

1M LiPF6 in 

EC/DMC 

(1:1, v/v) 

0.01-1.5V at 

0.1mA/cm2 
~811 ~610 75.2 

Decreasing / 

15 cycles 
3528 

Thermal 

process 
Particles 33 - - 

1M LiPF6 in 

EC/DEC 

(3:7, v/v) + 

2wt% VC 

0.005-1.5V at 

0.5C 
- - - 

Stable / 100 

cycles 
3662 

Mixing with 

specific 

binder 

Particles 20 - - 

1 or 0.5M 

Li-TFSA in 

BMP-TFSA

0-2V at 50 

mA/g 
~1250 ~750 60 

Decreasing / 

50 cycles 
3763 

Milling + 

thermal 

process 

Particles 60 - 1.4 

1.12 LiPF6 

in EC/EMC 

(1:1, v/v) + 

2wt% VC 

0.005-1.5V at 

0.2C 
761 655 92 

Slightly 

decreasing / 

300 cycles 

3864 

Milling Particles 40 - - 

1M LiPF6 in 

EC/DMC 

(1:2, v/v) + 

10wt% FEC

0-1.5V at 

0.63A/g 
868.8 714.4 82.3 

Decreasing / 

200 cycles 
3929 

Milling Particles 30 0.30 - 

1M LiPF6 in 

EC/DMC 

(1:1, v/v) + 

2vol% FEC

0-2V with CC-

CV mode 
~2000 ~1300 65 

Stable / 140 

cycles 
4065 
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Spray + 

pyrolysis 
Particles 22 - - 

1M LiPF6 in 

EC/EMC/D

MC (1:1:1, 

v/v) 

0.02-1.5V with 

CC-CV mode 
864.6 602.7 69.7 

Stable / 20 

cycles 
4166 

Thermal 

process 
Particles 22 - - 

1M LiPF6 in 

EC/DMC 

(1:1, v/v) 

0.01-2V at 50 

mA/g 
690 520 75.3 

Stable / 20 

cycles 
4267 
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Chapter V 

3D Amorphous Silicon on Nanopillar Copper Electrodes as Anodes for High-Rate Lithium-Ion 

Batteries 

 

1. Introduction 

Owing to the recent development of electronic devices such as personal computers and smart 

phones, wearable devices have become remarkably attractive as the next generation of smart devices, 

heralding a paradigm shift in trends from portable to wearable devices. Because wearable devices need 

to be more compact and lightweight, and need to retain the high performance of portable ones, Li-ion 

batteries play a key role in this paradigm shift. Thin-film batteries are the most suited for this application, 

and provide a major breakthrough in the size reduction of wearable devices while maintaining high 

energy density.1-5 However, the use of carbon-based materials in a conventional system do not meet the 

demands owing to their low theoretical capacity (372 mAh/g).6 

Among the various potential anode materials, Si has been intensively investigated because it 

imparts a high theoretical capacity to the electrodes (4200 mAh/g), which is over 10 times higher than 

that of graphite.7 Despite these superior characteristics, Si undergoes a 400% change in volume during 

lithiation, which results in pulverization and degradation of the electrical connection between electrodes. 
8-11 This disadvantage is the main factor in the significant capacity loss in the system during the 

electrochemical reaction (i.e., Si + x Li+ + x e- ↔ LixSi).12 To prevent this crack formation caused by 

the stress in Si during cycling, two basic principles are applied in nano-engineering of Si-based 

electrodes to reduce the strain as follows:13-23 i) Empty space is incorporated into the electrode for 

effective accommodation of strain during cycling. There have been reports that Si nanowires,13 Si 

nanotubes20 and Si nanoparticles encapsulated in hollow carbon tubes24 are used for nano-engineered 

active materials25-29; and ii) Si thin film that is thinner than the critical thickness is deposited on the 

planar surface of the current collector using various deposition processes to prevent the loss of electrical 

connectivity between the active materials and current collector.30-32 With respect to the two approaches, 

three-dimensional (3D) nanostructured electrodes have been widely considered because they 

significantly improve Li-ion diffusion and electron transport to overcome the low energy per unit area 

limitation of planar electrodes.33-36  

Accordingly, we demonstrate a 3D nanostructured thin-film electrode consisting of Cu nanopillars 

fabricated using roll-to-roll hot embossing followed by Cu electroforming with the a-Si thin layer 

coated on Cu nanopillars via low-pressure chemical vapor deposition (LPCVD). As a current collector, 

Cu nanopillars substrate provide a high surface area for better mass accommodation of Si deposition 



116 

 

while the space between Cu nanopillars enhance the electrochemical reaction between the electrode and 

electrolyte and accommodates the volume change during cycling. In addition, because the fabrication 

of the Cu nanopillar substrate only involves conventional top-down processes, the nanopillars can be 

generated through a facile and fast process with control of the surface area and simple modulation of 

the nanopillar density or diameter. Remarkably, the well-patterned nanopillar substrate imparts a 

significantly enhanced connection between the current collector and active materials without a binder, 

and also provides free space to accommodate Si expansion without pulverization during cycling. 

 

2. Experimental section 

2.1. Fabrication of a-Si/3D-Cu electrode 

The pitches and heights of the Ni metal plate stamps were 1 and 2 µm, respectively, and the 

diameters of the pillars were either 250 or 500 nm. The nanoscale surface protrusion pattern of a rolled 

Ni metal plate stamp was transferred to polyvinyl chloride (PVC) by thermal roll-to-roll processing 

(order production, CMP Co., Ltd.) at 100 °C under ~10 atm of pressure. Cu metal was then deposited 

over the embossed PVC film using e-beam evaporation at 60 °C and 2.7 × 10-5 atm with the rate of 3 

Å/s to form a seed layer by 100 nm for the electroforming process. (EBX-1000, ULVAC Inc.) 

Electroformation at 0.02 A for 1 h in a Cu plating solution (CuSO4∙5H2O/H2SO4 = 2.5:1 with 70 ppm 

HCl; Americhem, Inc.) filled the cavities with Cu and formed the Cu film. Then, the Cu foil with an 

array of Cu nanopillars was detached from the polymer film and covered with an amorphous Si layer 

using LPCVD with 2% SiH4 at 200 °C and 0.839 atm under 50 W of RF power (SJF-1000T2, Sungjin 

Semitech Co., Ltd.). 

 

2.2. Fabrication of the Li-ion half-cell 

A coin-shaped half-cell (2032R) was fabricated with an a-Si/3D-Cu working electrode (The 

blanket film contains 0.136 mg of Si corresponding to 0.088 mg/cm2, while the a-Si/3D-Cu electrodes 

with 250 and 500 nm diameter nanopillars contain 0.142 and 0.129 mg of Si corresponding to 0.092 

and 0.084 mg/cm2, respectively.) and metallic Li reference electrode. The working and reference 

electrode were punched for the 2032R half-cell with diameters of 14 mm and separated with 

polypropylene separator. The electrolyte (Panax Korea) was 1.3 M LiPF6 in a blend of ethylene 

carbonate (EC) and ethyl methyl carbonate (EMC) with 10 wt% flouroethylene carbonate (FEC) 

additive. 
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2.3. Electrochemical characterization of the half-cell 

For the electrochemical characterizations, the blanket film and a-Si/3D-Cu electrodes with 250 

and 500 nm diameter nanopillars were cycled between 0.005 and 1.5 V in Li half-cells (2032R, 1 C = 

2000 mA/g, Wonatech Co., Ltd.) at 24 °C. 

 

2.4. Morphology characterization of the a-Si/3D-Cu nanopillar electrode 

The electrode configuration of the blanket film and a-Si/3D-Cu electrodes with 250 and 500 nm 

diameter nanopillars were characterized by high-resolution transmission electron microscopy (HR-

TEM, JEM-2100F, JEOL Inc.), energy-dispersive spectroscopy (EDS, JEM-2100, JEOL Inc.) elemental 

mapping, and field emission (FE)-SEM (EX-200, Horiba Inc.). The TEM sample was fabricated using 

a focused–ion-beam instrument (FIB; Quanta 3D FEG, FEI Inc.). The presence of a-Si was confirmed 

via fast Fourier transform (FFT; JEM-2100, JEOL Inc.) analysis and the crystallization of Cu was 

confirmed by X-ray diffraction (XRD; Rigaku) analysis. 

 

3. Results and discussion 

Figure 1 shows a schematic of the fabrication of the electrode comprising amorphous Si deposited 

on a 3D Cu nanopillar substrate (a-Si/3D-Cu nanopillar electrode). First, Ni metal plate stamps with 

pitches of 1 μm, heights of 2 μm, and diameters of either 250 or 500 nm were fabricated. In the 

fabrication process of Ni stamp, the height of 2 μm was optimized dimensions to reproduce the desired 

pattern by thermal roll to roll method. If the aspect ratio of the pillar is too high (> 9) in our experimental 

condition, the Ni pillars were deformed during contact to the PVC film, as shown in Figure S1. Then, 

the prepared patterned Ni stamp was transferred to polyvinyl chloride (PVC, glass transition 

temperature = 80 °C) at 100 °C and ~10 atm to prepare the patterned mold (Figure 1a). The Cu 

nanopillar substrate was formed by deposition of Cu onto the embossed PVC mold by e-beam 

evaporation at 60 °C and 2.7 × 10-5 atm to form a seed layer by 100 nm followed by electroformation 

at 0.02 A for 1 h in a Cu plating solution (CuSO4∙5H2O/H2SO4 = 2.5:1 with 70 ppm HCl) (Figure 1b). 

Finally, the well-arrayed Cu nanopillar substrate (Figure S2) was detached from the polymer mold and 

amorphous Si was deposited onto the prepared substrate by LPCVD using 2% SiH4 at 200 °C and 0.839 

atm with an RF power of 50 W (Figure 1c). 

For comparison, the electrode configuration of a blanket film and a-Si/3D-Cu electrodes with 250 

and 500 nm diameter nanopillars were characterized by transmission electron microscopy (TEM) and 

energy-dispersive X-ray (EDX) elemental mapping (Figure 2). The structures of the a-Si/3D-Cu 

nanopillar electrodes show clearly well-developed periodic patterns consistent with the schematic in 



118 

 

Figure 1, as shown in Figures 2a, b, and c. Each electrode contains small pores, which were expanded 

during sample preparation by a focused-ion-beam treatment, at the interface between the Cu formed by 

e-beam evaporation and electroforming process, describing as white spots in TEM results. In Figures 

2d, e, and f, the thickness of the a-Si deposition layer was fixed at 200 nm for the blanket film and 130 

nm for both a-Si/3D-Cu nanopillar electrodes, and the amorphous Si structure was confirmed via fast 

Fourier transform (FFT) analysis. The thickness difference caused by a-Si deposition via LPCVD is not 

relevant in this work, especially for the electrochemical test. From the energy dispersive X-ray (EDX) 

elemental mapping images shown in Figure 2g, h, and i, it was confirmed that the electrode structures 

spatially correspond to a-Si and Cu and the likelihood of producing Cu silicide during processing and 

X-ray diffraction (XRD) analysis is low (Figure S3).37 

For electrochemical characterization, the blanket film and a-Si/3D-Cu nanopillar electrodes with 

250 and 500 nm diameters were cycled at 0.5 C rate between 0.005 and 1.5 V in Li half-cells (2032R, 

1 C = 2000 mA/g). The first cycle voltage profiles of each electrode are shown in Figure 3a; all 

electrodes exhibit no plateau below 0.1 V after lithiation, which is the typical a-Si electrochemical 

behavior. The discharge capacities of the blanket film and a-Si/3D-Cu electrodes with 250 and 500 nm 

diameter nanopillars during the first cycle are 1947, 1982, and 1847 mAh/g with coulomb efficiencies 

(C.E.) of 92.2, 95.3, and 91.3 %, respectively. 

Figure 3b exhibits the cycle retention of each electrode at 0.5 C rate. After 100 cycles, the a-

Si/3D-Cu electrodes with 250 and 500 nm diameter nanopillars show 1627 and 1420 mAh/g of the 

discharge capacity, respectively; On the contrary, the blanket film shows 138 mAh/g of the discharge 

capacity with 7.1% of retention. The main reason for the better cycle retention of the a-Si/3D-Cu 

nanopillar electrodes is the morphology variation in each electrode before and after 100 cycles. As 

shown in Figures 4a and d, after 100 cycles, the blanket film electrode shows a high concentration of 

cracks and delamination, which is related to the strain caused by the significant mechanical stress due 

to the a-Si volume change, resulting in a loss of electrical connectivity. In contrast, both a-Si/3D-Cu 

nanopillar electrodes exhibited smooth surfaces even after 100 cycles (Figures 4b, c, e, and f). From 

Figure S4, it becomes evident that the adhesion between a-Si and Cu layer is still strong after 100th 

charge and discharge cycles. 

These results indicate that not only do a-Si 3D-nanopillar electrodes have sufficient void space to 

accommodate volume changes during the electrochemical reaction, but the well-patterned nanopillar 

substrate also allows significant enhancement of the connection between the current collector and active 

materials without binder. The high performance of the electrodes was confirmed by dQ/dV analysis, as 

shown in Figure S5. The differential plot of the first cycle exhibits two peaks at 0.08 and 0.23 V for 

lithiation and 0.3 and 0.48 V for de-lithiation.38 The reversibility was maintained without additional 

polarization even after 100 cycles. The retention results indicate that the electrode with a 500 nm 



119 

 

diameter nanopillar array exhibited poorer performance than the electrode with a 250 nm diameter 

nanopillar array, because the free space between the  nanopillars was insufficient to completely 

accommodate the expansion of Si resulting in the slight deformation of the nanopillar array, as shown 

in the inset of Figure 4f. Also, the improved 1st C.E. and cycle retention of 250 nm diameter sample 

compared to 500 nm one are related to the nanopillar’s resistance after volume expansion of a-Si. It is 

reported that the resistance is increased as copper strain is developed after deformation.39 Therefore, 

more deformed 500 nm sample may be expected to build up a resistance, resulting in a decrease of 

electron transport for charger-transfer reaction. In addition, the structural discontinuity of the deposited 

film plays a key role of improving the electrochemical performance of a-Si/3D-Cu nanopillar electrode. 

Not only the discontinuity of electrode can provide the more interface region between active materials 

and electrolyte, but also the region where crack yields could buffer to some degree of volume expansion 

(Figure. S6). 

Figure 3c demonstrates the improved rate capability of both a-Si/3D-Cu nanopillar electrodes 

from 0.5 to 20 C, and improved cycle stability, even after the rate test at 20 C rate, compared to those 

of the blanket film electrode under the same charge and discharge conditions (1 C = 2000 mA/g). The 

voltage profiles for each electrode are shown in Figure S7. The a-Si/3D-Cu electrode with 250 nm 

diameter nanopillars exhibits the discharge capacities of 2466, 1474, 1122, and 587 mAh/g at rates of 

0.5, 3, 7, and 20 C, respectively, with a capacity retention of 23.8% at 20 C; in comparison, the blanket 

film electrode has a capacity retention of ~0% under the same conditions. Remarkably, after the same 

rate test, both a-Si/3D-Cu nanopillar with 250 and 500 nm diameter electrodes underwent little capacity 

fading after 300 cycles at 20 C rate, showing 996 and 719 mAh/g of the discharging capacities with 

99.3 (± 0.3) and 99.9 (± 0.3) % of the C.E., respectively. This result is comparable to that of an electrode 

that is surface-treated with carbon or Al2O3.40 The capacity increase at the beginning condition in the 

range of from 3 C to 20 C may be related to the activation of unreacted inside region in silicon, which 

is generally known to Si electrodes operated at high C-rate condition.41-43 The maintenance of the 

morphology of the a-Si/3D-Cu nanopillar electrodes after cycling (Figure S8) is the likely cause of the 

excellent cycling stability and rate performance. 

 

4. Conclusion 

In conclusion, based on these results, nano-pattern technology can play a key role in enhancing the 

performance of various types of active materials because of the low internal resistance caused by 

enhanced attachment between the patterned current collector and active materials, facile charge 

transport due to the three-dimensional configuration, and stress relaxation as a result of the voids 

between the nanopillars. 
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Figure 1. Schematic of the fabrication of 3D amorphous on Si nanopillar Cu electrode. (a) Patterned 

polyvinyl chloride (PVC) obtained from thermal roll-to-roll processing, (b) Cu nanopillar substrate 

applied via electroplating, (c) amorphous Si deposited on the Cu nanopillar substrate by low-pressure 

chemical vapor deposition (LPCVD). 
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Figure 2. Electrode configuration of 3D amorphous on Si nanopillar Cu electrode by electron 

microscopy. Cross-sectional TEM images of the overall configuration of the (a) blanket film, (b) a-

Si/3D-Cu electrode with 250 nm diameter nanopillars, and (c) a-Si/3D-Cu electrode with 500 nm 

diameter nanopillars. (d, e, and f) Expanded views of each structure at the interface between the Cu and 

a-Si layer (rectangular regions in a, b, and c) (inset: FFT analysis for a-Si). (g, h, and i) Energy 

dispersive X-ray (EDX) elemental mapping images of each electrode. 
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Figure 3. Electrochemical evaluation of 3D amorphous Si on nanopillar Cu electrode. (a) First cycle 

voltage profiles of the blanket film and a-Si/3D-Cu electrodes with 250 and 500 nm diameter 

nanopillars at 0.5 C rate, and (b) plot of the discharge capacity as a function of cycle number and 

coulomb efficiency at 0.5 C rate between 0.005 and 1.5 V in a 2032 coin-type half-cell (1 C = 2000 

mA/g). (c) Rate capability of the blanket film and both a-Si/3D-Cu nanopillar electrodes from 0.5 to 20 

C rate between 0.005 and 1.5 V followed by recovery at 0.5 C, and the cycle retention plot at 20 C (the 

charge and discharge rates were same). 
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Figure 4. The morphology change before and after electrochemical test. SEM images of the as-

fabricated (a) blanket film, (b) a-Si/3D-Cu electrode with 250 nm diameter nanopillars, and (c) a-Si/3D-

Cu electrode with 500 nm diameter nanopillars, and (d, e, and f) the blanket film and a-Si/3D-Cu 

electrodes with 250 and 500 nm diameter nanopillars after 100 cycles, respectively (inset: top view). 
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Supporting Information 

 

 

 

 

 

 

 

Figure S1. The description of the deformed pattern when Ni pillar stamp has the aspect ratio more than 

9. 
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Figure S2. SEM images of (a) blanket film and (b and c) Cu nanopillar electrode with 250 and 500 nm 

diameter after e-beam evaporation and electroformation, respectively. 
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Figure S3. XRD patterns of the blanket film. 
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Figure S4. (a and d) Cross-sectional TEM images of the overall configuration of the a-Si/3D-Cu 

electrode with 250 and 500 nm diameter nanopillars after 100 cycles, and (b and e) Expanded views of 

each structure at the interface between the Cu and a-Si layer, respectively (rectangular regions in a and 

d) (inset: FFT analysis for a-Si). (c and f) Energy dispersive X-ray (EDX) elemental mapping images 

of each electrode. 
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Figure S5. Differential capacity curves of (a) blanket film, (b and c) a-Si/3D-Cu electrode with 250 and 

500 nm diameter nanopillars for 1st and 100th cycle, respectively. 
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Figure S6. SEM images of the as-fabricated a-Si/3D-Cu electrode with 250 and 500 nm diameter 

nanopillars before (a and b), and after 100 cycles (c and d), respectively. 
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Figure S7. Voltage profiles of (a) blanket film, (b and c) a-Si/3D-Cu electrode with 250 and 500 nm 

diameter nanopillars at various C rates, respectively. 
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Figure S8. SEM images of the (a) blanket film, a-Si/3D-Cu electrode with (b) 250 and (c) 500 nm 

diameter nanopillars after 300 cycles at 20 C (inset: top view). 

 

  



132 

 

References 

 

1. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. 

Nature 2001, 414 (6861), 359-367. 

2. Wang, J.-Z.; Zhong, C.; Chou, S.-L.; Liu, H.-K., Flexible free-standing graphene-silicon 

composite film for lithium-ion batteries. Electrochem. Commun. 2010, 12 (11), 1467-1470. 

3. Chiang, Y.-M., Building a Better Battery. Science 2010, 330 (6010), 1485-1486. 

4. Choi, N.-S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L. 

F.; Cho, J.; Bruce, P. G., Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. 

Angew. Chem. Int. Ed. 2012, 51 (40), 9994-10024. 

5. Nazri, G.-A;Pistoia, G. Lithium Batteries: Science and Technology; Kluwer Academic/Plenum: 

Boston, 2004; pp 120-125 

6. Huggins, R. A., Lithium alloy negative electrodes. J. Power Sources 1999, 81–82 (0), 13-19. 

7. Munao, D.; Valvo, M.; van Erven, J.; Kelder, E. M.; Hassoun, J.; Panero, S., Silicon-based 

nanocomposite for advanced thin film anodes in lithium-ion batteries. J. Mater. Chem. 2012, 22 (4), 

1556-1561. 

8. Lee, S. W.; McDowell, M. T.; Choi, J. W.; Cui, Y., Anomalous Shape Changes of Silicon 

Nanopillars by Electrochemical Lithiation. Nano Lett. 2011, 11 (7), 3034-3039. 

9. Liu, X. H.; Zhang, L. Q.; Zhong, L.; Liu, Y.; Zheng, H.; Wang, J. W.; Cho, J.-H.; Dayeh, S. A.; 

Picraux, S. T.; Sullivan, J. P.; Mao, S. X.; Ye, Z. Z.; Huang, J. Y., Ultrafast Electrochemical Lithiation 

of Individual Si Nanowire Anodes. Nano Lett. 2011, 11 (6), 2251-2258. 

10. Liu, X. H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; 

Liang, W. T.; Wang, J. W.; Cho, J.-H.; Epstein, E.; Dayeh, S. A.; Picraux, S. T.; Zhu, T.; Li, J.; Sullivan, 

J. P.; Cumings, J.; Wang, C.; Mao, S. X.; Ye, Z. Z.; Zhang, S.; Huang, J. Y., Anisotropic Swelling and 

Fracture of Silicon Nanowires during Lithiation. Nano Lett. 2011, 11 (8), 3312-3318. 

11. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-Dependent Fracture 

of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6 (2), 1522-1531. 

12. Kang, B.; Ceder, G., Battery materials for ultrafast charging and discharging. Nature 2009, 

458 (7235), 190-193. 

13. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-

performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3 (1), 31-35. 

14. Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y., Carbon−Silicon Core−Shell Nanowires as High 

Capacity Electrode for Lithium Ion Batteries. Nano Lett. 2009, 9 (9), 3370-3374. 



133 

 

15. Deng, J.; Ji, H.; Yan, C.; Zhang, J.; Si, W.; Baunack, S.; Oswald, S.; Mei, Y.; Schmidt, O. G., 

Naturally Rolled-Up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithium-Ion Batteries with 

Remarkable Cycling Performance. Angew. Chem. Int. Ed. 2013, 52 (8), 2326-2330. 

16. Kim, H.; Han, B.; Choo, J.; Cho, J., Three-Dimensional Porous Silicon Particles for Use in 

High-Performance Lithium Secondary Batteries. Angew. Chem. Int. Ed. 2008, 47 (52), 10151-10154. 

17. Kim, H.; Seo, M.; Park, M.-H.; Cho, J., A Critical Size of Silicon Nano-Anodes for Lithium 

Rechargeable Batteries. Angew. Chem. Int. Ed. 2010, 49 (12), 2146-2149. 

18. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y., A Yolk-Shell Design for 

Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Lett. 2012, 12 (6), 3315-3321. 

19. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., High-performance 

lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9 (4), 353-358. 

20. Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube 

Battery Anodes. Nano Lett. 2009, 9 (11), 3844-3847. 

21. Kasavajjula, U.; Wang, C.; Appleby, A. J., Nano- and bulk-silicon-based insertion anodes for 

lithium-ion secondary cells. J. Power Sources 2007, 163 (2), 1003-1039. 

22. Li, H.; Wang, Z.; Chen, L.; Huang, X., Research on Advanced Materials for Li-ion Batteries. 

Adv. Mater. 2009, 21 (45), 4593-4607. 

23. Larcher, D.; Beattie, S.; Morcrette, M.; Edstrom, K.; Jumas, J.-C.; Tarascon, J.-M., Recent 

findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. 

Chem. 2007, 17 (36), 3759-3772. 

24. Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y., Engineering Empty Space between 

Si Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2012, 12 (2), 904-909. 

25. Li, H.; Huang, X.; Chen, L.; Wu, Z.; Liang, Y., A High Capacity Nano - Si Composite Anode 

Material for Lithium Rechargeable Batteries. Electrochem. Solid-State Lett. 1999, 2 (11), 547-549. 

26. Li, H.; Huang, X.; Chen, L.; Zhou, G.; Zhang, Z.; Yu, D.; Jun Mo, Y.; Pei, N., The crystal 

structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. 

Solid State Ionics 2000, 135 (1–4), 181-191. 

27. Chou, S.-L.; Wang, J.-Z.; Choucair, M.; Liu, H.-K.; Stride, J. A.; Dou, S.-X., Enhanced 

reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12 

(2), 303-306. 

28. Peng, K.; Jie, J.; Zhang, W.; Lee, S.-T., Silicon nanowires for rechargeable lithium-ion battery 

anodes. Appl. Phys. Lett. 2008, 93 (3), -. 

29. Hertzberg, B.; Alexeev, A.; Yushin, G., Deformations in Si−Li Anodes Upon Electrochemical 

Alloying in Nano-Confined Space. J. Am. Chem. Soc. 2010, 132 (25), 8548-8549. 



134 

 

30. Takamura, T.; Ohara, S.; Uehara, M.; Suzuki, J.; Sekine, K., A vacuum deposited Si film 

having a Li extraction capacity over 2000 mAh/g with a long cycle life. J. Power Sources 2004, 129 

(1), 96-100. 

31. Maranchi, J. P.; Hepp, A. F.; Kumta, P. N., High Capacity, Reversible Silicon Thin-Film 

Anodes for Lithium-Ion Batteries. Electrochem. Solid-State Lett. 2003, 6 (9), A198-A201. 

32. Yu, C.; Li, X.; Ma, T.; Rong, J.; Zhang, R.; Shaffer, J.; An, Y.; Liu, Q.; Wei, B.; Jiang, H., 

Silicon Thin Films as Anodes for High-Performance Lithium-Ion Batteries with Effective Stress 

Relaxation. Adv. Energy Mater. 2012, 2 (1), 68-73. 

33. Nam, S. H.; Kim, K. S.; Shim, H.-S.; Lee, S. H.; Jung, G. Y.; Kim, W. B., Probing the Lithium 

Ion Storage Properties of Positively and Negatively Carved Silicon. Nano Lett. 2011, 11 (9), 3656-3662. 

34. Gowda, S. R.; Leela Mohana Reddy, A.; Zhan, X.; Jafry, H. R.; Ajayan, P. M., 3D Nanoporous 

Nanowire Current Collectors for Thin Film Microbatteries. Nano Lett. 2012, 12 (3), 1198-1202. 

35. He, Y.; Yu, X.; Wang, Y.; Li, H.; Huang, X., Alumina-Coated Patterned Amorphous Silicon as 

the Anode for a Lithium-Ion Battery with High Coulombic Efficiency. Adv. Mater. 2011, 23 (42), 4938-

4941. 

36. Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes. Energy 

Environ. Sci. 2011, 4 (1), 56-72. 

37. Cho, J.-H.; Li, X.; Picraux, S. T., The effect of metal silicide formation on silicon nanowire-

based lithium-ion battery anode capacity. J. Power Sources 2012, 205 (0), 467-473. 

38. Pollak, E.; Salitra, G.; Baranchugov, V.; Aurbach, D., In Situ Conductivity, Impedance 

Spectroscopy, and Ex Situ Raman Spectra of Amorphous Silicon during the Insertion/Extraction of 

Lithium. J. Phys. Chem. C 2007, 111 (30), 11437-11444. 

39. Charsley, P.; Robins, B. A., Electrical resistance changes of cyclically deformed copper. Mater. 

Sci. Eng. 1974, 14 (2), 189-196. 

40. Cao, F.-F.; Deng, J.-W.; Xin, S.; Ji, H.-X.; Schmidt, O. G.; Wan, L.-J.; Guo, Y.-G., Cu-Si 

Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries. Adv. Mater. 2011, 23 (38), 

4415-4420. 

41. Chang, J.; Huang, X.; Zhou, G.; Cui, S.; Hallac, P. B.; Jiang, J.; Hurley, P. T.; Chen, J., 

Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion 

Battery Anode. Adv. Mater. 2014, 26 (5), 758-764. 

42. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; 

Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-

electrolyte interphase control. Nat. Nanotechnol. 2012, 7 (5), 310-315. 

43. Nguyen, H. T.; Yao, F.; Zamfir, M. R.; Biswas, C.; So, K. P.; Lee, Y. H.; Kim, S. M.; Cha, S. 

N.; Kim, J. M.; Pribat, D., Highly Interconnected Si Nanowires for Improved Stability Li-Ion Battery 

Anodes. Adv. Energy Mater. 2011, 1 (6), 1154-1161. 



135 

 

* Chapter V is reproduced in with a permission of “Kim, G.; Jeong, S.; Shin, J.-H.; Cho, J.; Lee, H., 3D 

Amorphous Silicon on Nanopillar Copper Electrodes as Anodes for High-Rate Lithium-Ion Batteries. 

ACS Nano 2014, 8 (2), 1907-1912”. Copyright 2014 American Chemical Society.  

 

  



136 

 

Chapter VI 

Lithium reaction mechanism and high rate capability of VS4-graphene nanocomposite as an anode 

material for lithium batteries 

 

1. Introduction 

Recently, the number of R & D activities focused on flexible energy storage systems for wearable 

devices has soared and these storage systems (batteries) require a high capacity and rate performance 

to allow the devices to operate for a long time and charge in a short amount of time. As one of the 

leading candidates in flexible batteries, Li-ion batteries (LIBs) have been widely considered. The main 

challenge to realize these requirements is to design reliable electrodes with flexible properties and a 

high electrochemical performance. Graphene based composites are very promising in energy storage 

systems because graphene can offer a large surface area, providing more active sites for electrochemical 

reactions, and a highly electron conducting network with superior mechanical flexibility.1 For example, 

transition metal oxides and sulphides, such as Fe3O4,2 Co3O4,3 MnO2,4 WS2,5-7 ZrS2,8 and FeS,9 have 

been incorporated into graphene sheets to prepare flexible electrodes. These exhibited a high 

electrochemical performance due to the graphene that plays a key role in the rapid electron transport 

and buffering of the volume expansion. Among them, MoS2, with a sandwich-like layered structure, is 

the most investigated material owing to its outstanding electrochemical performance and easy 

synthesis.10 MoS2, with different morphologies and sizes, and many kinds of MoS2 composites, have 

been employed as anode materials for LIBs, exhibiting a high capacity and good rate capability.10-17 A 

comparable energy density (>100 W h kg-1) was also reported for MoS2 because of its high specific 

capacity which shows great potential for LIBs.18 

On the other hand, only a few papers have reported studies on utilizing vanadium sulfides and their 

analogues for LIBs. The intercalation behaviour of Li+ into VS2 was investigated by Murphy et al., and 

VS2 was then tested as a cathode material.19-20 Murugan et al. expanded the interlayer spacing of VS2 

by the in situ oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) and also tested it as a 

cathode material for LIBs.21 VSe2-ySy and Li0.8VS2 have been tested as anode materials,22-23 showing 

capacities lower than 200 mA h g-1. However, another vanadium sulfide, VS4, has never been reported 

for use in lithium storage due to its difficult synthesis method, and only its crystallographic structure 

has been reported so far.24-25 Recently, we succeeded in preparing a VS4-loaded reduced graphene (rGO) 

composite via a simple hydrothermal process.25 

Herein, we investigate the Li reaction mechanism of the VS4–reduced graphene (VS4-rGO) 

nanocomposite and observe its high rate capability and cycling performance. 
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2. Experimental section 

2.1. Synthesis of VS4-rGO composites 

The synthesis method followed for the VS4–rGO composites was as reported in ref. 25. Graphene 

oxide (GO) was prepared from natural graphite powder by a modified Hummers method.25-26 To prepare 

the VS4–rGO composite, 1.84 g (0.01 mol) of sodium orthovanadate (Na3VO4, Sigma-Aldrich, 99.98%) 

and 3.75 g (0.05 mol) of thioacetamide (C2H5NS, Sigma-Aldrich, ≥99%) were dissolved in 320 mL 

of DI water. Then 80 mL of GO solution (~5 mg mL-1) was added. The mixture was stirred for 1 h at 

room temperature using a magnetic stirrer. After preparing a homogenous solution, the mixture was 

transferred to a 500 mL Teflon-lined stainless steel autoclave, tightly sealed and a hydrothermal reaction 

was carried out at 160 °C for 24 h. After cooling naturally, the product was collected by filtration and 

washed with DI water and dried under vacuum at 60 °C for 6 h. During the hydrothermal process, VS4 

formed on the GO and GO was transformed into rGO. Furthermore, only rGO was obtained via the 

hydrothermal reaction of the GO solution under the same conditions however without the addition of 

Na3VO4 and C2H5NS. For the synthesis of the reference VS4–10 wt% CNT composite sample, refer to 

the supporting information. 

 

2.2. Characterization of the materials 

Powder X-ray diffraction (PXRD) patterns were obtained from a High Power X-ray Diffractometer 

(Rigaku) by using Cu-Kα radiation or a Synchrotron Beamline Diffractometer (Pohang Accelerator Lab, 

Pohang, Korea). All of the samples were sealed in tape before the measurement to prevent oxidation. 

TEM and EDS mapping images were obtained by using a JEM-2100 transmission electron microscope 

(JEOL) operated at 200 kV. Mass spectra of the pristine and cycled samples were obtained by using a 

Bi+ beam on a TOF-SIMS spectrometer (ION TOF) at an operating pressure of <5.0 × 10-10 torr. 

Elemental analysis was performed on a Flash 2000 element analyzer (Thermo Scientific). 

 

2.3. Electrochemical characterization of the materials 

The anodes were made of a VS4-rGO or VS4-CNT composite, Ketjen Black, and a polyvinylidone 

fluoride (PVDF) binder (LG Chem.) in a weight ratio of 80:10:10. The coin-type half cells (2016R) 

were assembled in an Ar-filled glove box, using lithium metal foil as the counter electrode, microporous 

polyethylene as the separator, and 1.1 M LiPF6 in ethylene carbonate–diethylene carbonate (EC–DEC, 

1:1 volume ratio, Panax Starlyte, Korea) as the electrolyte. The loading amount of the electrode material 

was measured as >1 mg cm-2. The coin-type full cell (2032R) was made of a LiMn2O4 cathode and a 
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VS4-rGO anode with a N/P ratio of 1.1, and 1.1 M LiPF6 in ethylene carbonate–ethyl methyl carbonate 

(EC–EMC, 3:7 volume ratio, with a 2% vinylene carbonate additive) was used as the electrolyte. The 

capacity of the full-cell was ~1 mA h. The cell tests were performed with a WBCS3000 automatic 

battery cycler system at 23 °C, and the capacity was estimated based only on the active materials (VS4-

rGO in the half-cell, or VS4-rGO and LiMn2O4 in the full-cell). Cyclic voltammetry and electrochemical 

impedance spectroscopy (EIS) were carried out on an Ivium-n-Stat Multichannel Electrochemical 

Analyser (Ivium Technologies), using three-electrode cells with lithium metal as the counter and 

reference electrodes. The cyclic voltammogram (CV) was obtained in the voltage range of 0-3.0 V (vs. 

Li+/Li) at a scan rate of 0.5 mV s-1. The Nyquist plots were recorded by applying an AC voltage with 

an amplitude of 5 mV in the frequency range of 0.05 Hz to 100 kHz. All electrochemical measurements 

were carried out at room temperature. 

 

3. Results and discussion 

The as-prepared VS4 phase was confirmed by powder X-ray diffraction, and all the diffraction 

peaks can be assigned to VS4 with a body-centered monoclinic phase (I2/c space group, a = 6.77 Å, b 

= 10.42 Å, c = 12.11 Å, JCPDS card no. 87-0603). VS4 was described as V4+(S2
2-)2 (Figure S1A). It is 

a linear-chain compound with alternating bonding and nonbonding contacts between the octa-

coordinated vanadium centers with each S2
2- unit bridging two neighboring vanadium atoms (Figure 

S1B).27 No peak for rGO appeared in the XRD pattern, and elemental analysis showed that the content 

of rGO in this composite was only ~3 wt%. SEM and TEM images confirmed that the composite 

consists of rGO-attached VS4 nanorods, with sizes of 200~300 nm in length and 80~150 nm in width 

(Figure S2A and B), which agrees with the previous result.25 The presence of agglomeration is believed 

to be caused by the interaction between VS4 and rGO. The HR-TEM image exhibits a typical layered 

structure, with an interlayer distance of 0.56 nm corresponding to the (110) plane of VS4 (Figure. S2C). 

EDS mapping images further reveal the homogeneous distribution of vanadium and sulfur in the 

nanoparticles (Figure S3). 

Figure 1A shows the representative cyclic voltammograms (CVs) of VS4–rGO measured in the 

voltage range of 0–3.0 V (vs. Li+/Li) at a scan rate of 0.5 mV s-1 during the first three cycles. Reduction 

peaks attributed to the lithiation process at ~1.6, ~1.4 and ~0.6 V, and oxidation peaks corresponding to 

the de-lithiation process at ~1.8 and 2.4 V were observed in the first cycle. Two reduction peaks at ~1.6 

and ~1.4 V might be related to the lithium insertion into VS4 phase (VS4 → LixVS4), and the peak at 

~0.6 V may originate from the decomposition of LixVS4 to Li2S and elemental V, based on the previous 

report on MoS2.10 The reduction peaks at ~1.6 and ~1.4 V positively shifted, while the peak at ~0.6 V 

disappeared in the following second and third cycles. Figure 1B shows the typical discharge–charge 
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voltage profiles of the composite within a cut-off voltage window of 0.01–3.0 V at a current rate of 0.05 

C (1 C = 1000 mA g-1) in a coin-type lithium half-cell (2016R) at 23 °C. The initial discharge and charge 

capacities were 1814 and 1170 mA h g-1, respectively. The low Coulombic efficiency (CE) of 65% may 

be caused by the irreversible capacity loss, including the inevitable decomposition of the electrolyte 

and the formation of a solid electrolyte interface (SEI), which is common in transition metal oxides and 

sulfides based anode materials.6, 12-13, 28 The CE was greatly improved after the formation cycle, 

achieving 94% and 96% during the 2nd and 3rd cycles, with high charge capacities of 1161 and 1153 

mA h g-1, respectively. The 1st discharge profile is obviously different from the latter ones. Three 

potential plateaus at ~1.8 V, ~1.6 V and ~0.7 V are observed in the 1st discharge process, but only one 

potential plateau at ~2.1 V can be seen clearly during the 2nd and 3rd discharge. All of the three charge 

profiles seem to be similar to each other and two potential plateaus at ~1.8 V and ~2.4 V are observed. 

Such a variation can be seen more clearly from the differential curves during the first three cycles 

(Figure 1C). The obvious difference between the CV and voltage profiles of the 1st and 2nd discharge 

processes indicated an irreversible phase transition during the 1st discharge–charge process. A similar 

phenomenon was found in other transition metal sulfides,5, 10, 13, 29 among which the lithium storage 

mechanism of MoS2 has been studied recently.30 

Figure 2 shows the ex situ XRD patterns of the VS4–rGO anodes after discharging or charging to 

different voltages at 0.1 C. The pristine electrode (Figure 2a) showed a consistent XRD pattern with 

VS4–rGO powder. The two main peaks of VS4 at ~15.8° and ~17.0° remained at the first voltage plateau 

during discharge (Figure 2b and c). This result is in accordance with the intercalation of 3 Li+ ions at 

the first step of discharge (Li3VS4). Similar ternary alkali tetrathiovanadates such as Li3VS4·2DMF (in 

solution), K3VS4 and Na3VS4, have been reported previously.31-33 The peak at ~15.8° disappeared after 

discharged to 1.65 V (Figure 2d), indicating the decomposition of Li3VS4. The peak at ~17.0° also 

disappeared after being further discharged to 0.5 V (Figure 2e) while a new peak, attributed to Li2S 

(220), appeared at ~44.8°. Two weak peaks at ~41.2° and ~47.9° can be indexed to the (111) and (200) 

planes of V, respectively. The intensity of the above peaks of Li2S and V increased after being fully 

discharged to 0.01 V, and another weak peak of Li2S (311) at 53.1° appeared (Figure 2f). The main 

peaks of VS4 did not appear again when finally charged to 3 V (Figure 2g), demonstrating the 

irreversible phase transition during the initial discharge–charge process. The broad peak between 14 

and 26° appeared due to the tape. 

TEM and EDS mapping were adopted to analyse the fully discharged and charged VS4–rGO 

electrodes for further understanding of the mechanism of lithium storage. Two different kinds of 

particles were seen in the fully discharged electrode (Figure 3A), and EDS mapping clearly revealed 

that elemental V and S were distributed in different particles. The solid and dense particle included only 

V, which is attributed to nanosized metallic vanadium. The other S-rich particle, with a porous nature, 



140 

 

should be Li2S, the most common fully discharged product of transition metal sulfides. The HR-TEM 

image of the fully discharged product also showed d-spacing of 0.333 nm and 0.208 nm, which 

corresponded to the (111) and (220) planes of Li2S, respectively (Figure 3A inset). The re-formation of 

VS4 did not occur after charging to 3 V. The nanosized metallic vanadium still existed in the fully 

charged VS4–rGO electrode (Figure 3B), indicating its inert nature during the charge process. The 

porous Li2S nanoparticle was converted to sulfur, which was uniformly distributed across the whole 

area owing to the interaction between rGO and S. The HR-TEM image of the S-rich region showed an 

amorphous state (Figure 3B inset), which is consistent with the absence of sulfur's peaks in the XRD 

patterns. 

The intrinsic electronic conductivity of the cells could be improved owing to the generation of 

metallic vanadium during cycling. The electrochemical impedance of the VS4–rGO based coin-type 

lithium cell was measured before and after cycling (Figure 4A). The Nyquist plot shows a semicircle 

with a large diameter at high frequencies before the discharge–charge process, indicating high resistance 

at the interface. The depressed semicircle with a reduced diameter at high frequencies suggests a 

decreased impedance after cycling, because of the presence of vanadium metal. A similar result has also 

been reported in an MoS2 based electrode.13 Time-of-flight secondary ion mass spectrometry (TOF-

SIMS) was also employed to analyse the composition of the electrode after discharge and charge. The 

mass spectra of the pristine electrode show the peaks of VS+ and VS4+ cations (Figure 4B and C). 

However, these peaks disappear after discharging to 0.01 V and charging to 3 V, which also denies the 

re-formation of VS4. 

In consequence, we propose a possible lithium storage mechanism of the VS4–rGO composite as 

follows: 

An initial discharge: 

VS4 + 3 Li+ + 3 e- → Li3VS4 (above 1.7 V)      (1) 

Li3VS4 + 5 Li+ + 5 e- → 4 Li2S + V (0.01 V)     (2) 

Followed by 

Li2S ↔ S + 2 Li+ + 2 e- (below 3 V)            (3) 

Intercalation of 3 Li+ ions occurred first in the initial discharge, followed by the decomposition of 

Li3VS4 to Li2S and V after further discharging to 0.01 V. Then, Li2S was converted to S after charging 

to 3 V, while metallic vanadium remained inert. This is quite different from most transition metal oxides, 

and might be due to the weaker oxidation capability of sulfur than that of oxygen.30 After that, the 

electrochemical reaction occurred between S and Li2S during the next cycles. There should be 8 Li+ 

ions involved for each VS4 based on the above mechanism, and a much higher theoretical capacity can 
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be achieved from VS4 in comparison to MoS2 and other transition metal sulfides. The theoretical 

capacity of VS4 could be calculated as 1196 mA h g-1, which is very close to the first charge capacity of 

1170 mA h g-1 at 0.05 C. On the other hand, the conversion mechanism of VS4 has not been fully verified 

owing to the difficulty in characterization, and further studies are still needed to explain it in more detail. 

The cycling performance of the VS4–rGO composite at a high current rate of 4 C (=4 A g-1) between 

0.01 and 3.0 V was tested after an initial formation cycle at 0.1 C (Figure 5). The composite electrode 

delivered a high charge capacity of 820 mA h g-1 with a high CE of 96%. The reversible capacity 

remained at 727 mA h g-1 after 50 cycles, which is 89% of the initial capacity. Such a high capacity-

retention of transition metal sulfides or their composites at high current rates is only reported by a few 

researchers, although good cycling stability was achieved at much lower current densities from MoS2, 

ZrS2, WS2, etc.7-8, 11-12, 15, 34 Furthermore, the CE was maintained at 99% after the 5th cycle. The capacity 

contribution of rGO was also evaluated, and the specific capacity of rGO was found to be lower than 

160 mA h g-1 at the same current rate (Figure S4). Therefore, its contribution to the total capacity could 

be negligible as there was only 3 wt% of rGO in the composite. 

To compare the lithium storage capability of VS4–rGO, VS4–10 wt% carbon nanotube (VS4–

10CNT) was synthesized (Figure S5) and its electrochemical performance was evaluated. The 

electrochemical performance is highly related to the dispersion of the active materials on the electron 

conduction matrix. In contrast to VS4–10CNT (Figure S2), CNTs in CNT–VS4 composites do not 

provide sufficient coverage of VS4, resulting in a decrease in the effective electron transport pathway 

between the VS4 nanoparticles. It is therefore reasonable to conclude that the rGO-based sample showed 

a better performance than the CNT-based one. Figure 6 shows the superior rate capability of the VS4–

rGO composite. VS4–rGO and VS4–10CNT delivered a charge capacity of 913 and 733 mA h g-1 at a 2 

C rate, respectively, showing a much higher capacity retention for VS4–rGO than for VS4–10CNT (also 

see Figure S6). Furthermore, the reversible capacity of VS4–rGO remained as high as 630 and 314 mA 

h g-1 when the rate was increased to 10 C (=10 A g-1, or 10 mA cm-2) and 20 C (=20 A g-1, or 20 mA cm-

2), respectively. Such a remarkable high-rate performance is superior to that of most transition metal 

sulfide based electrodes that have been previously reported.7-9, 11-17 These results were induced by the 

special 2D structure of rGO, providing a large surface area and the strong interaction between the active 

materials and rGO.35-36 In addition, considering its application as an anode material in LIBs, the high 

charge–discharge voltage plateau (~2.4 V) of VS4–rGO might be a disadvantage. However, Li4Ti5O12 

and MoS2, which also exhibit high voltage plateaus, have been widely reported as anode materials for 

LIBs. VS4 delivers a much higher capacity in comparison to Li4Ti5O12 (1196 mA h g-1 vs. 175 mA h g-

1) although its potential is also higher than that of Li4Ti5O12, so a comparable energy density can still be 

expected for VS4. In addition, recently there have been many R & D activities focusing on developing 

anode materials with a high capacity and high rate capability for LIBs in the regenerative break system 



142 

 

of electric vehicles (EVs). For instance, one candidate is a Li4Ti5O12 anode and a LiFePO4 cathode with 

a voltage plateau of <2 V.37-38 A Li4Ti5O12–LiFePO4 battery system was also reported for its application 

in stationary energy storage and smart textiles.39-40 In this regard, opportunities may still exist to employ 

VS4–rGO as the anode if paired with a high voltage (>4 V) cathode, while considering its high capacity 

and especially the impressive rate capability. 

To prove this point, we carried out a preliminary full-cell test consisting of a LiMn2O4 cathode and 

a VS4–rGO anode in a coin-type full-cell (2032R) between 4.3 and 1.0 V at 0.5 C under 23 °C (Figure 

7). The specific capacity is estimated based on the sole amount of the active material. The first discharge 

capacity was 72 mA h g-1, and a comparable capacity retention of 74% was achieved after 30 cycles. A 

better performance could be expected after further optimization of the full-cell configuration. 

Such an outstanding electrochemical performance of VS4–rGO could be attributed to the following 

reasons. First, the existence of rGO improved both the conductivity and stability of the VS4–rGO 

electrode, which may cause a better cycling stability and rate capability. Second, although V did not 

participate in the electrochemical reaction after the initial discharge, the nanosized metallic V enhanced 

the electronic conductivity of the Li2S–V or S–V composite during the following discharge–charge 

process. In addition, the dissolution of polysulfide, which is common in Li-sulfur batteries, could be 

possibly depressed owing to the absorption effect of the nanosized V with high surface energy.13, 30, 41-42 

 

4. Conclusion 

In summary, we have prepared graphene-attached VS4 nanorods by a simple hydrothermal method. 

This VS4–rGO composite exhibited a good cycling stability and impressive high-rate capability of 

lithium storage in a half-cell, and the full-cell test has also demonstrated the possibility of using VS4–

rGO as an anode paired with a high-voltage cathode in LIBs despite its high lithiation voltage. In 

comparison to other transition metal sulfides, VS4 is a more promising material for LIBs, owing to its 

much higher theoretical capacity as well as good cycling stability and excellent high-rate capability. 

Further studies on VS4 may accelerate the development of transition metal sulfides for LIBs considering 

its outstanding performance. In addition, the mechanism of Li storage for VS4 was also systematically 

studied for the first time, which would also be very useful in further research on transition metal sulfides 

for LIBs. 
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Figure 1. (A) Cyclic voltammogram of VS4-rGO measured in the voltage range of 0-3.0 V (vs. Li+/Li) 

at a scan rate of 0.5 mV/s during the first three cycles. (B) Discharge-charge voltage profiles of VS4-

rGO at a current rate of 0.05 C in coin-type lithium cell (2016R) at 23 °C (1 C = 1000 mA g-1). (C) 

Corresponding differential capacity curves during the first three cycles. 
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Figure 2. Ex-situ XRD patterns obtained from VS4-rGO anodes after discharging or charging to 

different voltages at 0.1 C: (a) pristine electrode (b-f) discharging to 2.00, 1.80, 1.65, 0.50 and 0.01 V 

(g) charging to 3 V. 
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Figure 3. TEM and EDS mapping images of (A) fully discharged electrode (inset: d-spacing of 0.333 

and 0.208 nm corresponding to (111) and (220) plane, separately) and (B) fully charged electrode (inset: 

S-rich regions with amorphous state) of VS4-rGO at 0.1 C (1 C = 1000 mA g-1). 
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Figure 4. (A) Nyquist plot of VS4-rGO based coin-type lithium ion cell (2016R) before and cycling. (B 

and C) TOF-SIMS spectra of VS4-rGO composite electrode before and after discharge-charge. 
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Figure 5. (A) Voltage profiles of VS4-rGO at a current rate of 4 C in coin-type lithium cell (2016R) at 

23 °C. (B) Cycling performance of VS4-rGO at 4 C (1 C = 1000 mA g-1). An initial formation cycle at 

a low current rate of 0.1 C was applied before the discharge-charge cycling at 4 C rate. 
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Figure 6. (A) Voltage profiles of VS4-rGO and VS4-10 wt% CNT at different current rates in coin-type 

lithium cell (2016R) at 23 °C (solid line: VS4-rGO, dash line: VS4-10 wt% CNT). (B) Rate performance 

with increasing charge rate from 2 to 20 C. The discharge rate is fixed at 0.1 C (1 C = 1000 mA g-1). 
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Figure 7. (A) Voltage profiles of LiMn2O4/VS4-rGO in a coin-type full-cell (2032R) between 4.3 and 

1.0 V at a rate of 0.5 C after the formation cycle at 0.1 C. (B) Corresponding discharge capacity as a 

function of cycle number. 
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Supporting Information 

 

Functionalization of CNT 

In the initial step, CNT (Sigma-Aldrich) was treated with a mixture of concentrated sulfuric acid and 

nitric acid (3:1, 95% and 60%) followed by ultrasonication at 50° C. Further, the product was diluted 

with water and kept for overnight. The obtained product was filtered and vacuum dried to get the 

functionalized CNT. 

 

Synthesis of VS4-10 wt% CNT composite 

VS4-10 wt% CNT composite was prepared by following the same procedure used for the synthesis of 

VS4-rGO. At first, functionalized CNT solution (30 mg/mL) was prepared for the hydrothermal 

synthesis. Na3VO4 (0.552 g, 0.003 mol) and C2H5NS (1.125 g, 0.015 mol) were dissolved in 115 mL DI 

water. Then, 5 mL CNT solution was added. The mixture was stirred for 1 h at room temperature, and 

transferred to a 150 mL Teflon-lined stainless steel autoclave, sealed tightly and kept at 160 °C for 24 

h. The carbon content of the as-prepared VS4-CNT composite was 10 wt% according to elemental 

analysis. 
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Figure S1. (A) Powder XRD pattern of the as-prepared VS4-rGO composite. (B) Structure of linear-

chained VS4 with alternating bonding and nonbonding contacts between the octa-coordinated vanadium 

centers. 

 

 

 

  



152 

 

 

 

 

 

 

 

 

 

 

Figure S2. (A) SEM (B) TEM, and (C) HR-TEM of VS4 in the as-prepared VS4-rGO composite. 
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Figure S3. EDS mapping images of the VS4-rGO composite. 
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Figure S4. Capacity retention of rGO at a rate of 4 C (1 C=1000 mA g-1). 
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Figure S5. (A) SEM and (B) TEM images of the as-prepared VS4-10 wt% CNT composites 
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Figure S6. Cycle performance of VS4-10 wt% CNT composites at 4C and 23 °C 
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