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ABSTRACT 

 

With recent advances in IT infrastructure in manufacturing environments, a large amount of 

manufacturing data are collected and stored in a database at various stages of production. 

These data may include valuable information for manufacturing companies to improve their 

manufacturing processes. The method of manufacturing data analysis is crucial for 

understanding the manufacturing data. However, traditional manufacturing data analysis 

methods such as data mining, simulation, etc. have limitations for this purpose since those are 

difficult to provide overall process-level information. Therefore, in this thesis, a process 

mining based approach for analyzing complex manufacturing processes is proposed. Process 

mining is a useful tool for process-related knowledge acquisition since it enables users to 

derive not only manufacturing process models, but also several performance measures related 

to processes, resources, and tasks. This thesis suggests a framework for the manufacturing 

process analysis. To do this, it applies process mining techniques to perform four types of 

analysis, which are visualization of production flows, machine-to-machine inter-relationship 

analysis, machine utilization, and monitoring & diagnosis of task performance regarding 

yield rate and lead time. Furthermore, a case study is conducted to support the proposed 

framework with an event log of an electronic components manufacturing process. 

 

Keywords: Process Mining, Manufacturing Process Analysis, MES, Case study, Framework 
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I.  Introduction 

 

1.1. Motivation and Background 

Manufacturing processes are defined as all the steps of transforming raw materials, components, or 

parts into final product that meet a customer’s expectations 1 . With recent advances in IT 

infrastructures in manufacturing environments (e.g., RFID and sensor technologies), a large amount 

of data related to tasks, products, machines, and workers are collected and stored in database at 

various stages of production. The huge amount of data may include valuable knowledge for 

manufacturing companies to improve their manufacturing processes. For example, detecting defects 

(e.g., bottleneck point) of manufacturing processes or finding a problem in resource management can 

be a typical example of the knowledge. Thus, it is important for the companies to analyze the large 

amount of data to extract, capture, understand, and use the knowledge. 

Such analysis for the manufacturing processes improvement is called manufacturing process 

analysis that includes modeling and analysis of manufacturing processes. It usually establishes a 

process model to understand the structure of manufacturing, and reveals relationships among 

machines, tasks, and materials. (Lin et al. 2009). According to the several review papers in 

manufacturing process analysis, the most commonly used approaches are data mining (e.g., 

association, classification, prediction, and clustering) and simulation. However, data mining have 

limitation to provide overall process level analysis results, and the results are sometimes too complex 

to understand. Moreover, simulation has limitation that it takes too much time to build a complex 

manufacturing process model. Therefore, there is a need for intelligent manufacturing data analysis 

methodology that may be useful to discover process-level knowledge faster and easier. This thesis will 

suggest a methodology by applying process mining that is useful to discover a manufacturing process 

model from the event logs. The methodology is supported by MES (Manufacturing Execution System) 

for the data extraction and data analysis. 

 

 

 

                                         

1 http://www.chegg.com/homework-help/definitions/manufacturing-processes-5 
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Process mining is able to extract process-oriented knowledge from event logs (Van der Aalst 

et al. 2004; Van der Aalst et al. 2007) extracted through the MES. Process mining provides a lot of 

analysis techniques, and some of them can be useful to manufacturing process analysis. Firstly, 

process mining has various mining tools that discover a manufacturing process model providing an 

insight of actual manufacturing processes. Moreover, it is able to perform further performance 

analysis for the discovered model e.g. bottleneck analysis and conformance checking. Furthermore it 

is useful to show the utilization of machines or workers. 

 

1.2. Objective 

This thesis aims to propose a framework for manufacturing process analysis to extract 

valuable knowledge for manufacturing process monitoring and defect diagnosis to improve current 

manufacturing environment. The framework consists of four phases: data preparation, data 

preprocessing, manufacturing process mining analysis, and Interpretation and Evaluation. In 

manufacturing process mining and analysis step, we applied process mining techniques to perform the 

following types of analysis. 

1. Manufacturing process visualization. Hong & Soon (2001) defined visualization as a 

method that presents a manufacturing process model to give domain experts visible information, e.g., 

how products are transformed and where is the bottleneck point. Manufacturing process visualization 

is essential to generate efficient manufacturing processes through improvement of production defects 

such as bottleneck and abnormal flows. Simulation has been common in use to visualize 

manufacturing processes, which allows users to examine the complex processes in real-time and from 

different aspects (Zhong and Shirinzadeh, 2008). However, it requires a lot of time and cost to 

discover a complex process model, thus this thesis will suggest a way of discovering an actual process 

model from the event logs by applying process mining techniques. Moreover, we will suggest a way 

of enhancement of manufacturing processes by comparing an existing model with actual processes. 

2. Machine to machine interrelationship analysis. To improve manufacturing processes, it is 

important to visualize logistics flows among the resources (e.g., machines and human resources). It is 

important to find an essential resource (leading machines) for the overall logistic processes. This 

thesis applied social network analysis to generate machine network model that shows relationship 

among the resources. 
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3. Machine utilization. This analysis includes structuring the relationship between resources 

and tasks regarding their working frequency, and analyzing machine idle time & working time. 

Machine allocation analysis will use organizational miner to structure “who or which” resource 

worked for an activity, and to examine resource allocation in respect of working frequency. It will be 

used to improve resource allocation for the better manufacturing processes. In addition, we used 

several performance analysis techniques to monitor the current resource operations about their idle 

time. 

4. Monitoring and Diagnosis of task performance. Various literature researches have 

suggested many different performance indicators such as cycle time, through put, yield rate, and lost 

rate. This thesis aims to monitor and diagnosis the production ability for each task about their yield 

rate and lead time. Production yield rate is important to reduce their lost rate that related to production 

cost. Moreover, production lead time is a major determinant of production speed. Thus, it is essential 

to examine their yield rate, working, and waiting/transformation time for each task. 

 

1.3. Outline of the thesis 

The remainder of this thesis is organized as follows. We provide a brief introduction of the state-of-

the-art of manufacturing process management in regards of data analysis, process mining, and MES in 

section 2. Section 3 lists the questions we would like to answer and suggests the way of measurements 

of analysis results and presents the main idea of process mining framework for manufacturing process 

analysis. Section 4 describes the case study with event logs of electronic components manufacturing 

processes. As a result, section 5 concludes the paper with limitations of the research and future works. 
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II.  Related Works 

 

2.1. Manufacturing Process Management with Data Analysis 

2.1.1. Simulation for Manufacturing Data Analysis 

Because of the complexity and dynamic behavior of manufacturing systems, simulation becomes 

popular methods of facilitating their designed and assessing operation strategies (Rajes et al. 2008). 

According to the Heilala, J. (1999), simulation in manufacturing has several advantages such as 

diagnose problems, identify constrains, visualize the plan, and explore possibilities (Heilala, 1999). 

With a lot of benefits of simulation in manufacturing process management, simulation has been 

successfully adopted in manufacturing system design and operation (Ashkan and Jeffrey, 2014). 

Ashkan & Jeffrey (2014) provided 290 review papers on simulation applications in manufacturing 

systems. For example, Chan et al (2002) used simulation for Flexible Manufacturing System (FMS) 

scheduling (Chan et al. 2002) and Allahverdi et al (2008) applied simulation for scheduling problems 

with setup times or costs (Allahverdi et al. 2008).  

However, simulation modeling and analysis can be time consuming and expensive since 

building a model requires specific training (Heilala, 1999). Additionally, it is hard to set a standard 

input data for the simulation model, thus it is possible to generate incorrect analysis results depending 

on the input data. Process Mining discovers a process model based on the event logs collected in 

information systems. Thus it is easy to extract manufacturing process model quickly and correctly. 

 

2.1.2. Data mining for Manufacturing Data Analysis 

Due to the large amount of collected manufacturing data, extracting knowledge from the data 

becomes important for optimization purpose (Wang et al. 2007). Therefore, recently, more and more 

manufacturing enterprises have trying to use data mining for problem solving and enhancing their 

capability (Harding et al. 2005). Several researches already conducted literature review for data 

mining in manufacturing, and they addressed some fields of application with data mining techniques 

(Wang et al. 2007; Harding et al. 2005; Polczynsk and Kochansk, 2010; Wang, 2006). Dan Braha 

addressed several domains of data mining in manufacturing data analysis, which are fault diagnosis, 

preventive machine maintenance, manufacturing knowledge acquisition, operational manufacturing 

control, quality and process control, and so on (Braha, 2002). Additionally, Harding (2006) reviewed 
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applications of data mining in manufacturing, and it summarized some applications in operations, 

fault detection, maintenance, decision support, and so on. For example, Chen et al (2004) used 

association rules for defect detection by determining the association between different machines and 

their combination with defect (Chen et al. 2004).  

According to the researches on review of application of data mining in manufacturing, data 

mining techniques are helpful to enhance the capability of manufacturing enterprises by providing 

useful knowledge for better decision. However, there are some limitations on data mining in 

manufacturing data analysis. J.A. Harding (2006) addressed that the discovered knowledge using data 

mining sometimes is too complex to understand, so they need to effort to enhance the expressiveness 

of the knowledge. (Harding et al. 2006). To solve the limitation, this thesis is going to apply process 

mining techniques to analyze manufacturing data analysis since process mining is useful to 

visualization. 

 

2.2. Process Mining 

2.2.1. Overview of Process Mining 

Process mining provides process-related useful information by analyzing event log data stored in 

information systems (Van der Aalst et al. 2004; Van der Aalst et al. 2007). Process Mining is on the 

intersection between Business Process Intelligence (BPI) and Business Activity Monitoring (BPM) 

(Song and Van der Aalst. 2008; Jochen et al. 2013). BPI supports business by providing analysis, 

prediction, monitoring, control, and optimization features (Grigori et al. 2004). And BPM can be 

defined that it supports business processes using methods, techniques, and software (Weske et al. 

2004). Unlike BI and BPM, process mining aims to provide insight of processes, for example, “where 

is bottleneck point?” or “how the lots are flowed?” 

Process mining consists of three types, which are discovery, conformance, and enhancement. 

A discovery technique takes an event log and produces a model without using any information. Alpha 

miner, Heuristic miner, Fuzzy miner, and Comp miner are the example of discovery techniques (Van 

der Aalst et al. 2004; Weijters et al. 2003; Günther et al. 2007). Next conformance compares an a-

priori model with the observed behavior as recorded in the logs (Song and Van der Aalst. 2008). It 

can discover potential cases of fraud by scanning the event log (Van der Aalst. 2011). Lastly, the idea 

of enhancement is to extend or improve an existing process model using information about the actual 

process recorded in some event log (Van der Aalst. 2011). 
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 Process mining has four kinds of perspectives: (1) Control-flow, (2) Organizational, (3) Case, 

and (4) Time. Control-flow perspective focuses on the control-flow with aiming of finding a good 

characterization of all possible paths, e.g., expressed in terms of a Petri-net (Reisig and Rozenberg. 

1998; Van der Aalst. 2011). Organizational perspective focuses on information about resources such 

as workers, machines, and department and how they are related. And it has a goal of structuring the 

organization by classifying resources in terms of roles and organizational units or to show the social 

network (Scott, 1988; Wasserman and Fust, 1994, Van der Aalst et al. 2005). Case data perspective 

focuses on the features of cases. Cases can be characterized by their path in the process or by the 

originators working on a case. (Van der Aalst, 2011). Time perspective focuses on the timing and 

frequency of events. It can be used to discover bottlenecks, measure service level, monitor the 

utilization of resources, and predict the remaining processing time of running cases (Van der Aalst, 

2011). 

 

2.2.2. ProM framework 

Process mining has several useful analysis tools such as ProM and Disco. ProM supports a lot of 

process mining techniques in the form of plug-in, and use MXML file as input format. Fig. 1 shows a 

screen shot of ProM. The ProM framework has developed as a plug-in environment, so it enables 

rapid development of new algorithms and techniques as plug-ins (Van Dongen et al. 2005; Song et al. 

2008).  

The architecture of ProM consists of five types of plugins, which are mining, export, import, 

analysis, and conversion. Mining plug-ins has some mining algorithms such as heuristic and fuzzy 

mining. Export plug-ins has function as “save as” for some objects. Import plug-ins has a function of 

“open”. Analysis plug-ins has some property of analysis, such as conformance checking and LTL 

checker. Lastly, Conversion plug-ins converts different data format, for example it converts format 

from EPCs to Petri nets (Van Dongen et al. 2005). The plug-ins support three kinds of analysis 

perspective (e.g., process, resource and task) as mentioned in the previous section. 
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Figure 1: Screenshot of the ProM framework2 

 

2.2.3. Application of process mining 

Traditionally, process mining has been focusing on control-flow perspective (Van der Aalst et al. 2004; 

Wen et al. 2006; Weijters and Van der Aalst, 2001). However, process mining techniques is not limited 

for control-flow perspective, e.g., organizational and case perspective. There has been an increase in 

the application of process mining in real-environment industries regarding the various perspectives. 

Table 1 shows challenges of process mining in industry application. Jochen De Weerdt (2013) 

suggested a methodology framework of process mining in financial service organization. Alvaro 

Reburge (2012) introduced a methodology for the application of process mining techniques in 

healthcare environments. Additionally, Ying Wang (2014) presented a comprehensive methodology 

for the bulk port. There have been some studies for service industry, but only few research works have 

paid attention to manufacturing process analysis by applying process mining techniques, e.g., Lee 

(2013) suggested a methodology for the application of process mining in after-assembly block 

manufacturing process in the shipbuilding industry and Rozinat (2009) applied process mining 

techniques to discover a manufacturing process model of wafer scanner production processes. 

The starting idea of process mining application in the manufacturing processes is to mine 

process models from the event logs. Process discovery has numerous results, i.e. discovering process 

models based on observed events, and aggregating process models based on frequency (Weijters et al. 

2006). Not only discovering process model, but process mining approach has other functionalities to 

show the relationships of resources (i.e. machine, human), and build the organizational view of an 

enterprise (Van der Aalst et al, 2005). Moreover, in order to enhance the discovered model, it is 

                                         

2 Available in http://fluxicon.com 
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necessary to conduct further analysis about manufacturing processes efficiency indicators such as 

bottleneck point and defective production. In the section 5, there will be detail process mining 

application results. 

 

Table 1: Challenges for process mining in manufacturing organizations 

Year Authors Perspective Application Description 

2009 Rozinat et al. 
Control-

flow 
Manufacturing 

In this paper, we investigate the applicability of process 

mining to less structured processes. And We report on a 

case study on the test processes of ASML (the leading 

manufacturer of wafer scanners in the world) 

2012 Stuit and 

Wortmann  

 e-mail Methodology of business process modelling language to 

visualize the discovered e-mail-driven business process 

2012 Rebug and 

Ferreira  

 Healthcare Methodology of leading to the identification of regular 

behaviour, process variants, and exceptional medical 

cases. 

2012 Damer et al.   Finance Methodology which first clusters the event log into 

homogeneous groups of event traces and then computes 

the compliance degree for each cluster separately. 

2013 Caron et al. Overall ERM Methodology for the context of the eight components of 

the COSO Enterprise Risk Management Framework. 

2013 De Weerdt et 

al. 

Overall Finance Methodology for a multi-faceted analysis of real-life 

event logs based on Process Mining. 

2013 Lee et al.  Control-

flow 

transportation 

logs 

Methodology for automatically extracting the most 

frequent task flows from transport usage histories. 

2013 Mans et al.   Healthcare Methodology for evaluating the impact of IT on a busines

s process. 

2013 Jans et al. Overall Auditing Making a case for why internal and external auditors 

should leverage the capabilities process mining offers to 

rethink how auditing is carried out. 

2013 Fernandex-

Gallego et al. 

Control-

flow 

3D educational 

vitual world 

Methodology for 3D educational virtual worlds that focus 

on discovering learning flows and checking its 

conformance through process mining techniques 

2014 Wang et al.  Control-

flow 

Port Methodology for applying process mining in logistics, 

covering the event log extraction and pre-processing as 

well as the execution of exploratory, performance and 

conformance analyses. 
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2.3. MES (Manufacturing Execution System) 

Manufacturing Execution Systems (MESs) are defined by MESA (Manufacturing Execution Systems 

Association) international as followed: MESs deliver information that enables the optimization of 

production activities from order launch to finished goods (MESA. 1997). The MES bridges the gap 

between the planning system and the controlling system using on-line information to manage the 

current application of manufacturing resources: people, equipment and inventory (McClellan, 2001). 

The MES has evolved in useful software applications as computing technologies, and they 

have been advanced since the in the mid-1990s (Saenz de Ugarte et al. 2009). It helps manufacturing 

experts to make a better decision by providing real-time feedback to reduce the gap between the 

production plan and actual performance (Qiu and Zhou, 2004). According to MESA’s survey, MESs 

provided benefits to manufacturing enterprises such as an average 45% reduction in manufacturing 

cycle time (MESA. 1997). Additionally, Douglas Scott introduced a survey of the MES benefits 

conducted by MESA International, and it shows that MES has benefits such as reducing 

manufacturing cycle times, reducing or eliminating data entry time, and so on (MESA. 1997; Douglas 

Scott et al, 1996; Michael McClellan, 2001; Jurgen Kletti, 2007). Thanks to those a lot of benefits, 

several manufacturing enterprises have adopted MESs as the solution to manufacturing cost 

competitiveness (David, et al. 1995)  

 The MESA International has identified 11 principal MES functions, which are 

Operation/Detail Scheduling, Resource Allocation and Status, Dispatching production units, 

Document control, Production tracking and Genealogy, Performance analysis, Labor Management, 

Maintenance Management, Process Management, Quality Management, and Data 

collection/Acquisition (MESA. 1997). Traditionally, production data collection systems using either 

databases or spreadsheets are commonly developed on the shop floor to monitor and control real-time 

and variable execution processes, but maintenance and data consolidation is obviously complex in 

such an environment as the number and the structure of these small applications vary over time 

(Saenz de Ugarte et al. 2009). Now, data collection function of MES can solve the difficulty. This 

thesis mainly focuses on the performance analysis function of the MES. We are going to suggest 

manufacturing process analysis framework based on the event data gathered through the MES. As 

well as the performance analysis function, we focus on the data collection/acquisition function. 
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III. A Process Mining Framework for Manufacturing 

Process Analysis 

 

3.1. Problem statements 

Manufacturing process analysis provides modeling and performance analysis of a production process, 

which is essential for manufacturing companies to improve their market competition (Lin et al. 2009). 

Several methodologies, models, and tools have been developed for the manufacturing process analysis 

to generate data modeling, simulation, decision-making support, expert systems, and standard model 

(Hernandez-Matias et al. 2006). However, those established manufacturing process analysis 

methodologies, tools, and models have limited about what is actually happening. It is important to 

capture the actual manufacturing processes, since it is possible to be a significant gap between what is 

supposed to happen and what actually happened (Song et al. 2008). Process mining can extract a 

manufacturing process model from real event log data with aim of “what is really going on” (Reijers 

et al. 2007; Tiwari et al. 2008; Van der Aalst et al. 2003). Additionally, process mining provides a lot 

of analysis tools as well as the mining algorithms. Therefore, this thesis is going to suggest a 

framework of manufacturing process analysis by applying process mining techniques. 

Generally, domain experts in manufacturing industry have several questions about the 

manufacturing process analysis. Among the questions, this thesis is going to answer the following 

four questions. 

� Question 1: What are the flows of lots (part flows) in the current manufacturing processes? For 

the manufacturing enterprises, it is critical to capture the current statue of the manufacturing 

processes. In the regard to this, domain experts want to make sure what is going on the 

processes. Process mining can generate a process model from event logs, and it is useful to 

visualize actual flows including reworks and unexpected processes. Additionally, it is possible 

to visualize all possible production patterns. Conformance of standard model will compare the 

standard model (or reference model) with event logs. Moreover, we can find bottleneck point 

based on the generated model, thus the experts can make a decision of reducing the through put 

time. 
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� Question 2: What is the interrelationship between resources (e.g., machines) about the flows of 

lots? As lots are moved through the manufacturing processes, the event logs are automatically 

collected on the MES. The event logs contain precedence relationship among the resources. 

Hence, it is possible to generate social network model and structure their relationships about the 

handover the works. 

� Question 3: What is the performance of each resource? Resources (e.g., machines, human 

resources) are important elements of manufacturing processes. Hence, it is essential to analyze 

the performance of each resource. Firstly, we will structure the relationship between resources 

and tasks to reduce failure and improve resource operation. Second, performance analysis of 

each resource with respect of idle time is required to know how long resources waited. 

� Question 4: What is the performance of each resource with respect of its lead time and 

production lost rate? Manufacturing enterprises want to reduce their production cost to increase 

their profit. Thus, it is important to reduce the production cost by reducing loss rate and total 

lead time. Lead time is time interval between start and end time. And production lost rate is 

ratio of output on input quantity. Performance analysis of each task can provide information 

about the production lead time and lost rate. 

Table 2 shows relationship between the four questions with manufacturing process analysis, which is 

organized according to the three kinds of perspectives on process mining. 

 

Table 2: Process mining techniques for manufacturing process analysis 

Q Perspective MPA Analysis Goal 

Q1 Control-flow 
(Process) 

Manufacturing 
Process 

Visualization 

Actual flow discovery 
To discover a manufacturing process model 
and visualize rework flows. 

Conformance of standard model 
To compare the standard model with event 
logs by calculating fitness. 

Visualization of bottleneck 
point 

To visualize bottleneck point on the process 
model and compare the bottleneck points 
among different production patterns. 

Q2 Organizational 
(Resource) 

MTM Inter-
relationship 

Analysis 
Machine network analysis 

To examine inter-relationship between 
machines 

Q3 Organizational 
(Resource) 

Machine 
Utilization Machine allocation analysis 

To structure relationship between machine 
and task and compare working frequency of 
machines for each task 

Machine idle time analysis 
To conduct performance analysis for each 
machine 

Q4 Task (Task) Monitoring and 
Diagnosis of 

task 
performance 

Lead time monitoring To monitor performance with respect of lead 
time 

Yield monitoring To monitor performance with respect of 
yield rate 
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3.2. A Process Mining Framework 

This section explains a framework for the manufacturing process analysis by applying process mining 

techniques. Fig. 2 shows the framework consisting of four major steps: data preparation, data 

preprocessing, manufacturing process mining and analysis, and evaluation and interpretation. In the 

data preparation step, manufacturing event logs are collected using information systems (e.g., MES). 

Next, data pruning and filtering should be done in the data preprocessing step. After that, the refined 

data is converted into a standard data form for the analysis step, i.e. MXML or XES. Then, several 

process mining techniques are applied according to the three perspectives: process, resource, and task. 

In the process perspective, we can discover a manufacturing process model, conformance the standard 

model, and visualize bottleneck point on the discovered model. Those analyses will support 

manufacturing process visualization. And resource perspective analysis consists of machine-to-

machine inter-relationship analysis and machine utilization that includes machine allocation analysis 

and machine idle time analysis. Lastly, task perspective focuses on monitoring and diagnosis of task 

performance by monitoring production time and production yield rate. As a result, the analysis results 

should be evaluated and interpreted by domain experts. Then, they can improve the existing processes 

based on the interpreted results. The detailed explanations of the framework are described in the 

followed. 
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Figure 2: A Process mining framework 
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3.2.1. Data preparation 

A manufacturing process consists of the sequence of activities to make final products from raw 

materials. The activities are performed by manufacturing resources including human resources, 

machines, and software. For process mining analysis, event log containing a set of cases (i.e. process 

instances) is required. Each case consists of a sequence of events with various attributes such as 

activity name, event type, timestamp, resource name, event data, and so on. Table 3 shows a fragment 

of manufacturing processes with six cases and six activities including resource attributes. 

Table 3: Example of traces with activity and resource information 

Case  Traces (activity, resource) 

1 (A, M1), (B, M3), (C, M5), (D, M6), (E, M8), (F, M9) 

2 (A, M2), (C, M4), (D, M7), (E, M8), (F, M10) 

3 (A, M1), (C, M5), (D, M7), (F, M9) 

4 (A, M1), (D, M6), (E, M8), (F, M10) 

5 (A, M2), (B, M3), (D, M6), (E, M8), (F, M10) 

6 (A, M2), (D, M6), (F, M10) 

 

Manufacturing process has specific process ID and process name (we refer to all processes in 

the manufacturing as "activities" in the later part of this paper). In the manufacturing processes, it is 

possible to record the event type that identifies the transactional information at a given point in time. 

For example, starting to do Task_A would be a start event. Finishing the Task_A is a complete event. 

The time (i.e. timestamp) of the event is to show the order of the events in a case. The event also 

contains information about name of resources and lot number. Resource is an entity (e.g. machine or 

performers) that performed an activity. Other data attributes e.g. a set of product quantity (input or 

output quantity) can provide additional analysis for managers. Table 4 shows the essential information 

of event log for process mining with an example of manufacturing process. 

Table 4: Essential information of event log for process mining 

Attribute name in process mining Attribute name in manufacturing Data example 

Case Lot ID BC4052849 

Activity Process ID ABG0490 

Process Name Task_A 

Event Type Start Start 

Complete Complete 

Timestamp Start Time 2012-05-02 05:16:17 

Complete Time 2012-05-02 05:16:19 

Resource Machine ID N08032 

Performer ID J0253B 

Data Input Quantity 6710 

Output Quantity 6710 

 



22 

 

By looking at the manufacturing event log data in Table 4, we can formalize the event log as 

follow.  

Definition 1. Event Log 

An event log, denoted as L, consists of a set of process instances or cases, and each case is described 

by a sequence of events. The sequence of events contains behaviors of activities to indicate the flow 

of activities from beginning until the end. Thus, an event log is a tuple of <E, C> which is defined as 

follows: 

 

� Event. E = A × Y× R × T × D is a set of events, where A is a set of activities, Y is a set of event 

type (start and complete), R is a set of resources, T is a set of timestamps, and D is a set of 

quantity data.  

� Case. C is a set of event for its one instance where a collection of all cases is an event log (L). 

Cases always have a trace, denoted as σ∊E*.C=E* is the set of possible event sequences (traces 

describing a case). Then, L∊ℬ(C) is an event log. Note that ℬ(C) is the set of all bags (multi-set) 

over C. Each element of L denotes a case. 

�  

For any event e∊E, π(e) is the value of an attribute for event e. If event e does not have a 

designated attribute named, then π(e) = ⊥ (null value). Moreover, each attribute has each mapping 

function. For example, πA(e) is the activity associated to event e, πY(e) is the transaction type 

associated to event e, πR(e) is the resources associated to event e, πT(e) is the timestamp associated 

to event e, πC(c) is the trace associated to case c, and πD(e) is the quantity data associated to event e. 

For example, if e = (Task_A, start, N08032, 2012-05-02 05:16:17) then πA(e)=’Task_A’, 

πY(e)=’start’, πR(e)= ’N08032’, and πT(e)=’2012-05-0205:16:17’. 
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3.2.2. Data preprocessing 

Since the raw data may be incomplete and inconsistent, data preprocessing step is required to improve 

the data quality. In this thesis, data preprocessing consists of two steps: data cleansing and data 

conversion. The first step, data cleansing, involves removing redundant data, revising errors, and 

smoothing out noise. Before the data cleansing, it is essential to set a rule about the noise data since 

one of our objectives is visualize actual process from the event logs, some noise data may be 

important to provide insights. For example, a manufacturing process should have one start activity 

and one end activity or imaginary activity should be excluded from the analysis. 

After data cleansing step, data conversion step transforms the data into appropriate form for 

process mining such as MXML (Mining eXensible Markup Language) and XES. Since process 

mining tool, ProM, requires the MXML as a format of input file, data conversion is necessary.  

ProMimport is a tool supporting data conversion of different data sources (e.g., CSV, Text) to MXML 

or MEX. The MXML has a standard notion for storing case, activity, resource, timestamp, and data 

attribute. Fig. 3 (a) shows an example fragment of the manufacturing event log. Each line corresponds 

to the execution of one activity. The number at the beginning of the line identifies the LotID (i.e. a 

product lot) that is executed. Afterward, the process ID, the process name, the machine ID, the 

performer ID, the start time, the complete time, the input quantity and the output quantity for the 

executed product are recorded. Depending on the kind of analysis, we are able to convert the log into 

XES log fragment (see Fig. 3(b)) for the highlighted event in Fig. 3(a). A separate audit trail entry is 

created for each event in which each activity name has specific event type. 

 

<Process id=“MES" description=“MES data">
<ProcessInstance id=“BC5153601">
…
<AuditTrailEntry>
<Data>

<Attribute name=“INPUTQTY”>6710</Attribute>
<Attribute name=“ENDQTY”>6710</Attribute>

</Data>
<WorkflowModelElement>Task_A</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>2012-05-20T06:42:18.000+09:00</Timestamp>
<Originator>M10001</Originator>

</AuditTrailEntry>
…
</ProcessInstance>

(a) Example fragment of manufacturing event log 

(b) Example fragment of XES file

Conversion

Case Activity Resource Timestamp Data

LOT_ID TASK_ID MACHINE WORKER START_TIME END_TIME INPUTQTY ENDQYT

BC5153601 Task_A M10001 W10001 2012-05-02 5:16 2012-05-02 5:23 6710 6710

<Process id=“MES" description=“MES data">
<ProcessInstance id=“BC5153601">
…
<AuditTrailEntry>
<Data>

<Attribute name=“INPUTQTY”>6710</Attribute>
<Attribute name=“ENDQTY”>6710</Attribute>

</Data>
<WorkflowModelElement>Task B</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2012-05-20T10:34:49.000+09:00</Timestamp>
<Originator>M10001</Originator>

</AuditTrailEntry>
…
</ProcessInstance>

Start

Complete

 

Figure 3: A fragment of a log in XES format 
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3.3. Manufacturing Process Mining and Analysis 

This section describes the application of process mining techniques to analyze manufacturing process 

according to the three perspectives: process, resource, and task. As explained in the framework, the 

analysis results will be interpreted (or used) as followed in the manufacturing industry: manufacturing 

visualization, machine-to-machine interrelationship analysis, machine utilization, and monitoring & 

diagnosis of task performance. 

The process perspective focuses on the control-flow, i.e., the ordering of activities. The 

objective of the process perspective is visualization of manufacturing processes expressed in terms of 

specified format, e.g. graph. It also attempts to compare a reference model (a-priori model) with the 

observed behavior as recorded in the log. Next, the resource perspective focuses on the resource entity, 

i.e. machine-to-machine interrelationship analysis that finds how resources are related and machine 

utilization that exams individual performance of each machine as well as mining the organization 

structure of resources in terms of organizational units. Lastly, the task perspective focuses on 

properties of activities, especially, take performance analysis. A specified activity can be characterized 

by the time spent on a case and product quantity as the execution result. Process mining has a lot of 

useful techniques for the manufacturing process analysis. Among them, following table 5 shows 

summary of process mining techniques can be applied for the three kinds of perspectives. 

 

Table 5: Summary of process mining techniques for manufacturing process analysis 

Perspective Analysis 
PM techniques 

HM FM CC PAWP PA SNA OM RbT DC BPA EDAV 

Process 
perspective 

Actual flow 
discovery ● ●          

Conformance of 
standard model   ●  ●    ●   

Visualization of 
bottleneck point    ●        

Resource 
perspective 

Machine network 
analysis      ●      

Machine allocation 
analysis       ● ●    

Machine idle time 
analysis         ● ●  

Task 
perspective 

Lead time 

monitoring         ● ●  

Yield monitoring ●          ● 

HM: Heuristic Miner, FM: Fuzzy Miner, CC: Conformance Checker, PAWP: Performance Analysis With Petri-net, PA: Pattern Analysis, SNA: Social Network 

Analysis, OM: Organizational Miner, RbT: Resource by Tasks, DC: Dotted Chart analysis, BPA: Basic Performance Analysis, EDAV: Event Data Attribute 

Visualizer 
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3.3.1. Process perspective: Manufacturing Process Visualization 

This section aims at visualization of manufacturing processes, as a part of the process perspective 

analysis. For the purpose, we are going to discover an actual manufacturing process model, derive 

some patterns based on the event log. It aims construct a manufacturing process model that reflects 

current situation from enactment logs. Additionally, we will check a conformance of standard model 

with event logs by calculating a fitness value. To calculate the conformance, we will apply 

conformance checking of ProM plug-in, which focuses on finding the discrepancies between the 

process model and the event log. Lastly, we will visualize bottleneck points leading longer production 

time on the discovered process model and compare the bottleneck points among the different 

production patterns. 

 

Actual flow discovery 

Actual flow discovery is considered as of the most challenging process mining tasks (Van der Aalst, 

2011). A manufacturing process model is constructed based on an event log, thus it captures the actual 

behaviors seen in the event log. Fig. 4 (b) shows a discovered process model (e.g. Petri-net) from a 

log traces in Fig. 4 (a) using a naive α-algorithm based on Petri net (Van der Aalst et al. 2004).  

 

A

B

C D

E

F

Log Traces
ABCDEF
ACDEF
ACDF
ADEF
ABDEF
ADF

(a) Log trace (b) Petri net Model  

Figure 4: (a). Log traces, (b). Process model using Petri Net based on the log traces 

 

There are a number of algorithms concerned with actual process discovery. This thesis 

chooses heuristic mining and fuzzy mining to construct the process model. Heuristic mining takes 

frequencies of events and sequences into account when constructing a process model. Moreover, it 

includes the discovery of control flow behaviors (i.e. sequence, AND and OR) which comes from the 

causal dependency of the events. In the case of fuzzy mining, it has advantages on finding abstraction 

process model when the process is complicated (i.e. there are a large number of activities). In addition, 

fuzzy mining can highlight significant information by visual means, e.g. animation.  
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First, we discuss the mechanism of heuristic mining on process discovery. The starting point 

of the heuristics mining is the construction of dependency graph. To obtain the dependency graph, it is 

required to consider a trace that contains the ordering of the events. If an event is always followed by 

another event, it is likely that there is a dependency relation between both events. To analyze the 

dependency relations among events, we introduce the following notations (Weijters et al. 2006).  

Let L be an event log over A and a1, a2∊A. a1>L a2 indicates that there is a sequence of 

activities in the log L such that the relation of a1 and a2 is direct succession. a1>>L a2 denotes as a 

sequence of activities such that the relation of a1 and a2 is direct succession and there is a sequence 

from a2 to a1. It is considered as a loop with length two (Weijters et al. 2006). A frequency based 

metric is used to indicate how we certain that there is a dependency relation between two activities a1 

and a2 (notation a1⇒L a2). The calculated ⇒L values between the activities are used in a heuristic 

search for retrieving the dependency relations (eq. 1). This thesis uses |a1>La1| as the number of times 

a1>La1 takes place in L (represent as a loop of length one) (eq. 2) and | a1>>La2 | as the number of 

times a1>>La2 occurs in L (represent as a loop of length two) (eq.3). For further detail, reader can 

refer to the original publication (Weijters et al. 2006). 
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Next, we discuss how the concept of fuzzy mining used in the manufacturing process. Fuzzy 

mining is designed for mining a less-structured process (Gunther and Van der Aalst. 2007). The less-

structured process, or usually called as complex process, exhibits a large amount of unstructured and 

conflicting behavior. Fuzzy mining introduces the concept of aggregation, abstraction, emphasis and 

customization. The aggregation is to limit the number of information displayed items to show 

coherent clusters of low-level detailed information in an aggregated manner. Abstraction is to show 

higher-level information and omit the lower-level information which is insignificant in the chosen 

context. Emphasis is to highlight the significant information by using visual means such as color, 

contrast, saturation and size. Finally, customization defines local context which has a specific level of 

details and a dedicated purpose. 
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In addition, we will discover all production patterns with aims of finding a representative 

production flow of underlying manufacturing process. A pattern consists of a set of sequences of 

activities. The time information should be available for each pattern as well as the number of cases 

and frequency of patterns. For each pattern, it is possible to extract the number of frequency and 

production time. 

The detail characteristics of each pattern can be visualized using dotted chart analysis. 

Dotted chart that is similar to a Gannt chart shows a spread of events of an event log over time (Song 

and Van der Aalst. 2008). It plots dots (i.e. events) according to the time and component types. The 

component types refer to case, task and resources information from the event log. For example, if the 

instance (e.g. lot ID) is used as a component type, it is easy to identify which product takes longer 

process and which activities cause the high completion time. 

Fig. 5 shows an example of spread of events in the log according to the actual time and it has 

been sorted in descending order based on the duration. We can see that case 5 has the longest 

processing time among cases. To see the detail problem, we select only case 5 and conduct a new 

dotted chart with the activity and resource component. Fig. 6 shows that there is a big time interval 

between activity D and E. In other word, there might be a delay after finishing activity D before 

starting activity E (see Fig. 6). To find the resources which performed those activities, we can provide 

a dotted chart as shown in Fig. 7. It represents the resources used in case 5 and shows there is a big 

time interval after the product is executed by M6 moving into M8. It shows that the use of dotted 

chart can clearly describe the real world situation based on the information in the log. 
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Figure 5: Example of pattern analysis using dotted chart analysis to visualize the big gap of the events 
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Figure 6: Dotted chart with activity component information for specific case (e.g. case 5 in Figure 5) 
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Figure 7: Dotted chart with resource component information for specific case (e.g. case 5 in Figure 5) 

 

Conformance of standard model 

It aims to check conformance of standard model with discovered model with event logs. We will 

apply conformance checking of ProM plug-in. Conformance checking is a technique to check whether 

a reality conforms to the model or not. It is also important for compliance checking, auditing, 

certification, and run time monitoring (Rozinat and van der Aalst. 2006). Moreover, it can be used to 

judge the quality of discovered models. As a verification method of discovered process model, there 

are two perspectives of conformance. First, it does not capture the real behavior (i.e. "the model is 

wrong"). Second, it shows that the reality deviates from the desired model (i.e. "the event log is 

wrong"). Typically, four quality dimensions for comparing model and log are considered; such as 

fitness, simplicity, precision and generalization (Rozinat and van der Aalst. 2006). These dimensions 

can be derived using Petri net. 
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A Petri net is a directed bipartite graph, in which the nodes represent transitions (i.e. events 

that may occur, signified by bar) and places (i.e. conditions, signified by circles). It also has arcs 

which run from a place to transition or vice versa, never between places or between transitions (Van 

der Aalst et al. 2011). Graphically, places in a Petri net may contain a discrete number of marks called 

tokens. In abstract sense relating to a Petri net diagram, if there are sufficient tokens in all of input 

places, when the transition enable, it consumes the required input tokens and produces tokens in its 

output places.  

We apply fitness measure to verify the quality of process models over the log. The fitness 

measure is a mismatch value as a result of replaying the log in the model. The replay of a log starts 

with marking the initial place in the model and then the transitions that belong to the logged events in 

the trace are enabled one after another (Rozinat and van der Aalst. 2006). We count the number of 

tokens that had to be created artificially. For example, the transition belonging to the logged event was 

not enabled and therefore could not be successfully executed (missing tokens). It also counts the 

number of tokens that had been left in the model, which indicates the process does not properly 

complete (remaining tokens). The fitness measure (f) (eq. 4) is formalized as follow. 

 

 = 	
 

 
 1 −

  

  
 +	
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)                               (4) 

Where mt = the number of missing tokens 

rt = the number of remaining tokens 

ct = the number of consumed tokens 

pt = the number of produced tokens. 

 

It should be noted that mt should be less or equal than ct and rt should be less or equal than 

pt, and therefore 0 < f < 1. For example, let consider a trace ABDEF in Fig. 4 (a). By using the model 

in Fig. 4(d), the token produced on each transition can go to other transition from start to end. The 

token begins from ‘Start’ (pt=0, ct=0, rt=0, mt=0) and the transition A consume the token and produce 

a token to c1 (pt=1, ct=1, rt=0, mt=0). The token from c1 goes to B (B consumes the token) and B 

produces a token to c2 (pt=2, ct=2, rt=0, mt=0). The token continues and is consumed by D and D 

produces a token to c3 (pt=3, ct=3, rt=0, mt=0). It keeps continuing to follow the path of E, c4, F and 

End (pt=5, ct=5, rt=0, mt=0). When the tokens are perfectly consumed and produced from the start 

until the end, then the fitness value equals to 1. By applying the replay to trace ABDE, we can get 
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fitness value as 0.42 with following information (pt=4, ct=3, mt=2, rt=2). After finishing all token 

reply, we can define the fitness of an event log L where L = event logs, N = model, L(σ) = frequency 

of trace σ, m ,  = number of missing tokens for a single instance σ, and ∑ L(σ) × m ,  ∈  = is 

total number of missing tokens. 

fitness(L,N) =	
 

 
(1 −

∑  ( )×  ,  ∈ 

∑  ( )×  ,  ∈ 
) +

 

 
(1 −

∑  ( )×  ,  ∈ 

∑  ( )×  ,  ∈ 
)              (5) 

 

Bottleneck Analysis 

Bottleneck analysis is associated with finding the problem of the long operation time. To find the 

bottleneck, we need to measure the duration of each event. Since each event has timestamp 

information, we can measure the time between two events with some indicators. Previous work 

classified the time-related performance indicator into four; sojourn time, working time, waiting time 

and synchronization time (Wang et al. 2009). Each of the performance indicators is explained in Table 

6. 

Table 6: Description of time-related performance indicator [Hornix, 2007] 

Time-related performance indicator Description 

Sojourn time 
The time spent after the completion of predecessor activity until the 
completion of that activity. 

Working time The time needed to complete an activity from the start 

Waiting time 
The time to wait a particular activity to start after the completion of 
predecessor activity 

Synchronization time 
Synchronization times are only 
greater than 0 when it executes AND-join. 

 

In this study, we focus on working and waiting time for two reasons. First, the purpose of 

using time-related performance indicator is to find the bottleneck which can be extracted from 

working and waiting time. Note that the sojourn time is the summation of working and waiting time. 

Second, the manufacturing process has most probably a sequential flow which includes no parallelism 

in the production flow. Therefore, we can disregard the use synchronization time. The time-related 

performance indicators can also be used to analyze other perspectives, such as resource and task 

perspective. In terms of resource, we can find resource utilization based on the working time and 

waiting time indicator. In the case of activity, the working and waiting time of two activities can be 

identified. We will use these performance indicators and explain them in the later section. 
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3.3.2.  Resource perspectiveⅠ: Machine-to-Machine interrelationship 

analysis 

Resource perspective deals with all information related to the performance of resources e.g. individual 

performance of each resource and relation between resources. In this study, the resource perspective 

analysis refers to the work of machine-to-machine interrelationship analysis (e.g., social network 

analysis) and machine utilization (e.g., resource allocation and resource working/idle time analysis). 

The first resource perspective analysis, machine-to-machine interrelationship analysis, is 

basis of resource perspective analysis. Machine-to-machine interrelationship analysis derives a social 

network that builds a network based on the handover of work from one resource to the next resource 

(Van der Aalst et al. 2005). Fig. 8 shows an example sociogram based on the transfers of work from 

one resource to another. The node represents the resources and the arc represents that there has been a 

transfer of work from one resource to another. The definition of "transfer of work from R1 to R2" 

means that there is an activity executed by R1 directly followed by an activity executed by R2 in the 

same case. For instance, there is a transfer of work from M1 to M3 in case 1, but the sociogram does 

not show frequencies. However, the frequencies can be added for analysis purposes. For further detail, 

reader can refer to (Van der Aalst et al. 2005) 
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Figure 8: Example of the sociogram of machine network based on the log example 
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As illustrated in Fig. 8, we can formalize the handover of work as follows (Van der Aalst et 

al. 2005). 

Definition 2. (⊳, ⊵) Let L be a log. Assume that ⟶ denotes some causality relation derived from the 

process model. For a1, a2 ∊A, r1, r2 ∊R, c = (c0, c1, …) ∊L and n ∊ℕ: 
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r1 ⊳nc r2 (eq. 5) denotes the function which return true if within the context of case c 

resources r1 and r2 both executed some activities such that the distance between these two activities is 

n. For example, for case 1 shown in fig.8, M1 ⊳1c M3 equals 1 (i.e., true) and M1 ⊳3c M3 equals 1 

(i.e. true). In this definition, the value of n refers to the relation i.e. a value of 1 refers to direct 

succession and if the value is greater than 1, it refers to indirect succession. | r1 ⊳nc r2 | (eq. 6) 

denotes the function which returns the number of times r1 ⊳	nc r2 in the case c. In other words, it 

considers multiple transfers within one instance e.g. a rework occurs in an instance. r1 ⊵	nc r2 (eq. 7) 

and |r1 ⊵	nc r2| (eq. 8) are similar to r1 ⊳	nc r2 and |r1 ⊳	nc r2| but in addition they take into account 

whether there is a real causal dependency. The information on causal dependency (i.e. causal 

dependency graph) can be added if the process model is known. If necessary, this information can also 

be derived from the log by using for example the α-algorithm (Van der Aalst et al. 2004). Based on the 

above relations, we define handover of work metrics. 
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Definition 3. Handover of work metrics 
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r1 ⊳L r2 (eq. 9) means dividing the total number of direct successions from r1 to r2 in a process 

log by the maximum number of possible direct successions in the log. r1 ⊳•L r2 (eq. 10) ignores 

multiple transfers within one instance (i.e. case). For example, in figure 9, M1 ⊳L M3 equals 1/21 and 

M1 ⊳•L M3 equals 1/6. Note that metric ⊳L defines a weight function W, i.e. r1 ⊳L r2 = 21 ,rrW
is the 

weight of the link from r1 to r2 in the corresponding sociogram. A threshold may be used to remove 

links (e.g. finding a high relationship with high weight) from the sociogram.  

 

3.3.3.  Resource perspectiveⅡ: Machine Utilization 

The second resource perspective analysis is machine utilization that aims at deriving machine 

allocations and analysis machine working/idle time using process mining techniques. For the machine 

allocation analysis, we used “Organizational mining” and “Resource by Task Matrix” plug-ins of 

ProM. Organizational model describes the organizational knowledge of machines such as 

organizational structures based on executed activities and it enables managers to understand the group 

of machines for each activity. Machine by task assignment explains the frequency of a machine 

performed in an activity. And for the machine working/idle time analysis, we used “Basic 

performance analysis” and “Dotted chart” to delineate other performance indicators such as time and 

equipment efficiencies in the log.   

 

Machine allocation 

The machine organization applies organizational mining (Song and Van der Aalst. 2008). There are 

several principles that define the relationship characteristic of machines using organizational mining. 

They generally consist of doing similar task, working together and default mining. Doing similar task 

focuses on the machines assigned similar tasks with similar knowledge. Working together is related to 

the project groups in which machines usually progress different skills and work together at the same 

cases. We can infer the working together through transfer of work concept as explained previously. 
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Default mining is simply to show the matching between activities and machines (Song and Van der 

Aalst. 2008). The development of organizational mining is highly relevant to processes that are not 

completely controlled by systems, e.g. humans play a dominant role in a test process. However, the 

application of organizational mining can also assist domain experts to understand and improve 

machine allocation in manufacturing process i.e. it can show the machines that performed in some 

different activities. Fig.9 shows an example of organizational structure. For example, M7 and M6 

worked for task D, and M8 assigned for task E. 

Resource by task matrix shows the relationship between machine and activity as shown in 

the fig. 10. Each machine (M) has a profile (i.e. activity-resource relationship matrix) based on how 

frequently they conduct specific activity (A). If a machine executed an activity, the activity is assigned 

to the machine. Let consider the example in Fig.9. For example, we can deduce that activity A is 

executed by either M1 or M2, activity B is executed by M3, C is executed by M4 or M5, D is 

executed by M6 or M7, E is executed by M8 and F is executed by M9 or M10. This example can 

show a typical method to find the organizational structure according to executed activity. For larger 

data set, it is possible to find the resource which performed in different activity (e.g. a machine can be 

used in different activity) 

Resource 
ID

Task ID

 

Figure 9: Organizational structure of resources according to the activity 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

A 10 2

B 5

C 10 10

D 20 1

E 10

F 5 15

Resource ID

T
as

k
 I

D

 

Figure 10: Example of resource by task matrix 
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3.3.4. Task perspective: monitoring & diagnosis of task performance 

In this section, we explain the task analysis in regard to production lead time and production lost rate. 

Monitoring & diagnosis of task performance aims at analyzing the performance of each task, and the 

ability focuses on their production lead time and production lost rate. Manufacturing enterprises wants 

to increase their profit by reducing the production cost that is affected by lead time and lost rate. 

Therefore, it is essential for the manufacturing enterprises to find a task that has high lead time or high 

production lost rate. Production lead time refers to the Sojourn time. For example, the production lead 

time of task B is time interval between completed time of Task A and complete time of Task B when a 

lot moved though from task A to task B. 

For the production lost rate analysis, we used the data product quantity from transaction logs 

of the MES. Since we discovered the process model, we can see the specific position where the 

product quantity is decreasing. The decrement of product quantity can have two meaning. First, the 

product quantity in a lot is decreased because of assembly process. Second, it is decreased because of 

defective reason. Since the intention of product quantity analysis is not about finding the reason of 

decrement, we will show the result of product quantity analysis in the way of task perspective with 

additional information on product quantity. 

 

Production lead time analysis 

Using timestamp, we can find several kinds of analysis such as lead time and bottleneck analysis. 

Bottleneck analysis is associated with finding the problem of the long operation time. To find the 

bottleneck, we need to measure the duration of each event. Since each event has different event type 

and a timestamp attached to it, we can measure the time between events with some indicators. 

Previous work classified the time-related performance indicator into four; sojourn time, working time, 

waiting time and synchronization time (Wang et al. 2009). Each of the performance indicators is 

explained in Table 4. 
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Lot

Time

C
(start)

C
(start)

Time Time

Lot 2

Lot 3

D Working time of Lot 1

D Working time of Lot 2

C Waiting/transportation time of Lot 2

C Waiting/transportation time of Lot 3

Lot 1

Lot 2

Lot 3

B
(complete)

B
(complete)

Lot 1

Lot 2

D
(start)

D
(complete)

D
(start)

D
(complete)

 

Figure 11: Example of time-related performance indicator based on the spread of events visualization 

 

In this study, we focus on working and waiting/transportation time for two reasons. First, the 

purpose of using time-related performance indicator is to find the bottleneck which can be extracted 

from working and waiting/transportation time. Second, the manufacturing process using MES has a 

sequential flow. Most probably, there is no AND-join in the production flow. Fig.11 illustrates the 

calculation of working and waiting/transportation time of two consecutive events with different event 

type. It should be noted that time-related performance indicator can be used to analyze other 

perspectives, such as resource and task perspective. In terms of resource, we can find resource 

utilization based on the working time and waiting/transportation time indicator. In the case of task, the 

working and waiting/transportation time of two activities can be identified. We will use these 

performance indicators and explain them in the later section. 

Incorporating with pattern analysis in the previous section, process mining tool can provide 

working time and waiting/transportation time analysis between particular activities. The notation t(e1, 

e2) is denoted as the working time and w(e1, e2) is denoted as the waiting time between event e1 and 

e2. Those working time and waiting time can be derived using eq. (11) and eq. (12), respectively. 

)()(),( 1221 eeeet TT pp -=    (11) 

where e1 < e2 ∧ πA(e1) = πA(e1) ∧ πY(e1)="start" ∧ πY(e2)="complete" 

)()(),( 1221 eeeew TT pp -=   (12) 

where e1 < e2 ∧ πA(e1) ≠ πA(e1) ∧ πY(e2)="start" ∧ πY(e1)="complete" 
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Production yield analysis 

In order to improve the yield rate of manufacturing process, it is necessary to take into account the 

product quantity in the analysis. Since the manufacturing data includes the input and output of product 

quantity, process mining tool can detect the activity that causes the decrement of product quantity as 

the effect of defect. Let diffqty(e1,e2) be the number of quantity difference between event e1 and 

event e2 with the formula as follow. 

 

)()(),( 1221 eeeediff qtyqtyqty pp -=
 (13) 

 

If the diffqty(e1,e2) is greater than 0, then there is a decrement on the number of product 

quantity. If πA(e2) equals to πA(e1) then we can probably say that the decrement is because of the 

operation failure. But, if πA(e2) is not equal to πA(e1), we can say that the cause of decrement is the 

loss during transporting the product from one activity to another activity. It is important to keep in 

mind that there are a lot of other factors about the quantity decrement. Thus, domain experts’ opinions 

should be considered to find the rational reasons of the quantity decrement.  
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IV.  Case Study: An electronic components 

manufacturing process 

This section discusses the obtained results by applying the proposed framework to the real 

manufacturing process analysis. The case study is based on an event log collected in the electronic 

component manufacturing processes at a manufacturing company in the South Korea. In the case 

study, we focus on showing how process mining techniques can be applied in a real manufacturing 

process analysis. This section consists of three parts. First, we explain the context of the case study. 

Then, we propose a result of case study according to the three perspectives. Lastly, the discussion is 

described. 

 

4.1. Contexts 

The manufacturing company produces various kinds of electronic components such as MLCC. We 

obtained event logs using a MES of the company. In the manufacturing industry, a basic unit is a lot 

(or a batch) and we used a lot number as a case ID. Case ID is an identification number assigned to a 

particular quantity or lot of material. In the manufacturing process, a lot pass through several activities. 

In each activity, a start event and a compete event are recorded. Each event contains some information 

such as lot ID, task ID, resource ID, and event time.  

The machines are categorized into three types: manual, semi-automatic, and automatic. For 

activities with a manual or a semi-automatic machine, a worker involved in the execution of a task is 

specified. An activity with an automatic machine has no information about the worker. In addition, an 

event contains information about the quantity in a lot. Quantity in a start event refers to the input 

quantity of an activity and one in the end event means the output quantity of an activity. In the pre-

processing step, we include the cases that start with Input task and finish with Package task. The event 

logs include 11,226 lots passed along the production process. The number of total working events is 

990,542 and the process consists of 361 activities. It also included 1,217 machines performed for the 

activities in 5 months. 
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4.2. Summary of manufacturing process mining and analysis 

 

4.2.1. Manufacturing process visualization of the process perspective 

As explained in the framework, analysis in process perspective are going to visualize manufacturing 

processes, compare the existing model with discovered model, and find bottleneck points on the 

discovered model to improve the current manufacturing processes. First, we discover actual processes 

by using process modeling algorithms i.e. Heuristic mining and Fuzzy mining. Second, we conducted 

two analyses to enhance the standard model. Conformance checking compares discovered process 

model with event logs or with standard model. Additionally, performance analysis with petri-net 

offers all possible manufacturing flows as well as statistical information, e.g. average lead-time and 

number of tasks. Finally, a bottleneck analysis visualizes the bottleneck points on the discovered 

model. 

We describe results of actual process discovery of manufacturing processes of electronic 

components in the process perspective to identify actual flows of lots. Among the several mining 

plug-ins, we applied heuristic mining and fuzzy mining. Fig. 12 shows the fragment of manufacturing 

process model. Fig. 12 (a) displays the overall manufacturing process model derived by Heuristic 

miner. All the processes start with the input task and finish with the packaging task. The model is 

useful to provide general manufacturing flows as well as number of lots passing between activities. 

Additionally, it visualizes the rework flows and how many lots are moved through the flows. For 

instance, four lots made rework flow from task C to task B. Moreover, some lots moved through ETC 

task being considered as unexpected task for the experts. Compared to Heuristic mining results, fuzzy 

mining shows a simple process model in the Fig. 12 (b). The red circles are Input and Package, 

respectively. The model represents the main manufacturing process model by aggregating some 

activities according to the parameter in fuzzy miner. Blue triangle activities are in the main production 

flows. 
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Rework

Unexpected
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Figure 12: Manufacturing process models 

 

Moreover, to compare the actual process patterns with existing model, we discovered all 

possible manufacturing flows using “Performance analysis with petri-net”, which is used to find the 

best practice processes. To see the event-level information for each pattern, dotted chart analysis was 

applied. For example, there are 176 patterns in the electronic-components production process. A 

dotted chart provides the event-level information of a pattern. Fig. 13 and 14 show the dotted chart 

results of two patterns. As explained in Section 3, the x-axis represents time, in minute, and the y-axis 

represents cases having same pattern. A dot is colored based on the name of the activity and the cases 

are sorted by case duration. The gap between two dots describes the time interval of the two events, 

and the longer distance affect to total lead-time. Fig. 13 has the shortest average production time while 

right-hand pattern has the longest average production time among the 176 patterns. In the fig. 14, 

durations are lower than 20 hours, but the other one have a long duration time. The duration takes 

longer than 3 months (about 104 days), and it affects to increase production time to average 111 days 

23 hours with 81 activities. 
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Figure 13: Lead time analysis of a pattern having the lowest average entire lead-time with dotted chart 
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Figure 14: Lead time analysis of a pattern having the highest average entire lead-time with dotted chart 
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Manufacturing company usually has standard manufacturing process model, which is 

expected flows. But, the actual process model may be different with the existing model. To check the 

difference and to enhance the existing model, we applied two process mining techniques. Firstly, 

conformance checking provides a fitness value of the discovered process model from event logs by 

comparing with the event log. For this analysis, it is necessary to convert a heuristic process model to 

a Petri-net model. The detailed explanation about Petri-net is in (Van Dongen et al. 2009). The 

existing conversion technique in process mining is utilized to convert the heuristic model into the 

Petri-net model. Additionally, it is possible to compare the discovered model with existing model.  

Fig. 15 shows a fragment of the conformance checking result. The final fitness value of 

overall process is 0.9961815. It indicates that almost all of cases in the log (99%) conform to the 

mined model. The token replay function was applied to get the fitness value. For example, the place 

before activity package has a red color with a value of +20. It means that there are 20 remaining 

tokens before the activity start. For investigating the 20 missing token, we generated linear temporal 

logic (LTL) checker, an existing technique in process mining used to check the event log. The Fig. 15 

(a) shows 11 lots of 20 remaining tokens went back to task A before the task G. 

 

(a) Conformance checking result

(b) LTL Checker result
 

Figure 15: Conformance checking results 
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The bottleneck analysis visualizes bottleneck points where an activity has long lead time on 

the discovered process model. Fig. 16 shows the fragment of the analysis result. The bottleneck points 

are represented by red, while the yellow shows medium waiting time and the blue represents low 

waiting time. For instance, it is easy to find the bottleneck point from A to D and E to F or G. 

Additionally, the analysis result also shows the time in-between two tasks. For example, on average it 

takes 98 hours between task A to task H, which represented by red box. 

 

 

Figure 16: Bottleneck analysis results 
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4.2.2. MTM interrelationship analysis of the Resource Perspective 

For the analysis in the resource perspective, we discovered machine network model and 

analyze machine utilization. First, we derived machine network model that show interrelationship 

between machines in respect of logistic flows using the ProM plug-in “Social Network Analysis”. Fig. 

17 shows the results obtained for machine-to-machine interrelationship analysis, and Table 7 shows 

top 5 machines having high betweenness that is degree of mediator role in the network. A social 

network shows how lots are transferred among machines, and the table shows the machine has the 

most frequent relationship between other two machines. According to the result, the machine M0052 

has the highest value of betweenness, and the machine is in the important location of the network. 

Since a trouble on the machine may influence the entire manufacturing processes, manufacturing 

managers need to pay more attention to the machine. 

 

 

Figure 17: Machine-to-Machine interrelationship analysis result 

 

Table 7: Top 5 machines having high betweenness 

Machine code Machine name Betweenness 
M0052 Task A 131,045.07 
M0014 Task B 125,163.11 

M0075 Task C 90,114.86 
M0018 Task D 77,860.14 
M0086 Task E 77,454.90 

… … … 
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4.2.3. Machine utilization of the Resource Perspective 

The second analysis in resource perspective is machine utilization with aims of managing the 

machines on manufacturing processes in a balanced way. For the machine allocation analysis, we used 

ProM plug-in “Organizational mining” and “Resource by Task matrix”, and we used “Basic 

performance analysis” and “Dotted chart” to analyze machine idle time.  

Fig. 18 shows one fragment of organizational mining results, which are useful to visualize 

the relationship between tasks and machines. Task A is performed by seven machines called M0001, 

M0002, M0003, M0004, M0005, M0006, and M0007. Among them two machines are also working 

for task B. With the result, managers can check whether machines were used for desired works by 

comparing the model with the standard machine assignment guideline in a company. Moreover, the 

machine by task assignment matrix shows the frequencies of machines used for tasks. It provides the 

number of events that each machine worked for the activity. Table 8 shows example of machines for 

Task A. In the table, M0001 machine worked 5,612 times for package for 5 months while M0005 

machine only did 2 times. The frequencies are quite different each other. It means that all machines 

are not operating at the similar capacity. 

Task A Task B

Task A Task B

M0001 M0002 M0003 M0004 M0005 M0006 M0007 M0008 M0009

 

Figure 18: Organizational model of task A and task B 

 

Table 8: Machines for task matrix of 'task A’ 

Machine Task A 

M0001 5,612 

M0002 2,965 

M0003 2,143 

M0004 500 

M0005 2 

M0006 2 

M0007 2 
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In addition, we also analyzed machine working time and idle time. Machine idle time is a 

period of time during a regular work cycle when a worker is not active because of waiting for 

materials or instruction, it also known as waiting/transportation time. Fig. 19 shows the working time 

of the seven machines of task A. It provides working frequency as well as average and median of 

working time. The dashed line indicates the average working time of the task, i.e. 62 minutes. M0003 

machine has the highest value of working time than other machines. Fig. 20 shows the dotted chart for 

the M0003 machine to check the detailed working duration. The figure shows that about 90% of cases 

finished within 5 hours. However, there are few cases which take more than 1 day. 

M0001 M0002 M0003 M0004 M0005 M0006 M0007
 

Figure 19: Bar chart for performance analysis result of task A 

 

Task A

 

Figure 20: Time analysis of task A (Dotted Chart for M0003 machine of task A.) 
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4.2.4. Monitoring & Diagnosis of task performance 

In this part, we conduct several analysis related to task perspective. Task perspective provides 

information of the task that reduces manufacturing efficiency. One of the main purposes of 

manufacturing management is increasing production efficiency by reducing total cost and lead time. 

For this reason, root-cause analysis is necessary to find the activity having high fraction defective and 

lead time. Production time analysis focuses on high lead-time while production quantity loss does on 

fraction defectives. Actually, we already introduced another root-cause analysis, bottleneck analysis 

detecting high lead time tasks in the process perspective. The production time analysis has difference 

on the results are used statistical information not process model. 

The proposed bottleneck analysis finds a bottleneck point having high lead time on the 

manufacturing processes. On the other hands, a production time analysis use statistical data such as 

working frequency, average working, waiting /moving time rather than process model. This analysis is 

performed by BPA (Basic Performance Analysis) of ProM. The BPA have several positive points to 

show the statistical time information. 

Production yield analysis generates a graph showing the change of product quantity along 

the manufacturing process. Fig. 21 shows one example, which shows the change of input and output 

product quantity. The output quantity is smaller than input quantity at ‘Horizon 5 copper plating’, It 

means that there might be some problems during the working. 

 

 

Figure 21: Change of product quantity along the time sequence 
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V. Conclusion 

In this thesis, we suggested a framework for manufacturing process analysis based on 

process mining techniques. MES records production activities when they take place and store as event 

logs that can be valuable source for the manufacturing process analysis according to the three 

perspectives. The proposed framework applied several process mining techniques for the four kinds of 

analysis: Manufacturing process visualization, Machine-to-Machine interrelationship analysis, 

Machine utilization, and Monitoring & diagnosis of task performance. 

For the manufacturing process visualization, firstly, we discovered manufacturing process 

models using mining techniques such as heuristic and fuzzy mining. The discovered models showed 

all production flows including the main flows, rework flow, and abnormal flows. Additionally, pattern 

analysis examines all possible sequences of manufacturing processes using performance analysis with 

petri-net plug-in. Moreover, we also conducted conformance checking that compares the derived 

process model with event logs and standard model with event logs. Finally, we also visualized 

bottleneck point on the discovered process model. 

Second, this thesis conducted two analyses in the resource perspective: machine-to-machine 

interrelationship analysis and machine utilization. The machine-to-machine inter-relationship analysis 

used social network analysis that shows “how” resources are related to each other. Next, machine 

utilization conducted two analyses: machine allocation analysis and machine idle time analysis. 

Machine allocation analysis used organizational mining that represents “which” machine worked for 

each activity and machine by task matrix that represents frequency of working events for each tasks. 

Next, for the machine idle time analysis, dotted chart analysis and basic performance analysis 

examined the detailed machine performance over time. Based on the results, manufacturing manager 

can make a better decision about machine allocation and operation. 

Third, task perspective conducted monitoring & diagnosis of task performance that analyzes 

the performance of each tasks regarding their production yield rate and production lead time. 

Production yield rate analysis is important to reduce their lost rate that related to production cost, and 

production lead time is a major determinant of production speed. For the analysis, we made a formula, 

and evaluate their capability. 
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We applied the proposed framework to real-manufacturing data in electronic components 

manufacturing processes. After have a discussion about the results, the experts agreed that the 

proposed framework is useful to visualize manufacturing processes and machine interrelationship, 

conduct machine utilization, and monitor task performance. Therefore, the framework helps users to 

obtain useful information that is used to improve existing processes. It has the following major 

contributions: 

l It suggested a framework that support manufacturing process analysis with process mining 

techniques. It gives several important opportunities for applying process mining in 

manufacturing process analysis: manufacturing process visualization, machine-to-machine 

interrelationship analysis, machine utilization, and monitoring & diagnosis of task 

performance. 

l It demonstrated application of the framework using real manufacturing event logs. 

l It demonstrated the ability of process mining to provide insight from manufacturing data. 

However this thesis has several limitations that lead us to future works. First, it took a lot of 

time for data preparation including data collection, preprocessing, and conversion since the 

availability and quality of event logs are key factors for the framework. Second, the framework did 

not consider a big data. With the advanced technology, manufacturing data are getting to bigger than 

ever. Accordingly, it needs to develop and improve the current framework to deal with the big data. In 

the future works, we plan to improve the framework by verifying the effectiveness of the framework 

and applying the framework to other manufacturing processes.  
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