
Measuring the magnetic field of a magnetized plasma using Raman scattering
Myung-Hoon Cho, Young-Kuk Kim, and Min Sup Hur 

 
Citation: Applied Physics Letters 104, 141107 (2014); doi: 10.1063/1.4868870 
View online: http://dx.doi.org/10.1063/1.4868870 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/14?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Dynamics of ion acoustic double layers in a magnetized two-population electrons plasma 
Phys. Plasmas 20, 102104 (2013); 10.1063/1.4824451 
 
Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and
quasilinear theory 
Phys. Plasmas 19, 012306 (2012); 10.1063/1.3676156 
 
A method to measure the electron temperature and density of a laser-produced plasma by Raman scattering 
Appl. Phys. Lett. 93, 071506 (2008); 10.1063/1.2973395 
 
Progress toward a practical magnetic field diagnostic for low-field fusion plasmas based on dual mode correlation
reflectometry 
Rev. Sci. Instrum. 74, 1469 (2003); 10.1063/1.1530390 
 
Correlation reflectometry for turbulence and magnetic field measurements in fusion plasmas (invited) 
Rev. Sci. Instrum. 74, 1421 (2003); 10.1063/1.1530380 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  114.70.7.203

On: Mon, 12 May 2014 06:14:18

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/79693599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1340127598/x01/AIP-PT/APL_ArticleDL2_050714/Awareness_LibraryF.jpg/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Myung-Hoon+Cho&option1=author
http://scitation.aip.org/search?value1=Young-Kuk+Kim&option1=author
http://scitation.aip.org/search?value1=Min+Sup+Hur&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4868870
http://scitation.aip.org/content/aip/journal/apl/104/14?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/10/10.1063/1.4824451?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/1/10.1063/1.3676156?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/1/10.1063/1.3676156?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/93/7/10.1063/1.2973395?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/74/3/10.1063/1.1530390?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/74/3/10.1063/1.1530390?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/74/3/10.1063/1.1530380?ver=pdfcov


Measuring the magnetic field of a magnetized plasma using Raman
scattering

Myung-Hoon Cho,1 Young-Kuk Kim,2 and Min Sup Hur1,a)

1School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan 689-798, South Korea
2School of Electrical and Computer Engineering, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan 689-798,
South Korea

(Received 11 February 2014; accepted 6 March 2014; published online 10 April 2014)

We studied the Raman scattering in a magnetized plasma by one-dimensional particle-in-cell (PIC)

simulations in non-relativistic regime. It is found from the X-mode dispersion relation that the

frequency of the backward scattered wave is downshifted by an amount of upper hybrid frequency,

while that of the forward scattered wave merely depends on the magnetic field. We propose such a

spectral difference be used to measure simultaneously the plasma density and magnetic field of

magnetized plasmas. The idea was verified by a series of PIC simulations, where we used the

directional field splitting method to obtain accurate peak position of the scattered waves’

frequencies. We compared the frequency shift and the growth rate of the scattering from theory and

simulations to obtain reasonably good agreement between them for different external magnetic

fields. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868870]

Raman Scattering in a plasma is a prominent non-linear

process in high power laser plasma interaction and is con-

sidered as an important diagnostic tool for various plasma

applications such as plasma-based electron acceleration and

inertial confinement fusion (ICF). These plasma-based

applications are highly dependent on the status of plasma

such as the homogeneity of plasma density, the temperature,

and magnetic field. For example, both of the Raman forward

scattering (RFS) and the Raman backward scattering (RBS)

were used to measure the plasma density in underdense

plasmas.1–3 It was also shown by particle-in-cell (PIC) sim-

ulations that the temperature and density of a homogeneous

plasma are simultaneously detectable by measuring RBS

and RFS together.4 Meanwhile, one recent experimental

result has shown that the spatial information of a plasma

density is extractable using the Raman backward amplifica-

tion technique based on stimulated Raman scattering.5

Properties of laser propagation in magnetized plasmas have

been also studied widely, where most of the works are

focused on self-generated high magnetic field or Cerenkov

wake radiation.6–9 Theoretical works for the case of X-

mode10,11 showed that RBS spectroscopic peak shifts from

the incident laser’s frequency by an amount of upper hybrid

frequency xh and the scattering growth rate decreases as the

magnetic field increases. However, there has been almost no

experimental or simulation study on the effects of external

magnetic field on RBS and RFS. The reason may be par-

tially that in the regime of short-wavelength laser pulses

(k � 1 lm), a huge magnetic field reaching a few hundred

Tesla is required to clearly see its effects. Fortunately, the

development of highly intense lasers with tens-of-microme-

ter-wavelength like a maser can give a more chance of

studying experimentally the Raman scattering in a magne-

tized plasma; for instance, terawatt-level and 5-ps pulse of

10 lm CO2 lasers are now available.12

In a previous publication by one of the authors of this

Letter, they proposed a method to measure the plasma den-

sity and temperature simultaneously utilizing the different

sensitivities of the RBS and RFS to the plasma temperature.4

Specifically, the thermal frequency shift of the Bohm-Gross

wave, v2
thk2, depends on the wave number, so the RBS, which

has a large wave number, is influenced more significantly by

the plasma temperature than the RFS which has only a small

wave number. By detecting and comparing the RFS and

RBS frequency shifts simultaneously, the plasma density and

temperature informations can be extracted together.

In this Letter, we suggest another method to measure

simultaneously the time- and space-averaged magnetic field
as well as the plasma density utilizing the different behaviors

of the RBS and RFS in a magnetized plasma. When a pump

laser pulse is irradiated onto a magnetized plasma, it can be

Raman-scattered into another electromagnetic waves and

plasma waves. Theoretically, the plasma wave in such an

environment is not purely electrostatic, but it contains an

electromagnetic component. So the three waves, i.e., the

pump, scattered, and the plasma waves, follow the X-mode

dispersion relation as follows:13

c2k2

x2
¼ c2

v2
/

¼ 1

b2
/

¼ 1�
x2

p

x2

x2 � x2
p

x2 � x2
h

; (1)

where v/ is the phase velocity. Note that we assumed the rel-

ativistic effect can be neglected and the ions are stationary in

the time scale of the scattering. In this scattering process,

RFS yields two sidebands: one is the upshifted, and the other

is the downshifted by an amount of plasma wave frequency.

On the other hand, RBS yields only a downshifted side-

band.14 Usually, such a scattering occurs with a maximum

growth rate, when the three waves, i.e., the pump (x0; k0),

scattered (xs; ks), and the plasma (x; k) waves, satisfy the

resonance condition. When the forward-scattering is rele-

vant, the resonance condition between the three waves isa)Electronic mail: mshur@unist.ac.kr
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k0 ¼ kf þ kf s; x0 ¼ xf þ xf s: (2)

Here, the subscripts s and f represent the “scattered” and

“forward,” respectively. For this case, the phase velocity

of the plasma wave is fast, i.e., b/;f ¼ dxf =cdkf

’ jx0 � xf sj=cjk0 � kf sj � 1, which is nothing but a group

velocity of the high-frequency pump wave. On the contrary,

the wave number of the plasma wave for an exactly back-

ward scattering is roughly twice the pump’s wave number

kb ¼ k0 þ kbs ’ 2k0; xb ¼ x0 � xbs: (3)

Therefore, the RBS induces a slow plasma wave with

b/;b � ðx0 � xbsÞ=2k0c� 1. Note that all those resonance

condition can be interpreted as results of energy and momen-

tum conservation between the photons and plasmons.

As the phase velocities of the plasma waves involved in

RFS and RBS are hugely different to each other, the spectral

dependence of the scattered waves on the magnetic field

shows a significantly different behavior. Such a point can be

easily seen by representing the frequency of the plasma

wave as a function of the phase velocity from Eq. (1) as

follows:

x2

x2
p

¼
1þ Aþ x2

c=x
2
p

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Aþ x2

c=x
2
p

� �2

4
� A

s
; (4)

where

A ¼ 1

1� 1=b2
/

: (5)

For the case of RFS, b/;f � 1, so the frequency of the plasma

wave from Eq. (4) becomes, up to the first order of A�1

x2
f ’ x2

p 1� 1

A
1þ x2

c

x2
p

 ! !
: (6)

In Eq. (6), the magnetic field effect is only a small term

because jAj � 1, so the forward plasma wave frequency is

very close to the plasma frequency xp. Consequently, we

can expect the RFS frequency is not affected significantly by

the external magnetic field. Especially when the driving

pump pulse is short enough to leave a wakefield behind, it is

called the Cerenkov wake.8 In the case of RBS, however,

b/;b � 1, so A in Eq. (5) approaches to zero yielding

xb ’ xh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

p þ x2
c

q
: (7)

Then from Eqs. (6) and (7), and the resonance conditions

aforementioned, the plasma wave frequency can be repre-

sented as a function of the magnetic field both for RFS and

RBS as in Fig. 1, where it is shown that the plasma wave fre-

quency for the RBS case is more strongly influenced by the

magnetic field than that for the RFS. As a consequence, it is

expected that the RBS shows more frequency shift by the

magnetic field effect than the RFS. Since there is almost no

magnetic field information contained in RFS signal, it can be

used as a reference to measure the plasma density. Then the

magnetic field information can be extracted by measuring

the additional frequency shift of RBS. Experimentally, the

intensity and direction of the magnetic field as well as the

plasma density can probably be measured by irradiating the

pump pulse in various different angles, and detecting simul-

taneously the for- and back-scattered signals.

As a test of such an idea, we performed a series of

one-dimensional PIC simulations of the Raman scattering

in a magnetized plasma. For separation of the backscat-

tered and forward-scattered signals, we employed the

directional field split method for the field solver.15 In the

simulations, the external magnetic field was perpendicular

to the propagation of the pump laser pulse. Then a longitu-

dinally Gaussian pump laser pulse with the wavelength

k ¼ 10 lm and pulse duration s ¼ 10 ps was launched. The

peak value of the normalized vector potential of the pump

pulse was a0 ¼ eE0y=mex0c ¼ 0:3. We also loaded a cold,

magnetized plasma with densities n0 ¼ 1:0� 1015 cm�3

and 1:0� 1017 cm�3, which corresponded to xp=x0

¼ 0:0095 and 0.095, respectively. Here, we used a linearly

polarized laser field in y direction. The plasma was magne-

tized by a z-directional various DC external magnetic

fields. The laser pulse propagated to the right x-direction in

the simulation window, so the right going and left-going

fields contained the RFS and RBS signals, respectively.

Figure 2 is the simulation result for the magnetic field

20 T measured at t ¼ 43:3 ps. Figures 2(a)–2(c) show the

right going field, the left going field, and the k-spectra of the

RFS and RBS signals, respectively. In the case of RFS spec-

trum, only the lower sideband is presented for comparison

with the downshifted RBS frequency. From Fig. 2(c), it is

clearly seen that the additional frequency shift by the mag-

netic field in RBS is large enough compared to the band-

width of each peak, so it can be readily utilized to get the

magnetic field strength. Note that the RFS signal is super-

posed by the original pump wave, so it is not distinguishable

in the figure, while the backscattered signal can be separately

observed as in Fig. 2(b).

In Fig. 3, it is shown that the Raman peak shift for dif-

ferent magnetic fields measured from the simulations agree

well with the theory. Because of the low growth rate of RFS

in low plasma density, we could not detect the RFS in the

case n0 ¼ 1:0� 1015 cm�3. However in real experiments,

FIG. 1. Plasma wave frequency depending on magnetic field obtained from

Eqs. (4) and (7).
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the RFS signal might be detected more easily by using a lon-

ger pump pulse. In the case of higher plasma density of

n0 ¼ 1:0� 1017 cm�3, Fig. 3(b) shows a good agreement

between the theory and the simulations even in extremely

high magnetic field.

To get more confidence in the simulation results, we

measured the growth rate of the backscattering and com-

pared it with the theory. The previous theoretical study of

RBS growth rate in a cold, magnetized plasma10 shows

c ¼ 1

2
k0V0

ffiffiffiffiffiffiffiffiffiffiffi
x2

p

x0xh

s
: (8)

To compare the growth rates from Eq. (8) and simulations,

we used the fact that the intensity of the scattered wave is

proportional to exp cef f sef f½ �. Here, we approximated the

Gaussian pulse duration s and peak amplitude a0 used in

the simulations to the square shape with sef f ¼ s=2 and

a0ef f
¼ a0=

ffiffiffi
p
p

. Because Eq. (8) is valid for an infinitely long

homogeneous laser pulse, the simulation results can directly

compared to it only after such averaging and approximating

the Gaussian shape to the square shape. It is shown in Fig. 4

that the ratio of the spectral peak intensity of the scattered

wave to that for B¼ 0 is matched well with the theoretical

expectation.

Here, we discuss a potential experimental application of

the suggested idea. The proposed diagnostic method, along

with the previous one to measure the plasma temperature,4

can be realized in the experiments by simultaneously detect-

ing RBS and RFS spectra of the pump laser pulse irradiated

in various angles. Though the plasma diagnostics by Raman

scattering is usually applied to a relatively high-density

plasma above 1018 cm�3, we showed the suggested idea can

also be used even in a low density plasma such as 1015 cm�3

or below. In that sense, one of the good applications of the

proposed method might be the diagnostics of Tokamak

plasma density and magnetic field, where the density is in

the range of 1013–1015 cm�3 and the magnetic field at the

core can reach up to a few or more than 10 T depending on

the operating regime. In that case the electron temperature

can be as high as T�10 keV,16 so the currently proposed

method probably should be combined with the previous

method4 of temperature measurement. To get a high enough

growth rate in such a low density plasma, a longer duration

of the laser pulse may be required. However, the pulse dura-

tion and focal spot are still very small compared to the length

scale of the Tokamak plasma. Furthermore, the scattered

FIG. 2. Measured (a) right going field and (b) left going field at t ¼ 43:3 ps

and for magnetic field B ¼ 20 T using a directional field splitting method.

(c) The frequency spectra for RFS (black) and RBS (red) are also shown.

FIG. 3. Frequency shifts of RBS and RFS depending on the external mag-

netic field for (a) the plasma density n0 ¼ 1:0� 1015 cm�3, where the RFS

was too weak to be detectable in the given simulation range, and (b)

n0 ¼ 1:0� 1017 cm�3, where both RBS and RFS could be measured.

FIG. 4. The RBS peak intensity and the theoretical growth rate depending

on the external magnetic field. The solid line indicates c=c0 and the dot indi-

cates measured peak intensity, where c0 is the growth rate for B¼ 0.
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signals may come dominantly from the focal spot of the

pump pulse, where the laser intensity is the maximum. Since

the spot size is also small compared to the plasma, any

boundary effects can be neglected. So our method may pro-

vide a good way of pin-pointing the local plasma parameters.

In that sense, though our method can be applied to homoge-

neous plasmas most effectively, such a limitation does not
seem to diminish much the applicability of the suggested

method. Note that when the dimensions of the plasma and

the pump pulse are similar to each other, the plasma inhomo-

geneity may result in the bandwidth broadening of the scat-

tered signals. On the other hand, the studies about the effects

of density gradient on the growth of RBS can be found in

Refs. 17 and 18.

Before we summarize the works, it may be inspiring to

compare the proposed idea with the Faraday rotation,19,20

which is a well-known, robust method of measuring the mag-

netic field of a magnetized plasma. The rotation angle of the

electric field polarization induced by the phase velocity dif-

ference of right-handed- and left-handed circularly polarized

waves is described by /½rad� ¼ 2:62� 10�17k2neBd in cgs

unit, where k and d are the wave length and propagation

distance of the pump pulse, respectively. Then, to obtain

the rotation by 1	 under the parameters of Fig. 3(a), the pulse

propagation length should be at least 3 cm, which is

larger than the Raman growth length by an order of magni-

tude: the RBS growth length is sef f ’ 5 ps, corresponding

to 1.5 mm.

In conclusion, we proposed and studied a method to

measure the density and the magnetic field of a magnetized

plasma utilizing the different frequency shifts of RFS and

RBS for a given magnetic field. The idea was verified theo-

retically and also by one-dimensional PIC simulations. To

clearly separate the back- and forward scattered signals, we

employed the directional field splitting method for the field

solver in the PIC simulations. We showed that the additional

frequency shift of RBS by the magnetic field was large

enough to distinguish the magnetic field effect. Furthermore,

the growth rate of RBS measured from the simulations

agreed well with theoretical predictions. And finally a

potential experimental application regarding Tokamak

plasma diagnostics was discussed.
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