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Abstract 

Predicting teenage drug use is key to understanding the etiology of substance 
abuse. However, classic predictive modeling procedures are prone to overfitting and fail 
to generalize to independent observations. To mitigate these concerns, cross-validated 
logistic regression with elastic-net regularization was used to predict cannabis use by age 
16 from a large sample of fourteen year olds (N=1,319). High-dimensional data (p = 
2,413) including parent and child psychometric data, child structural and functional MRI 
data, and genetic data (candidate single-nucleotide polymorphisms, “SNPs”) collected at 
age 14 were used to predict the initiation of cannabis use (minimum six occasions) by age 
16. Analyses were conducted separately for males and females to uncover sex-specific 
predictive profiles. The performance of the predictive models were assessed using the 
area under the receiver-operating characteristic curve (“ROC AUC”). Final models 
returned high predictive performance (generalization mean ROC AUCmales=.71, mean 
ROC AUCfemales=.81) and contained psychometric features common to both sexes. These 
common psychometric predictors included greater stressful life events, novelty-seeking 
personality traits of both the parent and child, and parental cannabis use. In contrast, 
males exhibited distinct functional neurobiological predictors related to a response-
inhibition fMRI task, whereas females exhibited distinct neurobiological predictors 
related to a social processing fMRI task. Furthermore, the brain predictors exhibited sex-
specific effects as the brain predictors of cannabis use for one sex failed to predict 
cannabis use for the opposite sex. These sex-specific brain predictors also exhibited drug-
specific effects as they failed to predict binge-drinking by age 16 in an independent 
sample of youths. When collapsed across sex, a gene-specific analysis suggested that 
opioid receptor genetic variation also predicted cannabis use by age 16. Two SNPs on the 
gene coding for the primary mu-opioid receptor exhibited genetic risk effects, while one 
SNP on the gene coding for the primary delta-opioid receptor exhibited genetic protective 
effects. Taken together, these results demonstrate that adolescent cannabis use is reliably 
predicted in males and females from shared and unique biobehavioral features. These 
analyses also underscore the need for refined predictive modeling procedures as well as 
sex-specific inquiries into the etiology of substance abuse. The sex-specific risk-profiles 
uncovered from these analyses might inform potential etiological mechanisms 
contributing to substance abuse in adolescence as all predictors were measured prior to 
the onset of cannabis use. 
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Chapter 1: Introduction and Literature Review 

 Inquiry into the nature of adolescence and drug use can be approached using 

animal models and human studies. In this introduction, we will review a sampling of the 

adolescent literature pioneered by many scientists who made great efforts in studying 

animals and humans during arguably the most fascinating yet challenging period of 

development. Here, we will review the biobehavioral characteristics of adolescents who 

use drugs, while considering important sex-differences. The empirical work reported in 

the second half of this thesis probes a major longitudinal study to uncover sex-specific 

predictive profiles of adolescents who initiated cannabis use by age 16. These profiles are 

comprised of psychometric, brain, and genetic features, all of which preceded their 

cannabis use. Therefore, this review will pay special attention to the relationship between 

cannabis use and psychosocial and neurobiological development.  

 

1.1 Adolescent Psychosocial Development 

Adolescence is a developmental period of considerable changes during which the 

individual navigates the transition between childhood dependence and adulthood 

independence. Throughout this period, the adolescent will experiment with novel 

behaviors, environments, and reinforcers in order to learn new skills necessary for 

independence. Youthful behavioral patterns from childhood that previously sustained the 

individual will be phased out and replaced by adult-like behaviors and personality traits 

developed during experimentation with independence.  

During adolescence, the individual experiences a drive to emigrate from the natal 

family environment and begins to incorporate more peers into their social network. In a 
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study on adolescent social interactions, adolescents report communicating with their 

peers throughout 33% of their waking hours during a typical week, compared to 8% of 

their waking hours communicating with adults (Csikszentmihalyi, Larson, & Prescott, 

1977). Hence, increased interactions with peers provide opportunities for the adolescent 

to experiment with and learn social skills necessary for adulthood. Furthermore, 

motivation to emigrate from the home and associate with peers is evolutionarily 

advantageous in order to find genetically dissimilar reproductive partners.   

 

1.2 Risk-taking in Adolescence 

When the adolescent spends more time within their social network of peers, 

various novel environments and social interactions will arise, some of which involving 

the potential for risk. In these settings, adolescents may be more susceptible to engage in 

risky behaviors in the presence of peers (Rose et al., 1996). One study identified more 

than half of adolescents report ever engaging in driving under the influence of drugs or 

alcohol, unsafe sexual activity, criminal activity, and/or substance use (Arnett, 1992), the 

latter of which will be surveyed extensively in this thesis. After participating in risk-

taking behaviors, adolescents may enjoy social reinforcement from their peers (Kaplan, 

Johnson, & Bailey, 1987) along with a boost in self-esteem (Shedler & Block, 1990). 

Additionally, adolescents report they approach risk in order to satisfy curiosity and 

augment the sense of arousal, intensity, and complexity of novel experiences (Lipsett & 

Mitnick, 1991). Unfortunately, risk-taking activity can have dire impacts on adolescents 

as the majority of mortality during this period is comprised of homicide, suicide, and 

accidental death (Irwin Jr, 1989, 1993). While risk-taking appears to be a common 
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feature of adolescence, the ability to moderate the frequency and severity of risky 

activities is an important skill that must also be learned during this period. 

A propensity for risk-taking behaviors is commonly operationalized in 

psychometric questionnaires aimed at measuring the construct of a novelty-seeking 

personality (Cloninger, 1999; Woicik et al., 2009). In studies of psychosocial 

development, novelty-seeking personality levels typically peak during adolescence 

(Maggs, Almeida, & Galambos, 1995; Moffitt, 1993). As such, an elevated novelty-

seeking personality is highly predictive of engaging in substance use (Hale et al., 2003; 

Mccormick et al., 1998; Sher & Trull, 1994), a topic we will consider extensively in this 

thesis. Adolescents also tend to discount delayed rewards in favor of immediate rewards 

(Steinberg, 2008) and display an insensitivity to both punishment and the aversive 

properties of some drugs (Cauffman et al., 2010; Doremus-Fitzwater, Varlinskaya, & 

Spear, 2010; Schramm-Sapyta, Morris, & Kuhn, 2006). Taken together, these behavioral 

characteristics make adolescents especially vulnerable to engage in risky behaviors like 

substance use.  

 

1.3 Stress in Adolescence 

Animal models of stress reactivity consistently report that adolescents exhibit 

augmented behavioral signs of stress compared to adult animals when subjected to 

physiological (Veenema, 2009; Wagner, 1993) and social stressors (Einon & Morgan, 

1977; McGivern et al., 1996; Stone & Quartermain, 1997). Behavioral signs of stress are 

supported by elevated hormonal stress levels, with some studies reporting the highest 

levels of corticosterone in adolescent female rats compared to adolescent males and adult 
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female rats (Cirulli, Terranova, & Laviola, 1996; Gabriel, Roncancio, & Ruiz, 1992). 

Interestingly, surgical and pharmacological ablation of the stress response system has 

been shown to attenuate alcohol (Fahlke et al., 1994) and cocaine consumption (Goeders 

& Guerin, 1996), thus highlighting a key contribution of these systems in the 

development of drug consuming behaviors.  

 Studies on stress in humans mirror that of the animal studies and suggests the 

magnitude of stress perception is greater in adolescent females than adolescent males and 

adult females (Hampel & Petermann, 2006). Indeed, numerous studies have identified 

frequency of early life stressors (Barrett & Turner, 2006), as well as perceived level of 

stress (Baer et al., 1987; Deykin, Levy, & Wells, 1987; Johnson & Pandina, 1993; 

Tschann et al., 1994) as strong predictors of substance use in adolescence. In studies of 

early life stress, findings indicated that physical and/or sexual abuse during childhood is 

more frequent in females than males, but nonetheless strongly predicts substance abuse 

later in life for both sexes (Liebschutz et al., 2002). For males, severity of later drug use 

was inversely correlated with age at first abuse, such that the younger the age of physical 

and/or sexual abuse, the more severe substance abuse problems later in life. This dose 

response relationship was not evident in females, as any history of abuse during childhood 

strongly predicted substance use problems in adulthood (Liebschutz et al., 2002). In a 

related study on the association between post-traumatic stress disorder (PTSD) and later 

substance abuse, findings indicated that PTSD from sexual abuse predicted cocaine use in 

males, while PTSD from physical abuse predicted cocaine use in females (Hyman et al., 

2005). Taken together, prior life stress might promote the generation of maladaptive 

coping strategies like substance use. Despite the association between stress and substance 
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abuse, it is challenging to infer causality for a multifaceted phenotype. Furthermore, while 

stress may precede drug use and lead an individual to consume drugs (DeWit, MacDonald, 

& Offord, 1999; Tschann et al., 1994; Wills, 1986), drugs and drug-seeking behaviors 

may potentiate perceptual and biological reactivity to stress (Cinciripini et al., 1989; Cobb 

& Van Thiel, 1982; D’Souza et al., 2004; Heesch et al., 1995).  

 Despite the relationship between stress and drug use in females, overall rates of drug 

use and addiction tend to be higher in men (Kuhn, 2015), possibly due to women being 

more sensitive to the stigma associated with use. In terms of treatment, women with 

substance abuse problems progress faster towards treatment than men (Hernandez-Avila, 

Rounsaville, & Kranzler, 2004). In general, these findings are also applicable to 

adolescents. Next, we will focus more specifically on rates of drug use and the features 

that correlate with drug use in adolescence 

1.4 Substance Use in Adolescence 

Alcohol is currently the most commonly used substance in adolescence. In 2015, 

nearly half of all 10th graders (ages 14-16) reported any lifetime use, and over a quarter 

reported ever being drunk (Johnston et al., 2011). Indeed, numerous studies of alcoholism 

have found that an increase in alcohol use during adolescence predicts problematic 

drinking (Armario et al., 1987; Barnes & Welte, 1986; Hawkins et al., 1997; Robins & 

Przybeck, 1985) as well as the use of other drugs (Yamaguchi & Kandel, 1984) in 

adulthood. This relationship might also be reciprocal, as the initiation of illicit drugs 

predicts alcohol abuse later in life (Robins & Przybeck, 1985). Problematic drinking in 

adolescence is concerning, as teens who abuse alcohol might exhibit behavioral signs of 
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dependence that mirrors adults (Pollock & Martin, 1999), but escalate more rapidly 

(Clark, Kirisci, & Tarter, 1998) despite a shorter duration of problematic drinking 

behaviors. Furthermore, alcohol dependent teens exhibit similar rates of relapse following 

treatment to that of adults (I. Grant et al., 2003). Importantly, the likelihood of becoming 

dependent on alcohol decreases by 14% with every year that alcohol initiation is 

postponed (B. F. Grant, Stinson, & Harford, 2001). Therefore, the ability to predict at-

risk youth to target prevention strategies is of substantial value.  

Regardless of sex, adolescents who complete puberty at an earlier age than their 

peers are more likely to initiate alcohol, however, early pubertal development is a better 

predictor of alcohol dependence in in females (Costello, 2007). In a path analysis 

attempting to uncover the mediators of problematic drinking later in life, authors found 

that the effect of gender on problematic drinking was mediated by proactive parenting 

style, such that greater proactive parenting styles on female offspring reduced the 

likelihood of problematic drinking later in life (Hawkins et al., 1997). The role of 

parental influence on drug use will be considered again in a later section. 

Beyond alcohol use, tobacco use is very common in adolescence, although rates 

have declined over time. Nearly 20% of 10th graders report ever smoking cigarettes in 

2015, compared to nearly 40% in 2005 (Johnston et al., 2011). Nonetheless, tobacco is 

often used in tandem with other drugs. In one study of teens who entered substance abuse 

programs, nearly 85% report comorbid nicotine dependence (Stewart & Brown, 1995). 

Likewise, alcohol and tobacco use tend to be highly correlated with cannabis use, in 

addition to being highly correlated with each other (Moss, Chen, & Yi, 2014).  
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1.4.1 Parental Influence 

Parents may indirectly contribute to the likelihood of their offspring using 

substances. Indeed, the risk of an offspring abusing or becoming dependent on alcohol is 

strongly increased when raised by parents with alcohol abuse or dependency problems 

(Lieb et al., 2002). Likewise, the risk of becoming a tobacco smoker is nearly doubled 

when raised by a parent who smokes (Patton et al., 1998), a finding that has been 

replicated and reportedly magnified by maternal smoking (Melchior et al., 2010). Similar 

patterns of parent-offspring drug transmission regarding cannabis use have also been 

identified (Duncan et al., 1995; Kerr, Tiberio, & Capaldi, 2015). While many factors may 

contribute to parent-offspring transmission of drug use, possible mechanisms include 

shared neurobiological predispositions, or parental mimicry. 

Parenting style has also been correlated with adolescent behaviors. Typically, an 

inverse relationship between parental monitoring and drug use is present, such that 

decreased parental monitoring may facilitate drug use in adolescence. One study suggest 

this relationship is most pronounced when parental monitoring is decreased prior to or in 

early adolescence, as low levels of monitoring at age 11 was most strongly correlated 

with later drug use (Chilcoat & Anthony, 1996). A similar study corroborated these 

findings and specifically identified parental knowledge of their adolescent’s location on 

Saturday nights as the strongest predictor of adolescent drug use levels (Ledoux et al., 

2002). Given that adolescence is also marked by an increase in perceived parent-

offspring conflict (Palermo, 2014), stressed relationships between parent and adolescent 

could have behavioral health implications. 
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1.5 Cannabis Use and Adolescence 

Longitudinal studies of adolescent development suggest cannabis use is typically 

initiated between the ages of 16 to 18 (Chen & Kandel, 1995). In terms of the availability 

of the drug, 10th graders in 2015 reported that cannabis was just as easy to obtain as 

cigarettes (Johnston et al., 2011). According to a national survey, current rates of 

cannabis use among adolescents are high, with a quarter of all 10th graders, and over a 

third of all 12th graders in the US reporting trying cannabis at least once (2014). Chronic 

use also appears to be growing; in 2008, 5.5% of users aged 12 and older reported near 

daily use while in 2013 this rate had risen to 8.1% (2014). These increasing rates of use 

are consequential in that about 10% of those who try cannabis will become weekly users 

in adulthood (Hall & Pacula, 2003).  

 

1.5.1. Cognition 

Cannabis use is frequently described as compromising cognitive abilities, at least 

under acute intoxication. Impairments in attention, memory, and processing speeds are 

commonly reported in the literature. A meta-analysis of the neurocognitive findings in 

adult cannabis users suggests impairments do not persist after prolonged abstinence (I. 

Grant et al., 2003). However, the extent to which these problems abate with abstinence 

for adolescent users remains unclear.  

In studies of cognition in adolescent cannabis users, findings are relatively 

inconclusive, with more evidence pointing to cognitive deficits in teens reporting heavy 

or earlier onset of use. These cognitive deficits are usually with regard to sustained 

attention and working memory (Crane et al., 2015; Harvey et al., 2007). Research by 
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Tapert and colleagues examined cognitive development in relation to cannabis use in a 

longitudinal study of teens. Early reports found a decrease in composite attention scores 

with cannabis use (Tapert et al., 2002). These findings were corroborated later and 

suggest that chronic cannabis use throughout the course of adolescence is associated with 

a decrease in complex attention, slow processing speeds, and reduced verbal learning and 

sequencing skills (Jacobus & Tapert, 2014; Medina et al., 2007). 

In terms of the lasting effects, Schwartz and colleagues report short-term memory 

impairments persist at least six-weeks after monitored abstinence (Schwartz et al., 1989). 

However, in a prospective study by Fried, Gary, & Watkins, researchers analyzed 

cognitive performance in current users, former users, and never-using controls, while 

accounting for performance levels prior to drug use. Investigators assessed cognitive 

ability across many domains (IQs, memory, processing speed, attention) using an 

extensive battery. Findings indicated that current cannabis users performed worse than 

the non-users across all domains. However, former users had performance levels similar 

to never-users despite initiating use earlier and consuming more of the drug than the 

current users. It will be valuable to see if these effects replicate in larger representative 

samples as this study contained n=16 former users who also had the highest 

socioeconomic status (SES) compared to the two comparison groups (Fried, Watkinson, 

& Gray, 2005). Taken together, it is challenging to compare findings across investigators 

as the use of different tasks and participant confounders precludes replication or 

invalidation.  

Lastly, in relation to cognitive ability, Lane and colleagues assessed motivation in 

adolescent cannabis users using a reward task that allowed subjects to switch task 
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difficulties for smaller monetary reinforcement. Heavy users switched task difficulties at 

an earlier rate than their non-using peers, and earned a greater proportion of their 

earnings from the smaller reinforcement level. Interestingly, this proportion of earnings 

was correlated with the amount of cannabinoids present in participant urine samples on 

the day of testing (Lane et al., 2005). This finding was also displayed in adults tested 

under acute intoxication of smoking cannabis compared to placebo (Lane & Cherek, 

2002). Thus, cannabis use is associated with impaired motivation and sensitivity to 

reward, at least under acute and lingering effects. Authors conclude that cannabis use 

might disrupt healthy motivational processes that coordinate favorable behavioral 

adaptations (Lane et al., 2005).  

As exemplified by Fried, Gary, & Watkins, studies failing to find a correlation 

between cannabis use and cognitive impairment in adolescence are evident in the 

literature (Tait, Mackinnon, & Christensen, 2011; Takagi et al., 2011; Teichner et al., 

2000). However, they are poorly represented and overshadowed by investigators 

publishing in support of the hypothesis that cannabis use compromises cognition. 

Nonetheless, functional MRI (fMRI) studies of cannabis use in adolescence, though 

sparse, typically do not find between group behavioral task differences but report brain 

differences. Therefore, cannabis use in adolescence might better be characterized by 

neuroimaging modalities.   

 

1.5.2. Genes  

To date, there have been two genome-wide association studies (GWAS) of 

cannabis use dependence. In the most recent GWAS study, researchers uncovered three 



 

11 
 
 
 

single nucleotide polymorphisms (SNPs) as having an association with cannabis use 

dependence (Sherva et al., 2016). One SNP was found on an antisense transcription 

region (RP11-206M11.7, rs143244591) whose function is unknown. The other SNPs 

were found on a gene coding for a protein that regulates extracellular calcium 

concentrations (SLC35G1, rs146091982), and a gene coding for a protein that regulates 

neuronal inflammation (CSMD1, rs77378271). Thus highlighting the potential of 

identifying predictors of cannabis use from brain and genetic features.  

In the earlier GWAS study, none of the SNPs identified passed significance levels 

appropriate for GWAS studies (p < 1.0 x 10-8). Nonetheless, researchers reported a small 

collection of marginally significant SNPs on intron and non-genic regions on the genome, 

for which the authors were unable to provide a mechanistic interpretation for their 

contribution to cannabis use (Agrawal et al., 2011).  However, the authors offered a 

review of candidate-gene analyses and suggest genes coding for neurotransmitter (e.g., 

cannabinoid, opioid, dopamine) receptors, and relevant neurotransmitter enzymes (e.g., 

fatty-acid amide hydrolase, FAAH) might be better suited to uncover genetic associations 

with cannabis use (Agrawal & Lynskey, 2009). 

 Considering these studies, a GWAS approach might not yet yield the most clear 

or robust findings. The SNPs uncovered in these two studies seem to be indirectly related 

to cannabinoid pharmacology or drug-seeking behaviors. Therefore, as suggested by the 

authors, a candidate-gene approach might yield more robust findings until more 

individuals with cannabis use disorders become available in GWAS samples (Agrawal & 

Lynskey, 2009).  
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1.6 Adolescent Brain Development 

With the advent of in-vivo human neuroimaging, great strides have been made to 

paint a portrait of the human brain as it develops into the adult form. During this period, 

the brain undergoes a series of developments including global and focal volume changes, 

myelination, synaptic pruning, and receptor proliferation until the stable adult form is 

reached in early adulthood (Spear, 2000, 2013). Throughout this process, the neural 

architecture supporting cognitive, motor, and sensory functions reach maturity. The 

studies to be covered in this section illuminate these structural and functional 

developmental processes in light of the behavioral characteristics displayed in 

adolescence. 

 

1.6.1 Structural Development 

From gestation to late childhood, the human brain generates an excess of neurons 

and affiliated synaptic connections in order to supply individuals with an overabundance 

of neural resources (Huttenlocher & Dabholkar, 1997; Oppenheim, 1991). Synaptic 

pruning is a major aspect of adolescent neurodevelopment. Pruning results in 

considerable gray matter volume loss as a healthy means to promote functional neuronal 

efficiency. During this process, the important neural connections established from prior 

experience and learning are preserved, while redundant connections are terminated. Early 

inquiry into adolescent brain development using non-human primate models postulated 

that thousands of synapses per second are pruned during the peak of adolescent gray 

matter development, with some regions resulting in the loss of nearly half the connections 

formed prior to adolescence (Rakic, Bourgeois, & Goldman-Rakic, 1994).  
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In addition to synaptic pruning, neuronal myelination, the process by which 

neurons become coated in fatty projections from oligodendrocytes, also proliferates 

during adolescence. The myelin sheath expedites signal propagation during synaptic 

transmission thus allowing distal regions of the brain to communicate more rapidly. In 

particular, Paus and colleagues report that adolescent brain development is specifically 

characterized by a marked increase in the myelination of the corticospinal tracts 

supporting voluntary movements, and the frontotemporal tracts supporting language 

(Paus, 1999). 

Pruning and myelination processes are especially active in the prefrontal cortex 

(PFC) (Gogtay et al., 2004; Whitford et al., 2007), medial temporal lobe structures, and 

are orchestrated in part by the endogenous cannabinoid system (Bossong & Niesink, 

2010). Studies have shown that exogenous cannabinoids can interfere with the 

endogenous system (Hoffman et al., 2007; Mato & Pazos, 2004). Given the natural 

maturation occurring in the brain during adolescence and the propensity towards cannabis 

use, the consumption of exogenous cannabinoids during adolescence may disrupt typical 

neurodevelopment within the cognitive and emotional neural systems. Hence, it is crucial 

to investigate the impact of cannabis use on these brain systems. Research on this topic 

will be considered in later sections. 

In light of these structural changes, males and females exhibit different 

neurodevelopmental features. Generally, the most commonly reported sex-difference is 

the finding that male brains are between 9-14% larger than female brains (Paus, 2010), 

with relatively inconsistent findings for focal volume differences by sex. Pioneering work 

by Giedd and colleagues have uncovered divergent neural developmental trajectories for 
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each sex (Giedd et al., 1999). Total brain volume and total gray matter volume (but not 

white matter) exhibit an inverted U shape. Volumes increase throughout childhood and 

then reaches an inflection point in early adolescence triggering the decline of brain 

volume, most likely driven by pruning processes. On average, females reach peak total 

brain volume at age 10.5 years while males reach peak total brain volume at age 14.5 

years. Research from Lenroot and colleagues suggest that white matter volume increases 

steadily throughout the lifespan, but at a much faster rate in adolescence for males than 

females (Lenroot et al., 2007). In a related study of white matter development by Perrin 

and colleagues, authors postulate white matter sex-differences may be due to axonal 

diameter, rather than myelination, as testosterone upregulates expression of microtubules 

within the axon (Perrin et al., 2008). 

 

1.6.2 Functional Development 

While structural maturity can be tracked via volumetric measurements following 

developmental trajectories, it is challenging to assert functional maturity from 

neuroimaging studies. Some argue that augmented blood oxygenated level dependent 

(BOLD) signal intensity indicates functional immaturity as the neural resources are taxed 

to a greater extent, whereas others argue that increased activation is a sign of neural 

specialization. Perhaps more important than signal intensity, Durston and colleagues 

argue that spatial-extent of activity might be a better characteristic of functional maturity 

(Durston et al., 2006). Compared to immature diffuse activity, organized and predictable 

focal activation networks may indicate more efficient processing. These networks are 

established as a result of neuronal maturation and the strengthening of relevant 
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connections via long-term potentiation. As such, spatial-extent is also considered an 

important way to characterize functional between-group differences.  

During childhood and throughout adolescence, brain activation networks develop 

into organized distributed processes favoring sparse “small world” network structures 

(meaning spatially distant regions of the brain are connected by a small number of 

connections). In a study of resting state network structures by Fair and colleagues, a-

priori defined regions of interest supporting the default mode network were studied at 

two stages of development. Findings indicated that five of the thirteen a-priori regions 

modeled as network nodes exhibited weak interconnectivity at age 7, were then followed 

by a positive shift to strong interconnectivity by age 21. For instance, correlated activity 

between a node in the medial prefrontal cortex and a node in the lateral parietal cortex 

was weakly evident in children but later exhibit robust correlated activity in adults. This 

example of functional integration among seemingly distant cortical regions is a hallmark 

of functional development and reflects mature functional efficiency grounded in the 

changes to the structural architecture (Churchwell, Lopez-Larson, & Yurgelun-Todd, 

2010; Giedd et al., 1999; Lenroot et al., 2007; Perrin et al., 2008). 

 

1.6.3 Brain Development and Adolescent Behavior 

Given the unique profile of adolescent behavior, investigators postulate that there 

might be neural correlates supporting these behavioral characteristics. For example, the 

increase in reward-seeking behaviors described earlier may be correlated with 

neurodevelopmental changes. The current framework of adolescent neurodevelopment in 

relation to substance use behaviors postulates that a divergent rate of maturation between 
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the subcortical and prefrontal regions of the brain might drive reward-seeking behaviors. 

Previous studies of resting-state functional connectivity between the ventral striatum and 

medial prefrontal cortex (mPFC) suggest connectivity differs by age. Children and 

adolescents exhibit positively correlated activity between the ventral striatum and mPFC 

regions, whereas adults exhibit a developmental switch to anti-correlated activity (Fareri 

et al., 2015). This effect is also evident in the connectivity between the amygdala and 

mPFC (Gee et al., 2013). As such, anti-correlated activity is interpreted as a sign of top-

down cognitive control mechanisms whereby the prefrontal cortex down-regulates 

subcortical activity.  

Specifically, the bottom-up mesocortical and mesostriatal projections of the 

ventral tegmental area achieve functional maturity prior to opposing top-down prefrontal 

projections. Animal models indicated mesocortical dopamine projections to the PFC 

reach high levels during adolescence (Kalsbeek et al., 1988; Leslie et al., 1991; 

Rosenberg & Lewis, 1994). Animal models have also identified the three major 

dopamine receptor subtypes, D1, D2, and D4, reach peak concentrations in the striatum 

during adolescence, whereas the concentrations in cortical regions continued to rise 

throughout adulthood (Tarazi & Baldessarini, 2000). While more research is needed, 

functional MRI studies of reward processing have found heightened BOLD signals in the 

striatum and ventromedial prefrontal cortex (vmPFC) specific to adolescents during 

receipt of reward (Cohen et al., 2010; Leijenhorst et al., 2010). Interestingly, another 

study found a positive correlation between this signal and a self-report measure of risk-

taking behaviors (Galvan et al., 2007). In considering these finding as functional 
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significance of a primed dopamine system in adolescence, the striatum may potentiate 

teenage reward-seeking behaviors. 

 

1.6.4 Structural Brain Correlates of Adolescent Drug Use  

In addition to studying the neural correlates of adolescent behavior, there has been 

a considerable amount of research on the neural correlates of drug use. In terms of 

structural MRI findings, an early neuroimaging study of adolescent cannabis users failed 

to find any gross anatomical differences between users and controls (Block et al., 2000), 

however, these findings were underpowered relative to the more recent reports.  

The cerebellum and medial temporal lobe structures are especially interesting to 

study in the context of cannabis use, given the high amount of primary cannabinoid 

receptor (CB1) densities in these regions (Glass, Dragunow, & Faull, 1997), along with 

their contribution to cognitive and appetitive behavioral processes. Ashtari and 

colleagues identified bilateral hippocampal volume reductions in adolescent cannabis 

users compared to controls when scanned after 1 month of monitored abstinence. 

Furthermore, self-reported levels of use was inversely correlated with the right 

hippocampus, suggesting a dose response in volume reduction (Ashtari et al., 2011). 

Similarly, Yücel and colleagues also report gray matter volume (GMV) reductions in the 

bilateral amygdala (Yücel et al., 2008). Lastly, in a study of young adults, GMV was 

increased in the anterior cerebellum of heavy cannabis users, whereas a negative 

correlation between dependency scores and right amygdala GMV, and, weekly cannabis 

use and bilateral hippocampal GMV was identified (Cousijn et al., 2012).  All authors 
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interpret their finding in the context of the CB1 densities in these medial temporal lobe 

structures.  

As these studies were cross-sectional by design, it is difficult to determine the 

causal relationship between cannabis use and structural changes in humans. However, a 

longitudinal study by Cheetham and colleagues suggests some volumetric effects might 

precede use. Researchers found gray matter reduction in the orbital frontal region at age 

12 in those subjects who went on to use cannabis at age 16 (Cheetham et al., 2012).  

These findings are intriguing as work by Volkow & Fowler report hypoactivity in orbital 

frontal regions using fMRI and PET studies of individuals with drug dependence 

(Volkow & Fowler, 2000). Nonetheless, given the lack of subcortical findings in the 

Cheetham study, it might be the case that the medial temporal lobe structures are most 

sensitive to exogenous cannabinoids.  

In light of these studies, the majority of these findings point to a correlation 

between volume reduction and cannabis use. Authors provide mechanistic interpretations 

using two different strategies. First, if volumetric differences precede drug use as 

suggested by Cheetham et al., this might signal evidence of accelerated development as 

gray matter pruning completed sooner than their peers. Alternatively, if volumetric 

effects are a consequence of use, then cannabinoids might have neurotoxic effects. 

Indeed, in a study of cultured hippocampal neurons, researchers observed shrinkage of 

cell bodies and nuclei, as well as DNA strand breaks induced by delta-9-

trahydrocannabinol (THC). However, the authors state their findings may not replicate in 

human cells in situ (Chan et al., 1998).  
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1.6.5. Functional Brain Correlates of Adolescent Drug Use  

Functional neuroimaging inquiries into the neural correlates of adolescent 

cannabis use are sparse. One study conducted by the author of this thesis probed for 

differences in reactivity to social threats between age 14 cannabis users vs. matched 

controls. Findings indicated the cannabis users exhibited greater BOLD signals from the 

bilateral amygdala during the viewing of angry faces and thus might characterize teen 

cannabis users as hyper-sensitive to signals of threat (Spechler et al., 2015).  

In an interesting fMRI study of insular activity, Migliorini and colleagues 

pleasantly stimulated regions on the palm and forearm thought to send afferents to the 

insula. Investigators had a-priori interest in striatal and insular activity as previous 

literature suggests interoceptive dysregulation might promote the initiation and 

maintenance of drug-seeking behaviors (Naqvi & Bechara, 2010). In comparison to 

adolescents with alcohol and/or cannabis use disorders to matched controls, findings 

indicated that drug users exhibit greater activation in the left anterior insula and lentiform 

nucleus during soft touch stimulation. However, self-report measures of pleasantness 

were inversely correlated with anterior insula BOLD activity, such that lower ratings of 

pleasantness was coupled to higher insular BOLD activation, a finding that was 

positively correlated in controls. Authors interpret this disconnect between somatic self-

report and neural activation as a sign of body prediction error, whereby the individual 

misdiagnoses internal states and makes maladaptive homeostatic behavioral 

modifications through drug consuming and addictive behaviors (Koob & Le Moal, 2008; 

Paulus, Tapert, & Schulteis, 2009). 
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Work by Tapert and colleagues studied response inhibition in a group of teens 

with and without cannabis use histories after 1 month of monitored abstinence. Despite 

not observing behavioral task differences, greater diffuse cortical activations during 

successful inhibition trials were evident in the cannabis using group. In additional studies 

by the same lab, findings follow similar patterns despite using spatial working memory, 

and verbal learning tasks. Teen cannabis users failed to exhibit differences on cognitive 

task performance after one month abstinence, and were instead better characterized by 

diffuse functional brain activations (Norman & Shallice, 1985; Padula, Schweinsburg, & 

Tapert, 2007). Similar effects have also been reported from groups outside of the Tapert 

lab (Abdullaev et al., 2010; Jager et al., 2010), including one study identifying greater 

diffuse activity during a verbal working memory task correlating with earlier age of 

cannabis initiation (Becker et al., 2010). The consistency of these effects all offer support 

in the interpretation that adolescent cannabis users may have compromised healthy 

synaptic pruning during development, thus resulting in inefficient processing capabilities. 

However, these interpretations might be flawed given the cross-sectional study design. 

 

1.7 Predictive Modeling of Drug Use 

Considering that the majority of work presented above were cross-sectional 

studies, it is imperative to conduct more research in order to disentangle cause from 

effect. Longitudinal studies are very useful in identifying predictive features and 

consequences of drug use, however, these studies are often challenging to complete, and 

the analyses are prone to error in methodology and interpretation. Nonetheless, the ability 

to predict later drug use would inform targeted clinical interventions designed to curb 
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initiation, and subsequently minimize or eliminate negative consequences of use. 

Therefore, predictive modeling of drug use needs to be conducted using a set of best 

practices in order to have a meaningful impact. In the remaining sections, we will 

consider predictive modeling procedures in relation to substance abuse research.  

 

1.7.1. Predictive Modeling Procedures 

As outlined by Whelan & Garavan, predictive modeling can be a challenging 

pursuit, especially in the field of psychiatric neuroimaging (Whelan & Garavan, 2014). 

When using neuroimaging to predict a phenotype, the number of independent variables 

(hundreds of regions of interest (ROIs) or thousands of voxels) often exceeds the number 

of sample observations, resulting in predictors p >> n observations. In this scenario, when 

estimating a typical multiple-regression model (i.e., ordinary least squares for linear 

regression; maximum likelihood for logistic regression), model estimation fails to 

converge on a single unique solution and results in a perfect fit to the data. In general, 

model fit statistics increase as the number of estimated parameters increases, and/or the 

number of subjects decreases. In these scenarios, the researcher might be driven to 

overoptimistic interpretations and beliefs concerning their results (Whelan & Garavan, 

2014).  

Importantly, the ultimate goal for predictive modeling aims to yield a model that 

will make accurate predictions about novel observations. However, a model estimated on 

a dataset where p > n will overfit to the observations and consequently poorly predict the 

outcome of a novel or out-of-sample observation.  To overcome these challenges, we will 
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consider two proposed remedies that can be used in parallel— cross-validation, and 

regularization.  

Cross-validation is a procedure used to partition the original dataset into 

subsamples of observations. A model is then estimated on one subsample of the dataset 

(“training data”), and then evaluated using the observations in the subsample not used 

(“test data”) during model estimation. Thus, the researcher is able to evaluate how well 

their predictive model generalizes to out of sample observations. Generalizability may be 

quantified using typical model performance statistics, like R2 for linear models or the area 

under the curve of the receiver-operating characteristic (AUC) from logistic models, 

returned from evaluating the model on the test data.  For these two statistics, values 

closer to 1 reflect superior performance.  

One specific form of cross-validation is k-fold cross-validation, where k = number 

of partitions (or, “folds) of the original dataset. Each fold contains an equal number of 

unique samples from the original dataset (i.e., When k = 10 and N=100, each kth fold will 

have n=10 observations). k-fold cross-validation then becomes an iterative process 

whereby a single fold is set aside as the test sample (“test fold”), and a model is estimated 

on the remaining k-1 folds. The model estimated on the k-1 folds is then evaluated on the 

set aside test fold, thereby insuring the independence of the final test sample. This 

process is repeated k times, resulting in k final models. In doing so, each observation is 

tested exactly once, and used in model estimation k-1 times.  

Regularization is statistical technique used during model estimation that attempts 

to minimize the amount of overfit to the data. Similarly to model estimation using 

ordinary least squares, regularized regression techniques seek to minimize the error 
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between the predicted and observed outcome while also minimizing the magnitude of the 

regression coefficients. Prior to regularization, it is important that all independent 

variables are standardized. Here, two specific forms of regularization will be considered, 

LASSO (Least Absolute Shrinkage and Selector Operator, (Tibshirani, 1996)) regression, 

and Ridge regression (Hoerl & Kennard, 1970).  

LASSO regression rejects complex models in favor of parsimonious models by 

minimizing the sum of the absolute values of the coefficients during model fit. In doing 

so, the LASSO estimator solves for the 𝓵𝟏-norm of the design matrix. During LASSO 

estimation, predictors that are weakly correlated with the outcome measure are assigned a 

regression coefficient equal to zero, effectively removing them from the final model. As 

such, the predictors that remain in the model are potentially more important to the 

outcome measure than the predictors set to zero. Therefore, LASSO regression is one 

option available to researchers when p >> n as the estimation procedure performs feature 

selection while fitting a model.  

Ridge regression seeks to resolve problems arising from multicolinearity among 

predictor variables. The Ridge estimator minimizes the sum of the squared values of the 

regression coefficients during model fit. In doing so, the Ridge estimator solves for the 

𝓵𝟐-norm of the design matrix. All predictors are estimated but tend to be assigned smaller 

coefficients to reduce their fit. As such, correlated predictor variables are given similar 

regression coefficients and allowed to coexist in the model. Therefore, Ridge regression 

might be especially valuable in modeling inherently correlated predictor variables 

common to neuroimaging and psychological research (e.g., neighboring or functionally 

co-activating brain data; alcohol and tobacco use levels).   
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In cases where p >> n, and modeling correlated variables might be of theoretical 

interest, a hybrid approach balancing LASSO and Ridge regression, termed “elastic-net” 

regularization (Zou & Hastie, 2005), can be used. In elastic-net regularization, LASSO 

and Ridge are combined using a mixing parameter, α that balances the contribution of the 

LASSO to Ridge estimation methods. In addition to the α parameter, a second parameter, 

λ controls the magnitude of the shrinkage applied to the coefficients.  

During elastic-net model estimation, the α and the λ values can be tuned within a 

cross-validation procedure in order to identify the optimal set of parameter values that 

minimize the test error returned from evaluating model fit on an independent sample of 

observations. These tuning parameters are always non-negative values, such that 0 ≤ α ≤ 

1 and 0 ≤ λ. It can be shown that when α approaches 1, the LASSO estimator is favored. 

Likewise, when α approaches 0, the Ridge estimator is favored. Intermediate values of α 

provide an interpolation between the two estimation procedures.  Thus, given N 

observation pairs (xi, yi) the elastic-net regularization problem for fitting regression 

coefficients, β to a linear model is solved from the following Equation 1.1. 

Equation 1.1 

𝐦𝐢𝐧
𝜷𝟎,𝜷

𝟏
𝟐𝑵 𝒚𝒊 − 𝜷𝟎 − 𝒙𝒊𝑻𝜷

𝟐 + 𝝀𝑷𝜶(𝜷)
𝑵

𝒊!𝟏

 

where 

Equation 1.2 

𝑷𝜶 𝜷 =
𝟏− 𝜶
𝟐 𝜷 𝓵𝟐

𝟐 + 𝜶 𝜷 𝓵𝟏 =
(𝟏− 𝜶)

𝟐 𝜷𝒋𝟐 + 𝜶 𝜷𝒋

𝒑

𝒋!𝟏
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1.7.2. Predictive Modeling of Binge-Drinking by Age 16 

In a study related to the empirical work described later in this thesis, Whelan and 

colleagues implemented many of the procedures described above to classify adolescent 

binge-drinkers at age 14, and, predict binge-drinking by age 16 from data collected age 

14. In applying these methods to a wealth of neuroimaging, psychometric, and candidate 

SNP data, findings indicated a high degree of predictive modeling performance 

(classification AUC=0.90; prediction AUC=0.75). Specifically, the most reliable features 

that both classified and predicted adolescent binge-drinking were more frequent sexual 

life experiences and similar personality traits including elevated novelty-seeking, 

disorderly, and extravagant personalities, and diminished conscientiousness traits. The 

reliable brain features contributing to classification of age 14 binge drinking included 

reduced GMV of the vmPFC, and reduced BOLD activity in key subcortical regions 

including the left putamen and hippocampus during reward anticipation, and right 

hippocampus during reward outcome. The reliable brain features contributing to age 16 

prediction involved reduced BOLD activity in pre- and post-central gyri during failed 

response inhibitions. Interestingly, classification was driven by blunted activity in regions 

serving appetitive processing during a reward task, while prediction was driven by 

blunted activity in a motor area during failed response inhibitions. Indeed, this study 

inspired the theory and methodological undertakings of the empirical work to be 

presented in the following chapter.  
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Chapter 2: Predicting Cannabis Use in Adolescent Males and Females from  
High-dimensional Biobehavioral Data 

 
 

2.1 Introduction 

Studies suggest cannabis use during adolescence is associated with a range of 

adversity in adulthood including cannabis use dependence (Hall & Degenhardt, 2009), 

polydrug use (Secades-Villa et al., 2015), cognitive deficits (Meier et al., 2012; Schuster 

et al., 2016), compromised physical (Kalant, 2004) and mental health (Degenhardt et al., 

2013; Kedzior & Laeber, 2014; Malone, Hill, & Rubino, 2010), and diminished life 

attainment goals (Fergusson & Boden, 2008). These findings are supported by animal 

models linking cannabis exposure during adolescence with detrimental outcomes in 

adulthood (O’Shea, 2004; Quinn et al., 2008). However, in humans, it is notoriously 

difficult to assert a causal role for cannabis in subsequent outcomes. As drug users self-

select into use, any negative outcomes arising from use could be related to a number of 

factors that are confounded with the choice to initiate and continue cannabis use (Jackson 

et al., 2016).   

As indicated from the 2013 National Survey on Drug Use and Health, rates of 

cannabis use in adolescence are high as nearly 25% of all 10th graders now report trying 

the drug (2014). In parallel, from 2005 to 2010, rates of cannabis-related emergency 

room visits has increased 54% in males and 42% in females aged 15-17 years (2014). 

Moreover, beliefs concerning the risk of use are declining (Johnston et al., 2011) despite 

the considerable increase in drug potency compared to previous decades (ElSohly et al., 

2016). These findings are a source of concern as in vitro models indicate that delta-9-

tetrahydrocannabinol (THC), the key psychoactive compound of cannabis, could be more 
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toxic in adolescent than in adult tissue (Pope et al., 2003; Quinn et al., 2008; Renard et 

al., 2016; Rubino et al., 2015; Schneider, 2008), and studies in humans suggest that early 

initiation of cannabis is associated with deleterious outcomes compared to delayed onset 

users (Brook et al., 2011; Coffey & Patton, 2016).  

Longitudinal studies of adolescent development suggest cannabis use is typically 

initiated between the ages of 16-18 (Chen & Kandel, 1995). Thus, adolescence might be 

a developmental phase during which initiation can be best predicted and, consequently, 

might yield occasions for preventative interventions. Indeed, characterizing the 

individuals who are most likely to initiate drug use can give insights into the risk factors 

for use and thereby inform etiological mechanisms.  With recreational cannabis 

legalization efforts sweeping the United States and abroad, there is an added imperative 

to identify which adolescents are most at risk for initiation of use in order to curb any 

consequences of adolescent exposure.  

Here, we seek to uncover risk profiles that predict the initiation of cannabis use in 

adolescence. Participants (N=1,389; see table 2.1.1 for demographics) from the IMAGEN 

study (Schumann et al., 2010) were characterized across three domains— psychometric, 

genetic (single nucleotide polymorphisms, SNPs), and brain data (see table 2.1.2 for 

summary). Data were submitted to a retrospective longitudinal analysis such that the 

outcome measure, cannabis use by age 16, was predicted from data across all three 

domains measured at age 14 prior to any cannabis exposure. Cannabis use by age 16 was 

determined from a self-reported drug use questionnaire. Participants who endorsed using 

cannabis greater than or equal to six times by age 16 were assigned to the outcome group, 

as these individuals have used cannabis beyond experimentation levels. All participants 
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reported no cannabis use at age 14 and those who also endorsed no cannabis use by age 

16 were assigned to the comparison group. 

 

2.1.1. Participant Demographics 

 

Table 2.1.1: PDS: Puberty Development Scale (Petersen et al., 1988). ESPAD: European 
School Survey Project on Alcohol and Drugs (Hibell et al., 1997). SES: Socioeconomic 
Status. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Measure 

Groups 

Males Females 

Cannabis Use 
by Age 16 

(n=110) 

Comparison 
Group 
(n=538) 

p 
Cannabis Use 

by Age 16 
(n=63) 

Comparison 
Group 
(n=678) 

p 

Age (M,SD) 14.49, 0.50 14.52, 0.39 .511 14.50, 0.53 14.54, 0.42 .518 

Handedness (L,R) 11, 99 66, 472 .503 7, 56 60, 618 .549 

PDS (M,SD) 2.63, 0.48 2.54 , 0.55 .114 3.23, 0.35 3.17, 0.44 .266 

Perceptual IQ 
(M,SD) 

108.30, 13.89 108.18, 14.56 .938 106.56, 13.31 107.77, 13.23 .487 

Verbal IQ (M,SD) 115.45, 11.97 112.07, 13.14 .013 111.75, 11.86 109.22, 13.80 .159 

SES (M,SD) 18.92, 3.92 17.88, 3.82 .010 17.60, 4.0 17.88, 3.68 .567 
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2.1.2 Summary of Data 

 
Table 2.1.2: Summary of data used in predictive modeling. A related analysis including 
psychopathology measures was conducted but did not improve predictive performance. 
See supplemental text for details regarding each measure. Site was modeled in the 
analysis and yielded Paris (data not shown) as a significant predictor due to the higher 
base rate of age 16 cannabis use for both sexes. 
 
 

Given the challenges of predictive modeling in psychiatric neuroimaging (Whelan 

& Garavan, 2014), we utilize practices from the field of machine learning to ensure our 

predictive modeling efforts guard against overfitting, generalize to out-of-sample 

observations, and select the most predictive variables from a large feature space (p = 

2,413). Thus, 10-fold cross-validated logistic regression with nested elastic-net 

regularization (Zou & Hastie, 2005) was implemented. Predictive model performance 

Domain Measures Data points 

 
 
 

Psychometric 

•  Demographics  
•  Cognitive assessments  
•  Personality assessment 
•  Life-events questionnaires 
•  Baseline cigarette & alcohol use 
•  Parent personality and drug use 

•  80 measures 

 
Genetic 

•  A-priori SNPs 
•  Cannabinoid Receptor 
•  Catecholamine Receptors 
•  Opioid Receptors 

•  108 SNPs 

Structural 
Neuroimaging 

•  Total GMV 
•  Gray-Matter Volume ROIs 

•  1 total GMV 
•  278 GMV ROIs 

 
Functional 

Neuroimaging 

•  Reward Processing Task  
•  (2 Contrasts) 

•  Stop Signal Task  
•  (2 Contrasts) 

•  Face Processing Task  
•  (3 Contrasts) 

•  1946 ROIs  
•  278 per contrast 

Predictors per subject    2413 
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was assessed using the area under the receiver-operating characteristic curve (“ROC 

AUC”) returned when evaluating the estimated training models on the set-aside test-folds 

during the cross-validation scheme. As neuroimaging and psychometric profiles of 

adolescents exhibit clear sex differences, these analyses were executed separately for 

each sex. Hence, we report sex-specific predictive models of the initiation of cannabis 

use in adolescence.  

 

2.2 Predictive Modeling Performance 

 The male-specific analysis returned a mean ROC AUC=0.71 (σ =.02, p < 1.92 x  

10-12 ; see figure 2.2.1), while the female-specific analysis returned a mean ROC 

AUC=0.81 (σ =.02, p < 1.99 x 10-16 ; see figure 2.2.1). The superior prediction for 

females is notable given that they were fewer in number and lighter in use compared to 

males (Tables 2.1.1 & A1.4). To assess the impact that the differences in sample size and 

use severity might have on modeling, an analysis conducted on a smaller number of 

males, matched on sample size and use levels to the female cohort, was shown to worsen 

the prediction for males (mean ΔAUC= -.08 relative to full male sample).  Thus, the 

superior prediction of cannabis use in the female sample indicates that females exhibit a 

more distinct profile at age 14 relative to their non-using peers.  
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2.2.1 ROC Curves by Sex 

 
Figure 2.2.1: Visualizing the performance of the predictive model on 

independent observations. Representative of the mean AUC across 100 runs for each sex. 

. 

 

2.3 Predictive Features 

 The analyses identified seven psychometric predictors of cannabis use by age 16 

common to both sexes including greater lifetime alcohol and cigarette use by age 14, 

parental lifetime cannabis use, greater novelty-seeking personality and the disorderliness 

personality subscale (Cloninger, 1999), and, more frequent sexual and distressful life 

events (See figure 2.3.1 & 2.3.2). These seven shared psychometric predictors replicate 

previous findings, as alcohol and nicotine use are well-established predictors of cannabis 

use (Hall & Pacula, 2003; Siegel et al., 2014), as are stressful (Sinha, 2008) and sexual 

(Cornelius et al., 2007) life events, parental transmission of drug use (Brook et al., 2001; 

Kandel, Kessler, & Margulies, 1978; Kosty et al., 2015), and novelty-seeking personality 

and the disorderliness subscale (Hale et al., 2003; Mccormick et al., 1998; Sher & Trull, 

Males:    
AUC = 0.71,  p < 1.92 x 10-12 
 

Females:    
AUC = 0.81,  p < 1.99 x 10-16 
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1994). Taken together, this psychometric profile suggests that behaviorally disinhibited 

lifestyles precedes cannabis use as these teens exhibit more risky and novelty-seeking 

behaviors by age 14 compared to their non-using peers. 

2.3.1 Shared Psychometric Predictors of Cannabis Use by Age 16: Drug Use 
Measures 

 

Figure 2.3.1: All measures from the ESPAD (Hibell et al., 1997). Drug use measured on 
an ordinal scale (0=0, 1=1-2x, 2=3-5x, 3=6-9x). Green bars represent participants (or the 
parents of the participants) using cannabis at age 16, blue bars represent non-using 
participants (or parents). Error bars represent the standard error of the mean.  
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2.3.2 Shared Psychometric Predictors of Cannabis Use by Age 16: Life Events & 
Personality 

 

Figure 2.3.2: Top row: from the Life Events Questionnaire (LEQ, (Newcomb et al., 
1981)) and represents the mean frequency of endorsing a life event pertaining to either 
distressful or sexual experiences. Data measured on a binary scale (1=Yes). Bottom row: 
from the Temperament and Character Inventory (TCI, (Cloninger, 1999)), and represent 
the sum score of items related to disorderly or novelty-seeking personality traits. Data 
measured on an ordinal scale (5=definitely true, 1=definitely false). Green bars represent 
subjects using cannabis at age 16, blue bars represent non-using subjects. Error bars 
represent the standard error of the mean.  

 
 Male-specific psychometric predictors of cannabis use by age 16 included less-

negative feelings towards deviant behaviors, and greater parental novelty-seeking 

personality and the excitability personality subscale (Cloninger, 1999). Less-negative 

feelings towards deviant behaviors in the males may signal a slight predisposition 
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towards delinquency and conduct problems in these adolescents. While previous studies 

have identified a correlation between problematic conduct and cannabis use (Crowley et 

al., 1998; Robins & McEvoy, 1990), our findings suggest that a predisposition towards 

problematic conduct might be a target of proactive intervention. Moreover, although 

personality traits are highly heritable, the novelty-seeking personality traits of both the 

parent and son independently predicted cannabis use by age 16 (post-hoc partial-

correlation between the outcome measure and child novelty-seeking personality r645 = 

.17, p < .001, after first accounting for parent novelty-seeking personality, r648 = .12, p < 

.005). 

 Female-specific psychometric predictors of cannabis use by age 16 included 

greater extravagant personality subscale (Cloninger, 1999) in both the parent and 

daughter. As was the case with males, the heightened extravagant personality subscale of 

both the parent and daughter made separate contributions to the prediction (post-hoc 

partial-correlation between the outcome measure and child extravagant personality r738 = 

.15, p < .001, after first accounting for parent extravagant personality r741 = .08, p < .05). 

Additionally, greater parental impulsive personality subscale (Cloninger, 1999) was 

identified as a predictor.  

 In considering the parental influence of cannabis use in their offspring, parents with 

behaviorally disinhibited personality features, coupled with a history of cannabis use, 

were found to confer risk of use to their children. Recent work by Kerr and colleagues 

corroborate these findings as they report that adolescents have increased risk of cannabis 

use when raised by parents who use cannabis and have diminished monitoring of their 

children (Kerr et al., 2015).  
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 In the male sample, three brain activation measures pertaining to the motor response 

inhibition (“stop signal”) task were found to reliably predict cannabis use by age 16. 

Relative to the comparison group, lower activation during successful response inhibitions 

in the left paravermis and the posterior-lateral part of the left hemisphere of the 

cerebellum, and, lower activation during failed response inhibition in the right inferior 

temporal gyrus, all predicted cannabis use by age 16 in males (see figure 2.3.3 & 2.3.5). 

Animal models using neuronal tracers suggests that the lateral cerebellum is involved in 

motor preparation and inhibition via projections to cortical motor and inhibitory regions 

through the thalamus (Middleton & Strick, 2001). These regions have also been 

previously identified as participating in a network underlying motor inhibitory control 

(Stevens et al., 2007). Thus, hypoactivity in these cerebellar regions underlying inhibitory 

control suggests that diminished recruitment of cerebellar motor resources might have 

behavioral consequences for adolescent males.  

 As these findings were evident prior to cannabis use initiation, a compromised 

motor inhibitory control system at age 14 might constitute a neurobiological vulnerability 

and promote the initiation of drug-consuming behaviors by age 16 in males. Moreover, 

the right inferior temporal region is considered part of the visual processing stream and 

has been previously associated with greater activity during stop failures (Hu & Li, 2012). 

Therefore, hypoactivity in this region correlating with failed response inhibitions might 

suggest cannabis use by age 16 in males is predicted by impaired processing of visual 

stop signal cues in their environment.   
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2.3.3 Male Brain Predictors 

 

Figure 2.3.3: Lower activation in three regions predicts cannabis use by age 16 in males. 
Stop Success relates to successful inhibition trials minus implicit baseline during the stop 
signal task. Regions of interest (ROI) in left cerebellum include the left paravermis, and 
posterior-lateral part of the left hemisphere. Stop failure relates to failed inhibition trials 
minus implicit baseline during the stop-signal task. ROI in right inferior temporal gyrus. 

†2-sample t-tests on participants endorsing cannabis use by age 16 vs. their non-using 
controls confirms significant differences in activations.  

 
In the female sample, four brain measures were found to reliably predict cannabis 

use by age 16.  Relative to the comparison group, higher activation during failed response 

inhibition in the right pre-supplementary motor area (pre-SMA) predicted female use. In 

this same region, larger gray matter volume relative to the comparison group also 

predicted cannabis use. As cortical myelination proliferates during adolescence, 

especially in motor areas requiring expedited signal propagation (Paus, 1999), these 

structural-functional findings suggest a functional consequence of delayed cortical 

  Stop Success† 

   Stop Failure† 

 
 

L R 
†    Cannabis < Controls , p < .05 
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maturation. This structural finding is notable for the female sample as cortical maturation 

occurs earlier in adolescent females compared to their male peers (Giedd, 2004).  As 

such, a larger gray matter volume might influence the observed higher activity of the 

motor system, which in turn, jeopardizes inhibitory control.  

Dissimilar to males, the females exhibited activation differences when processing 

social stimuli. Specifically, when viewing neutral faces, cannabis users by age 16 had 

higher activation in the right anterior inferior temporal lobe and lower activation in the 

right lingual gyrus of the visual cortex (see figure 2.3.4 & 2.3.5). As these two regions 

have previously been established in the processing of face stimuli (Britton et al., 2006; 

Loughead et al., 2008), these findings highlight female sensitivity to social stimuli and  

implicate these processes in a predisposition towards cannabis use. In light of these 

findings, face processing studies suggest neutral faces can be misperceived as 

threatening, especially in individuals with social anxiety disorder (Cooney et al., 2006; 

Yoon & Zinbarg, 2008).  Given the higher prevalence of social anxiety in females 

(Schneier, 1992) and the correlation between social anxiety and prevalence of cannabis 

use in females (Buckner et al., 2006, 2007) the results point to a female-specific pathway 

towards cannabis use.  
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2.3.4 Female Brain Predictors 

 

Figure 2.3.4: Activations and structural differences in three regions predicts cannabis use 
by age 16 in females. Stop failure relates to failed inhibition trials minus implicit baseline 
during the stop-signal task. Region of interest (ROI) in right pre-supplementary motor 
area. GMV measures gray-matter volume. ROI in right pre-supplementary motor area 
(identical ROI with stop failure). Neutral Faces relates to passive viewing of neutral 
faces minus control images during the face task. ROIs in right anterior inferior temporal 
gyrus and lingual gyrus (visual cortex). 

*†2-sample t-tests on participants endorsing cannabis use by age 16 vs. their non-using 
controls confirms significant differences in activations and GMV.  

 

 

 

 Stop Failure & GMV* 
           Neutral Faces* 
           Neutral Faces† 

 

 
 

* Cannabis > Controls , p < .05 
† Cannabis < Controls , p < .05 

L R 
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2.3.5 Correlations Between Identified Predictors and Outcome Measure 

Figure 2.3.5: Pearson’s point-biserial correlation (r) between predictor and outcome. 
Error bars represent 95% confidence intervals generated from 5000 bootstrap samples. 
Circles = Drug use (ESPAD, (Hibell et al., 1997)). Squares = Life Events (LEQ, 
(Newcomb et al., 1981)). Deviant life events in males relates to reported positive feelings 
towards deviant behaviors. Sex & distressful life events relates to the lifetime frequency. 
Triangles = personality (disorderly, extravagant, and impulsive personality are subscales 
of the TCI novelty-seeking personality scale, (Cloninger, 1999)). Diamonds = 
Neuroimaging data 

 

2.4 Sex- and Drug-specificity of Brain Features 

Given the observed sex differences and the known sexual dimorphisms in brain 

structure and function, we assessed the sex-specificity of the brain findings. To do so, we 

tested how well the brain measures identified to predict cannabis use for one sex 
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performed for the other sex. To assess drug-specificity, these predictors were then used to 

model binge drinking by age 16 (defined as a minimum of three lifetime binge drinking 

episodes by age 16) in a separate sample of 14 year olds (Whelan et al., 2014). 

Overlapping participants identified as cannabis users and binge drinkers by age 16 were 

excluded from the binge drinking sample (N=436; n=89 of whom transitioned to binge 

drinking by age 16). Sex- and drug-specificity model fit was assessed using a chi-square 

goodness of fit statistic and the delta-Akaike information criterion (ΔAIC) of model 

selection (Akaike, 1974). Model fit statistics were generated by comparing the relative 

change in model fit between a model estimated using only the base rate of cannabis use 

(or binge drinking) and a model estimated using only the features identified from the 

preceding prediction analyses.  

As anticipated, post-hoc logistic regressions confirmed that the male-specific 

brain predictors of cannabis use returned strong model fits relative to the base rate model 

when estimated on the entire male sample (χ2
3,N=648 = 28.6, p < .001; base rate model 

ΔAIC = 22.6 relative to the model with predictors). However, when estimated on the 

entire female sample, the model using the male-specific brain predictors is worse than the 

base rate model in predicting cannabis use (χ2
3,N=741 = 2.3, p > .05; model with predictors 

ΔAIC = 3.7 relative to the base rate model). These regions were also found to be specific 

in their prediction of cannabis as they returned poor model fits in a logistic regression 

predicting binge drinking in males (χ2
3,N=206 = 2.0, p > .05; model with predictors ΔAIC = 

4.0 relative to the base rate model).  

Post-hoc logistic regression confirmed that the female-specific brain predictors of 

cannabis use returned strong model fits for the female sample (χ2
4,N=741 = 48.5, p < .001; 



 

41 
 
 
 

base rate model ΔAIC = 40.5 relative to the model with predictors). However, when 

estimated on the entire male sample, the model using the female-specific brain predictors 

failed to predict cannabis use in males (χ2
4,N=648 = 2.2, p > .05; model with predictors 

ΔAIC = 5.8 relative to the base rate model). Likewise, these regions were found to be 

specific in their prediction of cannabis as they returned poor model fits when used to 

predict binge drinking in females (χ2
4,N=230 =  0.45, p > .05; model with predictors ΔAIC 

= 7.5 relative to the base rate model). See table 2.4.1 for post-hoc regression summaries.  

2.4.1 Post-hoc Regression Model Summaries 

 

Table 2.4.1: Features identified from each cannabis predictive modeling scenario were 
used to probe sex- and drug-specific effects. Male & Female shared psychometric and 
genetic predictors of cannabis use by age 16 also predicted binge drinking by age 16. 
Male brain predictors and female brain predictors of cannabis use by age 16 failed to 
predict cannabis use in the opposite sex, or, binge drinking by age 16 in the same sex. 
*ΔAIC always in reference to the better fitting model. ΔAIC= AICmodel_i – AICmin and 
reflects the relative increase in information gained from the AICmin (better) model. Values 
>=2 favor the AICmin model. 

 

 

Cannabis Predictive 
Features 

 

Test Sample 
 

Model Fit 

Sex-Specificity Drug-Specificity χ2, p ΔAIC*  

 
Male & Female  

Shared Psychometric 
Features 

 

 
Males & Females:  
Binge Drinking 

 
 

74.6, p < .01  

 
 

32.05 (base rate model –model with predictors) 

 
 

Male Brain  
Features 

Females:  
Cannabis Use 

2.3, p > .05  3.7 (model with predictors –base rate model) 

Males:  
Binge Drinking 

 

2.0, p > .05  
 

4.0 (model with predictors –base rate model) 

 
 

Female Brain 
Features 

Males:  
Cannabis Use 

2.2, p > .05  5.8 (model with predictors –base rate model) 

Females:  
Binge Drinking 

 

0.45, p > .05  
 

7.5 (model with predictors –base rate model) 

 
Male & Female 

Shared  
Genetic Features 

Males & Females: 
Cannabis Use 

 

14.8, p < .01  
 

8.8 (nuisance model –model with predictors) 

Males & Females: 
Binge Drinking 

 

7.8, p = .05  
 

1.8 (nuisance model –model with predictors) 
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2.5 Genetic Predictors 

The sex-specific analyses did not identify any predictive SNPs, therefore we 

collapsed across sex and reran the analysis with only the genetic predictors (plus nuisance 

covariates). This analysis returned a mean ROC AUC=0.60 (p < 3.0 x 10-4; see figure 

2.5.1), however, the genetic multidimensional scaling factors plus demographic 

covariates inflated model performance and the predictive genes were less consistently 

selected across the generated models. With that in consideration, a lower threshold (see 

supplemental information) identified two SNPs on genes coding for the µ1-opioid 

receptor and one on a gene coding for the δ1-opioid receptor. The minor alleles of the two 

µ1-opioid receptor SNPs (rs511420, rs1074287) were found to impart genetic risk as a 

greater number of the age 16 cannabis users had the minor allele, whereas the minor 

allele of the δ1-opioid receptor SNP (rs2236857) was found to impart a protective effect 

as its frequency was higher in the comparison group. See table 2.5.2 for the three SNP 

statistics including their correlation with the outcome measure.  
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2.5.1 ROC Curve for Gene-specific Analysis 

  

Figure 2.5.1: Visualizing the performance of the predictive model on independent 
observations. Representative of the mean AUC across 100 runs. 

 

2.5.2 Statistics and Frequencies for Cannabis Predictive SNPs

Table 2.5.2: Measures of Hardy-Weinberg Equilibrium (HW), Minor Allele Frequency 
(MAF). Association with cannabis use by age 16 calculated using Spearman’s rank 
correlation between SNP and the outcome measure.  Hminor: Homozygote minor (high-
risk genotype), HT: heterozygote (intermediate-risk genotype), Hmajor: Homozygote major 
(low-risk genotype). 
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r     p 
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rs511420 OPRM1 .87 0.097 T:C 0.999 -.052 .051 2:19:79 1:15:84 Risk 

rs1074287 OPRM1 .90 0.256 A:G 0.991 -.058 .030 10:35:55 7:30:63 Risk 

rs2236857 OPRD1 .89 0.266 T:C 1 
(Genotyped) 

 

.053 .048 4:30:66 5:37:57 Protection 
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When including these three SNPs in a post-hoc hierarchical logistic regression 

predicting cannabis use, the model exhibits strong fit to the full sample after first 

modeling the nuisance covariates (Δχ2
3,N=1389 = 14.8, p < .005; nuisance covariates model 

ΔAIC = 8.8 relative to the model with nuisance covariates and SNPs). Likewise, 

including these three SNPs returned marginally adequate fits to the full sample of binge 

drinkers after first modeling the nuisance covariates (Δχ2
3,N=436 = 7.8, p = .05; nuisance 

covariates model ΔAIC = 1.8 relative to the model with nuisance covariates and SNPs). 

Thus, these SNPs might weakly generalize to predict binge drinking by age 16, however, 

the model fits effect sizes are far greater in their prediction of the cannabis using sample.  

The cannabinoid and opioid neurotransmitter systems have been found to co-

localize in the striatum (Rodriguez, Mackie, & Pickel, 2001) and exhibit reciprocal 

signaling (Robledo et al., 2008).  However, the biobehavioral effects orchestrated by 

these systems remain unclear in humans. Animal models suggests the µ-opioid (but not δ) 

receptor is specifically involved in reinforcement properties as µ-opioid receptor 

knockout mice failed to exhibit THC-induced conditioned place preference compared to 

δ-knockout and wild-type mice (Ghozland et al., 2002). Hence, our findings that cannabis 

users by age 16 had a greater number of risk alleles for the µ-, but not δ-receptor SNPs 

might signal alterations to their neurobiological processing of rewards. Additionally, SNP 

rs511420 has previously been identified to interact with stressful life events to promote 

depressive symptoms in African-American adolescents (Swann et al., 2014). Therefore, 

adolescents who experience life stress and possess the high-risk allele are at an elevated 

likelihood to experience depressive symptomology and potentially self-medicate with 

cannabis for the phasic anxiolytic and euphoric effects of the drug. 
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2.6 Domain-Specific Effects 

To investigate the contribution of each domain in the prediction of adolescent 

cannabis use, post-hoc hierarchical regressions were conducted to measure the relative 

change in model fit after the inclusion of each domain-specific set of predictors. In the 

male sample, the psychometric predictors were entered first and significantly improved 

model fit relative to the base rate model (χ2
10,N=648 = 105.31, p < .001; base rate model 

ΔAIC = 85.31). The brain predictors were then included and significantly improved 

model fit relative to the psychometric predictors model (Δχ2
3,N=648 = 19.7, p < .01; 

psychometric model ΔAIC = 13.71). Finally, the three SNPs were added but did not 

improve model fit (Δχ2
3,N=648 = 4.73, p > .05; model with SNPs ΔAIC = 1.27 relative to 

psychometrics and brain model). 

Likewise, for the female sample, the psychometric predictors were entered first 

and significantly improved model fit relative to the base rate model (χ2
10,N=741 = 97.33, p 

< .001; base rate ΔAIC = 77.3). Next, the brain predictors were included and significantly 

improved model fit relative to the psychometric predictors model (Δχ2
4,N=741 = 43.24, p < 

.01; psychometric model ΔAIC = 35.24). Lastly, the three SNPs were included but did 

not significantly improve model fit (Δχ2
3,N=741 = 6.65, p > .05; psychometrics and brain 

model ΔAIC = 0.65). For both sexes, the results of the domain-specific hierarchical 

regressions held irrespective of the order in which each domain were entered. Thus, while 

psychometric data alone can be used to significantly predict cannabis use by age 16, 

models containing both psychometric and sex-specific brain features return superior fits, 

highlighting their utility of capturing individual differences in the neurobiology 

predicting adolescent cannabis use.  
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2.7 Conclusions 

These analyses have identified individual differences at age 14 that predict 

cannabis use two years later.  Despite having information on thousands of multi-modal 

variables per individual, prediction with high generalizability was achieved with fewer 

than fifteen psychometric and brain measures.  Some of these individual differences were 

specific to predicting cannabis use in each sex while others predicted both cannabis and 

binge drinking across the sexes. The generality of the psychometric variables gives some 

insights into what might be general risk factors associated with teenage substance use 

initiation. Moreover, results revealing that the brain predictors differ between the sexes 

underscore the importance of attending to sex-differences in addiction research. Indeed, 

the distinction in functional tasks observed for each sex highlights the sex-specific 

psychological processes (inhibitory control in males; social processing in females) 

potentially driving the initiation of cannabis use in adolescence.  

Given the increased availability of cannabis that is likely to accompany ongoing 

public policy efforts towards recreational legalization, a potential concern is an increase 

in the rates of teenage consumption.  Understanding the individual differences that 

predict use offers insights into the etiological mechanisms underlying that use, and 

provides knowledge that could guide interventions aimed at reducing any potential 

negative consequences on the brain and behavioral health of adolescents.   
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Appendix 1: Supplemental Information 

A1.1 Schematic of Analytic Method 

 

Figure A1.1: Schematic of Analytic Method. First, data are divided into k(10) outer-folds. 
k-1 outer-folds are then divided into k(10) nested-folds. Elastic-net regularized logistic 
regression applied to k-1 nested-folds, during which the α , λ parameters are tuned by 
finding the optimal pair returning the highest AUC when it’s model is tested on the k-1 
nested-fold. The iterative process is completed for the k(10) nested-folds, generating 10 
final nested models. The 10 nested models are ranked by their AUC returned when tested 
on each respective k-1 nested test fold. The highest-ranking model is then tested on the 
outer fold, and used to generate the reported test AUC. This entire process is repeated k-
times. 
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A1.2 Analysis of Head Motion 

 

Table A1.2: Framewise displacement was calculated from the six-directional head motion 
parameters estimated during image realignment. 2-sample t-tests on the participants 
endorsing cannabis at age 16 vs. their non-using peers failed to detect significant 
differences in head motion (mean FD) for any of the tasks for either sex. 

A1.3 Binge Drinking Sample Demographics 

 

Table A1.3: A sample of binge-drinkers by age 16 and never-binge-drinkers comparison 
group. Group differences assessed using two-group t-tests on the continuous measures, 
and chi-square tests on the categorical measures. PDS: Puberty Development Scale 
(Petersen et al., 1988). SES: Socioeconomic Status. 

 

 
Sex 

 
Task 

Mean Framewise Displacement: 
Age 16 Users vs. Comparison Group 

 
 

Males 

Faces t624= 0.55, p > .05 

MID t594= 0.78, p > .05 

Stop Signal t580= -1.5, p > .05 

 
 

Females 

Faces t712= -1.48, p > .05 

MID t685= 0.43, p > .05 

Stop Signal t678= -0.18, p > .05 

 
Measure 

Groups 
p 

Binge Drinkers 
by age 16 (n=89) 

Comparison 
Group (n=347) 

Age (M,SD) 14.54, 0.45 14.47, 0.39 .133 

Sex (Males, Females)  48, 41 158, 189 .190 

Handedness (L,R) 10 , 79 40, 307 .999 

PDS (M,SD) 3.55, 0.69 3.50, 0.80 .573 

Perceptual IQ (M,SD) 106.30, 13.30 107.65, 14.26 .419 

Verbal IQ (M,SD) 110.87, 13.98 109.41, 13.58 .396 

SES (M,SD) 17.62, 3.92 18.00 , 3.68 .399 



 

71 
 
 
 

A1.4 Cannabis Use Levels 

 

Table A1.4: Levels of cannabis use at age 16 by sex. Comparison group contained 
individuals who report using no cannabis at age 14 or 16. 
  

Lifetime  
Cannabis Use 

Males 
(n) 

Females 
(n) 

6-9 joints 26 19 

  10-19 joints 24 20 

20-39 joints 23 9 

40+ joints 37 15 

Total Users   110 63 

Comparison Group 538 678 
Sum 678 741 
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A1.2 Materials and Methods 

 
Supplemental Materials 

Materials and Methods 

Overview of IMAGEN protocols  

Full details of the procedures employed by the IMAGEN study (Schumann et al., 2010), 

including details on ethics, recruitment, standardized instructions for administration of 

the psychometric and cognitive behavioral measures, and for blood collection and storage 

are available to view in the Standard Operating Procedures for the IMAGEN project 

(http://www.imagen-europe.com/en/Publications_and_SOP.php).  

Participants  

Data were acquired from 14-year-old adolescents recruited according to the standard 

IMAGEN operating procedures cited above. After complete description of the study to 

the participants and their parents/guardians, written informed consent was 

obtained. Individuals who provided assent completed an extensive battery of 

neuropsychological, clinical, personality and drug use assessments online and at the 

testing centers. Additional assessments were conducted at age 16. Participants were 

excluded if they had contraindications for MRI (metal or electronic implants and 

claustrophobia) or problematic medical history (diabetes, tumors, heart defects, etc.), 

neurological conditions (epilepsy, head trauma, neurodevelopmental disorders, etc.) or 

low IQ.   
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Participants were included in the analysis based on the self-report drug use questionnaire 

(ESPAD, described below). All participants in the analysis were cannabis naïve at age 14 

(N=1389, of whom n=173 transitioned to use by age 16; see table 2.1.1 for 

demographics). Age 16 cannabis use was defined as using the drug at least six times by 

age 16. This threshold was used in order to identify youths who have initiated cannabis 

use beyond experimentation levels.  

Data 

All data (see table 2.1.2) in the analysis were collected at age 14 and used to predict the 

onset of cannabis use by age 16. Questionnaires surveying child and parent personality, 

stressful life events, drug use, and cognitive performance comprised the psychometric 

data.  

Genetic data were comprised of 108 a-priori SNPs of interest coding for neurotransmitter 

receptors (cannabinoid, opioid and catecholamines), related enzymes (FAAH), eight 

SNPs previously associated with cannabis dependence (Hartman et al., 2009; Hopfer et 

al., 2006; Hurd et al., 2014), and one genetic risk-score (Cornelis, 2009) computed from 

those 8 SNPs.  

Brain data comprised of functional and structural neuroimaging measures parcellated into 

278 regions of interest (ROIs) (Shen et al., 2013). Measures include total and regional 

gray matter volumes and brain activation associated with response inhibition (assaying 

cognitive control systems), reward anticipation and receipt (assaying brain reward 

systems) and viewing neutral and angry faces (assaying social processing brain systems). 

At each gray matter volume ROI, the ratio of regional to total gray matter volume was 

calculated for each subject in order to account for anatomical variability across subjects.  
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Structural MRI 

High-resolution anatomical magnetic resonance images were acquired, including a 3D 

T1-weighted magnetization prepared gradient echo sequence based on the ADNI protocol 

(http://www.loni.ucla.edu/ADNI/Cores/index.shtml). Structural MRI processing included 

data segmentation and normalization to the Montreal Neurological Institute template 

using the SPM
 
optimized normalization routine. Gray matter images were modulated, 

thus facilitating comparisons of volumetric, rather than tissue concentration, differences 

(Ashburner & Friston, 2000).  

Functional MRI 

Full details of the magnetic resonance imaging (MRI) acquisition protocols and quality 

checks have been described previously, including an extensive period of standardization 

across MRI scanners(Schumann et al., 2010). MRI Acquisition Scanning was performed 

at the eight IMAGEN assessment sites (London, Nottingham, Dublin, Mannheim, 

Dresden, Berlin, Hamburg, and Paris) with 3T whole body MRI systems made by several 

manufacturers (Siemens: 4 sites, Philips: 2 sites, General Electric: 1 site, and Bruker: 1 

site). To ensure a comparison of MRI data acquired on these different scanners, we 

implemented image acquisition techniques using a set of parameters compatible with all 

scanners that were held constant across sites, for example, those directly affecting image 

contrast or fMRI preprocessing. Site was dummy-coded for use in the machine learning 

procedure.  

Standardized hardware for visual and auditory stimulus presentation (NordicNeurolabs, 

Bergen Norway, http://www.nordicneurolab.com) was used at all sites. BOLD functional 

images were acquired with a gradient-echo echo planar imaging (EPI) sequence using a 
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relatively short echo-time to optimize imaging of subcortical areas (details of sequence 

parameters for structural and functional imaging, and the neuroimaging tasks are given in 

Ref. 1). Briefly, the functional imaging processing was as follows: Time series data were 

first corrected for slice-timing, then corrected for movement, non-linearly warped onto 

MNI space using a custom EPI template, and Gaussian-smoothed at 5mm-full width half 

maximum. Nuisance variables were also added to the design matrix: estimated movement 

was added in the form of 12 additional regressors (3 translations, 3 rotations, 3 

translations shifted 1 TR before and 3 translations shifted 1 TR later). Each individual 

fMRI time series underwent automatic spike detection, using a mean-squared based 

metric to identify unexpected values temporally and spatially slice per slice. Time-points 

with artifacts (if any) of each sequence were regressed out of each participant’s data by 

adding a corresponding number of regressors with value 1 at the time- point of the 

artifact and 0 elsewhere to the design matrix.  

Functional Tasks Descriptions  

Stop Signal Task (SST). The SST required volunteers to respond to regularly presented 

visual go stimuli (arrows pointing left or right) but to withhold their motor response when 

the go stimulus was followed unpredictably by a stop-signal (an arrow pointing upwards). 

Stopping difficulty was manipulated across trials by varying the delay between the onset 

of the go arrow and the stop arrow (stop-signal delay, SSD) using a previously described 

tracking algorithm (Rubia et al., 2005). A block contained 400 go trials and 80 variable 

delay stop trials with between 3 and 7 go trials between two stop trials. Stimulus duration 

in go trials was 1000 ms and in stop trials varied (0– 900ms in 50 ms steps) in accordance 
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with the tracking algorithm (initial delay = 250 ms). We calculated contrast images for 

successful inhibitions (“stop success”) and unsuccessful inhibitions (“stop fail”), both vs. 

an implicit baseline.  

Monetary Incentive Delay. The Monetary Incentive Delay (MID) task (adapted from a 

task described previously (Knutson et al., 2001)) required participants to respond to a 

briefly presented target by pressing either a left-hand or right-hand button as quickly as 

possible to indicate whether the target appeared on the left or the right side of the monitor 

display. If the participants responded while the target was on the screen, they scored 

points but if they responded before the target appeared or after the offset of the target 

they received no points. A cue preceded the onset of each trial, reliably indicating the 

position of the target and the number of points awarded for a successful response. A 

triangle indicated no points (No Win), a circle with one line 2 points (Small Win) and a 

circle with three lines 10 points (Large Win). Twenty-two trials of each type were 

presented in a pseudo-random order. The duration of the target was adjusted adaptively 

so that 66% of the trials produced a correct response. The participants were informed that 

at the end of the session they would receive one candy (M&M) for every five points won. 

We calculated contrast images for the anticipation period of Large Win minus No Win, 

and the outcome period for Large Win minus No Win.  

Face Task. The Face task involved passive viewing of video clips that displayed 

ambiguous (emotionally ‘‘neutral’’) or angry face expressions or control (nonbiological 

motion) stimuli
 
(Grosbras, 2005). Each trial consisted of short (2 to 5 s) black-and-white 

video clips depicting either a face in movement or the control stimulus. The control 
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stimuli consisted of black-and-white concentric circles of various contrasts, expanding 

and contracting at various speeds, roughly matching the contrast and motion 

characteristics of the face clips. The stimuli were presented through goggles (Nordic 

Neurolabs, Bergen, Norway) in the scanner and subtended a visual angle of 10
ο 

by 7
ο
. 

The video clips were arranged into 18-s blocks; each block included seven to eight video 

clips. Five blocks of each biological-motion condition (neutral and angry faces), and nine 

blocks of the control condition (circles) were intermixed and presented to the participant 

in a 6-minute run. We calculated contrast images from angry faces minus control stimuli, 

neutral faces minus control stimuli, and angry faces minus neutral faces. After the 

scanning session, participants completed a recognition task in which they were presented 

with three of the faces previously presented in the scanning session and two novel faces.  

Personality  

NEO. Broad dimensions of personality were assessed using the 60-item Neuroticism- 

Extraversion-Openness Five-Factor Inventory (NEO-FFI), which returns measures on the 

dimensions of Extraversion, Agreeableness, Conscientiousness, Neuroticism, and 

Openness to Experience as described in the Five-Factor Model of personality (Costa Jr. & 

McCrae, 1995). The Extraversion factor assesses preference for seeking and engaging in 

social interactions and may be linked to sensitivity to rewarding environmental cues 

(Watson & Clark, 1992). The Agreeableness factor assesses empathy and an individual’s 

tendency towards compassion and co-operation rather than self-interest.  

Conscientiousness provides a measure of the degree to which a participant exercises self- 

discipline and expresses a preference for planned, rather than spontaneous, behavior. The 
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Neuroticism factor captures emotional liability and a tendency to experience lowered 

mood and elevated anxiety. Openness to Experience measures intellectual curiosity and 

creativity; lower scores on ‘openness’ are associated with a reduced tolerance for change 

and a preference for familiarity over novelty.  

Substance Use Risk Profile Scale. The Substance Use Risk Profile Scale (SURPS; 

(Woicik et al., 2009)) assesses personality traits that confer risk for substance misuse and 

psychopathology. This scale measures four distinct and independent personality 

dimensions; anxiety sensitivity, hopelessness, sensation seeking, and impulsivity. The 

anxiety sensitivity dimension is characterized by the fear of symptoms of physical 

arousal. The hopelessness dimension is identified as a risk factor for the development of 

depression and characterized by dismal feelings. The sensation seeking dimension is 

characterized by the desire for intense and novel experiences. The impulsivity dimension 

involves difficulties in the regulation (controlling) of behavioral responses.  

Temperament and Character Inventory. The novelty seeking scale of the 

Temperament and Character Inventory – Revised (TCI-R; (Cloninger, 1999)) was 

administered. The novelty seeking scale is composed of four subscales (excitability, 

impulsiveness, extravagance, and disorderliness). The excitability subscale contrasts with 

‘stoic rigidity’ and reflects sensation-seeking and novelty-seeking behaviors. The 

impulsiveness subscale describes behavior on a dimension from impulsivity to reflection 

and captures elements of emotional reactivity, and unreflective, careless behavior. The 

extravagance subscale assesses overspending behavior and poor planning and is believed 

to reflect a tendency to approach reward cues. The disorderliness subscale reflects 
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disorganized, uncontrolled, and anti-normative behavior. Novelty seeking personality is 

assessed as the sum across all four subscales.  

Cognition  

Wechsler Intelligence Scale for Children. Participants completed a version of the 

Wechsler Intelligence Scale for Children WISC-IV(Wechsler, 2003), of which we 

included the following subscales. Perceptual Reasoning, consisting of Block Design 

(arranging bi-colored blocks to duplicate a printed image) and Matrix Reasoning (in 

which a series of colored matrices are presented and the child is asked to select the 

consistent pattern from a range of options). Verbal Comprehension consisting of 

Similarities (two similar but different objects or concepts are presented and the child is 

asked to explain how they are alike or different) and Vocabulary (a picture is presented or 

a word is spoken aloud by the experimenter and the child is asked to provide the name of 

the depicted object or to define the word).  

Delay discounting. The Monetary-Choice Questionnaire (MCQ; (Kirby, Petry, & Bickel, 

1999)) was administered to provide a measure of preference for immediate lower over 

delayed higher monetary rewards. The MCQ is a 27-item task in which the participant 

chooses between a smaller, immediate monetary reward and a larger, delayed monetary 

reward (e.g. €25 today or €60 in 14 days), with varying discrepancies and delays between 

the rewards. The task indexes impulsivity by providing a measure of the degree to which 

future rewards are diminished or discounted. The protocol is scored by calculating where 

the participant’s answers place them in comparison to reference discounting curves, 
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where placement amid steeper curves indicates higher levels of impulsivity.  

CANTAB. Participants completed five of the CANTAB tests.  

The Affective Go/No-go task comprised of alternating blocks in which participants were 

presented with positively or negatively valenced target words embedded in a stream of 

neutral distracter words. Participants were instructed to respond to targets with a button 

press. Measures included in the analyses were the total number of omissions to positive 

and negative targets, and the average response latency to positive and negative target 

words.  

In the Pattern Recognition Memory task participants were required to remember 12 

abstract patterns; the percentage of patterns correctly recognized on a two alternative 

forced choice task completed immediately after encoding was included in the analyses.  

The Spatial Working Memory Task required participants to “search” for a token hidden 

by one of a number of boxes on the monitor by selecting the boxes in sequence. Once the 

token is uncovered, participants must search again with the condition that the token will 

not be hidden in the same location more than once. The number of times participants 

returned to search a box that had already contained the token was entered into the 

analyses as an error measure. We also included a strategy score (ranging from 1-37, with 

lower scores indicating a more strategic approach), which reflects how often a search 

sequence was initiated from a novel position.  

The Rapid Visual Information Processing task comprised of a stream of digits presented 

at 1.67Hz and participants were required to monitor the stream for target sequence of 

three digits. We included a signal detection measure of sensitivity to the target sequence 
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in the analyses.  

The Cambridge Guessing Task (CGT) was a modified version of the Cambridge 

Gambling Task, renamed in order to make it appropriate to administer to adolescents. On 

each trial of the CGT the participant was presented with 10 boxes, some of which are 

blue, some of which are red, and must “guess” which color box conceals a hidden yellow 

token. Participants start the task with 100 points and lose or acquire points by wagering 

on their guess. The options the participant can choose to wager are determined by the 

program as a proportion of their total number of points, presented in either increasing or 

decreasing amounts. The analyses included measures of the time taken to select the 

option on which to bet, an average of the proportion of the total number of points 

wagered on each trial, the proportion of trials on which the more likely outcome was 

selected (quality of decision making), an average of the proportion wagered on trials 

when the participant selected the more likely result (rational bets), and an index of delay 

aversion reflected in making higher bets when the amount to bet is presented in 

descending order rather than in ascending order.  

Behavioral data from functional imaging tasks. Behavioral data from the Monetary 

Incentive Delay (reward) task were as follows: the number of Big Win trials on which the 

target was not hit, the number of Big Win trials on which the target was hit, the number 

of Small Win trials on which the target was not hit, the number of Small Win trials on 

which the target was hit, the number of No Win trials on which the target was not hit, and 

the number of No Win trials on which the target was hit. Behavioral data from the Faces 

(emotional reactivity) task included the number of targets and the number of foils 

correctly categorized. Participants were not informed prior to the scanning session about 
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the subsequent recall task. Behavioral data from the stop signal task was incomplete due 

to technical errors, therefore this data was omitted from the modeling procedures, 

however, the stop signal task had an adaptive performance algorithm to account for 

individual differences in reaction time.  

History  

Life-Events Questionnaire. The Life-Events Questionnaire (LEQ) is an adaptation of 

the Stressful Life-Event Questionnaire (Newcomb et al., 1981), which uses 39 items to 

measure the lifetime occurrence (frequency) and the perceived desirability of stressful 

events covering the following domains: Family/Parents, Accident/Illness, Sexuality, 

Autonomy, Deviance, Relocation, and Distress. The life-events valence labels measured 

on an ordinal scale from -2 to +2 as follows: -2='Very Unhappy', -1='Unhappy', 

0='Neutral', +1='Happy', +2='Very Happy'.  

Gestational cigarette and alcohol exposure. The Pregnancy and Birth Questionnaire 

(PBQ, adapted from (Pausova et al., 2007)) assesses exposure of the child to potentially 

harmful conditions and substances such as maternal alcohol, cigarette, and cannabis use 

before and during pregnancy. The questionnaire was completed by each participant’s 

parent or guardian and parental cigarette and alcohol use during pregnancy were 

recorded, then recoded as binary variables.  

Alcohol Misuse. Michigan Alcohol Screening Test questions (MAST; (Selzer, 1971) ), 

such as ‘have you ever been in a hospital because of drinking’, was used to assess alcohol 

misuse. Parental alcohol misuse was assessed using the Parent-Alcohol Use Disorders 
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Identification Test (AUDIT; (Saunders et al., 1993)).  

Puberty Development Scale. The Puberty Development Scale (PDS; (Petersen et al., 

1988)) was used to assess the pubertal status of each participant. This scale provides an 

eight-item self-report measure of physical development based on the Tanner stages with 

separate forms for males and females. For this scale, there are five categories of pubertal 

status: 1=prepubertal, 2=beginning pubertal, 3=midpubertal, 4=advanced pubertal, 

5=postpubertal. Participants answered questions about their growth in stature and pubic 

hair, as well as menarche in females and voice changes in males.  

Socioeconomic Status. The socioeconomic status score was comprised of the sum of the 

following variables: Mother’s Education Score, Father’s Education Score, Family Stress 

Unemployment Score, Financial Difficulties Score, Home Inadequacy Score, 

Neighborhood Score, Financial Crisis Score, Mother Employed Score, Father Employed 

Score.  

Substance misuse measures. The European School Survey Project on Alcohol and 

Drugs (ESPAD; (Hibell et al., 1997)) was administered using the software program 

Psytools (London, UK) which is a computerized assessment platform. Psytools presented 

questionnaire items and response alternatives on a computer screen. Jump rules were 

implemented where applicable to skip irrelevant questions (e.g., drinking-related 

questions in self-reported non-drinkers) for the sake of brevity. As the Psytools program 

was run at the participant’s home without direct supervision by the research team, the 

reliability of the data were checked in a two-stage procedure. Before every task, 
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adolescents were asked to report on the current testing context including questions about 

their attentional focus and the confidentiality of the setting. Automated flags highlighted 

potentially problematic testing situations and were followed-up by research assistants 

face-to-face with the volunteer in a confidential setting. Final reliability ratings were 

assigned which led to exclusion of the data. Exclusion criteria for substance use measures 

included an indication that the participant was in a hurry, somebody was watching, or an 

indication to have known or taken the sham drug Relevin. Inconsistency between 

baseline (age 14 years) and follow up (age 16 years) for all drugs was also an exclusion 

criterion (e.g., scoring 1 for cannabis at age 14 years, but 0 at age 16 years). Drug-usage 

levels were collected on an ordinal scale, 0=0, 1=1-2x, 2=3-5x, 3=6-9x, 4=10-19x, 5=20-

39x, 6=40x+.  

Genotyping  

DNA purification and genotyping was performed by the Centre National de Génotypage 

in Paris. DNA was extracted from whole blood samples preserved in ethylene-eiamine-

tetra-acetic acid vacutainer tubes (BD, Becton, Dickinson and Company, Oxford, United 

Kingdom) using Gentra Puregene Blood Kit (QIAGEN, Valencia, California) according 

to the manufacturer’s instructions. Genotype information was collected at 582,892 

markers using the Illumina HumanHap610 and HumanHap660 Genotyping BeadChips 

(San Diego, California). The SNPs with call rates of <95%, minor allele frequency < 1%, 

deviation from the Hardy-Weinberg equilibrium (“HWE”, p ≤ 1 × 10-6), and non-

autosomal SNPs were excluded.   

Markers data imputation and quality control for ambiguous SNPs, low MAF, missingness 
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and HWE were done with MACH (Li et al., 2010), following the ENIGMA2 guidelines. 

The 1000 Genomes project reference set of markers (http://www.1000genomes.org/data) 

was used for the imputation after decreasing the markers from ~41 million to ~13 million 

relevant genetic variants observed more than once in the European populations 

Genetic Analysis Four multidimensional scaling (MDS) components were calculated 

using a metric model in PLINK v1.9 (http://pngu.mgh.harvard.edu/~purcell/plink/). MDS 

was then included as a covariate to account for population stratification as part of the 

cross-validation logistic regression, where the genotypes were coded following an 

additive model (as 0, 1, and 2 for the number of risk alleles).  

Imputation of Missing Data 

Missing data for all three domains were replaced (where possible) by imputation. 

Continuous variables were replaced with the 95% trimmed mean derived according to the 

participant’s site and sex taken from the whole IMAGEN database (N=2,462). Ordinal 

data were similarly replaced with the mode of that variable for the participant’s site and 

sex.  

Analytic Methods 

Use of a cross-validation scheme allows for the tuning of the elastic-net regularization 

parameters for optimal feature selection and provides an assessment of model overfitting. 

The area under the curve (AUC) of the receiver-operating characteristic (ROC) was 

calculated for each run based on the model’s ability to predict age 16 cannabis use in the 

set-aside test-folds, thereby quantifying the test error of the final predictive model.  
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Elastic Net regularization and feature selection. Regression with Elastic Net 

regularization is an example of a sparse regression method, which imposes a hybrid of 

both L1- and L2-norm penalties (i.e., penalties on the absolute (L1-norm) and squared 

values of the β weights (L2-norm)). This allows relevant but correlated coefficients to 

coexist in a sparse model fit, by doing automatic variable selection and continuous 

shrinkage simultaneously, and selects or rejects groups of correlated variables. Least 

absolute shrinkage and selection operator (LASSO; (Tibshirani, 1996)) and ridge 

regression are special separate cases of regularized regression. All independent variables 

were standardized prior to model estimation. These analyses were implemented using the 

“glmnet” function in MATLAB (Natick, MA).  

The analysis was executed 100 times to incorporate the subtle differences in results 

incurred due to the random assignment of participants to folds. As a 10-fold cross 

validation scheme was implemented 100 times per analysis, results were thresholded to 

identify only the predictors present in a minimum 6 out of 10 final-models (from k=10), 

across a minimum of 80 runs. 

To investigate sex differences, analyses were conducted on a male-only sample (N=648; 

age 16 cannabis-users n=110) and a female-only sample (N=741; age 16 cannabis-users 

n=63). For each sex, the analysis returned a reduced design matrix of significant 

predictors [p x 10 (βs-per-fold)] x 100 runs. Null-hypothesis significance testing on the 

AUC was conducted using a Mann-Whitney U-test (Mason & Graham, 2002).  

 

Gene-only Analysis 
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Given our interest in uncovering potential genetic predictors of adolescent cannabis use, a 

gene-specific analysis was conducted by collapsing across sex and included only genetic 

data and covariates (age, sex, handedness, puberty status, and four MDS scores) as 

independent variables. A less conservative threshold was applied to identify SNP 

predictors. As such, SNPs selected in four or more final models across a minimum of 50 

runs was used. Despite this lenient threshold, post-hoc hierarchical regression analyses 

confirmed that including these 3 SNPs returned strong model fit statistics relative to a 

model estimated using only the eight nuisance covariates (see main text).  

Head Motion 

As head motion has been shown to confound structural and functional MRI findings 

(Pardoe, Kucharsky Hiess, & Kuzniecky, 2016), a-priori 2-sample t-tests confirmed that 

head motion (mean framewise displacement, “FD”) within each task did not differ 

between age 16 users and controls for either sex. The framewise displacement (FD) for 

each participant for each fMRI task was calculated using the six displacement parameters 

estimated during image realignment preprocessing procedures (see table A1.2 for 

statistics).  

Permutation Analyses 

To check for spurious findings and to confirm the independence of the 10-fold model 

training and testing procedure, random permutation analyses were conducted. Each sex-

specific k-fold analysis was repeated 100 times while randomly assigning group 

membership to each participant while keeping original group sample sizes consistent. 
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Essentially, these analyses tested for significant findings on a sample-generated null 

model. These permutation models performed no better than chance (Males: mean AUC = 

0.53, σ =.02, p > .05; Females: mean AUC= 0.51, σ =.03, p > .05). In addition to these 

models failing to predict randomized outcomes, the predictors selected for each final 

model did not mirror the predictors selected from the true analyses.  

 

Post-hoc Multiple Regression Modeling 

The predictors of cannabis use identified from the preceding sex-specific k-fold analyses 

were selected for use as the independent variables in a multiple logistic regression model 

assessing sex- and drug-specificity. Sex-specificity was assessed by including the 

predictors of male cannabis use in a multiple logistic regression model estimated on the 

entire female sample (and vice versa). Drug-specificity was assessed in a similar fashion 

while using a related but independent sample of binge drinking adolescents. In all post-

hoc scenarios, independent variables were standardized to z-scores by sex before model 

estimation. Thereafter, coefficients and model fit statistics were freely estimated from 

their respective samples. The “model with predictors” consisted of a multiple-regression 

model containing the predictors identified from the respective preceding sex-specific k-

fold analyses. Each model with predictors was compared to its sample-specific base rate 

model, which corresponds to a threshold at which the exact baseline rate would be 

classified as a cannabis user or binge drinker by age 16. 
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