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ABSTRACT 

 

 
The use of inflatable structures in aerospace applications is becoming increasingly 

widespread. In order to monitor the inflation status and overall health of these inflatables, 

an accurate means of shape sensing is required. To this end, we investigated two existing 

methods for measuring simple curvature, or curvature in one-dimension. The first method 

utilizes a pair of strain sensing Fiber Bragg Gratings (FBGs) separated by a known 

distance; dividing the difference in strain by the separation distance yields an experimental 

value for the one-dimensional curvature at a point. The second method makes use of 

conductive ink-based flex sensors, which give a variable resistance based on curvature. We 

used the latter was in a design for a Curvature-Based Inflation Controller (CBIC). While 

the controller successfully inflated a test body, its overall utility is limited by the simplicity 

of its sensors. To improve the shape sensing capabilities of the controller, we investigated 

the use of FBGs in a multidimensional array.  

 

We fabricated a curvature-sensing FBG pair on an inflatable membrane and tested 

its accuracy as the membrane was shaped into a known radius of curvature. This work 

reports on the assembly of three such curvature-sensing FBG pairs into a two-dimensional 

Curvature-Sensing Rosette (CSR). The goal is to use this rosette to measure the curvature 

of a surface in multiple directions at a single point. A 3-D printed surface with saddle 

geometry was used to calibrate the curvature-sensing rosette. Presented will be methods of 

extracting values for the tensor of curvature for the surface at a point using the curvature-

sensing rosette, along with experimental verification. This essentially defines the local 

geometry about the rosette, measured in real time. By employing an array of such rosettes 

across the surface of an inflatable structure, the local curvature of the inflatable could be 

known at every point. Combining these curvature measurements can yield an accurate 

depiction of the global geometry. Thus, the inflation status of the inflatable space structure 

could be monitored in real time.
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CHAPTER 1: INTRODUCTION 

The field of space exploration has experienced significant growth in recent years.  

Technological advances in the industry have nearly eliminated some of the barriers 

traditionally associated with studying the cosmos.  One of the most notable breakthroughs 

has been the use of inflatable structures in space.  The earliest inflatables were large 

reflector dishes for antennae, and presented several inherent advantages over their rigid 

metal counterparts [1].  For example, an inflatable space antenna reflector would naturally 

weigh less, and could be stowed, uninflated, throughout the launching process.  The 

inflatable antenna could then easily survive the violent conditions of takeoff, which would 

otherwise pose a quandary.  In order to withstand the dynamics of a launch, most structures 

intended for use in space would need to be separated into several smaller components, and 

each of these would require its own launch vehicle, mission, etc.  By employing inflatable 

reflectors, however, researchers could send a probe with a compact antenna package into 

space and then expand the inflatable reflector to be much larger than the vessel which 

originally carried it.  NASA’s Inflatable Antenna Experiment of 1996 shows this in the 

figure below (Figure 1). 
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Figure 1: NASA Inflatable Antenna Experiment [2] 

In the image above, the large silver reflector surface and the three beams connecting to it 

were inflated after launch; the takeoff vessel only needed to be large enough to carry the 

small copper-colored satellite. These inflatable antenna reflectors were first tested in the 

1990s, and many are used to this day for the convenient advantages they provide. 

More recently, inflatables have been tested for use in space applications as 

aerodynamic decelerators and structural sections of space stations.  NASA’s Hypersonic 

Inflatable Aerodynamic Decelerator (HIAD) is showing promise as the next-generation 

solution for atmospheric entry, and presents many attractive qualities over traditional 

decelerators [3].  Just as the antenna reflector, an inflatable aerodynamic decelerator can 

be stored for the takeoff and flight portions of a mission, then deploy for atmospheric entry.  

The HIAD system developed by NASA can be seen in the figure below (Figure 2). 
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Figure 2: NASA Hypersonic Inflatable Aerodynamic Decelerator [4] 

 

Beneath the grey heat-resistant fabric, there are several inflatable torus-like bodies, or 

toroids.  These concentric rings give the HIAD system its shape and structure, with many 

reinforcing straps to improve rigidity.  Again, this decelerator can inflate to be larger than 

the landing vehicle, which is extremely beneficial to its utility.  In fact, such an inflatable 

would be critical to the objectives of the mission.  Indeed, any mission involving an 

inflatable structure would depend highly on the successful deployment of that inflatable 

structure.  Thus, obtaining an accurate depiction of the inflation process is particularly 

important to the industry.  It would allow mission controllers to monitor the status of the 

inflatable and make vital decisions about the current mission. 

Monitoring the progress of an inflating structure can be essential, but performing 

such a task in space is inherently nontrivial.  For instance, much of the inflating is 

controlled remotely and without any visual cues present.  Current methods of controlling 
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inflation utilize pressure measurements within the inflatable to determine the progress of 

the inflation, but pressure readings alone are insufficient for assessing the process itself.  

Such methods depend upon the inflation process to be smooth and without complication.  

Were an issue to arise, such as unexpected entanglement of the uninflated body, a simple 

pressure measurement would not identify the problem.  In fact, the inflation process would 

likely continue unabated, potentially causing catastrophic damage to the inflatable and 

surrounding hardware.  Given the nature of these missions, such a failure to diagnose an 

inflation problem would certainly result in significant financial loss, in addition to months 

of planning being wasted.  Clearly, a more comprehensive method of monitoring inflation 

is required.   

In the absence of direct visual confirmation, a means of inferring the overall shape 

and status of an inflatable could provide the feedback necessary to safely deploy an 

inflatable.  This is known as shape sensing, which is a method for detecting the geometry 

of an inflatable body.  Shape sensing utilizes sensors placed about the inflatable to monitor 

the inflation status in real time.  Because this method allows one to observe the geometry 

of the body, any issues that might prevent the inflatable from successfully deploying would 

be instantly identified.  Moreover, once the structure was completely inflated, an accurate 

shape sensing system would provide a means of health monitoring.  For instance, any minor 

deflection of a surface on the body due to debris impact or structural anomaly would be 

quickly detected.  Shape sensing can greatly reduce the risks associated with deploying 

inflatable structures, which is why there have been significant efforts to investigate 

practical methods of sensing shape.   
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One such effort has been made recently by researchers at NASA, led by Jason P. 

Moore [5].  Using a chain of connected fiber optic strain gauges, called Fiber Bragg 

Gratings (FBGs), they have developed a cable which measures curvature at numerous 

points along its length.  Curvature is a vector quantity that describes the degree and 

direction to which an arc is curved.  Mathematically, curvature is the inverse of the Radius 

of Curvature, which is just the instantaneous radius required to produce the curve at a 

particular point [6].  Engineers like Jason P. Moore are interested in measuring curvature 

for its relationship to shape sensing: if the curvature of a body is known at a point, then the 

local geometry about that point can be inferred.  In order to fully specify the curvature of 

a surface, three separate components must be measured.  Assuming the curvature can be 

found at many points about the body, the complete geometry of the inflatable can be 

known.  Or, by taking curvature measurements at specific points on the body, the inflation 

status and shape can be monitored and controlled. 

In the first portion of this investigation, a design for a novel inflation controller is 

presented.  Rather than relying on internal pressure readings, this device uses simple bend 

sensors to detect the curvature at several points on the inflatable body.  By using these 

curvature readings as feedback, the Curvature-Based Inflation Controller (CBIC) is able to 

successfully inflate an object to a desired level.  Despite using a unique measure for its 

feedback, this controller still suffers many of the pitfalls associated with traditional 

pressure-based controllers.  Chief among them is the necessity for the inflation process 

itself to be spatially smooth and gradual.  This is due to the nature of the curvature sensors 

that were used; they can only measure simple curvature, or curvature in one direction.  This 
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means that the final inflated geometry must be known, and all of the sensor data are merely 

compared to the desired final values for curvature.  The controller and sensor configuration 

would thus need to be altered for every new inflatable geometry.  In order to improve the 

reliability and utility of the inflation controller, the sensors themselves would need to 

become more sophisticated.   

The NASA FBG chain is a powerful sensing system, capable of giving the operator 

a clear view of the shape of the cable itself.  However, just as the bend sensors used in the 

CBIC, this fiber optic sensor bundle will only give the one-dimensional curvature at any 

point.  This is because the NASA cable is in essence a space curve.  Space curves are one-

dimensional entities that exist in three-dimensional space [6].  The curvature sensing FBG 

chain can be seen in the figure below (Figure 3). 

 

Figure 3: NASA Curvature Sensing Cable [7] 

The image above clearly shows the fiber optic cable in the lower left, and the computer 

generated image of the cable’s shape on the monitor in the upper right.  Because it is one-
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dimensional, the curvature of such a space curve can only occur in one direction at a time.  

This means that the NASA cable can only measure curvature in a single direction at a time.  

The surface of an inflatable is a two dimensional body which exists in three-dimensions.  

In order to completely define the geometry of a surface, additional curvature measurements 

are required.  In fact, the NASA cable is only able to provide an estimate of a surface’s 

geometry when the FBG chain is run across the surface multiple times.  The computer-

generated image then shows the path of the cable, with minor deflections, often due to twist 

within the cable itself.  While impressive, it is far from being capable of accurately 

depicting the geometry of a two-dimensional surface.  For this, a new type of curvature 

sensor is required: one which can measure curvature in more than one direction at the same 

time. 

The second portion of this investigation was to design a sensor which could 

accurately sense the shape of a surface by detecting curvature in more than one direction.  

This new sensor would necessarily be an array of sensors which could each sense curvature 

in a single direction.  Fiber optic strain gauges were chosen for their high accuracy and 

proven track record in the NASA FBG chain device, along with their small diameter and 

sensing footprint geometry.  A single pair of FBGs was combined into a curvature sensor, 

and preliminary tests were performed.  Once the method had been refined and results were 

reliably accurate, an array of three curvature sensors was fabricated.  The sensors were 

placed in a classic strain rosette configuration; the two outer sensors were orthogonal to 

each other, and the central sensor was aligned with the 45º angle between the other two.  

In order to calibrate this new curvature sensor array, a custom saddle curve was designed 
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and 3-D printed.  Male and female saddle profiles were fabricated to ensure the sensor 

array would conform to the test surface of the saddle curve.  Testing of this sensor array 

proved successful; the new curvature sensor accurately detected the two-dimensional 

curvature of the test surface.  Such an array could be extremely useful in sensing the shape 

of a surface, particularly that of an inflatable space structure.  By placing these new sensors 

at strategic points about an inflatable, the total geometry of the body could be known in 

real time.  Thus, the inflation status and overall health of an inflatable could be monitored 

as necessary for mission success. 

In the next chapter, the task of sensing curvature in one direction will be explored.  

The mathematical definition of a space curve, as well as some contemporary methods for 

detecting curvature will be discussed.  Chapter 2 concludes with an in-depth analysis of 

the inflation controller design and utility. 

The third chapter examines the task of two-dimensional curvature detection and its 

challenges.  The properties of a surface will be defined mathematically.  Finally, the novel 

method of sensing curvature in multiple directions and its implications will be discussed. 
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CHAPTER 2: CURVATURE IN ONE DIRECTION 

2.1. The Geometry of a Space Curve 

In the context of shape sensing, detecting curvature on an inflatable surface is 

essential.  In order to discuss the various methods involved with sensing curvature, it is 

necessary to fully define curvature as it applies to this topic.  In this section, simple or one-

dimensional curvature will be discussed.  This will involve delineation of the mathematical 

quantity that is curvature as well as its significance in the real, physical world.  As simple 

curvature is primarily a property of space curves, the definition of a space curve will now 

be presented. 

A space curve is a continuous set of points existing in three-dimensional space [8].  

Imagine a very thin wire that curves or bends through different angles and in different 

directions, such that it cannot be confined to a plane.  Although the wire itself has only one 

dimension of significance, length, it still exists in three-dimensional space.  This is, in 

essence, the physical analog to the mathematical definition of a space curve.  Now, let C 

be a particular space curve in which we are interested.  Assuming a Cartesian coordinate 

system is present, then each point on C is defined by its position vector [8, 9].  This position 

vector is denoted as 𝒙.  The vector 𝒙 has components in the 𝒙1, 𝒙2, and 𝒙3 directions.  The 

following equation shows this [5]. 

 

 𝒙(𝑢) = 𝑥1(𝑢)𝒆1 + 𝑥2(𝑢)𝒆2 + 𝑥3(𝑢)𝒆3  (1) 
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The terms 𝒆1, 𝒆2, and 𝒆3 are the unit normal vectors in the 𝒙1, 𝒙2, and 𝒙3 directions, 

respectively.  Note that 𝒙 and its components are all functions of the parameter 𝑢.  This 

can signify time, but not necessarily so; 𝑢 is simply a real variable associated with 

increasing arc length along C [8].  The arc length along C will now be referred to as 𝑠.  The 

parameter 𝑠 has units of length and increases as 𝑢 increases.  Refer to the following figure 

for a visual representation of a space curve (Figure 4). 

 

Figure 4: Geometry of a Space Curve 

 

In the figure above, the curved red line represents the space curve, C.  The position vector 

𝒙 points from the origin to the curve, and 𝑠 increases along C from left to right in the figure.  

The vector ∆𝒙 illustrates a change in position along C as 𝑢 increases, as if one were 
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traveling along the curve C.  The following equation shows the change in 𝒙 and its 

components with respect to a change in 𝑢: 

 

 Δ𝒙

Δ𝑢
 =  

Δ𝑥1

Δ𝑢
𝒆1 + 

Δ𝑥2

Δ𝑢
𝒆2 + 

Δ𝑥3

Δ𝑢
𝒆3 (2) 

 

Now, taking the limit of the above equation as ∆𝑢 goes to zero yields the following 

differential representation of a changing position vector along C with respect to 𝑢: 

 

 𝑑𝒙

𝑑𝑢
 =  

𝑑𝑥1

𝑑𝑢
𝒆1 + 

𝑑𝑥2

𝑑𝑢
𝒆2 + 

𝑑𝑥3

𝑑𝑢
𝒆3 (3) 

 

The above quantity, 𝑑𝒙/𝑑𝑢, can be thought of as the average velocity of a body moving 

along C.  Although it does not explicitly depend on the arc length 𝑠, it can be rewritten as 

follows: 

 

 𝑑𝒙

𝑑𝑢
 =  

𝑑𝒙

𝑑𝑠

𝑑𝑠

𝑑𝑢
 =  𝒕

𝑑𝑠

𝑑𝑢
 (4) 

 

Here, the symbol 𝒕 denotes the unit tangent vector, which is the derivative of the position 

vector with respect to arc length.  The tangent vector is shown in (Figure 4), and always 

points in the direction of increasing arc length.  By definition, it is perpendicular to the 

instantaneous radius of curvature, 𝜌.  This radius of curvature always points in the direction 
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of the principal normal, or 𝒏 in (Figure 4) [6, 8, 9].  The principal normal points towards 

the center of curvature and is of unit length.   

Together, the principal normal and the tangent vector define the osculating plane 

[6, 9].  This is the plane in which the osculating circle is found.  The osculating circle is a 

virtual circle which shares the same center and instantaneous radius of curvature as a point 

on C.  The orientation of the osculating plane therefore changes with the orientation of the 

osculating circle.  Imagine C in the figure curving towards the negative 𝒙3 direction, as 

shown, and then turning back upwards towards the positive 𝒙3 direction.  This would cause 

the direction of 𝒏, which lies in the osculating plane and points towards the center of the 

osculating circle, to flip about C when the direction of the curve changes.  This relationship 

is imperative to understanding one-dimensional curvature, because the curvature vector 

always points in the direction of the principal normal.   

Recall that the tangent vector is the derivative of the position vector with respect to 

arc length.  Taking the second derivative with respect to arc length yields the curvature 

vector, or 𝜿.  The curvature is shown in (Figure 4), and its mathematical definitions are 

shown below. 

 

 
𝜿 =  

𝑑𝒕

𝑑𝑠
 =  

𝑑2𝒙

𝑑𝑠2
 (5) 

 
𝜅 𝒏 = 

𝑑𝑡

𝑑𝑠
 𝒏 (6) 

 
 𝜅 = 

1

𝜌
    (7) 
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As stated, the curvature vector is the derivative of the tangent vector with respect to arc 

length, and the second derivative of the position vector with respect to arc length.  The 

scalar quantity of curvature is simply 𝜅 and is the inverse of the instantaneous radius of 

curvature.  The scalar 𝜅 can be thought of as a measure of the degree to which C is curving.  

Essentially, it is the rate of change of the tangent vector as it travels along C in the direction 

of increasing 𝑢.  The curvature vector will always point in the same direction as the curve 

itself, or the same direction as the principal normal.   

This relationship between curvature vector and the curve itself is critical to the 

utility of a curvature measurement for the purposes of shape sensing.  If both the curvature 

direction and magnitude are known at a point on an inflatable, then the profile of the local 

area about that point can be estimated.  This is the strategy employed by NASA’s FBG 

chain, which will be discussed at length in the coming section.  By taking curvature 

measurements at many points on the inflatable surface, the entire profile can be interpolated 

and thus defined, to a certain degree of accuracy.  Of course, the accuracy of this method 

could be improved by placing more sensors in the same space and thereby reduce the 

amount of error present due to interpolation.  Additionally, more sensors could be placed 

at specific points of interest across the body, such as a point of a mounting interface.  This 

would be similar to the practice of increasing the density of finite elements around points 

of high stress concentration or complex geometry when performing finite element analysis.  

When employed properly, the curvature readings from the surface of an inflatable can 

become a powerful means of sensing its shape. 
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At this point, it is important to reiterate that the curvature quantity discussed above 

is a vector, which points in a single direction by definition.  This is due to the nature of the 

curve itself; it only possesses a single dimension, length, and thus can only experience 

curvature in one direction at a time.  Regardless of the direction or degree to which C is 

curving, at each individual point along C, the curvature is only ever a vector which acts 

along a single direction.  This means that any method which utilizes simple curvature 

measurements would only capture a single profile or cross section of the total surface.  An 

inflatable body’s surface is after all two-dimensional, and additional sensors would need 

to be placed in multiple directions to detect the curvature in more than one dimension.  This 

will prove to be the motivation for the second part of this investigation, which will be 

discussed in subsequent sections. 

2.2. Contemporary Methods for Sensing Curvature 

2.2.1. Fiber Bragg Gratings and the NASA Effort 

One of the most accurate means of sensing curvature with intrinsic embedded 

sensors, available today, involves the use of fiber optic strain gages, also known as Fiber 

Bragg Gratings.  These are sections in a fiber optic cable which have been specially treated 

to exhibit different refractive properties than the rest of the cable.  A length of fiber, which 

is made of glass, has a certain refractive index associated with its optical density.  The 

variation of refractive index with radial position is the reason why fiber optic cables are 

able to transmit data; the interior index is so high that complete internal reflection occurs 

along the length of the fiber.  So, if a light source enters one end of the fiber, it will reach 

the far end of the fiber with minimal loss of intensity.  Some loss may occur around tight 
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bends in the cable, as these essentially reduce the angle required for the light to be 

transmitted out of the surface of the fiber.   

Typically, it is desirable for the refractive indices of the various layers of a fiber to 

be uniform along the length.  Any deviation would be viewed as a defect in the fiber.  

However, in an FBG, the refractive index of the core is intentionally altered to create 

regions of higher optical density.  There are several methods for fabricating FBGs, but all 

of them make use of UV light to alter the refractive index of the fiber [10].  During the 

manufacturing process, the center of a fiber is doped with a photosensitive compound.  

These doping compounds typically include Germanium and cause the center of the fiber to 

be sensitive to permanent change via UV radiation [10, 11].  Holographic or interferometric 

methods will split UV laser light into two separate beams, and then recombine them to 

produce an interference pattern on the fiber [10].  This pattern, often comprising thousands 

of fringes, reacts with the doping compound within the fiber.  Any region of the fiber 

exposed to the UV light has its refractive index permanently altered [10, 11].  The spacing 

of these regions can be adjusted by changing the interference pattern.  Other, 

noninterferometric, methods make use of periodic pulses of UV light, or shine UV light 

through a specially designed phase mask to activate the doping compound within the fiber 

and produce the desired regions of high optical density.  A grating is a collection of many 

such regions; when the spacing of these regions is chosen to correspond with a specific 

wavelength, it is known as a Fiber Bragg Grating [10, 11].  When a spectrum of light is 

shown on one end of the fiber containing an FBG, this predetermined wavelength, known 
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as the Bragg wavelength, will be reflected back to the source end.  The following figure 

gives a depiction of this process (Figure 5). 

 

        Figure 5: FBG Operating Principle [12] 

 

Note that the reflected peak is returned to the end of the fiber into which the incident 

spectrum is shown.  This means that only one end of the fiber need be connected to an 

interrogating device, a particularly useful characteristic for remote sensing of structures or 

inflatables.  The peak in the above graphic shows the Bragg wavelength (𝜆B), which is 

related to the fringe spacing (Λ) within the grating by the following equation: 

 

 𝜆𝐵 = 2𝑛Λ (8) 

 

In this equation, 𝑛 signifies the effective index of refraction of the grating.  This 

refractive index is subject to change with the conditions affecting the fiber [13].  
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Specifically, if the FBG experiences a mechanical strain or a change in temperature, the 

effective index of refraction will change.  This change can be quantified, and thus the strain 

or temperature variance can be measured.  The following equation gives the relationship 

between wavelength shift (∆𝜆/𝜆𝑜) and strain (𝜀) and temperature change (∆𝑇). 

 

 Δ𝜆

𝜆𝑜
  =   𝑘 𝜀 +   𝛼𝛿  ∆𝑇 (9) 

 

The 𝑘 term is known as the gauge factor, and is generally approximately 0.78.  The gauge 

factor is a constant which allows one to determine the strain associated with a change in 

wavelength.  The term 𝛼𝛿 is the change in refractive index with respect to temperature.  

Although the temperature sensing capabilities of FBGs are impressive, they are not 

included in this study.  This essentially means that the term on the far right of the above 

equation can be neglected.  That term applies to the change in refractive index, and thus 

wavelength, caused by the temperature change.  Provided there is no temperature change 

during the straining process, then there is no effect on the wavelength.  It should be noted 

that the strain term above is actually a combination of mechanically caused strain and strain 

due to temperature change [14].  Not only does the index change due to mechanical strain, 

but as the temperature of the FBG changes, it undergoes thermal expansion or contraction.  

This accounts for an additional strain contribution, which can complicate attempts to 

measure purely mechanical strain.  Fortunately, just as the thermal effects on the refractive 

index, as long as the temperature change is insignificant, then so are its effects on the 
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wavelength shift.  Without the impact of temperature, the only factor influencing 

wavelength shift is the mechanical strain, which is illustrated in the figure below (Figure 

6). 

 

   Figure 6: Effect of Strain on Wavelength [15] 

 

This figure demonstrates the reflected peak, which is the Bragg wavelength, shifting to a 

longer wavelength as the FBG is stretched.  The reverse is also true; as the FBG is 

compressed, the peak will shift towards a shorter wavelength, resulting in a negative value 

for the calculated shift.  By measuring this shift, one can determine the amount of strain 

present in the fiber. 

Obtaining a measure of the curvature from FBGs is directly related to measuring 

the strain.  In fact, a curvature reading simply requires two FBGs on either side of the curve 

and a known separation distance.  Imagine a beam that is bending with one FBG on the 

outside of the bend, and another on the inside.  The outer FBG will be in tension, while the 

inner FBG will be in compression.  This will result in a positive strain for the FBG in 
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tension, and a negative strain for the FBG in compression.  If the thickness of the beam is 

known, then the curvature is the difference in the two strains divided by the beam thickness 

[5].  This is a simple relationship derived from the geometry of the Bernoulli-Euler Beam 

model, where plane sections perpendicular to the centroidal axis remain planar and 

perpendicular to the centroidal axis after deformation.  This relationship is written in the 

following equation. 

 

 Δ𝜀

𝑑
 =  

𝜀2 − 𝜀1

𝑑
 =   

1

𝜌
 =   𝜅  (10) 

 

The 𝑑 term is the distance or thickness separating the FBGs.  The assignment of 𝜀1 and 𝜀2 

can be arbitrary in this case, as the hypothetical beam was given no orientation.  For a 

surface, the strain measured in the FBG on the top of the surface would typically be 

assigned to 𝜀2.  This ensures that a convex curve of the surface exhibits positive curvature, 

while a concave portion of the surface would exhibit negative curvature.  Note that by 

taking the difference between the two strains, any common stretching behavior in the 

direction of the FBGs is eliminated.  The equation above is the governing principle of the 

FBG chain used by NASA in their shape sensing research. 

The NASA project is truly a revolutionary method of shape sensing.  Although 

similar to the beam bending problem discussed above, this technique is far more complex.  

Instead of using just two FBGs, the NASA project makes use of three separate cores, all of 

which contain strain-sensing FBGs [5].  By using three strain measurements at any given 
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point along the cable, this device can detect any direction of curve experienced by the cable.  

Recall the beam example, which used only two FBGs.  As long as the beam was bending 

such that the FBGs were on either side of the curve, then those two would suffice.  

However, if the beam were to bend in a new direction orthogonal to its original bend 

direction, the two FBGs would no longer be on either side of the curve.  Any curvature 

associated with this in-plane bending of the beam would be impossible to detect with the 

current configuration.  This is why the NASA cable has three separate cores; regardless of 

the bend direction, the curving behavior of the cable can always be captured.  With the 

curvature measured, one can essentially work backwards to determine the shape of the 

cable.  NASA uses similar equations to the ones introduced in the section of this paper 

discussing space curves, known as the Frenet-Serret formulas, to perform these calculations 

[5, 6].  This is how the NASA FBG chain can be used to generate a virtual image of the 

cable itself.  Thus, the FBG chain is capable of measuring a curve in any single direction, 

and the only limitation on its accuracy in this respect is the number of FBGs along the 

cable. 

In order to place a large number of FBGs within the length of their cable, NASA 

turned to a technique known as multiplexing.  This is typically done to increase the number 

of signals that can be sent through a fiber.  A device called a multiplexer separates an 

incident spectrum of light into specific wavelengths that are then shone into one end of the 

fiber.  On the far end of that same fiber, another device interrogates the now many 

wavelengths of light and their associated data.  This greatly increases the amount of 

information that can be sent through a single fiber, which is why NASA chose to employ 
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this technique.  Multiplexing with FBGs does not require an initial multiplexer, because 

each FBG can be written to reflect a different wavelength.  By writing many FBGs, each 

with a unique wavelength, into a single fiber, the requirement of multiplexing is fulfilled 

[13].  The resulting fiber can be thought of as a chain of FBGs.  Not only does each FBG 

measure strain independently of the others in the chain, but each unique wavelength 

corresponds to the position along the curve at which that FBG can be found.  The three 

multiplexed FBG chains thus allow researchers at NASA to know both the location and 

curvature of many points along the cable.  This is why the computer generated image in 

(Figure 3) looks nearly identical to the chain itself.  It is a very powerful technique for 

measuring curvature due to the high accuracy of the FBGs. 

Despite the numerous advantages afforded by the NASA fiber optic cable, this 

method is still limited in its shape sensing capabilities.  Because the cable is in essence a 

space curve, it can only ever experience curvature in one direction at a time.  This means 

it can only measure a single direction of curvature at a time.  As previously stated, the 

geometry of a surface cannot be captured by a single component of curvature.  In order to 

provide more than just a profile of the inflatable surface, the NASA FBG chain must weave 

back and forth across an area multiple times.  When the virtual image of the chain used in 

this manner is generated, one can glean a general understanding of the surface geometry.  

However, surface details are lost between the bends of the cable.  Additionally, any 

inaccuracies of the method, such as those caused by twist within the fiber, distort the image 

created by the computer.  Although recent developments suggest that NASA can now 

account for twist within the cable, the underlying shortcomings of their shape sensing 
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method persist.  This is due to the nature of the method itself.  The fiber cable can sense its 

own curvature very accurately, but this is not equivalent to the curvature of the surface 

upon which it rests.  While the cable method can provide a qualitative depiction of a 

surface, it cannot be used to quantify the curvature of that surface.  This requires a distinct 

approach to the problem of shape sensing; one which measures the curvature of the surface 

and not simply a space curve.  With an accurate measure of the surface geometry at multiple 

points about an inflatable, the geometry of the spaces between sensors could be inferred.  

With the current NASA method, the regions in between cable runs are completely 

unmeasured, and researchers can only guess as to their precise geometries.   

A more comprehensive approach to shape sensing requires the measuring of three 

components of curvature on the surface.  This requires the fabrication of a novel sensor 

array specifically designed to measure the curvature of a surface.  With enough of these 

new sensors placed about an object, the complete geometry can be known, and the inflation 

process can be monitored.  As a proof-of-concept exercise, an inflation controller was 

designed to receive inputs in the form of curvature measurements and use them to control 

the flow of air into an inflatable.  In this preliminary study, the selected curvature sensors 

were of the conductive ink type.  These bend or flex sensors, as they are also known, are 

discussed in the next section. 

2.2.2. Conductive Ink Based Flex Sensors 

Although the accuracy of FBGs makes them highly valued for shape sensing, an 

economic alternative is the flex sensor. 2 This flexible potentiometer provides a variable 

electrical resistance which depends on the amount of bend present in the body of the sensor.  
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The sensor body, or substrate, is made from a material which is both flexible and 

electrically insulating [16].  A conductive ink is then applied to the substrate.  Once dried, 

this conductive ink becomes a connection between two electrical contacts.  The figure 

below shows a typical conductive ink type flex sensor with a loop of wire attached to its 

contacts (Figure 7). 

 

           Figure 7: Flex Sensor Made With Conductive Ink [17] 

 

As the substrate is bent, the conductive ink is strained longitudinally and experiences a 

reduction in its cross sectional area.  Moreover, the conductive ink begins to crack and 

from gaps as it is deformed [16].  Both of these behaviors contribute to an increase in the 

electrical resistance of the potentiometer.  This change in resistance is proportional to the 

amount of deflection of the substrate.  The following figure shows three potential 

configurations of a bend sensor and the associated changes in resistance (Figure 8). 
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Figure 8: Flex Sensor Behavior [18] 

 

The process depicted above occurs in a predictable manner, and the resistance fluctuation 

can be measured simply by applying a voltage across the two contacts.   

In order to measure curvature using a flex sensor, one must calibrate each sensor 

individually.  This is because the exact process by which the conductive ink cracks and 

deforms is unique to each sensor.  A simple method of calibration employs test surfaces of 

known curvature.  With a known voltage applied, the flex sensor is shaped to fit the curved 

surface, and the resulting voltage change is recorded.  By performing this process for a 

number of known curvature values, the flex sensor can be calibrated.  A number of test 

surfaces are required.  While the resistance varies in a repeatable manner, it does not vary 

linearly with the bending of the substrate.  This necessity for individual calibration is one 

of several disadvantages encountered with the use of flex sensors.   

Another prominent shortcoming of the flex sensor is the nature of its variable 

resistance.  As the sensor is bent, the resistance change is a result of an average amount of 
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curvature present in the substrate.  Depending on the surface which it measures, the 

substrate could be severely bent on the end closest to the contacts and relatively flat on the 

end furthest from the contacts.  This would yield a specific increase in resistance, which 

could then be measured.  However, the exact same resistance change could be caused by 

the reverse situation, with a flat portion near the contacts and a severe curve on the far end.  

There is also a configuration in which the substrate experiences a consistent amount of 

curvature which would yield the same exact resistance change.  Thus, a simple voltage 

drop caused by a flex sensor is not enough to define the curvature of a surface; it will only 

give an average reading of the curvature in the substrate.  Fortunately, this issue can be 

largely overcome by choosing an appropriate size for the flex sensor.  Due to its design, 

the flexile potentiometer can be produced in a multitude of sizes.  This allows one to select 

a flex sensor which is relatively small when compared to the surface it will be measuring.  

In this case, an average reading of curvature will likely be representative of the curve 

present on the surface in the area immediately surrounding the flex sensor. 

Another disadvantage comes from the fact that the flex sensor is once again a one-

dimensional curve.  Just as the NASA cable, a flex sensor can only provide a reading of 

curvature in a single direction.  So once more, a new method of curvature must be 

developed which captures the curvature of a surface, not just a space curve. 

Despite these disadvantages, there are several reasons to justify the use of flex 

sensors in shape sensing applications.  For one, the flex sensor itself is relatively robust.  

When compared to an FBG, the flex sensor substrate can withstand a far greater amount of 

physical trauma that may occur during the inflation process.  In addition, the average flex 
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sensor is far less expensive to manufacture when compared to an FBG.  They are also 

considerably easier to use in a controller application; flex sensors can be reduced to simple 

analog voltage inputs whereas FBGs require sophisticated interrogation equipment and 

software.  For these reasons, the flex sensors were chosen for a prospective inflation 

controller, which is the focus of the next section. 

 

2.3. Curvature-Based Inflation Controller 

2.3.1. Design Objectives and Theory 

The current need for accurate shape sensing of inflatables is based on the notion 

that an inflatable can be monitored and its inflation controlled.  As a preliminary 

investigation into this quandary of improving shape sensing, a Curvature-Based Inflation 

Controller was designed.  The goal of this CBIC was to serve as a proof of concept for the 

potential application of a novel shape sensor.  Successful operation of the inflation 

controller would then justify additional study in the field of shape sensing.   

The main objective of the controller was to autonomously inflate an initially 

deflated body to desired final inflation level.  This final inflation level would be measured 

solely by sensing the shape of the inflatable, as opposed to using a pressure gauge or some 

other technique.  This distinction is important for two reasons; (1) for a successful design, 

it would support the notion of using shape sensing, and (2) it makes this controller unique.   

In order to use contemporary shape sensing methods as the only source of feedback, 

several assumptions were necessary.  First, it was assumed that the body in question 

contained regions that could be described by the simple, one-dimensional, curvature.  This 
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is because the current shape sensing techniques only allow for the measurement of one 

direction of curvature at a time.  This assumption is easily justified, as there are many 

possible inflatable geometries which contain one or more regions characterized by a single 

direction of curvature.  Such regions are referred to as parabolic points, and will be 

discussed further in the next chapter.  However, a simple example of a parabolic region is 

the side body of a cylinder.  The only direction of curvature is in the plane of the 

circumference of the cylinder.  So, for this simple geometry, a single dimension of 

curvature could suffice to sense its shape, assuming the body inflates uniformly, and no 

unexpected bending or folding occurs.  This is the essence of the second main assumption 

for the controller design: that the inflation process itself is spatially smooth, and no 

unexpected complications arise during inflation.  Essentially, the inflation process must 

occur such that the measured regions are initially flat, and gradually become more curved 

as the body is inflated.  The maximum curvature of these regions will be reached only when 

the body is fully inflated, and not before.  This also assumes that no portion of the body 

will inflate more quickly than the rest, as this would again lead to curvature in more than 

one direction at a time, which cannot be captured at present.  With these assumptions 

defined, the controller could be designed. 

The first step in designing this inflation controller was the selection of the inflatable 

object itself.  A child-sized air mattress was chosen for its relatively simple geometry, ease 

of inflation control, and low cost.  For instance, the sides of the air mattress exemplify the 

desired parabolic geometry.  In addition, the internal structure of the mattress is somewhat 

representative of that of inflatable space structures, with multiple chambers designed to 
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hold its shape.  Finally, the material of the mattress is useful as it limits the amount of 

stretching within the surface itself.  While it is not fabric-reinforced as many inflatable 

space structures are, the vinyl of the air mattress does not stretch in an appreciable amount 

during the process of routine inflation.  This is important, as the type of deformation of 

interest is curvature, and excessive stretching could potentially skew sensor readings. 

With the inflatable chosen, the selection of the remaining parts was relatively 

straightforward.  The choice of actuator, or air pump in this case, was obvious.  The air 

mattress was accompanied by a small air pump which could be plugged into a 120VAC 

power supply.  This pump would be operated by a relay, which would interrupt the power 

going to the pump when the mattress was fully inflated.   

The relay would then be controlled by a programmable Arduino board, which was 

chosen for its ease of operation.  The figure below shows the control loop used for the 

design of the CBIC (Figure 9). 

 

         Figure 9: CBIC Control Loop 

 

As shown on the left of the figure above, the control loops begins with the AC power 

supply, in this case a wall outlet.  The Arduino controller then operates the relay, which 

allows the actuator, an air pump, to be powered.  The plant is of course the air mattress, 
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which is inflated by the air pump.  As the mattress inflates, the flex sensors detect the 

curvature at specified points.  The Arduino board then uses this sensor feedback to turn the 

relay off once the desired level of inflation is achieved.  Although not particularly powerful, 

this Arduino board could be easily programmed to carry out the task of operating the relay 

based on the shape sensor input.  In a sense, the relatively minimal computing power of the 

Arduino was ideal for demonstrating the overall simplicity of the CBIC.  This simplicity is 

surely a desirable attribute in space applications, where so many complex systems exist 

and quantities like voltage and CPU usage are strictly rationed. 

As previously stated, the shape sensing technique employed by the CBIC was the 

flexible potentiometer, or bend sensor.  These were chosen for both their durability and 

availability.  Given that the precise conditions of the inflation process are still largely 

unknown, the plastic resin substrate of the flex sensors made them the conservative choice.  

In addition, the flex sensor technology has existed for decades, making them widely 

available and relatively low in cost.  These factors made flex sensors the logical choice for 

sensing curvature with the CBIC. 

Once the control loop was designed, and the parts chosen, the complete CBIC 

system could be designed.  The final design is shown in the figure below (Figure 10). 
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Figure 10: CBIC Final Design 

 

Note the positions of the flex sensors, chosen to ensure that regions of simple curvature 

would be measured.  Additionally, the central position of the Arduino board was chosen 

for the convenience of routing the wires from each sensor to the board.  The small DC 

power supply for the Arduino depicted above is in fact a 9V battery.  The combined weight 

of the components in the center of the mattress was deemed to be inconsequential to the 

inflation process.  The procedure for constructing and testing the above design is 

documented in the next section. 
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2.3.2. Fabrication and Testing 

The first part of the CBIC to be completed was the circuit required to collect 

curvature measurements with the flex sensors.  A simple voltage divider would allow one 

to measure a potential difference across the flex sensor, and thus the curvature reading.  

The next step involved connecting the circuit to the Arduino board, which naturally needed 

to be programmed to read and display the data from the flex sensor.  Once a functioning 

code was written, the analog voltage from the flex sensor could be viewed in the serial 

monitor, a feature built in to the Arduino programming software.  This allowed the flex 

sensor to be calibrated using precisely cut wooden blocks of known curvature.   

The code was then extended to include six separate sensors.  The complete Arduino 

code can be found in the Appendix.  The routine is essentially a while-loop which maintains 

voltage to a relay as long as at least one of the six sensors is reading a value below a 

predetermined threshold.  The purpose of the while loop was to ensure that any minor 

asymmetry of the inflation process would be accounted for.  If one or more portions of the 

mattress reached their defined maximum before the rest, the controller would continue to 

inflate until all regions had reached their threshold values.  These threshold values would 

correspond to a level of curvature that was consistent with the desired level of inflation.  

The same code was used to set the threshold values; the code contains instructions for the 

displaying of sensor data in the serial monitor.  Because every flex sensor differs slightly 

in terms of overall resistance, each of the six sensors used in the CBIC required its own 

threshold value.  With the flex sensors attached to the air mattress, the controller was turned 

on and the relay allowed power to be supplied to the air pump.  Initially, provisional 
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threshold values were deliberately set high so that they were never reached.  This allowed 

the air mattress to become fully inflated while the analog voltage signals from all six 

sensors were displayed in the serial window.  When the desired level of inflation was 

reached, the displayed analog voltage values were recorded and used to set the threshold 

values for the subsequent experiments.   

Testing of the CBIC was initiated by simply connecting the DC power supply to 

the Arduino board.  The two states of the air mattress, before and after the inflation process, 

are shown in the figure below (Figure 11).  

 

Figure 11: CBIC Inflation Test - Before and After 

 

The image on the left hand side shows the initial, deflated state, while the image on the 

right hand side shows the final, inflated state.  Once powered, the Arduino controller 

operated the relay, and the air pump began to inflate the air mattress.  During the inflation 
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process, the flex sensors detected increasing curvature values in the specified regions 

around the inflatable body.  The Arduino continually monitored the status of the flex 

sensors to ensure that continued inflation was necessary.  After several minutes, the flex 

sensors began to detect curvature that was consistent with the desired level of inflation.  

When all six sensors had reached their defined threshold values, the controller switched 

the relay off.  This shut down the air pump, and the inflation process was terminated. 

2.3.3. Results and Discussion 

The outcome of the CBIC test described above was on the whole positive; the 

controller performed as expected, and the overall goal was achieved.  The mattress was 

fully inflated as desired, and the only feedback received by the controller was that of shape 

sensing.  In a binary assessment of whether or not it was successful, the CBIC test was 

indeed successful.  This result has implications, as well as several important caveats.   

The major implication of the test result is this: the strategy of controlling inflation 

by means of shape sensing is apparently a viable one, with many potential applications 

space inflatables.  For its relatively simple design, the CBIC was effective at inflating the 

air mattress to the desired inflation level.  Due to its design, the CBIC could even be 

adapted to inflate other bodies with differing geometries.  The code could easily be altered 

to vary the number of sensors being used to sense the inflatables’ shapes.  There would 

have to be regions of simple curvature, just as the air mattress, but this is not an unlikely 

assumption.  Provided the body could be first inflated to set the sensor threshold values, 

the CBIC could control any subsequent inflation.  Of course, many different inflation 
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controllers could be designed to be more robust than the CBIC.  However, these results 

certainly aid in justifying any endeavor to develop more sophisticated controllers. 

Despite the overall success of the CBIC test, there are numerous aspects of the 

CBIC which require improvement.  As mentioned above, the CBIC design is very simple.  

This is an advantage from certain perspectives, but can be a disadvantage in the context of 

shape determination.  While the method for shape sensing employed by the CBIC was 

sufficient for this laboratory test, it is likely that the system would not function properly in 

the field.  Recall the original motivations for using shape sensing over other means of 

inflation control feedback, such as pressure gauges: whereas current methods assume a 

spatially smooth inflation process without any unexpected behavior, shape sensing would 

not.  The true advantage to shape sensing should be the capacity to diagnose any potential 

issue before it becomes problematic.  Unfortunately, the CBIC requires the same type of 

gradual, well-behaved inflation process as most modern methods in order to be successful.  

Any unforeseen complications in the inflation process could potentially cause the CBIC to 

fail.  Moreover, once inflated, there are many problems that could arise which would go 

undetected by the CBIC.  This is a combined result of both the method of shape 

determination and the limited utility of the shape sensors themselves.   

The CBIC’s shape sensing technique relied heavily on the simplicity of both the 

inflatable’s geometry and the inflation process.  Due to the low number of sensors 

employed, there were large regions of the air mattress whose behavior was uncaptured.  

For instance, it is possible that folding could occur between the flex sensors and go 

unnoticed by the controller.  Because it uses curvature measurements to determine inflation 
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progress, the CBIC is technically employing a shape sensing method.  However, the CBIC 

falls short of actually determining the overall geometry of the inflatable.  At no point in the 

inflation process did the controller identify or make use of the actual values of the 

curvatures being measured by its sensors.  Such information was not necessary for this 

simple test, as both the inflation process and the final geometry were well understood.  This 

would certainly not be true of the inflation of an actual space structure in the field, and thus 

a more sophisticated means of shape determination is required.  The true goal of shape 

sensing is to identify the geometry of a body at any stage, without relying on its final 

geometry or a smooth inflation process.  This requires not only quantifying the curvature 

of the body at many points, but an intelligent control system which can use these curvature 

readings to assemble a virtual depiction of the body.  Recall the NASA FBG chain and its 

computer-generated image.  This is the functionality required of shape sensing systems in 

order to detect any unforeseen complications during inflation, as well as continue to 

monitor the overall health of the inflatable. 

The overall shape determination strategy was not the only shortcoming of the 

CBIC.  The flex sensors that were used are far from ideal in terms of accurately measuring 

curvature.  As stated in a prior section, the flex sensors are prone to errors along their length 

due to an averaging effect.  This prevents them from being able to distinguish a region of 

constant curvature from a region of multiple curvatures whose average is being detected.  

Again, this is a result of the flex sensors being mere potentiometers and not specifically 

calculating a true value for the curvature, as FBG shape sensing methods do.   
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It is important to note that while FBG techniques for sensing curvature do in fact 

calculate a value based on the sensor data, they are not an all-encompassing solution for 

the limitations of the CBIC.  This is because both FBG pairs and flex sensors are incapable 

of sensing curvature in more than one direction at a time.  This means that the geometry of 

a body will be largely undetermined, as the curvature in the directions orthogonal to the 

sensors could not be measured.  Capturing this information for a surface would require a 

novel shape sensor, with the capacity to measure curvature in multiple directions.   

If such a sensor could be developed, there would be many advantages over the 

current methods.  One could gain a detailed understanding of a two-dimensional surface 

without any prior knowledge about the geometry.  This would require no preliminary phase 

to set threshold values for curvature, because this new sensor would actively detect and 

monitor curvature.  By employing these novel sensors about an inflatable, the true 

geometry of the body could be known in real time.  The proposed capabilities are beyond 

that of modern flex sensors, as well as contemporary FBG curvature-sensing techniques.  

This new sensor would be instrumental in monitoring both the inflation and overall health 

status of an inflatable.  The second portion of this project is an investigation into the 

development of such a sensor. 
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CHAPTER 3: CURVATURE IN MULTIPLE DIRECTIONS 

3.1. The Geometry of a Surface 

The primary objective of the new curvature sensor is to capture the geometry of the 

surface of an inflatable as opposed to merely that of a space curve.  In order to fully explore 

this distinction, the mathematical definition of a surface will now be introduced.  

Additionally, the concept of curvature as it pertains to a surface will be discussed. 

A surface is a two-dimensional entity which exists in three dimensions.  It can be 

thought of as a thin sheet of paper, whose thickness is insignificant compared to its other 

two dimensions.  The sheet extends in two directions, yet it can bend and curve through 

space.  For any surface S in three-dimensional space, the location of any point can be 

described by its Cartesian coordinates.  These coordinates are expressed as a position 

vector 𝒙, just as for a space curve.  However, instead of 𝒙 being a function of a single 

parameter 𝑢, the position vector of a surface depends on two distinct parameters, 𝑢1 and 

𝑢2.  These are curvilinear coordinates which can vary with time and are assigned to the 

surface itself.  The following expression gives the position of a point on S as a function of 

curvilinear coordinates [8, 9]. 

 

 𝒙 = 𝒙(𝑢1, 𝑢2) =  𝑥1(𝑢1, 𝑢2)𝒆1 + 𝑥1(𝑢1, 𝑢2)𝒆2 + 𝑥3(𝑢1, 𝑢2)𝒆3 (11) 

 

Once again, the 𝒆𝑖 terms denote the unit vectors in the three Cartesian directions.  The 𝑢𝑖 

terms span the surface in different directions; if they were to describe the same direction, 

then 𝑢1 is equal to 𝑢2 and the surface simplifies to a space curve.  When either 𝑢1 or 𝑢2 is 
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constant along a curve on S, it is known as a parametric curve or coordinate curve [8, 9].  

Together, the parametric curves of 𝑢1 and 𝑢2 form a virtual net on S, just as lines of latitude 

and longitude cover the surface of the Earth [9].   

A surface can be defined as the set of points described by a function 𝑓 of the three 

Cartesian coordinates, as shown below [8]. 

 

 𝑓(𝑥1, 𝑥2, 𝑥3) =  0 (12) 

 

Many surfaces can be written such that a single coordinate 𝑥𝑖 is a function of the other two 

coordinates.  This form is shown in the following equation [8]. 

 

 𝑥3 = 𝑓(𝑥1, 𝑥2) (13) 

 

This form requires that for each ordered pair (𝑥1, 𝑥2), there is exactly one value of 𝑥3.  This 

would be indicative of a surface which rises and falls yet never doubles over or covers 

itself.  A specific example of this form is the hyperbolic paraboloid, given by the following 

equation: 

 

 
𝑥3 = 

𝑥1
2

𝑎2
 −  

𝑥2
2

𝑏2
 (14) 
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The terms 𝑎 and 𝑏 are constants.  The following figure shows a hyperbolic paraboloid, or 

saddle surface (Figure 12). 

 

 

Figure 12: Hyperbolic Paraboloid 

 

The saddle surface in the figure above is important to this discussion of curvature, as it 

exhibits positive curvature in one direction and negative curvature in the other. 

In order to discuss the curvature of a surface, we will proceed formally, following 

the explanation of Kreyszig [8].  When describing a surface, it is useful to establish a 

metric.  A metric of a surface is a tool which allows us to take measurements of that surface.  

The particular metric of interest is the element of arc, 𝑑𝑠.  This is a basic unit for measuring 

arc length, and is unique to the geometry which it describes.  Beginning with the one-

dimensional case of a space curve, the Pythagorean Theorem leads to the following 

expression for the element of arc: 
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 𝑑𝑠2 = 𝑑𝑥1
2 +  𝑑𝑥2

2 +  𝑑𝑥3
2 (15) 

 𝑑𝑠2 =  𝑑𝒙 ∙ 𝑑𝒙 (16) 

 

Since 𝒙 = 𝒙(𝑢1, 𝑢2), the above derivative must be taken with respect to both surface 

parameters, as shown below. 

 

 
𝑑𝒙 =  

𝜕𝒙

𝜕𝑢1
𝑑𝑢1 + 

𝜕𝒙

𝜕𝑢2
𝑑𝑢2 (17) 

 

This leads to the following expression for the element of arc 𝑑𝑠 [7]: 

 

 
𝑑𝑠2 = (

𝑑𝒙

𝑑𝑢1
𝑑𝑢1 + 

𝑑𝒙

𝑑𝑢2
𝑑𝑢2) ∙ (

𝑑𝒙

𝑑𝑢1
𝑑𝑢1 + 

𝑑𝒙

𝑑𝑢2
𝑑𝑢2) (18) 

 

This can be rearranged in the form of a quadratic in 𝑑𝑢1 and 𝑑𝑢2: 

 

 
𝑑𝑠2 =  

𝑑𝒙

𝑑𝑢1
∙
𝑑𝒙

𝑑𝑢1

(𝑑𝑢1)
2  +  2

𝑑𝒙

𝑑𝑢1
∙

𝑑𝒙

𝑑𝑢2
𝑑𝑢1𝑑𝑢2  +  

𝑑𝒙

𝑑𝑢2
∙
𝑑𝒙

𝑑𝑢2

(𝑑𝑢2)
2 ≡ I (19) 

 

The above expression is known as the first fundamental form of a surface.  This is an 

invariant, meaning that for the given surface, 𝑑𝑠 will be constant value regardless of 

coordinate convention.  The coefficients in the above expression are the components of the 

first fundamental tensor, or metric tensor ℊ𝑖𝑗, shown below [8, 9, 19, 20]. 
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ℊ𝑖𝑗 = [
ℊ11 ℊ12

ℊ21 ℊ22
] =

[
 
 
 
𝑑𝒙

𝑑𝑢1
∙
𝑑𝒙

𝑑𝑢1

𝑑𝒙

𝑑𝑢1
∙

𝑑𝒙

𝑑𝑢2

𝑑𝒙

𝑑𝑢2
∙
𝑑𝒙

𝑑𝑢1

𝑑𝒙

𝑑𝑢2
∙

𝑑𝒙

𝑑𝑢2]
 
 
 

= [
𝐸 𝐹
𝐹 𝐺

] (20) 

 

Here, the symbols 𝐸, 𝐹, and 𝐺 are typically used for convenience.  Because the scalar 

product of two vectors is commutative, the terms ℊ12 and ℊ21 will always be equal.  The 

metric tensor can be used to describe a surface by its first fundamental form. 

The curvature of a surface depends not only on the first fundamental form, but the 

second fundamental form as well.  The second fundamental form is given by the following 

expression [8]. 

 

 −𝑑𝒙 ∙ 𝑑𝑵 ≡ II (21) 

   

 
−

𝑑𝒙

𝑑𝑢1
∙
𝑑𝑵

𝑑𝑢1

(𝑑𝑢1)
2 − 2

𝑑𝒙

𝑑𝑢1
∙
𝑑𝑵

𝑑𝑢2
𝑑𝑢1𝑑𝑢2 − 

𝑑𝒙

𝑑𝑢2
∙
𝑑𝑵

𝑑𝑢2

(𝑑𝑢2)
2 ≡ II (22) 

 

Here, 𝑵 refers to the surface normal, which differs from the principal normal of Section 

2.1.  The surface normal is perpendicular to the tangent plane at a point on the surface and 

is found by taking the cross product of the two derivatives of 𝒙 with respect to the surface 

parameters 𝑢1 and 𝑢2 [8, 19].  It can be found via the following equation. 
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𝑵 = 

𝑑𝒙
𝑑𝑢1

 ×  
𝑑𝒙
𝑑𝑢𝟐

|
𝑑𝒙
𝑑𝑢1

 ×  
𝑑𝒙
𝑑𝑢𝟐

|
  (23) 

 

The second fundamental form is also an invariant.  Its coefficients are the 

components of the tensor of the second fundamental form, 𝑏𝑖𝑗, shown below [8, 9, 19, 20]. 

 

 

𝑏𝑖𝑗 = [
𝑏11 𝑏12

𝑏21 𝑏22
] =

[
 
 
 −

𝑑𝒙

𝑑𝑢1
∙
𝑑𝑵

𝑑𝑢1
−

𝑑𝒙

𝑑𝑢1
∙
𝑑𝑵

𝑑𝑢2

−
𝑑𝒙

𝑑𝑢2
∙
𝑑𝑵

𝑑𝑢1
−

𝑑𝒙

𝑑𝑢2
∙
𝑑𝑵

𝑑𝑢2]
 
 
 

= [
𝑒 𝑓
𝑓 𝑔

] (24) 

 

Just as for the first fundamental tensor, 𝑏𝑖𝑗 is assigned the symbols e, f, and g for 

convenience.  Also, as shown above, 𝑏𝑖𝑗 is symmetric, meaning that 𝑏12 is equal to 𝑏21. 

Both fundamental forms I and II are characteristics of the surface itself, and their 

ratio is the scalar normal curvature, 𝜅𝑛 [8].  This is shown in the equation below [8, 9, 19, 

20]. 

 

 
𝜅𝑛 = 

II

I
=  

−𝑑𝒙 ∙ 𝑑𝑵

𝑑𝒙 ∙ 𝑑𝒙
=  

𝑒(𝑑𝑢1)
2 + 2𝑓𝑑𝑢1𝑑𝑢2 +  𝑔(𝑑𝑢2)

2

𝐸(𝑑𝑢1)2 + 2𝐹𝑑𝑢1𝑑𝑢2 +  𝐺(𝑑𝑢2)2
 (25) 

 

This is the mathematical definition of the normal curvature of a surface, which is the same 

as the one-dimensional curvature of the space curve from Section 2.1.  In the case of the 

surface, 𝜅𝑛 is specific to the direction of the tangent vector, which defines the direction of 
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the curve, and incorporates the second derivative of position with respect to movement 

along the surface.  For any point on S, there are an infinite number of curve directions and 

associated curvatures.  To find the normal curvature for any given tangent vector, the 

Weingarten Equations must be used [19].  These equations use the two fundamental forms 

to construct a third tensor 𝜅𝑖𝑗  which describes the complete state of curvature for a point 

on a surface.  This tensor is often called the Shape Operator, but can also be referred to as 

the Weingarten Map or the tensor of curvature.  The Weingarten Equations, and the 

associated Weingarten tensor are given below [19, 20].   

 

 
𝜅11 = 

𝑓𝐹 − 𝑒𝐺

𝐸𝐺 − 𝐹2
 (26) 

 
𝜅12 = 

𝑔𝐹 − 𝑓𝐺

𝐸𝐺 − 𝐹2
 (27) 

 
𝜅21 = 

𝑒𝐹 − 𝑓𝐸

𝐸𝐺 − 𝐹2
 (28) 

 
𝜅22 = 

𝑓𝐹 − 𝑔𝐸

𝐸𝐺 − 𝐹2
 (29) 

 𝜅𝑖𝑗 = [
𝜅11 𝜅12

𝜅21 𝜅22
] (30) 

 

In the case of orthogonal surface coordinates 𝑢1 and 𝑢2, the above tensor is symmetric so 

that 𝜅12 = 𝜅21 [19].  It is the 𝜅𝑖𝑗 entities which are readily measurable by a localized sensor 

array, which is the motivation for this particular investigation. 

This tensor of curvature can define the curvature of a surface at a point based on a 

chosen tangent vector.  The maximum and minimum curvatures are given by the 
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eigenvalues of 𝜅𝑖𝑗, and are called the principal curvatures.  These are denoted as 𝜅1 and 𝜅2, 

and their corresponding eigenvectors 𝒗1 and 𝒗2 are known as the principal curvature 

directions [8, 9, 19, 20].  These principal curvatures define the geometry of the surface for 

which they are found.  For this reason, they are extremely important to the goal of shape 

sensing.  By measuring the curvature in three different directions simultaneously, one can 

construct the shape operator for a surface and thus find the principal curvatures.  

Additionally, the tensor of curvature can potentially be used to find the fundamental forms 

of a surface and establish a metric by which to measure said surface. 

Other definitions for the curvature of a surface exist, but these typically incorporate 

the principal curvatures.  For instance, the Gaussian curvature 𝐾 is defined as follows [8]: 

 

 
𝐾 =  𝜅1𝜅2 = 

𝑏

ℊ
 (31) 

 

The terms 𝑏 and ℊ are the determinants of the tensors 𝑏𝑖𝑗 and ℊ𝑖𝑗, respectively.  The 

Gaussian curvature is useful for classifying the type of surface geometry present, as its sign 

changes depending on the signs of 𝜅1 and 𝜅2.  Another commonly used expression is the 

mean curvature 𝐻, which is defined below. 

 

 
𝐻 = 

1

2
(𝜅1 + 𝜅2) (32) 
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The mean curvature is simply the arithmetic mean of the two principal curvatures.  It quite 

literally gives an average value for the curvature of a surface at a point.  Like the Gaussian 

curvature, the mean curvature can be positive, negative, or zero, depending on the surface.  

This is because different surface geometries have differing principal curvatures.  

𝜅1 and 𝜅2 can be positive or negative, and their associated directions are almost 

always perpendicular to each other.  The following figure shows several surfaces and their 

principal curvature directions (Figure 13). 

 

Figure 13: Principal Curvature Examples [21] 

 

In each of the above cases, the point for which the principal curvatures are shown is the 

intersection of the red and black lines.  The black line follows the direction of the minimum 

curvature, and the red line depicts the maximum curvature.  For the object on the far left, 

both principal curvature values are positive.  The remaining two surfaces each have a 

minimum curvature which is negative, assuming the convention in which the surface 

normal extends outward from the surface and not into the surface.  The signs of the 

principal curvatures can be used to classify various surface geometries. 
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There are three possibilities regarding the signs of the principal curvatures of a 

surface.  The first is the case where both 𝜅1 and 𝜅2 have the same sign, such as on the first 

body in (Figure 13).  This point is called an elliptic point, and it can be identified as having 

a dome-like geometry.  Spheres exhibit a special case of elliptic geometry; because all 

directions have equal curvature, all directions are principal curvature directions.  

Additionally, all points on a sphere are umbilics, which are points on a surface for which 

all directions contain principal curvatures.  This is the only time that the directions 

associated with 𝜅1 and 𝜅2 are not necessarily perpendicular, as every direction is a principal 

curvature direction.  For any elliptic point, the Gaussian curvature 𝐾 is always positive.  

This is true for both convex and concave surfaces, as the principal curvatures will always 

have the same sign, regardless of convention. 

The next type of surface geometry is called a parabolic point.  These are points at 

which one of the principal curvatures is equal to zero.  Technically, there is an additional 

geometry classification for which both 𝜅1 and 𝜅2 are zero.  This is trivially a plane, for 

which the expected curvature would always be zero.  As discussed in Section 2.3.1, a 

simple example of a parabolic surface is the side of a cylinder, which experiences no 

curvature in the longitudinal direction.  Parabolic points are characterized by a nonexistent 

Gaussian curvature; when either 𝜅1 or 𝜅2 is zero, then so is the product of these two 

principal curvatures.   

The final classification of surface geometry is a hyperbolic point, which is 

characterized by two nonzero principal curvatures of opposite sign.  The saddle geometry 

in (Figure 12) and the remaining two surfaces in (Figure 13) portray this type of geometry.  
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The Gaussian curvature of a hyperbolic point will always be negative due to the sign 

difference in 𝜅1 and 𝜅2.  Saddle curves are of particular interest to this study, as the two 

opposing curvatures are not easily captured by contemporary sensing methods.  Using 

either FBGs or flex sensors in their contemporary configurations, only one principal 

curvature could be measured, leaving much of the surface unknown.  This is of course 

assuming that the sensors are intentionally aligned with the principal curvature directions.  

If the sensors were placed such that the curvature in a non-principal direction was 

measured, the resulting measurement would be less useful for determining the surface 

geometry.  This is true for any of the three geometry classifications listed here, but 

especially for the hyperbolic point. 

In order to determine the shape of a surface, the curvature must be measured in 

more than one direction.  It is particularly useful to measure the curvature in known 

directions of principal curvature.  If the principal curvature values are known, then the 

shape of the surface can be determined.  By starting with the principal curvatures and 

essentially working backwards, the underlying geometry of the surface could be inferred.  

This is not unlike the method employed by the NASA FBG chain effort discussed in 

Section 2.2.1.  However, successful shape determination of a two-dimensional surface 

requires curvature measurements to be taken in multiple directions simultaneously.  This 

in turn requires a novel sensor array, which was developed as the second major task in this 

investigation.  The design, fabrication, and testing of this new surface curvature sensor are 

discussed at length in the next section. 
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3.2. Sensing Curvature in Multiple Directions 

3.2.1. Design Objectives and Theory 

The purpose of the proposed sensor array is to capture the curvature of a surface.  

The objective of this design was then to measure curvature in multiple directions at one 

time.  Specifically, this array was designed with two sensors that could take curvature 

readings in two separate, orthogonal directions.  These would be aligned with the principal 

curvature directions of a test surface in order to ascertain the geometry thereof.  

Additionally, the curvature in the direction between the two principal directions would be 

measured by a third sensor.  This would help to bridge the gap between the two principal 

curvatures and shed additional light on the geometry of the surface.  This sensor 

configuration is consistent with that of a strain-sensing rosette, the measurements from 

which can be used to construct the strain tensor.  The rosette layout was chosen for this 

application in order to take the measurements necessary to construct the metric tensor for 

a surface.  From this, along with the principal curvatures, the fundamental forms could be 

derived and the shape of the surface defined.  Because the rosette configuration was 

implemented in its design, this novel sensor array will be referred to as the Curvature-

Sensing Rosette (CSR).   

Once the basic concept of the CSR was formulated, the specific method of 

curvature detection was chosen.  In light of the limitations of the CBIC due to the 

inaccuracy of its flex sensors, the FBG method was selected for use in the CSR.  As stated 

previously, this method requires two FBGs separated by a known distance in order to 

measure curvature.  The CSR was designed to be a patch of known thickness with three 
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FBGs attached to either side of it.  This patch could either be affixed to the surface of an 

inflatable, or the sensor configuration could be embedded in the inflatable material itself.  

The six FBGs form three separate pairs, each capable of sensing curvature in a single 

direction.  The CSR would then be able to measure curvature with a high level of accuracy 

in three different directions simultaneously.  The FBG pairs would also eliminate additional 

strain due to stretching, as this behavior on one side would get cancelled out by the other. 

In order to test the accuracy of the CSR, a test surface of known geometry is used.  

A surface with hyperbolic geometry was chosen for testing, as it could best demonstrate 

the utility of the CSR.  In order to be defined, the opposite principal curvatures of the saddle 

surface would require a sensor which could detect curvature in multiple directions.  

Provided the shape of the saddle surface could be detected, the CSR could be tested on 

various other geometries. 

Ideally, the CSR could be applied to any surface without prior knowledge of the 

geometry.  Recall that the surface, metric, and Weingarten tensor are all defined with 

respect to a pair of orthogonal coordinates, 𝑢1 and 𝑢2.  If the directions of 𝑢1 and 𝑢2 are 

aligned with the principal curvature directions, then the tensor of curvature simplifies to a 

diagonal matrix comprised of the principal curvatures, as shown below. 

 

 
𝜅𝑖𝑗 = [

𝜅11 𝜅12

𝜅21 𝜅22
] =  [

𝜅1 0
0 𝜅2

] (33) 

 

As it stands, the two orthogonal sensor pairs are intended to align with the principal 

curvatures.  However, assuming enough information can be gathered by the CSR about the 
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surface geometry, then the direction of the principal curvatures need not be known.  The 

Weingarten tensor of curvature could be constructed by performing a coordinate 

transformation on the measurements taken by the CSR. 

Consider a single pair of orthogonal coordinates 𝑢1 and 𝑢2, with directions 𝒆1 and 

𝒆2, respectively.  Rotated an angle 𝜃 about the origin is a new set of orthogonal coordinates, 

𝑢1
′ and 𝑢2

′, with directions 𝒆1
′ and 𝒆2

′, respectively.  This is illustrated in the figure below 

(Figure 14). 

 

Figure 14: Rotation of Coordinate Axes 

 

In some cases, it may be convenient to establish a new set of coordinates which simplify 

calculations.  In order to transform the original coordinates into the new prime coordinates, 

the direction cosine matrix is used.  This matrix gives a mapping from the original 

coordinates to the new set, and is based on the angle between the two coordinate systems.  

This transformation matrix is shown below. 

 



51 
 

 
𝑎𝑖𝑗 = [

𝒆1
′ ∙ 𝒆1 𝒆1

′ ∙ 𝒆2

𝒆2
′ ∙ 𝒆1 𝒆2

′ ∙ 𝒆2
] = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] (34) 

 

Recall that the curvature tensor is formulated using the two fundamental forms, which are 

invariants.  This means that the curvature tensor is also an invariant and thus does not 

change even as the coordinate system does.  So, the curvature tensor 𝜅𝑖𝑗 can be transformed 

into 𝜅𝑖𝑗
′ using the following equation, without affecting the tensor itself. 

 

 [𝜅𝑖𝑗
′] =  [𝑎𝑖𝑗]

𝑇 [𝜅𝑖𝑗] [𝑎𝑖𝑗] (35) 

 

In the above equation, the superscript ‘T ’ denotes a transposed matrix.  With this equation, 

the curvature measurements from the CSR can be transformed into another coordinate 

system, such as the principal coordinates.  These are the set of axes which are aligned with 

the principal directions.   

In order to obtain 𝜅𝑖𝑗 from three arbitrary curvature measurements, one must utilize 

an inherent property of the Weingarten Map, which gives a value of normal curvature for 

any specified tangent direction [19, 20].  Suppose a curvature sensing rosette was placed 

on a surface with parameters 𝑢1 and 𝑢2.  The following figure illustrates this (Figure 15). 
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Figure 15: CSR on Coordinate Axes 

 

Note that the three blue rectangles show where the curvature sensing FBG pairs would be.  

These FBG pairs give curvature readings of 𝜅(0°), 𝜅(45°), and 𝜅(90°) as shown.  By 

choosing an arbitrary coordinate system aligned with the direction of 𝜅(0°), we can write 

the following [19, 20]. 

 𝜅(0°) =  𝒆1 ∙ 𝜅𝑖𝑗 ∙ 𝒆1 (36) 

 𝜅(0°) = [1 0] [
𝜅11 𝜅12

𝜅21 𝜅22
] [

1
0
] = 𝜅11 (37) 

 

Note that equations (36) and (37) are equivalent, because [
1
0
] is the coordinate 

representation of the unit vector 𝒆1.  By aligning the surface coordinate axes with the first 

FBG pair, the first term in the curvature tensor is instantly found.  Similarly, the 𝜅22 term 

can be found with the following expressions. 
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 𝜅(90°) =  𝒆2 ∙ 𝜅𝑖𝑗 ∙ 𝒆2 (38) 

 𝜅(90°) = [0 1] [
𝜅11 𝜅12

𝜅21 𝜅22
] [

0
1
] = 𝜅22 (39) 

 

Again, this is the utility of the Weingarten curvature tensor.  In order to find the final 

component, the vector in the direction of the central FBG pair must be used. 

 

 
𝜅(45°) =  (

√2

2
𝒆1 +

√2

2
𝒆2) ∙ 𝜅𝑖𝑗 ∙ (

√2

2
𝒆1 +

√2

2
𝒆2) (40) 

 𝜅(45°) =
1

2
[1 1] [

𝜅11 𝜅12

𝜅21 𝜅22
] [

1
1
]  (41) 

 
𝜅(45°) =

1

2
[𝜅11 + 2𝜅12 + 𝜅22] (42) 

 

Equation (42) can be written as such because the curvature tensor is symmetric for all 

orthogonal coordinate systems, so 𝜅12 = 𝜅21.  Now the known values for 𝜅11 and 𝜅22 can 

be substituted into equation (42), and the final component of the curvature tensor can be 

found. 

With the Weingarten curvature tensor known, the principal curvatures and their 

directions can be found.  With these directions known, the local area surrounding the CSR 

could be defined.  By placing multiple CSRs about an inflatable, the overall shape can be 

determined.  This is the intended long-term use for the CSR.  The scope of this project, 

however, only included testing of the CSR on a controlled test surface. 
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3.2.2. Fabrication and Testing 

This section details the process by which the proposed CSR was produced and 

subsequently tested.  As a preliminary experiment, a single FBG pair was constructed and 

its accuracy tested.  A sample specimen was affixed with an FBG (FBGS SG-01) on either 

side.  This specimen was clamped to a wooden test block of known curvature.  The FBGs 

were connected to an Optical Sensor Interrogator (OSI) (National Instruments PXIe-4844), 

which performed the action of sending a spectrum of white light down the two fibers and 

recording their respective reflected peaks.  With data acquisition software capturing the 

FBG behavior, the test specimen was bent from an initially straight position to match the 

curve of the wooden block.  This experimental setup can be seen in the figure below (Figure 

16). 

 

Figure 16: FBG Bend Test Setup 

 

The process of bending the specimen to the wooden block, then back to true was repeated 

several times.  The data collected from the test are shown in the following graph (Figure 

17). 
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Figure 17: Bend Test Data 

 

In the graph above, the vertical axis shows the wavelength of the reflected peaks of each 

of the FBGs throughout the test.  The horizontal axis is arbitrary time; as none of the 

primary results are time-dependent, the units were omitted.  Note that the order of the two 

data series on the graph is merely a result of the wavelengths of the reflected peaks of each 

FBG.  The legend shows which data series corresponds to each sensor channel.  In this 

case, the orange data were collected from the FBG in compression, or the FBG on the 

bottom of the test specimen in (Figure 16).  This means that the blue data corresponds to 

the FBG on the top in (Figure 16), which would be in tension during the bending portion 

of the test.  This is easily seen in the behavior of the data sets.  A peak in the lower line on 

the graph corresponds to a fully bent specimen, which would result in the maximum tension 

being applied to the FBG on the top in (Figure 16).  This occurs during a trough in the 

upper line on the graph, which corresponds to the maximum compression of the FBG on 

the bottom in (Figure 16).  As previously stated, the test specimen was bent, then 
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straightened, then bent again.  From the graph, it can be seen that this procedure was 

performed a total of three times before the test was concluded.  The values of the 

wavelengths of the reflected peaks before and after one such bending procedure, as well as 

the calculated strain, are tabulated below (Table 1). 

Table 1: FBG Bend Test Data 

Sensor Channel 𝝀𝒐 (nm) 𝝀 (nm) 𝜺 

0 1529.526 1530.668 0.000934 

1 1537.245 1537.053 -0.000157 

 

The values for 𝜆𝑜were chosen from the first flat portion of the graph, before the specimen 

was subjected to bending.  The 𝜆 values were taken from a time corresponding to a peak in 

the lower data series.  This represents the time when the maximum bending, and thus 

curvature, occurred.  Using the FBG equation (9) found in Section 2.2.1 and ignoring the 

effects of temperature, the strain 𝜀 in each FBG was calculated from the measured 

wavelength shift.  Note that these particular FBGs had a gauge factor of 0.799, as opposed 

to the standard value of 0.78.  This was provided by the manufacturer and had no impact 

on the outcome of the test.  By taking the difference in strain ∆𝜀 between the top and bottom 

FBGs, and then dividing through by the thickness of the test specimen, an experimental 

value for the curvature was obtained.  The results of this initial test are shown in the 

following table (Table 2). 

Table 2: FBG Bend Test Results 

∆𝜺 𝜿𝒆𝒙𝒑 (𝐦𝐦−𝟏) 𝜿𝒂𝒄𝒕 (𝐦𝐦−𝟏) Accuracy (%) 

0.0010904 0.002647 0.002625 99.17 
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The value for the true or actual curvature 𝜅𝑎𝑐𝑡 was found by taking the inverse of the known 

radius of the wooden block, which was 381 mm (15 inches), the inverse of which is 

0.002625 mm-1.  As shown in the table, the accuracy of this method was found to be 

99.17%, meaning that the experimental value for curvature was within one percent of the 

actual value.  This level of accuracy is expected of FBGs.  In fact, minor inaccuracies of 

the wooden test block could just as easily be responsible for the less than one percent 

discrepancy as the FBGs.  In any case, the accuracy of the FBG method of sensing 

curvature was deemed acceptable for the CSR. 

In order to successfully fabricate the CSR as designed, the above process would 

need to be repeated three-fold.  This would require a total of six FBGs, which exceeds the 

number of available ports on the OSI by two.  A multiplexed FBG chain was used to 

circumvent this issue.  This custom-ordered multiplexed fiber was comprised of sixteen 

FBGs, each of which had a unique wavelength for its reflected peak.  These wavelengths 

varied from 1,510 to 1,590 nm, as this was the operating range of the OSI.  The wavelength 

values of the FBGs progressed in order with increasing distance along the length of the 

fiber.  Thus, the location of each FBG in the multiplexed chain could be determined by its 

wavelength.  

The rosette design was measured out and drawn on the surface of the intended 

material for the CSR.  A vinyl patch from a swimming pool repair kit was chosen for its 

flexibility and resilience to tearing.  The multiplexed fiber was looped around the rosette 

design so that all six necessary FBGs could be aligned with their respective axes.  The 

alignment of the FBGs in the CSR can be seen in the following figure (Figure 18). 
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Figure 18: Curvature Sensing Rosette 

 

The three straight lines in the image above are the three directions along which the 

curvature will be measured.  The clear fiber can be seen looping about these lines, ensuring 

that each FBG is positioned correctly.  A thin slit was cut in the vinyl to allow the fiber to 

pass from one side of the patch to the other, so that three of the FBGs could be attached to 

the back side.  The location of each FBG in the fiber is labeled with two black tick marks 

separated by approximately 1.5 inches; the FBG is located in between these marks.  By 

securing the tick marks to the specified axes, the FBGs were guaranteed to lie on said axes.  

Several adhesives were tested for this application, based on recommendations made in [22].  
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In the end, cyanoacrylate adhesive was used to secure the fiber to either side of the vinyl 

patch along the drawn lines.  Pressure sensitive tape (Kapton) was used to secure the fiber 

beyond the glued portion in order to protect the fragile loops from potential damage.  The 

fabrication of the prototype CSR was thus completed and ready for testing. 

While the construction of the CSR was relatively straightforward, the subsequent 

testing proved to be far more problematic.  Finding a suitable saddle surface with which to 

calibrate the CSR was much more difficult than anticipated.  It is true that saddles exist as 

a part of several common geometries, such as a torus.  However, actually finding a saddle 

whose geometry could be quantified for testing purposes was a challenge.  It was originally 

proposed that a section of an inflatable torus be outfitted with the sensor throughout a full 

inflation procedure.  This would only serve as a qualitative test, as the only way to quantify 

the curvature of the saddle during inflation would be to employ the exact type of sensor 

being tested.   

Moreover, initial testing showed that the CSR would not be usable on many 

available surfaces.  This is due to the nature of the multiplexed FBG chain and the OSI to 

which it is connected.  When the FBG chain is connected to this OSI, the sixteen reflected 

peaks are easily detected by the software.  In the configuration window, one can set specific 

ranges in which a peak of interest, such as the six peaks that comprise the CSR, might be 

found.  An example of this window is shown in the figure below (Figure 19). 
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Figure 19: OSI Configuration Mode 

 

The green regions are those which are defined by the user to contain peaks of interest.  Any 

peak not within a predefined range shows up as an unconfigured sensor.  In order for the 

data acquisition software to record the behavior of a peak, it must be a configured sensor.  

This is of no major consequence in theory; each peak can exist in its own range due to the 

multiplexing of the fiber.  However, the method of strain sensing using FBGs requires that 

the peaks undergo a wavelength shift, which can be used to determine the strain present in 

the fiber at that point.  FBGs can be extremely accurate due to the sensitivity of the sensor.  

In this case, the FBGs were so sensitive to any strain caused by curving that one or more 

of the peaks associated with the CSR would shift out of the range for which it was 
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configured.  This immediately causes the peak(s) in question to become unconfigured, 

meaning they cannot be measured by the software.  There are a few means of solving this 

problem, but most of these require an entirely new multiplexed FBG chain to be used in 

place of the current one.  This was not a viable option for a number of reasons.  There was, 

however, a solution which could also solve the problem of finding a suitable test surface. 

The proposed solution involved the designing of a test surface using CAD software, 

which could then be 3-D printed for experimentation.  In this way, an ideal saddle surface 

could not only be produced, but the exact principal curvatures would be defined in the CAD 

software.  More importantly, the curvature of the test surface could be deliberately set to a 

very low value.  This would ensure that the wavelength shift would be minimal, yet still 

measureable for FBGs.  The issue regarding the unconfigured sensor peaks was only a 

problem for most surfaces because the amount of curvature present on those surfaces was 

enough to cause the peaks to shift out of their predefined ranges.  However, by defining 

low principal curvature values, the measured peaks would be able to shift a detectable 

amount without shifting beyond their allowed range.  Additionally, from a theoretical 

standpoint, detecting a very shallow curve would demonstrate the accuracy of the CSR 

much better than would a severe curve. 

Using the CAD program Solidworks, the test saddle surface was designed.  This 

geometry was achieved by revolving the two-dimensional profile of a circle about another 

circle which lay in a plane perpendicular to the first.  This produced a virtual torus, the 

inner surface of which exhibits saddle geometry.  The majority of the torus was then ‘cut’ 

away, leaving a small section with saddle geometry.  The radii of the original two circles 
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were defined as 50 inches (1,270 mm) and 60 inches (1,524 mm), which would also be the 

radii of curvature of the saddle surface.  The principal curvatures would then be the 

reciprocals of these radii, or -1/50 in-1 (-1/1,270 mm-1) and 1/60 in-1 (1/1,524 mm-1), 

respectively; the definition of the saddle surface dictates that the principal curvatures must 

be of opposite sign.  This ensured that the curvatures detected by the CSR would be both 

minimal and distinct, to further demonstrate its capabilities.  In order to ensure that the 

CSR patch would conform to the test saddle surface exactly, a male and female pair of 

saddles were designed.  The idea is to place the CSR between the two compatible saddles, 

then press them together and force the CSR to mimic their shape.  The virtual male saddle 

and the pair of saddles are shown in the figure below (Figure 20). 

 

Figure 20: Virtual Saddle Surfaces in Solidworks 

 

As shown on the left, the curvature of the saddle surface is very minimal, almost 

unnoticeable.  The image on the right demonstrates the interlocking nature of the male and 

female saddle sections.  The second saddle surface was created in the same manner as the 

first, except that the assignment of the two radii was reversed.  This produced a profile 

which had a perfect negative profile to the first saddle.  Thus, the principal curvatures of 

the second saddle would be 1/50 in-1 (1/1,270 mm-1) and -1/60 in-1 (-1/1,524 mm-1). 
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Once the saddles were designed, they could be 3-D printed using a rapid 

prototyping machine.  The printed test surfaces are shown in the following figure (Figure 

21). 

 

Figure 21: 3-D Printed Saddle Surfaces 

  

Just as in (Figure 20), the figure above shows a single saddle curve as well as the 

interlocking pair.  A side-by-side comparison of the two printed saddle pieces is shown 

below (Figure 22). 

 

Figure 22: Male and Female Saddle Surfaces 
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The lines on the two surfaces above are characteristic of the fused deposition modeling 

(FDM) style of 3-D printing.  The printed part is essentially built in layers, meaning that 

the continuous curves in the virtual design will be printed out as discretized sections which 

attempt to approximate a curve.  The implications of this will be further explored in Section 

3.2.3. 

With the saddles printed, the testing of the CSR could begin.  The rosette was 

initially placed on a flat surface and pressed down with the acquisition software running so 

that an initial wavelength could be found for each reflected peak which corresponded to 

the absence of curvature.  Then the CSR was placed on the male test saddle surface, as 

shown below (Figure 23). 

 

Figure 23: The CSR on the Male Test Saddle 
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Note that the two perpendicular axes of the CSR have been aligned with the principal 

curvature directions of the test saddle.  The third direction runs straight through the center 

of the saddle, in which direction the expected curvature would be extremely minimal.  

Next, the female saddle piece was placed on the CSR and carefully aligned to the male 

saddle surface.  This was done using tabs of Kapton tape that had been applied to the printed 

saddle pieces for exactly this reason.  The following figure shows the CSR between the 

two saddles (Figure 24). 

 

Figure 24: CSR and Saddle Pair Assembly 

 

The top saddle piece was then pressed downwards in order to force the CSR patch to 

conform to the shape of the two saddles.  The entire CSR and saddle pair assembly was 
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pressed down and subsequently released several times during the test.  The figure below 

shows the window of the data acquisition software during this time (Figure 25). 

 

Figure 25: Data Acquisition for the CSR Test 

 

The data were then saved for subsequent analysis.  The results of the preceding test are 

presented in the next section. 

3.3.3. Results and Discussion 

The CSR test data were analyzed in the same manner as the initial bending test, 

except of course that two additional curvatures were calculated.  From a qualitative 

standpoint, the test was a complete success; the three curvatures measured by the CSR are 

all of the appropriate sign and order of magnitude.  However, the extremely high accuracy 
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of the single FBG bend test was not present in the CSR test.  There are a number of factors 

that likely contributed to this inaccuracy, and many of these can be overcome. 

The data acquired in (Figure 25) were inspected for usable measurements.  Despite 

the efforts made to ensure that all six of the sensors remained configured throughout the 

test, there were still some instances in which one or more sensors’ data were not collected.  

This is due in part to the aforementioned issue of configured sensors, but also due to the 

occasional presence of multiple peaks.  The single peak of an FBG can become noisy after 

encountering too many tight bends in the fiber optic cable.  This is because a tight bend 

essentially increases the angle of internal reflection required for a light signal to remain 

within the fiber.  This can cause the original light to be dispersed as a portion of it escapes 

the fiber or gets scattered.  This results in the presence of multiple peaks showing up within 

the predefined range of a single peak, which causes the sensor within that range to be in a 

so-called error state.  Just as when a sensor is unconfigured, this results in no data being 

collected for a sensor while it is in a state of error. 

Out of the several instances when the saddle assembly was pressed to give the CSR 

the same shape as the saddles, only one trial yielded measured values for all six sensors.  

The following figure shows a graph of this successful trial, and an example of a trial which 

was ultimately not used due to one or more sensors being in error state (Figure 26). 
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Figure 26: Sample Data from the CSR Saddle Test 

Note how on the far left, all sensors are present and apparently reading constant curvature.  

This corresponds to the time when the CSR was initially pressed into a flat configuration.  

Moving to the right, there is a point at which the top-most sensor disappears from the graph.  

This is actually during the process of removing the CSR from the flat surface and onto the 

male saddle piece.  The CSR patch was unintentionally bent through a relatively extreme 

curve during this transition.  The missing sensor, which has the highest wavelength, is the 

sensor which is furthest from the interrogating light source.  This light must therefore pass 

through the most loops before reaching this FBG, which is why this sensor is shown to be 

in error state.  Once the CSR is placed in the saddle assembly, the missing sensor returns 

and all six FBGs seem to level off.  That is until the saddle pieces are pressed together for 

a time, then released once more.  This describes the phenomenon to the left of the graph.  

Note how some sensors show a positive shift, while others indicate a negative shift in 

wavelength.  Just as with the simple bend test, the positive values correspond to the FBGs 
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in tension whereas the negative shifts correspond to FBGs in compression.  Once more, 

their measured peak values, as well as their calculated strains, are tabulated below (Table 

3). 

Table 3: CSR Saddle Test Data 

Sensor 𝝀𝒐 (nm) 𝝀 (nm) 𝜺 

0 1552.149 1551.726 -0.000349 

1 1555.355 1555.500 0.000120 

2 1559.830 1560.649 0.000673 

3 1564.356 1564.744 0.000318 

4 1567.842 1567.815 -0.000022 

5 1571.776 1571.354 -0.000344 

 

As expected, three of the calculated strains are positive and three are negative.  Due to the 

layout of the FBG pairs, and immediate qualitative understanding of the surface can be 

inferred.  Refer to the following schematic diagram of the CSR for clarification (Figure 

27).  
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Figure 27: CSR Schematic Diagram 

 

Note that the blue section of the fiber represents the portion on the top of the patch material; 

the red represents the portion on the bottom.  The thicker rectangular objects represent the 

FBGs.  The location of the slit in the patch material is labeled.  This is where the fiber 

passes through the material.  Notice that the pairs are as follows: sensors 0 and 3, sensors 

1 and 4, and sensors 2 and 5.  The three sensors numbered from 0 to 2 are on the top of the 

patch, and the sensors numbered from 3 to 5 are on the bottom.  By looking at the strain 

values in Table 3, it can be seen that the curvature is negative in the direction aligned with 

sensor 0, which is a principal curvature direction, and positive for the other two directions.  
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This is a simple qualitative check of the CSR, and it is consistent with the expected saddle 

geometry.  The quantitative results are listed in the table below (Table 4). 

Table 4: CSR Saddle Test Results 

Sensor Pair ∆𝜺 𝜿𝒆𝒙𝒑 (𝐦𝐦−𝟏) 𝜿𝒂𝒄𝒕 (𝐦𝐦−𝟏) Accuracy (%) 

0 and 3 -0.000667 -0.001876 -0.000656 34.96 

1 and 4 0.000142 0.000398 0.000066 16.48 

2 and 5 0.001017 0.002861 0.000787 27.52 

 

First, it should be noted that the FBG pair consisting of sensors 1 and 4 was directed 

between the principal curvature directions.  Using the theoretical eigenvalues for the two 

principal curvatures, the 𝜅𝑎𝑐𝑡 table entry for the central FBG pair was calculated.  The fact 

that the measured curvature is far less than that of the principal directions is again 

consistent with the saddle geometry of the test surface.  For the other two pairs, which align 

with the principal directions, the sign and relative magnitudes of the measured curvatures 

are also fairly consistent.  However, the accuracy of each measured curvature when 

compared to its true or actual value is far from ideal.  Given that they were all much smaller 

than expected, it was believed that the separation distance between the sensors was in fact 

greater than originally thought.   

Recall again the equation (10) from Section 2.2.1 which gives a curvature reading 

based on two FBG strain sensors.  The difference in strain is divided by the separation 

distance, which in this case was the thickness of the patch material.  Although the thickness 

of a sample portion of the patch material was measured prior to the construction of the 

CSR, it is likely that the final thickness of the material between the sensor pairs differed 
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from the initial measurement.  Not only is the patch itself likely to vary in thickness due to 

manufacturing tolerances, but any amount of excess adhesive could build up and contribute 

to the overall thickness.  To put this in perspective, the initial thickness of the patch was 

measured via optical comparator and found to be 356 μm.  This is barely larger than a third 

of a millimeter.  If a similar thickness of adhesive was deposited on each side of the patch, 

then the total patch thickness would increase by a factor of three.  This is roughly the factor 

by which the measured principal curvatures differ from their expected actual values. 

Given that the accuracy of this FBG curvatures sensing method was demonstrated 

during the simpler bend test, this unknown thickness increase is likely the cause of the 

inaccuracy of the CSR test results.  It should be noted that the bend test results were not 

affected in the same manner because the thickness of the test specimen itself was several 

orders of magnitude greater than the supposed added thickness of the adhesive.  For the 

CSR Saddle test, the fact that the values of the inaccuracies of the principal curvatures vary 

between themselves would indicate that the unknown combined thickness of the patch and 

adhesive is itself variable.  The fact that the central FBG pair shows the greatest 

discrepancy is likely due to a combined error due to unknown separation distance and test 

surface quality.  The characteristic layers of the FDM rapid prototyping process can be 

plainly seen in (Figure 22).  Because this direction theoretically had the least amount of 

curvature by an order of magnitude, any surface inconsistencies would be greatly reflected 

by the overall accuracy of this FBG pair. 

Assuming that the FBG method itself was accurate, the actual curvature values were 

used to solve for the true separation distances, thereby attempting to calibrate the CSR.  
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The new thickness of the materials between sensors 0 and 3 was found to have increased 

by a factor of 2.86, while the thickness between sensors 2 and 5 had increased by a factor 

of 3.63.  These resulted in thicknesses of 1.0 mm and 1.3 mm, respectively.  Again, this 

seems to be a plausible thickness for both patch material and adhesive.  The central FBG 

separation distance was calibrated to be 2.16 mm; however, this may or may not be accurate 

depending on the error in the test surface in this direction.  

The apparent variability of the true thickness of the material between sensor pairs 

make for a difficult summary of the overall accuracy of the CSR.  Any statement regarding 

its accuracy would necessarily be made with caveats.  That being said, the success of the 

Saddle test from a qualitative standpoint does indicate that the CSR has the potential to be 

more accurate, provided some adjustments are made.  These are necessary improvements 

for making the CSR a viable option for measuring the curvature of a surface.  Once 

implemented, these alterations could make the CSR the preferred curvature sensor for next-

generation inflatable shape sensing systems. 

First and foremost, the issue of the excess deposition of the cyanoacrylate adhesive 

must be addressed.  This is the main cause of the inaccuracy of the CSR, and solving this 

issue would likely remove the need for calibrating the CSR in the directions of principal 

curvature.  Fortunately, there are several methods listed in [22] which can improve the 

consistency with which the adhesive is applied.  One such method involves using a glass 

form to hold the fiber in place while gluing it to the patch material.  Another technique 

requires the use of Kapton tape to secure the FBG while a low-viscosity adhesive is 

vacuum-pumped along the length of the fiber.  This allows the adhesive to fill any gaps 
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between the Kapton and the patch material [22].  Finally, a number of thermoplastic resins 

could be used in place of the cyanoacrylate adhesive.  These would require forms to be 

placed over the FBGs while the resin is poured and cured.  In general, any deliberate 

method for attaching the fiber to the patch material in a consistent manner could be utilized 

with great effect. 

The next major area for improvement of the CSR is the configuration of the 

multiplexed FBG chain which contains the important stain sensors.  As stated, the 

particular multiplexed fiber that was used in this investigation was less than ideal.  This 

was a result of nothing more than a learning curve associated with purchasing multiplexed 

FBG chains.  The specific fiber used here was ordered with the intent of obtaining a large 

number of sensors in a single fiber.  Because of the lead times associated with ordering a 

custom multiplexed FBG chain, the final design of the CSR was not yet known at the time 

of the purchase.  The required functionality of the fiber chain was pure conjecture when it 

was ordered.  Had the CSR design been finalized, the FBG chain could have been made to 

contain only six FBGs.  For the same range of 1,510 to 1,590 nm, this would greatly 

increase the separation of the wavelengths associated with each FBG.  This means that 

when configuring the software to detect each peak, a much wider range could be listed in 

which to find said peak.  This in turn would allow the CSR to remain functional over 

surfaces with higher curvature magnitudes than the specially designed test surface.  

Additionally, the physical spacing of the FBGs along the fiber could have been increased 

significantly.  This would mean that more fiber length could be used to make the same 

turns that were necessary to align the FBG pairs with the predefined axes of curvature 
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measurement.  The result would be a much greater bend radius of the fiber in between 

FBGs, which would reduce the loss of signal and multiple peaks caused by excessive 

bending in the fiber.  Finally, six individual fibers could be used to produce the same FBG 

layout required by the CSR.  However, this would require a fiber bundle to reach the CSR 

as opposed to a single fiber.  This can potentially be quite arduous, considering the number 

of CSRs that would likely be needed to sense the shape of a space inflatable.  As it stands, 

several CSRs could be made on a single multiplexed fiber, which would likely more useful 

to any potential shape sensing system.  Another alternative is to create a network of 

multiplexed fibers to produce an array of CSRs, shown in the figure below (Figure 28). 

 

Figure 28: Proposed CSR array 

 

The configuration shown in the figure above could be implemented on an inflatable 

surface, with three FBGs forming a CSR at each intersection.   

The final area for improving the results of the CSR saddle test is in the making of 

the test surface itself.  While the virtual designs of the two saddle surfaces were ideal, the 

physical printed part was flawed.  This is due to the FDM style of rapid prototyping, which 

deposits layers of molten plastic from a heated nozzle.  This causes every piece printed this 
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way to have a surface texture, as well as discretized curves.  There are several methods 

described in [23, 24] which could greatly reduce these effects, making the saddle pieces 

much smoother.  Additionally, the resolution of the pieces could have been improved by 

using a more precise machine.  Of course, there is a higher cost associated with these high 

resolution 3-d printers, and this would need to be considered.  Employing either of these 

strategies could reduce the texture of the test surface itself, thus improving the overall 

accuracy of the test results. 

Assuming that the above changes can be implemented, the accuracy of the CSR 

could be dramatically improved.  This would make it a viable option for sensing the surface 

curvature of inflatable space structures, or any body for which the geometry must be 

defined.  This is because there are several features inherent to its design which allow the 

CSR to be tailored for individual applications.   

For example, the patch design allows for a simple surface application of the CSR, 

but a more permanent embedding of the sensor array could be achieved with the same 

sensor configuration.  The patch material itself could be replaced with a more rigid or 

flexible alternative, depending on the application.   

Additionally, the layout of the FBGs could be customized for specific geometries.  

In the current design, there is actually an offset of roughly one inch between the FBGs 

themselves and the point at which their axes intersect.  This was not an issue for the saddle 

test, but may be for more irregular geometries.  For an intricately detailed body, or a 

particularly vital section of a body, the sensors could be spaced much more closely 

together.  Conversely, for a large or relatively simple body, the sensors could be spaced 
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more widely apart.  This is true of the spacing of the CSR arrays as well.  In fact, all of the 

customizing options discussed for the bend sensors of the CBIC in Section 2.3.3 are 

likewise applicable to the CSR.  These qualities make the CSR a potentially viable solution 

for the current need for accurate shape sensors. 
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CHAPTER 4: CONCLUSIONS 

One of the many strides being made in the growing field of space exploration is the 

use of inflatable structures.  These inflatable bodies offer many advantages over traditional, 

rigid structures, but present some unique challenges as well.  Among these is the need for 

accurate determination of the complete geometry of the body, known as shape sensing.  

This is an important tool for monitoring both the inflation status and overall health of 

inflatables.  While differential geometry can describe the shape, it cannot be directly 

measured.  Instead, the surface curvature at certain point on a body is measured, and the 

underlying geometry can be inferred. 

This surface curvature exists in two dimensions, yet contemporary methods can 

only measure one-dimensional curvature.  This is the curvature which is characteristic of a 

space curve, which is a one-dimensional mathematical construct.  Although space curves 

exist in three dimensions, they are subject to curvature in one and only one direction at a 

time.  This means that current techniques for sensing curvature only describe a single space 

curve and not an entire surface.  To circumvent this issue, NASA has developed a multi-

core, multiplexed chain of Fiber Bragg Gratings.  This device is essentially a self-sensing 

space curve, which can detect one-dimensional curvature in any direction.  These curvature 

measurements are used in subsequent calculations to produce a virtual image of the FBG 

chain itself.  By overlaying this fiber bundle on an unknown surface, the virtual image will 

provide a limited depiction of said surface.  Alternative methods are required to truly 

identify the geometry of an unknown surface. 
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One such alternative is the flex sensor, which is a widely available and highly 

economic option.  However, in addition to being generally less accurate, these one-

dimensional curvature sensors suffer from similar pitfalls as the NASA FBG chain.  

Despite this, their availability and ease of operation made flex sensors the most suitable 

option for the development of an inflation controller.  This controller would use curvature 

feedback from flex sensors to monitor the inflation of a body and was thus named the 

Curvature-Based Inflation Controller.  The design of the CBIC attempted to overcome the 

inherent shortcomings of the flex sensors by placing them at strategic points on the 

inflatable.  This allowed the CBIC to correctly sense the completion of the inflation 

process, and power off the air pump accordingly.  This proved the viability of both the 

CBIC’s design and the use of shape sensing as a means of controlling inflation in general.  

Several features of the CBIC make it a useful design for inflation controllers; most notably, 

the modularity of its layout and the relatively robust sensors it employed.  

While it succeeded in the task of inflating an air mattress using only curvature 

measurements, the CBIC’s limitations were many.  The simplicity of its control 

architecture relied heavily on a predictable and well-behaved inflation process.  

Additionally, its method of shape determination suffered from the inability of its sensors 

to measure curvature in more than one direction.   

This is a fundamental flaw of every contemporary shape sensing method, because 

unlike space curves, surfaces extend in two dimensions.  Within the two-dimensional 

surface, there are infinitely many directions along which the curvature can potentially be 

measured.  Despite this, only three unique components are required to develop a metric for 
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a surface.  This metric can then be used to measure arc lengths, angles, and areas on the 

surface which it defines.  The metric tensor can potentially be determined using the 

principal curvatures and the two fundamental forms of a surface.  These principal 

curvatures and their associated directions are thus extremely important for the purposes of 

shape determination.   

In order to measure the principal curvatures of a surface, a novel sensor array was 

designed.  This Curvature-Sensing Rosette utilized a single multiplexed chain of FBGs to 

sense curvature in two orthogonal directions and along the 45° angle in between them.  

These measurements would theoretically allow for the surface geometry of a body to be 

known.  After a preliminary experiment which proved the accuracy of the FBG method of 

sensing curvature, the proposed CSR was fabricated. 

In order to properly test the new sensor array, a custom pair of interlocking saddle 

surfaces were 3-D printed after being designed in the CAD program Solidworks.  Although 

the surface texture of the saddles produced by the FDM was not ideal, this rapid prototyping 

was necessary to ensure the production of a surface with controlled saddle geometry.  In 

addition, the two male and female profiles allowed for the CSR to be pressed into 

conforming exactly to the saddle surface. 

The results of the CSR test were mixed; on the whole it was a success, but several 

glaring issues with the CSR’s fabrication led to some rather inaccurate measurements.  

These flaws were identified as an improper method of fiber adhesion and an inappropriate 

configuration of the multiplexed FBG chain.  Provided these can be addressed in 
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subsequent iterations, the CSR could prove to be a viable means of sensing curvature in 

multiple directions at one time. 

This is because the CSR succeeded in detecting the signs of the curvatures which it 

measured, and the accuracy of FBGs in sensing curvature in general is known to be 

exceptional.  Thus, imbuing the CSR with high-accuracy curvature detection is quite 

plausible.  This would allow for the surface geometry of the area surround the CSR to be 

rigorously defined.  By employing a network of CSRs across the total surface of an 

inflatable body, the complete shape of the inflatable can be known in real time.  Such a 

means of shape sensing would be invaluable to mission controllers seeking to monitor and 

control the inflation status and overall health of an inflatable space structure. 
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APPENDIX 

/* 

Multiple Sensor Relay Code 

Takes the analog inputs from 6 sensors and uses 

them to turn off a relay on digital pin 13. 

 */ 

 

const int sensor1Pin = A0;    // select the input pin for the sensor 1 

const int sensor2Pin = A1;    // select the input pin for the sensor 2 

const int sensor3Pin = A2;    // select the input pin for the sensor 3 

const int sensor4Pin = A3;    // select the input pin for the sensor 4 

const int sensor10Pin = A4;    // select the input pin for the sensor 10 

const int sensor11Pin = A5;    // select the input pin for the sensor 11 

 

const int relayPin = 13;      // select the pin for the relay 

 

int sensor1Value = 0;      // variable to store the value coming from the 

                           // sensor 1 

int sensor2Value = 0;      // variable to store the value coming from the 

                           // sensor 2 

int sensor3Value = 0;      // variable to store the value coming from the 

                           // sensor 3 

int sensor4Value = 0;      // variable to store the value coming from the 

                           // sensor 4 

int sensor10Value = 0;     // variable to store the value coming from the 

                           // sensor 10 

int sensor11Value = 0;     // variable to store the value coming from the 

                           // sensor 11 

 

void setup() { 

   

  pinMode(relayPin, OUTPUT);      // declare the relayPin as an OUTPUT: 

   

  Serial.begin(9600);           // initialize serial communications at 9600 

                                // bps: 

} 

 

void loop() { 

    

  sensor1Value = analogRead(sensor1Pin);     // read the values from the 

                                             // sensors 

  sensor2Value = analogRead(sensor2Pin); 

  sensor3Value = analogRead(sensor3Pin); 

  sensor4Value = analogRead(sensor4Pin); 

  sensor10Value = analogRead(sensor10Pin); 

  sensor11Value = analogRead(sensor11Pin); 

   

  if (sensor1Value<300)                   // keep pump turned on until all  

    digitalWrite(relayPin, HIGH);         // sensors are reading their 

  else if (sensor2Value<320)              // respective threshold values 

    digitalWrite(relayPin, HIGH); 

  else if (sensor3Value<380) 

    digitalWrite(relayPin, HIGH); 

  else if (sensor4Value<350) 

    digitalWrite(relayPin, HIGH); 

  else if (sensor10Value<340) 

    digitalWrite(relayPin, HIGH); 

  else if (sensor11Value<300) 
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    digitalWrite(relayPin, HIGH);         

  else 

    digitalWrite(relayPin, LOW);   

  

  Serial.print("L1 = ");         // print the results to the serial monitor: 

  Serial.print(sensor1Value); 

  Serial.print("       L2 = "); 

  Serial.print(sensor2Value); 

  Serial.print("       L3 = "); 

  Serial.print(sensor3Value); 

  Serial.print("       L4 = "); 

  Serial.print(sensor4Value); 

  Serial.print("       L10 = "); 

  Serial.print(sensor10Value); 

  Serial.print("       L11 = "); 

  Serial.println(sensor11Value); 

   

   

  delay(2000);                      // wait 2 seconds before the next loop 

} 
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