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ABSTRACT 
 
 

 The 1,3-diaza Claisen rearrangement was initially discovered by the 
Madalengoitia group in the early 2000s. Tertiary, allylic, amines nucleophilically add to 
the carbon of a heterocumulene (isocyanate, isothiocyanate, or carbodiimide) to generate 
a zwitterion which then undergoes [3,3]-sigmatropic rearrangement. The rearrangements 
conducted with a carbodiimide generate guanidine-containing skeletons. The guanidine 
functional group is found in many biologically active products, making it a worthwhile 
chemical target.  
 
 To this end, strained, tertiary, allylic, amine 2-benzyl-2-azabicyclo[2.2.1]hept-5-
ene reacts with in-situ generated carbodiimides in the 1,3-diaza-Claisen rearrangement to 
afford structurally interesting bicyclic guanidines. Use of more electron deficient 
carbodiimides makes these rearrangements more facile; however, there are not sufficient 
methods for the synthesis of highly electron deficient carbodiimides. The synthesis of 
such carbodiimides was explored through new synthetic methodologies for the 
dehydration of ureas and desulfurization of isothioureas and the carbodiimides were used 
in a series of intermolecular rearrangements with the strained, tertiary, allylic, amine.  
 
 The new methodologies for the synthesis of electron deficient carbodiimides 
were then applied to a series of intramolecular substrates, further expanding the 1,3-diaza 
Claisen rearrangement methodologies. To date series of bicyclic, tricyclic, and 
monocyclic guanidines of varying structures have been synthesized. The synthetic efforts 
towards these products are herein described.  
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1  THE CLAISEN REARRANGEMENT: BACKGROUND 

 

 

 

1.1 Rearrangement Discovery and Modifications 
 

 

The Claisen rearrangement is one of the most well-known sigmatropic 

rearrangements and as such has been the focus of constant research and modification 

since it was originally reported in 1912 by Ludwig Claisen.1 The Claisen rearrangement 

can be defined as the thermal [3,3]-sigmatropic rearrangement of an allyl, vinyl ether to a 

γ,δ-unsaturated carbonyl compound (Figure 1.1). The rearrangement and modifications 

thereof are well regarded by chemists due to the ability of the rearrangement to prepare 

complex molecules in a single step and the reliably predictable stereochemical 

outcomes.2 

 

 
Figure 1.1. The generic Claisen rearrangement. 

 

Many of the modifications have become famous named reactions in their own right, 

including the Carroll Rearrangement (rearrangement of allylic β-ketoesters followed by 

decarboxylation),3 the Ireland-Claisen Rearrangement (rearrangement of allyl 



2 

trimethylsilyl ketene acetals),4 and the Reformatsky-Claisen Rearrangement 

(rearrangement of zinc enolates),5 among thousands of other investigations.  

 

 

1.1.1 Rearrangement Mechanistic Aspects 
 

 

The classical Claisen rearrangement is a suprafacial, concerted, non-synchronous 

[3,3]-sigmatropic rearrangement. Typically the chair-like transition state 1.1.1 is favored, 

particularly for acyclic systems, and the stereochemistry of the allyl vinyl ether (1.1) is 

transferred to the resultant product (Figure 1.2).6 In many cases the product in acyclic 

rearrangements that is derived from the chair-like transition state dominates by over 90 

%.7 

  

Figure 1.2. Acyclic Claisen rearrangement: chair-like transition states. 
 

A boat-like transition state can be rationalized if steric hindrance or the geometry 

of the ring precludes the chair-like state. For example, the major product (1.5) in Figure 



3 

1.3 is derived from the boat-like transition state 1.4.1, due to the unfavorable steric 

interaction of the silyl ether substituent and the atoms of the dihydro-pyran in the chair-

like transition state 1.4.2.7  

 

 

Figure 1.3. Boat-like transition state favorability. 

 

 

1.2 Zwitterionic aza-Claisen Rearrangements 
 

 

 In the late 1970s Mariano began exploring the use of the nitrogen analog of the 

Claisen rearrangement: the aza-Claisen rearrangement.8-9 The few previous attempts at 

the aza-Claisen rearrangement had shown that this variant often required harsher 

conditions than the standard oxo-Claisen rearrangement, often at temperatures of 200 – 

300 °C.10-11 His work began on the rearrangement of N-vinylammonium salts (Figure 1.4, 
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1.7.1). These salts underwent sigmatropic rearrangement at 25 °C to afford the 

hexahydroisoquinoline products 1.8 in yields of 30 – 60 %. 

 

 

Figure 1.4. Mariano’s rearrangement of N-vinylammoniums. 

 

Eventually this rearrangement work was developed into the rearrangement of in-

situ generated zwitterions to afford hexahydroisoquinolines. The tertiary allylic amine 1.9 

adds 1,4 to a propargyl ester to generate the allyl, vinyl ammonium zwitterion 1.9.1. The 

zwitterion undergoes a [3,3]-sigmatropic rearrangement to provide the desired product 

1.10 at only 80 °C, significantly lower than the typical neutral aza-Claisen requirements 

of 200 – 300 °C.11  

 

 

Scheme 1.1. Mariano’s zwitterionic 3-aza Claisen rearrangement. 
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1.3 Discovery of the 1,3-diaza Claisen Rearrangement 
 

 

Discovered in 2003,12 the 1,3-diaza Claisen rearrangement is the extension of 

Mariano’s 3-aza Claisen rearrangement. The 1,3-diaza Claisen rearrangement replaces 

both the oxygen and terminal vinyl carbon of the standard Claisen rearrangement with 

nitrogen atoms (Figure 1.5). Nucleophilic addition of tertiary allylic amine 1.11 to the 

electrophilic carbon of a heterocumulene (1.12) and subsequent [3,3]-sigmatropic 

rearrangement of intermediate 1.11.1 will afford the final product 1.13, a urea, thiourea, 

or guanidine respectively, depending on the heterocumulene (isocyanate, isothiocyanate, 

or carbodiimide) used. The rearrangement can be conducted in several ways: catalyzed 

by palladium (0),13 protonation of the zwitterionic intermediate for a cationic pathway,13 

or a zwitterionic pathway.12, 14 The work presented in this dissertation is a study of the 

zwitterionic 1,3-diaza Claisen rearrangement. 

 

 

1.3.1 The Zwitterionic 1,3-diaza Claisen Rearrangement 
 

 

The zwitterionic 1,3-diaza Claisen rearrangement follows the standard pathway 

outlined in Figure 1.5. The addition of a tertiary allylic amine to the electrophilic carbon 

of a heterocumulene generates the key zwitterionic intermediate 1.11.1. [3,3]-sigmatropic 

rearrangement affords the final product 1.13; a urea, thiourea, or guanidine depending on 
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X. The limitation of the zwitterionic variant has been in the scope of tertiary allylic 

amines that will undergo rearrangement with carbodiimides.  

 

 
 

Figure 1.5. The general zwitterionic 1,3-diaza Claisen rearrangement. 
 

 Previously in the Madalengoitia group the carbodiimides used for the 

rearrangement were obtained via the desulfurization of thioureas.12, 14 

 In the original work and discovery of the zwitterionic variant the rearrangement 

would only proceed when conducted with ring-strained bicyclic tertiary allylic amines, 

typically N-benzyl 2-aza-[2.2.1]bicyclo-3-heptene or N-benzyl 2-aza-[2.2.2]bicyclo-3-

octene. Over a host of rearrangements, a trend became clear for the intermolecular 

versions of the rearrangement: the rearrangement becomes more facile as the electron 

deficiency of the heterocumulene increases. This trend is most evident in Scheme 1.2.  
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Scheme 1.2. Trend: more electron deficient carbodiimide – faster overall reaction. 
 

 The reaction of N-benzyl azanorbornene 1.14 with the alkyl, carbamoyl 

carbodiimide generated from the desulfurization of 1.15 affords the bicyclic guanidine 

rearrangement product 1.16a in moderate yield at 60 °C. As the electron withdrawing 

nature of the carbodiimide is increased from a single carbamoyl group to either the para-

toluene sulfonyl (tosyl, Ts, 1.17) or two tert-butyloxycarbonyl (Boc, 1.18) groups, the 

reaction with the same N-benzyl azanorbornene 1.14 occurs at room temperature to 
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provide rearrangement products 1.16b and 1.16c, respectively. The trend becomes more 

evident when the rearrangement was attempted with the less ring-strained bicyclic amine 

N-benzyl isoquinuclidene 1.19. The rearrangement of this tertiary allylic amine does not 

proceed under any thermal conditions when the N-tosyl, N’-benzyl carbodiimide (from 

1.17) is used as the heterocumulene, the same reaction that worked with the more ring-

strained azanorbornene at room temperature (1.16b). However, when the tosyl group is 

replaced with the more electron withdrawing group trifluoromethane sulfonyl (Triflate, 

Tf, 1.20) the rearrangement occurs at just 60 °C to provide bicyclic guanidine 1.16d in a 

57 % isolated yield.  

 This most reactive carbodiimide, the N-triflate, N’-benzyl variant, was subjected 

to rearrangement conditions with multiple different tertiary allylic amines that do not 

have high amounts of bridging ring strain (Scheme 1.3).  
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Scheme 1.3. Reaction of the N-Tf, N’-Bn carbodiimide with simple tertiary allylic 
amines. 

 
 

 Despite forcing reaction conditions, the rearrangements of the above tertiary 

allylic amines (lacking ring-strain) did not occur. It was inferred that there is a threshold 

of electron deficiency of the carbodiimide for the rearrangement to be generalized for the 

tertiary allylic amine, ring-strained or otherwise. 
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1.4 Guanidines 
 

 

1.4.1 Guanidine-Containing Natural Products 
 

 

When a carbodiimide is used as the heterocumulene in the 1,3-diaza Claisen 

rearrangement process the product will contain a protected guanidine moiety (Figure 1.6). 

The guanidine functional group is found in many natural products and bioactive 

compounds and therefore the development of efficient methods of complex guanidine 

synthesis is necessary. 

 

 

Figure 1.6. The 1,3-diaza Claisen generates guanidines. 

 

 The conditionally essential amino acid arginine, which is a precursor for 

creatine,15 contains a guanidine in its side chain (1.25). Guanidine subunits are found in 

the sodium channel blocker saxitoxin (1.26), the highly potent puffer fish toxin 

tetrodotoxin (1.27), and guanine (1.28), one of the main nucleobases in DNA and RNA.16  
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Figure 1.7. Biologically active guanidines. 

 

 Guandines are found in many other natural products, from sources such as 

marine microorganisms, terrestrial microorganisms, plants, and various invertebrates.17-18 

Members of guanidine alkaloid families, such as the crambescidin and batzelladine 

families, among others (polycyclic as well as acyclic), have shown promising biological 

activity including: anticancer activity,19-20 antiviral activity,21-22 inhibition of protein-

protein interactions,23-24 inhibition of HIV-1 envelope-mediated fusion,25 and the 

inhibition of several other biological processes.16, 26-27 In 2009 seven new guanidine 

alkaloids were isolated and tested for biological activity. It was found that of these new 

alkaloids norbatzelladine L (1.29) which contains two of the distinctive tricyclic 

guanidine cores, was the most active compound, particularly against the breast cancer cell 

line MDA-MB-231.28 Merobatzelladines A and B (1.30, 1.31) (isolated as the 

triflouroacetate salts) (Figure 1.8) exhibit antimicrobial activity in IC50
 values lower than 

0.5 µg/mL.29 Alkaloids of the crambe family (1.32) were tested and found to inhibit HIV-

1 envelope-mediated fusion with IC50’s of 1-3 µM.30 
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Figure 1.8. Bioactive guanidine-containing natural products. 
 

Despite the promising biological activity of several of these natural products, 

many have not been studied due to low natural availability combined with the difficulty 

of complex guanidine synthesis. Methods do exist for the synthesis of some of these 

compounds, but the addition of new tools to the synthetic toolbox will be highly 

beneficial for medicinal screening of a new guanidine containing compounds.  

 

 

1.4.2 Current Methods of Guanidine Synthesis 
 

 

The Overman group has used tethered Biginelli reactions to great success for the 

synthesis of several of the batzelladine alkaloids (Figure 1.9).16, 25, 31-34  

 



13 

 

Figure 1.9. Synthetic overview of Overman batzelladine core synthesis. 

 

The Biginelli reaction is a three component reaction traditionally consisting of an 

aldehyde, urea, and 1,3-dicarbonyl which come together to form so-called ‘Biginelli 

Compounds’ 1.33. Overman’s modification replaces the urea component with the 

structurally similar guanidine (X = nitrogen) and the second Biginelli reaction in the 

synthesis tethers the guanidine aldehyde to the β-ketoester to produce the tricyclic 

guanidine core of the batzelladine alkaloids 1.34.  

 The Gin group has developed a [4+2] annulation to generate the tricyclic 

guanidine core of the batzelladines (Figure 1.10).35  

 

Figure 1.10. Gin’s annulation strategy. 
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Chiral N-alkyl imines and vinyl carbodiimides can be diastereoselectively annulated to 

form the bicyclic guanidine skeleton 1.35. This architecture can be further elaborated into 

the tricyclic guanidinium core 1.36. The strategy has been applied to the total synthesis of 

(+)-batzelladine A and (-)-batzelladine D.36 

 Due to the abundance of biological activity of guanidine containing compounds 

studies are underway by many groups to achieve the development of complex guanadines 

such as the tricyclic core of the batzelladine family.37-39 Varying the tertiary allylic amine 

or the carbodiimide component of the Madalengoitia group’s 1,3-diaza Claisen 

rearrangement strategy allows for significant modification of the resultant guanidine. 

Expanding the rearrangement methodology to the point of generalization would provide a 

powerful tool for the synthesis of a diverse number of biologically active guanidines. The 

work presented in the dissertation details the further development of the zwitterionic 

variant of the guanidine-forming 1,3-diaza Claisen rearrangement via the synthesis of 

highly electron deficient carbodiimides and further elaboration of the intramolecular 1,3-

diaza Claisen rearrangement.  
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2 INTERMOLECULAR ZWITTERIONIC 1,3-DIAZA CLAISEN 

REARRANGEMENTS 

 

 

 

2.1 A Novel Smiles Rearrangement 
 

 

2.1.1 Reactivity Trends 
 

 

 As previously mentioned, a trend in the rearrangement activity had been noticed; 

as the electron-withdrawing nature of the carbodiimide constituents was increased the 

rearrangement became more facile. At the onset of this research project, the benzyl, 

triflate carbodiimide was not electron withdrawing enough to meet the threshold for 

general reactivity. The unsuccessful reactions of Scheme 1.3 also show that the 

rearrangement is the rate determining step of the reaction process because the 

isoquinuclidine reaction proves that the N-benzyl, N’-trifyl thiourea can be desulfurized 

and tertiary allylic amines nucleophilically add to the carbodiimide, however the 

rearrangement did not work with simpler tertiary allylic amines.  

 Further evidence of the rearrangement being rate determining can be seen in 

Figure 2.1. The third reaction, with a full equivalent of the isocyanate, shows formation 

of a new product (2.1.1) due to the downfield shift of the methyl (B) and methylene (A) 
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protons but the desired rearrangement product was not acquired from this rearrangement. 

This prompted the study of the reaction with half an equivalent of the isocyanate (the 

middle reaction). The methyl and allylic protons again shifted downfield, but only half 

the shift that was observed when the full equivalent is used. Also, half peaks for both the 

starting amine and the product are not seen, indicating that the peaks in the middle NMR 

are an average signal of the two. The conclusion drawn from these experiments is that the 

formation of the zwitterion is a fast and reversible process and the rearrangement is rate-

limiting.  

 

Figure 2.1. Evidence of fast and reversible zwitterion formation. 

  

Amine + 0.5 eq. TsNCO 

Amine + 1 eq. TsNCO 

A 

B 
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 From this set of results, the general rearrangement process can be viewed as 

depicted in Figure 2.2: zwitterion formation is fast and reversible, while 1,3-diaza Claisen 

rearrangement is rate-limiting.  

 

 

Figure 2.2. Rearrangement is rate-determining. 
  

 The simple fix for furthering the rearrangement would be to synthesize thioureas 

that are more electron deficient than the N-benzyl, N’-trifyl and desulfurize them to 

generate the related carbodiimide. However, the more electron deficient thioureas are 

unknown, unreported compounds (Figure 2.3).  

 

 

Figure 2.3. Highly electron deficient thioureas are unknown. 
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Lack of literature support suggests that these highly-electron deficient thioureas are 

unstable, difficult to synthesize compounds and therefore the subsequent carbodiimides 

needed to be generated using a different method.  

 

 

2.1.2 Genesis of the Smiles Rearrangement 
 

 

 The genesis for the first attempted route to highly electron deficient 

carbodiimides grew from an attempt to synthesize 1-(4-nitrobenzene sulfonyl), 3-benzyl 

thiourea by Amy Bowser Ph.D. (a former student from the Madalengoitia group) from 

the reaction of 4-nitrobenzene sulfonamide with benzyl isothiocyanate. Instead of 

providing the desired thiourea, only the disulfide 2.4 was isolated from the reaction 

mixture. This product was most likely generated from the outlined Smiles rearrangement 

(Scheme 2.1). Addition of nosyl sulfonamide 2.2 to benzyl isothiocyanate generated the 

thioanion 2.3, which would then undergo a Smiles rearrangement (2.3.1) on the aromatic 

ring due to the electrophilic activation by the para-nitro group. Upon collapse of the 

rearrangement intermediate, sulfur dioxide would be released (entropically favored) as 

well as p-nitrobenzene thiolate (2.3.2) and benzyl cyanamide. Two equivalents of p-

nitrobenzene thiolate would oxidatively dimerize to the isolated disulfide 2.4.  
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Scheme 2.1. Unexpected Smiles rearrangement. 

 

 This interesting result became the basis for the first attempted method of 

carbodiimide generation. A general scheme of the plan is shown in Figure 2.4. A 

secondary sulfonamide would be deprotonated with strong base to generate a nitrogen 

anion. This anion would be added to an isothiocyanate to generate a thioanion 2.6.1 

(much like thiolate 2.3.2 from Scheme 2.1) which would then undergo a Smiles 

rearrangement. Upon collapse of the spirocyclic intermediate 2.6.2 the aromatic ring 

would be regenerated, SO2 would be lost (an entropically favored outcome) and a 

carbodiimide (2.7) would be generated. Addition of tertiary allylic amine 1.14 to the 

system would trap the carbodiimide and then undergo the 1,3-diaza Claisen 

rearrangement to provide guanidine-containing products. 
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Figure 2.4. Proposal for a carbodiimide generating Smiles rearrangement. 

 

 

2.2 Initial Target and Attempts  
 

 
 

 

Scheme 2.2. Initial target of Smiles rearrangement. 

 

 The initial target was the 3-benzyl, 1-ethoxycarbonyl carbodiimide 2.10 as it 

was a carbodiimide that had been generated in the group before and it contained an 
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electron withdrawing group. N-benzyl-4-nitrobenzene sulfonamide 2.6a was synthesized 

as shown in Scheme 2.2. The sulfonamide was exposed to potassium hydride followed by 

ethoxycarbonyl isothiocyanate. As carbodiimides are unstable toward silica gel 

purification and typically too reactive to isolate, attempts were made to trap the in-situ 

generated carbodiimide 2.10 as a guanidine by addition of pyrollidine (Scheme 2.2, 2.11). 

Despite the fact that mass spectrometry of the crude reaction mixture indicated formation 

of the guanidine product, it could never be isolated and characterized. Reactions 

conducted with sodium hydride and t-butyl lithium as the base gave inseparable product 

mixtures. Crude NMR analysis of the product mixture indicated that the nitrogen anion 

added to both the isothiocyanate carbon as well as the carbonyl carbon of the 

ethoxycarbonyl isothiocyanate. Because of this side pathway, a switch was made to 

attempt the rearrangement with isopropyl isothiocyanate (1 eq) as it removed the second 

electrophilic site.  

 Rather than attempt to isolate the reactive carbodiimide, the reaction was 

monitored by IR spectroscopy. Carbodiimides give a diagnostic IR peak around 2100-

2200 cm-1.40 Despite multiple rearrangement attempts this IR peak was never observed. 

Due to the inability to track carbodiimide formation by IR spectroscopy, it was decided to 

monitor the four protons of the 4-nitrobenzene ring via NMR spectroscopy, as they would 

give a distinct pair of doublets upon conversion to 4-nitrothiophenol.  

 A reaction was conducted between sulfonamide 2.6a (Table 2.1) and isopropyl 

isothiocyanate using n-butyl lithium as the base. An NMR of the crude reaction mixture 

showed that there was still unconsumed starting material, but that there was also another 

compound with the characteristic two doublets of the 4-nitrophenyl group. This meant 
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that a change had occurred in the 4-nitrobenzene ring. The two compounds were isolated 

by column chromatography with 30% EtOAc in hexanes. As expected one was the 

starting sulfonamide 2.6a, but the other product was not the desired 4-nitrothiophenol 

2.7.2 or the disulfide dimer of the 4-nitrothiophenol. The isolated product was eventually 

determined to be thiourea 2.12 as shown in Table 2.1. The identity of this product is 

supported by mass spectrometry as well. Unexpectedly, this thiourea would occur based 

on a Smiles rearrangement on the nitrogen atom of the isothiocyanate rather than the 

sulfur as expected. 

 As the reaction was not providing the desired product, as well as not going to 

completion with n-BuLi as the base, a switch was made to trying sodium hydride and 

potassium hydride. In this case, the reaction went to completion (complete consumption 

of starting material), but rather than the thiourea product a pair of anilines was obtained 

(Table 2.1, 2.13a, 2.13b).  
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Table 2.1. Undesired Smiles rearrangement. 

 

Entry Base Product Isothiocyanate Isothiocyanate 
eq. 

Base 
eq. 

Time Temperature Completion* 

1 NaH Anilines i-Pr 1 1.1 Overnight 0 °C to rt 100% 
2 KH Anilines i-Pr 1 1.2 Overnight 0 °C to rt 100% 
3 n-

BuLi 
Thiourea i-Pr 1 1 24 hrs -78 °C to rt 50% 

4 LiH Thiourea i-Pr 2 2 48 hrs rt 50% 
5 LiH Thiourea i-Pr 2 1.1 2 hrs Reflux 50% 
6 LiH Thiourea i-Pr 2 2 48 hrs rt 60% 
7 LiH Complex 

Mix 
Bn 2 2 5 days rt - 

8 LiH Complex 
Mix 

Bn 2 2 5 days rt to reflux (2 
days) 

- 

*by NMR 

 

 To determine the process of formation for the anilines a control experiment was 

conducted (Scheme 2.3.) N-isopropyl-4-nitroaniline 2.13a was synthesized and then 

allowed to react with benzyl isothiocyanate in the presence of sodium hydride. What was 

obtained from this experiment was a 50:50 mixture of the two anilines 2.13 (by NMR). 

Another control was conducted by the simple reaction of N-isopropyl-4-nitroaniline and 

sodium hydride. Upon workup, only starting aniline was isolated. This makes it likely 

that the anilines similarly come from the nitrogen based Smiles arrangement, but upon 

formation of the thiourea the benzyl isothiocyanate would be expelled when sodium and 

potassium act as the counterion. The resultant aniline then would nucleophilically add to 

the carbon of the isothiocyanate and go through another nitrogenous Smiles 
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rearrangement to provide the N-benzyl aniline and isopropyl isothiocyanate. The anilines 

then equilibrate.  

 

 

Scheme 2.3. Equilibration of the anilines. 

 

 Due to the ability of the hydride bases to drive the reaction to completion and 

the interesting nitrogenous rearrangement activity to generate the thiourea when lithium 

was the counterion, the rearrangement was attempted using lithium hydride as the base 

(Table 2.1, entries 4-8). Despite multiple attempts at this rearrangement the reaction 

never went above 60 % completion. Due to minimal returns, this attempted novel 

pathway to carbodiimides was abandoned (along with undiscussed attempts at an aza-

Wittig reaction and the desulfurization of bis-acyl thioureas). 
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2.3 Dehydration of Ureas 
 

 

2.3.1 Methods of Carbodiimide Formation 
 

 

 Previously in the Madalengoitia group electron deficient carbodiimides had been 

generated by the desulfurization of thioureas by the Mukaiyama salt or the thiourea 

transfer agent EDCI●HCl.12 Aliphatic carbodiimides had also been generated by the 

dehydration of ureas via reaction with p-toluenesulfonyl chloride in the presence of a 

base. Finally, it was being shown among co-workers in the Madalengoitia group that 

isothioureas could be desulfurized using mercury (II) chloride to afford carbodiimides. 

As stated above, the generation of thioureas for highly electron deficient carbodiimides 

was unlikely as the higher order electron deficient thioureas are unreported compounds 

and potentially unstable. Both the urea and isothiourea pathways have an advantage over 

the original thiourea desulfurization pathway, there are literature examples of highly 

electron deficient members of both the urea species41-44 (Figure 2.5) and the isothiourea 

species43 (Figure 2.6).  
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Figure 2.5. Potential dehydration of ureas route and known ureas. 

 

 

Figure 2.6. Potential desulfurization of isothioureas and known isothioureas. 

 

 There is a preponderance of methods of urea dehydration: via the Burgess 

reagent,45 p-toluenesulfonyl chloride,46 triphenyl phosphine with carbon tetrabromide,47 

and others, the decision was made to explore the dehydration of electron deficient ureas 

rather than the desulfurization of isothioureas. 
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2.3.2 Synthesis 

 

 

 Initially a known carbodiimide was targeted: 3-benzyl-1-tosyl carbodiimide, 

generated in the past from the parent thiourea (Scheme 2.4).12 The 3-benzyl-1-tosyl 

carbodiimide is modestly electron withdrawing and since the Madalengoitia group had 

synthesized the corresponding bicyclic guanidine in the past the characterization of the 

product could be confirmed. 

 

 

Scheme 2.4. Initial target and previous synthesis. 

 

 3-benzyl-1-tosyl urea was easily generated by the reaction of tosyl isocyanate 

with benzylamine in dichloromethane (Scheme 2.5). This urea was then used in several 

dehydration reactions utilizing known methods of urea dehydration and subsequent 1,3-

diaza Claisen rearrangement with N-benzyl 2-azanorbornene (1.14). The known urea 

dehydration methods were generally reported for reaction with aliphatic ureas and none 

reported for ureas with electron withdrawing groups as strong as the tosyl group. As 

shown, many of the methods did not produce any desired product and returned simply 

starting urea. While disappointing, this was not overly surprising due to the lack of 
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reports dealing with electron deficient ureas. The reaction with tosyl chloride and 

triethylamine did produce the desired product 1.18, but only in a 30 % yield.  

 

 

Scheme 2.5. Initial dehydration and rearrangement attempts. 

 

 Despite the low yield of the tosyl chloride reaction, it was an encouraging result 

as it proved that electron deficient ureas could be dehydrated and it was just a matter of 

optimizing reaction conditions. Despite attempts to increase the yield of the tosyl chloride 

dehydration the 30 % yield could not be improved upon. At this point it became clear that 

a stronger dehydration method would need to be explored. 

 The objective was to generate the oxyanion of the urea, thereby making it a hard 

nucleophile. Addition of a hard, oxophilic electrophile would affect a hard/hard 
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interaction and dehydrate the urea. Two equivalents of n-BuLi, a strong base, were 

introduced to urea 2.14 to deprotonate both of the protons on the nitrogens of the urea, 

providing the oxyanion (Scheme 2.6, 2.14.1). Phosgene, a hard electrophile, was added as 

the dehydrating agent followed by the N-benzyl 2-azanorbornene (2.14) to form the 

zwitterionic intermediate and thus incite the 1,3-diaza Claisen rearrangement.   

 

 

Scheme 2.6. Phosgene dehydration, initial attempts. 

 

 While the crude reaction mixture appeared to be quite clean via NMR the 

bicyclic guanidine could only be isolated in 40 % yield at most. This was an 

improvement over the tosyl chloride reaction, albeit only by 10 %, but progress had been 

made. In an effort to decrease the harshness of the reaction, and because some success 

had been seen with it in the tosyl chloride reaction, the n-BuLi was replaced with 

triethylamine (Scheme 2.7). Gratifyingly these reaction conditions led to the isolation of 

the desired product in an 84 % yield. Not only was this exciting as a new urea 

dehydration/carbodiimide generation chemistry, but the same bicyclic guanidine had only 

ever been generated in a 67 % yield from the thiourea, meaning the rearrangement yield 

had been increased by 17 %.  
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Scheme 2.7. Success with a simple base switch. 
 

 As had been proven before, the 3-benzyl-1-tosyl carbodiimide did not reach the 

desired electron deficiency threshold. With this in mind, and the successful phosgene 

dehydration conditions, higher order electron deficient carbodiimides were targeted. The 

first target was the 3-benzyl-1-(4-nitrobenzensulfonyl) urea (2.15). Not only was this a 

more electron deficient carbodiimide than the tosyl variant, but it was a product 

previously unavailable by the thiourea route due to the unexpected Smiles chemistry 

previously described. 

 

 

Scheme 2.8. Synthesis of the nosyl, benzyl urea. 
 

 A method of sulfonylurea synthesis developed by Cervello and Sastre, which 

uses CuCl as a catalyst, was utilized to generate the desired urea in 96 % yield (Scheme 

2.8).48 
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Scheme 2.9. Initial rearrangement attempt of the nosyl, benzyl carbodiimide. 
 

 However, upon exposure to the newly developed reaction conditions, only a 

complex, inseparable crude mixture was obtained (Scheme 2.9). Thankfully, simply 

switching the solvent of the rearrangement from tetrahydrofuran to dichloromethane 

provided the desired rearrangement product with an isolated yield of 78 % (Scheme 

2.10). Clearly the solvent choice in the rearrangement can have dramatic effects, although 

that is still not fully understood. 

 

 

Scheme 2.10. Dramatic solvent effects. 
 

The nosyl, benzyl urea was exposed to the new rearrangement conditions with N-benzyl 

2-azaisoquinuclidine, the less ring-strained tertiary allylic amine (Scheme 2.11). 
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Scheme 2.11. Failed reaction with isoquinuclidine. 
 

 The rearrangement was attempted in both tetrahydrofuran and dichloromethane. 

Both solvents gave complex mixtures with no detectable desired product. Since it was 

known that the nosyl, benzyl urea wouldn’t reach the desired electron deficiency 

threshold, ureas that were more electron deficient were synthesized (Scheme 2.12). 

 

 

Scheme 2.12. Synthesis of more electron deficient ureas. 

 

 Trifluoromethanesulfonamide was deprotonated with sodium hydride in THF 

and benzyl isocyanate was added to make the N-benzyl, N’-trifluoromethanesulfonyl 

urea 2.17. Tosyl sulfonamide and benzoyl isocyanate were allowed to react in toluene at 

reflux with pyridine as a catalyst to generate the N-benzoyl, N’-tosyl urea 2.18, the most 

electron deficient carbodiimide precursor to date. Both of these more electron deficient 

ureas were exposed to the general reaction conditions for the rearrangement (Scheme 

2.13). 
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Scheme 2.13. Rearrangements of highly electron deficient ureas. 

 

 While the triflate urea 2.17 rearrangement gave an inseparable, complex 

mixture, the tosyl, benzoyl urea 2.18 proved more intriguing and produced an interesting 

mixture of isolable products. The two major products isolated were bicyclic ureas 2.20 

and 2.21. The proposed method of their formation is shown in Figure 2.7.  

 

 

Scheme 2.7. Proposed formation of product mixture. 

 
 Upon formation of the highly reactive 3-benzoyl-1-tosyl carbodiimide (2.18.1) 

another equivalent of the deprotonated urea would add nucleophilically to the carbon of 

the carbodiimide. The nucleophilicity of the two distinct nitrogens of the urea generates 

either 2.18.2 or 2.18.3. These intermediates would decompose to give a guanidine 
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(2.19.1, 2.19.2) and the corresponding isocyanate. The corresponding isocyanate, being a 

reactive heterocumulene, would undergo the 1,3-diaza Claisen rearrangement with the N-

benzyl 2-azanorbornene to give one of the two bicyclic ureas 2.20 or 2.21. While this was 

an interesting result, it was not the desired outcome. Due to the inability of the urea 

dehydration methodology to work with these highly electron deficient starting materials, 

attention was switched to developing the methodology of isothiourea desulfurization that 

was seeing some success within the group. 

 The isothiourea desulfurization method was less explored than the thiourea and 

urea methodologies, so the decision was made to compare and contrast the three current 

carbodiimide generation methods: the original thiourea desulfurization, the newly 

developed urea dehydration, and the desulfurization of isothioureas. A series of 

moderately electron deficient ureas and isothioureas were synthesized for this comparison 

study. The isothioureas were synthesized by the reaction of a primary amine with an S,S-

dimethyldithiocarboimidate (2.22). Dimethyl toluenesulfonylcarbonimidodithioate 

(2.22a, R1 = tosyl) was synthesized by the reaction of p-toluenesulfonamide with carbon 

disulfide in the presence of sodium hydride. The dithio-anion was methylated with 

methyl iodide to provide the carbodithioimidate (Scheme 2.14).  

 

 

Scheme 2.14. Synthesis of tosyl carbodithioimidate. 
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The other carbondithimoimidates were developed in a similar fashion. The generation of 

the isothiourea series of carbodiimide precursors is summarized in Table 2.1.  

 

 

Table 2.1. Synthesis of the isothiourea series. 

 
Isothiourea Conditions Product Yield (%) 

R1 = Ts (2.22a), R2 = Bn MeOH, reflux, 3 h 2.23a 97 
R1 = Ts (2.22a), R2 = i-Pr MeOH, Et3N, reflux, 3 h* 2.23b 70 

R1 = Ts (2.22a), R2 = n-hexyl MeOH, reflux, 3 h 2.23c 89 
R1 = Ts (2.22a), R2 = Bz NaH, THF, rt 2.23d 51 
R1 = Tf (2.22b), R2 = Bn MeOH, 0 °C, 30 min 2.23e 75 

*i-Pr•HCl used instead of the free base 

 Similarly, a series of ureas was synthesized as well (Table 2.2.) A primary 

amine or amide was allowed to react with the corresponding isocyanate to generate the 

desired urea.  

 

Table 2.2. Synthesis of the urea series. 

 

Urea Conditions Product Yield (%) 

R1 = Bn, R2 = Ns 10 mol% CuCl, DMF, rt, 20 h 2.15 96 
R1 = i-Pr, R2 = Ts NaH, THF, 0 °C 2.24a 95 

R1 = Ts, R2 = n-hexyl CH2Cl2, 0 °C 2.24b 91 
R1 = Ts, R2 = Bn CH2Cl2, 0 °C 2.14 84 
R1 = Bz, R2 = Ts toluene, reflux 4 h, pyridine 2.17 79 
R1 = Bn, R2 = Tf NaH, THF, 0 °C to rt 2.18 88 

 

 The two series of carbodiimide precursors were subjected to the standard 

reaction methodology for the 1,3-diaza Claisen rearrangement. They were compared to 
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the original work done on the desulfurization of thioreas; the results of the comparison 

can be seen in Table 2.3.  

 

Table 2.3. Comparison of the methods for carbodiimide generation and subsequent 1,3-
diaza Claisen rearrangement. 

 

Thiourea Conditions Yield 
(%) 

Urea Conditions Yield 
(%) 

Isothiourea Conditions Yield 
(%) 

R1 = Ts 
R2 = Bn 

EDCI, 
EtN(i-Pr)2, 
CHCl3, rt 

67 (b) R1 = Ts 
R2 = Bn 

COCl2, THF, 
0 °C to rt, 6 h 

84 (b) R1 = Ts 
R2 = Bn 

HgCl2, Et3N, 
THF, rt 

69 (b) 

R1 = Ts 
R2 = i-Pr 

EDCI, 
EtN(i-Pr)2, 
CHCl3, rt 

72 (f) R1 = Ts 
R2 = i-Pr 

COCl2, THF, 
0 °C to rt, 6 h 

61 (f) R1 = Ts 
R2 = i-Pr 

HgCl2, Et3N, 
THF, rt 

56 (f) 

R1 = Ts  
R2 = n-hex 

EDCI, 
EtN(i-Pr)2, 
CHCl3, rt 

77 (g) 
  

R1 = Ts  
R2 = n-

hex 

COCl2, THF, 
0 °C to rt, 6 h 

67 (g) R1 = Ts 
R2 = n-hex 

HgCl2, Et3N, 
DMF, rt 

67 (g) 

R1 = Tf 
R2 = Bn 

Muk. Salt 
EtN(i-Pr)2, 

CHCl3, rt 

62 (h) R1 = Tf 
R2 = Bn 

COCl2, THF, 
0 °C to rt, 6 h 

Complex 
Mix 

R1 = Tf 
R2 = Bn 

HgCl2, Et3N, 
DMF, rt 

Complex 
Mix 

- - - R1 = Ns 
R2 = Bn 

COCl2, DCM, 
0 °C to rt, 6 h 

78 (e) - - - 

- - - R1 = Ts 
R2 = Bz 

COCl2, THF, 
0 °C to rt, 6 h 

Complex 
Mix 

R1 = Ts 
R2 = Bz 

HgCl2, Et3N, 
CH2Cl2

*, rt 
54 (i)  
36 (j) 

  

 It should be noted that the final entry for the isothiourea series, the 3-benzoyl-1-

tosyl carbodiimide, was conducted in dichloromethane because the standard conditions 

with dimethylformamide (DMF) as the solvent were leading to a side product where the 

oxygen of DMF was nucleophilically adding to the highly reactive carbodiimide 

intermediate to generate an amidine side product. 

 In the first three rows of the table, the comparison of the three methods was 

conducted with tosyl, alkyl carbodiimides. Each methodology afforded the bicyclic 

guanidine rearrangement product in comparable moderate yields. The final three rows 
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showcase the different electron deficient products that can be generated depending on the 

methodology chosen. The new urea dehydration pathway expands the overall 1,3-diaza 

Claisen rearrangement methodology as the nosyl, benzyl carbodiimide was available 

through that pathway, something that couldn’t be achieved with either the thiourea or 

isothiourea due to the potential Smiles rearrangement chemistry previously discussed. 

The isothiourea chemistry also expanded the overall rearrangement methodology as it 

allowed for the synthesis of the mixed tosyl, benzoyl products in a very high combined 

yield (90 %, 2.16i and 2.16j). This is the most electron deficient carbodiimide generated 

in the group to date. 

 Following the expansion of the intermolecular rearrangement methodology, 

attention was turned to the further development of the intramolecular 1,3-diaza Claisen 

rearrangement. Simultaneously to the intermolecular work discussed above other 

members of the Madalengoitia group were seeing significant progress with the 

intramolecular rearrangement. The work on the intramolecular rearrangement was 

beginning to show a trend that indicated the carbodiimide did not need to be as electron 

deficient as with the intermolecular rearrangement, meaning complex skeletons would be 

accessible without the challenge of dealing with the highly reactive intermolecular 

substrates. 
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2.4 Conclusions 

 

 

 Following attempts at the synthesis of highly electron deficient carbodiimides 

via a Novel Smiles rearrangement as well as attempts through an aza-Wittig pathway and 

bis-acyl thioureas, new conditions were developed to dehydrate electron deficient ureas. 

Ureas as electron deficient as N-benzoyl, N’-tosyl urea are dehydrated by phosgene in the 

presence of Et3N to form carbodiimides. The in-situ generated carbodiimides were then 

exposed to tertiary allylic amine N-benzyl 2-azanorbornene for 1,3-diaza Claisen 

rearrangement to afford complex bicyclic guanidine structures. Concurrently conditions 

were developed for the desulfurization of highly electron deficient isothioureas. 

Isothioureas were desulfurized to generate carbodiimides using mercury (II) chloride and 

Et3N which were also exposed to N-benzyl 2-azanorbornene. The two methodologies 

were compared with the original carbodiimide generation method of thiourea 

desulfurization for a series of rearrangements. Both of the new conditions have strengths 

with rearrangement products available only through that singular method. 
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2.5 Experimental 
 

 

General: Reagents and solvents were of high analytical grade and purchased from 

Sigma-Aldrich, Fisher Science, and Acros Organics. Anhydrous DMF was prepared by 

drying of 3 Å molecular sieves. Anhydrous THF was prepared by distillation over 

potassium metal. Anhydrous CH2Cl2 was prepared by distillation over calcium chloride. 

Anhydrous Et3N was prepared by distillation over calcium hydride. 1H NMR spectra 

were acquired on a Bruker 500 MHz spectrometer or a Varian 500 MHz spectrometer. 

1H chemical shifts are reported in reference to residual solvent signals; CDCl3 at d 7.26 

ppm, DMSO-d6 at 2.50 ppm. 13C NMR spectra were acquired on a Bruker 500 MHz 

spectrometer at 125 MHz. High resolution mass spectrometry data was collected on a 

Waters Xevo G2-XS QTOF spectrometer. Column chromatography was conducted on 

Sorbtech silica gel, standard grade, 60A, 40-63 µm. 

 

 

 

N-benzyl-4-nitrobenzenesulfonamide (2.6a). To a stirred solution of 4-

nitrobenzenesulfonyl chloride (1.00 g, 4.50 mmol) in anydrous THF (5 mL) at 0 °C was 

added benzyl amine (0.50 mL, 4.50 mmol) dropwise. Diisopropyl ethyl amine (0.86 mL, 

4.90 mmol) was then added and the reaction was stirred for five minutes at 0 °C. The ice 

bath was removed and the reaction was allowed to warm to rt and to stir for 3 hr. 
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Distilled H2O (10 mL) was then added and the reaction mixture was stirred for 1 hr. Five 

drops of concentrated HCl were added and extracted with EtOAc (3 x 10 mL).  The 

combined organic layers were combined, dried (MgSO4), and concentrated to afford 

sulfonamide 2.6a (1.29 g, 86 % yield). Spectral data matched literature reported values.    

 

 

 

3-benzyl-1-isopropyl-1-(4-nitrophenyl)thiourea (2.12). To a reaction flask was charged 

lithium hydride (0.012 g, 1.51 mmol). To the reaction flask was added a solution of 

sulfonamide 25 (0.40 g, 1.37 mmol) in anhydrous THF (10 mL) at 0 °C. The 

deprotonation was allowed to stir for five minutes, and then isopropyl isothiocyanate 

(0.29 mL, 2.74 mmol) was added slowly. The reaction was allowed to stir at rt for 24 hr 

and then 2 hr at reflux. The reaction mixture was worked up with 2 mL of 10 % HCl and 

extracted with EtOAc (3 x 20 mL). The combined organic layers were dried (MgSO4), 

concentrated, and purified by column chromatography (30% EtOAc in hexanes) to afford 

thiourea 2.12 as a yellow crystalline solid. Rf = 0.63 (30% EtOAc in hexanes); 1H NMR 

(500 MHz, CDCl3) δ 8.17 (d, J = 8.8 Hz, 2H), 7.25 (d, 2H), 7.18 – 7.06 (m, 5H), 5.80 

(dtd, J = 14.2, 7.4, 7.0, 5.9 Hz, 1H), 5.27 (s, 1H), 4.72 (d, J = 5.4 Hz, 2H), 1.04 (d, J = 

6.8 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 182.0, 147.8, 144.0, 138.0, 131.7, 128.8, 

127.6, 127.5, 125.5, 52.6, 49.7, 21.4. 

 



41 

 

 

N-isopropyl-4-nitroaniline (31), N-benzyl-4-nitroaniline (2.13 a&b). Potassium 

hydride (0.033 g, 0.82 mmol, 30% in mineral oil) was charged to a reaction flask. Excess 

mineral oil was washed out with hexanes (3 x 2 mL). To the reaction flask was added a 

solution of sulfonamide 25 (0.200 g, 0.685 mmol) in anhydrous THF (5 mL). After five 

minutes of stirring, N-isopropyl isothiocyanate (0.146 mL, 1.40 mmol) was charged to 

the reaction mixture drop-wise and allowed to stir overnight at room temperature. 1 mL 

of 10% HCl was added to the reaction mixture in a seperatory funnel, diluted with 3 mL 

distilled H2O, and extracted with EtOAc. The organic layers were collected, dried 

(MgSO4), and concentrated to afford a mixture of anilines 2.13a and 2.13b. The 

compounds were separated via column chromatography (30% EtOAc in hexanes). 

Spectral data matched literature reported values.    

 

 

 

N-(benzylcarbamoyl)-4-nitrobenzenesulfonamide (2.15). Procedure adapted from 

Cervello.48 Benzyl isocyanate (3.81 mL, 30.9 mmol) was added to a solution of 4-

nitrobenzenesulfonamide (5.00 g, 24.7 mmol) and copper (I) chloride (0.29 g, 2.97 

mmol) in dimethyl formamide (20 mL) at ambient temperature. The mixture was stirred 
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under nitrogen at ambient temperature for 20 hr. The mixture was then poured into an 

ice/water bath (200 mL) and the resultant mixture was acidified with conc. aqueous HCl 

to pH 2. Toluene was added until a precipitate formed. The precipitate was isolated by 

vacuum filtration and washed with water to give 2.15 (7.93 g, 96 %). 1H NMR (CDCl3, 

500 MHz) δ 8.35 (d, J = 8.05 Hz, 2H), 8.12 (d, J = 8.3 Hz, 2H) 7.28-7.15 (m, 5H), 4.16 

(d, J = 4.95 Hz, 2H); 13C NMR (CDCl3, 125 MHz) 144.7, 140.2, 128.99, 128.97, 128.7, 

128.6, 127.5, 127.1, 124.4, 43.3 ppm; IR (solid), 3314, 3109, 1662, 1520, 1346 cm-1; 

HRMS (pos. ESI (2Na-H)+ adduct) m/z 380.0285 (380.0300 calcd. for 

C14H12N3O5SNa2); Rf = 0.19, eluent: 75 % EtOAc in hexanes; m.p. 195 – 223 °C. 

 

 

 

N-(isopropylcarbamoyl)-4-methylbenzenesulfonamide (2.24a). Sodium hydride (0.13 

g, 60 % in mineral oil, 3.21 mmol) was charged to a flame dried flask with a stir bar, 

capped under nitrogen, and cooled to 0 °C. A solution of p-TsNH2 (0.50 g, 2.92 mmol) in 

freshly distilled THF (5 mL) was added slowly to the sodium hydride and the mixture 

was stirred for five minutes at 0 °C. Isopropyl isocyanate (0.29 mL, 2.92 mmol) was 

added to the flask and the reaction mixture was stirred for 4 hr. The THF was removed 

under reduced pressure and the remaining material was transferred to a seperatory funnel 

with EtOAc (6 mL) and distilled H2O (6 mL). Concentrated aqueous HCl was added until 

the aqueous layer was acidic (pH 2). The layers were separated and the aqueous layer was 
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extracted with EtOAc (3 x 6 mL). The four combined organic layers were dried (MgSO4) 

and concentrated to give colorless solid 2.24a (0.71 g, 95 %). 1H NMR data matches 

literature reported values49, herein reported is further spectral characterization. 1H NMR 

(CDCl3, 500 MHz): δ 8.14 (broad singlet, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 7.9 

Hz, 2H), 6.40 (d, J = 6.8 Hz, 1H), 3.96-3.85 (m, 1H), 2.44 (s, 3H), 1.15 (d, J = 6.55, 6H); 

13C NMR (CDCl3, 125 MHz) 151.1, 144.7, 136.8, 129.8, 127.0, 42.6, 22.7, 21.6 ppm; IR 

(solid) 3294, 3240, 1667 cm-1; MS (pos. ESI) m/z 257.0955 (257.1000 calcd. for 

C11H17N2O3S, MH; Rf = 0.39, eluent: 40 % EtOAc in hexanes; m.p. 137 – 140 °C. 

 

 

 

N-(hexylcarbamoyl)-4-methylbenzenesulfonamide (2.24b). TsNCO (0.39 mL, 2.5 

mmol) was dissolved in dichloromethane (5 mL) in a flame dried flask, capped under 

nitrogen, and cooled to 0 °C. Hexyl amine (0.23 mL, 2.50 mmol) was added to the 

isocyanate and the reaction mixture was stirred for 4 hr while the ice bath was allowed to 

warm to room temperature. The dichloromethane was removed under reduced pressure to 

give colorless solid 2.24b (0.69 g, 91 %). 1H NMR (CDCl3, 500 MHz) δ 9.29-8.63 (broad 

s, 1H), 7.77 (d, J = 8.35 Hz, 2H), 7.30 (d, J = 8.05 Hz, 2H), 6.54 (broad t, 1H), 3.20 (q, J 

= 6.9, 6.0, 7.0 Hz, 2H), 2.43 (s, 3H), 1.45 (m, 2H), 1.32-1.20 (m, 6H), 0.87 (t, J = 6.85, 

7.00 Hz, 3H); 13C NMR (CDCl3, 125 MHz) 152.0, 144.7, 136.8, 129.86, 127.0, 40.3, 

31.4, 29.5, 26.4, 22.5, 21.6, 14.0 ppm; IR (film) 3333, 3109, 1659 cm-1; MS (pos. ESI) 
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m/z 299.14 (299.14 calcd. for C14H22N2O3S, MH); Rf = 0.53, eluent: 40 % EtOAc in 

hexanes; m.p. 113 – 115 °C, lit 120-121 °C.50  

 

 

 

N-(benzylcarbamoyl)-4-methylbenzenesulfonamide (2.14). TsNCO (8.56 mL, 56.00 

mmol) and dichloromethane (100 mL) were added to a flame dried 250 mL round bottom 

flask equipped with a stir bar. The mixture was cooled to 0 °C and capped under 

nitrogen. Benzyl amine (6.41 mL, 56.00 mmol) was added to the reaction flask. A 

colorless precipitate formed immediately. The reaction was stirred at 0 °C for 2 hr. The 

dichloromethane was removed under reduced pressure to afford 2.14 (14.22 g, 84%) as a 

white powder that was used without further purification. 1H NMR data matches literature 

reported values,51 herein reported is further spectral characterization. 1H NMR (CDCl3, 

500 MHz) δ 7.70 (d, J = 8.3 Hz, 2H), 7.31-7.27 (m, 5H), 7.17 (d, J = 5.7 Hz, 2H), 6.91 

(broad s, NH), 4.41 (d, J = 5.8 Hz, 2H), 2.45 (s, 3H); 13C NMR (CDCl3, 125 MHz) 151.6, 

144.9, 137.5, 136.5, 130.0, 128.7, 127.7, 127.5, 127.0, 44.2, 21.7 ppm; IR (solid) 3318, 

3109, 1659, 1551; HRMS (pos. ESI) m/z 305.10 (305.37 calcd. for C15H16N2O3S, MH); 

Rf = 0.38, eluent: 30 % EtOAc in hexanes, m.p. 175 – 179 °C, lit 176-179 °C.52  
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N-(benzylcarbamoyl)-1,1,1-trifluoromethanesulfonamide (2.17). The procedure used 

to synthesize 2.24a was used, with an overnight reflux. The reaction provided a white 

solid. The crude product was purified on a silica gel column to give pure 2.17 (1.67 g, 

88%). 1H NMR (500 MHz, CDCl3) δ 7.42 – 7.32 (m, 9H), 7.30 (d, J = 1.7 Hz, 1H), 6.81 

(s, 1H), 4.51 (d, J = 5.7 Hz, 2H), 13C NMR (THF, 126 MHz): δ 138.5, 128.2, 127.1, 

127.0, 121.0, 118.5, 44.1 ppm; HRMS (pos. ESI) m/z 326.9998 (2Na-H)+ adduct 

(327.0000 calcd. for C9H8F3N2O3SNa2, M2Na-H). 

 

 

 

N-(tosylcarbamoyl)benzamide (2.18). To a mixture of p-tosyl sulfonamide (0.51 g, 2.90 

mmol) in anhydrous toluene (15 mL) was added benzoyl isocyanate (0.51 g, 3.50 mmol). 

The reaction mixture was heated at reflux for 4 hr, five drops of pyridine (0.038 g, 0.48 

mmol) were added and the reaction was heated at reflux further for 2 hr. The toluene was 

removed in-vacuo to give crude 2.18 as a white solid. The crude reaction mixture was 

purified on a silica gel column with 50 % EtOAc in hexanes to give pure 2.18 (0.73 g, 79 

%). 1H NMR (500 MHz, CDCl3) δ 11.49 (s, 1H), 9.00 (s, 1H), 7.99 (d, J = 8.4 Hz, 2H), 

7.93 (d, J = 7.1 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.62 – 7.56 (m, 3H), 7.31 (d, J = 8.0 Hz, 
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2H), 2.44 (s, 3H), 13C NMR (CDCl3, 126 MHz): δ 168.0, 149.4, 145.16, 135.7, 134.2, 

130.8, 129.5, 129.3, 128.6, 127.9, 21.7 ppm. 

 

 

 

Dimethyl toluenesulfonylcarbonimidodithioate (2.22a). Potassium hydride (12.1 g, 35 

% in mineral oil, 105 mmol) was added to a flame dried 1000 mL round bottom flask 

equipped with a stir bar. The excess mineral oil was removed by rinsing with hexanes (3 

x 10 mL). The flask was capped under nitrogen and cooled to 0 °C. A solution of p-

TsNH2 (6.00 g, 35.0 mmol) in anhydrous THF (200 mL) was added slowly to the 

potassium hydride. The mixture was stirred for 30 minutes at 0 °C. 300 additional 

milliliters of anhydrous THF were added to the reaction flask and the flask was connected 

to a condenser. Carbon disulfide (29.7 mL, 490 mmol) was added to the reaction flask. 

The mixture was stirred at reflux for 36 hr. The reaction flask was allowed to cool to 

room temperature and then cooled to 0 °C. Methyl iodide (4.36 mL, 70.9 mmol) was 

added and the reaction mixture was stirred overnight while warming to room 

temperature. A short-path distillation apparatus was connected to the reaction flask. 

Excess carbon disulfide was removed via distillation; half of the liquid in the flask was 

removed by distillation, then 100 mL anhydrous THF was added to the reaction flask and 

the liquid was distilled again. This process was repeated a third time. The remaining THF 

was removed under reduced pressure to afford a yellow solid. This solid was purified on 
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a silica gel column using a gradient of solvent from 10, 30, and 50 % EtOAc in hexanes 

and a final flush with pure EtOAc to afford 2.22a as a yellow solid (9.08, 94 %). Proton 

NMR data matches literature reported values53, herein reported is further spectral 

characterization. 1H NMR (CDCl3, 500 MHz) δ 7.78 (d, J = 7.3 Hz, 2H), 7.21 (d, J = 7.3 

Hz, 2H), 2.44 (s, 6H), 2.34 (s, 3H); 13C NMR (CDCl3, 125 MHz) 184.7, 143.6, 137.8, 

129.4, 127.2, 21.6, 16.4 ppm; IR (solid) 2924, 1597, 1458; HRMS (pos. ESI) m/z 

276.0182 (276.0200 calcd. for C10H13NO2S3, MH); Rf = 0.19, eluent: 30 % EtOAc in 

hexanes; m.p. = 117 – 118 °C.  

 

 

-  

Dimethyl ((trifluoromethyl)sulfonyl)carbonimidodithioate (2.22b). The reported 

literature procedure was followed to afford 2.22b. Spectral data and identification match 

reported literature values.43 

 

 

 

Methyl-N-benzyl-N'- toluenesulfonylcarbonimidodithioate (2.23a). Dimethyl 

toluenesulfonylcarbonimidodithioate (2.22a) (0.50 g, 1.81 mmol) was added to a flame 
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dried 100 mL pear shaped flask equipped with a stir bar and the flask was then connected 

to a condenser. Five milliliters of methanol were added to the reaction flask followed by 

benzyl amine (0.24 mL, 2.17 mmol). The reaction mixture was heated at reflux for 3 hr. 

The methanol was removed under reduced pressure to afford crude 2.23a. The crude 

reaction material was purified on a silica gel column with 30 % EtOAc in hexanes as an 

eluent to afford pure 2.23a (0.59 g, 97 %). This compound has been previously 

reported,54 herein reported is further spectral characterization. 1H NMR (CDCl3, 500 

MHz) δ 8.5 (broad s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.37-7.26 (m, 5H), 7.23 (d, J = 6.45 

Hz, 2H), 4.48 (d, J = 5.9 Hz, 2H), 2.42 (s, 3H), 2.37 (s, 3H); 13C NMR (CDCl3, 125 

MHz) 169.5, 142.8, 139.6, 135.6, 129.4, 129.0, 128.2, 127.3, 126.3, 48.6, 21.5, 14.3 ppm; 

IR (solid) 330254, 2924, 1573 cm-1; HRMS (pos. ESI) m/z 335.0882 (335.0900 calcd. for 

C16H18N2O2S2, MH); Rf = 0.36, eluent: 30 % EtOAc in hexanes; m.p. = 131 – 133 °C, lit 

138 °C.54     

 

 

 

Methyl-N-isopropyl-N'- toluenesulfonylcarbonimidodithioate (2.23b). Dimethyl 

toluenesulfonylcarbonimidodithioate (0.50 g, 1.63 mmol) was added to a flame dried 100 

mL pear shaped flask equipped with a stir bar and the flask was then connected to a 

condenser. Five milliliters of methanol were added to the reaction flask followed by 

isopropylamine hydrochloride (0.19 g, 1.95 mmol). Triethyl amine (0.27 mL, 1.95 mmol) 



49 

was added to the reaction flask and the mixture was stirred at reflux for 3 hr. The 

methanol was removed under reduced pressure to afford crude product. The crude 

product was purified on a silica gel column using 30 % EtOAc in hexanes to give 2.23b 

as a colorless solid (0.33 g, 70 %). This compound has been previously reported,54 herein 

reported is further spectral characterization.  1H NMR (CDCl3, 500 MHz) δ 8.1 (broad s, 

NH) 7.78 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 3.86-2.78 (m, 1H), 2.41 (s, 3H), 

2.36 (s, 3H), 1.25 (2, J = 6.4 Hz, 6H); 13C NMR (CDCl3, 125 MHz) 168.1, 142.6, 139.9, 

129.3, 126.1, 46.8, 22.9, 21.5, 14.1 ppm; IR (solid) 3279, 2970, 1558 cm-1; MS (pos. ESI) 

m/z 287.0884 (287.09 calcd. for C12H18N2O2S2, MH); Rf = 0.8, eluent: 30 % EtOAc in 

hexanes; m.p. = 114 – 115 °C, lit 119 °C.54  

 

 

 

Methyl-N-hexyl-N'- toluenesulfonylcarbonimidodithioate (2.23c). 9c was synthesized 

by the same method as 2.23a above to afford 2.23c (0.529 g, 89 %) as a pale yellow oil 

after purification on a silica gel column with 30 % EtOAc in hexanes as the eluent. This 

compound has been previously reported,54 herein reported is further spectral 

characterization.  1H NMR (CDCl3, 500 MHz) δ 8.19-8.13 (broad s, NH) 7.79 (d, J = 8.3 

Hz, 2H), 7.26 (d, J = 7.7 Hz, 2H), 3.26 (dt, J = 7.0, 5.9, 6.9 Hz, 2H), 2.41 (s, 3H), 2.36 (s, 

3H), 1.63-1.56 (m, 2H), 1.36-1.26 (m, 6H), 0.89 (t, J = 6.8, 7.1 Hz, 3H); 13C NMR 

(CDCl3, 125 MHz) 169.4, 142.6, 139.9, 129.3, 126.2, 44.2, 31.3, 29.1, 26.3, 22.5, 21.5, 
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14.1, 14.0 ppm; IR (solid), 3294, 2931, 1573; MS (pos. ESI) m/z 329.14 (329.14 calcd. 

for C15H24N2O2S2, MH); Rf = 0.48, eluent: 30 % EtOAc in hexanes. 

 

 

 

Methyl N-benzoyl-N’-tosylcarbonimidithioate (2.23d). Sodium hydride (1.32 g, 60 % 

in mineral oil, 33.0 mmol) was added to a flame dried 100 mL round bottom flask 

equipped with a stir bar. The flask was sealed under N2 pressure and cooled to 0 °C. 

Benzamide (2.00 g, 16.5 mmol), dissolved in freshly distilled THF (20 mL) was added 

slowly to the reaction flask. The mixture was stirred at 0 °C for 10 minutes. Dimethyl 

toluenesulfonylcarbonimidodithioate (4.54 g, 16.5 mmol) was added to the reaction flask 

along with freshly distilled THF (30 mL). The mixture was stirred at 0 °C for 40 minutes 

then the ice bath was removed and the reaction was stirred at rt for 5 days. The yellow 

precipitate was removed via filtration. The filtrate was concentrated to give a gummy 

yellow solid (5.46 g). The solid was dissolved in dichloromethane, after which a solid 

crashed out of solution. The solid was isolated by filtration to give crude desired product 

(2.94 g, 51 % crude). Samples of the product were purified on silica gel with 30 % 

EtOAc in hexanes individually for use in future reactions. 1H NMR (500 MHz, CDCl3) δ 

12.19 (s, 1H), 8.03 – 7.97 (m, 2H), 7.90 – 7.84 (m, 2H), 7.71 – 7.64 (m, 1H), 7.61 – 7.54 

(m, 2H), 7.37 – 7.31 (m, 2H), 2.46 (s, 3H), 2.37 (s, 3H). 
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Methyl N-benzyl-N'-((trifluoromethyl)sulfonyl)carbamimidothioate (2.23e). 2.22b 

(0.50 g, 1.98 mmol) was added to a flame-dried 50 mL pear-shaped flask equipped with a 

stir bar. The flask was capped under N2 and cooled to 0 °C. Methanol (5 mL) was added. 

Benzyl amine (0.25 mL, 2.4 mmol) was added to the reaction flask dropwise. The 

reaction was stirred at 0 °C for 30 minutes. The methanol was removed in-vacuo. The 

crude material was purified on a silica gel column with a gradient of eluent from 10 % 

EtOAc in hexanes to 30 % to afford pure 2.23e (0.47 g, 75 %). 1H NMR (500 MHz, 

CDCl3) δ 8.65 (t, J = 5.9 Hz, 1H), 7.39 (ddd, J = 13.5, 7.8, 6.0 Hz, 3H), 7.32 – 7.28 (m, 

2H), 4.57 (d, J = 5.8 Hz, 2H), 2.49 (s, 3H); 13C NMR (CDCl3, 126 MHz): δ 175.2, 134.4, 

129.2, 128.6, 127.4, 123.8, 121.2, 120.7, 118.6, 118.2, 116.1, 48.6, 14.6 ppm. 

 

 

 

N-(1,3-dibenzyl-1,3,4,4a,5,7a-hexahydro-2H-cyclopenta[d]pyrimidin-2-ylidene)-4-

methylbenzenesulfonamide (1.16b).  

General procedure for the dehydration and rearrangement of ureas 

N-(benzylcarbamoyl)-4-methylbenzenesulfonamide 2.14 (0.24 g, 0.80 mmol) was added 

to a flame dried 100 mL pear shaped flask and was then capped under nitrogen and 
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cooled to 0 °C. Freshly distilled THF (2.4 mL) was added to the reaction flask followed 

by triethyl amine (0.22 mL, 1.6 mmol). The reaction mixture was stirred at 0 °C for 25 

minutes. Phosgene (0.42 mL, 20 % w/w in toluene, 0.80 mmol) was added to the reaction 

mixture followed immediately by 2-benzyl-2-azabicyclo[2.2.1]hept-5-ene 1.14 (0.15 g, 

0.80 mmol). The reaction mixture was stirred for 6 hr while allowing the ice bath to 

warm to room temperature. The mixture was then transferred to a seperatory funnel with 

EtOAc (6 mL) and distilled water (6 mL). The layers were separated and the water layer 

was extracted with EtOAc (3 x 6 mL). The four organic layers were collected, dried 

(MgSO4), and concentrated to give 0.353 g of crude product mixture. The product was 

purified on a silica gel column with 40 % EtOAc in hexanes to afford 1.16b (0.287 g, 71 

%). Spectral data and identification match reported literature values.12 

 

General procedure for the desulfurization and rearrangement of carbonimidithioate 

Methyl-N-benzyl-N'- toluenesulfonylcarbonimidodithioate 2.23a (0.080 g, 0.24 mmol) 

was added to a flame dried 50 mL pear shaped flask equipped with a stir bar. Freshly 

distilled THF (1 mL) and triethyl amine (0.07 mL, 0.5 mmol) were added and the 

reaction flask was capped under nitrogen and stirred for 5 minutes. Mercury (II) chloride 

(0.072 g, 0.26 mmol) was added followed immediately by 2-benzyl-2-

azabicyclo[2.2.1]hept-5-ene 1.14. The reaction flask was stirred under nitrogen at room 

temperature overnight. Reaction flask contents were transferred to two test tubes using 

chloroform and the precipitate that had formed was centrifuged out of the reaction 

mixture. The supernatant was collected and the solvent was removed under reduced 

pressure to afford crude product mixture. The crude mixture was purified on a silica gel 
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column using 40 % EtOAc in hexanes to give colorless solid 1.16b (0.078 g, 69 %). 

Spectral data and identification match reported literature values.12 

 

 

 

N-(3-benzyl-1-isopropyl-1,3,4,4a,5,7a-hexahydro-2H-cyclopenta[d]pyrimidin-2-

ylidene)-4-methylbenzenesulfonamide (1.16f).  

From the corresponding urea: 

The general procedure used for 1.16b was conduct to afford 1.16f as a colorless solid 

(0.200 g, 61 %). Spectral data and identification match reported literature values.12 

From the corresponding carbonimidithioate: 

The general procedure used for 1.16b was conduct to afford 1.16f as a colorless solid 

(0.083 g, 56 %). Spectral data and identification match reported literature values.12 
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N-(3-benzyl-1-hexyl-1,3,4,4a,5,7a-hexahydro-2H-cyclopenta[d]pyrimidin-2-ylidene)-

4-methylbenzenesulfonamide (1.16g).  

From the corresponding urea: 

The general procedure used for 1.16b was conduct to afford 1.16g as an off-white solid 

(0.210 g, 67 %). Spectral data and identification match reported literature values.12 

From the corresponding carbonimidithioate: 

The general procedure used for 1.16b was conduct to afford 1.16g as an off-white solid 

(0.197 g, 63 %). Spectral data and identification match reported literature values.12 

 

 

 

N-(1,3-dibenzyl-1,3,4,4a,5,7a-hexahydro-2H-cyclopenta[d]pyrimidin-2-ylidene)-4-

nitrobenzenesulfonamide (1.16e).  

From the corresponding urea: 

The general urea dehydration and rearrangement procedure for 1.16b was used to afford 

1.16e as a colorless solid (0.116 g, 78 %) when conducted in dichloromethane. 1H NMR 
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(CDCl3, 500 MHz) δ 8.11 (d, J = 8.7 Hz, 2H), 7.95 (d, J = 8.7 Hz, 2H), 7.39-7.17 (m, 

10H), 5.85-5.81 (m, 1H), 5.77-5.73 (m, 1H), 5.03 (d, J = 15.6 Hz, 1H), 4.93 (d, J = 14.9 

Hz, 1H), 4.63 (d, J = 14.9 Hz, 1H), 4.53 (d, J = 14.9 Hz, 1H), 4.36 (d, J = 8.5 Hz, 1H), 

3.26 (dd, J = 4.9, 4.9 Hz, 1H), 3.07 (dd, J = 6.7, 6.7 Hz, 1H), 2.60-2.52 (m, 1H), 2.45-

2.37 (m, 1H), 1.86-1.8 (m, 1H); 13C NMR (CDCl3, 125 MHz) 157.7, 151.4, 148.5, 136.7, 

135.8, 133.5, 128.8, 128.8, 128.6, 128.3, 127.8, 127.3, 126.6, 123.7, 65.2, 55.5, 53.7, 

47.9, 36.9, 36.6 ppm; IR (solid) 3061, 3026, 1522, 1503, 1346 cm-1; HRMS (pos. ESI) 

m/z 503.1747 (503.1800 calcd. for C27H26N4O4S, MH); Rf = 0.48, eluent: 50 % EtOAc in 

hexanes; m.p. 140 – 146 °C. 

 

 

and   

1.16i      1.16j 

N-((4aS,7aS,E)-1-benzoyl-3-benzyl-1,3,4,4a,5,7a-hexahydro-2H-

cyclopenta[d]pyrimidin-2-ylidene)-4-methylbenzenesulfonamide (1.16i), N-

((4aS,7aS,E)-3-benzyl-1-tosyl-1,3,4,4a,5,7a-hexahydro-2H-cyclopenta[d]pyrimidin-

2-ylidene)benzamide (1.16j).  

From the corresponding carbonimidithioate: The general procedure used for the 

desulfurization of carbonimidithioates was used with 2.23d. The reaction was conducted 

in dichloromethane instead of dimethylformamide. An aliquot of crude reaction mixture 
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was purified via HPLC with a gradient eluent of water:acetonitrile to give both 1.16i (54 

%) and 1.16j (36 %).  

1.16i. 1H NMR (500 MHz, CDCl3) δ 7.59 (d, J = 7.5 Hz, 4H), 7.49 (s, 1H), 7.37 (t, J = 

7.7 Hz, 2H), 7.31 (s, 1H), 7.28 – 7.22 (m, 3H), 7.14 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 7.2 

Hz, 2H), 5.97 (s, 1H), 5.75 (s, 2H), 4.59 (s, 2H), 3.66 (dd, J = 13.0, 3.7 Hz, 1H), 3.22 (d, 

J = 13.1 Hz, 1H), 3.14 (s, 1H), 2.54 – 2.42 (m, 1H), 2.36 (s, 3H), 2.03 (d, J = 30.2 Hz, 

3H), 1.62 (d, J = 17.6 Hz, 1H). IR (solid) 3062, 2924, 2252, 1681, 1558, 1473; MS (pos. 

ESI) m/z 486.3 (486.6 calcd. for C28H27N3O3S, MH); Rf = 0.16, eluent: 50 % EtOAc in 

hexanes.  

 

 

1.16j.  1H NMR (500 MHz, CDCl3) δ 8.00 – 7.96 (m, 2H), 7.73 – 7.68 (m, 2H), 7.48 – 

7.43 (m, 1H), 7.39 – 7.30 (m, 8H), 7.16 – 7.11 (m, 2H), 5.87 – 5.79 (m, 2H), 5.56 – 5.50 

(m, 1H), 4.72 – 4.54 (m, 2H), 3.56 (dd, J = 13.0, 4.6 Hz, 1H), 3.09 (ddddd, J = 9.5, 8.1, 

4.8, 3.6, 1.5 Hz, 1H), 2.97 (dd, J = 12.9, 1.6 Hz, 1H), 2.57 – 2.41 (m, 2H), 2.38 (s, 3H), 

1.79 – 1.72 (m, 1H), 1.28 (s, 2H), 0.89 (dt, J = 18.2, 7.3 Hz, 1H); 13C NMR (CDCl3, 126 

MHz): δ 173.3, 152.5, 144.0, 136.6, 136.5, 135.7, 135.2, 131.3, 129.7, 129.4, 129.2, 

128.8, 128.6, 128.1, 127.6, 65.6, 54.3, 50.0, 38.8, 37.6, 29.7, 21.6 ppm; IR (solid) 

3062.96, 2245, 1589, 1573, 1450, 1296 cm-1; MS (pos. ESI) m/z 486.4 (486.6 calcd. for 

C28H27N3O3S, MH); Rf = 0.26, eluent: 50 % EtOAc in hexanes.  
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3 INTRAMOLECULAR 1,3-DIAZA CLAISEN REARRANGEMENTS 

 

 

 

3.1  Intramolecular Rearrangement of Bridged, Bicyclic Precursors 

 

 

3.1.1 Original Design 

 

 

 The original design of the bridged, bicyclic, intramolecular project can be seen 

in Scheme 3.1. For the project, the carbodiimide precursor, thiourea 3.1, would be 

tethered to the tertiary allylic amine by a variable length alkyl chain. 

 

 

Scheme 3.1. Potential intramolecular rearrangement pathway. 

 

Generation of the carbodiimide in-situ (3.1.1) would allow the tethered tertiary allylic 

amine to attack the carbon of the carbodiimide. This would generate the spirocyclic 
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zwitterion 3.1.2. The 1,3-diaza Claisen rearrangement would then occur, providing the 

tricyclic guanidine product 3.2. 

 

 

Scheme 3.2. Initial attempt. 
 

 Initially this project was explored by Amy Bowser, her first attempt at the 

rearrangement was conducted on acyl, benzyl thiourea 3.2, a moderately electron 

withdrawing carbodiimide precursor. However, upon exposure to EDCI in the typical 

rearrangement conditions the reaction produced no desired product. It’s known that EDCI 

will desulfurize acyl, benzyl thioureas quickly, as seen in the control experiment of 

Scheme 3.3.  

 

 

Scheme 3.3. Desulfurization of acyl thiourea control. 
 

 Since it was unknown whether the problem with the rearrangement of thiourea 

3.3 was the carbodiimide generation or the rearrangement itself, a control reaction was 

conducted with an equivalent of isopropyl amine added. If the carbodiimide were formed, 
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isopropyl amine would trap the carbodiimide as the guandine, similarly to Scheme 3.4, if 

the carbodiimide was being generated.  

 

 

Scheme 3.4. Carbodiimide trapping attempts. 
 

Strangely, these reaction conditions provided no trapped guanidine with the 

isopropyl amine. It’s one of several examples in the group that show that the nearby 

nitrogen of the azanorbornene somehow inhibits the carbodiimide formation, although 

the reason behind this is unclear. The reaction was attempted in forcing conditions 

(heating in chloroform at reflux), but this only caused decomposition rather than 

rearrangement (Scheme 3.5).  

 

 

Scheme 3.5. Forcing conditions cause decomposition. 

 

 The potential issue for this rearrangement is that the spirocyclic zwitterionic 

intermediate 3.3.1 contains a very rigid five membered ring. This could be a problem 

because for a true suprafacial/suprafacial rearrangement the lobe on the imine nitrogen 
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needs to be overlapped with the lobe of the alkene (3.3.1, pointed to by arrows). The 

rigidity of the spirocycle forces these two lobes to be nearly perpendicular to each other, 

potentially preventing rearrangement.  

 The plan for the intramolecular rearrangement was then changed; the acyl group 

would be removed so the electron withdrawing group would be on the terminal nitrogen 

and the tether length would be made longer. These two changes would allow for more 

flexibility in the zwitterionic intermediate, hopefully allowing for better orbital overlap. 

The switch of the internal acyl group to the terminal electron withdrawing group allows 

for tunability of the electron withdrawing nature of the carbodiimide.  

 

 

Figure 3.1. New intramolecular rearrangement plans. 
 

 The change to having the electron withdrawing group on the terminal nitrogen 

would have an interesting effect though; it would force the rearrangement to produce the 

typically disfavored product. In the previous intermolecular rearrangements, the sulfonyl 

group was always observed on the exocylic imine nitrogen of the guanidine in the final 

product (Figure 3.2).  
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Figure 3.2. General regioselectivity trends. 

 

Scheme 3.6 is an example from the previous work by Amy Bowser showing this trend. In 

the typical rearrangement with the N-benzyl azanorbornene and the tosyl, benzyl 

carbodiimide the only rearrangement product observed is the one in which the tosyl 

group is on the imine nitrogen. This result shows that the transition state where the 

rearrangement occurs with the tosyl nitrogen is higher in energy (and therefore slower) 

than the rearrangement with the alkyl nitrogen, which is the only product observed, 

meaning it is the lower energy pathway.   

 

 

Scheme 3.6. Potential transition states. 

 

 Geometric constraints due to the tether in the intramolecular rearrangement will 

force the intramolecular variant to occur with the sulfonyl-substituted nitrogen (Figure 
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3.3). This rearrangement occurring via the higher energy transition state would provide 

an interesting development. 

 

 

Figure 3.3. Intramolecular rearrangement forced through higher energy transition state. 

 

 

3.1.2 Initial Intramolecular Rearrangement 
 

 

 The first rearrangement precursor targeted was an N-tosyl thiourea tethered to 

the N-benzyl azanorbornene via a three-carbon chain. The initial work was conducted by 

Stevenson Flemer Jr., Ph.D. The starting bridged bicyclic lactam 3.6 was easily reduced 

with lithium aluminum hydride (LAH) and acidified to give the hydrochloride salt 3.7. 

Simple 1,4-addition to acrylonitrile provided the tethered nitrile which was also easily 

reduced with LAH to provide the three-carbon tethered primary amine. However, when 

this amine was exposed to the standard thiourea synthesis conditions to desired thiourea 

products were not generated. Rather, for both the reaction with tosyl isothiocyanate and 

the less-reactive ethoxycarbonyl isothiocyanate two rearrangement products were 

generated (Scheme 3.7).  
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Scheme 3.7. Initial intramolecular thiourea synthesis attempts. 
 

The formation of these rearrangement products indicates that the reaction/rearrangement 

between the tertiary allylic amine of 3.12 and the isothiocyanate is faster than the 

addition of the primary amine of 3.9 to the isothiocyanates. This is potentially explained 

by the likely stabilization of the zwitterion’s negative charge due to hydrogen bonding 

from the thiourea; this possible stabilization can be seen in Figure 3.4. 
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Figure 3.4. Rearrangement is faster than isothiourea formation. 
 

 Other projects in the group have shown that stabilization of the negative charge 

of the zwitterion leads to an increased reaction rate.13 As this is a problem when the 

concentration of the isothiocyanate is equal to the concentration of amine, an attempt was 

made to synthesize the thiourea by adding the isothiocyanate to the reaction mixture via 

syringe pump, thereby increasing the relative concentration of primary amine (Scheme 

3.8). While this process worked, the thiourea was still the minor product, produced in 

nearly half the amount of the undesired rearrangement products.  
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Scheme 3.8. Syringe pump synthesis of isothioureas. 
 

 While minimal amounts of both the desired thioureas were generated, there was 

enough for isolation and attempts at rearrangement. However, neither the tosyl variant or 

the ethoxycarbonyl underwent 1,3-diaza Claisen rearrangement when exposed to the 

standard conditions. The intramolecular project was shelved until the isothiourea 

desulfurization method was developed and applied. 
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3.2 Intramolecular Developments 
 

 

 

Figure 3.5. Intramolecular rearrangement with isothioureas. 

 

 The previous results in the intramolecular work suggested the need for a carbon 

source that could react with an amine and then be converted to a carbodiimide while not 

undergoing side rearrangements. As such, the isothiourea work is a good basis as it 

provides carbodiimide precursors but the carbodithioimidates would not react with the 

tertiary allylic amine. A series of isothioureas, tethered to the tertiary allylic amine, could 

be synthesized by the reaction of a primary amine with the appropriate S,S-

dimethyldithiocarbonimidate in the fashion that the isothioureas were developed for the 

intermolecular rearrangement project. Exposure to the developed desulfurization 

conditions and rearrangement would provide a series of complex tricyclic guanidines 

(Figure 3.5).  

 For the intramolecular rearrangements, the decision was made to develop 

((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl) (Pbf) isothioureas because 

the Pbf group has a similar electron withdrawing nature to the tosyl group, but the extra 

methyl groups help with solubility in organic solvents and it can be deprotected with 

trifluoroacectic acid. The synthesis of the Pbf carbodithioimidate was conducted in the 

same fashion as the tosyl, starting from the relevant sulfonamide.  
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 Synthesis of the analog with a two-carbon chain began with the Grieco iminum 

Diels-Alder reaction between glycine methyl ester hydrochloride, formaldehyde, and 

cyclopentadiene.55-56 The glycine methyl ester hydrochloride and formaldehyde form an 

iminium ion which undergoes Diels-Alder [4+2] cycloaddition with freshly cracked 

cyclopentadiene to provide methyl ester 3.16 in an 83 % yield. Conversion of the ester to 

amide 3.17 was achieved via stirring the ester in an ammonia-saturated solution of 

methanol over five days to provide the primary amide. Conversion of the primary amide 

to the isothiourea 3.18 took place over a two-step process. The amide was first reduced to 

the volatile primary amine using LAH. This was a surprisingly long process, because, not 

only was isolating the primary amine difficult due to its volatility, but azanorbornenes are 

known to undergo retro-Diels-Alder reactions in the presence of acid,57 so forming the 

hydrochloride salt for isolation was not an option. Because the primary amine could 

never be isolated, following the work-up for the reduction the addition of the Pbf-

carbodithioimidate 2.22c was conducted immediately. The isothiourea was isolated in a 

55 % yield over the two-step process. 

 

 

 



68 

 

Scheme 3.9. Synthesis of the two-carbon analog. 

 

 Carrying out rearrangement with this analog under the standard reaction 

conditions of triethylamine and mercury (II) chloride in DMF produced the desired 

tricyclic guanidine 3.19 in an 82 % yield (Scheme 3.10).  

 

 

Scheme 3.10. Rearrangement of the two-carbon analog. 

 

 The next target for the intramolecular rearrangement study is the azanorbornene 

analog with a three-carbon tether. The strategy discussed earlier (Scheme 3.7) for the 

synthesis of the nitrile (3.8) with the three-carbon chain was utilized. In a one-pot 

process, the nitrile was reduced using LAH and the Pbf-carbodithioimidate (2.22c) was 

added to generate the desired isothiourea 3.20 in an isolated yield of 70 % (Scheme 3.11). 
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The isothiourea was exposed to the standard rearrangement conditions and provided the 

desired tricyclic guanidine 3.21 in a 58 % yield (Scheme 3.11). 

 

 

Scheme 3.11. Synthesis and isolation of three-carbon analog. 

 

 The isoquinuclidine analog of this compound was synthesized in a similar 

fashion. Primary amine 3.22 (received from Dr. Stevenson Flemer) was allowed to react 

with the Pbf-carbondithiomimidate to give isothiourea 3.23. Exposure of this isothiourea 

to the standard rearrangement conditions provided the desired tricyclic guanidine 3.24 in 

a 68 % yield (Scheme 3.12).  

 

 

Scheme 3.12. Synthesis of isoquinuclidine three-carbon analog. 

 

 This rearrangement was particularly exciting, as the related intermolecular 

rearrangement could not be effected. Attempts were previously made at conducting the 
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rearrangement with N-benzyl isoquinuclidine and N-benzyl, N’-tosyl carbodiimide 

(Scheme 1.2, fourth entry) but the rearrangement did not occur under any conditions. The 

intramolecular rearrangement proceeding in the moderate yield of 68 %, with an electron 

withdrawing group similar to tosyl, indicates that the intramolecular variant of the 

rearrangement does not require carbodiimides that are extremely electron withdrawing.  

 The next rearrangement precursor desired for this project was the four-carbon 

tether azanorbornene analog, which was the major sticking point of the project. The 

conjugate addition strategy used for the synthesis of the three-carbon analog’s nitrile 

wouldn’t provide a carbon tether long enough, leaving the iminium Diels-Alder as the 

most-likely pathway. However, previous experience in the Madalengoitia group had 

shown that the iminium Diels-Alder was fairly sensitive to having functionality on the 

iminium component. A previous graduate student had attempted the Diels-Alder with 3-

aminopropanoate hydrochloride with limited success, the same pathway used for the two-

carbon analog. Because of this, the initial synthetic route utilized 1-azido-4-aminobutane 

hydrochloride (Scheme 3.14).  

 

 

Scheme 3.13. Initial proposed pathway to four-carbon analog. 
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 The ammonium hydrochloride salt 3.25 would be exposed to the previously 

discussed Grieco iminium Diels-Alder conditions with cyclopentadiene. The resultant 

azide could be reduced to primary amine 3.26 using the Staudinger reduction, which 

would then be allowed to react with the Pbf-carbodithioimidate to provide the desired 

isothiourea rearrangement precursor 3.27. The rearrangement product 3.28 would then be 

generated using the standard conditions of HgCl2 and Et3N in DMF.  

 In the first attempt at this pathway, sodium azide was allowed to react with the 

commercially available N-(4-bromobutyl)phthalimide to provide protected amine 3.29. 

The phthalimide protecting group was removed by hydrazine hydrate in ethanol at reflux 

and the resultant product was acidified to generate the desired ammonium hydrochloride 

3.25. However, exposure of the apparently clean crude reaction mixture to the Diels-

Alder conditions provided (nearly exclusively) the double Diels-Alder product of 

acidified hydrazine hydrate with cyclopentadiene (3.30).  

 

 

Scheme 3.14. Initial cyclization attempts. 
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Despite steps that were taken to remove the excess hydrazine from the crude reaction 

mixture, the Diels-Alder never gave the desired rearrangement product. There is the 

potential for a 1,3-dipolar cycloaddition occurring between the primary azide and the 

alkene of the azanorbornene (Figure 3.6), if the initial Diels-Alder product worked. If this 

is the case, the dipolar cycloaddition is a fast reaction, occurring before the primary azide 

could be isolated. The 1,3-dipolar cycloaddition product was never isolated, but the NMR 

of the crude material from the reaction showed no alkene peaks, which would be 

consistent with this product.  

 

  

Figure 3.6. Potential 1,3-dipolar cycloaddtion. 
 

 Rather than continue to attempt the Diels-Alder, the next iteration of the 

synthesis involved alkylation of the bicyclic lactam 3.31. The lactam was deprotonated 

with sodium hydride and alkylation attempts were made with 4-azido-1-chlorobutane, but 

no desired product was ever isolated. The same problematic 1,3-dipolar cycloaddition 

may have been occurring with the azide as the crude reaction material also appeared to 

show no alkene.  
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Scheme 3.15. Lactam alkylation failure. 
 

Due to the potential azide cyclization, alternate pathways were investigated to achieve the 

primary amine. The decision was made to alkylate the lactam with N-(4-

bromobutyl)phthalimide and subsequently remove the phthalimide protecting group to 

afford the primary amine (Scheme 3.16). 

 

 

Scheme 3.16. Initial phthalimide lactam alkylation route. 

 

Alkylation of the lactam was achieved, however, the protected amine 3.32 was only 

isolated in a 34 % yield. Despite this, the phthalimide was deprotected using standard 

hydrazine hydrate conditions, but the primary amine was only provided in a 16 % yield 

(3.33). Attempts at LAH reduction of the lactam 3.33 only produced complex product 
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mixtures. Attempts were made to reduce the lactam with LAH before the phthalimide 

deprotection (3.32), however these conditions also reduce the imide of the phthalimde, 

making it considerably harder to remove this protecting group. It also should be noted 

that following production of the primary amine 3.33, the isothiourea could not be 

synthesized as the following reduction of the lactam would also reduce the isothiourea. 

 Low yields among all the attempts at the synthesis of the four-carbon analog 

precursors via the SN2 reactions and lactam reductions halted this pathway towards the 

final bridge-bicyclic analog. Instead, attention was returned to the Diels-Alder pathway 

that, due to previous experience in the group, was originally discounted.  

 Gratifyingly, the Diels-Alder reaction between cyclopentadiene and methyl 4-

aminobutyrate hydrochloride provides the bicyclic ester Diels-Alder adduct 3.34 in a 51 

% yield (Scheme 3.17).  

 

 

Scheme 3.17. Synthesis of four-carbon substrate amine precursor. 
 

The ester was converted to primary amide 3.35 by dissolving the ester in methanol and 

saturating the solution with ammonia gas and stirring at room temperature for four days, 

bubbling more ammonia into the solution, and stirring for 3 more days. The clean product 

was obtained in a 99 % yield, finally providing an amine precursor in a short synthetic 

pathway that was scalable (up to 15 grams of ester 3.34).  
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 However, solving this problem led to another; the primary amine 3.36 

(generated from LAH reduction) would not add to the Pbf-carbodithioimidate 2.22c. Due 

to the success of the one-pot reaction pathway conducted on the two-carbon analog the 

same process was attempted for this substrate, with no success.  

 

 

Scheme 3.18. Initial four-carbon isothiourea synthesis attempt. 

 

 Initially the choice of solvent for the carbodithioimidate addition reaction 

seemed the most likely culprit. In the past this reaction had been conducted in polar, 

protic methanol. While THF had worked for the two-carbon analog, that was not a 

guarantee for the four-carbon analog to work. 

 For the reaction to be conducted in methanol, the primary amine would need to 

be concentrated from the THF solution. This was done by blowing N2 over the THF 

overnight to gently remove the solvent and to avoid losing product under vacuum. 

Unfortunately, despite forcing conditions (methanol, reflux, 3 days) the primary amine 

would not add to the Pbf carbodithioimidate.  

 Originally used because the extra methyl groups would help with solubility, the 

Pbf group may have simply been causing too much steric hindrance with the 

azanorbornene moiety. The simple switch was made to using the tosyl 
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carbodithioimidate, as it’s of similar electron withdrawing nature, but much smaller. The 

amine also does not add to the tosyl carbodithioimidate, despite heating in methanol at 

reflux (Scheme 3.19). 

 

 

Scheme 3.19. Isothiourea synthesis failures. 

 

 For some reason, it seemed that the carbodithioimidates were not reactive 

enough to add to the primary amine when tethered to the tertiary allylic amine with a 

longer chain length. The electrophilicity can be increased by replacing one of the S-

methyls with a chlorine, while still providing the desired isothiourea products. Justin du 

Bois (and others) have shown that this chlorination can be conducted simply by reacting 

the carbodithioimidate with sulfuryl chloride.58-61 

 Originally this reaction was attempted with the Pbf carbodithioimidate to keep 

the rearrangement chemistry consistent with the other species in this series. The 

carbodithioimidate was dissolved in dichloromethane and sulfuryl chloride was added 

dropwise. The reaction was heated at reflux for 3 hr, until the carbodithioimidate was no 

longer detected by TLC. The desired product, however, was not obtained. 1H NMR and 

mass spec of the crude reaction mixture appear to show that rather than replacing the S-

methyl with a chlorine, the sulfuryl chloride somehow radically chlorinated the Pbf group 

at one of its many benzylic sites. Thankfully, the tosyl carbodithioimidate 2.22A easily 
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underwent the cholorination with sulfuryl chloride to provide methyl 

tosylcarbonochloridoimidothioate 3.37 in an 87 % isolated yield (Scheme 3.20).61 

 

 

Scheme 3.20. Synthesis of methyl tosylcarbonochloridoimidothioate. 

 

 The two-step reduction and isothiourea synthesis was then conducted on the 

four-carbon primary amide using the methyl tosylcarbonochloridoimidothioate as the 

electrophilic agent.  

 

 

Scheme 3.21. Final synthesis of the four-carbon isothiourea analog. 

 

 LAH reduction converted the primary amide 3.35 to the primary amine in an 86 

% crude yield following gentle blowing of N2 to remove the ethereal solvent. The 

primary amine 3.36 was immediately dissolved in methanol and the methyl 

tosylcarbonochloroimidothioate was added, providing the isolated isothiourea 3.38 in a 

moderate 45 % yield over the two steps (Scheme 3.21). It should be noted that not only 

does this isothiourea decompose, even when stored in a freezer, but later experiments 
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showed that methanol was nucleophilic enough to add to the carbonochloroimidate 3.37, 

an unproductive side pathway, which explains a depressed yield. Future isothiourea 

syntheses with reactant 3.37 were conducted using dichloromethane as the solvent.  

 Isothiourea 3.38 was then exposed to the 1,3-diaza Claisen rearrangement 

conditions. Rearrangement of the isothiourea proceeded smoothly to afford isolated 

tricyclic guanidine 3.39 in a 60 % yield (Scheme 3.22).  

 

 

Scheme 3.22. Rearrangement of four-carbon bridged-bicyclic analog. 
 

 The rearrangement of the four-carbon analog completed the desired series of 

bridged-bicyclic 1,3-diaza Claisen substrate rearrangements. While synthesis of the 

isothioureas was occasionally challenging the rearrangement was generally completed in 

moderate to high yields of complex tricyclic-guanidine skeletons (Table 3.1). 
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Table 3.1. Summary of bridged-bicyclic rearrangements. 
Entry Tricyclic Guanidine Yield (%) 

1 

 

82 

2 

 

58 

3 

 

68 

4 

 

60 

 

 The 1,3-diaza Claisen rearrangement has already been shown to work on 

intermolecular substrates for the formation of bicyclic guanidine skeletons. The ability to 

conduct the rearrangement on these bridged-bicyclic intramolecular rearrangement 

substrates allows for further variation in the complex guanidine products available from 

the reaction. Another significant benefit from this work comes from entry 3 of Table 3.1. 

As mentioned earlier this rearrangement implies that for intramolecular variants of the 

1,3-diaza Claisen process the carbodiimide does not need to be as strong electron 

withdrawing as in the intermolecular rearrangements. This revelation builds the basis for 

the acyclic and monocyclic rearrangement work being conducted now and discussed 

next.  
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3.3 Acyclic and Monocyclic Intramolecular 1,3-diaza Claisen Substrates 
 

 

 Work done by Dr. Yanbo Yang, an earlier Ph.D. student in the Madalengoitia 

group, had originally conducted rearrangement attempts on a series of substrates that 

were either monocyclic (intermolecular) and acyclic (intramolecular).13  

 Her work on cyclic species was conducted on a series of substrates in the 

cationic 1,3-diaza Claisen research she completed. In this work a urea was tethered to 

diallyl amine (3.40). The ureas were dehydrated using tosyl chloride with only one 

equivalent of base, which causes the anion of the zwitterion to be protonated, thereby 

making the rearrangement intermediate cationic (3.40.1). This process was shown to 

increase rearrangement rate (Scheme 3.23).  

 

 

Scheme 3.23. Cationic 1,3-diaza Claisen rearrangement. 

 

 In the intermolecular work, she found that the substrates would not rearrange 

under thermal conditions, but once a Pd0 catalyst was introduced some of the 

rearrangements would proceed, albeit in low yield unless the electron deficient tosyl 

isocyanate was used as the heterocumulene (Scheme 3.24).  
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 While it was concluded that the inability of the pyrroline 3.42a and 

tetrahydropyridine 3.42c to rearrange may be attributed to a stereoelectronic effect, it was 

encouraging that the N-benzyltetrahydroazepine 3.42b rearranged when that substrate 

would not rearrange thermally.  

 

 
Scheme 3.24. Dr. Yanbo Yang Pd0 cat. rearrangements. 
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 Both of these sets of reaction conditions produced product, but it can be seen 

that these rearrangements of the non-ring strained products did not proceed under 

zwitterionic conditions and needed to be coaxed either by being conducted cationically or 

with palladium catalysis. The advent of the new reactions to develop electron deficient 

carbodiimides allows for the study of the zwitterionic 1,3-diaza Claisen rearrangement on 

the simpler substrates.  

 

 

3.3.1 Diallylamino tethered 1,3-diaza Claisen Rearrangements 
 

 

 Initially the exploration of the rearrangement of simpler intramolecular 

substrates began when it was still unsure whether the carbodiimide needed to be 

significantly electron withdrawing. The initial target, isothiourea 3.45, consists of an acyl 

group on interior of the molecule as well as the electron withdrawing tosyl group at the 

terminus of the isothiourea, making the carbodiimide that would be generated from it 

highly electron deficient.   

 

 



83 

 

Scheme 3.25. Initial target of diallylamino series. 

 

 Exposure of the isothiourea 3.45 to the standard rearrangement conditions would 

provide one of the two rearrangement products 3.46a or 3.46b depending on which 

nitrogen undergoes rearrangement.  

 

 

Scheme 3.26. Synthesis of highly electron deficient diallylamino precursor: two-carbon 
tether. 

 

 The diallylamino acetamide 3.45 was easily prepared by the reaction of α-

bromoacetamide with diallylamine following Yanbo Yang’s procedure.13 Deprotonation 

of the amide with sodium hydride and reaction with the tosyl carbodithioimidate provided 
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isothiourea 3.45 swiftly (Scheme 3.26). The isothiourea was then exposed to the standard 

isothiourea desulfurization and rearrangement conditions with mercury (II) chloride and 

trimethylamine in DMF (Scheme 3.27).  

 

 

Scheme 3.27. Deallylation of the zwitterion. 

 

 Neither desired rearrangement product (3.46a or 3.46b) was isolated from the 

reaction. Instead, deallylation product 3.47 was isolated, indicated by the proton NMR 

spectrum containing only one allyl group. Initially the chloride anion was suspected of 

inducing the dealkylation as shown in 3.45.2. Upon formation of the carbodiimide 

followed by cyclization to the zwitterion, SN2 attack of the nucleophilic chloride anion on 

one of the allyl groups of the cation would provide the deallylation product obtained via a 

von Braun-type62-63 ammonium dealkylation.  

 Since the chloride anion was suspected as the main culprit of deallylation, a 

different desulfurization agent was needed with a less nucleophilic counterion. The initial 

idea was to continue using mercury (II) and have the triflate ion, but HgOTf2 is extremely 

toxic so other agents were investigated. Silver has been shown to be a thiophile64-65 so 

desulfurization was attempted with silver (I) triflate as it was readily available.  
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Scheme 3.28. Deallylation with silver triflate. 

 

 Silver triflate was thankfully able to desulfurize the isothiourea, but the only 

product in the reaction was again the deallylated product. The other potential deallylating 

culprit was the nucleophilic oxygen of DMF. Also, at this point it had been discovered 

(via the bridged-bicyclic project) that the intramolecular rearrangement did not need to be 

as electron deficient as the intermolecular variant. Considering these two factors, the 

same rearrangement was conducted without the acyl group and in dichloromethane 

(Scheme 3.29). Desulfurization of isothiourea 3.45 with silver (I) triflate provided a new 

product that had not been deallylated. 

 

 

Scheme 3.29. Intramolecular diallylamino rearrangement without acyl group. 
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 Initially however, it was unclear which of the potential rearrangement products 

was formed, as the proton NMR did not perfectly coordinate with either 3.49a or 3.49b. 

In the proton NMR for this rearrangement (Figure 3.7) the allyl groups (peaks at 5.6 – 5.8 

ppm) were shown to be symmetrical, which fits with the 3.49a but the methylene peaks 

were not symmetrical (peaks at 3.5 – 3.75), fitting with 3.49b. 

  

 

Figure 3.7. Curious NMR for two-carbon diallylamino rearrangement. 
 

 Prior to running the rearrangement experiment, it was unclear which 

regioisomer (3.49a or 3.49b) would predominate as the major product considering there 

are several competing effects that play a role in determining the product. There are two 

potential resonance structures of the zwitterionic intermediate (3.48.1 or 3.48.2), leading 
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to two different transition states and products (Scheme 3.30). Zwitterionic intermediate 

3.48x.1 is formed and the half-chair transition state is obtained. What is seen is that the 

bond on the quaternary nitrogen that is breaking to re-form the lone pair will be parallel 

to the future imine double bond to have the best orbital overlap for resonance, which 

leads to product 3.49a – this product predominates in the cationic variant of the 

rearrangement where the nitrogen anion is protonated. However, in the zwitterionic 

variant it appears that the rearrangement predominantly occurs via the second transition 

state (3.48.2). Upon formation of intermediate 3.48.2 and desired half-chair transition 

state, with again, the overlap between the rehybridizing lone pair and the future double 

bond, a significant steric interaction will likely occur between the two flagpole carbons 

likely forcing the one or the other of the rings into the sterically unfavored boat 

conformation, making this the likely higher energy transition state. However, the results 

showed that this is the preferred transition state as the imine of the guanidine in the final 

product has the tosyl group (3.49b), which fits the electronic control mentioned earlier. 
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Scheme 3.30. Diallylamino intramolecular rearrangement regioselectivity. 
 

 Prior to investigating the rearrangement, the focus was on improving the 

synthetic pathways towards all the isothioureas. Yields of the LAH reductions were 

unreliable, and the addition of the primary amines to the carbodithioimidates 2.22 also 

gave very poor yields. New methods of primary amine synthesis would be explored and 

the new, more reactive, methyl tosylcarbonochloroimidothioate 3.37 was discovered 

around this time so it was implemented in the synthetic pathway. The new synthetic 

pathway for a series of three diallylamino isothioureas is shown in Table 3.2.  
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Table 3.2. Synthesis of diallylamino rearrangement isothioureas. 

 

n Isothiourea Yield (%) 

1 (3.51a) 66 
2 (3.51b) 65 
3 (3.51c) 30 

 

 Following experimentation, the optimized synthesis of the diallyamino- 

substrates is depicted in Table 3.2. Reaction of diallylamine with the commercially 

available primary bromides of differing chain lengths (ethyl, propyl, butyl) with 

potassium carbonate in DMF at 90 °C provides the protected primary amine 3.50. The 

phthalimide group is removed by hydrazine hydrate in absolute ethanol at reflux to give 

an in-situ generated primary amine. This produces a white precipitate (the 

hydrazine/phthalimide adduct) which is removed by filtration. The amine and excess 

hydrazine hydrate are separated as follows: the majority of the ethanol is removed by 

rotary evaporation at room temperature then the remaining concentrated solution of 

ethanol and primary amine is mixed with dichloromethane and saturated sodium 

bicarbonate, to assure a basic environment. The hydrazine hydrate is highly water soluble 

while not at all soluble in the dichloromethane and the desired primary amines are soluble 
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in dichloromethane and partially soluble in the water, so the two layers are added to a 

heavier-than-water continuous extractor and the amine is extracted with dichloromethane 

overnight. The majority of the dichloromethane is removed under vacuum and one 

equivalent of both the methyl tosylcarbonochloroimidothioate 3.37 and Hunig’s Base, 

which is there to soak up the equivalent of HCl generated are added. The reaction is then 

refluxed for 3 – 12 hr to form the isothiourea 3.51. The isothiourea then washed with 

saturated sodium bicarbonate again to remove any acidic protons and extracted with 

dichloromethane, concentrated, and purified by silica gel column.  

 The initial result (Scheme 3.29), when it was unclear which rearrangement 

product was obtained was to be tested again. However, that strange result, along with 

others in the group, implied that the product being isolated was not a rearrangement 

product, but the zwitterionic intermediate. The two-carbon analog (3.51a) was subjected 

to the rearrangement conditions at room temperature in dichloromethane and was worked 

up (to remove excess silver) when the starting material had disappeared by TLC. The 

zwitterionic intermediate 3.51a.1 was then dissolved in benzene and heated at reflux to 

induce rearrangement. Gratifyingly, the increased heat induced the 1,3-diaza Claisen 

rearrangement (Scheme 3.31), to the apparently opposite regioisomer as is found in the 

cationic rearrangement, 3.52a in a 47 % isolated yield. This followed the electronic trend 

of the zwitterionic rearrangement providing the product with the sulfonyl group on the 

imine nitrogen.  
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Scheme 3.31. Rearrangement with increased heat. 

 
 The isolation of this rearrangement product was a very exciting development 

after the inconclusive results of the many previous attempts, despite the low yield. While 

it was unable to be fully isolated, there was NMR evidence that the deallylated product 

was still present following this rearrangement. In an effort to suppress this pathway, the 

crude zwitterion, which contained a significant amount of triethylammonium triflate, was 

washed with sodium bicarbonate to remove this salt. Because it wasn’t clear if the 

zwitterion was soluble, the product was washed only once and while this didn’t 

completely remove the salt, a significant portion was removed. Upon heating the cleaned 

zwitterion at reflux in benzene, the rearrangement product was isolated in a 60 % yield, a 

13 % increase from the initial rearrangement. This suggest that the triethylammonium 

salts are at least partially responsible for the deallylation of the zwitterion. This 

information will allow for further exploration of the intramolecular rearrangements and 

hopefully full suppression of the deallylation pathway.  

 

 At this point preliminary studies have been completed on the rearrangement of 

the three-carbon tether isothiourea 3.51b. It is currently unclear if the zwitterion 3.51b.1 

of this rearrangement is isolable as it is in the two-carbon variant or if the system requires 

less energy and rearranges at room temperature in dichloromethane.  
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3.4 Future Work 
 

 

 The intramolecular rearrangements of the diallylamino substrates will continue 

to be explored. The initial results discovered with the two-carbon analog further 

showcase that the rearrangement is the rate-determining step of the 1,3-diaza Claisen 

process, while the formation of the zwitterion is fast and reversible. The two-carbon 

analog will initially be studied in hopes of improving the product yield and decreasing the 

deallylation pathway. Following the optimization of the rearrangement process, the three 

and four-carbon tether-length analogs will be tested for rearrangement (Schemes 3.33 and 

3.34) 

 

 

Scheme 3.32. Rearrangement of three-carbon diallylamino substrate. 

 

 

 

Scheme 3.33. Rearrangement of four-carbon diallylamino substrate. 
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 In addition to the acyclic diallyamino rearrangement substrates a series of 

monocyclic rearrangement substrates will be synthesized and rearranged for further 

exploration of the intramolecular zwitterionic 1,3-diaza Claisen rearrangement (Scheme 

3.35).  

 

  

Scheme 3.34. Monocyclic 1,3-diaza Claisen rearrangements. 
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3.5 Conclusions 

 

 

 The intramolecular, zwitterionic, 1,3-diaza Claisen rearrangement has been 

studied extensively. Initially the rearrangement was conducted on substrates containing 

the highly ring-strained tertiary, allylic amines azanorbornene and isoquinuclidine. The 

rearrangement was conducted on several substrates and it was shown that in the 

intramolecular rearrangement the carbodiimide does not need to be as electron deficient 

as in the intermolecular rearrangement. 

 This revelation has led to the development of intramolecular rearrangements on 

substrates in which the tertiary allylic amine does not have any ring-strain to encourage 

rearrangement. This result is especially exciting as many of these tertiary allylic amines 

would not have undergone 1,3-diaza Claisen rearrangement in intermolecular 

rearrangements.  

 Despite the obstacles for the synthesis of the rearrangement precursors, the 1,3-

diaza Claisen methodology has been significantly expanded via the intramolecular 

pathway. There is a myriad of ways to apply the 1,3-diaza Claisen rearrangement to 

various inter- and intramolecular substrates, leading to a host of guanidine containing 

structures. These are simply some of the potential products available from the 

zwitterionic 1,3-diaza Claisen. 
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3.6 Experimental 
 

 

General: Reagents and solvents were of high analytical grade and purchased from 

Sigma-Aldrich, Fisher Science, and Acros Organics. Anhydrous DMF was prepared by 

drying of 3 Å molecular sieves. Anhydrous THF was prepared by distillation over 

potassium metal. Anhydrous CH2Cl2 was prepared by distillation over calcium chloride. 

Anhydrous Et3N was prepared by distillation over calcium hydride. 1H NMR spectra 

were acquired on a Bruker 500 MHz spectrometer or a Varian 500 MHz spectrometer. 

1H chemical shifts are reported in reference to residual solvent signals; CDCl3 at d 7.26 

ppm, DMSO-d6 at 2.50 ppm. 13C NMR spectra were acquired on a Bruker 500 MHz 

spectrometer at 125 MHz. High resolution mass spectrometry data was collected on a 

Waters Xevo G2-XS QTOF spectrometer. Column chromatography was conducted on 

Sorbtech silica gel, standard grade, 60A, 40-63 µm. 

 

 
 

(3.15 and 3.13). 3-(2-azabicyclo[2.2.1]hept-5-en-2-yl)propan-1-amine  (0.29 g, 1.91 

mmol) was dissolved in dichloromethane (5 mL) and cooled to 0 °C under N2 protection. 

Ethoxycarbonyl isothiocyanate (0.11 mL, 0.80 mmol, 0.5 eq) was added to the solution 

by syringe pump over 2 hr. The crude reaction mixture was concentrated and purified on 

a silica gel column with a gradient eluent of 50 % EtOAc/Hexanes to 100 % EtOAc to 10 
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% MeOH/CH2Cl2 to provide the two products. 1H NMR of 3.15 (thiourea) (500 MHz, 

CDCl3) δ 10.01 (s, 1H), 9.01 (s, 1H), 6.40 (ddd, J = 5.7, 3.0, 1.2 Hz, 1H), 6.04 (dd, J = 

5.7, 2.2 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 4.04 (d, J = 1.7 Hz, 1H), 3.76 (dt, J = 13.1, 6.4 

Hz, 1H), 3.63 (dt, J = 13.7, 6.9 Hz, 1H), 3.32 (dd, J = 8.8, 3.1 Hz, 1H), 2.97 (s, 1H), 2.59 

(dt, J = 12.0, 7.5 Hz, 1H), 2.35 (dt, J = 12.1, 6.7 Hz, 1H), 1.86 (p, J = 6.8 Hz, 2H), 1.75 

(dd, J = 8.6, 1.7 Hz, 1H), 1.56 (dd, J = 8.8, 1.9 Hz, 1H), 1.46 – 1.40 (m, 1H), 1.26 (t, J = 

7.1 Hz, 3H). 

 1H NMR of 3.13 (rearrangement) (500 MHz, CDCl3) δ 9.94 (s, 1H), 7.98 (s, 1H), 5.93 – 

5.90 (m, 1H), 5.78 – 5.73 (m, 1H), 5.35 (ddt, J = 9.8, 3.2, 1.6 Hz, 1H), 4.38 – 4.27 (m, 

5H), 4.24 (q, J = 7.1 Hz, 2H), 3.85 – 3.69 (m, 3H), 3.64 (dt, J = 13.6, 6.8 Hz, 1H), 3.57 

(dd, J = 12.8, 4.4 Hz, 1H), 3.23 (dd, J = 12.7, 2.8 Hz, 1H), 3.15 (td, J = 9.6, 9.2, 4.6 Hz, 

1H), 2.75 – 2.66 (m, 1H), 2.30 – 2.21 (m, 1H), 2.10 (p, J = 6.9 Hz, 2H), 1.33 (dt, J = 

21.0, 7.1 Hz, 8H), 0.99 – 0.80 (m, 3H). 

 

 

 

2-azabicyclo[2.2.1]hept-5-en-2-yl)acetamide (3.17). The literature procedure reported 

by Grieco66 was followed using glycine ethyl ester hydrochloride (6.00 g, 43.1 mmol) to 

afford the bicyclic ester Diels-Alder product (6.5 g, 83 %). The ester was used without 

further purification. The ester was dissolved in a solution of 7N ammonia in methanol (40 

mL) and stirred capped at r.t. for five days. The solvent was removed to give a crude 
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yellow solid. This solid was dissolved in methanol, absorbed onto silica gel, and the 

methanol was removed. The product was purified on a silica gel column with 90:9:1 

CH2Cl2:MeOH:NH4OH as the eluent to give pure 3.17 (4.86 g, 89 % from the ester) as a 

pale yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.14 (s, 1H), 6.33 (ddd, J = 5.7, 3.1, 1.2 

Hz, 2H), 6.05 (dd, J = 5.7, 2.1 Hz, 1H), 3.82 (d, J = 1.6 Hz, 1H), 3.20 (d, J = 16.9 Hz, 

2H), 3.01 – 2.90 (m, 1H), 2.65 (d, J = 16.8 Hz, 1H), 1.63 – 1.53 (m, 1H), 1.50 (dd, J = 

8.5, 1.7 Hz, 1H), 1.42 (dd, J = 8.1, 1.7 Hz, 1H); 13C NMR (CDCl3, 126 MHz): δ 174.8, 

136.9, 130.9, 65.7, 58.78, 54.2, 48.8, 44.3 ppm; IR (solid) 3371.57, 3194.12, 2985.81, 

2854.65, 1651.07 cm-1; HRMS (pos. ESI) m/z 153.1021 (Theoretical mass: 153.1028); Rf 

= 0.5, eluent: 90:9:1 CH2Cl2:MeOH:NH4OH; m.p. = 89-91 °C 

 

 

2-azabicyclo[2.2.1]hept-5-en hydrochloride (3.7). To a slurry of LAH (1.39 g, 36.7 

mmol) in freshly distilled THF (50 mL) cooled to 0 °C and under N2 protection was 

added a solution of 2-azabicyclo[2.2.1]hept-5-en-3-one (2.00 g, 18.4 mmol) in freshly 

distilled THF (20 mL) slowly. The reaction mixture was stirred at 0 °C for 30 minutes, 

then allowed to warm to r.t. The mixture was then heated at reflux for 20 hr. The reaction 

mixture was cooled to 0 °C and diluted with 20 mL Et2O. The Fieser workup for LAH 

reactions was conducted: 1.39 mL of distilled water were added slowly, and then 1.39 

mL of 0.1 M NaOH was slowly added, followed by 4.2 mL of distilled water. This 

mixture was warmed to r.t. and stirred for 15 minutes. MgSO4 was added to absorb the 

water and the mixture was stirred for another 15 minutes. The solids were removed by 
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filtration through Celite. The filtrate was acidified using anhydrous 15 m L, 2M HCl 

(made from MeOH and AcCl). This solution was concentrated with a rotovap and dried 

on a Welch vacuum pump overnight to give 3.7 (1.81 g, 75 %) as an off-white solid. This 

material was used without any further purification. Characterization data matches 

reported values.66  

 

 

 

3-(2-azabicyclo[2.2.1]hept-5-en-2-yl)propanenitrile (3.8). To a mixture of 2-

azabicyclo[2.2.1]hept-5-en hydrochloride (3.7) (1.50 g, 11.4 mmol) in DMF (15 mL) in a 

flame dried flask was added KHCO3 (2.28 g, 22.8 mmol) and the mixture was cooled to 0 

°C. Acrylonitrile (0.90 mL, 13.7 mmol) was added slowly to the solution and the reaction 

was stirred under N2 for 3 hr at r.t. The reaction mixture was transferred to a seperatory 

funnel with 100 mL H2O and 150 mL EtOAc. The aqueous layer was removed and the 

organic layer was washed with 60 mL H2O. The combined aqueous layers were washed 

with 50 mL EtOAc. The organic layers were combined and dried (MgSO4). The MgSO4 

was removed via filtration and some of the EtOAc was removed on the rotovap. The 

nitrile product is volatile on the pump, so it was isolated by blowing N2 over the solution 

for 24 hr to remove the rest of the EtOAc to give 3.8 (1.24 g, 72 %) as an amber oil that 

was used without further purification. 1H NMR (500 MHz, CDCl3 δ 6.34 (ddd, J = 5.8, 

3.1, 1.2 Hz, 1H), 6.02 (dd, J = 5.8, 2.0 Hz, 1H), 3.88 (h, J = 1.5 Hz, 1H), 3.21 (dd, J = 
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8.4, 3.1 Hz, 1H), 2.95 (dt, J = 3.9, 1.9 Hz, 1H), 2.81 – 2.74 (m, 1H), 2.48 – 2.42 (m, 2H), 

2.35 (ddd, J = 11.7, 7.6, 6.1 Hz, 1H), 1.57 (dt, J = 8.2, 1.7 Hz, 1H), 1.46 (dd, J = 8.4, 1.7 

Hz, 1H), 1.41 (dq, J = 8.2, 1.7 Hz, 1H); 13C NMR (CDCl3, 126 MHz): δ 136.8, 130.8, 

130.3, 119.0, 65.1, 52.8, 50.7, 48.4, 43.9, 18.2 ppm; HRMS (pos. ESI) m/z 149.1070 

(Theoretical mass: 149.1079); Rf = 0.56, eluent: 90:9:1 CH2Cl2:MeOH:NH4OH. 

 

 

 

3-(2-azabicyclo[2.2.1]hept-5-en-2-yl)propan-1-amine (3.9). To a slurry of LAH (0.256 

g, 6.76 mmol) in Et2O (8 mL) cooled to 0 °C under N2 protection was added a solution of 

3-(2-azabicyclo[2.2.1]hept-5-en-2-yl)propanenitrile (3.8) (0.50 g, 3.38 mmol) in Et2O (2 

mL) slowly. The reaction was heated at reflux overnight. The reaction mixture was 

cooled to 0 °C and diluted with 10 mL Et2O. The Fieser workup for LAH reactions was 

conducted: 0.256 mL of distilled water were added slowly, and then 0.26 mL of 0.1 M 

NaOH was slowly added, followed by 0.75 mL of distilled water. This mixture was 

warmed to r.t. and stirred for 15 minutes. MgSO4 was added to absorb the water and the 

mixture was stirred for another 15 minutes. The solids were removed by filtration through 

Celite. The filtrate was concentrated by blowing N2 over it to remove the Et2O for 5 hr to 

give 3.9 (0.27 g, 52 %) as a pale amber oil that was used without further purification. 1H 

NMR (500 MHz, CDCl3) δ 6.31 (dt, J = 8.0, 3.8 Hz, 1H), 6.00 (dt, J = 7.0, 3.4 Hz, 1H), 

3.87 (d, J = 4.8 Hz, 1H), 3.16 (dq, J = 9.2, 5.2, 4.2 Hz, 1H), 2.90 (s, 1H), 2.72 (q, J = 6.4 
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Hz, 2H), 2.46 (dddd, J = 13.6, 10.8, 7.0, 4.0 Hz, 1H), 2.17 (ddd, J = 12.0, 9.0, 5.9 Hz, 

1H), 1.64 – 1.53 (m, 3H), 1.47 – 1.34 (m, 2H), 1.25 (s, 2H); 13C NMR (CDCl3, 126 

MHz): δ 136.1, 130.6, 64.5, 53.1, 52.6, 48.2, 43.7, 40.9, 33.2 ppm. 

 

 

 

Methyl 4-(2-azabicyclo[2.2.1]hept-5-en-2-yl)butanoate (3.34). The literature procedure 

reported by Grieco66 was followed using methyl 4-aminobutyrate hydrochloride (15.0 g, 

97.6 mmol) to afford the bicyclic ester Diels-Alder product (9.71 g, 51 %) as an amber 

oil. The ester was used without further purification. 1H NMR (500 MHz, CDCl3) δ 6.32 – 

6.27 (m, 1H), 5.99 (dd, J = 5.8, 2.0 Hz, 1H), 3.84 (q, J = 1.8 Hz, 1H), 3.65 (s, 3H), 3.15 

(dd, J = 8.5, 3.1 Hz, 1H), 2.90 (s, 1H), 2.42 (ddd, J = 11.6, 8.9, 6.6 Hz, 1H), 2.33 (t, J = 

7.4 Hz, 2H), 2.10 (ddd, J = 11.6, 8.5, 5.9 Hz, 1H), 1.78 (qt, J = 8.9, 7.0 Hz, 2H), 1.56 (dt, 

J = 8.1, 1.7 Hz, 1H), 1.45 – 1.35 (m, 2H); 13C NMR (CDCl3, 126 MHz): δ 174.0, 136.0, 

130.5, 64.5, 54.4, 52.5, 51.4, 48.1, 43.7, 32.1, 24.5 ppm; HRMS (pos. ESI) 196.1341 

(Theoretical mass: 196.1338); Rf = 0.26, eluent: 90:9:1 CH2Cl2:MeOH:NH4OH, iodine 

stain. 

 

 



101 

 

4-(2-azabicyclo[2.2.1]hept-5-en-2-yl)butanamide (3.35). Methyl 4-(2-

azabicyclo[2.2.1]hept-5-en-2-yl)butanoate 3.34 (9.71 g, 49.8 mmol) was charged to a 

flame-dried 100 mL round bottom flask equipped with a stir bar and dissolved in 

methanol (50 mL). The flask was sealed with a septum and NH3 (g) was bubbled through 

the solution for 30 mins. The reaction was stirred for 7 days sealed at room temp (on the 

fourth day NH3 (g) was bubbled through the solution again for 30 mins). The solution was 

rotovapped and placed on a vacuum pump overnight to afford the product (8.93 g, 99 %) 

as a brown solid. 1H NMR (500 MHz, CDCl3) δ 6.88 (s, 1H), 6.33 (ddd, J = 5.7, 3.2, 1.1 

Hz, 1H), 6.01 (dd, J = 5.7, 2.0 Hz, 1H), 5.33 (s, 1H), 3.85 (q, J = 1.7 Hz, 1H), 3.14 (dd, J 

= 8.6, 3.1 Hz, 1H), 2.93 (s, 1H), 2.50 (dt, J = 12.0, 7.0 Hz, 1H), 2.33 (td, J = 7.0, 1.8 Hz, 

2H), 2.20 (dt, J = 12.3, 6.4 Hz, 1H), 1.76 (pd, J = 6.9, 2.6 Hz, 2H), 1.53 (dt, J = 8.2, 1.7 

Hz, 1H), 1.47 (dd, J = 8.5, 1.7 Hz, 1H), 1.42 (dq, J = 8.2, 1.7 Hz, 1H); 13C NMR (CDCl3, 

126 MHz): δ 175.8, 136.5, 130.6, 64.6, 54.6, 52.5, 48.2, 43.7, 34.9, 24.4 ppm; HRMS 

(pos. ESI) m/z 181.1341 (Theoretical mass: 181.1341); Rf = 0.06, eluent: 85:14:1 CH-

2Cl2:MeOH:NH4OH, ninhydrin stain. 
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Dimethyl ((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl) 

carbonimidodithioate (2.22c). Using our previously published method for the synthesis 

of dimethyl tosylcarbonimidodithioate 2.22a,67 dimethyl ((2,2,4,6,7-pentamethyl-2,3-

dihydrobenzofuran-5-yl)sulfonyl)carbonimidodithioate was synthesized on a 14.9 mmol 

scale to provide the product as a pale yellow solid (3.5 g, 63 %). 1H NMR (500 MHz, 

CDCl3) δ 2.98 (s, 2H), 2.56 (s, 3H), 2.53 (s, 3H), 2.53 (s, 6H), 2.11 (s, 3H), 1.48 (s, 6H); 

13C NMR (CDCl3, 126 MHz): δ 181.7, 159.8, 139.6, 133.8, 129.8, 124.9, 117.8, 86.8, 

43.1, 28.6, 19.2, 18.1, 16.4, 12.4 ppm; HRMS (pos. ESI) 374.0915 (Theoretical mass: 

374.0918); Rf = 0.30, eluent: 20 % EtOAc in hexanes. 

 

 

 

Methyl tosylcarbonochloridoimidothioate (3.37).61 Dimethyl 

tosylcarbonimidodithioate 2.22a (4.00 g, 14.5 mmol) was dissolved in freshly distilled 

dichloromethane (40 mL) in a flame-dried 100 mL round bottom flask equipped with a 

stir bar and the flask was connected to a reflux condenser sealed under N2 atmosphere. 

Sulfuryl chloride (2.36 mL, 29.1 mmol) was added to the flask and the flask was stirred 

at reflux for 3 hr. The solution was concentrated by rotovap to give the crude product. 

The crude material was purified on a silica gel column with 20 % EtOAc in hexanes as 
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the eluent to give the pure product (3.34 g, 87 %) as an off-white solid.  1H NMR (500 

MHz, CDCl3) δ 7.86 (d, 2H), 7.34 (d, 2H), 2.45 (s, 3H), 2.43 (s, 3H); 13C NMR (CDCl3, 

126 MHz): δ 161.1, 144.9, 137.3, 130.0, 128.0, 22.0, 18.4; HRMS (pos. ESI) m/z 

263.9930 (Theoretical mass: 263.9920); Rf = 0.13, eluent: 20 % EtOAc in hexanes. 

 

 

 

Methyl N-(4-(2-azabicyclo[2.2.1]hept-5-en-2-yl)butyl)-N'-tosylcarbamimidothioate 

(3.38). Lithium aluminum hydride (0.264 g, 6.94 mmol) was added to a flame-dried 50 

mL round bottom flask. The flask was sealed under N2 and cooled to 0 °C. Freshly 

distilled THF (1.5 mL) was added to the LAH to make a slurry. A solution of 4-(2-

azabicyclo[2.2.1]hept-5-en-2-yl)butanamide (0.500 g, 2.78 mmol) in freshly distilled 

THF (8 mL) was added to the LAH dropwise. The reaction mixture was then allowed to 

warm to rt and then was heated at reflux for 20 hr. The Feiser workup for LAH 

reductions was conducted and the solids were removed by filtration. The filtrate was 

added to a round bottom flask and the solvent was removed by gently blowing N2 over it 

to provide the amine (with some THF left) as a pale amber oil (0.40 g, 86 % crude). The 

amine is very volatile and unstable so it was used without further purification. 
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 The primary amine was dissolved in methanol (10 mL) and methyl 

tosylcarbonochloridoimidothioate (0.619 g, 2.35 mmol) was added followed by freshly 

distilled triethylamine (0.33 mL, 2.4 mmol). The flask was sealed under N2 and the 

reaction was stirred at r.t. for 4 hr. The solvent was removed by rotovap and overnight 

vacuum pump to produce a crude orange-yellow solid. The crude material was purified 

on a silica gel column with a gradient of eluent (70 % EtOAc in hexanes to 90:9:1 

CH2Cl2:MeOH:NH4OH) to give the product (0.42 g, 45 % over two steps). 1H NMR (500 

MHz, CDCl3) δ 6.88 (s, 1H), 6.33 (dd, J = 6.1, 3.1 Hz, 1H), 6.01 (dd, J = 5.8, 2.0 Hz, 

1H), 5.31 (s, 1H), 3.85 (d, J = 2.4 Hz, 1H), 3.14 (dd, J = 8.6, 3.1 Hz, 1H), 2.93 (s, 1H), 

2.50 (dt, J = 12.0, 7.0 Hz, 1H), 2.33 (td, J = 7.0, 1.8 Hz, 2H), 2.20 (dt, J = 12.3, 6.4 Hz, 

1H), 1.76 (pd, J = 6.9, 2.6 Hz, 2H), 1.54 (dd, J = 8.2, 2.0 Hz, 1H), 1.47 (dd, J = 8.6, 1.6 

Hz, 1H), 1.45 – 1.39 (m, 1H); 13C NMR (CDCl3, 126 MHz): δ 175.8, 136.5, 130.6, 64.6, 

54.6, 52.5, 48.2, 43.7, 34.9, 24.4 ppm; HRMS (pos. ESI) m/z 394.1617 (Theoretical mass: 

394.1623); Rf = 0.21, eluent: 90:9:1 CH2Cl2:MeOH:NH4OH.  

 

 

  

Methyl-N-(2-(2-azabicyclo[2.2.1]hept-5-en-2-yl)ethyl)-N'-((2,2,4,6,7-pentamethyl-

2,3-dihydrobenzofuran-5-yl)sulfonyl)carbamimidothioate (3.18). In a flame-dried 100 

mL pear-shaped flask equipped with a stir bar a stirred, N2 protected suspension of 
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LiAlH4 (0.299 g, 7.88 mmol) in freshly distilled tetrahydrofuran (8 mL) was created and 

cooled to 0 °C. 2-azabicyclo[2.2.1]hept-5-en-2-yl)acetamide 3.17 (0.600 g, 3.94 mmol) 

was added and the mixture was stirred at 0 °C under N2 atmosphere for 45 minutes then 

warmed to reflux to stir for 12 hr. The reaction mixture was allowed to cool to room 

temperature and the Feiser LiAlH4 work-up was conducted: 0.3 mL distilled water was 

added to the stirring mixture, followed by 0.3 mL of 10% sodium hydroxide in water, 

then 0.9 mL distilled water. The mixture was stirred for 15 minutes then dried (Na2SO4) 

and filtered. The solid was rinsed with distilled THF (2 x 5 mL). The THF filtrate was 

added to a flame-dried reaction flask equipped with a stir bar. Then dimethyl ((2,2,4,6,7-

pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)carbonimidodithioate 2.22c (1.47 g, 

3.94 mmol) was added. The solution was stirred overnight at room temperature under N2 

atmosphere. After 14 hr the solvent was removed in-vacuo to give the crude product. The 

crude material was purified on a silica gel column with 90:9:1 CH2CH2:MeOH:NH4OH 

as the eluent to give pure 3.18 (1.00 g, 55 % over two steps). Note: The amine afforded 

following LiAlH4 reduction of the amide is volatile and therefore is not isolated due to 

difficulties therein. 1H NMR (500 MHz, CDCl3) δ 8.50 (s, 1H), 6.35 (s, 1H), 6.04 (s, 1H), 

3.82 (s, 1H), 3.31 (s, 1H), 3.20 (s, 2H), 2.99 (s, 3H), 2.69 (d, J = 9.7 Hz, 1H), 2.64 (s, 

3H), 2.58 (s, 3H), 2.39 (s, 3H), 2.26 (s, 1H), 2.13 (s, 3H), 1.65 (d, J = 7.8 Hz, 1H), 1.49 

(s, 6H), 1.43 (d, J = 8.3 Hz, 2H); 13C NMR (CDCl3, 126 MHz): δ 167.4, 159.0, 138.9, 

136.6, 132.9, 132.1, 130.4, 124.6, 117.5, 86.5, 65.0, 52.8, 52.1, 48.4, 43.9, 43.2, 42.9, 

28.6, 19.2, 18.1, 14.2, 12.5 ppm; HRMS (pos. ESI) m/z 464.2051 (Theoretical mass: 

464.2042); IR (solid) 3294.42, 2970.38, 1674.00, 1558.48 cm-1; Rf = 0.64, eluent: 90:9:1 

CH2CH2:MeOH:NH4OH; m.p. = 58-62 °C. 
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Methyl-N-(3-(2-azabicyclo[2.2.1]hept-5-en-2-yl)propyl)-N'-((2,2,4,6,7-pentamethyl-

2,3-dihydrobenzofuran-5-yl)sulfonyl)carbamimidothioate (3.20). 3-(-2-

azabicyclo[2.2.1]hept-5-en-2-yl)propan-1-amine 3.9 (0.200 g, 1.31 mmol) and dimethyl 

((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)carbonimidodithioate 2.22c 

(0.54 g, 1.5 mmol) were dissolved in methanol (5 mL) and heated at reflux under N2 for 

30 minutes. The solvent was removed in-vacuo and the crude reaction material was 

purified on a silica gel column with 10 % MeOH in EtOAc to give pure 3.20 (0.44 g, 70 

%). 1H NMR (500 MHz, CDCl3) δ 8.33 (s, 1H), 6.37 (s, 1H), 6.22 (t, J = 6.7 Hz, 1H), 

3.37 (d, J = 23.9 Hz, 3H), 3.06 (d, J = 9.6 Hz, 1H), 2.95 (s, 2H), 2.58 (s, 4H), 2.52 (s, 

4H), 2.28 (d, J = 16.9 Hz, 3H), 2.09 (s, 4H), 1.89 (d, J = 9.4 Hz, 1H), 1.62 – 1.54 (m, 

1H), 1.45 (s, 6H), 1.28 – 1.21 (m, 2H), 1.17 (d, J = 13.7 Hz, 1H); 13C NMR (CDCl3, 126 

MHz): δ 167.3, 159.0, 138.8, 133.6, 132.7, 132.2, 131.3, 124.6, 117.5, 86.5, 55.8, 54.9, 

53.1, 43.2, 43.1, 30.7, 28.6, 27.0, 26.4, 21.7, 19.2, 18.0, 14.1, 12.4 ppm; HRMS (pos. 

ESI) m/z 478.2199 (Theoretical mass: 478.2198); IR (film) 3302.13, 2978.09, 1681.93, 

1573.91 cm-1; Rf = 0.4, eluent: 90:9:1 CH2Cl2:MeOH:NH4OH. 
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Methyl-N-(3-(2-azabicyclo[2.2.2]oct-5-en-2-yl)propyl)-N'-((2,2,4,6,7-pentamethyl-

2,3-dihydrobenzofuran-5-yl)sulfonyl)carbamimidothioate (3.23). 3-(2-

azabicyclo[2.2.2]oct-5-en-2-yl)propan-1-amine 3.9 (0.145 g, 0.873 mmol) and dimethyl 

((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)carbonimidodithioate 2.22c 

(0.326 g, 0.873 mmol) were dissolved in methanol (3 mL) and were heated at reflux 

under N2 for 30 minutes. The solvent was removed in-vacuo and the crude reaction 

material was purified on a silica gel column with 90:9:1 CHCl3:MeOH:NH4OH to afford 

pure 3.23 (0.288 g, 84 %). 1H NMR (500 MHz, CDCl3) δ 8.33 (s, 1H), 6.37 (s, 1H), 6.22 

(t, J = 6.7 Hz, 1H), 3.37 (d, J = 23.9 Hz, 3H), 3.06 (d, J = 9.6 Hz, 1H), 2.95 (s, 2H), 2.58 

(s, 4H), 2.52 (s, 4H), 2.28 (d, J = 16.9 Hz, 3H), 2.09 (s, 4H), 1.89 (d, J = 9.4 Hz, 1H), 

1.62 – 1.54 (m, 1H), 1.45 (s, 6H), 1.28 – 1.21 (m, 2H), 1.17 (d, J = 13.7 Hz, 1H); 13C 

NMR (CDCl3, 126 MHz): δ 167.3, 159.0, 138.8, 133.6, 132.7, 132.2, 131.3, 124.6, 117.5, 

86.5, 55.8, 54.9, 53.1, 43.2, 43.1, 30.7, 28.6, 27.0, 26.4, 21.7, 19.2, 18.01, 14.1, 12.4 

ppm; HRMS (pos. ESI) m/z 494.2348 (Theoretical mass: 492.2355); IR (solid) 3278.99, 

2931.80, 1712.79, 1566.20 cm-1; Rf = 0.6, eluent: 90:9:1 CH2Cl2:MeOH:NH4OH; m.p. = 

51 – 54 °C.   
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9-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)-2,5,5a,6,8a,9-

hexahydro-3H-cyclopenta[d]imidazo[1,2-a]pyrimidine (3.19). To a flame-dried 50 mL 

pear-shaped flask equipped with a stir bar was added Methyl-N-2-azabicyclo[2.2.1]hept-

5-en-2-yl)ethyl)-N'-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-

yl)sulfonyl)carbamimidothioate 3.18 (0.250 g,  0.540 mmol) and anhydrous dimethyl 

formamide (3 mL) at room temperature. To this solution was added HgCl2 (0.161 g, 

0.594 mmol) followed by Et3N (0.15 mL, 1.08 mmol). The reaction mixture was stirred 

under N2 at room temperature for 1.5 hr. 10 mL Et2O was added to each of two test tubes. 

The reaction mixture was dripped slowly into the Et2O, split between the two test tubes. 

The white precipitate was removed by centrifugation and decanting of the ether layer. 

The solid remaining in the test tubes was washed with Et2O (10 mL for each test tube) 

and centrifuged again. The four Et2O/DMF layers were combined and washed with 0.1M 

NaOH (2 x 15 mL). The remaining Et2O layer was collected, dried (MgSO4) and 

concentrated to give crude product. The crude material was purified on a silica gel 

column with 90:9:1 CH2CH2:MeOH:NH4OH as the eluent to give pure 3.19 (0.184 g, 82 

%). 1H NMR (500 MHz, CDCl3) δ 5.94 – 5.85 (m, 2H), 5.32 (ddd, J = 10.2, 5.1, 3.1 Hz, 

1H), 3.63 (ddd, J = 12.6, 9.3, 7.8 Hz, 1H), 3.37 (ddd, J = 12.6, 9.8, 7.2 Hz, 1H), 3.27 – 

3.11 (m, 2H), 3.04 (dd, J = 11.0, 5.1 Hz, 1H), 3.00 (d, J = 5.7 Hz, 2H), 2.96 (dq, J = 5.9, 

2.7 Hz, 1H), 2.78 (dd, J = 10.9, 5.9 Hz, 1H), 2.67 (ddt, J = 16.5, 7.6, 2.1 Hz, 1H), 2.56 (s, 
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3H), 2.51 (s, 3H), 2.31 – 2.22 (m, 1H), 2.12 (s, 3H), 1.48 (d, J = 4.3 Hz, 6H); 13C NMR 

(CDCl3, 126 MHz): δ 160.3, 155.8, 140.3, 136.4, 132.6, 131.5, 127.6, 125.0, 117.6, 87.0, 

62.6, 51.6, 49.8, 48.6, 43.1, 37.2, 34.8, 28.6, 28.5, 19.2, 17.3, 12.5 ppm; HRMS (pos. 

ESI) m/z 416.2012 (Theoretical mass: 416.2008); IR (solid): 1627.92, 1573.91, 1327.03, 

1165.00, 1141.86, 1087.85 cm-1; Rf = 0.2, eluent: 90:9:1 CH2Cl2:MeOH:NH4OH; m.p. = 

72 – 75 °C. 

 

 

 

10-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)-2,3,4,6,6a,7,9a,10-

octahydrocyclopenta[d]pyrimido[1,2-a]pyrimidine (3.21).The general rearrangement 

procedure outlined for 3.19 above was conducted with 3.20 to give 3.21 (0.051 g, 57 %). 

1H NMR (500 MHz, CDCl3) δ 5.85 (dq, J = 6.2, 2.2 Hz, 1H), 5.71 (dq, J = 4.6, 2.2 Hz, 

1H), 5.47 (ddq, J = 9.9, 3.3, 1.5 Hz, 1H), 3.57 (dd, J = 12.6, 3.8 Hz, 1H), 3.28 (dtd, J = 

14.8, 4.5, 2.4 Hz, 1H), 3.23 – 3.16 (m, 1H), 3.13 (dtd, J = 11.5, 4.9, 1.6 Hz, 1H), 3.00 

(dddd, J = 26.7, 14.3, 9.2, 4.1 Hz, 2H), 2.90 (s, 2H), 2.64 – 2.56 (m, 2H), 2.46 (s, 3H), 

2.45 (s, 3H), 2.27 – 2.16 (m, 1H), 2.03 (s, 3H), 1.74 (dtt, J = 13.5, 9.0, 4.7 Hz, 1H), 1.64 

– 1.56 (m, 1H), 1.40 (s, 6H); 13C NMR (CDCl3, 126 MHz): δ 158.8, 146.7, 138.8, 134.5, 

133.5, 129.2, 128.0, 123.8, 116.6, 85.7, 61.7, 50.5, 48.1, 42.5, 42.2, 36.9, 36.7, 27.6, 27.6, 

20.9, 28.3, 16.8, 11.5 ppm; HRMS (pos. ESI) m/z 430.2164 (Theoretical mass: 
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430.2164); IR (solid) 2962.66, 2846.93, 1712.79, 1643.35 cm-1; Rf = 0.2, eluent: 90:9:1 

CH2Cl2:MeOH:NH4OH; m.p. = 54 – 59 °C.  

 

 

 

11-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)-3,4,6,6a,7,8,10a,11-

octahydro-2H-pyrimido[2,1-b]quinazoline (3.24). The general rearrangement 

procedure outlined for 3.18 above was conducted on 3.23 to give 3.24 (0.061 g, 68 %). 

1H NMR (500 MHz, CDCl3) δ 5.91 – 5.70 (m, 2H), 3.34 (ddd, J = 14.8, 8.0, 4.8 Hz, 1H), 

3.18 (dt, J = 12.0, 6.0 Hz, 1H), 3.16 – 3.08 (m, 2H), 3.05 (dt, J = 14.8, 5.3 Hz, 1H), 3.01 

– 2.93 (m, 3H), 2.60 – 2.52 (m, 1H), 2.50 (s, 3H), 2.50 (s, 3H), 2.10 (s, 3H), 2.06 (d, J = 

5.0 Hz, 2H), 1.88 (dddd, J = 13.2, 9.3, 7.0, 3.6 Hz, 1H), 1.80 – 1.70 (m, 2H), 1.66 (qt, J = 

7.9, 3.9 Hz, 1H), 1.47 (d, J = 2.3 Hz, 6H); 13C NMR (CDCl3, 126 MHz): δ 158.6, 144.4, 

138.7, 134.4, 128.5, 128.2, 126.4, 123.7, 116.4, 85.7, 50.8, 48.2, 47.3, 42.1, 42.1, 29.6, 

27.5, 27.5, 23.1, 20.8, 19.9, 18.0, 16.3, 11.5 ppm; HRMS (pos. ESI) m/z 444.2327 

(Theoretical mass: 444.2321); IR (neat): 2931.80, 1643.35, 1577.77, 1303.88, 1138.00 

cm-1; Rf = 0.13, eluent: 90:9:1 CH2Cl2:MeOH:NH4OH 
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11-tosyl-2,4,5,7,7a,8,10a,11-octahydro-3H-cyclopenta[4,5]pyrimido[1,2-

a][1,3]diazepine (3.39). methyl N-(4-(2-azabicyclo[2.2.1]hept-5-en-2-yl)butyl)-N'-

tosylcarbamimidothioate 3.38 (0.320 g, 0.813 mmol) was dissolved in freshly distilled 

dichloromethane in a flame-dried 50 mL pear shaped flask equipped with a stir bar. The 

flask was sealed and placed under N2 (g) atmosphere. Freshly distilled triethylamine (0.14 

mL, 0.98 mmol) was added followed by HgCl2 (0.243 g, 0.895 mmol). The 

rearrangement was stirred at rt for three days then was heated at reflux for 24 hr until 

ninhydrin stain proved the disappearance of starting material 3.38 (the starting material 

and product have similar Rf values but stain differently, the rearrangement can be 

conducted at reflux without the r.t. stirring). The reaction mixture was separated between 

two test tubes with 8 mL dichloromethane apiece. The test tubes were centrifuged and the 

mother liquor was removed and combined. The remaining solids were washed twice 

more with dichloromethane (6 mL each). The dichloromethane washes were all combined 

and concentrated via rotary evaporation and vacuum pump (overnight) to give a crude 

white solid. The crude material was purified on a silica gel column with a gradient of 50 

% EtOAc/Hexanes to 90:9:1 CH2Cl2:MeOH:NH4OH to give the product (0.168 g, 60 %). 

An analytical sample was removed and recrystallized via slow evaporative 

recrystallization from acetonitrile. 1H NMR (500 MHz, CDCl3) δ 7.96 – 7.93 (m, 2H), 

7.26 (s, 3H), 5.86 (dq, J = 6.2, 2.2 Hz, 1H), 5.61 – 5.56 (m, 1H), 5.50 (dq, J = 4.8, 2.3 

Hz, 1H), 3.67 (dd, J = 13.8, 4.3 Hz, 1H), 3.56 (dddd, J = 13.3, 5.0, 2.7, 1.3 Hz, 1H), 3.27 
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– 3.20 (m, 1H), 3.09 – 3.02 (m, 2H), 2.95 (ddd, J = 13.3, 11.2, 2.2 Hz, 1H), 2.81 (d, J = 

13.8 Hz, 1H), 2.68 (ddq, J = 17.5, 9.5, 2.2 Hz, 1H), 2.40 (s, 3H), 2.36 (ddt, J = 16.9, 4.8, 

2.3 Hz, 1H), 1.74 – 1.64 (m, 3H), 1.50 – 1.40 (m, 1H), 1.33 – 1.22 (m, 1H); 13C NMR 

(CDCl3), 126 MHz): δ 149.8, 143.1, 138.6, 134.2, 130.5, 129.0, 128.5, 63.8, 55.5, 54.8, 

48.2, 39.7, 37.9, 28.4, 26.5, 21.6 ppm; HRMS (pos. ESI) m/z 346.1596 (Theoretical mass: 

346.1589); Rf = 0.14, eluent: 90:9:1 CH2Cl2:MeOH:NH4OH. 

 

 

 
 

2-(2-(diallylamino)ethyl)isoindoline-1,3-dione (3.50a). N-(2-bromoethyl)phthalimide 

(4.00 g, 15.8 mmol) was added to a flame-dried 100 mL round bottom flask equipped 

with a stir bar and dissolved in anhydrous DMF (40 mL). Diallylamine (1.94 mL, 15.8 

mmol) was added followed immediately by potassium carbonate (5.44 g, 39.4 mmol). 

The flask was fitted with a reflux condenser and stirred at 90 °C overnight. The reaction 

mixture was allowed to cool to rt and was diluted with EtOAc (30 mL). The white solid 

was removed by filtration and the filtrate was added to a seperatory funnel with water 

(100 mL). The aqueous layer was extracted with EtOAc (4 x 50 mL). The organic layers 

were combined, dried (MgSO4), and concentrated (rotary evaporation, overnight on 

vacuum pump) to give a dark yellow oil (3.55 g, 84 % crude). The crude product was 

purified on a silica gel column with 20 % EtOAc in hexanes to give a pale yellow oil 

(2.12 g, 50 %). 1H NMR (500 MHz, CDCl3) δ 7.83 (dd, J = 5.4, 3.1 Hz, 2H), 7.69 (dd, J 
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= 5.4, 3.0 Hz, 2H), 5.74 (ddt, J = 16.7, 10.2, 6.4 Hz, 2H), 5.17 – 5.05 (m, 4H), 3.77 (t, J = 

6.6 Hz, 2H), 3.13 (dt, J = 6.5, 1.3 Hz, 4H), 2.72 (t, J = 6.7 Hz, 2H); 13C NMR (CDCl3, 

126 MHz): δ 168.3, 135.5, 133.8, 132.2, 123.1, 117.6, 56.8, 50.5, 36.0 ppm; HRMS (pos. 

ESI) m/z 271.1447 (Theoretical mass: 271.1447); Rf = 0.5, eluent: 20 % EtOAc in 

hexanes. 

 

 

 

2-(3-(diallylamino)propyl)isoindoline-1,3-dione (3.50b). N-(3-

bromopropyl)phthalimide (6.62 g, 24.7 mmol) was added to a flame-dried 100 mL round 

bottom flask equipped with a stir bar and dissolved in anhydrous DMF (40 mL). 

Diallylamine (2.53 mL, 20.6 mmol) was added followed immediately by sodium 

carbonate (6.55 g, 61.8 mmol). The flask was fitted with a reflux condenser and stirred at 

90 °C until the alkyl halide had disappeared from TLC (9 hr). The reaction mixture was 

allowed to cool to rt and was diluted with EtOAc (30 mL). The white solid was removed 

by filtration and the filtrate was added to a seperatory funnel with water (100 mL). The 

aqueous layer was extracted with EtOAc (4 x 50 mL). The organic layers were combined, 

dried (MgSO4), and concentrated (rotary evaporation, overnight on vacuum pump) to 

give a dark yellow oil, containing excess DMF. The crude material was diluted with 

water (60 mL) and extracted with EtOAc (5 x 50). The organic layers were combined, 

dried (MgSO4), and concentrated to give a dark yellow oil (6.22 g). The crude material 
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contained some starting material, so the product was acidified (pH ~ 2) with HCl and 

extracted with CH2Cl2 (2 x 10 mL). The aqueous layer was made basic with saturated 

sodium bicarbonate and extracted with CH2Cl2 (3 x 20 mL). The organic layers were 

combined, dried (MgSO4), and concentrated (rotary evaporation, overnight on vacuum 

pump) to give a yellow oil. The crude oil was purified on a silica gel column with 30 % 

EtOAc in hexanes to give a pale yellow oil (3.81 g, 65 %). 1H NMR (500 MHz, CDCl3) δ 

7.82 (dd, J = 5.4, 3.1 Hz, 2H), 7.69 (dd, J = 5.5, 3.0 Hz, 2H), 5.79 (ddt, J = 16.8, 10.1, 6.5 

Hz, 2H), 5.17 – 5.04 (m, 4H), 3.73 – 3.67 (m, 2H), 3.06 (dt, J = 6.5, 1.3 Hz, 4H), 2.53 – 

2.47 (m, 2H), 1.83 (tt, J = 8.4, 6.6 Hz, 2H); 13C NMR (CDCl3, 126 MHz): δ 168.4, 135.6, 

133.8, 132.2, 123.1, 117.4, 56.7, 50.5, 36.4, 25.8 ppm; HRMS (pos. ESI) m/z 285.1604 

(Theoretical mass: 285.1603); Rf = 0.56, eluent: 30 % EtOAc in hexanes. 

 

 

 

2-(3-(diallylamino)butyl)isoindoline-1,3-dione (3.50c). N-(4-bromobutyl)phthalimide 

(2.33 g, 9.24 mmol) was added to a flame-dried 100 mL round bottom flask and was 

dissolved in anhydrous DMF (50 mL). Potassium carbonate (3.42 g, 24.7 mmol) was 

added and the flask was attached to a reflux condenser. Diallylamine (1.14 mL, 9.24 

mmol) was added and the reaction mixture was stirred at 90 °C for 20 hr. The flask was 

allowed to cool to rt and the solids were removed by filtration and were rinsed with 

EtOAc (20 mL). The filtrate was added to a seperatory funnel with 30 mL EtOAc and 50 
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mL DI water. The aqueous layer was extracted with EtOAc (2 x 20 mL). The organic 

layers were combined and extracted with brine (3 x 15 mL). The organic layer was dried, 

(MgSO4) and concentrated to give crude amber oil (2.54 g). The crude oil was purified on 

a silica gel column with 30 % EtOAc in hexanes to give the product (0.636 g, 23 %). 1H 

NMR (500 MHz, CDCl3) δ 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.72 (dd, J = 5.4, 3.1 Hz, 2H), 

5.85 (ddt, J = 16.8, 10.2, 6.5 Hz, 2H), 5.20 – 5.07 (m, 4H), 3.71 (t, J = 7.3 Hz, 2H), 3.08 

(dt, J = 6.5, 1.3 Hz, 4H), 2.51 – 2.39 (m, 2H), 1.74 – 1.66 (m, 2H), 1.55 – 1.47 (m, 2H); 

13C NMR (CDCl3, 126 MHz): δ 168.4, 135.8, 133.9, 132.1, 123.1, 117.3, 56.9, 52.7, 38.0, 

26.5, 24.4 ppm; HRMS (pos. ESI) m/z 299.1764 (Theoretical mass: 299.1760); Rf = 0.49, 

eluent: 30 % EtOAc in hexanes. 

 

 

 

methyl N-(2-(diallylamino)ethyl)-N'-tosylcarbamimidothioate (3.51a). 2-(2-

(diallylamino)ethyl)isoindoline-1,3-dione 3.50a (1.00 g, 3.70 mmol) was dissolved in 

absolute ethanol (15) a flame-dried, 50 mL round bottom flask equipped with a stir bar. 

Hydrazine hydrate (35-55 % hydration, 0.55 mL, 11.1 mmol) was added and the flask 

was connected to a reflux condenser. The reaction was stirred at reflux for 3 hr, when 

3.50a was no longer visible by TLC. The reaction was allowed to cool to room 

temperature and the while precipitate was removed by filtration and the solid was rinsed 

with ethanol (2 x 10 mL). The filtrate was concentrated down to 5 mL by rotary 
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evaporation at rt. The solution was transferred to a continuous extractor with saturated 

sodium bicarbonate (30 mL) and dichloromethane (70 mL). The mixture was 

continuously extracted with dichloromethane overnight. The organic layer (containing the 

primary amine) was concentrated to 10 mL solvent by rotary evaporation. Hunig’s base 

(0.65 mL, 3.70 mmol) was added followed by methyl tosylcarbonochloroimidothioate 

(0.98 g, 3.70 mmol). The reaction was stirred at reflux for 12 hr. The reaction mixture 

was allowed to cool to rt then concentrated by rotovap and overnight on a vacuum pump 

to give a crude amorphous solid. The crude product was purified on a silica gel column 

with 30 % EtOAc in hexanes to give pure product (0.90 g, 66 %). 1H NMR (500 MHz, 

CDCl3) δ 8.48 (s, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.20 (d, 2H), 5.83 (ddt, J = 16.8, 10.2, 

6.5 Hz, 2H), 5.18 – 5.06 (m, 4H), 3.22 (q, J = 5.6 Hz, 2H), 3.07 (dd, J = 6.5, 1.4 Hz, 4H), 

2.59 (t, J = 6.0 Hz, 2H), 2.35 (s, 3H), 2.32 (s, 3H); 13C NMR (CDCl3, 126 MHz): δ 168.7, 

142.4, 139.8, 135.1, 129.1, 126.3, 118.0, 56.7, 50.3, 41.3, 21.4, 14.2 ppm; HRMS (pos. 

ESI) m/z 368.1471 (Theoretical mass: 368.1466); Rf = 0.31, eluent: 30 % EtOAc in 

hexanes. 

 

 

 

methyl N-(3-(diallylamino)propyl)-N'-tosylcarbamimidothioate (3.51b). The 

procedure for 3.50a was conducted with 3.50b (1.00 g, 3.52 mmol) as the starting 

protected amine. Following purification on a silica gel column with 50 % EtOAc in 
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hexanes with 0.5 % Et3N the desired isothiourea 3.51b was isolated as a viscous pale 

yellow oil (0.87 g, 65 %). 1H NMR (500 MHz, CDCl3) δ 8.67 (s, 1H), 7.80 (d, J = 8.1 

Hz, 2H), 7.26 (d, 2H), 5.89 (ddt, J = 16.8, 10.1, 6.5 Hz, 2H), 5.20 – 5.11 (m, 4H), 3.34 (q, 

J = 6.2 Hz, 2H), 3.10 (d, J = 6.6 Hz, 4H), 2.51 (t, J = 6.4 Hz, 2H), 2.41 (s, 3H), 2.35 (s, 

3H), 1.73 (p, J = 6.5 Hz, 2H); 13C NMR (CDCl3, 126 MHz): δ 168.8, 142.5, 140.1, 135.3, 

129.2, 126.2, 117.8, 57.1, 50.4, 43.4, 26.2, 21.5, 14.2 ppm; HRMS (pos. ESI) m/z 

382.1631 (Theoretical mass: 382.1623); Rf = 0.29, eluent: 50 % EtOAc in hexanes with 

0.5 % Et3N. 

 

 

 

methyl N-(4-(diallylamino)butyl)-N'-tosylcarbamimidothioate (3.51c). The procedure 

for 3.50a was conducted with 3.50c (0.250 g, 0.838 mmol) as the starting protected 

amine. Following purification on a silica gel column with 50 % EtOAc in hexanes with 

0.5 % Et3N the desired isothiourea 3.51c was isolated as a viscous pale yellow oil (0.104 

g, 30 %).  1H NMR (500 MHz, CDCl3) δ 8.18 (s, 1H), 7.78 (d, J = 7.9 Hz, 2H), 7.26 (d, 

2H), 5.83 (ddt, J = 16.8, 10.2, 6.4 Hz, 2H), 5.22 – 5.07 (m, 4H), 3.28 (q, J = 6.7 Hz, 2H), 

3.06 (d, J = 6.5, 1.3 Hz, 4H), 2.43 (t, J = 7.1 Hz, 2H), 2.40 (s, 3H), 2.36 (s, 3H), 1.62 (p, J 

= 7.2 Hz, 2H), 1.48 (p, J = 7.3 Hz, 2H); 13C NMR (CDCl3, 126 MHz): δ 169.3, 142.6, 

139.8, 135.7, 129.3, 126.2, 117.5, 56.9, 52.3, 44.1, 27.1, 24.1, 21.5, 14.2 ppm; HRMS 

(pos. ESI) m/z 396.1790 (Theoretical mass: 396.1779); Rf = 0.18, eluent: 50 % EtOAc in 

hexanes with 0.5 % Et3N.  
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N-(1,3-diallylimidazolidin-2-ylidene)-4-methylbenzenesulfonamide (3.52a). Methyl 

N-(2-(diallylamino)ethyl)-N'-tosylcarbamimidothioate (3.50a) (0.200 g, 0.545 mmol) was 

charged to a flame-dried 25 mL pear-shaped flask equipped with a stir bar and was sealed 

under N2. The isothiourea was dissolved in freshly distilled CH2Cl2 (4 mL). Freshly 

distilled Et3N (0.076 mL, 0.545 mmol) was added by micropipette followed by silver 

trifluormethanesulfonate (0.28 g, 1.09 mmol). The reaction was stirred overnight when 

the starting isothiourea disappeared from TLC analysis. The crude material was 

partitioned between two 13x100mm test tubes with CH2Cl2 (6 mL each). The solids were 

removed by centrifuging and decanting the mother liquor by pipette. The solids were 

washed with CH2Cl2 (2 x 6 mL each). The combined organic layers were concentrated to 

give zwitterionic intermediate 3.51a.1 (0.314 g, > 100 %). The zwitterion was dissolved 

in CH2Cl2 and was washed with saturated sodium bicarbonate (1 x 8 mL) to remove 

excess triethylammonium triflate. The aqueous layer was back-extracted with CH2Cl2 (1 

x 8 mL) and the organics were concentrated. The crude zwitterionic material was then 

dissolved in benzene (8 mL) and heated at reflux for 6 hr. The solvent was removed 

under vacuum and the crude material was purified on a silica gel column with a gradient 

eluent of 30 % EtOAc in hexanes – 50 % EtOAc in hexanes – 90:9:1 

CH2Cl2:MeOH:NH4OH to afford the rearrangement product as a viscous, clear, colorless 

oil (0.105 g, 61 %). 1H NMR (500 MHz, CDCl3) δ 7.82 (d, 2H), 7.22 (d, 2H), 5.79 (ddt, J 

= 16.9, 10.7, 6.4 Hz, 2H), 5.23 – 5.17 (m, 4H), 4.05 (dt, J = 6.3, 1.3 Hz, 4H), 3.47 (s, 

4H), 2.38 (s, 3H); 13C NMR (CDCl3, 126 MHz): δ 156.3, 142.8, 141.2, 132.3, 129.0, 
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125.7, 119.0, 50.1, 44.6, 21.4 ppm; HRMS (pos. ESI) m/z 320.1425 (Theoretical mass: 

320.1433); Rf = 0.14, eluent: 30 % EtOAc in hexanes.  
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5 CONCLUDING REMARKS 

 

 

 The 1,3-diaza Claisen rearrangement has the potential to be an extremely 

powerful tool for the synthesis of complex guanidine-containing skeletons. The guanidine 

functionality is present in many biologically active molecules and the various potential 

interactions of the functional group is likely the reason why. In light of this, the extensive 

development of a reaction that is capable of generating complex guanidines in short order 

is a worthy pursuit. 

 Initially two new methodologies were described for the generation of the 

carbodiimide component of the intermolecular, zwitterionic 1,3-diaza Claisen 

rearrangement. The first was a new urea dehydration, developed for use with electron 

deficient ureas. The second was the desulfurization of S-methyl isothioureas, initially 

conducted with mercury (II) chloride and recently found to work with the less toxic silver 

triflate. Both of these reaction methodologies were used to generate a series of complex 

bicyclic guanidines. 

 The isothiourea desulfurization methodology has since been applied to a series 

of intramolecular rearrangements. The electron deficiency requirement to the 

intermolecular rearrangement has been discovered to be much lower for the 

intramolecular variant. Currently, this new methodology is being applied to simpler 

intramolecular rearrangement substrates that don’t contain strained bicyclic, tertiary 

allylic amines.  
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 Overall, the work described in this dissertation has expanded the toolbox of the 

1,3-diaza Claisen methodology. The intermolecular work allowed for the synthesis of 

bicyclic guanidines that were previously unavailable using the original technique. The 

intramolecular work has shown that complex guanidine structures can be generated 

without the need to generate extremely electron deficient carbodiimides, making the 

syntheses of these compounds simpler. 
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