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ABSTRACT  

 

A realization for the challenges of thermal conductivity coefficient identification of 

wood by using the inverse heat conduction problem is proposed. An overview of 

mathematical tools involved in the construction of a mathematical model of the experiment is 

given. The object of research is the thermal conductivity coefficient of wood raw material. 

The results of this work are functions that showing dependences between thermal 

conductivity coefficient and certain temperatures specified using polar coordinate system. 
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INTRODUCTION 

 

Posing of the problem and formulation of the goals 
During the processing any material, it should be a clear understanding of all of its 

technological characteristics. For the correct carrying wood pyrolysis processes the key 

parameter is a thermal conductivity of this material. On the basis of experimental data, 

identification of wood thermal conductivity coefficient through the use of mathematical 

apparatus is provided. 

Processing of the results based on the inverse problems solution methodology for heat 

conduction. In its general form, such task assumes multiple modeling of temperature field in 

the investigated sample with simultaneous selection of the desired dependences between the 

thermal conductivity coefficients and given temperatures [1, 2]. 

Inverse heat conduction problem requires specifying an analytic justification and in 

choosing the correct mathematical techniques. The essence of the proposed algorithm 

consecutively is shown below in the work. 

Determination of the analytical framework 
For the creating an identification algorithm of the thermal conductivity coefficient for 

wood the following inputs are required. 

1. A mathematical model based on the differential equation 
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 – coefficient of thermal conductivity, W/(m·K); 

 – specific thermal capacity, J/(kg·K); 

 – density, kg/m
3
; 
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 – projection of the heat flux density vector on the coordinate axes  

and , respectively; 

q  – specific heat evolution density, W/m
3
 [3]. 

 

2) The geometrical characteristics of the wood sample that detail its parameters. 

3) Border conditions (BC): 

3a) BC of the second kind.They assume the preset of the heat flux for each point of the 

body surface and any moment in time. These boundary conditions are specified on the 

external surface of the cylinder, which is adjacent to the heater. Analytically these BC can be 

represented as follows: 

 

),,,( zyxfq fl  ,      (2) 

 

flq  – the heat flux density on the body surface; 

zyx ,,  – body surface coordinates defined in therectangular Cartesian coordinates[3]. 

 

3b) BC of the third kind. They assume the preset of the ambient temperature and the law 

of heat exchange between the surface of the body and the environment. For a correct 

description the heat transfer process between the medium and the surface of the body is 

usually applied Newton-Richman’s law. 

 

)( amb ttq  ,      (3) 

 

  – heat convection coefficient, W/m
2
·K; 

bt  – body temperature, K; 

amt  – ambient temperature, K[2]. 

 

After a series of transformations, the boundary condition of the third kind can be written 

as follows: 
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Expression (4) is essentially a special case of the law of energy conservation for the 

body surface area [3]. 

The heat transfer coefficient depends on many factors. However, in many cases, the 

heat transfer coefficient can be considered constant, so in the future solving problems of 

thermal conductivity the value of  will be adopted constant [4]. 

In ourstudy, these BC will be applied with respect to copper tube located in the center of 

the heat chamber, and the water that passes through it during the experiment. 
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3c) BC of the fourth kind characterize the conditions of the heat exchange for system of 

bodies or body with the environment by thermal conductivity laws. Here we must start from 

the idea that the contact between the bodies is perfect (ie, the temperatures of the contacting 

surfaces are the same) [4]. 

In such conditions we have the equality of heat flows through the contact surface, that is 
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In the described experiment BC of the fourth kind will take place between the outer wall 

of the metal tube and the inner surface of the hole in the middle of the cylinder wood sample. 

Differential equation (1) in combination with the terms of uniqueness, mentioned above, 

gives a complete mathematical formulation for the problem of determining of the specific 

thermal conductivity [4]. 

4) Physical dependences for auxiliary elements of the experiment: water and copper – 

thermal conductivity coefficient  (for both) and kinematic viscosity coefficient υ (just for 

water). 

5) Definition of a number of supporting characteristics for the future mathematical 

model: 

5a) determination of the target functions type; 

5b) decision-making concerning whether the physical quantity of thermal conductivity 

is a function or constant (in our case it’s a function of the temperature); 

5c) the question about the isotropy of heat transfer properties of the sample (in our case 

it’s an anisotropy); 

5d) selection of the coordinate system of anisotropy (decided: axis of abscissa and 

applicate are directed along the fibers and sample height, and the ordinate axis directed 

crosswise the fibers). Nevertheless, this issue needs to be further developed, because we must 

correctly take into account the angle of rotation φ after repeated switching between the 

cylindrical and Cartesian coordinates during the calculations. 

6) A set of reference points for the measurement of temperatures. 

 

MATERIALS AND METHODS 
 

The methodological basis of the model of process 
Having a full set of base line data, you can proceed to the consideration of the 

mathematical formalism of their treatment. 

The numerical model of the process, which is a direct problem of heat conductivity, is 

compiled by using the finite element method [5]. 

The essence of the method lies in the fact that the area, in which the search for solving 

differential equationsis carried out, is divided into a finite number of elements. Then it should 

be selected the form of the approximating function for each element. The values of the 

functions at the boundaries of the elements are known in advance. 

The coefficients of the approximating functions are usually looking for, based on the 

condition about equality of the values for neighboring functions on the boundaries between 

the elements (the nodes).Then these coefficients are expressed through values of the functions 

at the nodes of the elements. Then system of linear algebraic equations is compiled. The 

number of equations is equal to the number of unknown values of the nodes. 
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Having a numerical model, we perform the identification with extreme methods using 

standard root-mean-square deviation of the solutions for the direct problem from the 

experimental data. 

Then we find the target values, using Nelder-and-Meade’ method of the deformed 

polyhedron [6]. 

In the method of Nelder-and-Meade the function of  independent variables is 

minimized with the use of  vertices of the deformed polyhedron. Each vertex can be 

identified by the vector . 

The vertex (point), in which the value of is the highest, projected through the 

centroid (center of gravity) of other vertexes. 

Improved (lower) value of the objective function can be found by serial replacing the 

points with the maximum value of  to the "best" points until wefinds a minimum of . 

In more detail, this algorithm can be described as follows: 

let 
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is the i -th vertex (point) on the -th stage of the search, 
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Since the polyhedron consists of )1( n  vertices 11,..., nxx , let 2nx  be the center of 

gravity for all vertices except . 

Then the coordinates of the center are determined by formula 
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where the index  indicates the coordinate direction [5]. 

 

After couple of transformations we find desired value of thermal conductivity 

coefficient as a function between thermal conductivity and temperature for each of the 

coordinate axes, chosen at the beginning: )(Tx , )(Ty , )(Tz . 
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RESULTS AND DISCUSSION 

 

The experiment was conducted for two samples of wood, representatives of different 

species and even different breed types - coniferous and deciduous - pine and oak. Briefly 

consider the results on the example of pine. 

The data collected using afore mentioned equipment is summarized in Table 1. 

 

Table 1 - Experimental data. Wood sample – pine 

#
 o

f 
th

er
m

o
co

u
p

le
 

Stage 1 

(0 – 150 ºС) 

Stage 2 

(150 – 315 ºС) 

Stage 3 

(315 – 500 ºС) 

u
p
 t

o
 1

0
0
ºС

 

u
p
 t

o
 1

2
0
ºС

 

u
p
 t

o
 1

5
0
ºС

 

u
p
 t

o
 1

7
0
ºС

 

u
p
 t

o
 2

2
0
ºС

 

u
p
 t

o
 2

7
5
ºС

 

u
p
 t

o
 3

1
5
ºС

 

u
p
 t

o
 3

5
0
ºС

 

u
p
 t

o
 4

2
5
ºС

 

u
p
 t

o
 5

0
0
ºС

 

1 49 55 62 71 87 95 102 109 177 273 

2 72 85 95 114 147 173 196 221 303 399 

3 98 117 142 165 217 270 310 347 428 513 

4 68 81 90 104 136 164 187 204 224 307 

5 87 103 118 143 190 237 271 300 340 402 

6 101 122 145 174 223 280 318 355 421 488 

7 69 82 96 115 146 187 217 246 286 331 

8 27 28 29 30 33 35 38 39 42 45 
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Water inlet 19 ºС Water flow rate 30 ml/min 

 

After the treatment of this information using computer-mathematical methods, the 

function dependencies for the thermal conductivity (defined in polar coordinates) have been 

obtained: 

 

Tr  023120.0858615.2 ;    (10) 

 

T 019104.0507020.1 ;    (11) 
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Tz  144163.0036863.0 .    (12) 

 

Polar coordinates are arranged as shown in Fig. 1. 

 

 
 

Fig. 1. Arrangement of coordinates. Replacing of rectangular to the polar 

 

As you can see from the dependences, anisotropy of thermal conductive properties for 

all coordinate directions in the sample is observed. This issue should be considered in more 

detail on the subject of a full alignment of the calculated data during the switching to the 

usual rectangular coordinates. 

 

CONCLUSION 
 

The use of the inverse problem in the proposed algorithm permits reducing the problem 

of thermal conductivity coefficient identification for wood to the form of its functional 

dependencies along the coordinate axes. The anisotropy of the heat-conducting abilities of the 

wood raw material is confirmed.The necessity of the return to Cartesian coordinates during 

the thermal conductivity measurement in order to avoid the distortions introduced by the 

radial direction coordinates φ is proved. 
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