МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по курсу «Электрофизические установки для испытаний и исследований»

Тема: «Выбор параметров элементов разрядной цепи генератора импульсов тока. Аналитическое задание формы импульса тока»

для студентов специализации: «Возобновляемые источники энергии и техника и электрофизика высоких напряжений»

Утверждено на заседании кафедры инженерной электрофизики Протокол №7 от 17.01.2017

Методические указания К практическим занятиям курсу «Электрофизические установки для испытаний и исследований». Тема: «Выбор параметров элементов разрядной цепи генератора импульсов тока. Аналитическое задание формы импульса тока» ДЛЯ студентов «Возобновляемые источники энергии техника специализации: электрофизика высоких напряжений» : сост. В.Е. Марценюк, А.А. Петков -Харьков: HTУ «ХПИ», 2017. – 16 с.

Составители: В.Е. Марценюк

А.А. Петков

Кафедра инженерной электрофизики

1. Общая характеристика задачи выбора параметров элементов разрядной цепи генератора импульсов тока

Задача выбора параметров элементов разрядной цепи (РЦ) генераторов импульсов тока (ГИТ) на практике возникает в ряде случаев:

- при проектировании вновь сооружаемых ГИТ;
- при переводе действующих ГИТ в новый режим эксплуатации с измененной нагрузкой;
- при переводе действующих ГИТ в новый режим эксплуатации с измененной формой импульса тока.

В общем случае импульс тока, формируемый в РЦ, может быть задан:

- аналитическим выражением;
- набором контролируемых параметров;
- комбинированным способом.

Ниже описана методика выбора параметров элементов РЦ ГИТ при задании импульса тока, протекающего в нагрузке, аналитическим выражением. Рассмотрены варианты, когда при разряде ГИТ на активно-индуктивную нагрузку, в ней протекают следующие импульсы тока:

- импульс апериодической формы, описываемый суммой двух экспонент

$$i(t) = I_{nr} \left(e^{-\beta_1 t} - e^{-\beta_2 t} \right); \tag{1}$$

- предельный апериодический (критический) импульс тока

$$i(t) = I_{nr} t e^{-\beta t}; (2)$$

колебательный импульс тока

$$i(t) = I_{nr}e^{-\beta t}\sin(\omega t), \tag{3}$$

где на коэффициенты, значение которых задается при описании требуемого импульса, накладываются следующие условия: $I_{nr}>0$ — нормирующий множитель; $\beta_2>\beta_1>0$, $\beta>0$ — показатели экспонент; $\omega>0$ — круговая частота.

42. Вывод соотношений для определения параметров элементов разрядной цепи генератора импульсов тока

РЦ ГИТ, которые сооружаются на базе емкостных накопителей энергии, в наиболее общем случае может быть представлена в виде последовательной RLC – цепи, показанной на рис. 1.

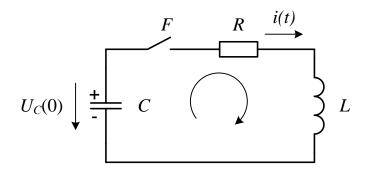


Рисунок 1 — Схема разряда конденсатора на сопротивление и индуктивность: $U_C(0)$ — начальное напряжение на конденсаторе (напряжение зарядки); C — емкость конденсатора; R — сопротивление разрядного контура; L — индуктивность разрядного контура; F — ключ; i(t) — ток разряда конденсатора

2.1. Апериодический разряд конденсатора. Если соотношение между величинами элементов разрядной цепи имеет вид $R > 2\sqrt{\frac{L}{C}}$, то при разряде конденсатора в цепи протекает апериодический импульс тока вида [1]

$$i(t) = \frac{U_C(0)}{L(p_1 - p_2)} \left(e^{p_1 t} - e^{p_2 t} \right), \tag{4}$$

где

$$p_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}.$$
 (5)

Заметим, что для величин из (5) имеют место следующие соотношения p_1 < 0, p_2 < 0 и $|p_1|$ < $|p_2|$.

Сравнивая выражения (1) и (4) можно сделать вывод о том, что для формирования импульса тока вида (1) должны выполняться следующие условия:

$$I_{nr} = \frac{U_C(0)}{L(p_1 - p_2)},\tag{6}$$

$$p_1 = -\beta_1, \tag{7}$$

$$p_2 = -\beta_2. \tag{8}$$

Эти условия позволяют вычислить элементы разрядной цепи. Так, подставляя (7) и (8) в (6) и проводя преобразования, можно определить индуктивность разрядного контура

$$L = \frac{U_C(0)}{I_{nr}} \frac{1}{\beta_2 - \beta_1} \,. \tag{9}$$

Выполним суммирование (7) и (8), находим эту же сумму p_1 и p_2 из (5) и приравниваем результаты

$$-\beta_1 - \beta_2 = -\frac{R}{L}.\tag{10}$$

Далее в (10) подставим L из (9) и, после преобразования, получим выражение для определения сопротивления разрядного контура

$$R = \frac{U_C(0)}{I_{nr}} \frac{\beta_1 + \beta_2}{\beta_2 - \beta_1}.$$
 (11)

Используя (7) и (8) вычислим произведение $p_2 \cdot p_1$, и это же произведение найдем, используя (5), приравняем результаты

$$\beta_1 \beta_2 = \frac{1}{LC}.\tag{12}$$

Далее в (12) подставим L из (9) и, после преобразования, получим выражение для определения емкости конденсатора

$$C = \frac{I_{nr}}{U_C(0)} \frac{\beta_2 - \beta_1}{\beta_1 \beta_2}.$$
 (13)

Таким образом, используя соотношения (9), (11) и (13), при заданных коэффициентах формы импульса тока (1) и заданном напряжении зарядки конденсатора $U_C(0)$ можем определить значения параметров элементов РЦ: R, L и C.

2.2. Предельный апериодический (критический) разряд конденсатора. Если соотношение между величинами элементов разрядной цепи имеет вид

$$R = 2\sqrt{\frac{L}{C}},\tag{14}$$

то при разряде конденсатора в цепи протекает апериодический импульс тока вида [1]

$$i(t) = \frac{U_C(0)}{L} t e^{pt}, \tag{15}$$

где

$$p = -\frac{R}{2L}. (16)$$

Приравняем соответствующие члены выражений (2) и (15)

$$I_{nr} = \frac{U_C(0)}{L};\tag{17}$$

$$-\beta = -\frac{R}{2L},\tag{18}$$

и после преобразований получим

$$L = \frac{U_C(0)}{I_{nr}};\tag{19}$$

$$R = 2\beta \frac{U_C(0)}{I_{nr}}. (20)$$

Подставляя в выражение (14) одно из выражений (19) или (20), можно получить формулу для определения емкости конденсатора

$$C = \frac{I_{nr}}{\beta^2 U_c(0)}. (21)$$

Таким образом, используя соотношения (19), (20) и (21), при заданных коэффициентах формы импульса тока (2) и заданном напряжении зарядки конденсатора $U_C(0)$ можем определить значения параметров элементов РЦ: R, L и C.

Следует отметить, что рассмотренный вариант соотношения параметров РЦ (14) имеет больше теоретический характер, так как в точности реализовать условие (14) на практике не представляется возможным. Это обусловлено отклонениями параметров R, L и C от рассчитанных значений при изготовлении соответствующих физических элементов.

2.3. Колебательный разряд конденсатора. Если соотношение между величинами элементов разрядной цепи имеет вид $R < 2\sqrt{\frac{L}{C}}$, то при разряде конденсатора в цепи протекает колебательный импульс тока вида [1]

$$i(t) = \frac{U_C(0)}{\omega_0 L} e^{-\alpha t} \sin(\omega_0 t), \tag{22}$$

где

$$\alpha = \frac{R}{2L}, \qquad \omega_0 = \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}$$
 (23)

Сравнивая выражения (3) и (22) можно сделать вывод о том, что для формирования колебательного импульса тока вида (3) должны выполняться следующие условия:

$$I_{nr} = \frac{U_C(0)}{\omega_0 L},\tag{24}ee$$

$$\beta = \alpha$$
, (25)

$$\omega = \omega_0. \tag{26}$$

Проводя преобразования (рекомендуем провести самостоятельно) аналогичные, проведенным в п.2.1 и п.2.2, можно получить следующие выражения для определения параметров элементов РЦ: R, L и C.

$$L = \frac{U_C(0)}{I_{nr} \omega}; (27)$$

$$R = \frac{2\beta U_C(0)}{I_{nr} \omega}; \tag{28}$$

$$C = \frac{I_{nr} \omega}{U_C(0)} \frac{1}{\beta^2 + \omega^2}.$$
 (29)

2.4. Выбор параметров разрядной цепи генератора импульсов тока.

Реально РЦ ГИТ с большой запасаемой энергией состоит из сотен и даже тысяч элементов, поэтому параметры, определенные по (9), (11), (13), (19) – (21) и (27) – (29) являются эквивалентными параметрами ряда функциональных элементов, показанных на рис. 2, а именно:

$$R = R_G + R_F + R_H; (30)$$

$$L = L_G + L_F + L_H; (31)$$

$$C = \frac{C_G C_F}{C_G + C_F}. (32)$$

$$U_C(0) = U_G(0). (33)$$

При переводе действующего ГИТ (известны параметры $U_G(0)$, R_G , L_G , C_G) в режим эксплуатации с новой нагрузкой (новые значения R_H , L_H) и/или новой формой импульса тока (новые значения коэффициентов выражениях (1) – (3)) возникает необходимость определения значений параметров

формирующих элементов R_F , L_F , C_F , которые обеспечивают требуемую форму импульса тока.

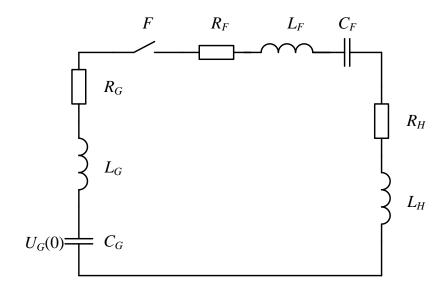


Рисунок 2 — Эквивалентная расчетная схема разрядной цепи генератора импульсов тока с формирующими элементами:

 $U_{G}(0)$ – напряжение зарядки емкостного накопителя энергии;

 R_{G} , L_{G} , C_{G} — соответственно активное сопротивление, индуктивность и емкость емкостного накопителя энергии;

 R_F , L_F , C_F — соответственно активное сопротивление, индуктивность и емкость формирующих элементов;

 R_{H} , L_{H} , — соответственно формирующие активное сопротивление и индуктивность нагрузки

Активное сопротивление формирующего элемента рассчитывается исходя из соотношения (30) (с учетом (11) или (20) или (28)) по формуле:

$$R_F = R - R_G - R_H. (34)$$

Для определения индуктивности формирующего элемента воспользуемся соотношением (31) (с учетом (9) или (19) или (27)), имеем:

$$L_F = L - L_G - L_H. (35)$$

Значение емкости формирующего элемента можно определить по следующей формуле, полученной из соотношений (32) (с учетом (13) или (21) или (29)):

$$C_F = \frac{1}{\frac{1}{C} - \frac{1}{C_G}}. (36)$$

Наличие формирующей емкости C_F в цепи разряда ГИТ нежелательно, так как в этом случае после окончания переходного процесса (разряда ГИТ на нагрузку) на ней и на емкости генератора C_G остается заряд [2], что требует принятия дополнительных мер по технике безопасности. Поэтому формирующую емкость C_F , определенную по (36), целесообразно не вводить в РЦ, а реализовать путем отключения части конденсаторов емкостного накопителя генератора (если это допускается его конструкцией) таким образом, чтобы новая величина емкости генератора C_G^* составляла (определяется из условия, что C_G^* должна быть равна C, определенной из (32)):

$$C_G^* = \frac{C_G}{1 + \frac{C_G}{C_F}}. (37)$$

В случае если, рассчитанные по (35) – (36) параметры принимают отрицательные значения (что физически не реализуемо) или значения, которые невозможно реализовать технически, следует констатировать, что при заданном напряжении зарядки емкостного накопителя $U_G(0)$ невозможно в РЦ сформировать требуемый импульс тока. Выходом из этой ситуации является повышение напряжения зарядки емкостного накопителя. Если в результате расчета получено $R_F = 0$ или $L_F = 0$ или $C_F = \infty$, то соответствующие элементы не входят в РЦ.

3. Примеры выбора параметров элементов РЦ ГИТ

Пример №1. Требуется определить эквивалентные параметры РЦ ГИТ, который должен формировать при замкнутом выходе импульс тока вида $i(t) = I_{nr} \left(e^{-\beta_1 t} - e^{-\beta_2 t} \right)$. Значения коэффициентов: $I_{nr} = 2 \cdot 10^3$ A, $\beta_1 = 2 \cdot 10^4$ с⁻¹, $\beta_2 = 2.8 \cdot 10^5$ с⁻¹. Напряжение зарядки ГИТ не должно превышать 10 кВ.

Решение.

Напряжение зарядки ГИТ примем равным 10 кВ. Используя соотношения (9), (11) и (13) вычислим параметры элементов РЦ: эквивалентная индуктивность

$$L = \frac{1 \cdot 10^4}{2 \cdot 10^3} \cdot \frac{1}{2,8 \cdot 10^5 - 2 \cdot 10^4} \approx 1,92 \cdot 10^{-5} \,(\text{ГH}). \tag{38}$$

эквивалентное сопротивление

$$R = \frac{1 \cdot 10^4}{2 \cdot 10^3} \cdot \frac{2 \cdot 10^4 + 2.8 \cdot 10^5}{2.8 \cdot 10^5 - 2 \cdot 10^4} \approx 5,77 \text{ (Om)}.$$
 (39)

емкость накопителя

$$C = \frac{2 \cdot 10^3}{1 \cdot 10^4} \cdot \frac{2.8 \cdot 10^5 - 2 \cdot 10^4}{2 \cdot 10^4 \cdot 2.8 \cdot 10^5} \approx 9.29 \cdot 10^{-6} \,(\Phi). \tag{40}$$

Полученные расчетные значения параметров элементов могут быть технически реализованы [3].

Пример №2. Имеется ГИТ со следующими параметрами: емкость накопительной конденсаторной батареи — $C_G = 4\cdot10^{-4}$ Ф; активное сопротивление ветви емкостного накопителя энергии — $R_G = 0.4$ Ом; индуктивность ветви емкостного накопителя энергии — $L_G = 1\cdot10^{-6}$ Гн; зарядное напряжение конденсаторной батареи может изменяться в интервале — $U_G(0) = 2\cdot10^3 - 5\cdot10^3$ В. Требуется выбрать параметры формирующих элементов таким образом, чтобы в активно-индуктивной нагрузке протекал апериодический импульс тока вида $i(t) = I_{nr} \left(e^{-\beta_1 t} - e^{-\beta_2 t} \right)$. Значения коэффициентов: $I_{nr} = 2\cdot10^3$ А, $\beta_1 = 2\cdot10^4$ с⁻¹, $\beta_2 = 2.8\cdot10^5$ с⁻¹. Параметры нагрузки: активное сопротивление ветви нагрузки — $R_H = 2$ Ом; индуктивность ветви нагрузки — $L_H = 2\cdot10^{-7}$ Гн.

Решение.

Напряжение зарядки ГИТ примем равным 2 кВ. Вычислим параметры формирующих элементов РЦ.

Формирующее сопротивление определим исходя из (34) и (11)

$$R_F = \frac{2 \cdot 10^3}{2 \cdot 10^3} \cdot \frac{2 \cdot 10^4 + 2,8 \cdot 10^5}{2,8 \cdot 10^5 - 2 \cdot 10^4} - 0,4 - 2 \approx -1,25 \text{ (Om)}. \tag{41}$$

Получено отрицательное значение сопротивления, что физически не реализуемо. Следуя приведенным выше рекомендациям (п.2.3), увеличим напряжение зарядки емкостного накопителя и примем его равным 5 кВ.

$$R_F = \frac{5 \cdot 10^3}{2 \cdot 10^3} \cdot \frac{2 \cdot 10^4 + 2,8 \cdot 10^5}{2,8 \cdot 10^5 - 2 \cdot 10^4} - 0,4 - 2 \approx 0,49 \,(\text{Om}). \tag{42}$$

Формирующую индуктивность определим исходя из (35) и (9)

$$L = \frac{5 \cdot 10^3}{2 \cdot 10^3} \cdot \frac{1}{2.8 \cdot 10^5 - 2 \cdot 10^4} - 1 \cdot 10^{-6} - 2 \cdot 10^{-7} \approx 8,42 \cdot 10^{-6} (\Gamma_{\rm H}). \tag{43}$$

Формирующую емкость определим исходя из (36) и (13)

$$C_F = \frac{1}{\frac{5 \cdot 10^3}{2 \cdot 10^3} \cdot \frac{2 \cdot 10^4 \cdot 2,8 \cdot 10^5}{2 \cdot 8 \cdot 10^5 - 2 \cdot 10^4} - \frac{1}{4 \cdot 10^{-4}}} \approx 1,95 \cdot 10^{-5} \text{ (Φ)}. \tag{44}$$

Чтобы не вводить формирующую емкость в РЦ отключим часть конденсаторов емкостного накопителя (предполагаем, что его конструкция допускает такую операцию). Необходимую емкость оставшейся части батареи конденсаторов определим по формуле (37).

$$C_G^* = \frac{4 \cdot 10^{-4}}{1 + \frac{4 \cdot 10^{-4}}{1.95 \cdot 10^{-5}}} \approx 1,86 \cdot 10^{-5} \text{ (\Phi)}.$$
 (45)

Полученные расчетные значения параметров формирующих элементов и емкости батареи накопительных конденсаторов могут быть технически реализованы [3].

Пример №3. Имеется ГИТ со следующими параметрами: емкость накопительной конденсаторной батареи — $C_G = 5 \cdot 10^{-4}$ Ф; активное сопротивление ветви емкостного накопителя энергии — $R_G = 0.3$ Ом; индуктивность ветви емкостного накопителя энергии — $L_G = 1 \cdot 10^{-7}$ Гн; зарядное напряжение конденсаторной батареи может изменяться в интервале — $U_G(0) = 3 \cdot 10^4 - 5 \cdot 10^4$ В. Требуется выбрать параметры формирующих элементов таким образом, чтобы в активно-индуктивной нагрузке протекал колебательный импульс тока вида $i(t) = I_{nr}e^{-\beta t}\sin(\omega t)$. Значения коэффициентов: $I_{nr} = 2 \cdot 10^4$ А, $\beta = 1 \cdot 10^4$ с⁻¹, $\omega = 8 \cdot 10^4$ с⁻¹. При этом зарядное напряжение конденсаторной батареи должно быть минимально возможным из допустимого интервала (с погрешностью не более 5 кВ). Параметры нагрузки: активное сопротивление ветви нагрузки — $R_H = 0.15$ Ом; индуктивность ветви нагрузки — $L_H = 5 \cdot 10^{-7}$ Гн.

Решение.

Напряжение зарядки ГИТ примем равным 30 кВ (нижняя граница допустимого интервала). Вычислим параметры формирующих элементов РЦ.

Формирующее сопротивление определим исходя из (34) и (28)

$$R_F = \frac{2 \cdot 1 \cdot 10^4 \cdot 30 \cdot 10^3}{2 \cdot 10^4 \cdot 8 \cdot 10^4} - 0.3 - 0.15 \approx -0.075 \text{ (Om)}. \tag{46}$$

Получено отрицательное значение сопротивления, что физически не реализуемо. Следуя приведенным выше рекомендациям (п.2.3), будем увеличивать напряжение зарядки емкостного накопителя с шагом 5 кВ (допустимая погрешность) до значения, при котором значение сопротивления станет положительной величиной (физически реализуемой). Проводя расчеты, аналогичные (46), имеем:

- при напряжении зарядки $U_G(0) = 35 \cdot 10^3 \,\mathrm{B}$ формирующее сопротивление $R_F = -0.013 \,\mathrm{Om}$;
- при напряжении зарядки $U_G(0) = 40 \cdot 10^3 \, \mathrm{B}$ формирующее сопротивление $R_F = 0.05 \, \mathrm{Om}$. Данное значение сопротивления физически реализуемо. Принимаем напряжение зарядки равным $U_G(0) = 40 \cdot 10^3 \, \mathrm{B}$ и проведем расчеты остальных формирующих элементов.

Формирующую индуктивность определим исходя из (35) и (27)

$$L_F = \frac{40 \cdot 10^3}{2 \cdot 10^4 \cdot 8 \cdot 10^4} - 1 \cdot 10^{-7} - 5 \cdot 10^{-7} \approx 2,44 \cdot 10^{-6} \,(\text{ГH}). \tag{47}$$

Формирующую емкость определим исходя из (36) и (29)

$$C_F = \frac{1}{40 \cdot 10^3 \cdot \left(\left(1 \cdot 10^4 \right)^2 + \left(8 \cdot 10^4 \right)^2 \right)^2} - \frac{1}{5 \cdot 10^{-4}} \approx 6,23 \cdot 10^{-6} \text{ (Φ)}. (48)$$

Чтобы не вводить формирующую емкость в РЦ отключим часть конденсаторов емкостного накопителя (предполагаем, что его конструкция допускает такую операцию). Необходимую емкость оставшейся части батареи конденсаторов определим по формуле (37).

$$C_G^* = \frac{5 \cdot 10^{-4}}{1 + \frac{5 \cdot 10^{-4}}{6.23 \cdot 10^{-6}}} \approx 6.15 \cdot 10^{-6} \text{ (\Phi)}.$$

Полученные расчетные значения параметров формирующих элементов и емкости батареи накопительных конденсаторов могут быть технически реализованы [3].

4. Контрольные задания

Условие задания.

Имеется ГИТ со следующими параметрами: емкость накопительной конденсаторной батареи — C_G ; активное сопротивление ветви емкостного накопителя энергии — R_G ; индуктивность ветви емкостного накопителя энергии — L_G ; зарядное напряжение конденсаторной батареи может изменяться в интервале — $U_G(0) = [U_1, U_2]$. Требуется выбрать параметры формирующих элементов таким образом, чтобы в активно-индуктивной нагрузке протекал импульс тока вида (в зависимости от варианта задания) $i(t) = I_{nr} \left(e^{-\beta_1 t} - e^{-\beta_2 t}\right)$ или $i(t) = I_{nr} e^{-\beta t} \sin(\omega t)$. При этом зарядное напряжение конденсаторной батареи должно быть минимально возможным из допустимого интервала (с погрешностью не более 5 кВ). Параметры нагрузки: активное сопротивление ветви нагрузки — R_H ; индуктивность ветви нагрузки — L_H .

Варианты исходных данных приведены в таблице 1 и таблице 2.

Таблина 1

Номер	C_G, Φ	R_G , Om	L_G , Гн	U_1 , к ${ m B}$	<i>U</i> ₂ , кВ	R_H , Om	L_{H} , Гн
варианта		K_G , OM		O_1 , KD	<i>O</i> ₂ , KD	Λ _H , OM	
1	4.10-4	0,4	1.10-6	30	50	2	2.10-7
2	5.10^{-4}	0,1	5.10^{-7}	20	50	0,2	6.10^{-6}
3	4.10-4	0,4	1.10-6	50	80	3	2.10-7
4	5.10-4	0,1	5.10-7	50	80	0,35	6.10-6
5	4.10^{-4}	0,4	1·10 ⁻⁶	50	80	3	$2 \cdot 10^{-7}$
6	5.10-4	0,1	5·10 ⁻⁷	60	80	0,35	6·10 ⁻⁶
7	4.10^{-4}	0,4	1·10 ⁻⁶	40	60	3	$2 \cdot 10^{-7}$
8	5.10-4	0,1	5.10-7	10	60	0,35	6·10 ⁻⁶
9	4.10^{-4}	0,4	1·10 ⁻⁶	90	100	3	2.10^{-7}
10	5.10-4	0,2	7·10 ⁻⁷	10	40	0,35	6.10-6
11	4.10-4	0,4	2.10-6	90	100	3	$2 \cdot 10^{-7}$
12	8.10^{-4}	0,2	7·10 ⁻⁷	20	50	0,35	6.10-6
13	4.10^{-4}	0,4	2.10^{-6}	50	70	3	$2 \cdot 10^{-6}$
14	8.10-4	0,2	7·10 ⁻⁷	10	30	0,35	6.10-6
15	4.10-4	0,4	2.10-6	50	70	3,5	2.10-6
16	8.10-4	0,2	7·10 ⁻⁷	10	30	0,5	1.10-6

Таблица 2

Номер	I_{nr} , A	β_1, c^{-1}	β_2, c^{-1}	β, c ⁻¹	ω, c ⁻¹	
варианта				μ, -		
1	2·10 ⁴	2·10 ⁴	$2,8\cdot10^{5}$	-	-	
2	5·10 ⁴	-	-	2·10 ⁴	1.10^{5}	
3	2.10^4	$2 \cdot 10^4$	$2,8\cdot10^{5}$	-	-	
4	3·10 ⁴	-	-	1.10^{4}	1.10^{5}	
5	2.10^4	$1,5\cdot 10^4$	$2,8\cdot10^{5}$	-	-	
6	4,5·10 ⁴	-	-	$1,5\cdot 10^4$	1.10^{5}	
7	1,5·10 ⁴	$1,5\cdot 10^4$	$2,8\cdot10^{5}$	-	-	
8	$4,5\cdot10^4$	-	-	$1,5\cdot 10^4$	3·10 ⁴	
9	3·10 ⁴	$1,5\cdot 10^4$	3.10^{5}	-	-	
10	4,5·10 ⁴	-	-	$1,5\cdot 10^4$	3·10 ⁴	
11	3·10 ⁴	$1,5 \cdot 10^4$	3·10 ⁵	-	-	
12	$4,7\cdot10^4$	-	-	$1,5\cdot 10^4$	3·10 ⁴	
13	2.10^4	$1,5\cdot 10^4$	3.10^{5}	-	-	
14	$2,5\cdot 10^4$	-	-	$1,5\cdot 10^4$	3·10 ⁴	
15	2.10^{4}	$1,5\cdot 10^4$	1·10 ⁵	-	-	
16	$2,5\cdot 10^4$	-	-	$1,5\cdot 10^4$	3·10 ⁴	

ЛИТЕРАТУРА

- 1. Татур Т.А. Основы теории электрических цепей (справочное пособие) : учеб. пособие / Т.А. Татур. М. : Высш. школа, 1980. 271 с.
- 2. Гинзбург С.Г. Методы решения задач по переходным процессам в электрических цепях / С.Г. Гинзбург. М. Высш. школа, 1967. 387 с.
- 3. Пєтков О.О. Розрахунок і проектування резистивно-індуктивних елементів високовольтних імпульсних установок : навч. посіб. / О.О.Пєтков. Х. : Вид-во "Підручник НТУ "ХПІ", 2014. 196 с. ISBN 978-617-687-010-4.

СОДЕРЖАНИЕ

1.	Общая	характеристика	задачи	выбора	параметров	элементов		
pa	разрядной цепи генератора импульсов тока							
2.	Вывод	соотношений д	ля опре	еделения	параметров	элементов		
pa	разрядной цепи генератора импульсов тока							
	2.1. Апериодический разряд конденсатора							
	2.2. Предельный апериодический (критический) разряд конденсатора							
	2.3. Колебательный разряд конденсатора							
	2.4. Выбор параметров разрядной цепи генератора импульсов тока							
3.	3. Примеры выбора параметров элементов РЦ ГИТ							
4.	4. Контрольные задания							