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Abstract
A numerical and analytical approach to solving problems of the stress-strain state of quadrangular orthotropic 
plates of complex shape has been proposed. Two-dimensional boundary value problem was solved using spline 
collocation and discrete orthogonalization methods after applying the appropriate domain transform.
The influence of geometric shape of plate in different cases of boundary conditions on the displacement and 
stress fields is considered according to the refined theory. The results were compared with available data from 
other authors.
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Introduction

Stress-strain state analysis of plates with different fixing and load distribution options is a 
complex computational task. The problem is even more complicated for the composite anisotropic 
materials, which are becoming more widely used. Considering the diversity of possible shapes, one of 
the few universal approaches for the study of plates is a finite element method, which, however, has 
high requirements to computing resources and leaves many questions about the adequacy of the 
models and the choice of their parameters opened.

Many problems for plates with a relatively simple shape (circle, square, and rectangle) got their 
analytical or semi-analytical solutions, including the use of spline functions and series expansions [1­
5]. In other cases, different numerical approaches have been proposed, often using parameterization 
that takes into account the specific shape of a particular plate [6, 7]. In [8] the analysis of the stress 
state of plates by R-functions method is considered. Some issues of application of the coordinate 
transformation for the analysis of complex-shaped plates have also been discussed in [9-12].

In this paper, we propose an approach to solving the problems of analysis of plates based on 
well-proven methods of spline collocation [13, 14] and discrete orthogonalization [14, 15]. The main 
advantages of using splines are stability against local perturbations in contrast to, for example, 
polynomial approximation, better convergence than that of polynomial approximation and simple and 
convenient computer implementation.

To be able to describe the complex area of almost any quadrilateral plate, it is proposed to use 
the appropriate coordinate transformation.

1. Basic Relations and Constitutive Equations

Let us consider the problem of stress-strain state of a rectangular plate in the Cartesian 
coordinates xx,x 2(0 < x1 < a, 0 < x 2 < b)  with a thickness of h. According to the Timoshenko- 
Mindlin type refined plate theory, the equilibrium equations for a plate under transverse load are [2]:
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Qi,i + @2,2 + q = 0

Mi,i + M12,2 - Q ± = 0 (1)

^ 2,2 + ^ 12,1 — Q2 = 0

where q is a transverse load, Q1, Q2 — shear forces, and Mj_, M2, M12 — bending and twisting 
moments. For the moments and shear forces, the relations of elasticity are valid. In the case of 
orthotropic plate whose orthotropy axes coincide with the coordinate axes, these relations can be 
written as

= D11k1 + D12k2, M2 = D22k2 + D12k1 

M\2 = 2D66k12, Qt = KiY i, Q2 = K2y2 (2)

Here Klt k2, k12 — flexural strains of the coordinate surface, which can be determined by 
angles of rotation of the normal regardless of transverse shear 6l t d2, angles of rotation of the normal 
due to transverse shear y1} y2and the complete angles of rotation of the rectilinear element as

Ki = ^ t l , k2 = ^ 22, 2k12 = ^!,2 + ^ 2,1.

Y l = ^ l -  Ol. 7 2 = ^ 2 -  &2. ~Q\ = W.i, -02  = W.2 (3)

Meaning by the ^ .G ^ V ; elastic and shear moduli and Poisson’s ratios, the stiffness 
coefficients Kt. Dij can be determined as follows

^11 = n /- i  v  ^12 = v2^ 11. D22 =1 2 ( l - v 1v2y  1 2 (1 - V1V2) '

jith  5 5
D66 = - ^ - . K-i = — hG13. K2 = -h G 2366 12 . 1 g 13. 2 g 23

(4)

Combining (1) to (4) we obtain

K1̂ 11 + K1w 11 + K2̂ 22 + K2w 22 = - q  

D n ^ i,n  + D12̂ 212 + D66^ 122 + D 66^ 2,i2  — K1̂ 1 — = 0 (5)

^22^ 2,22 + ^12^ 1,12 + ^66^ 2,11 + ^66^ 1,12 — ^2^2 — K2w,2 = 0

The boundary conditions on the sides x1 = const with clamped edges have the form

w  = 0. = 0. ^2 = 0 (6)

while in the case of simply supported edges

w  = 0. = 0 . ^2 = 0 (7)

For the sides x2 = const the boundary conditions can be written similarly.

2. Definition of Plates in the Form of Arbitrary Quadrangle

Let us consider the region in the space of Cartesian coordinates x10 x2, limited by sides of a 
convex quadrangle, and set an objective to translate it into the normalised region [0 < ^  < 1]. [0 < 
^2 — 1] in the new coordinate system f i . f 2. This transition is possible when using a change of 
variables in the form of
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x = T^£  (8)

where vector x  has components {x1,x 2}, vector £ has components (1, f i , f 2, f i f 2), and the 
components t iy- of transition matrix T are determined by the geometry of the plate. In general, for 
quadrangle with vertices (x11, x21), (x-l2, x22), (x13,x 23), (x14,x 24) components of the matrix T will 
be equal to

1̂1 = x 12, t12 = x13 — x 12, t13 = x11 — x12, t 14 = x 14 — x 13 + x12 — Xx\,

f21 = *22, 2̂2 = *23 — *22, 2̂3 = *21 — *22, 2̂4 = *24 — *23 + *22 — *21 (9)

Next, we can obtain the governing equations (5) in the new coordinates using the 
transformation (8), containing information about the geometry of the quadrangle. To do this, we 
introduce a vector f  with 18 components { ^ i ,^ i ii , ^ i i2, ^ 1,11, ^ 1,22, ^ 1,12, ^ 2, ■■■,̂ ,12} and the 
corresponding coefficient matrix S  size of 3x18. The equations (5) take the form

S ^ f  = q (10)

where q = {-q , 0, 0} and non-zero components of the matrix S  are

si 2 = %i, si9 = K2, s116 = K1, s117 = K2, 

s2i = —Kl, s24 = D11, s25 = D66, s2.12 = D12 + D66, s2.14 = —K^, (11)

s 36 = D12 + D66, s37 = —K2, s310 = s311 = D22, s315 = — K2.

To determine the elements of matrix S, which is similar to S  and represents coefficients of (5) 
in the new coordinate system, we need to find expressions for all components of the vector f  taking 
into account transformation (8).We derive equations for the partial derivatives by the example of 
deflection function w(x-i, x2).

The first derivatives can be obtained from the system of equations based on well-known 
expressions for the partial derivative of a composite function (hereinafter the derivatives with respect 
to denote the index after the semicolon):

w;1 = w 1x1.1 + wi2x2;1, w.2 = wilx1;2 + w,2x2-2 (12)

Solution of this expression system is

w ± = Aw. 1 + Bw.2, w 2 = Cw;1 + Dw.2 (13)

where A, B, C, D are expressions in f i , f 2 :

^  = *2;2/ (*l;l*2;2 — xl;2*2;l) , B = —*2;1/ (*1;1*2;2 — *l;2*2;l) ,

C = — X1;2/ (X1;1X2;2 — x l;2X2;l) , C = Xl ; l l ( X1;1X2;2 — *l;2*2;l) (14)

or explicitly

A = (^24^1 + t 23) / X , B = — (t24%2 + t22) / X ,

C = — (t14f i + t 13) / x ,  D = (t 14f 2 + t 12) / X (15)

with the designation x  = (t i2t 24 — £22 1̂4X 1 + — £24 1̂3X 2 + ^ 12^3  — t22t i3) .
With the expression for the first order (13), second order partial derivatives can be obtained by 

replacing the function w by w ± or w 2 in the right side of the equations (13):
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w,n = {AA;1 + BA.2)w.1 + (AB. i + BB;2)w.2 + A2w.11 + B2w.22 + 2 ABw. 12 

w 2 2 = [CC. i + DC. 2 + ( CD. i + DD. 2^w. 2 + + D2w. 22 + 2 CDw. \_2 (16)

w ̂ 2 = + BC-2)w.^ + + BD. 2)^-2 + ACw . h  + BDw . 22 + (AD + BC)w .^2

Consider a vector m  with components {w^, w,2, w,11( w 22, w,12}, corresponding vector in* with 
components {w.1,w.2,w .11,w.22,w.12], and the transition matrix L, which satisfy the following 
relationship

m  = L •m*

With (13) and (16), we obtain the non-zero elements of the transition matrix L  in form of

in  = A, l12 = B, l21 = C, l22 = D,
3̂1 = AA; 1 + BA.2, l32 = AB. 1 + BB; 2, 3̂3 = A2, £34 = B2, l35 = 2AB, 

I41 = CC-i + DC2, l42 = CD-i + DD.;2, £43 = C2, I44 = D2, = 2CD,
I51 = AC.-i + BC.2, l52 = AD.^ + BD. 2,

£53 = AC, 5̂4 = BD, £55 = AD + BC

(17)

(18)

Expressions for A, B, C, D  are given in (15) and their derivatives A;1,A.2, ...,D.2 have the form

A-i = ( t24X — (t24^i + t23) ( t i2t24 — t22t14)) / x 2
A; 2 = ( 2̂4̂ 1 + t23) ( t14t23 — t24t13) / ^ 2 
B;1 = ( t24^2 + t 22) ( t12t24 — t22t14) / ^ 2 

B ■ 2 = — ( t24X — (t24%2 + t22)( t14t23 — t24t13) ')/ X2 (19)
C; 1 = - ( t l4 ^  -  0 ^ 1  + tl3)( tl2 t24 -  t22t14)) / X2 

C,2 = ( t14fl + ^13)( 1̂4̂ 23 — t24t13) / X2 
D; 1 = ( 1̂4^2 + t12) ( t12t24 — t22tl4) / X2 

D; 2 = (^14^ — (^14^2 + t 12) ( t14t23 — t24t13)) / ^ 2

We introduce the vector f*  with 18 components [ ^ 1, $ 1:1, 2, ̂ i ;n ,  ^ ^ 22, ^ i ; i2, ^ 2, —, w■ 12} 
similar to f  in (10), and the transition matrix P  such that satisfy

P ^ f * = f (20)

The structure of the components of the vectors f  and f*  includes derivatives of the three functions, 
for each of which (17) is applicable. Then the matrix P  is of the form

P =

'1 

oc 
0 

oc 
0

\or

or 0 or 0 or\
0L oc 0 oc

or 1 or 0 or
0 Oc L Oc 0
or 0 or 1 Or

l J0 Oc 0 Oc

(2 1)

where O — zero matrix of size 5x5, oc — zero column vector of five components, or — zero row 
vector of the five components.

In view of (20) equation (10) is written in a new coordinate system as
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s - ( p - p )  = ? (22)

or

S • f  = r  (23)

where f* and q* are analogs of the vectors f  and q in the new coordinate system and S = S • P.
Equations (23) are the system of governing equations (5) in coordinates ( 1, ( 2 and contain 

information about geometry of the quadrangular plate. Since the original domain in the form of an 
arbitrary quadrangle in the new coordinates takes the form of a square, to solve the boundary value 
problem it is possible to use the corresponding numerical methods.

It should be noted that the use of boundary conditions containing derivatives of deflection w 
and angles ^ i , ^ 2 (simply supported, free edge), is required to solve the problem taking into account 
changes due to transition to the new system of coordinates according to (17). In particular, the 
boundary conditions in the case of simply supported edges on ^  = const sides of a the plate take the 
form of

w = 0, Aip1;1 + Bip1;2 = 0, ^ 2 = 0  (24)

with similar amendments to ^ 2 on the sides f 2 = const. Expressions A and B  are meant in form (15).

3. Numerical Results and Discussion

System of equations (23) in conjunction with different boundary conditions form a two­
dimensional boundary value problem with respect to the deflection w and angles ^ i , ^ 2. The latter 
can be solved by the methods of spline collocation and discrete orthogonalization.

Spline approximation based on B-splines of the third degree with 30 pairs of collocation points 
on the f 2 -axis was used. The resolving system of higher order ordinary differential equations was 
solved by discrete orthogonalization method with 1500 integration points. These parameters were the 
same for all calculations.

3.1 Trapezium shaped plates
Generally, variable coefficients in the equations (23) are dependent on the coordinates f i , f 2 

and the proposed approach makes it possible to use it for the analysis of a stress-strain state of 
orthotropic plates. Despite this, the proposed calculation scheme was tested in the case of isotropic 
material. The results were compared with those of work [6].

Table 1. The coordinates of the vertices of the trapezoids under review
object No. *11 X2i X12 x22 x13 x23 xu X24

1 47.15 4.13 47.15 -4.13 57.15 -5.00 57.15 5.00
2 8.66 2.32 8.66 -2.32 18.66 -5.00 18.66 5.00
3 52.15 4.56 52.15 -4.56 57.15 -5.00 57.15 5.00
4 8.74 3.18 8.74 -3.18 13.74 -5.00 13.74 5.00
5 0.96 0.80 0.96 -0.80 5.96 -5.00 5.96 5.00

Table 2. Results of calculation of the deflection w for the trapezoids
object No. 1 2 3 4 5

w 108889 59309 17128 15628 7911
w, [6] 112400 60960 17030 15630 7703
5,% 3.12 2.71 0.58 0.01 2.70

As objects for analysis, five plates in the form of trapezoids were selected. Constant load 
q = q0 evenly distributed on the surface while conditions on the edges assume rigid fixation (clamped 
edge). The coordinates of the vertices of the trapezoids are shown in Table 1. The thickness of the 
plates h is 0.1, and the Poisson's ratio v1 = v2 = 0.3.
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Figure 1. General view of the deflection surface of the plate with a different geometry

The results of calculations are shown in Table 2 (the first row) as a value of the maximum 
deflection w = wE/ q0. The data of the article [6] presented below, as well as the values of the 
relative differences between the results 5. The calculated results are in good agreement for all the 
considered options. General view of deflection surfaces w (x±, x2) for some of them is shown in Fig. 1. 
The deflection surface corresponds to the symmetry of the plate and the absolute value of deflection 
decreases with decrease of the surface area.

3.2 Plate having the shape of an irregular quadrangle
As a more complex object for analysis a plate of an irregular convex quadrangle with vertices 

(1.0, 4.0), (4.0, 1.0), (7.0, 5.0), (2.0, 4.5) was selected. For comparison, we analysed three identical 
plates, deployed at 120 degrees relative to each other. All calculation parameters and physical 
constants of the objects except for the plate size correspond to those defined above for the trapezoids. 
Bounding conditions imply clamped edges.

Fig. 2 shows a view of the deflection surfaces w = w E /q0 for all three cases: original plate 
(Fig. 2a), rotated by 120 degrees CCW (Fig. 2b), and rotated by 120 degrees CW (Fig. 2c). As 
expected, the results are almost identical: the maximum deflection in the central part of the plate is 
1245.06. It is worth noting that the use of proposed approach does not cause difficulties in the 
calculations in the neighbourhood of the corner points, despite the fact that the shape of the 
quadrangular plate is close to the triangle.

Conclusions

A numerical and analytical approach to solving problems about the stress-strain state of 
orthotropic rectangular plates of complex shape is proposed. The system of governing equations is 
written in the new coordinates, based on transformation that take into account the complex shape of 
the quadrangular plate. Resulting two-dimensional boundary value problem is solved by the methods
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of spline collocation and discrete orthogonalization. Usage of these methods allows us to study the
isotropic and orthotropic plates for both types of analysis, static and dynamic.

Calculated results agree well with the data of the other authors. The texture of deflection plate
surfaces shows the possibility to perform calculations in the close proximity to the corner points.

References

[1] GrigorenkoYa.M., Molchenko L.V. Basic theory ofplates andshells[in Ukrainian].Kyiv: Lybed; 
1993.

[2] GrigorenkoYa.M., Budak V.D., GrigorenkoA.Ya. Solving the problems o f shells based on 
discrete-continuous methods[inUkrainian]. Nikolaev: Ilion; 2010.

[3] Birman V. Plates Structures. New York: Springer; 2011.
[4] GrigorenkoA. Ya. et al. Recent Developments in Anisotropic Heterogeneous Shell Theory, Vol. 1, 

SpringerBriefs in Continuum Mechanics, 2016.
[5] Mohajerani P. The Thick Orthotropic Plates Analysis Methods, Part I: A Review IOSR Journal 

o f Mechanical and Civil Engineering, 2015, Vol 12, Issue 2 Ver. III, p. 69-77.
[6] Kryukov N.N. Design of oblique and trapezoidal plates using spline functions Prikl. Mekh. ,1997, 

33, No. 5, p. 3-27.
[7] Shufrin I., Rabinovitch O., Eisenberger M. A semi-analytical approach for the geometrically 

nonlinear analysis of trapezoidal plates International Journal o f Mechanical Sciences, 2010, 52, 
p. 1588-1596.

[8] Kurpa L.V. R-functions method o f solving linear problems o f bending and vibrations ofplates 
and shallow shells [in Russian].Kharkiv: NTU "KhPI", 2009.

[9] Li W.Y., Cheung Y.K., ASCE F., and Tham L.G. Spline Finite Strip Analysis of General Plates 
J. Eng. Mech. 1986, 112, p. 43-54.

[10] Shahidi A.R., Mahzoon M., Saadatpour M.M., Azhari M. Nonlinear static analysis of arbitrary 
quadrilateral plates in very large deflections Communications in Nonlinear Science and 
Numerical Simulation, 2007, 12, p. 832-848.

[11] Matikainen M.K. et al. A study of moderately thick quadrilateral plate elements based on the 
absolute nodal coordinate formulation Multibody Syst. Dyn., 2014, 31, p.309-338.

[12] Shahidi A.R. Non-Linear Analysis of Arbitrary Quadrilateral Plates by Use of Kirchhoff-Love 
Theory Int. J. Contemp. Math. Sciences, 2007, Vol. 2, no. 6, p. 279-290.

[13] Sheikh A.H., Mukhopadhyay M. Geometric nonlinear analysis of stiffened plates by the spline 
finite strip method Computers and Structures,2000, 76, p. 765-785.

[14] GrigorenkoYa.M., GrigorenkoA.Ya. Static and dynamic problems for anisotropic 
inhomogeneous shells with variable parameters and their numerical solution (review) 
International Applied Mechanics, 2013, Vol. 49, No. 2, p. 123-193.

[15] Godunov S.K. Numerical solution of boundary-value problems for systems of linear ordinary 
differential equations Usp. Mat. Nauk, 1961, 16, No. 3, p. 171-174.

A. Ya. Grigorenko, S. A. Pankratiev, S. N. Yaremchenko

293


