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Abstract
Dynamics o f oscillation processes in a siphon U-tube is studied for the system o f connected vessels filled with 
homogeneous liquid. The equations and phase paths describing the motion o f viscous and non-viscous liquids 
are given, oscillation frequencies are considered. Oscillations are nonlinear in general case, but they turn into 
linear by setting specific parameter values o f the system. Phase portraits are obtained and their dependences 
on parameters o f the system are analyzedfor both linear and non-linear cases.
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Introduction

Studying the properties of motion of a liquid in a siphon U-tube has a long history and is still 
of an essential interest nowadays. System like communicating vessels has fundamental and practical 
importance. Here we can reference work [1] which examined transmission of liquid helium through 
superleak connecting two vessels in process of heating one of the containers. This process is 
interesting because a thermomechanical effect [2] in phonon regime takes place, which is also 
discussed in terms of an increase of quantum degenerancy in colder compartment. However, the way 
of changing the quantum degenerancy is not uniform; another method to cause it is adiabatic 
displacement of the wall dividing two compartments of homogeneous quantum fluid. On the 
thermomechanical effect a well-known process called helium fountain is based: if superfluid helium is 
heated, the flow of liquid can achieve velocity high enough for a short-time liquid excess the level of 
vertical vessel [3]. Practical importance of connected vessels is, for example, that their usage as a U- 
tube damper systems can lead to reduction of the vibration amplitude of high buildings; on ships these 
systems are used to reduce the rolling motion caused by waves [4]. Based on the principle of 
communicating vessels water locks of the rivers and channels operate, as well as the level-measuring 
tubes for water tanks. Siphon U-tubes are also used for determination of the volume of a non­
magnetic body of a random shape [5]. There is also an interesting example of the system of 
communicating vessels which can be used in experimental studies of 4He equilibrium in its 
liquid/solid state, in such system one vessel is half-immersed into another [6]. Other important 
phenomena in this field are siphon properties of liquid, i. e. the ability of liquid to overcome a certain 
barrier without external mechanical action [7]. There exist analogies between liquid oscillations in a 
U-tube system and other physical phenomena like electric current [8], distribution of elastic waves in 
the condensed matters, and physical, mathematical pendulums [9].
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Our article is devoted to the research of free vibrations of liquid in the system of 
communicating vessels including oscillations, which can lead to realization of the siphon mechanism. 
At the same time we do not take into account pouring and fountain effects. Actually, we examined 
such motion as oscillations, so for describing them differential equations and phase portraits were 
used. The equations are nonlinear in general case, but some specific values of the parameters of the 
system, for example the equality of the cross sections of vertical vessels, leads to motion described by 
linear equations. It should be noted that such a system is also analyzed in [8], where the relation 
between heights of the liquid in two vessels and time is obtained, and the period of oscillation is 
derived through a transformation formula of the elliptical integral of the second order. The main idea 
of the article [8] is using the unsteady Bernoulli equation for describing the liquid motion in the U- 
tank. We obtain the characteristics describing the motion of a liquid by means of Euler-Lagrange 
equations and the law of energy conversation.

1. Overview of the system

Here we study the behavior of incompressible liquid in U-tube in Earth's gravity field. 
Geometry of this system is shown in Fig. 1. Index g corresponds to the wide container (tube), index s 
corresponds to the narrow container (tube), L corresponds to the communicating tube; Sg and Ss are 
cross sections of the vertical tubes, Hg and Hs are heights of liquid in these tubes. Zero coordinate of Z
- axis is assigned to the equilibrium height H0 of liquid under the upper line of the connecting tube, SL 
is the cross section of this tube. The levels of the liquid never reach the height low enough to let the 
surrounding air enter the connecting tube. Length of the tube L is measured between the axes of 
vertical vessels, as shown in Fig. 1.

._________ L_______ *
Figure 1. The U-tube system

In case of the free oscillations in the system disturbed from equilibrium state, motion 
equations for incompressible liquid could be written as a balance condition between volumes of liquid 
in vertical vessels or by means of parameters such as cross sections and height of the liquid:

S gH g 0 )

and after differentiation we obtain an equation for the speeds of the liquid in the different tubes of the 
system:

S gVg = -  SsVs = -  SLVL (2)

Here we consider that constant of integration is zero. Directions of the speeds vL u vs are 
shown in Fig. 1. Flow through the connecting tube SL does not change the volume of liquid in it. Let us 
perform calculation of the main physical properties of this system using Lagrangian formalism.
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2. Dynamical equations of the system of communicating vertical vessels
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To obtain Lagrange function L=T-U  (where T  is a kinetic and U is a potential energy) we first 
find potential energy U when liquid is disturbed from equilibrium state, which can be done by various 
ways: for example, by heating the liquid or by means of mechanical impact on liquid surface. In the 
narrow container the height of the liquid is H /2 , and the change of its mass is positive ms = pAV= 
p S H  > 0. For a large container the height of mass center of the liquid is Hg/2, and the change of its 
mass is negative mg = pA V  = pSgHg < 0 because the liquid flows from large to narrow container. So 
the corresponding potential energies are:

1 2

U s = -  PgS sH s
- (3)

U g = -  PgS gH l

Kinetic energies of the liquid in the respective parts (tubes) of the vessel are:

T  = -  msv- = -  p S s (H o + H ,) v- 

Tg = -  mgv- = -  p S g (Ho + H g ) v- (4) 

Tl = -  mlv- = -  PS l l v \

and Lagrange function can be written as:

L = T - U = - i p g S f l l {y 2(1 + CTjg) - y -[y(1 - c t - ) + (1 + CTg)+ — ]} (5)-  g g g ^is

where GSg Ss/Sg-> ®lg S l^Sg-> @ls Sl/Ss, l L/H0,y  Hs/H0-
Dynamics of the system is described by Lagrange equation:

2y[ y (1 -  c t, ) +1 + — ------ -] + y 2(1 -  c t, ) + 2 y = 0 (6)
g CTls(1 + CTg) Sg

Nonlinear parts of motion equation appear because of variation of the height of liquid when it 
moves in the vessels with different cross sections. It is clear that when asg = 1 (Sg = Ss) the equation
(6) is linear:

y(1 + T-" ) + y = 0 (7)
-CTls

So only equality of cross sections of vertical vessels is important for the linearity of the equation (6); 
the cross section of horizontal connecting tube thus can actually be of an arbitrary value. Equation (7) 
is linear with respect to the variable y  and describes ordinary harmonic oscillations. Period of those 
oscillations can be written using reduced length lr = (H0 + l/2olS) :

T .  ^  H  + l S - l -S l .
® V g
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As we see there takes place analogy with physical pendulum. In case of equality to zero of the 
parameter l the reduced length coincides with the equilibrium height of liquid H0, and the physical 
pendulum becomes mathematical with oscillation period T = 2n(H0/g)12. The reduced length equals to 
equilibrium height of liquid in case of aLs = too as then the component LSs/(2SL) is zero. If cross 
sections of connecting tube and vertical tubes are of the same value, the reduced length differs from 
equilibrium liquid height H0 on a half of length of connecting tube L. Otherwise at equality of all 
cross sections reduced length equals to the half of length of a connecting tube. The equation also 
becomes linear in the case of infinitesimal amplitude of oscillations (y << 1); then oscillation period 
is defined by equation (7).

3. Phase portraits. Analysis of nonlinear oscillations of the system

Let us consider behavior of the system in general and integrate the equation (6). Without 
friction the integral of motion is a total energy of the system:

W = T + U = 1  p g S .H 02 [y 2(1 + ) + y 2 [y(1 -  a g ) + (1 + a  ) + —  ] = const (9)
2 a ,.

Constant of integration is defined by maximum value of liquid height in narrow vertical 
vessely 0 = H max/H 0 (turning point wheny  = const), i.e.:

y 2(1 + a ) + y  2[ y (1 - < )  + (1 + a , ) + — ] = y 0(1 + a , ) (10)
CLs

For studying of phase portraits it is convenient to rewrite the equation (10) into:

2 2
y 2 = ------------ y ^ y - 1 ------- (11)

y (1 - a  ) +1 + --------------
a ,.  (1 + a.g)

This rearrangement allows to find period of nonlinear oscillations as the integral of this 
equation [9]. The equation (11) defines a phase portrait of the system generally.

3.1 Phase portraits of the linear oscillations of the system
At equality of cross sections of vertical tubes oscillations of the liquid are described by linear 

equation (7), and, thus, in the denominator of expression (11) there is no dependence on coordinate y. 
In this case phase portrait of the system is ellipse with semiaxes a2 = y 02, b2 = y 02/( l  + l/aLs), and 
eccentricity e2 = 1/(l + aLs):

2 2
y  + b -  = 1 (12) a b

Obviously, if we have harmonic oscillations when parameters of the system are fixed, all 
ellipses are similar for different oscillation amplitudes. Direction of rotation is topological invariant 
(see Fig. 2).
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Figure 2. The harmonic oscillations of a liquid in the system: a) l/oLs = 2, y 0=0.2; 0.5; 0.7; 0.9; 1;
b) y 0 = 1, l/ou = 0; 0.125; 0.5; 2; 4.

Interesting dependence on parameter l/oLs = LSs/(SLH0)  follows from the equation (12): in 
extremely minimum case l/oLs = 0 phase portrait on plane y  -  y 0 is a circle. This parameter may 
become zero (or closely near to zero) in two ways: when equilibrium liquid height in vertical vessels 
much exceeds the length on connecting tube (l = 0), or when two vessels are connected by sealed 
channel with large cross section (oLs = ro). The increase in parameter l/oLs leads to the flattened phase 
portrait in Fig. 2 (b), and the decreasing of the frequency of oscillations.

3.2 Phase portraits of nonlinear oscillations
In case of the maximum amplitude y 0 = Hsmax/H 0 = 1 at big difference in sections of vertical 

tubes (osg=0), and under the condition l/oLs = 0 the equation (11) is reduced to:

y 2 = 1 -  y  (13)

On the phase plane it is equation of the parabola (Fig. 3 (a)) closed by a vertical segment. 
Analyzing the equation (11) it is possible to see that if the length of a connecting tube is increased, the 
parabola is flattened and turns into an ellipse. The graphic analysis of fluctuations for the case l/oLs= 0 
is also given in [4] where two phase paths in the limiting cases are presented: when the cross sections 
of vertical tubes are identical and when they are much different. When amplitude changes within 0 < 
y 0 < 1 (displacement from - y 0 to y0) the following evolution of phase paths takes place in the system: 
semiaxes of ellipses at y 0 ^  0 increase with a growth of amplitudes, ellipses being strongly deformed 
when a fluid level reaches the bottom points; corners of paths on phase plane during approximation to 
a parabolic form are sharped (Fig. 3 (b)).

a b c

Figure 3. Phase portraits of nonlinear oscillations of a liquid in the system: a)y 02=1, oLs = 0, l/oLs = 0; 
0.125; 0.5; 2; 4; b) osg = 0, l/oLs=0, y 0 = 0.2; 0.5; 0.7; 0.9; 1; c) amplitude is smally 2 ^  0, osg = 0.5,

l/oLs = 0; 0.125; 0.5; 2; 4.
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Taking into account a numerical factor the behavior of the system in cases asg = 1 and y 0 << 1 
coincide. When there is small difference between cross sections, the phase paths are ellipses, and in 
the process of decreasing of the parameter they are imposed at each other, almost merging into one 
curve. Further, if the oscillation amplitude is small (y << 1), we have the linear description of liquid 
oscillations in vessels with a period (8). Assuming the amplitude to be a small, but such that we 
neglect only an item contain square of derivative from y, we obtain a nonlinear equation. In Fig. 3 (c) 
change of phase paths in process of increase in parameter l/aLs is the following: elliptic paths are 
flattened to an ordinate axis having one generic point.

4. Oscillation frequencies in the system

For studying nonlinear oscillations of the system and analyzing oscillation period we find the 
integral of equation (11):

t -  fo = V(1 -  °0 j  dyJ  y (14) 
v y» -  y

where t0 is the constant of integration and limits of integration are -y0 and y0:

' + q

where E(p, k) is an elliptical integral of the second kind. Here notations are:

(15)

sin̂  = ( y 0 + q)( y + y0 ), q. 1 ■ l - ~ l 2 y 0
2 y,(y + q) ’ 1 -  ̂  a ls (1 -  a 2m ) ’ \y ^  + q

The half-period of oscillations is a time span of the oscillations amplitude changing from its 
minimum to maximum point (from - y 0 to y0). We see that if we substitute the limits into the 
expression (15), the second term becomes zero both at minimum and maximum value. Furthermore 
we see that in the case of y  = —y 0, sinp = 0 and thus, p = 0, and if y  = y 0 then sinp = 1, and thus p = 
n/2. Because E(0,k) = 0, then oscillation frequency is:

m = n j  f2A/(l- ŜgjCyr+q)E ( Y  kjj (16)

Figure 4. The dependence of oscillation frequency on a) initial amplitude y 0 and parameter l/aLs at 
asg = 0.5; b) initial amplitude y 0 and parameter asg at l/aLs = 0.5.
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The influence caused by initial amplitude y 0 and by parameters of the system l/aLs and asg is 
shown in Fig. 4 (a) and in Fig. 4 (b). Fig. 4 (a) presents the dependence of oscillation frequency on 
initial amplitude and parameter l/aLs when the relation between cross sections is constant value. It is 
obvious that oscillation frequency increases with initial amplitude growth and the exponential law 
describes decreases with growth of parameter l/aLs, and dependence of frequency on parameter l/aLs. 
In Fig. 4 (b) there is a dependence of the oscillation frequency on initial amplitude y 0 and a parameter 
l/aLs. As we can see, oscillation frequency changes with an increase of an initial amplitude y 0 as an 
exponential function and with an increase of relation between cross sections asg as a logarithmic 
function. To the linear cases of the oscillations there correspond lines with a constant frequency. For 
example, if k  = 0 (i. e. y 0 = 0) E(n/2,k) = n/2 and then frequency is:

In addition, k  becomes zero at q ^  <x> (i. e. at asg = 1), and then we receive the expression for 
the frequency. If the cross sections of vertical tubes considerably differ, the oscillations period does 
not depend on a cross section of a vertical tube with a large diameter.

(

\  -  » +1 +
2 V g  V SlH 0

2 y0
l s s

H  0 S l

(18)

4. Dynamics of viscous liquid

In the above section the system of communicating vessels which is filled with a perfect liquid 
was considered. Actually ideal non-viscous liquid almost never exists in nature, so considering 
practical application, it is necessary to take into account the dissipation of energy in the system, which 
occurs in viscous (non-ideal) liquid. The review of viscous liquid is also interesting because of the 
above-mentioned thermomechanical effect, which can be seen for superfluid helium, since it has the 
normal (viscous) component and superfluid component in which there is no dissipation of energy.

Let us consider viscosity in the simplest case, one whereby a member that takes into account 
the attenuation of oscillations in the system of proportional speed and equal to -n(vs + vg + vL), where 
n is a parameter that is expressed through the coefficient of dynamic viscosity. Considering the ratio 
between speeds in three knees, we got that the equations of motion are:

pgS^ 0 j 2 y[ y(1 -  ) + (1 + a ) + o ^ ] + y2(1 -  ) + 2 y  I1 + O  )J -  - ^ 4 gHoy  j 1 -  a  + ~O~ j  (19)

After some transformations, equation has the form

2 y y + 1 -  a + y 1 + a y  +
2 y

1 -  a
(20)

l1 1 1 0+
a a

where k  = 2n(gH0) 1/2/(p g S fl02).
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If we consider a system in which the cross sections of vertical tubes are equal, then we have 
an equation that is similar to the classical equation of the damped oscillation of the pendulum:

y +
k

y  +:
2

2(JLs (2 + ll  a Ls ) 2 + l/ (
- y  = 0 (21)

in this case, depending on relations between the parameters of the system we have: a regular periodic 
oscillations (when k < 4ols(2(2 + 1/glJ)12) with frequency

2<rr
V2(2 + l ~Ls ) _ k 2 (22)

We also can have an aperiodic oscillations when k > 4ols(2(2 + 1/ols) )112 and the so-called "critical 
damping" when k = 4gl*(2(2 + 1/ols))12.
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Figure 5. Phase portraits of the vibrations of viscous liquid with dimensionless viscosity k  = 
0.5: a) oSg = 0.2, l = 1, Ols = 0.4; 6 ) osg = 0.2, l = 2, Ols = 0.4.
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Figure 6. Phase portraits of the vibrations of viscous liquid with dimensionless viscosity k  = 
0.5: a) osg = 0.95, l = 1, ols = 0.4; 6 ) osg = 0.2, l = 1, ols = 1.

In the case of vessels of different cross sections graphical analysis of the equation is possible. 
Clearly, as for conventional oscillator with dissipation of energy, phase portrait of liquid oscillations 
is transformed from a closed curve into an open curve, with increasing viscosity spiral spins faster and 
the distance between the coils is increased. The decreasing of parameter Osg also leads to more rapid 
damping vibrations, as shown in Fig. 5 (a) and Fig. 6 (a), where are presented phase portraits of 
oscillations for different parameters of the system for the same initial amplitude: Fig. 5 (a) phase 
trajectory corresponds to a significant asymmetry in the system, while in Fig. 6 (a) the difference 
between the vertical sections of tube is low. When increasing the length of the connecting tube 
(decrease equilibrium height) the distance between the turns of the spiral decreases, i.e. damping rate 
decreases, as shown in Fig. 5 (b). In Fig. 6 (b) it is shown that the curve twists slowly with increasing 
of the parameter oLs too. In other words, increase in the asymmetry of the system is similar to the 
increase of the viscosity of a fluid and has damping effect.
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Conclusions

Oscillations of liquid in the system of communicating vessels are studied. Frequencies and 
periods of free oscillation are described for the general case through elliptical integral.

Phase portraits are plotted for the general case of oscillations when different parameters of the 
system are changed, i. e. dependence of liquid motion on one parameter of the system when other 
parameters are fixed. When oscillations are linear, phase paths are elliptical, while in the case of 
nonlinear oscillations we have parabolas closed by a vertical segment. The same kind of phase 
portraits also correspond to the vertical motion of a ball elastically bouncing off a horizontal surface, 
which suggests analysis of the strong analogies between the various mechanical motions and the 
oscillations of the liquid in the communicating vessels.

In the sections 2 and 3 of this work the internal friction (viscosity) is neglected, which have an 
influence on real liquids’ motion. If we consider influence of viscosity, the general motion equations 
and, therefore, oscillation periods will differ from those which were obtained for an ideal liquid. It is 
of interest to further analyze the general expression for oscillations frequency because in the current 
work analysis is presented for the case of the different cross sections of two vessels, which is 
described by the nonlinear equations. The case of the identical cross sections of two vessels was 
considered earlier in the work [9]. It is also prospective to consider the siphon mechanism within this 
system and study the fountain effect caused by special initial conditions. Using discussed system of 
communicating vessels such extraordinary phenomena as superfluid flow (for example, liquid helium 
or diluted quantum gas) and supersolid (4He) could be experimentally studied.

In the section 4 of this work we take into account the influence of the viscosity, to consider 
the situation more approximate to the real liquids. The several phase portraits of liquid oscillations are 
given. Accounting an influence of viscous leads to nonlinear motion equations that are not solved by 
quadrature, but can be reduced into Abel's differential equations.
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