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Abstract
We consider the axisymmetric problem o f  creep and creep damage fo r  piecewise-homogeneous bodies o f  
revolution with meridional section o f  any shape. We develop a method fo r  the solution o f  the nonlinear initial 
boundary-value problem based on the combined application o f  the R -functions method and the Runge- K utta- 
Merson method. The structures o f  the solution fo r  the main types o f  boundary conditions are constructed. We 
present an example o f  calculation o f creep, creep damage and long-term strength fo r  a two-layer cylinder.
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1. State-of-the-Art of the Problem. Statement of the Initial 
Boundary-Value Problem of Creep and Creep Damage

The problems of determination of the stress-strain state and strength of piecewise homogeneous 
cylindrical bodies are thoroughly described in the Ukrainian and foreign literature. At the same time, 
the nonlinear deformation of piecewise homogeneous bodies with complex shape, in particular, the 
problems of creep and creep damage have not been adequately studied. This is connected with the 
complexity of solution of nonlinear initial boundary-value problems for piecewise homogeneous 
systems and with difficulties connected with the construction of constitutive equations, which must 
take into account various effects of deformation of contemporary materials. The analytical solution of 
such problems can’t be obtained. There are only a few works devoted to this problem [1,2]. In [1,2] 
the simplified shell model was used for the formulation of the problem. In contrast to these papers we 
will consider the problem in the framework of the spatial formulation.

Consider a body of revolution of finite sizes referred to a cylindrical coordinate system Orzq  
at the temperature T , which consists of M  components V1, V2,...,VM (V = V1 u V 2 u ... u VM ) rigidly 
connected with each other. The body is under the action of external surface loads applied to a part S  p 

of its surface and a temperature field T = T (r, z, t). The distribution of loads on S p and given 

kinematically possible displacements on the surface Su are such that the desired solution is 
independent of q . The strains in the body remain small in the process of creep.

We denote by dVab ab the interface of the neighboring parts of the body Va and Vb .The axis 
Oz coincides with the axis o f revolution. The section of the body in the plane rOz has the shape of 
the domain Q with boundary 3Q . The domain Q is the union of constituent domains Q k 
(k = 1,...,M ) with boundaries 5Qk . The rates of displacements and external loads are given on the
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parts of the boundary 3 0 u and 3 0 p , respectively. We denote by 3 0 ab the interface of the 

neighboring domains 3 0  a and 3 0 b . By d0*ab and 3 0 ^ ,, we denote the sides of the surface d 0 ab 
that belong to O a and 0 b , respectively. Assume that the materials of the components o f the body are 
isotropic and that the geometric and mechanical characteristics of each part are independent of the 
angular coordinate q .

The components of the total strain rate tensor etj consist of the components of the elastic strain 

rate tensors sZ , thermal strain rate tensor sT , and irreversible creep strain rate tensor p t]

sij = sij + sij + p ij ' ( ,j  = 1,2,—)

In the cylindrical coordinate system, we have

s r (r ,z ,t) = ee (r ,z ,t) + s Tr (r ,z ,t)+ p r (r,z ,t) , s z ( r ,z, t) = sZ, (r, z, t) + s Tz (r, z, t) + p z (r, z , t )

Sq(r , z, t ) = S eq (r, z, t ) + STq (r, z, t ) + Pq(r, z, t) , E rz ̂  z, t ) = (r, z, t )+ (r, z, t) + p  ̂  (r, z, t)

Here, the overdot denotes the total derivative with respect to time t .
Thermal strains are calculated by the formula

s Tr = s i  = s Tq = a(T  -  T )  s i  = 0

where T = T (r, z, t) is the temperature, a  = a(r, z, T ) is the linear thermal expansion coefficient, and 
T0 is the temperature at which stresses and strains are absent. We assume that the temperature 
distribution T (r, z, t ) is given or known from the solution of the problem of non-stationary heat 
conduction.

Constitutive equations of creep and creep damage growth equation of many construction 
materials can be described by equations [3], which can be represented as

3 a m
p-i = ^  ‘ n s- i , ( -^  = 1,2,3) (1)2 (1 - V )

a -
V =B  T T ^ y  (2) (1 - v f

Here a e = %at + (1 -  % p\ is the equivalent stress; a j is the maximum principal stress; a t =

is the stress intensity; skl = a u -  Skl (a—) is the stress deviator, Skl is the Kronecker delta; 
A, B ,a , m, n, - ,  q are material parameters; v  = v ( t ) is the scalar damage variable: 

v(o) = 0 , v ( t , )= 1 , t* is the failure initiation time.
The boundary-value problem of creep and creep-induced damage for the axisymmetrically 

loaded body of revolution of finite sizes at an fixed moment of time t #  0 can be reduced to the 
variational problem of finding the minimum of a functional in the Lagrange form [4]. Based on 
functional for homogeneous body [4], we can formulate the functional in the Lagrange form for 
piecewise-homogeneous body defined in the space of the vectors of displacement rates

l ( u  1, U 2,...,U M )= 0.5]T j j ^ -  (u
-=10k )+ i ll ■ 2 - 2 + u 2  r +r-,r z- ,z
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Gk (urk,z + uzk,r )2 + 2Xk (Urk,rUzk,z + u rk (urk,r + uzk,z ) r )

M r - - /
S j j  Urk,rN {k + Uzk,zN lk + urkN {kr + N '{zk

- S  \ ( P > s  + P > s )®Q

k=1Q
t r + N U \urk z  + U zk ,r

rdrdz -

rdrdz -

(3)

Here Uk(r,z t )=(urk(r,z t), uzk(r,z t)), (k = 1,...,M ) ; Xk = Ekv k
(l -  2vk)(l +v k)

X1k = Xk + 2Gk ,

Gk =
2(1 +Vk )

; E k is the Young’s modulus, v k is the Poisson’s ratio of material of the k-th

component; and urk (r, z, t) and uzk (r, z , t) are the rates of radial and axial displacements in the k-th 
component, and s is the number of the component of the body to which external forces are applied; 
n  and r  are the external normal and tangent to 5Q ; uns = ul̂sn1 + uzsn2 , us  = u2̂sn1 -  ursn2 are the 
normal component and tangential component of the vector of displacement rates; n1 and n2 are the 
direction cosines of the normal n  .

The rates of the “fictitious” forces in the k-th component of the body are calculated by formulas

N f X1kerk + Xk ^zk +(ezk + efk ) N {  =

X1keqk + Xk (erk + e zk )

X1kezk + Xk (erk + efk )

N{k = 2Gke zk ,

where

erk = Prk + ^rk > ezk = P zk + Slk > e<fk = Pfk + Slk > ezk = Przk > 

sTk = sTk = = a k T

and creep strain rates p rk , p zk , p qk, 2p rzk are given as some known functions of the coordinates 

r, z at each fixed instant of time.

The collection of the functions of the rates of displacements urk (r, z, t) and uzk (r, z, t) must 
satisfy the following conditions:

1° be continuous together with their partial derivatives in the corresponding constituent 
domains Q k (k = 1,...,M ),

2° coincide on the boundaries of neighboring domains

ura (r> z  t) = urb (r, z’ t )  u za (r'■ z’ t) = u zb (r'■ z’ t) on dQab

3° satisfy the following kinematic boundary conditions if the corresponding component V is 
adjacent to the boundary of the body

■l (r,z,t )=  { r0, uzl (r,z,t )= fzl on dQu (4)

Here, f 0 and f zl are given functions.

On the boundaries of the neighboring domains dQab, the following conditions of equilibrium

)

s 5Q
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a an ( r ,z , t ) - a b„) - a b (r , z, t )=  0 , Ta fa z , t ) - z b (r , z ,t)= 0 , (5)

where (r, z ,t)  0 bnb (r, z , t) and -can (r, z, t )  i b (r, z ,t) are the rates of the normal and the tangential 

stresses that act on the surfaces dQ*ab and dQ*ba, respectively; na and nb are the outer normals to the 

surfaces dQ*ab and dQ*ba, na = - n b .

Conditions (5) can be obtained as conditions of stationarity or, in other words, as natural 
boundary conditions of functional (3) if  the functions ura, uza, urb , and uzb satisfy conditions 1 ° and 
2°.

The main unknown problems of creep and creep damage at any point of the body can be found 
from the solution of the Cauchy problem with respect to time for a system of differential equations, 
which, for the k-th component of the body has the form

dur, d u ,
— r— = u , , — — = u , , 

dt r dt z

d srk - S  = u dS*  _ urk d rrzk _ ^ dS~ V* r* r 5 - ^
dt ~~rk,r ’ dt zk,z’ dt r ’ dt dt rk,z zk,r’

=  K 1k ( s rk  -  e rk  ) +  K k  {S z k  +  S *  -  e z k  -  e <pk )  ,  ^ 0 ^  =  (^ z k  -  e z k  ) +  K k  ^  rk  +  S *  -  e rk -  e *  )

d a
~~ = K1k (s*  -  e* )+ Kk (srk + Szk -  erk -  e zk ) , (r rzk -  2erzk ) ,dt  ̂ t* t* J k \ rk zk rk zk / '  dt

‘d r = p * , der = p — ■ = P*  ■ ± S L = P■*, -* >  ^dt dt dt dt dt

Initial conditions at the reference state t = 0 include natural conditions 
p rk = p zk = p *  = p rzk =Wk = 0 as well as the solution of the elastic variational problem of 

minimizing the functional that can be obtained from equation (3), considering the displacements urk , 

u*  and surface forces P°,p£ instead of its rates and putting the “fictitious” forces: N fk = N — =

N *  = N ik = 0.

2. Method of Solution. Structures of the Solution

We solve the initial problem (6) by the fourth-order Runge-Kutta-Merson (RKM) method of 
time integration with automatic time step control. The variational problems for functional (3) at times 
corresponding to the RKM scheme are solved by the Ritz method in combination with the R- 
functions method (RFM) [5]. Compared to existing numerical methods, for example FEM, RFM 
has a number of advantages. The R-functions method enables us to exactly take into account the 
geometry of the domain and the boundary conditions of the most general form. The approximate 
solution of the boundary-value problem is represented in the analytical form, as a structure of the 
solution exactly satisfying either all boundary conditions (the general structure of the solution) or a 
part of boundary conditions (partial structure of the solution) and is invariant with respect to the 
shape of the domain Q. The structures of the solution form a base for the construction of systems of 
coordinate functions of variational methods.

In our case, the problem is reduced to the determination of the rates of the radial displacements 
uri and axial displacements uzi in each of the domains Q,. (i = 1,...,M). Then the functions uri and 
uzi must satisfy the equations of equilibrium written for the rates, conditions 2° on the boundaries of
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neighboring components, and the kinematic boundary conditions 3° if  the corresponding component 
is adjacent to the boundary of the body.

Denote by Qn n = (1,...,N ) the domains adjacent to the boundary of the body. We set the rates 
of displacements on parts of the boundaries SQun of the domains Q n , the stress rates on parts SQpn, 

and conditions of joining of neighboring parts on parts SQ cn . The entire boundary of the domain Q n 
can be represented as the union of boundaries SQn = SQun u  SQpn u  SQ cn . If  only the rates of 

displacements or only the rates of stresses are given, then the corresponding part ( dQun or SQ pn ) of 
the boundary can be absent.

Let the boundary conditions for the rates of displacements on the part dQun have the form (4). 
Then the partial structures of the solution for the rates of displacements um and uzn can be written in 
the form

urn = u0rn + u1rn , 11 zn = u0zn + u1zn (7)

where u0m and u0zn satisfy the inhomogeneous boundary conditions, and u1rn, u1zn are 
homogeneous conditions and are determined by the following formulas

u0rn = frn , u0zn = f  zn (8)

u1rn = ®u O 1 + ® O 10 + ®ucnO 1n , u1zn = ® uO 2 + ® O 20 + ®ucnO 2n (9)

Here, ®(r, z)=  0 is the equation of the boundary of the body SQ (® >  0 inside Q ); ®u (r, z)=  0 is 
the equation of the area SQu ( ®u > 0 beyond SQu ); ®ucn (r, z) = 0 is the equation of the area

SQucn = SQun u S Q cn ( ®ucn > 0 beyond SQ„cn ). The functionS f m and f m can be WTitten in the form

f  0® f  0 ®_ J rn pcn f  _ J zn pcn
rn ' J zn

®un + ®pcn ®un + ® pcn

where ®pcn(r, z)=  0 is the equation of the area SQpcn = SQpn u  SQcn (®pcn > 0 beyond SQpcn) and 

®un (r, z) = 0 is the equation of the area dQun ( ®un > 0 beyond dQun ).
The structures of the solution represented by formulas (7)-(9), satisfy exactly the kinematic 

boundary conditions on SQu and the conditions of joining 2° for any choice of the undefined 
components 0 1,® 2,® 10,® 20, 0 1;, and O 2i (i = 1,...,M).

If on the external boundary of some domain Q ,  , only the rates of stresses are given, i.e., in 

other words, the boundary SQu, is absent, then, in this case, in formulas (8) and (9), we must take 

u0r,  = 0 , u0,, = 0 , ®ucj = ®c,  , where ®c,  (r, z) = 0 is the equation of area SQ ,  ( ®c,  > 0 beyond 

SQc,).

For the internal components Ql (l = 1,...,L), the domains Q , on the boundaries of which only 
the condition of joining with the neighboring components must be satisfied, in the structures of the 
solution, we must take u0rl = 0 , u0zl = 0 , and ®ud = ®t , where ®l (r, z ) = 0 is the equation of the 
boundary of the domain Ql ( ®l > 0 inside Ql ).

The equations of the boundary of the domain Q and its components in the structures of the 
solution are constructed with the help of constructive means of the R-functions theory [5].

In discretization of the boundary-value problem, the undefined components of the structures of 
the solution are represented in the form
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N
° (r,z,t) « °  n (r,z,t ) = Z  Ck (t}pk(r,z) .

k=1

As {qk }, we can choose ordinary power polynomials, Chebyshev polynomials, splines, etc. [5].

3. Numerical Example for Two-Layer Cylinder

As an example, we consider the processes of creep and creep damage of a two-layer cylinder 
with the radius of the middle surface R = 0.1m , thickness h = 0.01m and length L = 0 .1m . Layers 
of cylinder have the same thickness. Both ends of the cylinder are free from external loads, but they 
are fixed in such a manner that the edges are restrained from radial displacements. The inner surface 
r = r^, = R  + h j2 of the cylinder is free of loads. The outer surface r = rinn = R  -  h j2 of the cylinder

is loaded by a normal pressure: Pout = ± yzj = — p0-P(z  ) = 1 P0
(  f  2 n z ^  1 + cos| where P0 = 20 MPa . The elastic

constants of the materials of inner (1st) and outer (2nd) layers: E l = E 2 = E  = 60G Pa, 
v 1 = v 2 = v  = 0.35. Here, we assume that a 1 = a 2 and T = T0. Creep and creep damage growth of 
materials of layers constituting the cylinder are described by equations (1), (2) with values of material 
constants: A1 = 5.5 • ^ M P a ^ h 4 , B1 = 5.5 • 10-24MPa-k1h 4 , m1 = 7, k1 = 9 , n1 = q1 = 3 , ^  = 1 

; A2 = 13.5 •10-14M Pa'(m2+1)h '1, B2 = 13.5 •10-16MPa-k2h '1, m2 = 3, k2 = 5 , n2 = q2 = 2 , ^ 2 = 1.

The boundary conditions on the ends of the cylinder z = + L/ 2 are

uri = 0 , (10)

= 0 , (i = 1,2)

On the internal surface r = rinn of the cylinder,

rJr1 = ^  CJrz1 = 0

On the external surface r = rout of the cylinder,

2 = - Pout , 2 = 0

On the boundary of the layers, the following conditions of joining must be satisfied:

ur1 = ur2 , uz1 = uz2 (11)

Using the method of construction of the structures of the solution described in the foregoing, 
we can obtain partial structures satisfying conditions (10) and (11) in the next form

ui  = °1  + ®L°1i , uzi = z(<02 + ®lci0 2i ), (i = 1,2)
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Here o u =
LL 2------z
4

= 0 is equation of the part of boundary where the rates of displacement are

given; °uci = °u  A 0 °ci = °u  + °ci + ° l , and o ci (i = 1,2) are the equations of the interfaces of

the layers of cylinder

The equation of the boundary of the domain Q ( o  = 0, o ,n = -1  on S Q , a  > 0 inside Q ) has 
the form

where o„ = (r -  rinn out -  r )
out inn

In the numerical realization, the functions O x, O 2 and O Xi, O 2i (i = 1,2) are present in the form 
of linear combinations of Schoenberg bicubic splines [5].

Systems of spline functions were constructed on uniform rectilinear meshes. In this case, 
O j, O 2 were given in the whole domain Q , and O Xi, O 2i were given only in the corresponding 
subdomains Q i (i = 1,2) with equations of the boundaries ( o i = 0 , o in = -1  on SQi , o i > 0 inside

Q i):

° i = °ri A0 °u = °ri + °u - 4 ° 2n + 0  = 0

where o„ = (r -  ri )(ri+1 -  r )

As a result of calculations, we established that the failure initiation time is t„ = 954 h . The solution 

has been obtained with the initial value of the time step At = 10 3 h and with the accuracy 5  = 10~4 . 
The procedure of time integration were performed up to iy = y„=  0.9, where y/„ is the selected 
critical value of the damage variable. The damage variable reaches its critical value at the inner 
surface of a cylinder in its central part at the point with the coordinates r = rinn = 9.5 • 10~2m , z = 0. 
Figures 1, 2 show the distribution of displacements of middle surface of cylinder w = ur (r , z , t ) and 
tangential stresses <7V on the inner surface of cylinder along the axis Oz at different instants of time 

(1 - t = 0, 2 - t = 500 h , t = t„). In Fig. 3, we show growth with time of the creep damage variable y

(a) and time variation of stress intensity a i A\a r + a z + a v -  a ra z -  a ra v -  a q}a z + 3<rrz ] (b) 

at the inner surface in the center of the cylinder.

Figure 1. Distribution of displacements
of middle surface of cylinder

Figure 2. Distribution of tangential
stesses on the inner surface of cylinder

1
L

0 c1 = R  -  r , 0 c2 = r -  R

° =  ° r  A0 ° u  = ° r  + ° u  A ° r  + ° u  = 0

inn , r2 = R  , r3 = rout ■r r
r - r
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at different instants of time at different instants of time
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Figure 3. Growth with time of the creep damage variable (a) and time variation of stress intensity (b) at 

the inner surface in the center of the cylinder

During creep occurs growth of displacements and stress redistribution - maximum, at the initial 
time, the absolute values of the stresses decrease and the minimum stresses increase. We observe that 
stress intensity at the point of failure initiation with the coordinates r = rinn, z = 0 relaxes during the 
whole creep process.

Conclusions

We develop a new numerical-analytic method for the solution of the axisymmetric initial 
boundary-value problem of creep and creep-induced damage for a piecewise homogeneous body of 
revolution with meridional section of any shape subjected to the action of force and temperature 
loads. The method is based on the combined use of the R-functions method and the fourth-order 
Runge-Kutta-Merson’s method of time integration. We construct the structures of the solutions for 
the main types of boundary conditions. As an example, we solved the problem of creep, creep 
damage, and long-term strength for a two-layer cylinder.
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