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Abstract 
A tractable mathematical model of the valve dynamics is developed for the real time computations and in silico 
planning of the biomechanically consistent surgery on the ruptured chordae of the mitral valve. The geometry 
and dynamics of the heart contraction and valve closure are restored by digitization of the 2d 
echocardiography data measured on a patient. The chordae are modeled as branched systems of viscoelastic 
strings with zero bending rigidity. Both linear and nonlinear rheology of the heart tissues are considered. The 
corresponding numerical procedure is worked out. The developed model can be used for comparative study of 
different existing strategy of surgical restoration for individual patients as well as for fast real time 
computations of optimal location of the neochordae directly during the surgery. 
 
Keywords 
Biomechanics, mitral valve, chordae rupture, mitral insufficiency, surgery planning 
 
1 Kharkov National Polytechnic University ‘KPI’, Kharkov, Ukraine 
2 Kharkov National University, Kharkov, Ukraine 
3 Vilnius Gediminas Technical University, Vilnius, Lithuania 
* Corresponding author: yu.v.romashov@gmail.com 

 
 

Introduction 

The mitral valve consists of two flexible leaflets located between the left atrium and ventricle. 
It provides unidirectional blood flow for the movements of the leaflets are restricted by a family of 
threads (chordae) connected the edges of the leaflets to the papillary muscles in the left ventricle. If 
the chordae are ruptured/overdistended or the edges are calcified, the mitral valve is not closed 
properly when the heart pumps out blood, so mitral insufficiency is developed. Surgical interventions 
are based on polytetrafluoroethylene (PTFE) neochorda reconstruction that influences the valve 
biomechanics. Unfortunately, in ~40-50% cases the surgery is unsuccessful and the intact chordae 
become overdistended or ruptured. Since the heart with its valves and chordae possess very complex 
geometry and biomechanics, the 2d and 3d modeling of its dynamics, computations of the stress-strain 
state, biomechanical interpretation of the numerical results, in silico planning and quantitative 
estimation of the outcome of surgery are needed. 

The 3D geometry of the heart valves can be obtained using the 2d echocardiography (bottom 
view), but the walls, muscles and chordae remain invisible then. The side view gives a dynamic image 
of the heart chambers, papillary muscles and leaflets, but for the 2d modeling only. The multi row 
computed tomography gives a 3d image composed of the consequent series of the heart structures 
taken at the end of diastole or systolic peak. Location of the larger chordae can be approximated then 
by thicker regions over the valves. A series of 2d finite element models (FEMs) have been built and 
tested without the chordae [1], with a set of single chordae attached only along the edges of the 
leaflets [2]. The FEM computations are time consuming and geometry-dependent, therefore vast 
numerical computations are needed to follow the influence of different peculiarities of the 
normal/affected individual geometry and material parameters on the stress-strain state of the system 
modeled.  

  Special comparative analysis of the mass-spring (MS) and FEM valve models of the heart 
leaflets revealed the MS model is less accurate but approximately an order of magnitude faster than 
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the FE model [3]. Contrary to FEM, the MS model has no direct mechanism to control shear behavior. 
However, because the shear loading of the pressurized leaflets are much smaller than the normal 
forces experienced by them, the MS model approximates the deformations with small errors despite 
complex biomechanical properties of the leaflets [3].  

In this paper a mathematical model of the valve dynamics is developed for in silico planning of 
the biomechanically consistent intervention and real time computations of the strain-stress state of the 
repaired valve. The chordae have been modeled as branched systems of linear/nonlinear elastic strings 
of different diameters without bending rigidity. The neochordae have been modeled as single PTFE 
threads connecting the edge of the leaflet to the corresponding papillary muscle. Displacements and 
stress-strain state of the chordae is determined by dynamics of the heart contraction restored from the 
2d echocardiography  records. 

The developed model can be used for comparative study of different existing strategy of 
surgical restoration of the mitral valve for the individual patients as well as for fast real time 
computations of optimal location of the neochordae directly during the surgery. The proposed 
approach will be validated on a group of patients recommended for the mitral valve restoration. 

 
1. Geometry and function of the valve leaflets and chordae 

During the heart contraction the blood moves through the open mitral valve from the left atrium 
into the ventricle [4]. In the open state the chordae are not stretched. While the blood pressure in the 
ventricle increases, the reverse blood flow closes the leaflets and the stretched chordae (1 in Fig.1a) 
prevents the leaflets (2 in Fig.1a) from opening outside the ventricle (4 in Fig.1a). The primary 
chordae are attached at the very edge of the leaflets, while the secondary chordae are attached along 
the ~1/2-2/3 of the leaftels’ surface (5 in Fig.1b). Some chordae are presented by branched structures 
with segments and nodes (8 and 7 in Fig.1b) but the opposite ends of all the chordae are attached to 
the papillary muscles (3 in Fig.1a, 6 in Fig.1b). The branches provide more uniform stress distribution 
over the leaflets which are composed by several thin layers of connective tissue [4].  

Due to diseases and/or age-related tissue degeneration some chordae could be overdistensed or 
even ruptured. In those cases the valves are not tightly closed during the cardic cycle and some 
amount of blood returns back into the atrium. In some patients due to the myocardial infarction the 
papillary muscles are located too low and the chordae are overstretched that restricted the valve 
dynamics and could promote the rupture. Individual geometry of the heart chambers and dynamics of 
the leaflets and papillary muscles movement during the cardiac cycle could be easily restored from the 
high resolution ultrasound records, while geometry of the chordae are not clearly visible even on the 
more detailed CT images. In that way, investigation of the influence of individual geometry of the 
chordae branching and location over the leaflets on the strain-stress distribution in the system is of 
great interest for biomechanical analysis of the neochordae location and, therefore, surgery planning. 
Location of the nodes of branching, length and thickness of the chordae branching (Fig.1b) must be 
studied for each individual geometry of chambers and desirable valve dynamics.  

 

 

 

 
a b 

Figure 1. Structure of the left ventricle (a) and chordae branching (b). Here 1 – chordae; 2 – alterior (left) and 
posterior (right) valve leaflets in a closed (solid lines) and open (dashed lines) states; 3 – papillary muscles; 4 – 
left ventricle; 5 – chorda edges at the leaflet and 6 – at the papillary muscle surfaces; 7 – branching nodes; 7-8 – 

chordae of the 1-st, 2-nd and 3-rd branching orders. 
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2. Mathematical formulation of the chordae dynamics 

      Heart tissues (walls, muscles and leaflets) and chordae are treated as combined mechanical 
systems with different properties that allows separate consideration of the heart biomechanics and 
dynamics of the chordae. 
2.1 Influence of the chordae on the heart tissues 
      Let us consider the heart (without) chordae as a holonomic mechanical systems with some finite 
degrees of freedom (DOF) and the generalized coordinates pq , ,2,1p . Тhen the heart movement 
can be presented in the form of the Lagrange’s equations of the second kind: 
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where L  is the Lagrance function for the heart muscle, pQ̂  are generalized forces produced by action 

of the moving chordae on the heart, pQ
~

 are generalized forces produced by other factors. 
As it follows from (1), the modeling of mechanical behavior of the chordae is reduced to 

determination of the generalized forces pQ̂ , ,2,1p  . Let us describe the individual geometry of 

the chordae by the index ,2,1s  (Fig. 2а). It is assumed the chorda s  has  s  ends numerated as  
 si ,,2,1  ; location of each chorda is determined by the position vectors  s

i


 (Fig. 2b). When 
the valve is open, the chordae are not stretched and slack, that means the interaction of them with the 
heart  are determined by the main force vector directed along the corresponding rectilinear segment, 
while the net moment of force in the attachment nodes (5 in Fig.1b) is zero. Let us denote as  s

i


the 
main force vectors acting onto the heart and applied in the nodes  si ,,2,1   (Fig. 2b). Now one 

can calculate the generalized forces pQ̂ , ,2,1p  from the virtual  work Â  produced by the forces 
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where  s

i


 are virtual displacements of the chordae ends. 
 

  
а) б) 

Figure 2. An example of individual geometry of the chordae (a) and the forces produced by them at the leaflet 
and papillary muscle (b); ,2,1s  are ordinal numbers of the chordae 

 
       Since locations of the ends of the chordae coincide with contracting heart tissues, the position 
vectors  s

i


 could be defined via the generalized coordinates pq  assuming the constraints between 

the chordae and tissues are stationary:      


,,,, 21 p
s

i
s

i qqq  . Then after some transformations 
of (2) one can obtain the generalized forces in the form 
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      As it is clear from (3), foe determination of pQ̂  one needs to know the expressions for  s

i


, 
which are determined by movement and deformation of the chordae. 
2.2 Modeling the rectilinear segments of the chordae as deformable threads  

The chordae are considered here as elastic threads (Fig.3) with relatively high Young’s 
modulus but zero bending rigidity [5,6]. They are able to sustain quite high stresses produced by the 
blood pressure in the heart chambers but easily bended and slack when the valve is open. The current 
length of the thread in the stretched state can be described by the distance between its ends A  and B  
determined by their positional vectors Ar  and Br

  (Fig. 3). Then the length and the elongation rate of 
the thread are  
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      Alongside with the geometric constraints (4), we assume the internal forces acting at any 
infinitesimal segment SS   ( ABdl  ) of the thread on its cross sections S  and S  are equivalent to 

the main force vectors F


 and F 


 directed along the thread in its current position where FF


  
(Fig. 3). The forces AF


 and BF


 at the ends A  and B  of the thread нити satisfies the same condition 

AB FF


 . Due to zero bending rigidity of the threads, the forces F


, F 


, AF


, BF


 are purely 

stretching ones. The main vectors of internal forces have the same value FF


  in each cross section 
of the stretched thread and is called the tensile force. 
 

 
Figure 3. A stretched thread and its internal forces 

 
Mechanical behavior of the viscoelastic thread is described by the dependence  
 

 lllFF ,0       (5) 
 

where 0l  is its length in the unloaded (undeformed) state. 
As it follows from (4) and (5) the tensile force is the function of the initial length, current 

coordinates and elongation rate 
 

 0;,,, lrrrrFF BABA


      (6) 
 
Note that (6) is a nonlinear function even when the linear elasticity model is accepted for the 

thread material.  
2.3 Modeling the mechanical behavior of the rectilinear threads  

In the simplest case the chorda possess two ends attached to the papillary muscle and the leaflet 
accordingly (e.g. the chorda 2s  in Fig.2а) and   2 s  (Fig.4а). The mechanical behavior of such 
chordae is only determined by the law (5). Indeed, in the case   2 s  the forces produced by the 
chorda s at the heart are functions of its tensile force (Fig. 4а): 
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where     ss l02121 ;,,,    is the mechanical law for the chorda expressed in the form (6). 

The expressions (7) are needed for computations of the generalized forces pQ̂  by (3). When all 
the chordae are rectilinear (Fig.4a), one can obtain the expressions (7) written for each chorda which 
gives the system of nonlinear equations for determination of the generalized forces as it is acceptable 
for holonomic systems [7]. 
2.4 Modeling the mechanical behavior of the branched threads 
      The branched chordae can be considered as a system of elastic threads attached in a set of nodes 
(Fig.1b). The forces appeared in the nodes are directed along the stretched segments and obey the 
Newton’s third law of motion.  An example of the force distribution is presented in Fig.4b for 

  4s . In the internal segments attached to neither papillary muscle nor leaflet, the internal tensile 
forces  sN1


 appear. In a general case we have  sm  nodes determined by the position vectors  s

jr


 

numerated by the index  smj ,,2,1  , as well as  s  internal segments experiencing the tensile 
forces   s

kN


,  sk ,,2,1  . 
 

  
а) б) 

Figure 4. A leaflet with a set of 6 rectilinear chordae (a) and with 1 rectilinear and 2 branched chordae (б) 
 

Let us denote   iJ s  is the ordinal number of the node connected to the end  si ,,2,1   of 
the chorda s . Similarly,   kJ s

1  and   kJ s
2  are the ordinal numbers of the nodes of the chorda s  

which are connected to the internal segment number  sk ,,2,1  .  s
kN


 and  s
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  are the forces 
acting in the nodes with numbers   kJ s

1  and   kJ s
2  accordingly. Тhen the forces  s

i


, 
 si ,,2,1   and  s
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,  sk ,,2,1   can be computed as following: 
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dynamics law and initial undisturbed length of the corresponding internal segment. 
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After substitution (10) into (3), one can obtain the following expressions for the generalized 

forces as functions of the generalized coordinates of the heart tissues and chordae and their time 
derivatives  
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in which  all the structures ,2,1s  are taken into account. 

Since the chordae are thing threads and their mass is negligibly small in comparison to the heart 
tissues mass, the movement of the nodes is determined by the Newton's second law of motion in the 
matrix form: 
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where  s

jiM  и  s
jk  are the matrices determined by geometry of the branched chordae. 

Substituting (9), (10) into (12), we obtain the differential relationships which at known 
generalized coordinates ,, 21 qq  determined by the heart contraction can be considered as differential 
equations for determination of the position vectors  s

jr


,  smj ,,2,1   of the nodes. Therefore, the 
proposed mathematical model of heart biomechanics includes the Lagrange’s equations (1) for the 
heart tissues, that, accounting for (11) are coupled and must be integrated together with differential 
equations for displacements of the nodes (8), (9), (12). 

 
3. Аnalysis of mechanical behavior of the branched chordae 

Generally the chordae are composed of viasoelastic materials which obey, but in some cases the 
viscous forces could be small in comparison to the elastic deformations. The elastic deformation is 
described by the function 

 
 0llFF  ,     (13) 

which is a particular case of (5). 
Accounting for (13), we may accept instead (8), (9) the following expressions: 
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      For the linear elasticity the law (13) and expression (14) have the form: 
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where c  is the rigidity coefficient for the thread,  s

i  and  s
kc  are stiffness of the marginal and 

internal nodes of the branched chordae accordingly. 
Substituting (16) into (12), we obtain the mathematical model of the linear elastic weightless 

chorda. The model is presented as a system of non-linear algebraic equations for determination of 
locations of the nodes governed by the known movement of the heart tissues. Let us consider the 
mechanical behavior of the chorda with one internal node (Fig.5). In this case   3s ,   1sm , 

  0s , matrix    ,111 s
jiM  and the expressions (16) have the form: 
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where  s

i  and  s
i  are coordinates of the ends of the chorda, (  sx1 ,  sy1 ) are coordinates of its nodes, 

i


 and j


 are unit vectors of the coordinates (x,y). 
 

 
Figure 5. An example of chorda with one branching mode 

 
Then from (17) one can obtain the nonlinear system of two equations for determination the 

coordinates of the only internal node (  sx1 ,  sy1 ) in the form: 
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where the coordinates of (  s

i ,  s
i ) of  the fastening points are known from the measurement data of 

the papillary muscle (s=1) and two points of the leaflet (s=2,3) location  at each instant time. Solution 
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of (18) could be easily obtained by using the Newtons method with initial approximation of the 

solution in the linear form         
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The computation results may be validated by comparative analysis of the computed displacements of 
the nodes and the in vivo detected locations of the radiopaque beads introduced into the heart 
structures and nodes in acute experiment on animals [8] or direct measurements of the tensile stressed 
along the chordae/neochordae in the contracting heart in vitro [9]. 

 
Conclusions 

In the proposed tractable model the heart tissues (walls, muscles, leaflets) and the chordae are 
considered as two coupled mechanical systems. Detailed data on motion of the papillary muscle and 
leaflets can be easily obtained from 2d echocardiography images of the heart contraction. The leaflets 
in the side view are visible as smoothed polyline, while the papillary muscles are seen as moving 
points. The coordinates of the digitized structures provide the boundary conditions for the marginal 
ends of the chordae fastened to the papillary muscles and leaflets. Then the location of the internal 
nodes of the chordae and the stress-strain distributions in the segments can be computed from the 
Newton's second law of motion. The problem is reduced to a set of non-linear algebraic equations for 
computations of coordinates of the internal nodes. Then the stretching forces in the chordae could be 
computed from the rheological laws  for elastic or viscoelastic chordae and compared to the critical 
values close to the ultimate tensile strength of the chords of given thickness and age-related 
degradation level or calcification. The model is simple and fast and can be useful for not only 
preliminary in silico planning of locations and lengths of the neochordas, but also for the real time 
correcting computations during the surgery. 
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