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Abstract
In the paper a new non-iterative variant o f Rauscher method is considered. In its current statement the method 
can be used in analysis o f forced harmonic oscillations in 1-DOF nonlinear system.
It is shown that three different types o f equivalent authonomous dynamical systems can be built for a given 
1-DOF non-autonomous one. Two o f them (1st and 2nd type) have wider set o f solutions than that of the initial 
system. These solutions correspond to various values o f amplitude and phase o f external excitation. Solutions 
o f the equivalent system o f 3rd type are exclusively periodic ones.
Based on the equivalent system of 3rd type such a function W(x,x') can be constructed that its level curves 
correspond to periodic orbits o f the initial non-autonomous system. This function can be built a priori via 
computation o f the invariant manifold o f the equivalent system o f 1st type. Using the same approach the 
Rauscher expansions cos(Qt)=C(x,x'), sin(Qt)=S(x,x') can also be constructed.
It is also shown that equivalent systems can be investigated by means o f harmonic balance method which 
allows construction o f W(x,x'), C(x,x') andS(x,x') in semi-analytical manner.
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Introduction

The key principle of Rauscher method is that in certain modes non-autonomous dynamical 
system may behave like an autonomous one. So instead of studying a non-autonomous system one 
can study some equivalent autonomous system. Consider, for example, non-authonomous dynamical 
system (1) having N  degrees of freedom (DOFs):

{■< + Fi (x1> x2 ,", xn , x1 , x2 >..> x 'n , t )=  i = 1...N (1)
If the dependency xk = xk ( t) is somehow inverted to a form t = t (xk) ( xk is some pre-selected 
generalized coordinate), then the system (1) can be transformed into autonomous form:

{x 'i+ Fi (x1,x2, ..,xn, x2, - ,xn , t (xk )) = 0  i = 1...N (2)
This idea was presented by Rauscher in [1]. Originally the Rauscher method could be applied 

for 1-DOF systems only, namely, for finding steady forced oscillations. However, it was generalized 
for multi-DOF systems [2-8] by means of theory of nonlinear normal vibration modes (NNMs).

The dependency t = t (xk) is constructed in such way that the systems (1) and (2) have the 
same solutions corresponding to steady forced oscillations (in this sense (2) can be called an 
equivalent system to (1)). For conservative systems (or close to conservative ones) the dependency 
t = t (xk) can be represented in the form of quadratures (see for example [3,4]).

In the papers [6,7] another approach is proposed. Equations of motion are supposed to be:

{x\+  Fi (x^  x2, .., xn ) = f  cos (Qt) , (i = 1- N ). (3)
Then time t can be eliminated, according to [6,7], by means of constructing a dependency

cos (Qt) = a0 + a x  + a2 xk + a3x1 + ... (4)
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or cos (Qf) = C (xk ) . Such expansion can be constructed if some initial approximation for xk is 
known in form xk = A0 + A1 cos (Qf) + A2 cos (2Qf) +... It is proposed in [6] to rewrite the latter using 

trigonometric transformations as xk = A0 -  A2 + (A1 -  3 A3) cos (Qf) + 2 A2 cos2 (Qf) + 4A3 cos3 (Qf)... 
Once (4) is substituted into this expression, coefficients of the same orders of xk are equated, which 
leads to a system of algebraic equations that can be solved for unknowns a0, a1, a2,..

Once current approximation for a0, a1, a2,.. is known, expression (4) is substituted into (3). The 
new system does not contain time f explicitly:

{x" + Fi ( ^  x2,", xn )=  f i  (a0 + a1xk + a2x2 + a3xk + ...^ (i = 1...N ) (5)
It is analyzed via invariant manifolds methodology. If state space variables of a nonlinear 

system undergo coherenf changes, one can speak of what is called nonlinear normal mode (NNM). 
NNM in the system (5) can be expressed as a set of such dependencies:

{xi = xi (xk , xk ) , x" = x 'i(xk , xk ) , (i = 1 ,k  - 1  k  + 1,..N ) . (6)
These dependencies are invariant manifolds of the autonomous system (5) (they are also called 

NNMs by Shaw and Pierre). Geometrically they represent a set of surfaces (or a single hyper-surface) 
in the state space. In order to find NNM the autonomous system should be transformed into a system 
of partial differential equations taking xk and xk as couple of independent variables. This approach 
was developed by S.Shaw and C. Pierre in [9,10]. Comprehensive overview of different NNM 
theories can be found in [11,12].

When (6) is constructed from (5), the system (3) can be reduced to 1-DOF with respect to x k . 
This allows one to obtain more precise trigonometrical approximation for xk and therefore iferafive 
process is consfrucfed. This approach was extended by the author for more general case:

{xi + Fi (x1, x2,.., xn, x{, x2,.., x', f ) = f  cos (Qf) + g i sin (Qf), i = 1...N (7)
In order to make the system (7) non-autonomous one needs here to build such dependencies:

cos(Qf) = C (xk ,xk X sin (Qf) = S (xk ,xk ) (8)
In the papers [13-16] the latter are represented in the form of power series.

It also should be noted that different forms and various applications of the Rauscher method are 
discussed in [11,17]. Among recent works where the Rauscher method is used one can find the 
following ones: [18,19].

The method described above has a major drawback -  iterative nature. So fhe goal o f  fhe presenf 
paper is fo fin d  a non-iferafive approach which corresponds fo fhe primary idea o f fhe Rauscher 
mefhod: eliminating time from  non-aufonomous equafions o f  motion in order fo consfrucf an 
equivalenf aufonomous sysfem o f  equafions which has fhe same periodic solufions as fhe inifial one.

In the present paper only 1-DOF mechanical system is considered:
x" + hx' + ta2x  + q>(x) = f  cos (Qf) (9)

The system (9) is supposed to have single equlibrium position at x  = 0 , the function ^ (x ) is 
supposed to be an analytical function in the neighborhood of the equlibrium position and contain only
nonlinear terms. Damping is considered to be small ( h «  ®2).

In Section 1 of the paper three different types of equivalent autonomous systems are considered 
and their properties are studied analytically. Geometrical interpretation of the obtained results is given 
as well. In Section 2 it is shown that some important results such as invariant surfaces of equivalent 
systems can be obtained semi-analytically via harmonic balance method. Section 3 contains 
illustrative examples.

1. Equivalent Autonomous Systems and Their Properties
If the system (9) is linear (^ (x ) = 0 ) finding Rauscher approximations is quite an easy task. In

such case one has: x" + hx' + ®2 x  = f  cos (Qf) and x" + hx" + ®2 x' = - f  Q sin (Q f). If only periodic 

solutions are considered, then x" = -Q 2x, x'" = -Q 2x' since x  = Acos (Qf) + B  sin (Qf) for such case. 
Thus x  " and x  "" can be eliminated which yields Rauscher approximations in the form (8). Periodical 
solution x (f ) can be found by means of the Rauscher expansions when they are solved for x and x ' .
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1.1. Equivalent dynamical system of 1st type

If the system (9) is nonlinear ( p ( x ) /  0), the relations x" = -Q 2x, x'" = -Q 2x' require some 

correcting function y (t) to be introduced: x" = -Q 2x + y, x"' = -Q 2x' + y ' .

Therefore an additional equation for y  ( t) is required. In order to find it let us differentiate (9) 

twice with respect to time t and then add termwise equation (9) multiplied by Q2 to the result:
xIV + Q2x " + h (x + Q2x ') + a 2 (x " + Q2x) + Q2p + p'"x • (x')2 + p'xx " = 0 (10)

After change of variables this equation can be written in another way:

|x" + Q2 x  = y; y  + hy + a 2y + 0 (  x, x ', y) = 0 (11)

where 0 ( x ,x ',y ) = Q2p + p ”xx • (x  )2 + q>'x • (y -  Q2x ) .

Both (10) and (11) represent a dynamical system which is equivalent to the initial system (9).
Since the new system has higher order than the initial one, it has more solutions than the initial 

one. Let us analyze these solutions. Initial equation (9) can be represented in the following form:
F  ( x", x ', x ) = f  cos (Qt) (12)

Therefore (10) can be written as F" + Q2F  = 0 . This equation can be easily solved for F  : 
F  (x", x', x) = a cos (Qt + y )  where a and y  are arbitrary constants. It can be concluded from this 
solution that all possible solutions o f equivalent systems (10) and (11) correspond to various possible 
combinations o f  amplitude and phase o f  external excitation. Among others the solutions of 
autonomous system F  (x " , x  , x) = 0 are also included in that set (case a = 0 ).

It can be noted that changes in y  do not affect shape of periodical orbits of the solutions of the 
equation F  ( x", x', x) = a cos (Qt + y )  . Thus even more important conclusion arises:

▲ Statement 1. All possible periodic orbits on the phase plane (x,x  ) and in the state 
space (x,x ',y ,y ') found by means of equivalent systems (10) or (11) correspond to various 
values of a single parameter - amplitude f  of external excitation.

For convenience equivalent systems (10) or (11) will be called equivalent systems o f  1st type in 
the subsequent considerations.

1.2. Equivalent dynamical system of 2nd type
Differentiating (12) with respect to time t yields: [F  (x " , x' , x)]" = -Q f sin (Qt) . Taking both

this equation and (12) one can obtain : (F ' )2 + Q2F 2 = Q2 f 2 or in extended form:

(x'"+ hx" + a 2x  + q>'x • x') +Q 2 (x" + hx + a 2x + p(x)) = Q2f 2 (13)

Equation (F ' )2 + Q2F 2 = Q2 f 2 can be solved for F  as F  (x ’, x  , x) = f  cos (Qt + y )  where y  
is an arbitrary constant. It can be concluded from such solution that all possible solutions o f  the 
equivalent system (13) correspond to all possible variations o f the phase o f external excitation.

▲ Statement 2. All possible periodic orbits on the phase plane (x, x ') found by means of
equivalent system (13) are exactly the same as in the initial system (9).

For convenience the equivalent system (13) will be called the equivalent system o f  2nd type in 
the subsequent considerations.

1.3. Equivalent system investigation via invariant manifolds methodology
When investigation of system (9) is focused on periodical solutions only, it can be noted that 

the solution itself and all its derivatives change in time in a coherent manner. Therefore one may 
expect to find the following dependencies in (11):

| y  = y  (x, x  ); y ' = z  = z (x, x  ) (14)
Following [10] these dependencies can be constructed using invariant manifolds methodology. 

It can be applied to the equivalent system of 1st type because it consists of two ODEs of 2nd order.
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Let us denote x — u, X  — v . The system (11) is now written in standard form:

ju' — v; v — —O2u + y; y  — z; z ' — — (hy + ®2y  + ®(u,v,y )) (15)

Differentiation with respect to time t now becomes a partial differential operator:
d 3 3— — v -----+ v ' —  , which leads to the following PDEs:
dt 3u 3v

\u  —  + (y — O2u )—  — z; u -----+ (y — O2u )— — —( hz + a>2y  + ®(u,v,y)) (16)
[ du '  > 3v du '  > 3v '  >

Such PDEs can be solved in different ways (the solution can be written in form of power series
[10] or found via Galerkin method [20]). Here the solution is found in power series form:

j y  — a1u + a^v + a3u2 + aAuv + a5v2 +...; z — bju + b2v + b3u2 + bAuv + b5v2 +... (17)

Solution (17) is substituted into (16). (At this stage the functions 0 (u ,v ,y ) and @(x) are 
considered to be polynomials or they should be expanded in power series otherwise). When terms of 
the same power of u and v are equated in the obtained equalities this leads to a recurrent system of 
algebraic equations with respect to unknown coefficients at , bt . Among others there exists a closed 
subsystem of nonlinear equations with respect to a1, a2, b1, b2 . Once a1, a2, b1, b2 are found, all other 
coeffisients are evaluated in unique way. Equations with respect to a1,a2,b1,b2 are:

! 0 O O O  0a^ 2  — O a2 — b^ b2a  — O b2 — —hb  — ® a^  a1 + a2 — b2; b1 + b2a2 — —hb2 — ® a2 (18) 

Consecutive elimination of unknowns produces an equation of the 6-th degree with respect to a1 . 

When solved,this equation allows one to find two real roots (in the small damping case h «  a>2 ):
•  a1 — O2 — ®2 This is a parasitic solution. After all transformations it produces the expansion 

y  — —hx' — rn1 x  + O2x — x) . Taking into account that y  — x" + O2x this leads to equation 

x " — — hx — rn1 x  — ip( x) . So the current solution corresponds to free oscillations, not forced ones.

•  a1 — 0 - when substituted into other equations this root leads to the trivial solution of the 
system (18): ja1 — a2 — b1 — b2 — 0} -  when substituted further, this solution allows one to find nonzero 
a3 ,aA,a5,b3 ,b4,b5 and so on.

The above analysis leads to an important conclusion:
▲ Statement 3. In the state space (x, x ', y, y ') there exist unique hypersurface (14) which 

corresponds to forced oscillations in the initial system (9) and passes through the equilibrium 
position of that system in the space of variables (x, x' , y, y ') .

Consider now periodic solutions if the initial system (9). If amplitude of external excitation f  is 
varied, periodic orbits form a hypersurface in the space of variables (x, x  , y, y ') . This surface passes 
through the equilibrium position. The periodic solutions of (9) are at the same time the solutions of 
the equivalent system (11). This leads to the conclusion:

▲ Statement 4. For each point on the surface (14) which satisfy equations (16) there exist 
a closed trajectory in the space of variables (x,x ',y,y ') which passes through that point and 
corresponds to periodic solution of (9) under some value of external excitation f .

1.4. Rauscher expansions construction. Equivalent dynamical system of 3rd type.
It can be derived from (9) that cos (Ot) — (x" + hx' + rn2 x  + v ) j f  and

sin(Ot) — —(x'" + hx" + ®2x' + q>'x ■ x ' ^ O f . Taking into account dependencies (14) obtained via the 

equivalent system o f 1st type one has the following Rauscher approximations: 

cos (Ot) — (y  (x, x ') + hx' + (®2 — O2 ) x + q>\ f

t s s M  (19)n (Ot) — —(z (x, x  ) + h (y  (x, x  ) — O2x) + (®2 — O2 ) x  + q>'x ■ x ) O f

176



Nikolay V. Perepelkin 
which exactly corresponds to the form (8) used by other Rauscher-like methods.

In fact, the system (19) can be considered as a couple of algebraic equations with respect to x 
and x ' .The solution of this couple of equations - x and x ' - depends on t as it is a parameter which 
is introduced in (19) through periodical functions. This means that x and x ' can only be periodical 
functions if the dependencies (19) take place simultaneously.

Taking into account the identity cos2 IQt j + sin2 IQt j — 1 one can obtain from (19):

—21z Ix, x j + h Iy  Ix, x  j —Q2x j + I^ 2 — Q2 j x + px • x j + Iy  Ix, x  j + hx + I^ 2 — Q2 j x  + pj — f 2 (20)

This expression is not changed if the phase of external load is varied by an arbitrary constant. 
This equivalent system of a new type can be also considered as the result of substitution (14) into (13)
and division of the latter by Q2 . Due to the considerations above the system (20) has remarkable 
properties: all possible solutions o f the equivalent system (20)  are exclusively periodic solutions o f the 
initial system (9) wich correspond to various values o f  the phase o f  external load.

▲ Statement 5. The only trajectories on the phase plane Ix,x ' j which can be found by
means of the equivalent system (20) are periodic orbits of the initial system (9).

The equivalent system (20) will be called the equivalent system o f 3rd type.

1.5. Geometrical interpretation of equivalent system of 3rd type.
Let us denote left hand side of (20) as W0 and left-hand side minus right-hand side of (20) as W:

W0 —^ 2 1zIx, x 'j + h Iy Ix, x 'j —Q2x j + ( ^ 2 — Q2 j x ' + px • x ' j + Iy Ix, x 'j + hx' + ̂ 2 — Q2 j x + pj 

W — W0 — f 2
In such case it is clear that equation (20) is true only when W — 0 . Therefore periodic orbits of 

the system (9) are the lines of intersection of function W and plane (Fig. 1,a).
On the other hand, it is clear from (21) that equation (20) is true when JW q — | f  | . Therefore 

level curves o f the surface JW q are periodic orbits o f the system (9) corresponding to different levels 
o f external excitation (Fig. 1,b). Similar statement is correct fo r  W too.

The conditions W — 0 and JW 0  — | f  | can be treated as a certain type of periodicity conditions 
for the solutions of the initial system. It also should be noted here that surfaces W and W0 posess 
certain invariance properties with respect to forced periodic motions in (9). In particular, while all 
parameters of the system are fixed, different periodic motions of the system correspond to the same 
set of level curves of these surfaces (of the same level).

(b)
Figure 1. Geometrical interpretation of surfaces W -  (a) and W0 -  (b).

2. Investigation via harmonic balance method. Construction of W  and W0 via level curves.

A priori construction of the surfaces W and W0 may provide investigator with some valuable 
information about the dynamical system being investigated. If the surfaces (14) are obtained 
analytically one can use expressions (21) to define W and W0. On the other hand, if one desires to
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study large-amplitude motions this makes evaluation of (14) via power series inappropriate while 
other methods of solving PDEs (16) may require some sophisticated computations.

However, if some periodic solution x (f) in (11) is found then one can build the corresponding 
secfion (level curve) of W and W0 since W (x, x ") = consf, W0 (x, x ") = consf for every such solution.

So W and W0 can be obtained section by section via their level curves (see for example Fig. 3,b 
or Fig. 6). One can then interpolate through the obtained sections. This is an alternative approach to 
solving the problem of W and W0 construction. Since the level curves of W and W0 are closed curves 
corresponding to various periodic orbits of the equivalenf dynamical sysfem o f  1sf type (11), harmonic 
balance method can be engaged to calculation of such orbits in many cases.

2.1 Application of harmonic balance method to equivalent dynamical system of 1st type
The solution of the equivalenf dynamical sysfem o f  1sf fype (11) can be written as truncated 

Fourier series taking into account harmonics up to n-th one:
n

x  « A0 + A1 cos (Qf) + ^  Ak cos (kQ f) + Bk sin (kQ f)

k=2  ̂ (22)
n  i  \

A  + S (1 -  k  2)(Ak cos (kQ f ) + Bk sin (kQ f))
V k=2 J

Note that due to arbitrariness in choosing time reference point for (11) the expression (22) is chosen is 
such way that it does not contain term B1 sin (Qf) .

The first equation of (11) is satisfied by (22) automatically. If relations (22) are substituted into 
the second equation of (17), one can obtain 2n-1 algebraic equations of harmonic balance method 
with respect to unknowns A k ,Bk . The number of equations is 2n-1, not 2n as it may be expected.

An additional equation is required here in order to select some particular periodic trajectory in 
the state space (x, x', y, y ') among others. It is proposed here to construct this additional equations in

the following way: h (x,x') = X , where h - averaged total energy of the system per period which can 
be written in the following form:

2-
f  +-----_ Q Q

h (f) = —  f  \t(x '(T ))  + n ( x ( t ))]dT (23)

where T and n  - are kinetic and potential energy respectively. If periodic motion x (f) with period

-Q is considered then h (f) = consf V f. So the particular value X of averaged total energy per

period h can be taken as a continuation parameter for evaluating periodic trajectories.
Complete system of algebraic equations of harmonic balance method can be written as follows:

j®,. (AQ..A, Bo...Bn ) = 0 }, (i = 1 . ..2n - 1) 

jh  (x, x') = X

Equations (24) can be writted in general form as {o , ([A],X) = 0, (i = 1...2n) where

[ A] = { A0 ...An , B0...Bn }T ={a1,..., a2n+1}T - vector of unknowns.
Now some continuation tecnique can be applied to (24) in order to find the solution [A ]. Or 

equations (24) may be transformed into differential form with respect to independent variable X and 
solved via numerical integration.

Once A0 ...An,B0...Bn are obtained for some fixated value of X, one can evaluate x(f) and then 
build corresponding section of the W and W0 surfaces. Since x (f ) obtained via (22) is an approximafe 

periodic solution of (11) the conditions W (x, x') = consf, W0 (x, x') = consf are not fully satisfied. 

Instead one has W (x,x') = W * + A(f), W0 (x,x') = W0* + A(f) where W * and W0* are unknown exact 

values of W and W0, and A (f) is the residual. If large enough number of harmonics n is taken, then
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A(f) is a small oscillating function. So the averaged values of W (x , x )  over oscillations’ period can

be taken as approximation for W *. Let us denote averaged values of W and W0 as w and w0 

respectively.
Consider quantity w - averaged value of W for some solution x (t) of the system (11). It 

follows from the above that w is a function of continuation parameter: w = w (X) . This dependency 
has the same major property as function W: if the periodic orbit corresponding to x (t ) is at the same 
time a periodic orbit of the ininial system (9), then w(X)  = 0 . Therefore if some zero of the function 

w = w (X) is evaluated (denote it as X = X ), then corresponding set of coefficients A0...An ,B0...Bn 

can be found. Thus approximate solution xappr ( t ) can be found and corresponding periodic orbit of 
the initial system can be built (see Example 2 in Section 3).

3. Examples

As an example Duffing equation is considered: mx'" + fix  + cx + y1x 2 + j 2x3 = f  cos (Qt).
It can be written in the form (9):

x" + h x '+ o 2x  + y1x 2 + j 2x3 = f  cos (Qt) (25)

where h = fi/ , o 2 = c/  , 7  = 7/ , y2 = 7l/ , f  = ? //m  / m  11 /m  12 / m  J /m
3.1 Example 1
Parameters of the system are taken as follows: m = 1, c = 1, fi = 0.05, j 1 = 0 ,f2 = 0.3, f  = 0.1, Q = 1.2 . 
Equivalent system o f the 1st type for such system is the following: 

f x" + Q2 x = y

j y " + hy + o 2y  + 6 yx  (x ') 2 + 3 /x 2 (y  -  Q2x) + 7 Q2x3 = 0

Invariant manifold corresponding to forced oscillations can be built for this equivalent system 
by means of the following PDEs:

ju  —  + (y - Q 2u)—  = z; u —  + (y - Q 2u) — = - ( hz + m2y  + 6yuv2 + 3yu2 (y - Q 2u) + y Q 2u3) (27) 
[ du ' ' dv du ' ' dv ' ' ' '

where u = x, v = x ' .
The invariant manifold corresponding to forced oscillations is calculated using power series 

(terms up to 5th degree were kept):

y = -0.072224u3 -  0.002717u2v + 0.150468uv2 + 0.000629v3 -  0.002751u5 -  7.86463210-7u4v -

-  0.007306u3v2 - 0.000378u2v3 + 0.006466uv4 + 0.000053v5 

z = 0.003913u3 - 0.650020u2v - 0.008152uv2 + 0.150468v3 + 0.000197u5 - 0.014442u4v +

+ 0.000265u3v2 - 0.013890u2v3 -  0.000660uv4 + 0.006467v5 
The surfaces y  (u, v) and z (u, v ) obtained analytically are plotted on Figure 2. Having (28) calculated 
one can construct functions W and W0 according to the formulae (21). Graphical representation of W 
is given on Figure 3. Condition W = 0 results in periodic orbits of the system (25) on the phase plane. 
They are shown on Figure 4,a.

When expressions (28) are known, Rauscher expansions can be built via formulae (19). Their 
correctness may be checked in the following way. If values of t , x and x  are taken from the results 
of numerical integration and substituted into the Rauscher expansions 
cos (Qt) = C (x, x ') , sin (Qt) = S  (x, x') , these expressions must be satisfied. Such check is illustrated 
on Figure 4,b. Solid lines correspond to the left-hand side of the Rauscher expansions and dots 
correspond to right-hand side. Calculations are done for the maximum amplitudes mode on Fig.4,a.

If the system (26) is investigated semi-analytically by means of harmonic balance approach

(28)
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(Section 2), the results of that study confirm analytical ones. For example, on Figure 2 the surfaces 
y  (u ,v) and z (u ,v ) obtained semi-analytically are shown as set of concentric lines. When plotted 
together with analytically obtained results, these graphs fit well (Fig. 2). Graphical presentation of W 
obtained semi-analytically section-wise is given on Figure 3,b.

y(u,v)
z(u,v)

(a)
Figure 2. Comparison of the invariant manifold surfaces of the equivalent system of the 1st type (26) 

obtained analytically (grey surfaces) and via harmonic balance (concentric lines): y  (u, v ) - (a), z(u, v) - (b).

W(u,v)

(a) (b)
Figure 3. Graphical representation of W obtained analytically (a) and semi-analytically (b)

Figure 4. (a) - Periodical orbits obtained analytically (thin lines) are compared with the results of 
numerical integration (dots); (b) - Rauscher expansions quality check.

3.2 Example 2
Parameters of the system are taken as follows: m = 1, c = 1,P = 0.02,j?1 = 0.35,f2 = 0.04,f  = 0.1,Q = 0.8. 
This system is studied via harmonic balance approach. On the Figure 5,a the dependency w(X) is
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shown when A = h - averaged total energy of the system according to (23). The dependency w (A) is 
built for different number of harmonics used. Harmonic balance equations were converted to 
differential ones and integrated numerically.
The calculation predicts 5 periodical solutions for the given parameter set. This is confirmed when 
one constructs amplitude-frequency response of the system (Fig. 5,b). Corresponding periodic orbits 
are depicted on Figure 5,c (circles) and compared with the results of numerical simulation (lines).

(b)
Figure 5. (a) - The dependencies W(A) obtained for the case A is the averaged total energy. Numbers show the 

number of harmonics used; (b) - amplitude-frequency response of the system (1st harmonic); (c) - closed
trajectories corresponding to Q = 0.8

Surface W obtained section-wise is shown on Figure 6 . The results on Fig. 6,a are obtained 
without averaging values for each section. The results on Fig. 6 ,b are obtained after averaging. The 
sections with to much ‘wavyness’ on Fig. 6 ,a indicate that the number of harmonics taken into 
account may become insufficient if one desires to investigate regimes with even higher amplitudes.

W (no avg.) W (avg.)

Figure 6. Sections of the W surface obtained without (a) and with (b) averaging the results.

Conclusions

In the present paper a new non-iterative variant of Rauscher method is considered. It does not 
have convergence issues as opposed to iterative approaches. This method can be used in analysis of 
forced oscillations in 1-DOF nonlinear systems described by analytical functions.

It is shown that three different types of equivalent authonomous dynamical systems can be built 
for a given 1-DOF non-autonomous one. Based on the equivalent system of 3rd type such functions 
W (x, x') and W0 (x, x') can be constructed so that their level curves correspond to periodic orbits of

the initial non-autonomous system. When represented graphically, the condition ^W0 (x, x') = |f \

shows exact correspondence between the amount of the external excitation f  and the number and 
shape of existing periodical orbits of the system.

Once W and W0 are carefully computed one can: (i) - obtain different periodical orbits which 
correspond to forced oscillations in the initial system; (ii) - estimate amplitudes of vibrations for
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these regimes; (iii) - track bifurcations of periodical solutions of (9) with respect to change of 
amplitude of external excitation f . Functions W (x, x ') and W0 (x, x ') can be built a priori via finding 
the invariant manifold of the equivalent system o f  1st type. The same is correct for the Rauscher 
expansions that can be constructed in the form cos (Ot) — C (x, x '), sin (Ot) — S  (x, x ') .

It is also shown that the equivalent system o f 1st type can be investigated by means of harmonic 
balance method. Then both the functions W (x, x ') and W0 (x, x ') can be built section-wise.

Despite the domain of applicability of the proposed method is the matter of further 
investigations, the results of the current investigations are promising, especially if this approach is 
generalized for multi-DOF systems.
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