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Abstract 
Blood flow and pulse wave propagation in the blood vessels are usually studied on the incompressible 
linearized axsymmetric Navier-Stokes equations (Womersley model) coupled with linear and nonlinear 
viscoelastic equations for the vessel walls. A brief review of the nonlinear models is given. Blood flow and 
wave propagation through the stenosed artery terminated by a viscoelastic chamber with different resistivity 
and compliance has been considered. The material parameters of the wall corresponded to healthy elastic and 
degenerated compliant human arteries. Both 2d linearized and 1d nonlinear models have been applied for 
numerical solution of the problem. The computational results for the pressure P(t), flow U(t) and diameter d(t) 
oscillations have been compared to the measurement data. It is shown that the dynamics of the fluid-filled 
vessels with healthy elastic walls is satisfactory described by the linearized equations while for the age-related 
degenerative walls, stenosed or diluted vessels the nonlinear models are preferable. 
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Introduction 

Development of a detailed mathematical model of human blood circulation system is a 
challenging problem of the Virtual Cardiovascular Human Project that allows in silico medical 
diagnostics, planning of therapy and surgery, estimation of the results of the treatment and 
rehabilitation procedures basing on the patient-specific geometrical model built on the measurement 
data (ultrasound or computed thomography) [1,2]. The problem is also important for different 
technical systems dealing with suspensions, polymer solutions and other complex fluids exhibiting 
Newtonian behaviour at the larger scales and non-Newtonian properties at smaller scales. Solutions of 
the linear and linearized models could be obtained as expansions that allow detailed analysis of their 
behaviour at different model parameters. Nonlinear models could be solved numerically, still that 
produces the time-consuming numerical procedures for the detailed models of the circulatory system 
composed by >108 larger, medium and smaller arteries and veins [1,2]. Discussion on application of 
linear vs nonlinear models is not finished yet. In this paper the computation results obtained from the 
different models are compared to the measurement data.  

 
1. Review of the linear and nonlinear mathematical models 

Flows of the multiphase and multicomponent fluids in the systems of tubes, ducts, and reservoirs 
have been studied on different mathematical models. Biological fluids are the most complex in nature 
as well as many technical fluids exhibiting viscoelasticity, anisotropic viscosity, shear thinning and 
thickening, and related phenomena. The space scale determines importance of the non-Newtonian 
properties while the time scale defines the influence of the local flow characteristics on the long time 
behavior and properties, like sediment accumulation, crystallization, and phase transitions. In the 
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biofluids the most important unsolved phenomena is blood clot or atherosclerotic plaque formation 
which lasts from several months to years, while the direct negative influence of the chemical 
components and hydrodynamic factors (blood pressure, local pressure oscillations and wall shear 
stress) are at the heart beat scale (t<1s).  

The detailed 3D modelling of the circulatory system is still impossible due to incredible computer 
power needed and the number of the model parameters to be specified. The reasonable simplification 
is incorporation of the more detailed model of a part of the system into a simplified model of the 
general circulation model. The 3D models of the aortic arch, carotid and cardiac vessels [1] combined 
with 0D model of the heart, larger and smaller vessels are developed. The boundary condition 
problem at the interfaces of the 3D and 0D models is discussed in [2]. Some coupling schemas for the 
flows of suspensions in the complex multiscale systems of tubes are presented in fig.1. 

 

 
Figure 1. A schema of coupled 3D, 1D and 0D models. 

 
1.1 0D models of elastic/viscoelastic chamber  
 
      0D models are based on the ordinary differential equations of the mechanic-electric analogy 
(Windkessel model) [3]  
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where jP , jQ  and  1jQ  are pressure, inflow and outflow rates in the j-th tube, jK  is the wall 
compliance,  jL  is the fluid inertia, jZ  is the tube resistivity to the flow.  
 When a single non-inertial elastic chamber terminated by a resistivity element (j=1) is 
considered, the solution of (1) can be written as 
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where )0(0 PP  . Generally speaking )( 0ZZ  , 0  is the blood viscosity due to the non-Newtonian 
properties of blood in the smaller arteries.  
 A nonlinear viscoelastic 0D model for the bioactive wall has been proposed in [4] in the form 
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where F(P) is the experimental dependence for the passive wall, )( iC  is the function describing the 
active changes of the chamber depending on the regulating factors  iC , i=1,2,3…  , p,   are 
coefficients. In this case the model can be reduced to the nonlinear ordinary differential equation 
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where 3,2,1f  are known functions. 
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      0D model does not describe the wave propagation at a constant speed which makes a problem of 
coupling with other models. 

 
1.2 Nonlinear 1D models  

 
1D Euler model was generalized for the viscous fluid and nonlinear elastic wall in the form [5,6] 
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where A and Q are the lumen area and volumetric flow rate, f  and   are fluid density and 
viscosity, 0P  is the external pressure, 0A  is the tube lumen area at  0PP  ,   is the wall rigidity. 
Equations (2) can be applied to a complex system of connected tubes. The corresponding boundary 
condition problem is discussed in [7].  
 
1.3   2D models  

 
2D theory of the blood flow and wave propagation in the fluid-filled tubes is based on the 

linearized Navier-Stokes equations for the fluid and elastic or viscoelastic wall motion [1,2]: 

            0vdiv ,     vpvv
t
v 







 



 )(         (6) 

0udiv  ,      




  vdip

t
u

ss 2

2 
                     (7) 

:0r                0rv ,     xv                      (8) 

                                 :Rr     v
t
u 



 ,  rrs

r p
r
vp  



 ,  rx
rx

x
v

r
v

 












          (9) 

                           :0 HRr          0u                        (10) 
where  ),0,( xr vvv  , ),0,( xr uuu 

  are the fluid velocity and wall displacement in the cylindrical 
coordinate system connected to the tube, s  is the wall density, spp,  are the hydrostatic pressures in 

the fluid and wall, )(0 ),,()(),( xRrr xrtuxRxtR   is the actual tube radius, /)()( 00 xSxR   is 

undisturbed radius, 
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  is the stress tensor in the wall: 
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where 

  is the strain rate tensor, 


E  is the tensor of elastic coefficients, s  is the stress relaxation 

time,  s  is the wall viscosity coefficient. 
 Eq. (10) corresponds to the fastening of the outer wall of the tube to the rigid tissues which is 
valid for the deep arteries. For the superficial arteries the zero stress boundary conditions 0, xxrr   
should be used instead of (10). Solution of (6)-(11) can be found as superposition of the small 
excitations (Fourier expansion) 
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At the outlet of the tube the conditions of the wall reflections must be posed, for instance in 
the form    
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1.4   3D models  
 
3D flow of Newtonian fluids in viscoelastic tubes is governed by mass and momentum balance 

equations 
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where u  and v  are wall displacement and fluid velocity, f  and  w  are fluid and wall densities,   
is the second viscosity for the compressible fluid, wp  is hydrostatic pressure in the incompressible 
wall.  
      The rheological model for the wall is 
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where 

  and 


  are stress and strain tensors, 


E  is tensor of elastic coefficients, j  and jk  are the j-

th order relaxation and retardation times,  I and DtD /  are unit operator and invariant time derivative.  
      For Newtonian fluids the boundary conditions for (3)-(5) include the stress and flow continuity at 
the fluid-wall interface and no displacement (I), no stress (II) or attachment to the surrounding 
viscoelastic media (III) at the outer surface 
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where   and  are undisturbed and actual outer surface of the tube; m , m  and mE   are density, 
viscosity and elasticity of the surrounding medium.  
      Substitution of (16) into the second equation (15) gives equations with 3-th order time derivatives 
which needs additional initial condition and careful estimation of possible changes in the equation 
type. 
 

2. Wave propagation in a tube terminated by Windkessel element 

The studied model is presented in fig.2. The arterial segment is modeled as viscoelastic tube 
terminated by a branching system of smaller arteries. The system is modeled as a single Windkessel 
element with resistivity Z.  

 
Figure 2. A model of arterial system as a combination of the tube with terminal Windkessel element Z 
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 The model (6)-(11) with the boundary conditions (12), (13) has been considered as a linear 
model. The solution of the problem has been found as Fourier expansions [8]. The input data (12) has 
been measured by ultrasound sensors on a group of healthy volunteers and a group of elderly patients 
with stenosed arteries.  
 For the comparative analysis the nonlinear model (5) for the tube and the 0D model (2) for the 
terminal element has been used. Solution of (5), (2) has been computed using the method of 
characteristics [9].  
 

3. Results and discussions 

 Oscillations of the pressure )(tP , fluid flow )(tu  and wall displacement )(tv  has been 
computed for different input boundary conditions [11], wall rheology and resistivity Z of the terminal 
element. For the healthy wall 65 1010 E Pa has been taken, while for the stenosed wall with 
calcification and atherosclerotic plaques the elastic modulus has been taken as 87 1010 E  Pa. It is 
convenient to analyze the computational results as )(uP   curves which are repeatable at the long-time 
measurements. The measured and computed curves )(uP  for the healthy coronary artery of a 
volunteer are presented in fig.3a-d; the systolic parts of the curves are marked by solid lines. The 
typical results for the patients with coronary stenosis are depicted in fig.3c,d. It is clear, the linear and  
 

 
                                     a                                                                       b 
 

 
                                   c                                                                        d 

Figure 3. The ( )P u  curves computed on the nonlinear (a,c) and linear (b,d) models (curves 1) in comparison to 
the measurement data (curves 2) 

 
nonlinear models demonstrate equal exactness in comparison with the measured curves, while for the 
degenerated pathological wall is better described by the nonlinear models, though the exactness is 
much lower than for the young healthy wall.  
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Conclusions 

Blood flow and wave propagation through the stenosed artery terminated by a viscoelastic 
chamber with different resistivity and compliance has been considered. The material parameters of the 
wall corresponded to healthy elastic and degenerated compliant human arteries. Both 2d linearized 
and 1d nonlinear models have been applied for numerical solution of the problem. The computational 
results for the pressure P(t), flow U(t) and diameter d(t) oscillations have been compared to the 
measurement data. It is shown that the dynamics of the fluid-filled vessels with healthy elastic walls is 
satisfactory described by the linearized equations while for the age-related degenerative walls, 
stenosed or diluted vessels the nonlinear models are preferable. 
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