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Abstract
Dynamics o f the dissipative spring-pendulum system under periodic external excitation in the vicinity of 
external resonance and simultaneous external and internal resonances is studied. Analysis o f the system 
resonance behaviour is made on the base o f the concept o f nonlinear normal vibration modes (NNMs), which is 
generalized for systems with small dissipation. The multiple scales method and subsequent transformation to 
the reduced system with respect to the system energy, an arctangent o f the amplitudes ratio and a difference of 
phases o f required solutions are applied. Equilibrium positions o f the reduced system correspond to nonlinear 
normal modes. So-called Transient nonlinear normal modes (TNNMs), which exist only for some certain levels 
o f the system energy are selected. In the vicinity o f values o f time, corresponding to these energy levels, these 
TNNMs temporarily attract other system motions. Interaction o f nonlinear vibration modes under resonance 
conditions is also analysed. Reliability o f obtained analytical results is confirmed by numerical and numerical- 
analytical simulation.
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Introduction

Presence of external and internal resonances leads to the increase of vibration amplitudes, 
which is an undesirable phenomenon, in particular, in engineering practice. Resonances cause 
complex behavior of the nonlinear system. Namely, few vibration modes can exist simultaneously; 
some vibration modes can lose their stability, and the new vibration modes can appear as a result of 
bifurcation; transfer of energy from one subsystem to another one can be observed; the energy 
localization can be realized etc. Resonance effects are analyzed in numerous publications, in 
particular, in books [1-3]. The transfer of energy caused by internal resonance in nonlinear systems is 
discussed in various publications, in particular, in [4-7].

Nonlinear normal modes (NNMs) are important elements of the nonlinear systems behavior. 
The Kauderer-Rosenberg concept of NNMs [8,9], first proposed for conservative systems, is based on 
construction of trajectories in the system configuration space. Theory of NNMs for conservative and 
non-conservative systems, and different applications of this theory are presented in different 
publications, in particular, in [2, 10-12]. In nonlinear dissipative systems due to exponential decrease 
of vibration amplitudes the classical NNMs by Kauderer-Rosenberg cannot exist, but some similar 
vibration regimes can. These are some generalization of the NNMs.

The so-called reduced system can be constructed by means of introducing new variables, one of 
them is concerned with the system energy, other ones are arctangent of the ratio of amplitudes and the 
difference of phases. This reduced system was used earlier in some preceding publications for non- 
dissipative systems [13,14] and for dissipative ones [15,16]. It permits to show some important 
elements of the nonlinear system resonance behavior. Important characteristics of dynamical process 
can be analyzed by such system. Besides, one can observe appearance of the so-called transient 
nonlinear normal modes (TNNMs) existing only for some specific values of the system energy. They
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temporarily attract other motions of the system when the system energy is close to these energy 
values.

Here the spring-pendulum system under external periodic excitation is investigated. The small 
mass pendulum can be considered as the vibration absorber. Both the case of external resonance on 
the first fundamental frequency, and the case of simultaneous external and internal resonances are 
analyzed. The vibration modes evolution and the energy transfer from one mode to another one are 
considered. The TNNMs are determined and their influence to transient of the system is analyzed. 
Obtained analytical results are verified by numerical and numerical-analytical simulation.

1. Forced resonance vibrations of dissipative spring-pendulum system

One considers the spring-pendulum system with small dissipation under external periodic 
excitation, which is shown in Fig. 1.

a

Figure 1. Spring-pendulum system 

Equations of motion of the system are the following:

u + o 2u + s ,quii — sju(OsinO + O2 cosO) = s 2 f  cosx

O + srjOO + p 2 sinO -  usinO = 0
(1)

where u = — , x = Q t , co = (k /(M + m))05, p 2 = -^~  , u  = m /(m + M ), o 2 = 1/Q 2,
r  r q

f  = -------- F — -—- ,  n u = -----—----- , nO = ——, Bx and BO are coefficients of dissipation.
(M + m )R o 2 Q 2 u (M  + m)Q IO mQ Hx HO F

There are two NNMS by Kauderer-Rosenberg in the system (1) without dissipation: the 
localized x  — mode of vertical vibrations ( x = x(t) , O = 0 ), and the non-localized O -  mode (or 
pendulum mode), when amplitudes for vertical and angle coordinates are of the same order. When the 
dissipation is present, such modes are not the NNMs by Kauderer-Rosenberg due to exponential 
decrease of vibration amplitudes. We will investigate such motions of the system (1) which are close 
to NNMs of the corresponding conservative spring-pendulum system.

One uses the multiple scale method [17]. Introducing the transformations u ^  su , O ^  sO , 
we will determine a solution in the form of the following asymptotic series:

= sun + s 2u, + ...
0 2 1 (2) sO = sO0 + s  Oj +...

Here x t and dt are functions of the independent variables as Tn = s n t (n=0,1,2,...). To 
analyze the system (1) dynamics in vicinity of the external resonance on the first fundamental 
frequency, the detuning parameter A is introduced by the following resonance condition:

The following standard transformations are used:

o 2 = 1 + sA (3)
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d  8 8 2 8— = ---- + s -----+ s  -----+.
dt dT0 8TX dT2

d 2 8 2

d t2 8T 2
+ 2s -

8 8 
8T0 dTl

8 „ 8 8— -  + 2 ---------
5Tj2 dT0 dT2

(4)

Using relations (2-4) and expansions in power series for sin0 and cos0, one has the following partial 

differential equations in the first and second approximations by the small parameter s:

.1 8 2u„ 8 20

8Tr
+ un = 0,

8T (5)

s
8T02

8 2d1 

~8t F

■ + U1 = -AU0 — 2 + M8T18T0 I 8T(2 r 00 0 + m| ]  -  — —  + — {eiT0 + e 'T°)
1 0 1 8T0)  U 8T0 2

+ p  261 = - 2 8 O
8T18T0

(  8 2u0 '"'0 — 0
0 —0 8Tn (6)

Solution of the system (5) is written as

-C u ^ 1)^ °  + Cu (TJe -

00 = Co + C o T ) e -  P iT0
(7)

The solution (7) is substituted to the system (6), and secular terms are eliminated. One has

8C f
2 i— U-  + CU A + i —UCU- ^  = 0U I U U8T1 2

2 8C o + —0C 0 = 0 
8T1

(8)

Then the change of variables, CU = aUe iPu, C 0 = a 0e Po leads to the system of equations 
written with respect to amplitudes aU , a0 and phases P U , P 0 of the solution (7):

a ' u = ~ ax -  —  sinPu

, _ —0ae = — ag

P'u=A  -  4 -  cos Pu 
2 4aU

P'b = 0

(9)

v MThe change of variables aU = ^ ~  K  cos w , ag = K  sin w gives us the reduced system written 

with respect to the energy K, the arctangent of the ratio of amplitudes w  and the phases P u , P 0 :

K ' = - K  cos2 w + —  sin2 w) -  f  sin Pu cosw 
2 2 4

w' = sin w — — —  cos w + --—  sin Pu )
2 4K (10)

2

8 2u 82U 8 00

+

U0
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f
2 4K cos y cos Pu P'e — 0

The additional equation with respect to the phase difference p  — Pu -  2 p e can be written as

fp ' — A - - cos Pu (11)2K cos y

Equilibrium positions of the equations (10) and (11), which describe “vibrations in unison”, 
correspond to nonlinear normal modes of the original system (1).

Relation sin y  = 0 corresponds to localized vibrations of the elastic spring. This localized 
mode exists for any levels of the energy K  ; it is characterized by the straight line y  — 0 in the plane 
( y ,p ) . Then it is necessary to analyze trajectories in the plane ( y ,p ) .

Localization of energy on the pendulum is impossible due to design of the system under 

consideration. Such localization could be described by the condition cos y  — 0 . It corresponds to the 

straight line y  — n  / 2 in the plane (y , p ) . One has from the second equation of the system (10) that
fthis equilibrium position exists if ± —77 s in p u — 0 . It is possible if the phase Pu — 0 + nn . This

4K
vibration mode could be realized for high levels of energy which are not considered here. In this case

n
the energy equation is the following: K ' — — e  K  . So, the energy decreases, so, the localized on

pendulum vibrations are unstable, and this hypothetical vibration mode cannot be realized.

In a case when together cos y  ^  0 and sin y  ^  0 , the mode of coupled vibrations of the system
(1) appears. Condition of the mode existence is obtained from the second equation of the reduced

fsystem (10) of the form:
cos y  — ±

2K j ( r( n  - n e )  + a 2
In order to analyze trajectories in the space (y ,p ) the reduced system (10) is integrated by the 
Runge-Kutta method of the 4-th order when 0 < ^ (0 ) < n /2  for the following initial value and 
values of the system parameters: ^ (0 ) = 0.5, = 0.4, = 0.7, A = 0.2 and f  = 0.2. 
Trajectories in the plane (y , p ) , which are presented in Fig. 2, approach the line y  — 0 
corresponding to the vibration mode with localization on the spring. So, this vibration mode is stable 
in vicinity of the resonance, and the stable modes of coupled vibrations are not appeared.

q>(MO

Figure 2. Trajectories in the plane ( y , p)

In order to illustrate behavior of the spring-pendulum system (1) near resonance one integrates 
the system (1) by the method of Runge-Kutta of the 4-th order on the interval t e  [0,1000] for the 
following initial conditions: au (0) = 0 .2 , ad(0) = 0 .1, fiu (0) = 0 .1, fie (0) = 0.02, and for

= 0.3, ^0 = 0.2, A = 0.1, jU = 0.3, f  = 0.5, p = 1.7. The solution of the first approximation 
by the small parameter can be written as u o — 2 a u cos(t + P u ), e o — 2 a e cos(p t  + P e ) . In Figs. 3
5 coordinates are presented in time, and in the system configuration space.

195



K.Yu. PLaksiy, Yu. V.Mikhlin.

8(t)

0,025 n 
0,02 j  

0,015 -J 
0,01 - 

0,005 -j

0-0,005 0 
-0,01 - 

-0,015 -j 
-0,02 j  

-0,025 J

Figure 3. Dependence u (z) Figure 4. Dependence 0 (z)

Figure 5. Dependence u(6 )

Analysis of the Figures 2-5 shows that the localized mode of spring vibrations is stable in the 
resonance case; this confirms the preceding analysis of the reduced system. In particular, trajectories 
in Fig. 5 approach with time the straight line 6 — 0 corresponding to this localized mode.

2. Case of simultaneous external and internal resonances

In order to consider motions in vicinity of both external resonance, and internal one, we 
introduce two detuning parameters Aj and A 2 as

®„ = 1 + sA1

2 J A p —— + sA 2
4 2

(12)

(13)

The relation (12) corresponds to the vicinity of external resonance, and the relation (13) 
corresponds to the vicinity of the main parametric resonance of the system (1).

Using relations (10), (11) and (3), and expansions in power series for sin0 and cos0, one has 
the following equations of the first and second approximations by the small parameter:

d un 
DTrT  + uo ^ + 1 60 = 0

9T02 4 0
(14)

5 2u1 
dT 2

-A !^ — 2
dTldT0 dT 2

6,  + v S h  - 1 , f T0-+ +  '-* • )

5 6  + 6 ——A ,6. — 2 - 5 6 .
5T02 dT1dT0

dT0 

^3 2u0 ^
dTr0 J dTn

(15)

1 . 0s

5 u2 0

+ 2

Solution of the system (14),
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\u0 = Cu (Ti)e'T + Cu (Ti)e
1 .r  1-iTo — — iT0

= Cg (Ti)e2 + Ce (Ti)e 2

(16)

is substituted to equations (15). Then secular terms are eliminated. Introducing, as in the preceding

section, sequential changes of variables, Cu = auelPu, Ce = aeelPe and au = ^ ~ K c o s y ,

ae = K  sin y  , one has the reduced system written with respect to the energy K, the arctangent of the 
ratio of amplitudes y  and the phases P u , p  e :

K ' = - K (—  cos2 y  + —  sin2 y ) - f
2 2 24 v

sin Pu cos y

y ’ = sin V (^ 2 - Ksin(2pe - p u) + —u —  cos W + 2 f K  sinp u) 

pu = A1  + ̂  K sn 2 W  cos(2Pe -  Pu) - — ^ -------cos Pu
2 2 cos w 

p 'e = A2 + ^ 2 - K cos w cos(2pe -  p u)

xfpK cos w

(17)

The additional equation with respect to the phase difference p  = Pu -  2 p e can be written as

' = —  -  2A2 + t[2 k (A sin W -  cos w)cos(2pe -  Pu) -, 1 sin2 w f
2 2 cosy 2^ u K cosy

cos p u (18)

One considers equilibrium positions for the second equation of the system (17) and equation 
(18). Condition s in y  = 0 corresponds to the localized mode of the spring vibrations. This mode 
exists for all values of the energy K ; it is described by the straight line y  = 0 in the plane (y , p ) .

For a case when both co sy  ^  0 , and s in y  ^  0 , it is possible to observe a mode of coupled 
vibrations of the system (1). Condition of the mode existence can be obtained from the second

V2  r - , ~ n  fequation of the reduced system (17): cos y  = -
He -rj« 

<p(v)

K  sin(2pe -  p u) +
2V2 k ( —e - —u)

sin Pu ■

In order to construct trajectories on the plane (y , p) one integrates the reduced system (17) by 
using the Runge-Kutta method of 4th order, when the arctangent of the ratio of amplitudes changes on 
the interval 0 < ^ (0 ) < n /2  ; the initial value is the following: (0) = 0.5 ; besides, = 0.3, 
^0 = 0.2, A1 = 0.2, A2 = 0.1, jU = 0.4, f  = 0.35. Trajectories in the plane (9 ,^) are shown in 
Fig.6 for the case of simultaneous external and internal resonances. Each trajectory has a loop near
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some quasi-equilibrium state of the reduced system. This state moves in the plane (9 ,y) and 
corresponds to the transient nonlinear normal mode (TNNM) which exists only for specific value of 
the system energy, that is, in some moment of time corresponding to this energy level. The TNNM is 
attractive, and other motions of the system approach some TNNM near the mentioned moment of 
time. Then the TNNMs disappears, and trajectories in the plane (9 ,y) approach to the equilibrium 
position corresponding to the stable NNM of coupled vibrations. So, the mode of the localized 
vibrations of spring is not stable.

To illustrate a behavior of the spring-mass system (1) in vicinity of the resonance one calculates 
the system with respect to amplitude and phase of the solution (16) by the Runge-Kutta method on the 
interval t e  [0,5000] for the following initial values: au(0) = 0.05, ag(0) = 0.01, pu(0) = 0.1, 
Pe (0) = 0.2 and for T]u = 0.3, y e = 0.2, Ax = 0.2, A 2 = 0.1, ^  = 0.4, f  = 0.35.

u(t)

1 ---------------------------------------------------

iN —

Figure 7. Dependence u (z) Figure 8. Dependence 0(z)

u(0)

Figure 9c

Figure 9. Trajectories u(9)  in configuration plane for t e  [0,100] (Fig.9a); t e  [4800,5000] (Fig.9b);
t e  [0,5000] (Fig.9c)

Analysis of obtained results shows that in vicinity of the simultaneous external and internal 
resonances the transient nonlinear normal mode of coupled vibrations arises. At the beginning of the 
transient process the motions of the system are close to this TNNM. Then, due to vanishing of this 
mode, motions of the system tend to the stable mode of coupled vibrations. Trajectory of this stable
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mode can be observed in Fig. 12b where vibrations for large values of time are shown. This stable mode 
is close to the localized mode of the pendulum vibrations, and this fact can be used in the problem of 
vibration absorption. The numerical simulation fully confirms results obtained by analysis of the reduced 
system.

Conclusions

Dynamics of the dissipative spring-pendulum system (1) under the periodic excitation in 
vicinity of the external resonance on the first fundamental frequency and the simultaneous external 
and internal resonance is analyzed. Analysis of the resonance dynamics in these systems is made 
using the concept of nonlinear normal modes which was generalized to dissipative systems. Transfer 
to the reduced system written with respect to the system energy, the arctangent of amplitudes ratio and 
the difference of phases is used in this analysis. We can see that in region of the external resonance on 
the first fundamental frequency the vibration mode of localization on the spring is stable, and the 
mode of the coupled vibrations is absent. But in a case of simultaneous external and internal 
resonances coupled vibrations are observed, and the localized modes are absent. Besides, in the 
vicinity of the resonance so-called transient nonlinear normal modes (TNNMs), which exist only for 
certain levels of the system energy, appear. Although each TNNM exists only for some moment of 
time, it attracts other motions of the system before this moment. When this mode disappears, motions 
of the system attract to the stable nonlinear normal mode. Reliability of obtained analytical results is 
verified by numerical simulation. Besides, the obtained results can be useful in problem of the elastic 
vibrations extinguishing with the help of nonlinear absorbers.

References

[1] Nayfeh A.H., Mook D.T. Nonlinear Oscillations. New York: Wiley Inerscience; 1979.
[2] Avramov K.V., Mikhlin Yu.V. Nonlinear Dynamics o f  Elastic Systems.V.1. Models, Methods, 
Phenomena (SecondEdition). Moscow-Izhevsk: IKI; 2015 (in Russian).
[3] Manevich A.I., L.I. Manevitch L.I. The Mechanics o f  Nonlinear Systems with Internal Resonances. 
London: Imperial College Press; 2005.
[4] Mercer C.A., Rees P.L., Fahy V.J. Energy flow between two weakly coupled oscillators subject to 
transient excitation. Journal o f  Sound and Vibration, Vol. 15(3), pp. 373-379, 1971.
[5] Starzhinskii V.M. Applied Methods o f Nonlinear Vibrations. Moscow: Nauka; 1977 (in Russian).
[6] Nayfeh S.A., Nayfeh A.H.. Energy transfer from high to low-frequency modes in a flexible 
structure via modulation. ASME Journal Vibration and Acoustics, Vol. 116, pp. 203-207, 1994.
[7] Vakakis A., Gendelman O., Bergman L., McFarland D., Kerschen G., Lee Y. Nonlinear Targeted 
Energy Transfer in Mechanical and Structural Systems, Berlin: Springer Science; 2008.
[8] Kauderer H. Nichtlineare Mechanik, Berlin: Springer-Verlag; 1958.
[9] Rosenberg R. Nonlinear vibrations of systems with many degrees of freedom. In: Advances o f  
Applied Mechanics, 9, pp.156-243, 1966.
[10] Vakakis A., Manevitch L., Mikhlin Yu., Pilipchuk V., Zevin A. Normal Modes and Localization 
in Nonlinear Systems, New York: Wiley Interscience; 1996.
[11] Mikhlin Yu.V., Avramov K.V. Nonlinear normal modes for vibrating mechanical systems. 
Review of theoretical developments. Applied Mechanics Review, Vol. 63, pp. 4-20, 2010.
[12] Mikhlin Yu.V., Avramov K.V. Review of applications of nonlinear normal modes for vibrating 
mechanical systems. Applied Mechanics Review, Vol. 65 (2) (20 pages). 2013.
[13] Wang F., Bajaj A., Kamiya K.. Nonlinear Normal Modes and Their Bifurcations fo r  an 
Inertially-CoupledNonlinear Conservative System. Purdue University; 2005.
[14] Pilipchuk V.N. Nonlinear Dynamics: Between Linear and Impact Limits. Berlin: Springer- 
Verlag; 2010.
[15] Plaksiy K.Y., Mikhlin Yu.V. Dynamics of nonlinear dissipative systems in the vicinity of 
resonance. Journal o f  Sound and Vibration, Vol. 334, pp. 319-337, 2015.
[16] Plaksiy K.Y., Mikhlin Yu.V. Resonance behavior of the limited power-supply system coupled 
with the nonlinear absorber. Mathematics in Engineering, Science and Aerospace, Vol.6 (3), pp. 475
495, 2015.
[17] Nayfeh A.H. Perturbation Methods. New York: Wiley; 1973.

199


