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The fouling formation in heat transfer equipment is the complex process, which is determined by the physical 

properties of the heat carrier, material of the unit and hydraulic characteristics of the flow. The mathematical 

model based on the asymptotic behaviour of water fouling is examined. The fouling process supposes the net 

rate of fouling accumulation as the difference between the fouling deposition rate and the fouling removal rate. 

The relation for predicting the fouling resistance dynamics during the time is proposed. The investigation of 

precipitation and particulate deposition in purified juice heating PHE for the first stage evaporation, which 

operates in sugar plant, was examined. In this position М15М plate heat exchanger produced by Alfa Laval is 

used. The analysis and mathematical simulation of the experimental data are presented. For the juice heaters 

the content of fouling deposition is mostly the calcium salts as calcium carbonates and sulphates. The 

parameters of the equation for deposition term estimation were determined for the regarded heat carrier. It 

allows to determine the deposition term and to simulate the fouling formation in time. The comparison of the 

experimental data and mathematical calculations showed a good agreement. The proposed mathematical 

model enables to predict the fouling formation behaviour in PHE as purified juice heater and to determine the 

operation term for the cleaning of this unit. Basing on the observed model, the software, which enables to 

determine the periods of PHE cleaning during the operation was developed. The comparison of the industrial 

measurement data with calculation results is presented. 

1. Introduction

Energy saving, pollution reduction and energy optimization are intrinsically interrelated and this cluster of 

issues constantly grows in importance (Klemeš and Varbanov, 2013). One of the ways to solve these 

problems is the use of efficient compact heat exchangers with enhanced heat transfer (Gough et al., 2013), 

among which Plate Heat Exchanger (PHE) are one of the most promising types (Klemeš et al., 2015). Their 

flexibility allows finding economically favorable solutions in different processes of heat utilisation, as shown by 

e.g. Arsenyeva et al. (2016). But the fouling formation on enhanced heat transfer surfaces of plates can lead 

to energy losses, additional power consumption and the costs of cleaning. This practical operational problem 

is a significant challenge in the progression towards sustainable development, as emphasized by Crittenden et 

al. (2015). 

The fouling deposition process in PHEs occurs at developed turbulent flow and thus intensive hydrodynamic 

conditions. In PHE for heating thin sugar juice at evaporation station of sugar factory the deposition starts at 

the initial operation period. As a rule sediments are rather friable and thin. Further the properties of the 

deposits change and the mechanical strength increases. Most of the models describing the fouling 

mechanisms are based on prediction of fouling accumulation rate as a difference between fouling deposition 

term φd and fouling removal term φr (Arsenyeva et al., 2013).  
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It was made the assumption that all effects contributing to fouling growth are accounted for by deposition term 

φd and mitigation are accounted by removal term φr.  

/   d rd dt  (1) 

where φd is the fouling deposition term; φr is the fouling removal term; δ is the fouling thickness, mm; t is the 

time, s. 

When the values φd  are equal φr the layer of deposits not grow. It is possible in two cases: 1) the removal is 

stronger than the adhesion of fouling to the wall surface, only after some threshold conditions the fouling 

accumulation can start, as shown by Yang and Crittenden (2012); 2) the removal rate is directly proportional to 

thickness of deposits δ, or deposition rate is inversely proportional to δ. In this case after some time t* the 

deposition thickness is stabilizing to certain asymptotic value δ*. 

In sugar production process at thin juice heating unit the deposits in heat exchangers occurs of precipitation 

and particular deposition fouling formation mechanisms and they mostly consist of crystal formations of 

calcium carbonate, gypsum, silicon and organic substances. The developed turbulent flow inside the channels 

between corrugated plates of plate heat exchangers has the complex structure with the fields of high and low 

velocities in channel cross-section. The low velocity is typical for the fields near the contact points of the 

adjacent plates or plate edges. These points are the centers of crystallization.  

The present paper describes the developed mathematical model of heat transfer in plate heat exchangers 

accounting the fouling formation deposit in the unit. The basic mathematical relations are obtained and the 

constant parameters are analysed and evaluated from the series of experiments carried out with PHE unit 

operating for thin juice heating in sugar plant. 

2. Process description 

The sugar production process with 5‐effect evaporation station is under consideration. For efficient energy 

consumption and process intensification the thin juice is pre‐heated before the evaporation (Figure 1).  

 

 

Figure 1: Flowsheet of 5-effect thin juice evaporation station 

The existing heat exchangers network (HEN) of evaporation unit of the sugar factory uses plate heat 

exchangers for the thin juice heating. In two positions (PHE3, PHE4) the Alfa Laval equipment of M15M type 

is used, and in position PHE1 the GEA plate heat exchanger is installed. The hot heat carrier for positions 

PHE1,3,4 is the vapour from the previous evaporation effects, and the PHE2 unit is heated by condensate 

from the 1st evaporation effect. All heat exchangers are heated by the steam from the evaporation effects with 

the temperature from 107 ºC to 124 ºC. The design of heat exchangers for such conditions should unsure the 

operation under vapour condensation process providing low pressure drop and enough velocity of flow 
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movement in the channels to prevent fouling formation. The design of heat exchanger for PHE2 position was 

carried out. It was selected Alfa Laval plate-and-frame heat exchanger of M15M type with 150 heat transfer 

plates, which was installed at sugar plant. From the beginning of operation the heat and hydraulic 

characteristics of this heat exchanger were monitored. 

3. Experimental investigation of fouling formation 

The measurements were taken during the maintenance cleaning for two heat exchangers: PHE1 and PHE2. 

The PHE1 unit was cleaned 3 times: the 1st time was after 10 days of operation, the 2nd after 50 days of 

operation, and the 3rd after 80 days of operation. The PHE2 was cleaned 2 times: after 15 days of operation, 

then after 90 days of operation. It enabled to examine the fouling formation process inside this unit and 

experimentally investigate it. 

The fouling formation was studied for the PHE2 heat exchanger. The operating conditions for PHE2 unit are 

as follows: 

 The cold heat carrier is thin juice;  

 The hot heat carrier is steam condensate after the 1st effect evaporator;  

 The average flowrate of thin juice is G2=270 m3/h; 

 The average operating temperatures: 

– The inlet temperature of thin juice is t21=105 °C; the outlet temperature of thin juice is t22=110 °C; 

– The inlet temperature of condensate is t11=124 °C;  

 The operation time before the full stop was 130 days. 

PHE2 heats the thin juice by the heat from condensate. The heat exchanger was operating 13 days after the 

last cleaning. The first measurement took place after the start-up, which for this case took a long period 

because of several stops of the equipment. And the stable operating conditions started after 96 h of working. 

The operating parameters for different time periods during 13 days of operation are presented in Table 1. 

Table 1:  The operating parameters of PHE2 heat exchanger 

Parameters  96 h 144 h 216 h 264 h 312 h 

The flowrate of thin juice, m3/h 265 260 270 277 265 

Inlet temperature of thin juice, ºC 103 101 100.5 102 101.7 

Outlet temperature of thin juice, ºC 108 105 106 107 106 

Condensate flowrate, m3/h 65 63 61 66 64 

Inlet temperature of condensate, ºC 123.5 123.5 123.5 123.5 123.5 

Outlet temperature of condensate, ºC 105 102.8 104.8 106.1 104.8 

 

After 130 days of operation the unit was disassembled and the fouling formation examined. It was estimated, 

that the existing deposition is in form of mechanical impurities and fibers. The type of mechanism of fouling 

formation is precipitation and particulate fouling. The difference between the hot and cold sides is great. The 

deposits mostly occur on the thin juice side. The deposits on condensate side are absent. The localization of 

deposits takes place mostly in the distribution area of the juice inlet at the plates, where the most heavily 

fouling takes place and many mechanical impurities are located in collectors. The disassembling of PHE2 

showed that sediments mostly relate to the fouling appeared by scaling mechanism.  

The obtained data were analysed to calculate the fouling thermal resistance (𝑅𝑓) value at time t, depending 

from the clean and dirty heat transfer coefficients, according to Eq(1). 

1 1
f

f

R
K K

   (2) 

where Kf  is the overall heat transfer coefficient accounting the layer of fouling sediments, W/(m2·K); К  is the 

heat transfer coefficient of PHE with clean surface, W/(m2·K). 

The value of overall heat transfer coefficient is calculated as: 

1

1 1 w

hot cold w

K
h h







 
   
 

 (3) 

where hhot  and hcold are the film heat transfer coefficients for hot and cold sides, W/(m2·K); w is the thickness 

of the plate, m; w is the heat conductivity of the plate material, W/(m·K).  
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The calculations were carried out according to equations presented in Arsenyeva et al. (2012). The results for 

overall heat transfer calculated for the observed time periods are presented in Table 2. 

Table 2:  The calculated values of overall heat transfer coefficients for clean and contaminated surface 

Time , 

hours  

Fouling thermal 

resistance ×104, 

m2 K / W 

Heat transfer coefficient for 

clean surface К,  

W/(м2·К) 

Heat transfer coefficient 

with fouling  Кf,  

W/(м2·К) 

Relation 

Kf/K×100 % 

96 0.27 2,673 2,493 93.3 

144 1.10 2,220 1,784 80.4 

216 1.55 2,668 1,887 70.7 

264 1.67 2,686 1,853 69.0 

312 1.9 2,382 1,640 68.8 

 

The change of the overall heat transfer coefficient with fouling thermal resistance during the time in 

comparison with clean surface was analysed (Figure 2). The calculations were made based on the 

experimental data (points on Figure 2) for 960 h of operation. The dependence shows the asymptotic 

behaviour of fouling formation and the maximal decrease of heat transfer coefficient is expected to be within 

60% from the initial clean value. For prediction the fouling threshold value the corresponding mathematical 

model was developed. 

 

 

Figure 2: The ratio between heat transfer coefficients for clean and contaminated surface in time 

4. The mathematical modelling of fouling process 

4.1 The dynamic formation of fouling deposits 

The asymptotic behavior of fouling deposits on heat transfer surfaces has been observed by many 

researchers, see Panchal and Knudsen (1998). It usually happens when the stream velocity is high enough to 

ensure a certain level of shear stress τw on the wall. It assumes that at asymptotic fouling condition the fouling 

growth is occurred by the deposition rate term φd
* and all mitigation effects by the removal rate term φr

*. It is 

assumed that φr
* is proportional to shear stress at the wall raised to a certain power m and to the deposit 

thickness δ*. Hence: 

* *m

r wb      (4) 

where b is a proportionality coefficient, [1/(Pa·s)]. When the deposition thickness reaches its asymptotic value, 

its time derivative equals zero and from Eq(1) follows: 

* * / ( )m

d wb     (5) 

Knowing the fouling deposit thermal conductivity, λf, the asymptotic value of fouling thermal resistance can be 

expressed as follows: 
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* * m

f wR B     (6) 

where B* = φd
*/(b*· λf

*). 

The development of the fouling thermal resistance Rf with time for the deposit of thermal conductivity λf can be 

described by the following equation: 

f d

w f

f

dR
b R

dt





     (7) 

For an approximate solution at time t it is possible to use time averaged values of these parameters for the 

time period 0 to t. Then the fouling thermal resistance at time t after integrating Eq(7) is as follows: 

( ) 1 exp 1 d

f w

w

B
R t t

B






  
       

  
 (8) 

In this equation, B = φd/(b·λf). To estimate the coefficient B, it is possible to take its value at asymptotic fouling 

conditions, i.e. B=B*.  

For corrugated channels of plate heat exchangers the wall shear stress on a main corrugated field of inter-

plate channels is calculated according to the following relation: 

2 / 8w s w        (9) 

The friction factor for the total pressure losses (due to friction on the wall and form drag) are estimated using 

the relation from paper by Arsenyeva et al. (2011). The share of friction losses ψ is estimated using the 

equation by Kapustenko et al. (2011). 

As showed the experimental measurements of plate heat exchanger for thin juice heating before the 

evaporation at sugar plant, the fouling deposit distribution along the plate exhibits the threshold behaviour. 

Using the model proposed by Yang and Crittenden (2012), the deposition term can be expressed by the 

following equation: 
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
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   


        
 (10) 

where Ts is the surface temperature, K; ρ is the fluid density, kg/m3; µ is the fluid dynamic viscosity, Pa·s, R is 

the universal gas constant equal to 8.314 J/(mol·K), Pcu is calculated according to Eq(11), in which Deq is the 

channel equivalent diameter, m. In this relation the empirical parameters Am, Bm and E  are depend from the 

physical property of heat carrier. For the thin juice they was estimated basing on the experimental data of the 

observed plate heat exchanger. 
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4.2 Estimation of empirical parameters for thin juice 
Based on the experimental data the fouling thermal resistance was calculated using Eq(8) for 5 measurement 

points (Table 2). To obtain the prediction in any time intervals the empirical parameters Am, Bm and E of 

Eq(10) were evaluated numerically. For the thin juice the following parameters can be used: E = 52,100 J/mol;  

Am = 1.9·10-11 kg2/3K1/3m5/3(kW)-1s-1/3h-1; Bm = 1.2·10-4 1.8·10-5m13/3kg2/3s8/3K-2/3; b = 2.3·10-4 1/(Pa·s). 

The prediction of fouling deposit in plate heat exchanger operating as thin juice heater for the thin juice side is 

presented in Figure 3 by the line. Points are the experimental data. The deviation between calculated data and 

experimental results is within 10 %, excluding the first experimental point, what can be explained by the initial 

stop of the heat exchanger.  

The fouling formation prediction also can help to organize the proper operating period between maintenance. 

Expensive cost related to the maintenance shutdown impose that it should be planned carefully and heat 

transfer equipment in operation should stand the operating period between cleaning. According to the 

proposed model, from Figure 3 it can be seen, that after 650 h of operation the fouling resistance will reach 

the value 0.00029 m2K / W, what corresponds the 40 % decrease of heat transfer coefficient in comparison 

with the clean surface. Thus, it can be expected that approximately after 650 h of operation, the unit needs the 

cleaning. 
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Figure 3: The prediction of fouling deposit thermal resistance of thin juice during time for plate heat exchanger 

5. Conclusions 

The proposed mathematical model enables to predict the fouling formation behavior in plate purified juice 

heater to determine the operation term for the cleaning of the unit. The comparison of the industrial 

measurement data with calculation results is presented. The deviation between experimental results and 

calculated values are within 10 %. The obtained mathematical model enables to simulate and design the 

parameters of plate heat exchangers accounting the deposits formation on the heat transfer surface, and can 

be used for energy saving reconstructions in the sugar and other industry. 
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