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Abstract
The technique o f finding a finite number o f first natural frequencies for geometrically nonlinear vibrations of 
layered elongated cylindrical panels at discrete consideration o f components is proposed and verified. The 
influence o f the radius o f curvature on the natural frequencies o f three- and five-layered panels is investigated. 
The dependence between the volume o f filler three-layer panels and the lowest natural frequency has been 
established.
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Introduction

The layered panels with an arbitrary form of guides are bearing elements of constructions and 
technical means of various purposes. Since during the operation their components have different 
functional purpose, their thickness and mechanical characteristics are usually significantly differ 
among themselves. This leads to the need for a discrete approach for determining the amplitude and 
frequency characteristics of these objects.

In the proposed report the method for determining a finite number of natural frequencies and 
forms of layered cylindrical panels for geometrically nonlinear deformation is substantiated and 
verified. To describe the stress-strain state of each layer the dynamic geometrically nonlinear theory 
of elasticity is used. The quadratic approximation of displacement in each layer along the normal 
coordinates is proposed. In the tangential direction linear finite elements are used. The discrete 
variational problem is constructed. It is solved via authors’ modification of perturbation method. The 
solutions of series of problems concerning the amplitude-frequency characteristics of plates-strips and 
elongated cylindrical panels with different number of layers are obtained. These solutions are 
compared with the results of other authors and for different theories. Sufficiently good coincidence 
gives us the perspective for the method developed.

1. The problem statement for a particular component of a layered panel

We consider a curved anisotropic elastic layer with thickness h in a natural mixed system of 
coordinates ax, a2,a3 on the median surface. This surface is formed by the motion of the line 
atj = 0; a 3 = 0 on the segment of arbitrary guiding. It is supposed that the layer is significantly larger 
along the axis a2 in compare to the length of the section arc a 2 = 0 of the median surface a 3 = 0 . So 
we have an elongated panel. If the conditions of fixing the ends of the panel aj = +a10 and the initial 
conditions are independent of the coordinate a 2, then due to small influence of conditions of fixing 
the edges a 2 = +a20, the functions, that determine the characteristics of geometrically nonlinear
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vibration processes in the plane of the median section, are dependent from a 1, a 3 . To find these 
functions we have [9]:

-  motion equations
d U  
dt

-  elasticity relations
Z = A  ® s ; (2)

divS = p -  . (1)

-  deformation relation between the strain tensor components e and the components of the 
elastic displacement vector U = uieieJ

eij = | (Viuj + V jui + V u k V u ); (3)

-  relation between the components S iJ of the nonsymmetrical Kirchhoff stress tensor S  
and the components tj'k of the symmetric Piola stress tensor Z

S iJ = ^ ik (SJ + v u ). (4)

In equations (1) and (2) A  is the tensor of elastic properties of anisotropic layer, and p  is its 
density.

Boundary conditions on the front surface of the panel a 3 = ±h / 2 in the case it belongs to the 
layered structure are shown below, and initial conditions have the form

ni o, -> du. (a, a3, t)
u  (ai, a3 , t)|t =,„ = vi (ai, a3) , i ^  ---- = vi1(a1, a 3), i = 1,3, (5)

v3o (a1, a 3) >> v° (a1, a 3) , (a1, a 3) e Q  = [ - a f , a°] x [-h / 2 , h / 2 ]. (6)

2. The layered panels

Assume that a panel consists of N  layers (see Fig. 1). Each k-th layer is considered as a 
separate thin panel with its own mechanical and material characteristics.

1=1

Figure 1. Layered cylindrical panel with hinges fixed on the elongated edges
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Hooke’s law is different for each layer:

a <k) = [Qk ]sk, k  = 1,..., N , (7)

where [Qk ] is tensor of elastic properties of anisotropic k-th layer.
Assuming that the value of a 3 coordinate at the top of k-th layer is hk , and h0 = -h  / 2, the 

equations (1) for a layered structure are written as

 ̂ d2u(k)
^ S (k)j = p — 2- ,  (8)
i=1 Ot

(a1, a 3) e Q = [-a° , a°] x [hk-1, hk] ,  k  = 1,...,N.

The contact conditions between the layers are

u(k-1)(a1, hk-1, t) = u(k )(a1, hk, t ), i = 1,2,3, (9)

S(k-1)3i (a1, hk-1,t) = S(k)3i (a1, hk, t), |a j  < a " , k  = 2,..., N, (10)

and on the lower and upper facial surfaces of the layered structure we have

S (m)31(a1, hm, t ) = S (m)33(a1, hm, t) = 0 , |a j  < a " , m = 0, N. (11)

At the elongated ends of the panel a 1 = +a10 under the conditions of fixing the hinge on the 
lower surface of the front a 2 = -h  / 2 the boundary conditions have the form

S (k )1i (a, a 3,t) = 0 , k  = 1, N , (12)

u(N)(a, + h / 2, t) = 0, |a3| < h / 2 ,  i = 1,3, a = +a1. (13)

3. Approximations

Assuming that each k-th layer is thin, quadratic approximations along a 3 coordinate are used 
for components of elastic displacement vector u1 and u3 [10]:

ui<k)(a 1, a 3) = ui/k} (a1 ) p j  (a3 ) , i = ^  (14)
j=0

where

p0(a3) = -1 2 a3 hk-1 hk
2 2(hk -  hk-1)

1 2a 3 -  hk-1 -  f 2a 3 -  hk-1 -  hk , 
p1(a3) = T + ~ ^ ---- ---- ^  , p i(a 3) = 1 - | --- 3----¥ ----  I , a 3 e[hk-1, hk].2 2(hk -  hk-1) I  K  -  hk-1

344



For finding the unknown coefficients u j )(a1) in (14), approximation by the tangential 
coordinate a 1 was used on one-dimensional isoperimetric linear finite elements [10]:

u(k)(e) = t  u ^ a ^ ; ) ,  ;  = (e)2a1 (.) - 1, (15)
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where e is the number of finite elements of k-th layer; u<m e) = u(k) (a m ) , m = 1,2  are the values on 

nodes a 1(m)(a1) of finite element; ^1(e)(^} = 1(1  - ; ) ;  ^2(e)(;} = 1(1  + £).

4. The discretized problem

Considered above differential formulation of the problem of geometrically nonlinear free 
vibrations for single layer is equivalent to the problem of minimizing the functional L  [10]:

L  = - f V y  u. —  d Q - f  p d-U- -U d Q  = 
f . dx, f d t2Q 1 J

TT
= - f y y  S ij du^ d  Q - f  p d-U -  -Ud Q ^  min. (16) 

J dx, Q dt

Boundary conditions (11), (12) and the contact conditions (9), (10) are natural ones for the 
variation formulation of the problem (16) [10], but the conditions (13) must be taken into account 
during solving.

In a case of layered panel we obtain:

L  = 1  - f H  S,i  ^ d  Q - f  p k ■ Ud Q 
A W  dx, J dt /

After substituting (14), (15) in (17) (with using (8)) and composing the results together we 
obtain:

La = [u}TK L {u} + {u}TKNL (u){u} + {u}TM  {u} ^  min, (18)

where {u} = {u}(t) -  vector of values of the coefficients u® ^ at the nodes on the finite-element of k- 
th layer; K L -  linear, and KnL -  nonlinear components of stiffness matrix; M  -  mass matrix [5]. 

For solving discretized problem (18) perturbation method described in [5, 6] is used

5. Numerical results

5.1. Verification of the proposed technique
Consider a cylindrical five-layer panel, the edges of which are fixed by hinges at the bottom of the 

front plane (see Fig. 1.). The panel has the following geometrical and mechanical characteristics:

l = 1 m; h = 0,01  m

E1 = 40E2, G12 = G13 = 0,6E2, G23 = 0,5E2, v1 = 0,25.
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In order to analyze the reliability of the results we applied the proposed technique to the problem, the 
solutions of which are known [4]. Consider a cylindrical panel with radius of curvature K  = 0 . Partitioning 
into 50 finite elements by coordinate a 1 was used for calculation of the values of natural frequencies.

wIn Table 1 the dimensionless values a>NL / mL obtained at the dimensionless amplitudes max for free
h

vibrations of five-layered panel are compared with the results from the work [4].
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Table 1. Comparison of the obtained results with given in [4]

^mas jmL
h [4] Proposed technique

0,2 1,0313 1,0401
0,4 1,1198 1,1214
0,6 1,2536 1,2695
0,8 1,4199 1,4418
1,0 1,6086 1,6588
1,2 1,8127 1,8627

iv „ „  1.4
h
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Figure 2. Comparison of backbone curves obtained via the method of perturbation and results of work [4].

Fig. 2 shows the backbone curves [11], constructed using the proposed technique (■) and the results 
given in the work [4] (o).

Also, the influence of the radius of curvature K  on the free vibrations of the panel is 
investigated. Fig. 3 shows the dependence of the lowest natural frequency on the radius of curvature 
of five-layered panels made of carbon fiber.
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Figure 3. Dependence of the lowest natural frequency (ai = ao 1° 6, Hz ) by the radius of curvature of the
cylindrical panels

The maximum relative error in the Table 1 does not exceed 3%, which shows the effectiveness of the 
proposed technique. Comparative analysis of the graphs on Fig. 2 shows the reliability of the results obtained 
using the proposed technique. Also it was established, that the main amplitude of natural vibrations increases 
with increasing radius curvature of the panel.

5.2. Three-layered panel
We considered a layered plate-strip with elongated edges that are fixed with stationary hinges 

on the bottom plane (see Fig. 4). Geometrical characteristics of plane are l = 1 m , h = 0,1 m . It consists 
of three layers with following characteristics:

1) Rubber -  E = 0.1 -109 N  / m 2, v = 0,49;
2) Steel -  E = 210-109 N / m2, v = 0,3.

i

Figure 4. Panel with three layers

In Table 2 first five natural frequencies are shown for a panel consisting of three layers where 
steel layers have thickness 0 .01m and rubber layer has thickness 0.08m.

Table 2. The first five natural frequencies of three-layered panel
n mn ,Hz

1 283000
2 1019000
3 1457300
4 1839600

5 2615200
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In Table 3 dependency between first natural frequencies and thickness of middle layer (rubber 
layer) thickness is shown.

Table 3. Influence the relationships for thicknesses 
of rubber layer and panel to the first natural frequencies
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hrubber
h

®1,Hz

0.9 225650
0.8 283000
0.7 372770

0.6 490850
0.5 635100

b)

Figure 5. Eigenmodes of the panel: a) -  the first mode; b) -  second.

The Fig. 5 shows eigenmodes of the panel for first (a) and second (b) modes of the panel 
consisting of three layers where the steel layers have the thickness 0 .01m and the rubber layer has the 
thickness 0.08m.

Table 4. The influence of curvature of the panel on its natural frequencies

K Oj, Hz

0 283000

0.5 254200

1 232000

2 218700

In Table 4 dependency between the radius of curvature and first natural frequency of the panel 
that consists of three layers where the steel layers have thickness 0 .01m and the rubber has thickness
0.08m is shown.

For the panel considered above we can make the following conclusions:
1. the more matrix (rubber) component is included in the panel, the less is the first natural 

frequency;
2 . the bigger the curvature radius is, the smaller the first natural frequency becomes.

Conclusions

The maximum relative error in the Table 1 does not exceed 3%, indicating the effectiveness of 
the proposed method. Comparative analysis of the graphs in Fig. 2 shows the reliability of the results
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using the developed method. Is also established that main amplitude of natural vibrations increases 
with increasing curvature of the panel.

In the future, should be carried out similar researches for various physical and mechanical 
characteristics of the components and conditions of fixing the ends of elongated layered panels.
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