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Abstract
Starting from explanation o f geometry, kinematics and dynamics o f game billiards, and phenomena o f impact a 
rolling ball into different types o f curved surfaces and direct and skew central collision of two rolling, same 
dimension, balls we open question o f collision of two rolling axial symmetrically bodies with different 
dimensions and different forms. Use elementary approach and Petrovic's theory presented in two books 
“Elements o f mathematical phenomenology” and “Phenomenological mappings”, extended theory o f direct 
and skew central collision o f two rolling, axially symmetric, but different dimensions and forms, bodies is 
formulated with all additional and new analytical expressions, theorems , to define all pre- and post- collision 
kinetic states. Use these new results complete methodology o f vibro-impact system dynamics is formulated and 
applied for investigation kinetic parameters and phenomena in vibro-impact systems with successive collisions 
between two or a finite number o f rolling bodies. Energy jumps in collisions between rolling bodies in vibro­
impact system dynamics are indicated and analytically described in a number of these systems.
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Introduction

“In connection with the game o f billiards .... there are various dynamic tasks, whose solutions contain 
in this event. I  think that people who know Theoretical mechanics and even students o f polytechnics, with 
interest familiarize themselves with explanations o f the entire original phenomenon that can be observed from 
the time o f movement billiard balls ”.

Gaspar-Gistav de Koriolis, Mathematical theory o f billiards game

In the Reference [1] by Gaspar-Gistav de Koriolis, complexity and numerous various dynamic 
tasks, whose solutions contain in the game of billiards, are pointed out. Main are rolling of the rigid 
balls and impact of balls into vertical surface and central of skew collision between two or more 
rolling balls. Elements of geometry, kinematics and dynamics of billiards are presented in Reference
[2]. In the Reference [3] dynamics of elliptic billiards and rolling ball impacts are presented. In 
Figure 1, a trajectory of billiards’ rolling ball, along horizontal plane, bounded by boundary elliptic- 
cylindrical surface, with plan of the impact and outgoing angular velocities before and after impacts, 
are presented.

In Figure 2.a*, possible impact points at a rolling ball along horizontal trace to the boundary 
vertical cylindrical surface with plans of component and resultant impact translator velocities and 
angular velocity are presented. In same Figure 2, schematically presentation of kinematic state of the 
skew (b* and c*) impacts of a rolling ball to a boundary convex curvilinear vertical cylindrical 
surface with traces of ball rolling pre- and post- collision states are presented.

Let’s expose, in short, the source of theory of impacts of rigid bodies. Beginning was with the 
competition and London Royal Society. Royal Scientific Society in London in 1668 announced a
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competition for the solution of problems of the dynamics of impact and on this competition have 
submitted their works, by now known scientists Vilis (Wallis, 1616-1703, Mechanica sive de mote- 
1688) and Huygens (Huygens -  De motu corporum ex percusione). Using the results of the collision 
submitted to the Royal Scientific Society by Willis and Huygens, learned and giving their 
generalizations, Isaac Newton founded the fundamental basics of the theory of impacts. And before 
Newton and Huygens, and Willis, was exploring the dynamics of impacts. Thus, for example, 
collision problems are dealt with Galileo Galilei, who came to the conclusion that the impact force in 
relation to the pressure force infinitely large, but it came to the knowledge of the relationship of 
impact impulse and linear momentum.

It will be shown Carnot’s theorem (Lazare Carnot 1753-1824., Principes fondamenteaux de 
l’equilibre et de movement - 1803), who says that "In a collision, the system inelastic material body’s 
loss of kinetic energy is equal to the kinetic energy of the lost speed." The explanations on 
experimental method for obtaining coefficients of restitution of different types of impacts and 
collisions are defined.

1,2 ,impact ,12

B ou n d a ry  im p a c tv e r tic a l e lip tica lcy lin d r ica l su rface

Figure 1. Trajectory of billiards ball rolling along horizontal plane bounded by boundary elliptic-cylindrical 
surface with plan of the impact and outgoing angular velocities before and after impacts.
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Figure 2. a* Possible impact points at rolling ball along horizontal trace to the boundary vertical cylindrical 
surface with plans of component and resultant impact translator velocities and angular velocity. Schematically 
presentation of kinematic state of the skew (b* and c*) impacts of a rolling ball to a boundary convex 
curvilinear vertical cylindrical surface with traces of ball rolling pre- and post- collision states

Starting from the geometric basis for switching to the impact theory, which is basically a theory 
of the dynamics of each ball of billiards. Shown are the plans of translational and angular velocities of 
rolling of one ball before and after the impact, the two rolling balls collision.
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Let’s expose, in short, the theory of the collision of two mass particles, as well as two balls or 
impact of a mass particle, as well as the impact of balls in the barrier. The output is hypotheses on 
collision and impact, define the various types of collisions and impacts. This problem is associated 
with the dynamics of the system with one side retaining constraints [12].

Numerous publications are dedicated under the keywords of the title of billiards, but words are 
about „mathematical billiards“ [12] based on the Ponselle’s theorems about polygonal lines 
introduced into some conical lines. In all these case word are about geometrical points and their 
geometric trace along polygonal line introduced into some conical line with corresponding principle. 
Mathematical billiards is useful only as very simple models of rough abstraction of real billiards ball 
traces, but without any model of real ball's dynamics and impacts.

For investigation of acceptable model of real billiards ball impact and collisions it is necessary 
to accept that balls are with no neglected dimensions, and that balls are in rolling motion along 
corresponding horizontal traces with corresponding angular velocities before and after impacts to the 
boundary vertical cylindrical surface or before and after collision between two balls. Then it is 
necessary to investigate kinematics and dynamics of billiards balls rolling, and to define 
corresponding kinetic parameters before and after impacts or collisions of two or more billiards balls.

Comparing the elements of mathematical phenomenology [13-15], [11], [7-9] and theory of 
impact and collision between rigid bodies [16] and identifying qualitative and mathematical analogy 
between geometry of moving geometric point in the plane with defined constraints propagation ray of 
light with the refusal of the obstacles and suggests that the trajectory of geometric point and ray of 
light analogue and can be used as a baseline determination of the trajectory of billiards ball.

But as billiard balls spherical rigid bodies orbit of their dynamics depend on the type of impact 
limiters in the form of the surface, and angles of impact velocity and outgoing velocities of mass 
center balls depend on the type of impact: whether the impact is skew or central!

Dynamics of impacts and collisions of the rolling balls contained in Reference [6] present new 
and original research results of theory of central collision of two rolling rigid bodies using as main 
kinematical elements angular velocities of each rolling ball pre- and post- collisions kinetic states. 
Using these advances in theory of central collisions obtained by author, some of vibro-impact system 
dynamics are investigated, solved and presented in published papers [4-5] and [10].

1. Kinematics of skew collision of two rolling rigid nalls

Let us to consider skew collision of two rolling rigid balls with different dimensions. For each of 
the balls J P1 and J P2 are known axial mass inertia moments for corresponding momentary axis of 
these rolling and a  P1 ( t0 )  and a P2 (t0) are known arrival (impact) angular velocities of these rolling 
balls at the moment, in kinetic state pre-collision. At the moment t0 , is start of collision between 
these arrival rolling balls and at this moment t 0 , both bodies having a teaching point and common 
tangent plane. Then, we suppose that time duration (t0, t0 + r )  of collision between rolling bodies is 
very short time r  (and tends to zero). After this very short time r  contact between rolling balls 
disappear and both balls separate and move away from one to another in rolling kinetic state with 
angular velocities a P1 ( t0 + r )  and a P2 (t0 + r ) , which we named as post collision outgoing angular 
velocities.

Let us to imagine that in teach (contact) point of rolling body in kinetic state of collision is present 
a tangent plane and it’s normal. This tangent plane is plane of teach between rolling balls in collision. 
As mass center of both balls in collision are at this normal, if angular velocities are parallel and traces 
collinear, then this collision is centric central, and if not, then collision is eccentric or skew collision.

In the case that pre-collision arrival angular velocities of both rolling bodies are parallel with 
tangent plane through the contact point, then collision is direct central collision. In the case that pre­
collision arrival angular velocities of both rolling bodies are not parallel with tangent plane through 
the contact point, then collision is skew collision between two rolling balls.

In Figure 3, geometric and kinematic parameters of two rolling balls in the skew collision kinetic 
stare. a* and b* possible impact points at two rolling balls along horizontal traces, a* ball with 
smaller radius and b* ball with bigger radius are presented. Angular velocities of each ball rolling are 
presented and also component velocities at each contact points - common point of collisions of the
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rolling balls. Tangent at contact point are also presented. c* and d* present vertical projection of the 
balls with corresponding trace of ball’s rolling are shown.
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Figure 3. Geometric and kinematic parameters of two rolling balls in the skew collision kinetic stare. a* and 

b* possible impact points at two rolling balls along horizontal traces, a* ball with smaller radius and b* ball 
with bigger radius. Angular velocities of each ball rolling are presented and also component velocities at each 
contact points - common point of collisions of the rolling balls. Tangent at contact point are also presented. c* 
and d* present vertical projection of the balls with corresponding traces of ball’s rolling.
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Figure 4. Schematically presentation of kinematic state of the skew collision of two rolling balls with traces of
balls rolling pre- and post- collision states.

In Figure 4, schematic presentation of kinematic states of the skew collision of two rolling rigid 
balls, different radii, and with traces of balls rolling pre- and post- collision states is presented. In this 
Figure, a common tangent at the contact point between rolling balls is visible. This tangent is tangent 
of collision two rolling balls with different radii. This tangent of collision lies in the tangent plane of 
balls collision. Direction between centers of balls in state of collision configuration passes through 
contact point and is orthogonal to tangent and tangent plane of collision. Angles between this normal 
of the tangent plane of collision and corresponding trace of each ball’s rolling present angle of arrival 
trace, and angle between trace of outgoing rolling ball after collision and this normal to the tangent 
plane of collision is equal to this angle of trace of arrival corresponding rolling ball.

If both angles of arrival rolling ball traces are equal zero and rolling trace collinear, then this 
collision is centric central. If only one angle of arrival trace in relation to the normal of tangent plane 
of collision of two rolling balls are different to zero, collision of two rolling balls is skew.

2. Dynamics of skew collision of two rolling rigid balls

At starting moment t0 of collision two rolling bodies, each rolling body arrives with 

correspodnig pre collision arrival velocity, coPl (t0) and cdP2 (t0), and with starting of teach at 

common point T x= T2 , both bodies start to deformes in local area of contant point T l= T2 . Duration 
of this local deformation around of contant point P  is up to moment when projection of the both 
body angular velocitues to the comomg tangent plane be equal fitst to other. At this kinetic state 
projection of relative angular velocities of the rolling bodies, first to other, about own momentary axis 
of rilling are equal to zero. Starting from this moment with projection of relative angular velocity one 
to other body, appear start of new kinetic state when bodies separated first from other, and in duration 
of this period, projection of relative angular velocity increaze up to moment when contact between 
bodies disapear, and bodies separate and ougoing with post collision autgoing angular velocities. 
During this period of time local deformation of the both bodies in collision disapear and returrn 
previous form. Starting from moment of rwo bodies separation we define as time period of 
postcollision of two rolling bodies.

Taking into acount that duration of collision between two rolling axial symetric rigid bodies is 
time interval (t0, t0 + t )  and that short time t  (and tends to zero) and with accordance of previous
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analysis of local deformation around contact point T  1= T2 between two rolling bodies, this time 
interval is possible separate in two sub-interval: t ' and t " .

On the basis of the previous analysis o f rates of changes of pre-collision arrival angular 
velocities of rolling bodies in periods compression and restitution in local contact area around contact 
point between two rolling bodies in collision we can define an analytic relation in the form:

k  =  ° r  (to + T) = ° P 2 (t0 + T)~ °P1 (to + T) (1)
° r  ( t 0 ) °P1 (t0 ) — ° P  2 (t0 )

Previous ratio k  between post-collision outgoing relative angular velocities and pre-collision arrival 
relative angular velocities of the rolling bodies in collision is new definition and determination o f the 
coefficient o f  restitution or coefficient of the collision of two rolling axial symmetric rigid bodies. 
This is new definition and generalization of coefficient of restitution of collision of two bodies in 
translator motions defined by Isaac Newton. This coefficient of restitution of collision of two rolling 
bodies, is real, dimension less number and can be determined experimentally, because depend of 
material of rolling bodies in impact.

Taking into account that coefficient of restitution is known from experimental data, then for 
obtaining post collision outgoing angular velocities of rolling bodies, we introduce theorem of the 
conservation angular momentum (kinetic momentum) for corresponding momentary axes of each of 
corresponding rolling body in collision for pre- and post-collision kinetic state in the following form:

J  P1°P1 (t0 ) + J  P 2 °P 2  (t0 ) = J  P1°P1(t0 + t ) + J  p 2®P2 (t0 + t )  (2)

Using the two previous expressions (1)-(2), it is not difficult to obtain the following expressions of 
post-collision outgoing angylar velocities of rolling bodies in the following forms:

® P1 ( t 0 + t )  ® P 1 ( t 0 )  T  ( ® P 1 ( t 0 )  ® P 2  ( t 0 ) )  and ® P 2  ( t 0 + T)= ® P 2  ( t 0 )+ J  ( ® P 1 ( t 0 )  ® P 2  ( t 0 ) )  (3)
1+ J  P1 1 + J  P 2  ̂ '

J  pi J  p

Obtained expressions (1), (2) and (3) are analogous to corresponding expressions in theory of 
collision between two bodies in translator motion pre- and post-collision kinetic states. It is possible 
to use Petrovic’s theory “Element o f mathematical phenomenology” [13-15] to obtain same 
expressions (1), (2) and (3).

3. Methodology of investigation of vibro-impact system dynamics - An example

In Figure 5, phase trajectory branches (b*) in phase portraits, potential energy curves and total 
mechanical energy branches of two rolling disks for motion in interval between initial condition 
configuration and configurations of pre-first-collision and post-first-collision between two rolling 
disks (a*) with vibro-impact dynamics along a line are presented. Differential equations of two 
rolling disks along one staring line (trace) are in the form:

x  + col x. Vb02i + xf ~ l0i
2 2

+ xi1 J

2 c r 2
= 0 , i = 1,2 ; o0i = ~ ti-  (4)

J Pi

Precise equations of phase trajectory of previous conservative systems dynamics, described by two 
differential equations (4), are in the form:

x< =  x̂  -  ( x ,2 -  x l j  +  2 W ( b 02i +  x ,2 )  -  Uo.M ^ ) i  =  1 ,2 ;  ° 0 2,- =  ~ T ~  ( 5 )
J  P i
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where known initial conditions, x0i = x t (0) and x0i = X (0 ), i = 1,2 , initial velocity and initial 
position of mass center of each of two rolling disks, or momentary initial angle coordinate and initial 
angular velocity around corresponding momentary axis for each of rolling disks:

= 9 (0 ) = ^  ^  and ^  = &pOI = 9 „ (0 ) = ^  ^ , i = 1,2 .
r r r r1 1  1 1

Previous equations of phase trajectory of each rolling disks is, also, equation of curves of constant 
total mechanical energy of the system: E t =Ek i + A de, x i =Eki + E pi = E 0i =consti, i = 1,2 .

Singular points are: a* only one singular stable center type point x1 i = 0 for l0i < b0i with 
corresponding stable equilibrium position in which spring is: a*1. no stressed and in no deformed 
state with no extension, no compression for l0i = b t , i = 1,2 , and spring is in natural state with 

deformation work equal to zero: A de, x i=0 = Epx i=0 = 0 and a*2. stressed and deformed by extension 

Al0i = b0i -  l0i for l0i < b0i, and deformation work in this state of each spring is in the form:

A def,xi=0 = E p,xi=0 = C i ( b 0i — l 0 i)  , i  = ^,2  .

b* Three singular points

xb. = 0 and x 2/3,i = +Vl02i — b i  for l0i > b i , i = l ,2

and present one trigger of three coupled three singular points, one singular no stable saddle type point 

x1i = 0 for l0i > b t and two singular stable center type points x 2/3 i = + -J l^ i -  b 2 for l 0i > b i .

Time of motion duration from initial position x0i with initial velocity x0i to the arbitrary 

position x  (t) in conservative system is in the form:

dx

X0' ±  ® 0 i J~~1T— ( x i2 — x0i +  2 W  ( b 02i +  xi )  — 2  W  (b 02i +  ̂ o ) )
V ® 0 f

(6)t

Taking into account that in position of collision exists the following relation: x2 c1 = x1 c1 — 2 y r1r2 for 

r2 < r1 as it is presented in Figure 5.a*, and after numerical determination of the coordinates x1 c1 and

x2 c1 = x1c1 — 2 tJr1r2 of balls’ mass center position in state of collision, by using equations (6), and by
use equations (5) of phase trajectory for corresponding ball in state of collision the angular velocities 
of rolling balls are determined and they present arrival angular velocity in pre-collision state in the 
following formula:

^  Pi ,c 1 .a rr iva l = + (x0i — rfrt + 2 l0i — 2 l0i Vb 2̂ + x0̂ ) , i = 1,2 (7)
r i  \( ®0i

Then by means of expressions (3) and (7) we obtain outgoing angular velocities of the both balls in 
the state post-collision, which are starting for next interval between first and second collision. In 
Figure 5.b* at phase trajectory branches representative points o f first collision are presented for both 
rolling balls and also jumps of angular velocities and corresponding jumps of ball’s energy.
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b*
Figure 5. Phase trajectory branches (b*) in phase 
portraits, potential energy curves and total 
mechanical energy branches of two rolling disks 
for motion in interval between initial condition 
configuration and configurations of pre-first- 
collision and post-first-collision between two 
rolling disks (a*) with vibro-impact dynamics 
along a line.

Conclusions

We present necessary methods and models of 
collision of two rolling balls with new and original 
expressions of outgoing post-collision angular 
velocities. Also, by kinematical analysis we present 
traces of rolling balls pre- and post-collision kinetic 
state in relation to collision tangent plane between 
rolling balls through common contact point. By 
considered with vibro-impact dynamics in a model of 
real system, a methodology for investigation is 
founded by combination description of dynamics in 
phase planes and results of extended theory of collision 
of two rolling balls or disks in the system. From phase 
portraits for both rolling balls in conservative system it 
is possible to conclude that total mechanical energy for 
the case of ideal elastic collision is constant, but in 
collision appear jump energy between balls.
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