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Abstract
The model by Peyrard -  Bishop -  Dauxois (the PBD model), which describes the DNA molecule nonlinear 
dynamics, is considered. This model represents two chains o f rigid disks connected by nonlinear springs. An 
interaction between opposite disks o f different chains is modeled by the Morse potential. Solutions o f equations 
o f motion are obtained analytically in two approximations o f the small parameter method for two limit cases. 
The first one is the long-wavelength limit o f traveling waves, when frequencies o f vibrations are small. 
Dispersion relations are obtained also for the long-wavelength limit by the small parameter method. The 
second case is a limit of high frequency standing waves in the form o f out-of-phase vibration modes. Two such 
out-of-phase modes are obtained; it is selected one o f them, which has the larger frequency. In both cases 
systems o f nonlinear ODEs are obtained. Nonlinear terms are presented by the Tailor series expansion, where 
terms up to third degree by displacement are saved. The analytical solutions are compared with checking 
numerical simulation obtained by the Runge -  Kutta method o f the 4-th order. The comparison shows a good 
exactness o f these approximate analytical solutions. Stability o f the standing localized modes is analyzed by the 
numerical-analytical approach, which is connected with the Lyapunov definition o f stability.
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Introduction

Research of wave propagation in the DNA molecule is one of important problems of the 
modern nano-technology. It is associated with design of perspective nano-robots constructed on the 
basis of the DNA molecules.

Detailed review on models of nonlinear dynamics of the DNA is done in the book [1] and in 
reviews [2,3]. One of the most successful models of the DNA molecule is the PB model, proposed by 
Peyrard and Bishop [4]. Two chains of DNA are presented by the model with two connected chains of 
rigid disks where interactions of opposite disks of different chains are described by the Morse 
potential. The staking interactions of the neighboring disks inside the each chain are linear. The 
problem of chains deviation was considered, so, the only one-dimensional dynamics is analyzed by 
the PB model. To have more adequate description of the staking introduction the model by Peyrard- 
Bishop- Dauxois (PBD model) was proposed where the anharmonic potential is introduced to describe 
this interaction [5]. Processes of the wave propagation are investigated later and presented in 
publications [1-3]. In particular, the discrete breathers are considered in PB and PBD models [6,7].

In this paper the investigation of some types of waves is made in the framework of the PBD 
model which is presented in Section 1. In Section 2 traveling waves in the long-wavelength limit are 
constructed by the small parameter method. Analytical solutions are compared with results of 
numerical simulation. Dispersion relations are obtained for the long-wavelength limit by the small 
parameter method too. Besides, in Section 3 the most high frequency standing waves are constructed 
in the form of anti-phase vibration modes. In Section 4 a stability of the localized standing waves is 
considered by the numerical-analytical approach which is a consequence of the well-known Lyapunov 
definition of stability. Boundaries of the stability/ instability regions in the space of parameters are 
obtained.
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1. Model by Peyrard-Bishop-Dauxois

As it was written above, the PBD model is presented by two connected chains of rigid disks 
connected by longitudinal and transversal springs (Fig.1).

Figure 1. Model of DNA by Peyrard-Bishop- Dauxois (PBD model)

Interaction of nodes of different chains is modelled by the Morse potential,
V = d(exp(— a(un — !?„)) — l ) 2, which imitates hydrogen bonds between bases of complementary 
pairs. Here d  is the energy of dissociation of polynucleotide chains; a is the parameter which is 
inverse to distance between disks (so-called space scale of the potential). Using the change of 
variables, z n = “"‘. J ' yn = lL, one obtains the equations of motion of the PBD model [5] in the 
form:

Here S = ~ ^ :rY  = “ are dimensionless parameters; K  is the constant which characterizes interaction 
between pairs of bases along the chain; p is the parameter which characterizes the nonlinearity in the 
system; a is the parameter which characterizes a decrease of stacking interaction.

2. Long-wavelength limit

Considering a case of the long-wavelength limit (this is a case of low frequencies), one assumes 
that a value of V a  is essentially smaller than to the wave length. Transformation of the system (1) to 
corresponding distributed system can be made by use of the following approximate relations:

d y
Zi+1 - Z i  *  yi+i -  y* «  a ~  * + 1 - 2^  + % -! «  z i+1 -  2 zt + *  a 2^ (2)

Besides, the following approximations are used: y,~y00.' yi+i^yOO* z ~  z(x )> z i-n~ z(x)■ Taking into 
account all mentioned approximations, one obtains from the system (1 ) the following equations of the 
long-wavelength limit:
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dr1
t £ = ^ - 2V2 ■ ^] +■.

jljr!

^  [l -  '
(3)

where ft = a 2S, a  = yfipi Y =  “ are dimensionless parameters.
Traveling waves in the form* = y  = where <p = k x  — cat is the phase

of the wave, are analyzed. For these solutions one obtains from equations (3) the ODE system. 
Assuming that values of variables and <P2 are n°t large, one expands exponents to Tailor

. . . . □!#■■■ d&nseries, saving then nonlinear terms up to third degree on — - and — ;. One has
’ d ip  ’ d tp

(4)

Analysis of the first equation of the system (4), which is not presented here, shows that 
corresponding motions are unbounded. It is a consequence of the fact that the coordinate describes 
motions of the center of masses for which any limitations are absent. So, only the second equation of 
the system (4) will be analyzed. It can conclude that solitary waves in the long-wavelength limit are 
absent because we have only the single equilibrium position, namely, <P2 = 0 ■ We introduce to the 
second equation of the system (4) the small parameter s  which characterizes a smallness of nonlinear 
terms in the system under consideration. One introduces also the new independent variable t  by the 
following relation:

<P = V*. (5)

Here n  is some constant. It will be determined in process of construction of the solution which must 
be 271- periodic by t .  Introducing the new independent variable t  instead of the argument <p, one 
obtains from the second equation of the system (4) the following equation (here “prime” means 
derivation by the new independent variable t ) :

In correspondence with the small parameter method a solution of the equation (6) is determined 
in power series with respect to the small parameter £,

Introducing the power series (7) to the equation (6), one has

Then equations in the first two approximations by the small parameter are considered. In each
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approximation values of i i0 a n d ^  are chosen in order that to eliminate secular terms in solutions. 
Besides, taking into account the fact that the system is conservative, it can use the additional 
condition: ^ ( 0 )  = 0. We do not present here details of standard transformations; one writes a 
solution of the equation (8), returning to the argument (p \

(9)

where + s
4 ji„

fl­

it can see that a term of the first order by s is small with respect to the main term of expansion 
if the wave amplitude a 0 is relatively small. To estimate an exactness of the obtained analytical 
solution we compare it with numerical solution of the second equation (4), which is obtained by the 
Runge-Kutta method of the 4-th order. The comparison is made for initial solutions which are 
common both for analytical solution, and numerical one. These initial conditions are chosen as 
^ 2( 0) = 0.049, 4^(0) = 0. The system parameters are the following: a = 4 A '1, K = 0.01 eV/A2, p =
3, a = 0.8 A-1 [4]. Besides, the connection parameter is chosen as S = 0.0119; other parameters are: 7 
= 0.2, a  = 0.14, w = 1.12, F = 0.05, s = 1. It can see a good coincidence of the analytical and 
numerical solutions (Fig.2).

Figure 2. Comparison of analytical and numerical solutions for the long-wavelength limit. Solid line 
corresponds to the numerical solution; points correspond to the analytical solution.

2.1. Dispersion relation for the long-wavelength limit

Dispersion relation for the long-wavelength limit in the PBD model can be obtained by the 

small parameter method. For it the second equation of the system (4) is rewritten as

Then nonlinear terms in the equation (10) must be multiply to the small parameter s, and the 

power series by £ are used:

Introducing expansions (11) to the equation (10) and comparing terms of the same orders by e, 
one has the following:
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(12)

* m2 i(<o02 -  p k 2) +  4<p2l =  -<oj*"2o +  6V 2^2o2 -

(13)

It can obtain the 2n -periodic solution if the following conditions of periodicity are 

satisfied:

<Uq =  4 +  p k 2: u>2B — 7B3 — ^ak2yB3 =  0 (14)

Here a solution of the zero approximation is presented as "?2() =  Bcos(<p).

As a result, using the relations (14) and the expansion (11), one obtains the dispersion relation, 
which describes the dependence of the frequency on the amplitude B  as

4 +  p k 2 + e [7B2 +  - a k 2YB2] (15)

s :

e1:

3. Anti-phase vibration modes

The other limit case is also considered here, namely, the high-frequency anti-phase vibration 
modes, which represent standing waves.
1) One of them describes unidirectional motions of the upper and lower disks of the DNA 
molecule, where these emotions are anti-phase with respect to motions of neighboring particles of the 
chain. So, one has ; it corresponds to the following relations:

r  = - =0 .

2) Ut = —Vj ; it corresponds to the following relations: The second vibration mode describes 

opposite motions of the upper and lower disks, that is,

yi = >'i(0,z,=0; -y ,-! = y,, -y 1+1 = y, (17)

The anti-phase mode 1) is described by the following ODE which is obtained from the system
(1) under relations (16):

The small parameter method is used here to determine solutions of the equations (20) near the 
trivial equilibrium position. Introducing the new independent variable i/j, we will find the solution 
which is 271 -periodic by ip. The following transformation is used:

" = (19)

where is some constant which will be determined by construction of the periodic solution. One has
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the following equation instead of the equation (18):

d s +  z v l  [45(1 +  p)] — 4svfSpyz2 =  0 (20)

Here the small parameter s characterizes a smallness of nonlinear terms with respect to linear 
ones. A solution of the equation (20) is determined in power series with respect to the small 
parameter £, namely,

We do not present here details of standard construction; one writes a solution of the equation 
(21), returning to the argument tp , as

z  = Geos 

0 .

(i)+ £
25pyV i*C 2 2S p y  v±? ?
---------— I- ------ “ G cos

jia. (n i - 4 ) m
+ 0O2) (22)

The expansion (22) is uniform; it can see that a term of the first order by s is small with respect to the 
main term of expansion if the wave amplitude G is relatively small.

For the anti-phase mode of the form 2) one obtains the following ODE from the system (1):

(23)

tfyExpanding exponents to Tailor series and saving nonlinear terms up to third degree on v and —, onedt
has

(24)

Repeating standard transforms of the small parameter method, one obtains, as a result, the 
following solution of the equation (24):

(25)

It can see that a term of the first order by s is small with respect to the main term of expansion 
if the amplitude F  is relatively small. The expansion (25) is uniform one.

Comparing two obtained anti-phase vibration modes, we use the same parameters as in the 
long-wavelength case (Section 2). Here the anti-phase mode 2) has a frequency v  = 2.292, and the 
anti-phase mode 1) has a frequency v  = 0,488. So, namely the mode 2) has the higher frequency.

Analytical solutions (22) and (28) were compared with numerical solutions of equations (18) 
and (24), obtained by the Runge-Kutta method of the 4-th order. Initial solutions of the analytical and 
numerical solutions are the same, namely, z(0) = 0.049, z '(0 ) =  0; the same initial values are used 
for the variable y. The system parameters are the same as in the long-wavelength approximation. We 
can see that diagrams of these solutions coincide. It shows a good exactness of the approximate 
analytical solutions.

y = * » ( £ )  + F 2v 2l ( 3 ^ 2  + 2SpY)

■ cos ■

+

C“ ©] ■ O fr2),
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a) b)

Figure 3. Diagrams of analytical and numerical solutions describing the anti-phase vibration modes. Solid line 
corresponds to the numerical simulation; dotted one -  to the analytical solution. Plot in Fig. 2,a) is obtained for 
the anti-phase mode 1); plot in Fig. 2.6) is obtained for the anti-phase mode 2).

4. Stability of the localized standing waves

Localized standing waves are excited by initial displacement, or velocity of some chosen disk 
in the PBD model. Stability of the solution is analyzed by the numerical-analytical approach which is 
a consequence of the known Lyapunov definition of stability [8]. Namely, values of kinetic energies 
(or velocities) of the chosen disk and neighboring elements are compared. We fix the instability if 
more than 10 percent of the initial kinetic energy passes to these neighboring discs. Calculations are 
made at points on some chosen mesh of the system parameter space. Calculations are conducted as 
long as boundaries of stability/ instability regions (in a chosen scale) on the system parameter space 
are variable. This is the principal criterion for the choice of the calculation time T.

Results of calculations are presented in Fig. 3, where boundaries of stability/ instability 
regions in the system configuration space are shown. Here a = 0.65 y = 0.577. The stability regions 
are situated from the left of the boundaries.

Conclusions

Traveling and standing waves in the model by Peyrard-Bishop- Dauxois (PBD 
model), which describes the dynamics of the DNA molecule, are considered. Traveling waves 
are constructed in the long-wavelength limit by the small parameter method; here the small 
parameter characterizes a smallness of the nonlinear terms in the PBD model. The most high- 
frequency modes, namely, anti-phase modes, are constructed also by the small 
parameter method. Stability o f  standing localized modes is analyzed. Checking 
numerical simulation shows good exactness of the obtained approximate analytical 
solutions.
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d

c)

Figure 3. Boundaries of the stability/ instability regions in the system (1) space of parameters. Figs. 
3a,b -  boundaries in the place (k, p) for d=0.9 (Fig.3a) and d=0.33 (Fig.3b); Fig. 3c -  boundaries in

the place (k, d) for p=0.5.
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