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Abstract
Computation cost of explicit time integration can be reduced substantially using the reciprocal mass matrices. 
General variational derivation of the method, its verification by an eigenvalue benchmark and comparison on a 
transient example are presented in this contribution.
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Introduction
Vibro-impact systems are often simulated using explicit time integration schemes because of their 

high robustness for non-smooth and highly dynamic processes and ability to resolve propagation of shock 
waves. At the same time, these schemes are only conditionally stable resulting in small critical time step 
and high computational cost for a simulation. In this contribution, a method for increasing of the critical 
time step with respect to standard lumped mass matrices is presented and a possibility of on application 
an example of simplified o pneumatic hammers is shown.

A reciprocal mass matrix is the inverse of mass matrix. The lumped (diagonalized) mass matrix 
yields a diagonal reciprocal mass matrix. The consistent mass matrix yields a fully populated (dense) 
reciprocal mass, which is impractical. Recently, a variational method for construction of sparse and 
consistent reciprocal mass matrices was proposed for general finite elements [1]. This method is based 
on a parametrized variational principle with independent field for displacement, velocity and linear 
momentum. Choosing an independent discretization of the linear momentum with a local dual basis 
enables derivation of the sparse reciprocal mass matrix. The free velocity field is condensed on the 
element level and gives a freedom to tune the dispersion error of the discretization and the critical time 
step. For an alternative algebraic derivation of the reciprocal mass matrices see [2].

In this contribution, the derivation of reciprocal mass matrices is extended to the total Lagrangian 
formulation. The correctness of the derivation is illustrated with a standard NAFEMS eigenfrequency 
benchmark. Potential efficiency of the approach is shown with an example transient simulation of a piston 
of pneumatic hammer with a brakes. The evolution of stresses at critical points is simulated using lumped 
mass matrix, reciprocal mass matrix and an algebraic selectively scaled mass matrices of Olovsson [3].

1. Derivation of reciprocal mass matrices
In the following, a unified approach for reciprocal mass matrices based on the modification of the 

virtual work of d’Alambert force is presented. The concept is verified by a simple eigenvalue benchmark 
and a transient example.

Starting point for the derivation is the principle of virtual work depending on the single displacement 
field ui

S  W  (Ui) = S W int +  S W kin -  S W ext, (1)
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where the internal, kinetic and external virtual work is defined as

8 W int = /  8 ui,jPij(F) dV, (2)
Jo

8w kin =  f  8  u p  Hi dV, (3)
Jo

8 W ext =  8 uipbi dV +  / 8 u ti  dA. (4)
J o  J r t

Above, P-j(F) is the 1st Piola-Kirchhoff stress computed from the deformation gradient F j  =  8 ij  +  ui;j. ti 
denotes the traction on the part of the surface r t and bi denotes the body load. The core idea is to modify 
the virtual kinetic work 8 Wkin by using the variational templates

8Wkm’° = J  (8pi (i>i -  (1 -  C2) p -1 pi -  C2vi) -  C2 8 vi(p i -  p v i)  -  8 upi) dV, (5)

with vi and p i being the velocity and the linear momentum, C2 being a free template parameters for the 
inertia scaling.

Now the modified virtual work expression 8Wkin,° is discretized to obtain the equation of motion 
with selectively scaled inertia. The discretization of the virtual kinetic work 8Wkln,° follows the author’s 
paper [1] and yields a sparse variationally selectively scaled sparse reciprocal mass matrix.

The weak form (5) can be discretized using a Bubnov-Galerkin approach with independent 
discretization for the displacement, velocity and linear momentum

Nn Nn
ui *  uh = I N iu ii, 8 ui *  8 uh = I N i 8uii, (6)

1=1 i=1
Nn Nn

pi *  ph = I Xip ii, 8 p i *  8ph = I Xi8pii> (7)
i=1 i=1
Ne Nve Ne Nve

vi -  vh = I I  8 vi *  8vh = I I  ^ 8 vke), (8)
e=1 k=1 e=1 k=1

with Ni and Xi being the shape functions for the displacement and the linear momentum at the i th node 
and yike) being an element-wise interpolation of the velocity. The discretized virtual kinetic work is then

8wkm,°,h = ( 8 p iiX i (N ju ji -  (1 -  C2 ) p -1 Xjpji -  C2 wfkvk) -

- C 2 ^ fk 8 vek(X ip ii - p y f r f )  -  8 unN iX jp j i )  dV. (9)

Bi-orthogonality of the displacement and momentum shape functions is adopted with

8ij =  [  X  jN i  dV, (10)
J o h

where 8i j  is the Kronecker-delta. The discretized virtual kinetic work yields two equations

uii =  (1 -  C2 )Ci jp j i  +  C2Wt v <k ) , Y ^ v ^  =  W(k  p u  (11)

and additionally a contribution p ii to the equilibrium. The matrices Cij, and W(k  are defined as

Ci j = L  p -1 xixj dV ’ y ( ) = L  p ^ ^ dV ’ W(e ^ = L  X i  ̂ dV. (12)

Eliminating the velocity parameters from (11) yields

uii =  Cj i jpj j , (13)

400



Anton Tkachuk, Manfred Bischoff

where C J  is the variationally selectively scaled reciprocal mass matrix (VSRMM) with free parameter 
C2

CiJij = (1 -  C 2)C i j  Sij +  £  C2W |)((F (e))—1)* w g . (14)
e adjacent to l,J

Note, that the matrix above stay positive definite for —1 < C2 < 1. From the experience, values 
close to 1 provide good accuracy and sufficient reduction of the critical time step with respect to lumped 
mass matrix. The physical dimension of individual entries of the reciprocal mass matrix is kg-1, i.e. the 
inverse of mass.

Finally, the equation of motion is

Pii =  / f  — fT  (15)
Ui = C h ijP jj, (16)

with the external force vector / ixt = JqhN i p b idV +  Jr hNl tidA and internal force vectors /I!nt,(e) =
Jo h N ijP ij dV . In geometrically linear case, the internal force is computed / /“lt,(e) = K iiJju Jj , with 
K being the stiffness matrix.

2. FV32 benchmark
The derivation of the reciprocal mass matrix seems to be artificial and redundant. In order to 

illustrate that the reciprocal mass matrix can represent correct inertia properties of a structure, a standard 
NAFEMS FV32 benchmark is considered. It shows that the lowest structurally relevant eigenfrequencies 
and eigenmodes are computed with sufficient accuracy and the highest frequency is reduced significantly 
with respect to the lumped mass matrix.

The setup of the NAFEMS FV32 benchmark is given in Figure 1. It represents a tapered plate made 
of homogeneous material fixed in both directions at the wide end. In-plane eigenvibration are considered 
and the reference values for the six lowest modes are provided, see Table 1. Here, this problem is solved 
using 3-node constant strain triangle elements with a mapped mesh 40 x  20. The stiffness of the elements 
is computed exactly using 1-point quadrature. All element mass matrices are computed using three-point 
quadrature, see e.g. [4]. The default NAG eigenvalue solver is used for the computation of the eigenvalue 
problem within a Maple implementation of the problem.

E = 200 GPa 
v = 0.3
p = 8000 kg/m3 

thickness = 0.05 m 
mesh 40x20

Figure 1. Setup of FV32 NAFEMS benchmark.

/i.H z /2,Hz / 3,Hz / 4,Hz /s. Hz /6,Hz /max, Hz /o / /LMM JmaxU max
Reference 44.623 130.03 162.70 246.05 379.90 391.44 - -
CMM 44.845 130.94 162.75 248.46 384.73 391.91 65795 1.72
LMM 44.825 130.70 162.71 247.47 382.00 391.25 37125 1.00
VSRMM, C2 = 0.99 44.799 130.37 162.66 246.12 378.26 390.66 19172 0.52

Table 1. Six lowest frequencies for FV32 benchmark computed with consistent, lumped and reciprocal 
mass matrix. Mesh: 40 x 20 elements.
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Computation of the reciprocal mass matrix requires a bi-orthogonal basis to satisfy the bi­
orthogonality condition (10). Here, a close form expressions for the dual base from [5] are used 
with

N  = 1 -  % -  n  N 2 =  % N 3 =  n , (17)
X1 = 3 -  4% -  4n X2 = 4% -  1 X3 = 4n -  1. (18)

The constant element-wise ansatz for the velocity shape functions is used

1 0 
0 1 (19)

The eigenmodes and eigenfrequencies in cas of the reciprocal mass matrix are computed from eigenvalue 
problem as follows

(C°K-  ©2I)0 = 0. (20)

The six lowest eigenfrequencies computed with consistent, lumped, and variationally scaled 
reciprocal mass matrix are given in Table 1. The relative error for consistent mass matrix for the six 
lowest modes is 1.2% whereas for lumped and VSRMM is below 0.6%. At the same time, the reciprocal 
mass matrix provides 48% reduction of the highest frequency with respect to lumped mass matrix, e.g. 
the critical time step for the alternative discretization is almost twice higher.

The six lowest eigenmodes computed with VSRMM are shown in Figure 2. They are visually 
similar to the given in the benchmark sheet.

Figure 2. The six lowest modes for FV32 NAFEMS benchmark computed with T1 element and 
variationally scaled reciprocal mass matrix with C2 =  0.99. Mesh: 40 x 20 elements. The gray polygon 
represents edges of the undeformed structure.

402



Anton Tkachuk, Manfred Bischoff

3. Transient example for a simplified hammer model
Possibility of application of reciprocal mass matrices to vibro-impact system is shown here on 

example of pulse load on a piston of a pneumatic hammer with brakes. Consider a two-dimensional 
simplified model of hammer in Figure 3. The piston of the hammer consists of an elongated rod, thick 
head and connection to rubber-metallic brake. The brake connects the piston to the housing. Both parts 
are assumed to be elastic and isotropic with properties given in the Figure 3. Connection to housing is 
assumed to be perfect clamping. The piston is subjected to pulse pressure loading at thin end in first 20 
mks as p  =  0.005(1 +  cos(100nt)), GPa. The response of the hammer is simulated for the first 100 mks. 
A normal stress component oxx at point A (before brake) and B (after brake and before head) are the 
target values.

Hammer
E = 210 GPa 
v = 0.3
p = 7850 kg/m3

Brakes
E = 0. GPa 
v = 0. 5 
p = 1200 kg/m3

Plane strain

All dimentions in mm

End time is 100 mks

120

Figure 3. Setup for simplified hammer example.

The piston and the brakes are discretized using 4-node fully integrated quadrilateral finite elements 
with two displacement per node and with average element size 1 mm (102 elements per wave-length of 
loading pulse). This result in a model with 3680 finite elements and 3904 nodes. The time integration is 
performed using central difference scheme using time step being 90% of the critical value. The critical 
time step is computed from the highest global eigenfrequency of the system using the forward iteration 
method, see [6]. The corresponding critical time steps for the lumped mass, selectively scaled reciprocal 
mass and algebraically selectively scaled mass matrices are given in Table 2. The reciprocal mass matrix 
is computed for the standard dual basis and the constant basis (19). For all mass scaling methods, the 
uniform values of mass scaling are used.

Mass type Atcrit, ns sn3 Relative cost Aver. number PCG iter.for |R| < 10 6
LMM 109 98.1 1.00 -
VSRMM, C2 = 0.83 126 113.4 0.88 -
VSRMM, C2 = 0.95 198 178.2 0.58 -
ASMS, p = 2.06 206 185.4 0.67 10
ASMS, p = 4.12 269 241.1 0.52 13

Table 2. Critical time step and relative cost for the hammer example.

The simulation is performed within NumPro (C++ written in-house finite element code of Institute 
for Structural Mechanics, University of Stuttgart). This code has implementation of several advances 
selective mass scaling methods. Algebraic selective mass scaling (ASMS) proposed in [3] is among 
these methods. This method adds artificial terms to lumped mass matrix on diagonal and off-diagonal 
terms keeping the translational mass of structure and selectively reducing the highest eigenfrequencies. 
However, this method results in non-diagonal mass matrix, which requires solution of a linear system for 
the acceleration vector from the total force vector each time step (ii = M- 1Ftot). This can be efficiently
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done using the preconditioned conjugate gradient method with Jacobi preconditioner as proposed in [7]. 
Usually, PCG requires few iteration to converge, as shown in last column of Table 2, but adds an additional 
overhead to the mass scaling procedure (about 33% in the considered example). Such overhead is avoided 
for the reciprocal mass matrices where the inverse is directly provided.

The history of normal stress oxx at points A and B are given in Figure 4. All proposed mass 
matrix discretization correctly represent evolution of stress: Arrival time of the stress pulse, negative 
stress behind the shock wave and arriving reflected pulse. Only ASMS with j8 = 4.12 yield slight phase 
shift. VSRMM with C2 = 0.95 for the same quality of results as lumped mass matrix can save 42% of 
computational cost, see Table 2. Using smaller values of C2, e.g. 0.83 , yield less speed up and it is not 
advised.

Figure 4. Evolution of xx component of Cauchy stress at point A (above) and B (below).

Conclusions
Reciprocal mass matrices can represent complicated dynamic behavior and reduce the computa­

tional cost of explicit time integration. Variational derivation of the reciprocal mass matrices uses the 
parametrized principle of virtual work with free velocity and linear momentum fields. For a space form 
of the reciprocal mass matrix the dual basis for linear momentum and an element-wise base for velocity 
must be used. Reduction of computational cost in range 42-48% is obtained for the examples above.
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Direction of future research
The given example and theory is not yet sufficient to cover all needs. The future steps are 

implementation of penalty contact, local (nodal) time step estimate and finding the optimal values 
of coefficient C2 for wide range of finite elements. This research is foreseen in project BI 722-8/1 
’’Variational methods for mass scaling” funded by German Research Foundation.
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