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Summary

Net survival, the one that would be observed if the disease under study were the only cause

of death, is an important, useful, and increasingly used indicator in public health, especially

in population-based studies. Estimates of net survival and effects of prognostic factor can be

obtained by excess hazard regression modeling. Whereas various diagnostic tools were developed

for overall survival analysis, few methods are available to check the assumptions of excess hazard

models. We propose here two formal tests to check the proportional hazard assumption and the

validity of the functional form of the covariate effects in the context of flexible parametric excess

hazard modeling. These tests were adapted from martingale-residual-based tests for parametric

modeling of overall survival to allow adding to the model a necessary element for net survival

analysis : the population mortality hazard. We studied the size and the power of these tests

through an extensive simulation study based on complex but realistic data. The new tests showed

sizes close to the nominal values and satisfactory powers. The power of the proportionality test

was similar or greater than that of other tests already available in the field of net survival. We

illustrate the use of these tests with real data from French cancer registries.

Key words: Checking model assumptions ; Flexible parametric excess hazard model ; Functional form ;

Martingale residuals ; Net survival ; Proportional hazard assumption.

1. Introduction

Net survival is defined as the survival that would be observed if the disease under study were

the only cause of death ; that is, the survival that would be observed after removing deaths from

other causes. Net survival is a relevant indicator now widely used in public health studies because
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it allows comparisons between countries (Allemani and others, 2015; De Angelis and others, 2015)

and analyses of time trends. Indeed, once removed, deaths from other causes (often varying with

time and place) disturb no more the above mentioned comparisons.

Point estimations of net survival can be obtained with the non-parametric Pohar-Perme esti-

mator (Pohar-Perme and others, 2012). However, this estimator quantifies the prognostic effects

of the covariates through stratification only, which is rapidly impracticable ; an efficient analysis

requires an excess hazard model. Since the seminal paper of Estève (Esteve and others, 1990),

several extensions of this model have been developed. The main improvements were the intro-

duction of flexible parametric continuous functions (such as splines) to model the baseline excess

mortality hazard, the non-proportional effects, and the functional forms of the covariates (Giorgi

and others, 2003; Dickman and others, 2004; Lambert and others, 2005; Nelson and others, 2007;

Remontet and others, 2007; Crowther and Lambert, 2014).

In comparison with non-parametric or semi-parametric models, these flexible parametric mo-

dels offer numerous key advantages (Lin and Spiekerman, 1996). In particular, parametric models

allow : i) simple efficient inference from full likelihood ; ii) dealing adequately with non-linear and

non-proportional effects ; and iii) reporting relative but useful absolute effect measures (King and

others, 2012) such as the shape of the dynamics of the excess rate, which is of great clinical inter-

est (Corm and others, 2011). These flexible parametric excess hazard models have been regularly

used in cancer epidemiology to provide estimations of net survival (Bossard and others, 2007;

Corm and others, 2011) or derived indicators such as the crude probability of death (Charvat

and others, 2013) or the number of years of life lost due to cancer (Andersson and others, 2013).

Though the excess hazard model is widely used, few methods are available to check its as-

sumptions. To our knowledge, there are only two methods, both based on the analysis of the

residuals.

The first method was proposed by Stare and others (2005) to check the assumption of pro-
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portional hazards (PHs). First, they defined residuals for excess hazard models by imitating the

form of the residuals as proposed by Shoenfeld (Schoenfeld, 1982). The latter residuals have two

main properties : they arise directly from the score function of the partial likelihood of the Cox

model and they are the differences between the observed covariate values at the time of death and

their predictions according to the model. In contrast, the Shoenfeld-like residuals defined by Stare

have only the second property ; however, they can be used to check the PH assumption within

the framework of the excess hazard model (Stare and others, 2005). To this end, a test statistic

is obtained by forming a cumulative sum process of standardized Shoenfeld-like residuals, which

can be approximated by a Brownian bridge process. The distribution of this statistic under the

null hypothesis is then obtained using standard results from the Brownian-bridge theory.

In agreement with the ideas of Lin and others (1993) on overall survival, the second method

was proposed by Cortese and Scheike (2008) for semi-parametric excess hazard models. This

method allows checking the PH assumption and the functional form (FF) of the covariates by

cumulating martingale residuals over the time of follow-up and over the covariate values, res-

pectively. The distribution under the null hypothesis of these processes can be approximated by

simulating corresponding Gaussian processes.

Despite the availability of these two methods, there is a real need for diagnostic tools spe-

cific to parametric models. Indeed, the semi-parametric Cortese approach does not fit within

this parametric paradigm and, contrary to the choice made for the Stare test, it is potentially

interesting to privilege residuals that arise naturally from the score function and develop new

tests to assess proportionality using the useful properties of the score process. Furthermore, no

tool is yet available in the excess hazard parametric setting for assumptions other than the PH

(e.g., FF assumption).

In this paper, we propose a test to check the PH assumption and another test to check the FF

of a covariate in the framework of flexible parametric excess hazard model. To achieve this goal,
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we used the general approach proposed by Lin and Spiekerman (1996) for parametric models in

the overall survival setting and adapted it to the net survival setting. This led to two formal tests

based on similar stochastic processes.

Herein, Section 2 includes a brief presentation of Lin’s approach and its adaptation to the

context of the excess hazard model. Section 3 shows a simulation study to determine the size and

the power of the PH test and Section 4 determines the same for the FF test. Section 5 shows

the assessment of the performances of these tests when the other assumptions are misspecified.

We illustrate the use of these tests on real data in Section 6 and discuss the results in the last

section.

2. Methods

2.1 Lin’s approaches to check the usual assumptions in parametric survival analysis

Lin and others (1993) and Lin and Spiekerman (1996) proposed a general approach to check

the assumptions of survival regression models using the martingale theoretical framework. First,

we present briefly the methodology they developed, emphasizing the intuitive aspect of the rea-

soning, and then show the way this methodology can be adapted to check the main assumptions

in the flexible parametric excess hazard framework, knowing that the intuitive aspect of the

reasoning is the same. In this section, we adopted the notation used by Lin and Spiekerman

(1996).

Let (Xi,∆i,Zi) be the data available on patient i, where Xi is the time of observation (mi-

nimum between the time to death Ti and the censoring time Ci), ∆i the death indicator, and

Zi = {Zi1, ..., Zip}′ a p-vector of covariates. Let further the counting process related to patient i

be Ni (u) = I (Xi 6 u,∆i = 1) and the at-risk process be Yi (u) = I (Xi > u) where I () is the in-

dicator function. The martingale residuals compare the status of each subject at time t (Ni (t) = 0

or Ni (t) = 1) with its estimated expected value at time t. Let λi (t|Zi,θ) = λ0 (t,χ) exp
(
β′Zi

)
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and Λi (t|Zi,θ) = Λ0 (t,χ) exp
(
β′Zi

)
denote, respectively, the instantaneous hazard function and

the cumulative hazard function associated with individual i, where θ =
(
β′,χ′

)′
is an unknown

vector of parameters to be estimated and β and χ, respectively, the parameters for covariates Z

and baseline hazard. The martingale residuals can be then written :

M̂i (t) = Ni (t)−
∫ t

0

Yi (ν)λi

(
ν|Zi, θ̂

)
dν (2.1)

Martingale residuals and their transforms were first developed in the non-parametric model set-

ting and then in the Cox model setting where they were particularly used as graphical methods to

detect departures from modeling assumptions. For instance, to test the PH assumption, Schoen-

feld (1982) introduced residuals that allow detecting graphically whether the effect of the covariate

of interest depends on time. Later, Barlow and Prentice (1988) generalized these residuals and

Grambsch and Therneau (1994) introduced a standardized version of these residuals. To detect

the FF of a covariate, Therneau and others (1990) showed that the plot of the martingale re-

siduals over the covariate values can be used to obtain an approximation of the true functional

form.

However, the interpretation of the curves may be difficult because one cannot know whether

the trend shown by the residual plot is due to a real misspecification or to natural variations. One

solution would be to work with formal tests based on quantities of known distributions under

the null hypothesis. To this end, Lin and others (1993) and Lin and Spiekerman (1996) proposed

a general framework to develop several techniques for examining various modeling assumptions.

Each technique derives from a cumulative sum of martingale-based residuals by considering two

classes of multi-parameter stochastic processes. In this article, we will focus only on the process

Wz, defined by :

Wz (t, z) = n−1/2
n∑
i=1

f (Zi) I (Zi 6 z) M̂i (t) (2.2)

where f (.) is a known function, z = {z1, ..., zp}′ ∈ Rp, and where I (Zi 6 z) = I (Z1i 6 z1, ..., Zpi 6 zp)

equals to 1 when each component of Zi is smaller than its corresponding component of z.
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This process is a cumulative sum of the martingale residuals “weighted” by a function f. Lin

and Spiekerman (1996) showed the way the null distribution of Wz (t, z) can be approximated

by simulating appropriate zero-mean Gaussian processes in the general case (that is, whatever f,

t, or z), paving the way for tests of more specific hypotheses. In particular, Lin and Spiekerman

(1996) examined two special cases of Wz that allowed assessing the proportionality (PH) and

the functional form (FF) of a single covariate.

Regarding the PH assumption, Lin and Spiekerman (1996) considered the identity f function

and z = (∞, ...,∞) ; Wz (t, z) is then expressed as :

Wz (t, z) = n−1/2
n∑
i=1

ZiM̂i (t) (2.3)

which corresponds also to the score process evaluated at time t when the covariates that form

Zi are fixed over time, U
(
θ̂, t
)

= n−1/2
∑n
i=1 ZiM̂i (t). This process is informative about the

PH assumption and can be used to check it (as done in the PHREG procedure of SAS software,

version 9.3 (SAS Institute Inc., Cary, NC)) : the score process Uk, evaluated at θ̂, is expected

to be informative about the PH misspecification of the kth component of Zi. Indeed, Uk (θ, t)

has the form the usual score would have if the data were artificially censored at time t. Thus,

Uk (θ, t) equals zero for value θ = θt of the parameter that would be estimated on the basis of

data censored at time t. However, when the assumption of PHs is met, the parameter estimate is

the “same” whatever the censoring time ; i.e., θ̂t is close to θ̂ whatever t. Therefore, under the null

hypothesis “the proportional hazard assumption is correct”, the process Uk

(
θ̂, t
)

is expected to

remain close to zero over time.

Likewise, regarding the functional form of the jth covariate component, Lin and Spiekerman

(1996) considered the following process :

W (j) (x) = n−1/2
n∑
i=1

I (Zji 6 x) M̂i (2.4)

This corresponds to a special case of process Wz (t, z) taking f as the constant function
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f (.) = 1, t = ∞, and z = (∞, ..., zj , ...,∞). When cumulated over zj , (zj being the observed

values of covariate Zj), this process is informative about the specification of the FF of the covariate

and can be used to check it. Indeed, Therneau and others (1990) have shown that the martingale

residuals at the maximum time of follow-up are informative about the functional form of the

continuous covariates of the model. Therefore, their cumulative sum over the covariate values

is also useful to detect a misspecification : when the functional form is correct, the martingale

residuals are close to zero and their cumulative sum should not present structured trends but

fluctuate around zero.

2.2 The proposed test to check the PH assumption of a parametric excess hazard model

We now present the way the above methodology can be adapted to the parametric excess

hazard framework.

We consider the following excess hazard model (Esteve and others, 1990; Remontet and others,

2007) :

λov (t|Z,θ) = λE (t|Z,θ) + λP (a+ t, z̃) = λ0 (t,χ) exp (βZ) + λP (a+ t, z̃) (2.5)

where λov represents the overall mortality hazard, λE the excess mortality hazard (defined by

θ =
(
β′,χ′

)′
the unknown vector of parameters to be estimated, and Z the set of prognostic

covariates supposed fixed in time), z̃ the vector of the demographic covariates (other than age at

time of death or censoring (a+ t)) that define the population mortality hazard λP and a the age

at diagnosis. In this section, we will focus on the score process of the kth prognostic covariate Zk.

2.2.1 The score process. Let us first consider the score process in this setting. The log likelihood

for individual i can be written (up to a constant) :

Li (θ, Xi) = −
∫ Xi

0

λE (u|Zi,θ) du+Ni (Xi) log [λE (Xi|Zi,θ) + λP (ai +Xi, z̃i)] (2.6)
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The kth component Uk (θ, Xi) of the score function can be written :

Uk (θ, Xi) =
∑
i

∂

∂βk
Li (θ, Xi) =

∑
i

[
−
∫ Xi

0

ZikλE (u|Zi,θ) du+Ni (Xi)
ZikλE (u|Zi,θ)

λE (u|Zi,θ) + λP (ai +Xi, z̃i)

]
(2.7)

Using a counting process formulation and noting τ the maximum time of follow-up, Uk (θ, τ) may

be written :

Uk (θ, τ) =
∑
i

Zik

[∫ τ

0

−Yi (u)λE (u|Zi,θ) du+

∫ τ

0

Yi (u)λE (u|Zi,θ)

λE (u|Zi,θ) + λP (ai + u, z̃i)
dNi (u)

]
(2.8)

which equals zero for the maximum likelihood (ML) estimate of θ. Replacing τ by t and θ by its

ML estimate, we obtain :

Uk

(
θ̂, t
)

=
∑
i

Zik ∫ t

0

λE

(
u|Zi, θ̂

)
λE

(
u|Zi, θ̂

)
+ λP (ai + u, z̃i)

dM̂i (u)

 (2.9)

a cumulative sum of weighted martingale residuals, which is known as the score process with

M̂i (t) = Ni (t) −
∫ t
0
Yi (u)

[
λE

(
u|Zi, θ̂

)
+ λP (ai + u, z̃i)

]
du. Note that dM̂i is weighted by the

product of the covariate value of patient i and the probability that death is caused by the disease

under study, which is specific to the net survival setting.

2.2.2 Expression of the score process as a special case of a new class of stochastic processes. By

analogy with the works of Lin and others (1993) and Lin and Spiekerman (1996) in the overall

survival setting, process Uk, evaluated at θ̂, can no longer be written in terms of a particular

process Wz (t, z) as in (2.3) because the integrand depends on u. This led us to consider a new

class of stochastic processes :

W(2)
z (t, z) = n−1/2

n∑
i=1

[∫ t

0

f (u|Zi,θ) I (Zi 6 z) dMi (u)

]
(2.10)

which could be approximated by using its Taylor expansion and by approximating the unknown

limiting distribution of the martingale process by a Gaussian process having the same charac-

teristics. Note that when f (u|Zi,θ) does not depend on u and θ, W
(2)
z can be simplified to a
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process of the form Wz as in (2.3). We can now write the score function in (2.9) evaluated at θ̂

as a special case of W
(2)
z with f (u|x,θ) = xkλE(u|x,θ)

λE(u|x,θ)+λP (ai+u,z̃i)
and z = (∞, ...,∞).

2.2.3 Approximation of the limiting distribution of the score process under the null hypothesis

and test statistic. Let us now consider the limiting distribution of the special case of W
(2)
z defined

above. The population hazard λp being considered as fixed and known in the excess hazard model,

f remains a predictable process. Thus, heuristically, the different steps of the demonstration made

in Section 4.1 by Lin and Spiekerman (1996) in the overall parametric survival setting should

remain valid in the net survival setting. Under the null hypothesis, Uk

(
θ̂, t
)

fluctuates around

zero and its limiting distribution can be approximated using a Taylor expansion and Monte-Carlo

simulations of Gaussian processes (as shown in section 3 of Supplementary Material). Practically,

it leads to form the following process Ŵ
(2)
z :

Ŵ(2)
z (t) = n−1/2

(
D1

(
θ̂, t
)
− I

(
θ̂, t
)
I
(
θ̂, τ

)−1
D1

(
θ̂, τ

))
(2.11)

with D1

(
θ̂, t
)

=
∑
i

∫ t
0
f
(
u|Zi, θ̂

)
dNi (u)Gi, I

(
θ̂, t
)

and I
(
θ̂, τ

)
being the negative of the

second derivative of the log-likelihood at time t and time τ , respectively (I
(
θ̂, τ

)
is thus the

information matrix), the limiting distribution of n−1/2Uk

(
θ̂, t
)

is obtained considering the kth

line of Ŵ
(2)
z (t).

As indicated by Lin and Spiekerman (1996), it is natural to consider the test statistic sup
t

∣∣∣n−1/2Uk (θ̂, t)∣∣∣ :

the p-value of the new PH test corresponds to the proportion of cases in which the absolute maxi-

mum of the simulated Gaussian processes is higher than the test statistic. In other words, setting

the nominal value of the probability of type 1 error to 5% and simulating 1000 Gaussian pro-

cesses, the PH assumption will be rejected if less than 50 (over 1000) absolute maximums of

simulated Gaussian processes are higher than the absolute maximum score process value. Note

that it would be also informative to plot the observed score process over time with the simulated

Gaussian processes in order to see the pattern of Uk

(
θ̂, t
)

over time. Indeed, this would show
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the range of time values at which the score process moves away from the Gaussian processes ;

that is, the time points at which the PH assumption is no more valid.

2.3 The proposed test to check the FF of a covariate of a parametric excess hazard model

Concerning the functional form, the results of Lin and Spiekerman (1996) can be directly ap-

plied by considering the following process for the jth covariate component :W (j) (x) = n−1/2
∑n
i=1 I (Zji 6 x) M̂i,

similarly to the process considered by Lin and Spiekerman (1996) to check the functional form

of covariates (see Section 2.1, formula (2.4)). Hence, Lin’s framework applies and, under the null

hypothesis H0 (i.e., “the functional form is correct”), the limiting distribution of W (j) (x) can be

approximated by simulating the following process Ŵ (j) (x) :

n−1/2Ŵ (j) (x) ≈ n−1/2
(
P1 (x)− Ĵ (x) I

(
θ̂, τ

)−1
D1

(
θ̂, τ

))
(2.12)

with P1 (x) =
∑
i

∫ τ
0
I(Zji 6 x) dNi (u)Gi, D1

(
θ̂, t
)

=
∑
i

∫ t
0

ZiλE(u|Zi,θ̂)
λE(u|Zi,θ̂)+λP (ai+u,z̃i)

dNi (u)Gi,

Ĵ (x) =
∑
i

∫ τ
0
I (Zi 6 x)Zi exp

(
β̂
′
Zi

)
dΛ̂0 (u) and I

(
β̂, τ

)
being the negative of the information

matrix. As in section 2.2, the p-value can be obtained using the test statistic sup
y

∣∣n−1/2W (j) (x)
∣∣

which may be compared with the supremum of the 1000 simulated Gaussian processes.

3. Simulation study to assess the performance of the test of the PH assumption

We performed a simulation study to determine the size and the power of the new test that

checks the assumption of PHs (called thereafter “the new PH test”). The whole code to reproduce

the results of the simulation study (simulating the data, fitting the model and running the test)

are now available on the GitHub repository (cf the readme.pdf for explanations of the structure of

the programs) https://github.com/danielico/Biostatistics Paper/tree/master/Review.



12 C. Danieli and others

3.1 Simulation design

The performance of this test was estimated according to the sample size (n = 500, 1000,

or 2000 patients) and according to the strength of the non-proportional hazard (NPH) ef-

fect for which we defined three levels : low, medium, and high (see Supplementary Material -

http ://www.biostatistics.oxfordjournals.org). The size was evaluated using 2000 simulated da-

tasets and the power calculated using 1000 datasets. We supposed that age is the covariate of

interest whose PH assumption is under study. For each dataset, we simulated a cohort whose

distribution of covariate age corresponds to that of French colon cancer patients, with year of

diagnosis between 1990 and 2010 and end of follow-up in 2013. The time to death from cancer,

TE , was generated from a specific procedure detailed in section 1 of Supplementary Material,

whereas the time to death from other causes, TP , and the final observation time T were obtained

by the procedure described in Danieli and others (2012).

3.2 Implementation of the tests on the simulated datasets

The new PH test relied on martingale residuals obtained from a specific model : considering

each simulated dataset, we fit an excess hazard model (up to 10 years of follow-up) with a

quadratic regression spline with two knots (at 1 and 5 years) for the baseline excess hazard

and a linear and proportional effect of age (Table 1 in Supplementary Material). The maximum

likelihood estimates were obtained from a homemade procedure on the basis of Cavalieri-Simpson

integral approximation and a Newton-Raphson algorithm (Remontet and others, 2007) ; 1000

Gaussian processes were simulated to obtain the p-values of the new PH test.

We evaluated also the performance of the three tests developed by Stare and others (2005) to

calibrate the new PH test with the only tool currently available to test formally the PH hypothesis

in the net survival setting. The first test is based on the maximum value of the bridge process

(called thereafter T1). The second test is a weighted version of the first one, the weights of the
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residuals being set proportional to the number at risk at each event time (called thereafter T2).

The third test is based on the variance of the bridge process and used the Cramér-von Mises

statistic (called thereafter T3). These tests have been tailored for different departures from the

null hypothesis. They are available through the function rsadd in R package relsurv 2.09 (Pohar

and Stare, 2006). This function proposes several options : i) with method “max.lik”, Stare tests

are performed adjusting a piecewise-constant baseline excess hazard and the parameter estimates

are the maximum likelihood estimates (these tests are thereafter called “Stare T1 ML”, “Stare

T2 ML”, and “Stare T3 ML”) ; ii) with method “EM”, Stare tests are performed adjusting

an unspecified baseline excess hazard and the parameter estimates are obtained using an EM

algorithm (these tests are thereafter called “Stare T1 EM”, “Stare T2 EM”, and “Stare T3

EM”).

3.3 Results

Table 1 presents the sizes of the new PH test and those of Stare tests as well as their powers.

When the PH assumption was met, the sizes of all tests were close to the nominal value (5%) ;

however, the sizes of Stare tests based on ML method were slightly lower. As expected, when the

PH assumption was not met, the power of each test increased together with the sample size and

the strength of the NPH effect. The new PH test was found more powerful than T1 and T2 Stare

tests, whatever the sample size and the NPH effect, whereas its power was similar to that of T3.

(Table 1 about here)

4. Simulation study to assess the performance of the test of the FF of a

covariate

This simulation study is presented in section 2 of Supplementary Material.

Table 1 shows the size and the power of the new FF test. When the functional form of the
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covariate was correctly specified, the size was close to the nominal value. When the functional

form of the covariate was incorrectly specified, the power increased, as expected, with the sample

size and the strength of the NLIN effect.

5. Simulation study to assess the performances of both new tests when the

other assumptions than the one of interest are misspecified or

over-parameterized

In this section, we assessed the amount of inflation of the size of both tests in case of misspe-

cification of the other assumption and the loss of power in case of over-parameterization. More

precisely, to evaluate the inflation of the size of the new PH test in case of misspecification concer-

ning the FF of the covariate, we fitted a linear and proportional (LIN-PH) model on the non-linear

and proportional (NLIN-PH) simulated data (first row of Table 2) : this allowed checking whether

the PH test detects wrongly non-proportionality due to the presence of non-linearity. To evaluate

the loss of power of the new PH test in case of over-parameterization of the FF in the fitted mo-

del, we fitted a non-linear and proportional model (NLIN-PH) on the linear and non-proportional

(LIN-NPH) simulated data (second row of Table 2) : this allowed checking whether a part of the

non-proportionality of the data is “captured” by the non-linear part of the fitted model leading

to a loss of power of the PH test. In the same way, to evaluate the inflation of the size of the new

FF test in case of misspecification concerning the PH effect of the covariate, we fitted a LIN-PH

model on the LIN-NPH simulated data (third row of Table 2) : this allowed checking whether

the FF test detects wrongly non-linearity due to the presence of non-proportionality. Then, to

evaluate the loss of power of the new FF test in case of over-parameterization of the PH effect of

the covariate in the fitted model, we fitted a LIN-NPH model on the NLIN-PH simulated data

(fourth row of Table 2) : this allowed checking whether a part of the non-linearity of the data is

“captured” by the non-proportional part of the fitted model leading to a loss of power of FF test.
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For those scenarios summarized in Table 2, we simulated data with low effects of g (age) and

β (t).

(Table 2 about here)

Table 3 presents the sizes and the powers of the new PH and FF tests in case of misspecification

or over-parameterization of the other assumption than the one of interest.

(Table 3 about here)

In both tests, in case of misspecification, the size was higher than the nominal value and increased

together with the sample size. In case of over-parameterization, the loss of power ranged between

9% and 16% for the new PH test and between 5% and 7% for the new FF test.

6. Application to real data

We now illustrate the new PH and FF tests using cancer cases registered between 1989 and

1997 by the French cancer registries. A previous study (Bossard and others, 2007) on these data

suggested that the effect of age is linear and proportional in salivary gland cancer (377 cases), non-

linear and non-proportional in breast cancer (30923 cases), and non-linear and proportional in

non-Hodgkin lymphoma (6375 cases). The new tests were implemented using martingale residuals

obtained from an excess hazard model in which the baseline hazard was modeled with a quadratic

spline up to 10 years of follow-up (with two knots at 1 and 5 years) and the age effect was

“linear and proportional” or “non-linear and proportional” according to cases. We simulated

1000 Gaussian processes.

Concerning salivary glands cancer, the new PH test and the new FF test provided a p-value of

0.58 and 0.83, respectively. Thus, these formal tests support previous results that a proportional

and linear effect of age is adequate. The plot of the score process over time and of the cumulative

martingale residuals over age are shown in Figures 1a and 1b, respectively.
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Concerning breast cancer, the new PH test and the new FF test provided a p-values � 0.05.

These formal tests supported also previous results suggested by the previous study. The observed

processes are plotted in Figures 1c and 1d, respectively.

Concerning non-Hodgkin lymphoma, the new PH test of a model that assumes a linear effect

provided a p-value � 0.05, which means that the assumption of proportional effect was rejec-

ted (Figure 1e). This result differs from the one of the previous study. It could be due to the

misspecification of the functional form of age. Therefore, after assuming a non-linear effect in

the model, we expected that the new PH test would provide a p-value > 0.05. However, the PH

hypothesis was rejected as well (Figure 1f). This example illustrates the fact that the results

can differ between our tests and the LRT results obtained in a previous work on the same data

(Bossard and others, 2007).

(Figure 1 about here)

7. Discussion

In the present work, we propose two tests to check the main assumptions of a parametric

excess hazard model ; that is, the proportional hazard assumption and the functional form of the

covariates of interest. They are an extension of tests proposed by Lin and Spiekerman (1996). Our

tests and those of Lin are equivalent when there is no competing risk, that is, when the population

mortality hazard is set to zero. Both tests are developed in the same theoretical setting.

The performance of both tests was assessed from simulated data with realistic and complex

distributions. Indeed, using a specific algorithm, we were able to simulate data in which the

baseline hazard, the non-proportional, and the non-linear terms were modeled using smooth

functions whose theoretical parameters were obtained by adjusting an excess hazard model on

real French cancer registry data. Furthermore, because in real life the true model is not known,

we used two different models to simulate the data and analyze the simulated data : a fractional
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polynomial for simulation and regression splines for analysis.

The results concerning the PH test were satisfactory, especially with medium and high non-

proportional effects : the power was over 90% when the sample size was higher or equal to 1000

patients, size generally seen in population-based survival studies.

The power of the new PH test was higher than that of T1 or T2 Stare tests (based on the

maximum value of an approximate Brownian Bridge) but similar to that of T3 test (based on

the variance). This reminds us that the power of a test depends on the departure from the null

hypothesis and on the sensitivity of the test in detecting this particular form of discrepancy.

Indeed, as mentioned by Stare and others (2005), contrarily to the maximum tests, T3 test

exploits the whole path of the bridge process and is more powerful than T1 or T2 test when

the path of β (t) is non-monotonic, which is the case in our analysis (Figure 1 in Supplementary

Material).

However, the main goal of the present paper was not to make an exhaustive comparison of

all existing tests under different alternatives, but to validate the new tests specifically designed

for flexible excess hazard models.

The results concerning the new FF test are also encouraging : the size was correct and the

power satisfactory. This new FF test is therefore a very useful tool to test linearity but also to

test more complex forms. For example, when splines are used to model non-linearity, it allows

checking the quality of the fit provided by this kind of parametric functions.

In contrast with the Stare approach, one interesting feature of the new tests is that their values

do not depend on the population expected mortality of censored observations. The population

expected values are essentially used to evaluate the probability that a death is caused by the

disease under study.

Here, we were not able to report comparisons with tests proposed by Cortese and Scheike

(2008), which are available in the R package timereg, because we could not obtain coherent
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results from this program (the sizes were equal to zero whatever the sample size and the powers

were very low compared with the ones presented in this paper).

In practice, the users of the new PH and FF tests have to be aware that these tests suppose

that other assumptions are true ; i.e., the null hypothesis means that the whole model is correctly

specified. This is why the results with real data have to be interpreted with caution ; indeed,

the misspecification of one aspect may impact the test of another aspect. For example, the

misspecification of the FF of a covariate can impact the score process behavior when checking

the PH assumption. However, the results in Table 3 show that if we over-parameterize the PH

effect (NPH instead of PH), the loss of power of the FF test will not be large ; likewise, if we

over-parameterize the FF effect, the loss of power of the PH test will be small. Therefore, as

already suggested by Abrahamowicz and Mackenzie (2007), it is desirable to carry out the PH

test specifying systematically a non-linear effect for the covariate of interest ; otherwise, carry out

the FF test specifying systematically a non-proportional effect for the covariate of interest.

One solution to these problems of misspecification could be the development of an approach

able to test simultaneously several hypotheses such as the PH assumption and the FF of the

covariates of interest. Several tools have been developed within the context of overall survival

(Pohar-Perme and Andersen, 2008; Sasieni, 2003). An interesting but complex perspective is to

adapt these tests to the context of net survival.

As shown above, parametric functions such as splines or fractional polynomials can be success-

fully used to model non-proportionality (or non-linearity). The likelihood ratio test or AIC/BIC

criteria can then be used to assess the value of the added complexity. We support and extensively

use this approach in our studies (Bossard and others, 2007; Remontet and others, 2007; Corm

and others, 2011; Mounier and others, 2015) as it is a very useful tool. Our proposed tests have

the advantage to avoid a specific alternative hypothesis. A comparison between this two way of

assessing proportionality and linearity would be an interesting point to study. The new tests indi-



Martingale residuals for checking excess hazard model assumptions 19

cate not only whether the null hypothesis should be rejected or not, but also, through the plot of

the observed process with its corresponding Gaussian processes, they allow knowing over which

period or range of values of the covariate of interest, the assumption is not met. In complement

to this graph, one can still use smoothed residual scatterplots to investigate the behavior of the

effect of the covariates over time or of their functional form.

With a sample size of 2000 patients and 1000 simulated Gaussian processes, the computational

time for the model fit, the PH test and the FF test are respectively 3 secs, 13 secs and 2.1 secs

with a personal computer (64 bits, 16 Go RAM, processor Intel R© CoreTM i7-4790 3.60 GHz).

With a sample size of 100,000 patients, these times are respectively 2.8 mins, 5.6 mins and 1.5

mins.

In conclusion, we have now two powerful formal tests available for flexible parametric models.

To make these tests user-friendly, they will be integrated into the mexhaz R package (Charvat

and Belot, 2016) so that checking model assumptions could be easily performed by the users

of this package (which already allows to fit the flexible model used in our analysis). Staying in

the same theoretical framework defined by Lin and using an adequate weighting of martingale

residuals, we plan to develop, in the future, a test to check the link function (very close to the FF

test) and another to check the global goodness of fit ; this would complete a toolbox that already

includes the PH and FF tests.
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Figure 1. Panels a, c, and e show the plots of the score process over time (black) on the basis of the
fitting model log [λE (t, age)] = λ0 (t) + β × age with 20 corresponding Gaussian processes (grey) for
salivary gland, breast, and non-Hodgkin lymphoma cancers, respectively. Panels b and d show the plots
of the cumulative martingale residuals over covariate age values (black) on the basis of fitting model
log [λE (t, age)] = λ0 (t)+β×age with 20 corresponding Gaussian processes (grey) for salivary gland and
breast cancer, respectively. Panel f shows the plot of the score process over time (black) on the basis of
fitting model log [λE (t, age)] = λ0 (t) + g (age) where g is a cubic spline with 20 corresponding Gaussian
processes (grey) for non-Hodgkin lymphoma. The estimated p-value stems from the simulation of 1000
Gaussian processes.
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