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A B S T R A C T

Background: Population-based net survival by tumour stage at diagnosis is a key measure in cancer
surveillance. Unfortunately, data on tumour stage are often missing for a non-negligible proportion of
patients and the mechanism giving rise to the missingness is usually anything but completely at random.
In this setting, restricting analysis to the subset of complete records gives typically biased results.
Multiple imputation is a promising practical approach to the issues raised by the missing data, but its use
in conjunction with the Pohar-Perme method for estimating net survival has not been formally evaluated.
Methods: We performed a resampling study using colorectal cancer population-based registry data to
evaluate the ability of multiple imputation, used along with the Pohar-Perme method, to deliver unbiased
estimates of stage-specific net survival and recover missing stage information. We created 1000
independent data sets, each containing 5000 patients. Stage data were then made missing at random
under two scenarios (30% and 50% missingness).
Results: Complete records analysis showed substantial bias and poor confidence interval coverage. Across
both scenarios our multiple imputation strategy virtually eliminated the bias and greatly improved
confidence interval coverage.
Conclusions: In the presence of missing stage data complete records analysis often gives severely biased
results. We showed that combining multiple imputation with the Pohar-Perme estimator provides a valid
practical approach for the estimation of stage-specific colorectal cancer net survival. As usual, when the
percentage of missing data is high the results should be interpreted cautiously and sensitivity analyses
are recommended.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Net survival, namely the probability of survival in the
hypothetical situation where patients can only die of the disease
under investigation, plays a fundamental role in cancer survival
studies. Its estimation poses several challenges. First, it requires
the handling of competing mortality risks because death can occur
for reasons other than cancer. Secondly, these competing risks are
almost always mutually correlated, which results in an informative
censoring mechanism that cannot be safely ignored [1]. In
addition, analyses may be further complicated by the

unavailability or unreliability of information on cause of death.
In population-based cancer registry studies this is usually handled
via a so-called relative survival approach, which consists in
estimating the excess mortality experienced by the cancer patients
as compared to the mortality expected in a comparable general
population. The advantage of this approach is that it does not
require an accurate recording of the cause of death for the cancer
patients.

Various methods have been devised for the estimation of net
survival in the relative survival setting [1–3]. Pohar Perme et al. [1]
proposed an unbiased non-parametric estimator that adjusts for
informative censoring via inverse probability weighting. Danieli
et al. [4] and Roche et al. [5] recommended this method especially
for routine net survival estimations by cancer registries. This
estimator is particularly convenient when the analyst is not
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interested in evaluating covariate effects but merely seeks to
estimate a summary measure (e.g. net survival or cumulative
excess hazard) for all patients or for groups of patients. For
instance, it can be used to estimate net survival by tumour stage at
diagnosis, a measure which is of great importance for cancer
surveillance and health planning and evaluation [6,7].

Although completeness of stage has considerably improved in
recent years in many cancer registries, stage is often unavailable for
a non-trivial number of patients. For example, in a recent series of
papers by the International Cancer Benchmarking Partnership [6,7]
the authors excluded from the analysis some of the cancer
registries because of their high percentage of missing stage
information. In particular, Maringe et al. [6] focused on colorectal
cancer survival and excluded the registries that had less than 50%
of patients with recorded stage data in the study period.
Unfortunately, missingness on tumour stage is typically not
completely at random. For example, older and more frail patients
with relatively poor prognosis may be less likely to receive a
thorough staging investigation [8]. Restricting the analysis to
patients with complete records can lead to misleading results [8,9].
This situation is exacerbated when calculating net survival, where
complete records analysis is only valid when data are missing
completely at random. While multiple imputation has been
successfully applied to parametric relative survival settings [8,9],
to the best of our knowledge, no work has yet been published on
the non-parametric estimation of stratum-specific (e.g. stage-
specific) net survival when the stratification variable is not fully
observed.

In this paper we report a resampling study from an extract of a
population-based cancer registry data set. The aim is to evaluate
the ability of multiple imputation [10,11], used in conjunction with
the Pohar-Perme estimator of net survival, to reduce bias and
improve confidence interval coverage when a key covariate
(tumour stage) is missing at random.

Our proposed approach combines parametric imputation with
a non-parametric estimator of net survival. This makes it an
uncongenial imputation strategy [12]. Several authors [13,14]
have argued that, unless the imputation model is grossly
misspecified, uncongenial strategies like ours may perform better
and be more robust than methods where missingness and
estimation are handled in a “single step”. However, it is important
to evaluate the performance of our approach empirically; this is
especially the case as it is unclear how to perform an efficient
“single step” analysis for the non-parametric Pohar-Perme
estimator.

The paper is structured as follows. We start by briefly
introducing the Pohar-Perme estimator. Next, we describe the
resampling design and the analysis setting. We then report our
results and conclude with a discussion of our findings.

2. Methods

2.1. The Pohar-Perme estimator

In the relative survival setting the total hazard at time t, here
denoted byl� tð Þ, is usually decomposed as

l� tð Þ ¼ lE tð Þ þ lP tð Þ ð1Þ
where lE tð Þ is the excess or cancer-related hazard and lP tð Þ
represents the background or expected hazard. Two data sources
are then used: l� tð Þ is estimated from the cancer registry data,
whereas lP tð Þ is treated as a known quantity and is retrieved from
the life tables of a comparable general population, usually matched
to the cancer patients by at least age, sex, calendar time and
geographical area [15]. The excess hazard is derived as the
difference between the estimated total hazard and the expected
hazard. By integrating over time we obtain the cumulative excess
hazard LE tð Þ as

LE tð Þ ¼ L
� tð Þ � LP tð Þ;

where L
� tð Þ is the total cumulative hazard and LP tð Þ is the

expected cumulative hazard. Until recently, the decomposition (1)
and the estimation of the excess hazard were commonly made by
assuming independence between the cancer and non-cancer
mortality processes. Pohar Perme et al. [1] argued that these two
processes are very likely to be correlated, giving rise to an
informative censoring that could grossly bias the results if ignored.
To overcome this problem they proposed to adjust the continuous
version of the Ederer II estimator [16] by using inverse probability
of censoring weights [17], where the weights are the reciprocal of
the individual-specific expected survival probabilities. Without
going into much detail, the Ederer II estimator of LE tð Þ can be
derived as the difference between the Nelson-Aalen estimator of
L

� tð Þ and the cumulative expected hazard of the patients still at
risk at each failure. More details can be found in Pohar Perme et al.
[1] and Rebolj Kodre and Pohar Perme [18].

2.2. Resampling study

2.2.1. The data
The population for our resampling study was extracted from

four English cancer registries and consists of 50,387 male patients
who were diagnosed with colorectal cancer between 1996 and
2006 with follow-up until the end of 2009 and for whom we had
complete information on age at diagnosis, survival time, vital
status, stage at diagnosis and deprivation quintile (based on the
income domain of the Index of Multiple Deprivation). Table 1
summarises the data.

Table 1
Descriptive statistics of the complete cancer registry data set used for the resampling study.

All Patients with
patients stage 1 stage 2 stage 3 stage 4

Overall 50387 13.9% 32.4% 30.0% 23.7%
Deaths 32267 8.6% 25.7% 30.2% 35.5%

Deprivation
1 – least deprived 10599 15.0% 32.2% 31.2% 21.6%
2 10773 14.9% 32.4% 30.6% 22.1%
3 9914 14.0% 33.5% 29.2% 23.3%
4 9983 13.0% 33.0% 29.3% 24.7%
5 – most deprived 9118 12.4% 30.7% 29.3% 27.6%

Age at diagnosis
Median 70.9 70.7 72.1 70.2 70.3
IQR (62.8,77.5) (63.0,77.1) (64.1,78.2) (62.0,77.0) (61.9,77.3)
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The background general population mortality rates for our
relative survival analysis were retrieved from life tables for
England stratified by age, sex, calendar year, region and depriva-
tion.

2.2.2. Missing data generation and analysis setting
From our fully observed data set of 50,387 cancer patients we

created 1000 independent random samples, each of 5000 patients.
We then introduced missing tumour stage values. We considered
two scenarios depending on whether the overall rate of incomplete
stage information was set to around 30% (scenario A) or 50%
(scenario B). In both scenarios the missingness was assumed to
depend only on observed quantities, i.e. to be missing at random
(MAR). Specifically, for each of the 1000 independent resamples we
proceeded as follows.

Step 1: we randomly sampled 5000 patients from the
population.

Step 2: using a missing at random mechanism dependent on
survival time, event indicator, age at diagnosis (linear and
quadratic effect) and deprivation, we induced missing data on
stage under two scenarios, A and B, giving around 30% and 50% of
missing stage values respectively. See the Appendix A for more
details about the simulated missing data mechanisms.

Step 3: we conducted a complete records analysis (CRA) and
obtained stage-specific net survival estimates at time t (t = 1, 2,
. . . , 5 years) post diagnosis using the Pohar-Perme estimator.

Step 4: we carried out multiple imputation (MI). In more detail,
we used a multinomial logistic imputation model for stage and
included the Nelson-Aalen estimate of the cumulative hazard, the
event indicator, dummy variables for deprivation and a restricted
cubic spline function for age at diagnosis (knots placed at the 0th,
33rd, 67th and 100th centiles of the distribution). Other life-table

variables (e.g. indicators for region) were initially included in the
model but, since they were found to be non-significant, we
dropped them from the final model. For both scenarios A and B we
generated 100 imputed data sets.

Step 5: in each of the imputed data sets we estimated stage-
specific net survival at t = 1,..., 5 years after diagnosis using the
Pohar-Perme method.

Step 6: we pooled the imputation-specific results. The MI point
estimates and their 95% confidence intervals were derived by
applying the Rubin’s rules after a suitable transformation to
improve normality and by then back transforming to the original
scale.

A complementary log-log transformation is usually recom-
mended for predicted survival probabilities [19] as it maps the
interval (0, 1) to (�1, +1). However, in the relative survival
context the application of this transformation is sometimes
problematic as numerical instability may arise if the probability
is very close to 0 or 1. An additional complication is that estimates
of net survival above 1 may also occasionally occur. In our study we
faced these problems when we tried to obtain MI estimates for
stage 1 as a few of the estimates to be transformed fell just below or
above 1. We therefore decided to use a log transformation for stage
1 and a complementary log-log transformation for the other stage
categories. For comparison, we also calculated the MI point and
interval estimates using Rubin’s rules without a prior transforma-
tion to normality.

Steps 1–6 were then repeated 1000 times. The results across
these replications were compared to the reference values (here
treated as the “true” values) obtained using the Pohar-Perme
estimator on the fully observed population data. Under both
scenarios we evaluated the performance of CRA and our MI
method in terms of bias, coverage rate and average length of the

Table 2
Results for CRA and MI under scenarios A (30% missingness) and B (50% missingness). Sr(t) denotes net survival (%) for stage = r and time = t years after diagnosis (r = 1, . . . ,4;
t = 1, . . . ,5). The reference values correspond to the net survival estimates obtained using the fully observed population data. The performance of CRA and MI are evaluated in
terms of bias, percentage relative bias (rbias), average length (avL) and coverage rate of the 95% CIs. The bias is defined as the difference between the average of the estimates
across the repeated samples and the reference value, while the coverage is the proportion of times the 95% confidence interval includes the reference value.

Full data Scenario A (30% missing values) Scenario B (50% missing values)

(reference Complete records analysis Multiple imputation Complete records analysis Multiple imputation

value) bias rbias avL coverage bias rbias avL coverage bias rbias avL coverage bias rbias avL coverage

stage 1
S1(1) 94.50 3.07 3.2% 4.09 17.6% 0.03 0.0% 5.66 98.8% 4.52 4.8% 3.89 2.0% �0.04 0.0% 6.60 99.5%
S1(2) 93.63 4.34 4.6% 5.32 13.6% �0.64 �0.7% 7.28 97.5% 6.59 7.0% 5.17 0.4% �1.27 �1.4% 8.73 97.4%
S1(3) 92.26 5.48 5.9% 6.61 11.0% �0.84 �0.9% 8.59 97.3% 8.50 9.2% 6.57 0.3% �1.77 �1.9% 10.32 95.0%
S1(4) 90.71 6.38 7.0% 8.00 13.1% �0.77 �0.9% 9.81 97.3% 10.29 11.3% 8.11 0.3% �1.66 �1.8% 11.72 95.7%
S1(5) 89.13 7.21 8.1% 9.59 18.8% �0.46 �0.5% 11.15 96.7% 11.86 13.3% 9.87 0.6% �1.25 �1.4% 13.18 97.1%

stage 2
S2(1) 90.03 4.75 5.3% 3.37 0.1% 0.14 0.2% 4.41 97.8% 7.13 7.9% 3.34 0.0% 0.10 0.1% 5.18 98.8%
S2(2) 86.29 6.52 7.6% 4.41 0.0% �0.41 �0.5% 5.47 96.4% 10.13 11.7% 4.47 0.0% �0.85 �1.0% 6.50 95.7%
S2(3) 82.73 7.78 9.4% 5.34 0.0% �0.63 �0.8% 6.24 96.0% 12.49 15.1% 5.54 0.0% �1.25 �1.5% 7.36 93.3%
S2(4) 79.62 8.66 10.9% 6.24 0.0% �0.61 �0.8% 6.92 96.0% 14.25 17.9% 6.60 0.0% �1.26 �1.6% 8.07 94.2%
S2(5) 76.97 9.24 12.0% 7.25 0.0% �0.57 �0.7% 7.67 95.6% 15.54 20.2% 7.77 0.0% �1.20 �1.6% 8.82 94.9%

stage 3
S3(1) 83.00 5.70 6.9% 4.36 0.0% �0.69 �0.8% 5.25 95.7% 8.97 10.8% 4.58 0.0% �1.09 �1.3% 6.16 94.3%
S3(2) 71.38 8.06 11.3% 5.69 0.0% �0.10 �0.1% 6.21 96.9% 13.45 18.8% 6.18 0.0% �0.14 �0.2% 7.23 97.3%
S3(3) 62.23 9.00 14.5% 6.51 0.0% 0.26 0.4% 6.65 96.6% 15.74 25.3% 7.27 0.0% 0.64 1.0% 7.69 95.3%
S3(4) 55.91 9.32 16.7% 7.10 0.0% 0.40 0.7% 6.98 96.2% 16.84 30.1% 8.08 0.0% 0.99 1.8% 8.01 94.5%
S3(5) 51.67 9.37 18.1% 7.70 0.3% 0.32 0.6% 7.37 96.6% 17.35 33.6% 8.87 0.0% 0.93 1.8% 8.41 94.9%

stage 4
S4(1) 37.29 6.30 16.9% 7.56 7.8% 0.38 1.0% 6.44 97.9% 10.89 29.2% 9.85 0.6% 0.88 2.4% 7.26 95.5%
S4(2) 18.39 5.05 27.5% 6.53 11.5% 0.81 4.4% 5.32 94.1% 9.55 51.9% 8.93 0.8% 1.62 8.8% 6.15 86.6%
S4(3) 10.66 3.84 36.1% 5.51 18.7% 0.68 6.4% 4.33 93.6% 7.65 71.8% 7.80 1.3% 1.42 13.3% 5.06 84.9%
S4(4) 7.50 3.10 41.3% 4.95 28.9% 0.43 5.7% 3.77 96.3% 6.33 84.4% 7.13 3.5% 0.92 12.3% 4.40 90.6%
S4(5) 5.90 2.62 44.3% 4.72 39.2% 0.25 4.2% 3.51 96.8% 5.47 92.6% 6.84 8.1% 0.55 9.3% 4.06 95.0%
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95% confidence intervals [20]. The bias is defined as the difference
between the average of the estimates across the repeated samples
and the reference value, while the coverage is the proportion of
times the 95% confidence interval includes the reference value.

Coverage rates are considered acceptable if they are approxi-
mately not more than 2 standard errors away from the nominal
coverage probability [20]. In our case the coverage rates should
therefore fall approximately between 93.6% and 96.4% (i.e.
95% � 2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:95 � 0:05=1000
p

).
As a rule of thumb, it is recommended that the number of

imputations m should be at least equal to the percentage of
incomplete records in the dataset. For example, if there are 20% of
records with missing values then we should set m to at least 20
[11]. However, White et al. [11] and Royston and White [21]
pointed out that in simulations studies where the interest lies in
comparing statistical methods larger values of m are needed. In our
study we therefore set m = 100 but for real data analyses we
recommend using the rule of thumb.

All the analyses were performed using Stata 13 [22]. In
particular, the Pohar-Perme estimates were obtained using the
stns command [23].

3. Results

Table 2 displays the findings of our resampling study. The
application of the Rubin’s rules with and without a prior
normalizing transformation yielded similar results so, for simplic-
ity, hereafter we only report those without the transformation. CRA
led to severe bias and very poor coverage under both scenarios,
clearly showing that this type of analysis should not be used when
estimating stage-specific net survival from data with a non-trivial
proportion of missing stage. We note that our MI strategy
performed much better than CRA in terms of bias and coverage.
Under scenario A, i.e. with around 30% of missingness, MI
succeeded in recovering the missing stage information from the
incomplete records, all empirical coverage rates being satisfactory
and the largest relative bias being 6.4%. Some of the coverage rates
(especially those for stage 1) were higher than 96.4%, suggesting
that the MI strategy may sometimes be too conservative.

Increasing the proportion of missing values to 50% (scenario B)
somehow worsened the performance of MI for stage 4, for which
we now observed coverage rates as low as 84.9%. However, despite
this under-coverage, MI still greatly outperformed CRA. Indeed,
under scenario B, the coverage rates from CRA did not go above
8.1%.

4. Discussion

To the best of our knowledge, this is the first study to discuss
how missing values should be handled in the context of the non-
parametric Pohar-Perme estimator. Our results are very encourag-
ing.

We focused on tumour stage at diagnosis for two reasons.
Firstly, it is an important determinant of treatment and prognosis
and so a key predictor of cancer survival. Information on stage is of
vital importance for assessing the impact of early detection
programs and for a better understanding of trends over time or
differences in cancer survival across countries [6,7]. Secondly,
stage is often missing for a non-trivial fraction of patients and the
missingness is typically not completely at random.

In this setting, the ad-hoc and yet relatively popular approach of
creating an extra category for the missing values has been shown to
lead to severe bias [8,24]. Further, as our findings show, the other
popular approach of estimating net survival using complete

records results in biased estimates and poor confidence interval
coverage. Complete records analysis should therefore be avoided
for the estimation of stage-specific net survival when the
percentage of missing stage values is non-trivial.

Another option is needed for researchers. While multiple
imputation is a natural and practical approach, its performance
in this setting needs to be evaluated before it can be recommended
for routine use. This is because the parametric imputation model is
uncongenial [12] with the non-parametric Pohar-Perme estimator.
Despite this, because of the practicality of MI, we were motivated to
explore this approach by Schafer’s statement “Experience suggests
that Bayesian MI does interact well with a variety of semi- and non-
parametric estimation procedures” [14].

We specified the imputation model in a similar manner to that
proposed by Falcaro et al. [9] for the estimation of stage-specific
net survival via a flexible proportional hazards model [25,26]. In
line with theory [10] we used a multinomial logistic imputation
model for stage and included (i) predictors of both the values of the
incomplete variable and whether it was missing, (ii) the variables
affecting the inverse probability of censoring weights and (iii) the
outcome. For the latter we followed the work of White and Royston
[27] and incorporated the event indicator and the Nelson-Aalen
cumulative hazard estimate. This can easily be derived in standard
statistical software. In Stata, for example, before carrying out the
imputation we can stset the data and use the “sts gen H = na”
command to generate a new variable H containing the Nelson-
Aalen estimate for each patient.

Encouragingly, our MI strategy reduced the bias to a practically
negligible level, and vastly improved confidence interval coverage.
Overall, MI confidence interval coverage was close to, or slightly
above, 95%. This is in line with the slightly conservative behaviour
typically found with uncongenial imputation (see chapter 2 in
[10]). Only for two estimates of net survival with tumour stage 4,
under the 50%-missingness scenario, did the MI confidence
interval coverage drop below 87%. This is because the missing
data mechanism was such that, while 50% of values were missing
overall, stage 4 was the category with the highest proportion of
missingness (around 64%). The large number of missing values
meant that the impact of the approximation implicit in the White
and Royston approach of including the Nelson-Aalen cumulative
hazard estimate and the event indicator in the imputation model
became detectable in a small increase in bias and corresponding
reduction in confidence interval coverage.

Our results show MI gives reliable inferences with this high
proportion of missing data and therefore provide confidence that
MI will give reliable inferences when a lower proportion of data are
missing. They further suggest that our MI approach can be
expected to perform reasonably well also in the non-parametric
cause-specific survival setting.

Some readers may feel that the proportion of missing stage data
we chose was too high, given the improvement in capturing stage
data in recent years. However, many researchers are still interested
in comparisons with earlier data. Moreover, many cancer registries
in developing countries have far from the level of stage
completeness observed in the UK, US or Scandinavian countries.
With lower proportions of missing data, is MI worth bothering
with? Since (i) we can’t know for sure the extent of bias in any
specific case and (ii) the time and effort involved in MI are small in
relation to gathering and cleaning the data, we would argue that MI
should be used as a matter of routine if the percentage of missing
values is not negligible.

It is however important to stress that the specification of an
imputation model needs to be carefully tailored for each real data
set under investigation to address the particular missing data
mechanism at hand.
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As we have commented elsewhere [8,9], it is usually implausi-
ble that stage is missing completely at random because its
missingness is typically strongly associated with survival. The
appropriateness of the MAR assumption is important to consider.
In our setting it assumes that the distribution of stage, given
survival and other variables, is the same whether or not it is
observed (this interpretation of MAR is set out in [10]). This makes
it a natural starting point for the analysis. Alongside this, in
applications when a large proportion of data are missing and
inferences are critical sensitivity analysis to plausible departures
from MAR should be considered; some possible MI approaches are
sketched in chapter 10 of [10] and will be developed further in
future work.

We chose a re-sampling study (as opposed to simulating the
population data) because, as pointed out by Marshall et al. [19] and
Lee and Carlin [28], it offers the advantage of working with data
that reflect the characteristics and variability of a realistic
population. Resampling studies share many similarities with
simulation studies where the data generating mechanism is an
explicitly specified probability model. The main difference
between these two techniques is that in the resampling framework
the analyst draws the repeated samples from a real data set rather
than generating the data from a theoretical probability distribu-
tion. Drawing samples from an existing population avoids making
the inevitable simplifying assumptions about how the population
variables should be distributed and interrelated. When, as here,
our existing population is large (n = 50,387) and our random
samples are about 10% of this (n = 5000), we get valid inferences
from our samples for this population when no data are missing.
Then, the missing data mechanism is under our control and we
know that it is responsible for the inferential biases. We can then
directly assess how successful multiple imputation is in correcting
these. Inevitably, as with all simulation studies, our results could
be further strengthened by experience with alternative popula-
tions, cancer sites and missing data mechanisms. Nevertheless, we
believe that our study, being based on a real complex data set, gives
valuable insights on the performance of multiple imputation when
combined with the Pohar-Perme method. For colorectal cancer
(and cancers with similar survival profiles) it provides robust
evidence that the widespread use of MI would give substantial,
scientifically important, improvements to the inferences made
using currently popular methods for missing data. Further work is
planned to generalize these findings to other cancer sites.

In passing, note that the complete population used for our
resampling study was obtained by extracting the registry records
of patients with no missing values on our key set of variables. We
did this so to have full control on the missing data mechanism. This
however means that the net survival estimates reported in this
paper are not representative of the UK population or even the
cancer registries from which the resampling population was
extracted; but such representativeness was not the aim of our
work.

In conclusion, this study demonstrates that MI offers a
substantial, practically important, improvement on complete
records analysis when faced with missing data in the non-
parametric estimation of stage-specific colorectal cancer net
survival.
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Appendix A.

Let R denote the missing data indicator and Z be a vector of
covariates. The missing values for tumour stage were induced with
a probability generated using the model

logitðPðR ¼ 1 j ZÞÞ

¼ a þ bT þ gD þ d1age þ d2agesq þ S
5

i¼2
niIfdep ¼ ig

where T represents the observed survival time in years, D is the
event indicator, age refers to standardised age at diagnosis, agesq is
age squared and I dep ¼ if g is the indicator function equal 1 when
dep (deprivation quintile) = i and 0 otherwise (i = 1, . . . ,5). The
parameters were chosen as follows.

(a) scenario A (30% missingness):

a ¼ �0:212 ; b ¼ �0:25 ; g ¼ �0:1 ; d1 ¼ 0:35 ; d2 ¼ 0:12 ; n2
¼ n3 ¼ 0 ; n4 ¼ 0:2 andn5 ¼ 0:3:

(b) scenario B (50% missingness):

a ¼ 0:78 ; b ¼ �0:25 ; g ¼ �0:1 ; d1 ¼ 0:35 ; d2 ¼ 0:12 ; n2 ¼ n3
¼ 0 ; n4 ¼ 0:2 andn5 ¼ 0:3:

The equation defining the missing data mechanism is a logistic
model. Therefore, if for example we set n5 = 0.3, this corresponds to
an odds ratio of 1.35 (i.e. e0.3) for patients living in the most
deprived areas (dep = 5) versus those living in the most affluent
areas (dep = 1), conditional on other variables being held constant.
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