
Bang: A System for Training and Visualization in
Multi-agent Team Formation

(Demonstration)
Saulo Antunes Silva1, Sandro Renato Dias1, Leandro Soriano Marcolino2

1Computing Department, CEFET-MG, Belo Horizonte, Brazil
2School of Computing and Communications, Lancaster University, Lancaster, UK
{sauloantuness,sandro}@decom.cefetmg.br, l.marcolino@lancaster.ac.uk

ABSTRACT
In this demo participants will explore Bang, a system for multi-
agent team formation. Bang automatically selects exercises for
training agents, and allows an operator to visualize the expected
performance of possible teams, guiding in the agent selection pro-
cess. Bang is used in the context of programming competitions, a
real-world challenge that involves human teams, and significantly
improved the performance of the teams of CEFET-MG University.

Keywords
Team formation; Multi-agent training; Visualization

1. INTRODUCTION
Forming strong agent teams is essential in many multi-agent sys-

tems domains. It may involve not only selecting a subset of agents,
but also training individual agents in order to improve their perfor-
mance and/or obtain information to aid in agent selection.

We are currently studying the team formation problem in the
context of computer programming competitions. Programming com-
petitions are events where teams of students must solve a set of
challenging assignments under tight time constraints; the teams are
then ranked according to their performance. This is an ideal envi-
ronment for studying team formation, as it is a real and challenging
situation for (human) agents, and agent training and selection are
key factors for a successful performance.

Students have limited time available to prepare for programming
competitions. Additionally, in general universities have to select
a fixed-size set of students in order to comply with competition
rules; a decision that must also be taken under time constraints.
Therefore, we need a system that selects the best exercises to train
the students, and that also enables an operator to quickly estimate
the performance of different agent combinations.

Team formation and multi-agent training have received consider-
able attention recently. Many works focus on when an agent should
receive advice from a teacher while being trained [7, 4], but not on
which exercises agents should tackle for team formation. Recently,
Liemhetcharat and Veloso (2016) [5] proposed an algorithm to se-
lect pairs of agents in order to improve their coordination, even-
tually also forming a team with the best subset. There also has
been considerable attention in studying the importance of diversity

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

when selecting agents [6]. These works, however, do not provide
a system that automatically selects exercises for agent training, nor
visualization tools to aid in agent selection.

We developed a system that allows us to automatically select ex-
ercises for agent training, and provides visualization tools to study
agent performance and evaluate the expected performance of possi-
ble teams, in the context of programming competitions. The system
is also able to recommend the team with the best expected perfor-
mance. By using this system, the programming competition team
at CEFET-MG University achieved in 2016 the best result in its
history. In this demo, participants of the conference will be able to
fully explore our system, including setting up training events and
visualizing the performance of potential teams. A video showing
our demo is available at https://youtu.be/ZY0Za8ewA6Y.

2. OUR SYSTEM
Bang is used to train the individual agents (students), present vi-

sualizations to guide an operator in the agent selection process, and
suggest the best team. First, we will describe how Bang obtains ex-
ercises for training. There are several online systems available con-
taining exercises for computer programming competitions, such as:
URI Online Judge [2], UVa Online Judge [3] and SPOJ [1]. Bang
works by directly accessing those systems in order to load exer-
cises. The exercises are divided in different categories (e.g., ad-
hoc, data structures, graphs, paradigms, strings), are sometimes as-
signed a difficulty level, and have an associated integer n represent-
ing how many agents (in the online repository system) were able to
successfully solve it. Bang knows which exercises an agent was
able to successfully solve across these different systems, includ-
ing their associated information (category, difficulty level, number
of successful attempts). Agents are also able to see which agents
were able to solve a given problem, enabling them to easily seek
help for problems that they are unable to solve.

Agents can select which problems they are interested in trying
to solve (since we have human agents). However, Bang can also
automatically select problems in order to train sets of agents. This
happens in the form of contests, which is a timed event where a
subset of the agents are tested against the same set of problems. As
we discuss later, contests can be used as an aid in agent selection.

When creating a contest, an operator must manually define how
many problems of each category will be part of the contest. This
allows an operator to strategize by selecting categories where the
agents need training, and/or categories where he/she needs to ob-
tain further information concerning agent performance (in order to
select the final team).

Afterwards, agents are able to join the contest. In order to au-
tomatically select problems, we are currently using the following

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/79656201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


algorithm: (1) Form a set of problems P, containing all available
problems that were not yet solved by any of the agents in the con-
test; (2) Sort P according to the number of successful attempts (in
the online repository) n, in descending order, creating a list L; (3)
Select the required number of problems of each category, following
the order of the list L. That is, we select the problems that were not
yet solved by any agent in the contest, and prioritize problems that
have a high number of successful attempts.

We use the number of successful attempts as an estimation of dif-
ficulty. That is, we assume that harder problems will have a lower
n, since less users (of the online database) were able to solve the
problem. As mentioned, each problem has an associated difficulty
level in the online systems queried by Bang, but we consider n a
more reliable estimation of the true difficulty of an exercise, besides
not all problems having difficulty level information. Therefore, in
the contest we will select problems that are new to all participants,
and that are not too hard given their current skills. Additionally,
the contest allows an operator to probe which categories the partic-
ipants are currently strong at.

Bang also shows a graph indicating how many problems have
been attempted in the system (in the current week, current month
or current year), allowing an operator to estimate the effort of the
agents in training.

2.1 Agent Selection
Bang provides visualization tools in order to aid an operator to

select agents to form teams for the competitions. These take the
form of a radar chart, with one axis for each problem category.
When analyzing the performance of an agent, we plot at each axis
the number of exercises the agent was able to solve in that category.
If the difficulty level of a problem is available, we weight by its
value (e.g., one problem of level 2 counts as two problems of level
1). That is, we plot the sum of the levels of all problems solved,
and default the level to 1 if the information is not available.

We can also evaluate the estimated performance of a team. Given
a subset of agents, we plot at each axis the size of the union of all
problems solved by the agents in the respective category (again,
weighted by the level). That is, we assume that a team will solve
a problem if at least one agent is able to solve a problem, and we
remove repeated problems across team members. We can, thus, es-
timate the best team as the one with the highest area in the radar
chart, as the agents would perform well across a variety of prob-
lems. In Figure 1 we show an example of the radar graph of a team
and their respective individual members. Note that we plot the per-
formance of individual members (Arley, Laura, Mauro) in the same
graph, for easy comparison with the expected team performance.

When selecting agents, an operator can use the system to explore
the performance of different potential teams. We have a dynamic
interface where an operator can click at each potential member, and
the expected performance graph automatically updates accordingly.
Our system allows, therefore, a human to explore possible combi-
nations, as the operator may have external knowledge that is not
yet represented in the system. For instance, friendships and per-
sonal compatibility between agents strongly influence the decision
process, since we are handling human agents.

However, Bang can also automatically test all possible combi-
nations in order to find the team with the highest radar graph area
(albeit computationally expensive as the team size grows), provid-
ing guidance to an operator in his/her decision. Additionally, Bang
is able to recommend the best team members for a given agent. In
order to do so, we find the team with the highest radar graph area
when fixing one agent, and considering all possible combinations
for the other agents.

Figure 1: Radar graph showing the expected performance of a
team, and of the individual members (Arley, Laura, Mauro).

The system also provides rankings (based on the agents perfor-
mances while training and in the contests), allowing an operator to
quickly identify strong agents, aiding in the decision process. The
rankings show the total score of each agent, both in terms of total
number of problems solved, and also when weighting each problem
by its corresponding level.

Beyond selection, these visualizations also aid in training. An
operator is able to quickly assess which categories a potential team
or agent is not yet performing well, and use that knowledge when
setting up contests for training.

The visualization tool can also be used to create teams in the
system, and the teams can participate in contests. This allows an
operator to empirically evaluate potential teams. A ranking is con-
structed based on the performance of the different teams, helping
the operator in his/her final decision.

3. INITIAL RESULTS
We started using Bang to train the programming competitions

group of CEFET-MG in 2016. We used the system extensively to
train the group members and to select which students would rep-
resent the university in actual competitions. The group currently
has 40 users, and the operator must select only 3 to participate in
the competitions. All members solved around 1000 problems in the
Bang system (out of 6500 possible problems in the database).

In the ACM-ICPC South America/Brazil First Phase, the CEFET-
MG team was in position 96 out of 598 teams in 2015. After us-
ing Bang, we achieved position 67 out of 731 teams, a better posi-
tion in a much more competitive pool. Thanks to this achievement,
CEFET-MG participated in the finals of the ACM-ICPC South Amer-
ica/Brazil competition. In fact, the position we achieved in 2016 is
the best one in the whole history of the university.
Acknowledgment: The authors would like to thank CEFET-MG
and the School of Computing and Communications for hosting and
supporting this research.



REFERENCES
[1] Sphere Online Judge (SPOJ). http://www.spoj.com/.

Accessed: 2017-01-14.
[2] URI Online Judge.

https://www.urionlinejudge.com.br. Accessed:
2017-01-14.

[3] UVa Online Judge. https://uva.onlinejudge.org/.
Accessed: 2017-01-14.

[4] O. Amir, E. Kamar, A. Kolobov, and B. Grosz. Interactive
teaching strategies for agent training. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI, New York City, USA, 2016.

[5] S. Liemhetcharat and M. Veloso. Allocating training instances
to learning agents for team formation. Autonomous Agents and
Multi-Agent Systems, pages 1–36, 1 2017. (available online).

[6] L. S. Marcolino, H. Xu, A. X. Jiang, M. Tambe, and
E. Bowring. Give a hard problem to a diverse team: Exploring
large action spaces. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, AAAI, pages
1485–1491, 2014.

[7] L. Torrey and M. E. Taylor. Teaching on a budget: Agents
advising agents in reinforcement learning. In Proceedings of
the 12th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS, pages 1053–1060, 2013.


