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Abstract. Procter and Gamble (P&G) require an online system that can monitor the particle size 

distribution of their washing powder mixing process. This would enable the process to take a 

closed loop form which would enable process optimisation to take place in real time. Acoustic 

Emission (AE) was selected as the sensing method due to its non-invasive nature and primary 

sensitivity to frequencies which particle events emanate. This work details the results of the 

first experiment carried out in this research project. This experiment involved the use of AE to 

distinguish between the sizes of sieved polyethylene particle (53-250microns) and glass beads 

(150-600microns) which were dispensed on a target plate using a funnel.  By conducting a 

threshold analysis of the impact peaks in the signal, the sizes of the particles could be 

distinguished and a signal feature was found which could be directly linked to the sizes of the 

particles. 

1.  Introduction and Problem Statement 

Procter and Gamble (P&G) have certain quality standards that need to be upheld before their washing 

powder product can be sold. These checks comprise of a wet chemistry test to determine solubility 

properties, inspect the chemical properties of the powders and physical inspection to determine the 

particle size distribution.  These methods are slow and reliant on human error and as a result this has 

given rise to the need for in-process monitoring sensors which would help apply a control loop to the 

process. This research will focus on the use Of Acoustic Emission (AE) sensors to estimate the size 

distribution of the powders online. Due to the size ranges of the particles being monitored (63-

1000microns) and noisy production workspace, acoustic sensors in the ultrasonic region are used in 

this research as they are primarily sensitive to frequencies which particle events occur. [1] 

 

2.  Related Works Summary and Knowledge Gap 

AE has been used previously to monitor the sizes of particles and in some case was used to estimate 

the overall flow rate of the particles.[1][2] Leach et al conducted pioneering studies using an ultrasonic 

microphone and a rotating drum, and he was able to establish a linear correlation between particle size 

and AE.[3]  Buttle et al used a quantitative sizing technique that comprised of a deconvolution 

technique to estimate the sizes of particles falling on a target plate due to the deconvolution required 

the technique would struggle to work in real-time.[4] Ivantsiv et al designed a model capable of 

estimating particle size and mass flow rate, although his system was designed to work offline. [1] Papp 

et al investigated offline the relationship between the changes in size of particles with the change in 
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AE occurring during a granulation process. Her results showed that an inverse relationship existed 

between the AE frequency and particle size. [5] Neural networks were used by Bastari et al and Chen et 

al to classify different sized particles online, despite being able to perform a classification on the 

particles no indication of the physical behaviour of the process can be deduced with this system. [6][7] 

Hu et al designed an online model that linked the AE output voltage to particle size, his model was 

unable to detect particles smaller than 90microns and this was attributed to the overall signal noise in 

the process. [8] Ren et al used the wavelet transform to estimate the respective energies of differently 

sized particles and used this approach to estimate the mass fraction of the various particles in a 

mixture. [9] Although using Ren’s model to estimate the size distribution of a mixture with different 

particle sizes, would lead to a very large and complex algorithm thereby slowing online computation 

time.  

 Comparing this signal processing architecture to the existing systems in literature, Bastari et al and 

Chen et al designed online particle classification systems using a data driven approach,  this method 

would not suffice in this research problem as further information about the process behaviour cannot 

be inferred from a data driven system.[6][7] In terms of a more hybrid signal processing approach, Ren 

used the wavelet transform to identify particle size distribution online, but due to the algorithm 

complexity, a high model computation time would be required which would not be acceptable for a 

process which is aimed at being optimised online.[9] 

In this research we would be looking to design for the first time, a hybrid signal processing model 

capable of identifying particle size distribution online. The work carried out in this report details the 

first experiment taken to design an online particle size distribution estimation model. 

3.  Research Methodology 

The design space approach is being employed as the research methodology as it helps in the 

understanding of how a product behaves under various process conditions.[10] A designs space 

approach is a useful tool used to help comprehend the interaction between input variables and process 

parameters, and how they influence final product quality. [10]  It is also useful in developing a versatile 

process which can comfortably deal with variability in input materials and process parameters. [10] A 

supporting statistical method used in conjunction with the design space approach is the Design Of 

Experiment (DOE).[12] Supporting the experiments with statistics helps in tracing root causes of 

variability and also distinctions between causal and correlative relationships. [11]This research problem 

would be investigated with the Design Space Approach and supported with the DOE technique. 

4.  Experimental Details 

The washing powder compound comprises of an array of different particles types, so in order to 

simplify the problem a single experimental particle type was chosen and sieved into different seizes. 

This experiment detailed here involved the differentiation of particles of various sizes using their AE 

signal. This experiment would serve as the first stage in helping to solve our research problem of 

identifying the size distribution of a compound that comprises different sized particles. For this 

experiment, Medium Density Polyethylene and acid washed glass beads were used as the experimental 

particles. 

 

4.1.  AE Sensors 

The sensor used was the PCI-2 Physical Acoustic sensors by Mistras. The sensor bandwidth spans 

from 100K-1MHz and a sampling rate of 1Ms was used during the acquisition. Figure 1 shows the 

block diagram of the signal processing chain.  The acquired signal goes through a preamplifier before 

being sent through a band pass filter.  This filtered signal is sent to the Analogue to Digital Converter 

where this signal is digitised and passed to a Field Programmable Gate Array(FPGA) where sampling 

and signal averaging takes place. The final digitised waveform is continuously streamed to the hard-

disk of the computer. [13] 
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   Figure 1: Block Diagram Of The Signal Processing Chain 

4.2.  Experimental Setup 

Figure 2 shows an image of the experimental setup used here. It comprises a funnel of dimensions 

8x11x18mm
3
 and an Aluminium sheet of 0.7mm thickness with the sensor attached at the back of the 

plate using beeswax adhesive as this ensures a secure but gentle coupling between sensor and surface. 

A funnel was selected as part of the experimental setup in to ensure repeatability in the dispensation 

rate of the powders. The funnel exit was blocked using a finger while a measured mass of powder was 

poured into it. Then the finger was removed and the full powder mass was dispensed on the target 

plate through the funnel and the acoustic emissions were recorded. Assuming there are no sources of  

interferences,( through humidity, temperature and electromagnetic sources) by having a repeatable 

source, maintaining  a constant height,  and keeping the plate thickness constant throughout the 

experimentation, the variable being measured becomes the mass/size of the particles of interest. [2] 

                                               

Figure 2:  Final Experimental Setup 

4.3.  Powder Sieving 

 To further reduce experimental variability, the polyethylene powders were sieved into narrow size 

distribution bands by means of dry sieving as shown in Table 1 using an Endecotts layer sieve with an 

aperture size range from 53-1000microns. The glass beads came in pre-sieved classes so further 

sieving was not required for the particles. 

Table 1: Particle Class Information. 

Particle Type    Particle Class  Size Distribution  Average Mass In Grams(g)  Bulk Density In g/cm
3 

Polyethylene     Class1     151-250microns                      0.0047                                 0.3435 

                           Class2     126-150microns                     0.00053                                0.2522 

                           Class3      64-125microns        Particles  could not be separated       0.2158 
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                           Class4      53-63microns          Particles  could not be separated       0.2113 

Glass Beads       Class1    150-212microns                      0.0049                                 1.5850 

                            Class2    425-600microns                      0.1578                                 1.5938 

                            Class3    212-300microns                      0.0091                                 1.5910 

 

4.4.  Environmental Scanning Electron Microscope Images 

To produce the size distribution of each particle class, 10mg was taken from each class and viewed 

under the electron microscope .This was repeated six times and each time five particles were isolated 

and their dimensions(length and width) were measured.  

4.4.1.  Polyethylene Particles 

Figures 3 show Environmental Scanning Electron Microscope (ESEM) image of the class 4 

polyethylene particles. It can be observed that the polyethylene particles are highly irregular shaped.  

                                  

                                                  Figure 3: Class 4 Particles (53-63microns) 

Due to the apertures of the sieves being square and the particles being irregular, a generalised mean 

was calculated by way of the Root Mean Squared (RMS) to the acquired dimensions to produce the 

histogram in figure 4. 

 

                                           Figure 4: Size Distribution Of Class 4 Particles 

4.4.2.  Glass Beads 
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The ESEM image of the class1 glass beads can be seen in figures 5. And unlike the PE particles the 

glass beads have a tighter distribution and a spherical geometry. 

                            

                                         Figure 5: Class1 Glass Beads (150-212 microns) 

A respective histograms of the glass bead particles can be seen in figures 6, and in comparison to 

the PE particles the distribution of the glass beads are within their sieved bands thereby limiting the 

number of outliers present.  

              
Figure 6: Histogram Of Class 1 Glass Beads 

 

5.  Experimental and Data Analysis Procedure 

For each particle group, 2g was weighed and dispensed into the funnel while the exit was blocked 

using a finger as the measured mass of powder was poured into it. This procedure was repeated four 

times for each particle class. The acquired data was analysed using a thresholding method. This 

method was used by Hu et al to differentiate particle sizes and also by Ivanstiv et al to not only 

differentiate particle sizes but also measure flow rate, the thresholding method was chosen due to its 

simplistic and effective nature [1] [8] 

The thresholding method works with the signal shaping chain which can be seen in figure 7, it 

states that a linear relationship exists between particle size and output sensor voltage. The signal 

shaping chain was from the pioneering work carried out by Leach et al and validated by Buttle et al. [3] 

[4]  It shows that a convolution between the source function, wave propagation function and instrument 

response function yields the AE Voltage Signal. 
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 Figure 7: Signal Shaping Chain [8] 

When a particle of a certain size drops on a target medium, it gives off an impulse which is related 

to the size of the impinging particle. This impulse is represented by a peak in the time domain and 

with a suitable threshold capable of detecting these peaks; particles can be identified and differentiated 

using their impact peaks. 

5.1.1.  Designed Threshold Method and Particle Sizing Approach 

A varying threshold method was implemented and details of each step can be seen below; 

-Step1: Take absolute values of signal to eliminate non-negative signal values. 

-Step2: Identify maximum peak from experimental repetitions of the same size particles. 

-Step3: Reduce threshold by a factor of 10% each time and take arithmetic mean of peaks above the 

threshold level. 

-Step4: Calculate linear correlation co-efficient for each threshold level (e.g  90%,80%) 

-Step5: Select threshold which provides best linear correlation for data 

With the dispensation of the particles being through a funnel, this caused the amplitude of the 

acquired AE signal to vary, this can be seen by the highly varying amplitude of the AE signal in figure 

8. So for the data analysis procedure, 20,000 data points were extracted from a section of the data 

where the flow rate was maximum and constant.  

     

Figure 8: Acoustic Emission Plot Of Class 2 Polyethylene Particles 

The plot in figure 9 shows a simple example of an isolated constant segment of 20,000 data points 

along with an example of how a 60% threshold would work. 
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       Figure 9: Amplitude-time Graph with a threshold level of 60% (peaks above 0.138) 

6.  Results 

6.1.  Polyethylene results 

Once the data sections were isolated, the threshold method was applied and the linear correlation 

coefficient was calculated for each threshold level.  The thresholding exercise began with a 90% 

threshold this reduced by a factor of 10 each time and stopped at the 10% threshold. The threshold 

varying stopped at the 10% level because below this threshold we would enter the sensor noise region 

and in order to ensure the best data quality, the selected threshold should be selected to be greater than 

the noise level. Although for this simple experimental setup, setting the threshold to include the noise 

would still give a good correlation (greater than 0.90) due to the negligible noise contribution and high 

signal to noise ratio. But in a more practical rig setup where there may be greater noise contribution, 

the selected threshold would need to be above the noise level in order to ensure maximum signal to 

noise ratio. 

Figures 10 and 11 show correlation figures of particle size against mean of threshold peaks for 90% 

and 10% threshold levels, with their respective correlation co-efficient being 0.87 and 0.97. From the 

correlation co-efficient score, it can be seen that the deepest threshold level(10%) provides the best 

linear correlation. A possible reason for this could be that the linear correlation increased with the 

higher number of data points considered. 

An explanation for the outliers at the zero mark on the x-axis in figure 10 is due to the maximum 

peak identification method. For each particle class, the experiment was repeated four times. The 

maximum possible peak value was identified by inspecting all four repetitions of the experiment, this 

meant for the high threshold there was the possibility of the particle sizing algorithm to identify zero 

peaks for some experimental data set. 
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  Figure 10: Linear Correlation of Particle Size against Mean of Threshold Peaks For 90% Threshold 

(correlation factor 0.87) 

                         

Figure 11: Linear Correlation of Particle Size against Mean of Threshold Peaks For 10% Threshold 

(correlation factor 0.97) 

It can be noted that the mean of threshold peaks showed some variability for the bigger particles, 

this was due to the wider distribution in the particle class due to sieve sizes. For example, the particles 

in class 4 ranged from 54-63microns accounting for a variation of 9microns. Whereas the class 1 

particles ranged from 151-250microns,which equals a variation of 99microns. 
The plot in figure 12 was obtained using the 16 collected data points and it illustrates how the 

linear correlation between the particle size and mean of threshold peaks increases with the lowering of 

the threshold level. 
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                         Figure 12: Plot Of Linear Correlation Co-efficient Against Threshold Level 

6.2.  Glass Beads Results 

The threshold analysis was tested with glass beads as validation that the technique can work for more 

than just one particle type, as the washing powder compound comprises of different types of particles, 

so it was important to make sure that this technique was not unique to just one particle type. Figure 13 

shows a sample AE plot for class 2 glass beads and unlike the polyethylene, the glass beads produced 

more constant amplitude when the flow was constant. 

                   

                    Figure 13: Sample AE In Time Domain Plot For 2g Of Class 2 Glass Beads 

The glass beads sizes were classified using the same signal processing method used for the 

polyethylene and with a 10% of maximum threshold. For each class of glass bead, the dispensation 

exercise was repeated 5 times each giving a total of 15 data points. For all 5 experimental runs from 

each particle class and with a 10%, the AE amplitudes were averaged to obtain a representative value 

for each particle group. A correlation between these values and the median particle size of each class 

of glass bead was calculated and can be seen in figure 14. 
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     Figure 14: Correlation Plot Of Median Particle Size Against AE Amplitude Mean For Glass 

Beads(R=1) 

From figure 14, it can be seen that a good correlation exist between the median particle size and 

AE amplitude mean. This would suggest that the signal processing technique can be used to 

effectively differentiate between particles of various sizes under the same condition used in this 

experimental setup. 

7.  Conclusion 

From the literature, enough evidence exists to support the assumption that particles sizes can be 

monitored online. The experiment carried out in this work was aimed at the determination of the 

particle sizes from their acoustic emissions using sieved sets of polyethylene powder and glass beads. 

The objective was to successfully differentiate particles of different sizes using their AE and to find a 

signal feature which was could be directly correlated with particle size. In this experiment, a known 

mass of particles were dispensed into a funnel which released a continuous stream of particle unto a 

target plate which an acoustic emission sensor was placed on. By implementing a threshold and 

evaluating the amplitude of the peaks on each threshold, the particle sizes were distinguishable and the 

amplitude mean of the threshold were able to be correlated to the various particle sizes. A linear 

correlation was seen to exist between the AE and particle size, thereby validating the results obtained 

in previous literature. The next experiment would now involve the mixing of particles of various sizes 

to see how they interact when in a mixture.  
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