
COMMENTARY

Genotype–phenotype mapping implications for genetic
programming representation: Commentary on ‘‘On
the mapping of genotype to phenotype in evolutionary
algorithms’’ by Peter A. Whigham, Grant Dick,
and James Maclaurin

Anikó Ekárt1 • Peter R. Lewis1

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Here we comment on the article ‘‘On the mapping of genotype to phe-

notype in evolutionary algorithms,’’ by Peter A. Whigham, Grant Dick, and James

Maclaurin. The article reasons about analogies from molecular biology to evolu-

tionary algorithms and discusses conditions for biological adaptations in the context

of grammatical evolution, which provide a useful perspective to GP practitioners.

However, the connection of the listed implications for GP is not sufficiently con-

vincing for the reader . Therefore this commentary will (1) examine the proposed

principles one by one, challenging the authors to provide more supporting evidence

where felt that this was needed, and (2) propose a methodical way to GP practi-

tioners to apply these principles when designing GP representations.

Keywords Genotype–phenotype mapping � Representation � Practical guidelines

for GP representation design

1 General comments

It is well-known that evolutionary computation can produce near-optimal solutions

to a broad range of complex problems. This discussion paper is based around the

assumption that the evolutionary search process, since it has been ‘‘sucessful’’ in

nature, must itself be an optimal or near-optimal process. This, the authors argue,

This comment refers to the article available at doi:10.1007/s10710-017-9288-x.

& Anikó Ekárt

a.ekart@aston.ac.uk

Peter R. Lewis

p.lewis@aston.ac.uk

1 Aston Lab for Intelligent Collectives Engineering (ALICE), Aston University, Birmingham, UK

123

Genet Program Evolvable Mach

DOI 10.1007/s10710-017-9291-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/79655756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10710-017-9288-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-017-9291-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-017-9291-2&domain=pdf

has been used to justify much work aiming at making evolutionary algorithms more

biologically plausible, with the expectation to result in improved performance.

In general, we find the idea of optimality of solutions implying an optimality of

process intriguing. Indeed, major scientific discoveries have often resulted from

completely unusual processes that may have seemed at first sight unproductive and

unlikely to lead to any breakthrough. In the article it is argued that since we know

that evolutionary processes (usually) work, or work given sufficient time, this then

implies (near-)optimality of the evolutionary process itself. We would like to read

further justification for this apparent implication. To substantiate, how this is indeed

an assumption made by many researchers in evolutionary computation and drives

much of evolutionary computation work, we would like to see evidence and

relevant references.

With this said, we agree with the authors that it is very important for evolutionary

computation researchers and advocates to be clear about the role of the biological

inspiration and evolutionary metaphor in metaheuristic search techniques, and

where and how it can help or hinder. Every opportunity should be taken to clarify

any potential misconceptions.

The paper’s main supporting pillars are a subset of four out of the nine

characteristics proposed by Sterelny for robust evolutionary replicators:

C4 separation between genotype and phenotype for optimality;

C6 stable and predictable mapping, where redundancy in behaviour via multiple

expressions is possible;

C8 smooth mapping (essentially locality); and

C9 modularity.

While a distinction between genotype and phenotype is not strictly necessary in an

(artificial) evolutionary system (standard GP providing one example), C4 suggests a

split can provide such a separation of concerns that aids effectiveness. Character-

istics C6–C8, although not necessarily arrived at from a biological viewpoint, but an

empirical computational experimentation perspective, are well known and, in our

opinion, feature in many, though not all, effective applications of evolutionary

computation.

Interestingly, the authors chose grammatical evolution (GE) for illustration. In its

aim to provide a generic representation, GE has inherent properties that violate

Sterelny’s characteristics of effective genotype–phenotype mappings. Therefore the

effectiveness of using both generic representations and generic operators at the same

time is being questioned, despite their apparent success in nature. When a generic

representation is used, the human effort shifts to the design of the genotype–

phenotype mapping rather than the design of the representation or operators. In this

case, the implication is that the operators have to be designed with the mapping in

mind. Since one of the typical benefits of employing a generic representation is to be

able to employ generic operators, is this benefit lost? What then is the implication

for the design of artificial evolutionary systems in practice? Is the quest to design

generic approaches to automated problem solving doomed to failure?

Genet Program Evolvable Mach

123

2 From principles to practical guidelines

Motivated by this discussion, the authors propose five principles for genetic

programming representation design. We agree that representation is one crucial aspect

for the success or otherwise of an evolutionary (and in fact computational intelligence)

solution, but not the only one. Looking at the first four principles at high level, they can

be seen as also emerging from evolutionary computation or more generally from

computer science, without necessarily being strongly rooted in biology:

1. Maintaining building blocks: in GP, these could be emerging as automatically

defined functions or built into the representation (such as more complex

mathematical functions in symbolic regression).

Fig. 1 Steps to design a GP representation according to presented principles

Genet Program Evolvable Mach

123

2. Although somewhat confusing in its statement (when using representation and

behaviour, the terms search space and problem space become unclear), this

principle advocates the design of genetic operators consciously of their effects

in the phenotype space. It is not quite clear how the practitioner, once aware of

the said relationship, should take it into account in the design of the genetic

operators. We would like to see a concrete example.

3. Stability under small change follows on from the previous principle and is a

somewhat controversial principle here. For GP, locality can be used as a

measure of difficulty. Also, in addition to the authors’ example, in a generic

binary genetic algorithm a small change in the genotype can have rather

different effect on the phenotype when the genotpye is mapped onto the

phenotype, yet this genetic algorithm itself can be very effective on some

problems, with no restrictions on operators necessary. We would like to see an

example of how this would be achieved in practice, without limiting evolution

such that an acceptable solution become beyond reach.

4. Modularity has been advocated in programming since the early days.

It is actually rather nice to see how there could be biological justification to this

research community’s empirical findings. Our final point is that if the authors

wanted to convince the reader to strictly follow Sterelny’s characteristics (and here

we are neither advocating nor questioning the correctness of the approach) when

developing a GP solution, we argue that a more structured set of guidelines or steps

would be needed. We endeavour to propose the processes illustrated in the

flowchart in Fig. 1. The principles are present in the processes in the flowchart. We

added what we feel are supportive decision points that allow the practitioner to go

back to appropriate previous steps and start again, should the (partial) representation

solution fail the expectations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Genet Program Evolvable Mach

123

http://creativecommons.org/licenses/by/4.0/

	Genotype--phenotype mapping implications for genetic programming representation: Commentary on ‘‘On the mapping of genotype to phenotype in evolutionary algorithms’’ by Peter A. Whigham, Grant Dick, and James Maclaurin
	Abstract
	General comments
	From principles to practical guidelines
	Open Access

