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Thermodynamics has been highly successful, impacting strongly on the natural sciences and enabling the
development of technologies that have changed our lives, from fridges to jet planes. Until recently, it was applied
to large systems described by the laws of classical physics. However, withmodern technologiesminiaturising
down to the nanoscale and into the quantum regime, testing the applicability of thermodynamics in this new
realmhas become an exciting technological challenge.

As a result thefield of quantum thermodynamics has recently started to blossom, fuelled by new, highly
controlled quantum experiments, the availability of powerful numericalmethods, and the development of novel
theoretical tools, for instance in non-equilibrium thermodynamics and quantum information theory.
Important goals of thefield are, among others, a better understanding of thermalisation in quantum systems, the
characterisation of non-equilibrium fluctuations in the quantum regime, and the design and realisation of new
experiments exploring quantum thermodynamics using, for example, nuclear spins, cold atoms, trapped ions
and optomechanic setups. Progress in thefield of quantum thermodynamics and ultimately the resolution of
technological challenges relies crucially onmerging expertise fromdifferent fields, such as statistical physics,
mesoscopic physics and quantum information theory. The aimof this ‘Focus on’ collection is to form an
extensive open-access resource spanning across the different areas that todaymake up research in this
excitingfield.

This issue includes diverse approaches to quantum thermodynamics. The topic of thermalisation is covered
by research papers that range from addressing fundamental questions such as ‘When and howdoes an isolated
quantum system thermalise?’ [1, 2] to practicalmethods, such as ‘Howdoes onemeasure the temperature of
small quantum systems?’ for instance in ultracold lattice gases [3] or trapped ions [4].

Numerous contributions are concernedwith a central question of thermodynamics—assessing the
performance of energy conversion—butwith a focus on small, quantummachines contrastingwith traditional
macroscopicmachines. Research papers explore how fast and how efficiently quantumheat engines convert
heat intowork [5], and analyse the effect of friction [6] and the impact of strong system-reservoir interactions [7]
on the performance of small thermalmachines. The operation of quantummachines within a closed, clock-
driven approach is contrastedwith the externally controlled approach [8].

Practical considerations of quantum thermalmachines include the determination of themaximum
efficiency of energy conversion in a photovoltaic device [9], the full characterisation of out-of-equilibrium
thermodynamics of an optomechanical system [10] and the construction of an optimal quantum engine realised
with an optomechanical system [11]. The optimal finite-time operation of quantum thermalmachines other
than engines are investigated; including optimal coolingwith a quantum refrigerator [12] and optimal charging
of a quantumbattery [13].

A large number of studies concern quantumfluctuations of thermodynamical quantities, such as work, heat
and entropy, and a discussion of themeaning offluctuations of non-commuting observables [14]. A derivation
of single-shot values of work extraction and formation is presented [15], the link between single-shot work and
non-equilibrium fluctuatingwork is discussed [16], and the limits to catalysis in single-shot thermodynamics
are clarified [17]. Definitions of quantumwork based on differentmeasurements are compared in the Zeno limit
of repeatedmeasurements [18] and quantumnon-equilibrium equalities are derived for irreversible driving
protocols [19]. The entropy production for scattering processes of non-interacting bosons and fermions is
determined [20] and the heat exchange of a driven quantum system is derived using a functional integral
approach [21]. Floquet theory is used to calculate the transition rates andwork exchange of a driven open
quantum system [22] and to establish the full probability distribution of heat exchanged from a driven quantum
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system [23]. The accounting of entropy, heat andwork of bipartite open quantum systems is also
considered [24].

A number of proposals aremade on how tomeasure such fluctuations in awide range ofmesoscopic
systems. Themeasurement of stochastic energetic exchanges in quantumheat engines implementedwith
Cooper-pair boxes is considered [25], the experimental requirements formeasuring temperaturefluctuations in
a single electron box are discussed [26] and the effect of incompletemeasurement of photon exchange between a
Cooper boxwith its baths is considered [27]. The directmeasurement of heat andwork in cold atomic setups is
discussed [28] and a test of time-reversal symmetry through checkingmicroreversibility in a superconducting
artificial atom is proposed [29]. Further investigations consider the heatflow in small quantumdevices,
including the effect offinite and thus evolving reservoirs is addressed [30] and a heat diode and engine based on
quantumHall edge states is proposed [31]. The heat transfer in optomechanical arrays [32] and the dephasing of
fluxoniumqubits in superconductiong devices [33] are also considered.

Last but not least the connection between thermodynamics and information theory in the quantum regime
is explored, including the derivation of the thermodynamic cost of operating a feedback control protocol [34]
and of creating correlations [35]. It is also discussed how towitness thermal entanglement in quantummany-
body systemswith the entropy [36] rather than energy or temperature [37].

The diversity of topics covered in this issue provides a glimpse into the rich field of quantum
thermodynamics which evolves in diverse directions and is still full of open questions. A brief perspective of
current research undertaken in quantum thermodynamics is provided in this focus issue [38]. Extensive review
articles further expand on thermalisation [39], quantum engines [40], the link between information and
thermodynamics [41], quantum information theoretic approaches to quantum thermodynamics [42] and on
the generalfield of quantum thermodynamics [43].
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