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Abstract  

While simple heuristics can be ecologically rational and effective in naturalistic 

decision making contexts, complex situations require analytical decision making 

strategies, hypothesis-testing and learning. Sub-optimal decision strategies – using 

simplified as opposed to analytic decision rules – have been reported in domains such 

as healthcare, military operational planning, and government policy making. We 

investigate the potential of a computational toolkit called “IMAGE” to improve 

decision-making by developing structural knowledge and increasing understanding of 

complex situations. IMAGE is tested within the context of a complex military convoy 

management task through (a) interactive simulations, and (b) visualization and 

knowledge representation capabilities. We assess the usefulness of two versions of 

IMAGE (desktop and immersive) compared to a baseline. Results suggest that the 

prosthesis helped analysts in making better decisions, but failed to increase their 

structural knowledge about the situation once the cognitive prosthesis is removed.  

 

Keywords: Complex decision making; Visual analytics; Knowledge representation 
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1. Introduction 

It has been demonstrated on numerous occasions both in field studies and laboratory 

experiments that human decision-makers confronted with complex situations fail to perform 

satisfactorily despite their well-intended efforts (Frensch and Funke, 1995; Gonzalez, 

Vanyukov, and Martin, 2005; Osman, 2010a; Quesada, Kintsch, and Gomez, 2005; Yasarcan, 

2009). Using computer-simulations of complex situations, Dörner (1996) noted particular 

examples of behaviors leading to successful performance (e.g., active learning and hypothesis 

testing) as well as numerous instances of poor behaviors leading to failure, which were 

generally linked to cognitive limitations and poor understanding and/or decision-making 

strategies (e.g., thinking in terms of isolated cause-and-effect relationships). Analysts and 

decision-makers confronted with complex situations could thus benefit from external support 

tools to help overcome cognitive limitations and facilitate broader situational understanding 

(e.g., interactive relationships, and projection of future consequences). The current study 

assesses whether IMAGE – one such cognitive prosthesis based on visual analytics – can 

augment analysts’ structural knowledge and encourage optimal decision-making strategies.    

Complex systems are characterized by uncertainty and non-linear interactions (Blech 

and Funke, 2005; Diehl and Sterman, 1995; Forrester, 1993) making it difficult to understand 

relations between elements. Furthermore, consequences of actions are often delayed in time 

and diluted by natural dynamic changes (Karakul and Qudrat-Ullah, 2008), while feedback 

may also be distorted, subject to misinterpretation, or imperceptible (Sterman, 2006). The 

dynamics of such systems are determined by their underlying structure, so knowledge about 

the causal relations between the elements comprising such systems – referred to as structural 

knowledge (Davis, Curtis, and Tschetter, 2003) – is critical for performing effective decision-

making in this context (e.g., Blech and Funke, 2005; Gagnon et al., 2012). However, 

decision-making is not solely dependent on the quality of structural knowledge, as heuristics 
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– simple but effective strategies that do not require a profound knowledge of a situation – 

may also be used and can often lead to good performance in certain task ecologies that favour 

the simplicity principle (Gigerenzer and Gaissmaier, 2011; Gigerenzer and Selten, 2001; 

Shah and Oppenheimer, 2008). Of course, not all task ecologies favour simple strategies. For 

example, many contemporary organizations are complex sociotechnical systems that require 

analytically-derived management guidelines (Righi and Saurin, 2015). While simple 

heuristics can be ecologically rational and effective in various naturalistic decision making 

contexts, it follows from Ashby’s law of requisite variety (Ashby, 1968) that complex 

situations require analytical decision making strategies, hypothesis-testing and learning. 

Heuristics may introduce biases that can lead to substandard decisions and failure of 

strategic decision-making in complex situations such as health care (e.g., Agyepong et al., 

2012), military strategic decision-making (e.g., Cohen, 2012), foreign policy making (e.g., 

Mitchell and Massoud, 2009) and macro-economy (Stekler, 2007). When dealing with such 

complex systems, heuristics fail to integrate sufficient complexity, and often generate less 

than satisficing outcomes (Betsch, Fielder, and Brinkmann, 1998; Betsch et al., 2001; Betsch 

et al. 2004). The limitations associated with intuitive heuristics have been referred to as 

cognitive “pathologies” (Cooper, 2005; Heuer 1999), with “pathological” behaviors including 

excessively reactive decision-making (focusing on fixing salient problems, i.e., a firefighting 

approach), lack of hypothesis testing, failure to consider potential side-effects or long-term 

effects of decisions, focusing on the present situation rather than on developmental trends, 

linearly projecting the situation into the future, searching for unique “one-factor” causes to 

problems, thematic vagabonding (focusing successively on different sub-problems with no 

coherent plan), and encystment (focusing on a single sub-problem) (Dörner, 1996). Decision-

making quality may be helped by external tools that can support the development of 

structural knowledge rather than the use of heuristics. 
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1.1.Cognitive prostheses 

Cognitive prostheses are tools designed to augment cognition by offloading part of the 

information processing or representation requirement onto external artifacts (Cooper, 2005; 

Heuer, 1999). External cognition refers to the use of (mainly visual) representations to (1) 

reduce cognitive effort (computational offloading), (2) make problem-solving easier by re-

representing information in a more tractable form, and (3) guide inferential reasoning about 

the underlying situation using graphs (see Scaife and Rogers, 1996). Tools supporting 

external cognition may promote the use of more analytical reasoning techniques over simple 

heuristics (Arias-Hernandez, Green, and Fisher, 2012), or help overcome cognitive bounds 

such as data overload and confirmation bias (Heuer, 1999; Johnston, 2005).  

1.2. IMAGE – A cognitive prosthesis  

The IMAGE system (Lizotte et al., 2012) – so named to reflect its emphasis on visual 

representation – is a set of advanced visual analytics technologies to help improve analysts’ 

understanding of complex situations by fostering the use of analytical reasoning strategies. 

IMAGE provides the user with added computational resources designed to support the 

adoption of “stronger” analytical methods of reasoning as opposed to “weaker” intuitive 

methods (see Bryant, Webb, and McCann, 2003). In order to achieve this goal, IMAGE 

provides three functions: (1) interactive simulations for hypothesis testing, (2) enhanced 

visualizations and (3) knowledge representation. Together, these functions allow the user to 

experiment with a simulation model to better understand a complex situation’s dynamics. The 

user can manipulate the situation parameters and potential decisions in different simulation 

runs to observe the different outcomes. The user then attempts to discover trends, tipping 

points, and trade-offs using the interactive visualizations. Finally, the user captures his 

insights and his understanding of the complex situation in the knowledge representation 
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component. This knowledge discovery process is not expected to operate in a linear 

sequential fashion, but rather as a series of iterations going back and forth across these 

different components. 

1.2.1. Interactive simulation 

When acquiring structural knowledge, “direct” learning involving active interaction with the 

environment may be more effective in complex settings than (vicarious) learning by 

observing the interventions of others – i.e., indirect learning about the environment (Lagnado 

and Sloman, 2004; Osman, 2010b). Indeed, cognitive studies examining causal learning 

processes suggest that structural knowledge is more accurate when one can influence and 

interact with potential causes rather than merely observe causes and their effects (Lagnado 

and Sloman, 2004; Steyvers et al., 2003). Interventions are important for causal learning in 

the sense that they enable the differentiation of compatible causal structures through 

hypothesis testing (Hagmayer et al., 2007).  

The interactive simulation module of IMAGE (called Multichronia) runs a computational 

model of a complex situation and allows the analyst to interact with this model by creating 

“what-if” simulations and manipulating key parameters (Lizotte et al., 2012; Rioux, Bernier, 

and Laurendeau, 2008). When interacting with the computational model using Multichronia, 

three types of actions are possible: Creating a simulation instance with new initial conditions; 

changing the value of a parameter at one point in time; and creating diverging simulation 

branches at different points in time (forming a multichronic tree, see Figure 1) to observe the 

impacts of different parameters on various measures of performance (MoP). For the purpose 

of the experiment described below, the parameters of each simulation had to be specified by 

the analyst. Consequently, it was not possible to simulate the model in “batch-run” mode, 

thus ensuring that analysts would interact with the simulation model and actively engage in 
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hypothesis testing. 

 

Figure 1. The interactive simulation was supported by Multichronia, a generic visual 

interactive simulation exploration framework providing users with a visual history of a series 

of simulation. Multichronia supports hypothesis-testing by allowing the creation of 

multichronic trees which let users simulate an instance and observe what would happen if a 

particular parameter was changed at any given moment in time. Whenever a parameter is 

changed, a new “branch” is created which visually evolves alongside its originating branch, 

thus making comparison between the original and the newly created instance easy for users. 

Branches correspond to what-if scenarios that may help understand the effects of specific 

changes through time. 

1.2.2. Enhanced visualizations 

Visualization is used for various functionalities such as data aggregation (e.g., Kandel et al., 

2012), coordinating multiple views, and linking different sets of data to assess relationships 

between dimensions (e.g., Gonzalez-Torres et al., 2013). Visually representing pre-processed 
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data allows analysts to infer relationships or detect patterns without being constrained by 

cognitive limits such as the bottleneck of short-term memory (Thomas and Cook, 2005; 

2006). This has been shown to improve performance in a wide variety of contexts including 

bioinformatics (Baehrecke et al. 2004), medicine (Tominski, Schulze-Wollgast, and 

Schumann, 2008), databases (Shneiderman, 2008), and e-Learning (Aguilar, Theron, and 

Peñalvo, 2009). Furthermore, visualizations can be improved by employing immersive virtual 

environments (van Dam et al., 2000) such as a Cave automatic virtual environment (CAVE; 

Cruz-Neira et al., 1992; Demiralp et al., 2003). A CAVE typically comprises three to six 

projectors arranged to display data on the walls of a room-sized cube, creating an 

environment that surrounds the user and provides a sense of immersion. Immersive tools can 

improve the identification of data clusters (Arms, Cook, and Cruz-Neira, 1999), as well as 

simple and complex searches (Laha et al., 2012). Such benefits of immersive virtual 

environments are partly explained by increased “presence” – an increased task focus resulting 

from the feeling of “being there” (Nash et al., 2000) – which is assumed to lead to a more 

sustained allocation of attentional resources and in turn, improved performance. However, the 

question remains as to whether a greater “presence” and more focused attention is sufficient 

to improve the understanding of complex situations. 

IMAGE offers a toolbox of enhanced visualizations (Girardin, 2012; Lizotte et al., 2012; 

Mokhtari, Boivin, and Drolet, 2013; Tye-Gingras, 2011), developed using Eye-Sys software 

(IDV inc.) that provides the analyst with relevant feedback about his/her interventions on the 

model (i.e., the data generated by the simulations he/she initiated) and about the relationships 

between the various dimensions involved in the simulations (Figure 2). It is designed to foster 

analysts’ understanding of the situation and support decision-making by providing feedback 

on the relevant dimensions, facilitating the examination of relations between those 

dimensions and how they interact through time. This includes key functionalities to support 
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pattern recognition and inference, such as data aggregation, clustering, sorting and 

comparison (through the coordination of multiple views). 

 

  

 

Figure 2. Analytical interactive visualizations have been developed with the Eye-Sys 

software package (http://www.eye-sys.com). Eye-Sys allows the gathering and manipulation 

of data in real-time from different sources for driving interactive, real-time visualizations. 

Within IMAGE, Eye-Sys provided a scientific dashboard with a variety of views aimed at 

facilitating the comparison of outcomes as a function of the parameter allocations. A ribbon 

view allowed the participant to inspect the development of MoPs across 100 iterations (top 

left). A cubic view allowed one to assess the impact of any three variables for each 

simulation (top right). The main difference between Eye-Sys in IMAGE-Desktop and 

IMAGE-CAVE was the presence of immersive views for the latter, whereas the former only 

offered traditional interactive views. Finally, a tactical view allowed analysts to see actual 

convoy movements (bottom).  
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1.2.3. Knowledge representation 

Internalized structural knowledge about a situation can be referred to as a mental model 

(Rouse and Morris 1986); a hypothetic and abstract representation of the causal structure of 

an environment which may vary in its degree of accuracy or proximity to reality (Gentner, 

2001). Mental models of complex dynamic situations tend to be logically incomplete and 

oversimplified (Funke, 2001; Sterman, 1994); that is, rather than comprehensive causal 

networks, they are functional approximations allowing individuals to interact with a 

phenomenon (Jones et al., 2011). It is possible to externalize individual mental models; 

moreover studies show this may support their construction and maintenance by promoting a 

more focused search, organizing information into coherent structures, and associating with 

prior knowledge (Khalifa and Shen, 2005; Liu, Chen, and Chang, 2010; Stull and Mayer, 

2007). Positive effects of knowledge representation have been observed in several domains of 

application, notably in reading comprehension (Liu et al., 2010; Ruddel and Boyle, 1989), 

classroom education (Jegede, Alaiyemola, and Okebukola, 1990; Trowbridge and 

Wandersee, 1994) and complex business problem-solving tasks (Slof et al., 2010). 

IMAGE uses an external representation tool built by Defence R&D Canada (DRDC) from an 

existing tool, CoGUI, that was developed in the context of research efforts by Chein and 

Mugnier (2009) and Genest (2012). This tool called CoGUI-IMAGE (Figure 3; see also 

Chapter 4 of Lizotte et al., 2012), allows the user to develop conceptual graphs (Chein and 

Mugnier, 1992) to help express one’s understanding and iteratively develop more elaborate 

representations of the complex system of interest. Indeed a key goal of IMAGE is to support 

the development of a progressively more elaborate “comprehension model” through cycles of 

what-if simulations, data visualization, and knowledge synthesis. 
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Figure 3. CoGUI-IMAGE is a tool for editing conceptual graphs. It was built by Defence 

R&D Canada (DRDC) from an existing tool called CoGUI, developed by the Laboratoire 

d'Informatique, de Robotique et de Microélectronique de Montpellier. 

1.2.4. Immersive setup 

Two versions of the IMAGE tool were implemented: IMAGE-Desktop was designed to run 

on a desktop computer equipped with three screens arranged in an arc (see Figure 4); and 

IMAGE-CAVE was designed to run in the Virtual Immersive Facility at DRDC– Valcartier 

(Québec, Canada) (see Figure 5). In the IMAGE-Desktop condition, the left screen displayed 

the knowledge representation tool, the center screen displayed the simulation tool, and the 

right screen displayed the enhanced visualizations of the simulation data. The functions 

implemented in the IMAGE-CAVE condition were equivalent to those implemented in the 

IMAGE-Desktop condition (i.e., interactive simulation, enhanced visualizations and 
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knowledge representation); however, they were adapted to fit the CAVE with the goal of 

creating a more immersive experience. The IMAGE-CAVE had two modes of operation, 

changed at will by the participant. In the non-stereoscopic mode (Figure 5, first row), the left 

screen (not shown in Figure 5) displayed the task instructions, the center screen displayed 

enhanced visualizations, the right screen displayed the knowledge representation tool, and a 

tablet-pc fixed to the participant’s chair displayed the simulation tool. In the stereoscopic 

mode (Figure 5, second row), four screens were dedicated to the display of enhanced 

visualizations, and the tablet-pc displayed the simulation tool. In this mode, participants had 

to wear stereoscopic glasses and controlled the visualizations with a controller wand.  

 

Figure 4. Experimental setup in the IMAGE-Desktop condition. The screens were disposed in 

an arc in front of the participant. Each screen was assigned to a specific function, namely 

knowledge representation (left), interactive simulation (center) and enhanced visualization 

(right). Although not described in the present article, participants were required to wear a 

head-tracking device which was used for behavioural measurement and design 

recommendations. 

 



 

 

13 

 

Figure 5. Experimental setup for the IMAGE-CAVE condition. The CAVE operated in two 

distinct modes: immersive and non-immersive display. In the immersive mode, participants 

stood and moved around the workspace at will. An extra input device, the WAND, was added 

to the IMAGE toolkit in order to reproduce mouse functionalities while standing. The 

WAND consisted of a thumb-stick for navigating and five programmable buttons. 

Participants in the IMAGE-CAVE condition may also have used electronic shutter glasses 

(stereo-glasses) to explore two immersive interactive data visualizations called the cube view 

(lower left panel) and the ribbon view (lower right panel).  

 

The assumptions behind the development of the IMAGE prosthesis are based on 

visual analytics. Namely, it is assumed that (a) simulations of a complex situation can help 

explore the parameter space and test hypotheses, (b) data resulting from those simulations can 
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be better understood using sophisticated graphics, and (c) insights can be captured using an 

external knowledge representation and iteratively improved, or reframed. These three aspects 

are all incorporated into “IMAGE-Desktop”. The IMAGE-CAVE version incorporates one 

additional assumption (d) implementing these functions in a CAVE may further increase 

benefits by augmenting the proportion of attentional resources dedicated to the execution of 

the task. 

1.3.Objectives 

The study aims to validate the key assumptions of the IMAGE toolkit; first, whether the 

visual analytics functionalities provided by the IMAGE prosthesis help analysts understand 

complex situations; and second, whether immersion modulates the impact of the visual 

analytics tools on understanding.  

2. Method 

2.1.Participants 

Thirty-nine volunteers (30 men, 9 women) who had completed at least two undergraduate 

semesters in computer science, mathematics or operational research participated in the study. 

Participants received monetary compensation for their participation. 

2.2.Task 

Participants played the role of an operations research analyst. Their main objective was to 

develop an understanding of a complex situation by interacting with a computational model 

of that situation. They were asked to gain a good enough understanding of the situation to 

explain its behaviors and particularities to another analyst. Specifically, participants 

performed two distinct tasks: an analysis and decision-making task and a structural 
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knowledge test. 

2.2.1. Analysis and decision-making task 

The main task involved actively exploring the effects of potential policies and operational 

decisions using a computational model of a complex situation. The complex situation was 

first defined by a team of cognition and domain experts, then instantiated into a 

computational model and multi-agent simulation. The situation portrayed was the 

management of military convoy operations in a hostile environment. The scenario was 

specifically developed to encompass hallmarks of complex systems including a high number 

of elements, non-linear relationships, amplifying or damping feedback loops, unknown 

relationships, delays within the relationships between different parts of the system, counter-

intuitive effects, and emergent co-evolutionary behaviour through mutual adaptation (see 

Bernier and Rioux, 2010). Using the Multichronia simulation tool, participants interacted 

with the computational model by sampling the parameter space, and manipulating the value 

of various parameters (e.g., armor thickness) to determine how this affected convoy mission 

measures of performance (MoP). Participants’ goal was to find the best set of parameter 

values to maximize three MoPs: convoy integrity (the final health factor of the convoy after 

incurring damages during hostile encounters), convoy timeliness (time taken for the convoy 

to reach its destination) and convoy cargo (quantity of cargo brought to destination). This was 

not trivial as the parameter space included about six billion possibilities, thus making it 

impractical to exhaustively explore the entire solution space. 

2.2.2. Structural knowledge test 

The structural knowledge test required participants to approximate the relationships between 

all key variables of the model in a simplified linear fashion (i.e., by estimating the strength 

and direction – negative or positive – of the relationships). This was implemented through a 



 

 

16 

web-based questionnaire, only available at the end of the experiment, when the digital tools 

and notes were no longer available. The questionnaire presented a matrix of cells allowing 

the participant to estimate the correlation (-1 to +1) between the variables of each row and 

column (Figure 6). For each pair of variables, participants had to specify the strength and 

direction of the linear relationship.  

 

Figure 6. The structural knowledge test consisted of a matrix with variable names in rows and 

columns, and cells allowing the participant to estimate the linear correlation (between -1 and 

+1) between the variables of each row and column. 

2.3.Experimental design 

To assess the effect of the IMAGE toolset on structural knowledge and decision-making 

performance, the experiment compared a group of participants using IMAGE (i.e., the 

IMAGE condition which combines IMAGE-CAVE and IMAGE-Desktop users) with a group 

of participants using a more traditional set of tools (i.e., the baseline condition, which 

replicated the environment in which this type of work is usually performed). The relevance of 

the tools provided in the baseline condition was validated by subject matter experts (SMEs) 

in operations research. In the baseline condition, the left screen displayed a standard text 

editor (WordPad), the center screen displayed a basic simulation tool for setting model 

parameters and launching simulations with a limited visualization capacity (i.e., a reduced 
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version of Multichronia essentially allowing successive what-if simulations but without the 

advanced multichronic tree comparison capability designed to support hypothesis testing), 

and the right screen displayed an Excel spreadsheet showing simulation outputs. In order to 

assess the potential impact of immersion when using a tool such as IMAGE, we divided the 

IMAGE condition into two sub-groups, one with immersion capabilities (IMAGE-CAVE) 

and the other without (IMAGE-Desktop). As both groups were given the IMAGE 

functionalities, the only difference between the two conditions was the level of immersion. 

Table 1 shows a breakdown of the functions provided to the participants by each version of 

the tool. The greyed part corresponds to the core of the IMAGE concept, which can be 

implemented in an immersive environment or not. 

 

Table 1. Functions by experimental condition 

 Functions IMAGE-

CAVE 

IMAGE-

Desktop 
Baseline 

IM
A

G
E

 

C
o
n
ce

p
t (1) Interactive simulation YES YES NO 

(2) Enhanced visualizations YES YES NO 

(3) Knowledge representation YES YES NO 

 (4) Immersive display YES NO NO 

2.4.Procedure 

Participants were quasi-randomly1 assigned to one of the conditions: baseline, IMAGE-

Desktop or IMAGE-CAVE. The experiment consisted of a 45-minute tutorial session, 

followed by two decision-making task cycles (lasting 150 minutes each, divided into two 

sessions of 75 minutes), ending with a web-based structural knowledge test.  

                                                 

1 The unequal size of the three groups is due to a technical request to have a greater amount of open-ended feedback and 

system testing for the IMAGE-Desktop as well as the IMAGE-CAVE condition. 
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The tutorial session aimed to familiarize participants with the tools, and was 

completed with the help of an experimenter who ensured that each participant was proficient 

in the use of the tools available. The experimenter systematically prompted participants to 

perform all operations relevant to the task (e.g. running a simulation) making sure that each 

one was understood. The tutorial scenario (identical across all experimental conditions) 

involved the simulation of hemlock migration and its effect on the propagation of a disease; 

this was intentionally far-removed from the experimental scenario (convoy operations) to 

ensure that there was no carryover effect.  

2.5.Metrics 

Two measures were taken: decision-making performance and quality of structural 

knowledge.  

2.5.1. Decision-making performance 

Participants were asked to separately maximize three MoPs: Integrity, Timeliness, and Cargo. 

For each MoP, participants had to provide the value of the parameters which would maximize 

its outcome. The score for each MoP was the proximity between the best possible outcome 

and that of the participant. Because each MoP was associated with a distinct and non-uniform 

distribution, some values were more frequent than others, and therefore potentially easier to 

find by chance. In order to assign a score which rewarded the participant proportionally to the 

difficulty of attaining a given score, raw scores obtained by participants were normalized 

using a measure taking into account the three distributions. To obtain these distributions, 

750,000 simulations were launched according to a pseudo-random exploration of the 

parameter space using the scrambled Halton sequence approach (Bhat 2003). From these 

distributions, it was found that high scores for convoy timeliness were the least difficult to 

obtain, since higher values could be reached by a multiplicity of parameter combinations. 
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High convoy integrity scores were more difficult to achieve, and high values for convoy 

cargo were the most difficult. For this reason, the scores were normalized based on their 

distribution, ranging from 0 (lowest performance) to 1 (highest performance). Decision-

making performance was the average of the normalized scores for the three MoPs from both 

decision-making task cycles. 

In the present study, good decision-making performance could be achieved through an 

effective sampling of the parameter space (i.e., an efficient search for optimal parameters). 

The exploration of the parameter space and the acquisition of structural knowledge 

(hypothesized to lead to better sampling) constitute the essence of the present experimental 

task and essentially refer to a cyclic process of hypothesis testing and analytic learning. It is 

hypothesized that participants who develop a better understanding of the relations between 

the parameters and the system’s variables will be more inclined to sample the parameter 

space adequately and consequently to achieve a higher decision-making performance.  

2.5.2. Quality of structural knowledge 

The web-based questionnaire explicitly probed participants’ knowledge of the relationships 

between key variables in the computational model of the complex situation. The quality of 

participants’ structural knowledge was estimated by taking into account both how close to 

ideal and how far from random their responses were. The proximity to the ideal and to a 

random solution was calculated for each participant by calculating a normalized distance 

between participants’ responses and the two reference matrices. The ideal reference matrix 

was obtained by deriving the correlation values between variables using a representative 

sample of the parameter space. The random reference matrix was equivalent to a matrix filled 

with zeros (i.e. no strength and no direction). The quality of structural knowledge was equal 

to the average error with the ideal matrix divided by the average error with the random 
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reference matrix. The value of this metric favours participants that are both close to the ideal 

solution and further from random. While this metric can vary from zero to infinity, a value of 

one corresponds to a response matrix that is equidistant from both the ideal and the random 

matrices. A value above one means that responses are closer to the ideal matrix, while a value 

below one means that responses are closer to the random matrix. A complementary measure 

of structural knowledge could in principle be derived from the knowledge representations of 

participants (developed in either WordPad or CoGUI), yet comparing different types of 

representations either quantitatively or qualitatively comes with methodological challenges 

that are beyond the scope of the present work. Here, the focus lies on assessing the impact of 

IMAGE as a whole, where knowledge representation forms an integral part of the hypothesis 

testing and iterative learning process.  

 

3. Results 

3.1. Intergroup analyses 

In a first step, differences between the experimental groups were assessed in terms of 

decision-making performance and structural knowledge. A statistically significant difference 

on decision-making performance was observed between the IMAGE and baseline conditions 

t(37)= 2.07, p = .045. Participants in the IMAGE conditions (M = .80, SD = .07) obtained 

higher mean decision-making performance than participants in the baseline condition (M = 

.74, SD = .09) (Figure 7). This represents an average increase of 6% in terms of decision-

making performance when using IMAGE tools in comparison with baseline tools.  
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Figure 7. Decision-making performance by experimental condition. Error bars represent 

mean squared error. 

 

No statistically significant difference on decision-making performance was observed 

between the IMAGE-desktop and IMAGE-CAVE conditions t(28) < 1. Participants in the 

IMAGE-desktop condition (M = .80, SD = .07) did not obtain a higher mean score than 

participants in the IMAGE-CAVE condition (M = .80, SD = .08).  

Mean quality of structural knowledge as measured by the covariation matrix was not 

significantly different across experimental conditions t(37) < 1. Participants in the IMAGE 

condition (M = .99, SD = .06) did not exhibit better structural knowledge than participants in 

the baseline condition (M = .97, SD = .08). Furthermore, structural knowledge was not 

significantly different between the two IMAGE conditions t(28) < 1. Indeed, participants in 

the IMAGE-CAVE group (M = 1.00, SD = .09) did not differ from participants in the 

IMAGE-Desktop condition (M = .99, SD = .04) in terms of quality of structural knowledge 

(see Figure 8). For the various non-significant tests reported above, a power analysis shows 

that it would potentially require between 115 and 6000 participants for the observed 

Comparison 1* 

Comparison 2 
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differences to be statistically significant. For all practical purposes, we can safely conclude 

there was no reliable operationally relevant difference for these last three comparisons.   

 

 

Figure 8. Structural knowledge by experimental condition. Error bars represent mean squared 

error. 

3.2. Regression analyses 

In a second step, we performed three linear regressions to assess the relation between the 

number of what-if simulations and (a) decision making performance and (b) structural 

knowledge, as well as between structural knowledge and decision making performance. Since 

there was no significant difference across experimental conditions in terms of number of 

what-if simulations F(36) = 1.451, N.S, it was decided to pool results from experimental 

conditions together to increase statistical power. Standard linear regressions were then carried 

out between, on the one hand (a) decision making performance (M = .82, SD = .09) as the 

dependent variable (DV) and number of what-if simulations (M = 79.77, SD = 33.87) as the 

independent variable (IV) and on the other hand between (b) quality of structural knowledge 

(M = 98.55, SD = .07) as the DV and number of what-if simulations as the IV. Each of the 

Comparison 2 

Comparison 1 
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two linear regressions is described in its own section below. Analyses were performed using 

SPSS REGRESSION and SPSS EXPLORE for the evaluation of assumptions. All 

assumptions, including normality, linearity, homoscedasticity of residuals, and the absence of 

outliers, were met. 

3.2.1. Number of what-if simulations and decision making performance 

Table 2 displays the correlation between variables, the unstandardized regression coefficient 

(B) and intercept, the standardized regression coefficient (β), R2 and adjusted R2. R for 

regression was significantly different from zero, F(1, 37) = 4.396, p = .043, with R2 at .106. 

The adjusted R2 value of .082 indicates that approximately 8% of the variability of decision 

making performance can be predicted by the number of what-if simulations. 

 

Table 2. Linear regression of number of simulations on decision making performance 

Variables 

Decision making 

performance (DV) 

Number of what-if 

simulations (IV) B β 

Number of whaf-if  .326  0.001* 0.326 

simulations  Intercept = 0.72   

Means 0.786 79.77   

Standard deviations 0.081 33.87 R2 = .106 

   Adjusted R2 = 

.082 

   R = .326* 

* p = .043 

 

The direction of the relationship suggests that a greater amount of interaction with the 

model (i.e., launching/modifying simulation runs) is associated with greater decision making 

performance.  

3.2.2. Number of what-if simulations and quality of structural knowledge 

Table 3 displays the correlation between variables, the unstandardized regression coefficient 

(B) and intercept, the standardized regression coefficient (β), R2 and adjusted R2. R for 

regression was significantly different from zero, F(1, 37) = 5.319, p = .027, with R2 at .126. 
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The adjusted R2 value of .102 indicates that approximately 10% of the variability of quality of 

structural knowledge can be predicted by the number of what-if simulations. 

 

Table 3. Linear regression of number of simulations on quality of structural knowledge 

Variables 

Structural 

knowledge (DV) 

Number of what-if 

simulations (IV) B β 

Number of what-if  .355  0.001* 0.355 

simulations  Intercept = 0.93   

Means 0.986 79.77   

Standard deviations 0.067 33.87 R2= .126 

   Adjusted R2= .102 

   R = .355* 

* p = .027 

 

The direction of the relationship suggests that a greater number of what-if simulations 

is associated with greater structural knowledge. An additional regression was carried out 

between decision making performance and quality of structural knowledge. The regression 

was not statistically significant F(1, 37) = 4.02, N.S. 

 

4. Discussion 

This study investigated whether IMAGE, a cognitive prosthesis to support analytical 

reasoning, could increase analysts’ understanding of a complex system and whether its 

immersive capability could further increase structural knowledge acquisition and decision-

making performance. While a variety of analytical tools have been designed to support 

understanding and planning in complex domains (e.g., Allen, Corpac, and Frisbie, 2006; 

Chappell et al., 2004; Chen and Lee, 2003; Langton and Das, 2007; Surdu and Kitka, 2008; 

Vester, 2007), the effectiveness of such tools is not often investigated in a systematic manner 

using the experimental research method (e.g., Lafond et al., 2012; Lerch and Harter, 2001). 
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Results show that providing a cognitive prosthesis that incorporates interactive simulation, 

enhanced visualization and knowledge representation, can improve decision-making 

performance but does not appear to increase the accuracy of structural knowledge. 

Importantly, this finding suggests that the cognitive tool was indeed useful as a cognitive 

“prosthesis” in the sense that benefits emerged when operating as a joint cognitive system (i.e. 

a human-tool dyad), however it did not foster a better understanding of the situation more 

generally (i.e., IMAGE did not lead to better internal mental models as assessed by the matrix 

test). This is in line with the view that human analysts should collaborate with such cognitive 

tools, whereby each component, human or machine, performs complementary functions 

towards the achievement of a common goal (see Arias-Hernandez et al., 2012). For instance, 

in the context of the present study, IMAGE performs functions like data aggregation (by 

consolidating all data into visual representations), and simulation (by running the 

computational model), while the analyst’s role is to detect patterns and make decisions about 

the parameters that need to be acted upon. 

Our results also show that the addition of immersion capabilities in the IMAGE-

CAVE subgroup did not lead to an increase in decision-making performance nor to an 

increase in the quality of structural knowledge compared with the IMAGE-Desktop group. 

One possible explanation for this finding could be the nature of the complex situation which 

was mostly conceptual rather than spatial. Indeed, previous research on immersive 3D 

environments has shown that most benefits associated with such are demonstrated with 

inherently spatial tasks such as protein folding (Férey, Nelson, Martin et al., 2009). 

Conversely, research pertaining to the visualization of multidimensional statistical data has 

obtained mixed results (e.g., Arns, Cook, and Cruz-Neira, 1999).  

 We offer five potential (but not exclusive) explanations for the observed lack of 

impact of IMAGE on structural knowledge. First, it may have been that the augmented 
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toolset provided was simply no more helpful than the baseline tools to foster development of 

a long-term representation of the system. Second, our measure of structural knowledge 

assumes linear relationships between the different situation variables (to estimate the overall 

direction and strength of relationships) and may consequently underestimate participants’ 

knowledge if the latter is nonlinear. Still, we argue that our measure should be sensitive 

enough to detect differences in understanding, since linear estimation of non-linear relations 

has been shown to account for a significant proportion of variance in most cases (Karelaia 

and Hogarth, 2008). Third, the time allocated for creating a good internal representation of 

the structure of the system may have been too short. Indeed, the combinatorial complexity of 

the system is very high (with over 6 billion possible combinations of parameters), and the 

average number of simulated instances was very low. Although this was sufficient for 

relatively good performance on the decision-making task, one could argue that this is greatly 

insufficient to create a valid internal representation of the structure of the system. Fourth, this 

finding could also be explained by a ceiling effect caused by fundamental human cognitive 

limits (e.g., Halford et al., 2005). Indeed, humans may be unable to acquire and retain more 

than a fraction of the structural knowledge necessary to fully understand complex systems. 

Finally, instance based learning theory (Gonzalez, Lerch, and Lebiere, 2003) would suggest 

that people may have acquired procedural knowledge on how to act using an interactive tool 

such as IMAGE, but not necessarily causal knowledge (either explicit or implicit) about the 

structure of the system. The observed relation between the number of simulation runs and 

decision making performance, as well as the lack of a significant relation between structural 

knowledge and decision making performance both make sense from the perspective of 

instance based learning theory.  

The current index of structural knowledge shows that acquired knowledge was 

equally close to the ideal solution as it was to the random allocation of values, leaving 
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considerable room for improvement. In the context of the current study, such a result clearly 

illustrates the complexity of the simulated situation and the difficulty associated with its 

representation. Our finding that the number of simulation runs is related  to structural 

knowledge (but not necessarily causally) may lead to the hypothesis that promoting a greater 

exploration of the parameter space would help users achieve better structural knowledge. 

More research is needed to identify the factors that influence the formation of a good 

representation of a complex system such as that simulated in the present study (see Gary and 

Wood, 2007).  In supporting the development of structural knowledge, one factor that 

deserves much further investigation is the potential benefit of computational tools that keep 

the human in the loop and provide a means for hypothesis testing.   

Leading models of sensemaking and situational awareness (e.g., Endsley, 1995; 

Thomas and Cook, 2005) and empirical work (e.g., Goode and Beckmann, 2010) suggest that 

comprehension is a key factor underlying effective decision-making, yet in the current study 

there was no general relationship between structural knowledge and decision-making 

performance. One might question then, whether this assumed relationship between structural 

knowledge and decision-making still holds true when dealing with highly complex problems. 

Decision-making performance was supported by the use of tools (all participants, even those 

in the baseline condition, used tools to support their analysis and decision-making), whereas 

no tool was available for the structural knowledge test. Perhaps it is not that surprising then 

that un-aided cognitive performance showed no relation to cognitive performance with tools. 

This points back to the notion of a cognitive prosthesis, and the idea that in complex domains 

cognitive artifacts are the “things that make us smart” (Norman, 1993), allowing us to be 

effective in ways that we could not possibly be without our ingenious devices. 

In terms of practical implications, our pattern of results reinforces the relevance of 

developing joint cognitive systems in the effort to augment comprehension of complex 
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situations, but also highlights the limitations of this approach. Joint cognitive systems are 

widely used in the support of performing complex tasks including air traffic control (e.g. 

Harris 2013; Hollnagel 2007), emergency and crisis management (e.g., Furniss and Blanford, 

2006; Ntuen et al., 2006), warehouse management (Accorsi, Manzini, and Maranesi, 2013), 

and policy making (Ntuen, Park, and Gwang-Myung, 2010; Parsons and Sedig, 2014). Our 

results also suggest that joint cognitive systems may be insufficient for human users to 

develop a good internal representation of a complex situation. This is critical as most of these 

systems would usually be used by analysts who would have to share their comprehension 

with the actual decision-maker afterwards. To facilitate this process, our results suggest that 

the design of a joint cognitive system should leave the control in the hands of the analysts. 

Although many systems already support such a feature (e.g. Accorsi, Manzini, and Maranesi, 

2013), still many simulations allow little or no control to the analysts over the sampling of the 

parameter space (see Brandenburg et al., 2013). Overall, by stressing further the importance 

of interactivity within the visual analytics framework, this study underlines the importance of 

integrating human factors considerations in the design of joint cognitive systems. 
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Figure 1. The interactive simulation was supported by Multichronia, a generic visual 

interactive simulation exploration framework providing users with a visual history of a series 

of simulation. Multichronia supports hypothesis-testing by allowing the creation of 

multichronic trees which let users simulate an instance and observe what would happen if a 

particular parameter was changed at any given moment in time. Whenever a parameter is 

changed, a new “branch” is created which visually evolves alongside its originating branch, 

thus making comparison between the original and the newly created instance easy for users. 

Branches correspond to what-if scenarios that may help understand the effects of specific 

changes through time. 

 

Figure 2. Analytical interactive visualizations have been developed with the Eye-Sys 

software package (http://www.eye-sys.com). Eye-Sys allows the gathering and manipulation 

of data in real-time from different sources for driving interactive, real-time visualizations. 

Within IMAGE, Eye-Sys provided a scientific dashboard with a variety of views aimed at 

facilitating the comparison of outcomes as a function of the parameter allocations. A ribbon 

view allowed the participant to inspect the development of MoPs across 100 iterations (top 

left). A cubic view allowed one to assess the impact of any three variables for each 

simulation (top right). The main difference between Eye-Sys in IMAGE-Desktop and 

IMAGE-CAVE was the presence of immersive views for the latter, whereas the former only 

offered traditional interactive views. Finally, a tactical view allowed analysts to see actual 

convoy movements (bottom).  

 

Figure 3. CoGUI-IMAGE is a tool for editing conceptual graphs. It was built by Defence 

R&D Canada (DRDC) from an existing tool called CoGUI, developed by the Laboratoire 

d'Informatique, de Robotique et de Microélectronique de Montpellier. 

 

Figure 4. Experimental setup in the IMAGE-Desktop condition. The screens were disposed in 

arc in front of the participant. Each screen was assigned to a specific function, namely 

knowledge representation (left), interactive simulation (center) and enhanced visualization 

(right). Although not described in the present article, participants were required to wear a 
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head-tracking device which was used for behavioural measurement and design 

recommendations. 

 

Figure 5. Experimental setup for the IMAGE-CAVE condition. The CAVE operated in two 

distinct modes: immersive and non-immersive display. In the immersive mode, participants 

stood and moved around the workspace at will. An extra input device, the WAND, was added 

to the IMAGE toolkit in order to reproduce mouse functionalities while standing. The 

WAND consisted of a thumb-stick for navigating and five programmable buttons. 

Participants in the IMAGE-CAVE condition may also have used electronic shutter glasses 

(stereo-glasses) to explore two immersive interactive data visualizations called the cube view 

(lower left panel) and the ribbon view (lower right panel).  

 

Figure 6. The structural knowledge test consisted of a matrix with variable names in rows and 

columns, and cells allowing the participant to estimate the linear correlation (between -1 and 

+1) between the variables of each row and column. 

 

Figure 7. Decision making performance by experimental condition. Error bars represent mean 

squared error. 

 

Figure 8. Structural knowledge by experimental condition. Error bars represent mean squared 

error. 

 

 


