

A BIM COMPATIBLE SCHEMA FOR ARCHITECTURAL PROGRAMMING

INFORMATION

A Dissertation

by

EHSAN BAREKATI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Mark J. Clayton
Committee Members, Valerian Miranda
 Wei Yan
 James Caverlee
Head of Department, Robert Warden

December 2016

Major Subject: Architecture

Copyright 2016 Ehsan Barekati

ii

ABSTRACT

Having access to architectural programming information that documents the pre-

design requirements for the building throughout the lifecycle of a building can add value

to design evaluation, facility management, renovation and extension. Building

Information Modeling (BIM) is a new approach to manage the information that

represents the characteristics of a building throughout its lifecycle. Architectural

programming, although a key part of Architecture/Engineering/Construction/Operations

(AECO) processes, has not been well integrated into Building Information Modeling

(BIM) standards. Although research for many years has established computational data

models for a BIM, there is not yet a comprehensive and standard data model to store

architectural programming information that is compatible with BIM data modeling

standards. This study investigated the possibility for a Universal Format for an

Architectural Program Of Requirements (UFPOR) that can connect the architectural

programming information to the BIM.

Three well-known formats for architectural programming were analyzed to

produce data models representing each format. The data models were further analyzed

and compared to form a common data model that can bring together all three formats,

producing a Universal Format for Architectural Program Of Requirements (UFPOR).

The capabilities of UFPOR in representing PORs from the industry was further analyzed

by modeling a POR excerpt using UFPOR.

In the next phase, the data schema for the industry standard International

iii

Foundation Classes (IFC), which represents Building Information Models, was analyzed

to explore its capabilities in supporting architectural programming information. Previous

attempts to use IFC in documenting architectural programming information were

reviewed and analyzed. The findings were compared with UFPOR to evaluate the

capabilities of IFC in supporting a universal format for architectural programming. The

result was a subset of IFC that can partially represent UFPOR (UFPOR-IFC). The

limitations of IFC to fully support UFPOR are also discussed.

In the next phase, a computer application prototype (Target) was developed based

on the findings of the previous phase to demonstrate how a limited subset of architectural

programming requirements can be represented in IFC based on UFPOR-IFC. The output

of the application was tested to ensure the IFC physical files produced by the application

accurately reflect the data inserted by the application’s user. UFPOR-IFC was tested by

modeling two architectural programming documents to assess the external credibility of

the findings. The devised system offers a blueprint for creating a link between real-world

Architectural Programs and BIM models through IFC physical files.

For future work, the findings of the study can be further analyzed by testing the

extensibility of the UFPOR-IFC in modeling architectural programming requirements in

different subdomains such as lighting, earthquake resilience, and acoustics. Enhancement

of IFC to fully support UFPOR could also be investigated and devised. The capabilities

of UFPOR-IFC to create a link between UFPOR information and other BIM models

should be further tested and analyzed.

iv

DEDICATION

The list of people who made producing this dissertation a possible task is not

limited to the individuals whose names have been cited to acknowledge their academic

and scientific contributions. It also includes family members and friends who created a

supporting environment for me to finish this task.

Over the past seven years, my wife Jenny created an environment where I could

focus on finishing this dissertation. It was not always easy and took a lot of sacrifice and

dedication on her part. Before that, my parents taught me to dream big and stood by me

even when my dreams created a physical distance between us.

I dedicate this dissertation to my wife and parents without whom finishing this

task was not possible.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Clayton, the chair of my committee, not only for

his exemplary depth of knowledge and his commitment to elevate the final product to its

full extent, but also for being a friend and like an older brother over the past seven years.

Without his support and dedication finishing this dissertation would not have been

possible.

I would like to thank my committee members (Dr. Miranda, Dr. Yan, and Dr.

Caverlee), who provided a wide range of expertise and knowledge without which this

dissertation would have been severely lacking.

I would like to thank Texas A&M University and the College of Architecture

faculty and staff who provided an environment where learning and exploring became my

second nature.

I would like to thank the great people of College Station who embraced me upon

my arrival and helped me in all forms and shapes expecting nothing in return.

vi

NOMENCLATURE

AECO Architecture/ Engineering/ Construction/ Operations

BIM Building Information Modeling

BPie Building Programming Information Exchange

CAD Computer Aided Design (Drafting)

COBie Construction Operations Building Information Exchange

IFC Industry Foundation Classes

OOP Object Oriented Programming

POR Program of Requirements

SCie Spatial Compliance Information Exchange

UFPOR Universal Format for Program of Requirements

vii

TABLE OF CONTENTS

 Page

ABSTRACT ... ii

DEDICATION .. iv

ACKNOWLEDGEMENTS ... v

NOMENCLATURE .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. xiii

LIST OF CODES ... xvii

1. INTRODUCTION ... 1

1.1. Motive .. 1
1.2. Overview of Method and Scope ... 4
1.3. Challenges .. 5

1.3.1. Diversity of POR Formats .. 6
1.3.2. Diversity of the Requirements .. 6
1.3.3. Adaptation by the Industry ... 7

1.4. Research Method .. 7
1.4.1. Research Questions ... 7
1.4.2. Hypothesis .. 8
1.4.3. Methodology ... 8

1.5. The Organization of the Dissertation ... 10

2. LITERATURE REVIEW .. 12

2.1. Architectural Programming Methods ... 12
2.2. Standards for BIM Databases ... 15
2.3. Converting Domain Knowledge into Software .. 17

2.3.1. Semantic Interoperability and Data Integration 18

viii

2.3.2. Ontology ... 20
2.3.3. AECO Ontologies ... 21
2.3.4. Ontology Implication in This Study 23
2.3.5. Different Data Types in a POR ... 25

2.4. Architectural Programming and BIM .. 26
2.4.1. Proprietory Formats and Solutions 27
2.4.2. Open Standards ... 28

2.5. Object-Oriented Design/Programming .. 28
2.5.1. Classes and Instances .. 28
2.5.2. Attributes and Operations ... 29
2.5.3. Inheritance .. 29
2.5.4. Information Hiding ... 30
2.5.5. Polymorphism ... 31

2.6. UML Diagrams .. 31
2.7. What Is UML ... 31

2.7.1. UML Diagrams in This Dissertation 32
2.8. IFC File Format .. 33

2.8.1. Intoduction to Step and Express ... 33
2.8.2. Step Physical Format .. 35

2.9. IFC Schema Layers .. 37
2.9.1. Core Schema ... 38

2.9.1.1. IfcKernel ... 39
2.9.1.2. Object Definitions .. 40

2.9.2. Resource Schemas .. 43
2.9.3. Shared Schemas .. 44

2.9.3.1. Shared Building Services Elements 44
2.9.3.2. Shared Component Elements 44
2.9.3.3. Shared Building Elements .. 45
2.9.3.4. Shared Management Elements 47
2.9.3.5. Shared Facilities Elements ... 47

2.9.4. Domain Schemas .. 47
2.10. IFC and Property Sets .. 48

2.10.1. Dynamically Extendible and Statically Defined Properties . 50
2.10.2. Dynamically Extendible Properties and MVDs 51

2.11. IFC and Architectural Programming Information 52
2.11.1. IFC AR-5 .. 52
2.11.2. Spatial Compliance Information Exchange (SCie) 54
2.11.3. Building Programming Information Exchange (BPie) 61
2.11.4. Current State of Architectural Programming and IFC 63

3. COMMERCIAL SOFTWARE FOR ARCHITECTURAL PROGRAMMING 65

3.1. Commercial Tools .. 65
3.1.1. Trelligence Affinity .. 66

ix

3.1.2. Onuma Systems .. 72
3.1.3. dRofus ... 75

3.2. Lessons Learned from the Reviewed Applications 79
3.2.1. Experts’ Views in Architectural Programming 79
3.2.2. Connections with IFC ... 81

4. DATA MODELING OF THREE EXPERT METHODS FOR PROGRAMS OF
REQUIREMENT ... 82

4.1. Methodology .. 82
4.2. Sanoff’s Model ... 83

4.2.1. Objective ... 84
4.2.2. Activity ... 85
4.2.3. Performance Requirements ... 86
4.2.4. Summary of Sanoff Model ... 88

4.3. Peña’s Model .. 92
4.3.1. Environment .. 95
4.3.2. People .. 96
4.3.3. Activity ... 96
4.3.4. Connecting the Base Models to Peña’s Table 96

4.4. Duerk’s Model .. 98
4.4.1. Analysis of the Existing State ... 99
4.4.2. Peojection of the Future State ... 99
4.4.3. Issues ... 100
4.4.4. Facts .. 102
4.4.5. Solutions ... 104
4.4.6. Values and Goals .. 105
4.4.7. Hierarchy of Goals .. 105
4.4.8. Performance Requirement .. 107
4.4.9. Concepts .. 107
4.4.10. Summary of Duerk’s Model ... 108

4.4.10.1. User .. 109
4.4.10.2. Client .. 110
4.4.10.3. Site .. 110
4.4.10.4. Context ... 110
4.4.10.5. Solution .. 110

5. A DATA MODEL FOR A UNIFORM FORMAT FOR PROGRAM OF
REQUIREMENTS ... 113

5.1. Ufpor Base Classes ... 114
5.1.1. Environment .. 114
5.1.2. People .. 114
5.1.3. Activity ... 115

x

5.1.4. Need .. 115
5.1.5. Assessment .. 116

5.2. UFPOR Key Concepts ... 117
5.2.1. Time .. 117
5.2.2. Composition .. 117

5.3. UFPOR UML Model .. 119
5.4. Modelling the Three Experts Models with UFPOR 120

5.4.1. Sanoff’s Model ... 120
5.4.2. Peña’s Model .. 123
5.4.3. Duerk’s Model .. 125

5.5. Conclusion .. 128

6. UFPOR IMPLEMENTATION FOR A POR EXCERPT .. 130

6.1. Introducing the POR Excerpt ... 130
6.1.1. Representing the Excerpt Using UFPOR 134

6.2. Excerpt Application Implementation ... 137
6.3. Reformatting the Excerpt into UFPOR Format 138
6.4. Conclusion .. 143

7. ADAPTING THE UFPOR TO THE IFC .. 145

7.1. UFPOR Environment ... 146
7.1.1. IfcSpatialElement .. 147
7.1.2. Spatial Decomposition .. 148
7.1.3. IfcSpatialStructure Property Sets .. 151
7.1.4. Composing versus Containing in Spatial Structure 153
7.1.5. IfcSpatialStructureElement ... 154

7.1.5.1. IfcSpatialStructureElement Property Sets 156
7.1.6. IfcProject ... 156
7.1.7. IfcSite .. 158

7.1.7.1. IfcSite Property Sets ... 159
7.1.7.2. IfcSite Quantity Sets ... 160

7.1.8. IfcBuilding .. 161
7.1.8.1. IfcBuilding Property Sets ... 161
7.1.8.2. IfcBuilding Quantity Sets ... 163

7.1.9. IfcBuildingStorey .. 164
7.1.9.1. IfcBuildingStorey Property Sets 165
7.1.9.2. IfcBuildingStorey Quantity Sets 165

7.1.10. IfcSpace .. 166
7.1.10.1. IfcSpace Property Sets ... 167
7.1.10.2. IfcSpace Quantity Sets ... 167

7.1.11. IfcSpatialZone ... 169
7.1.12. IfcSpatialElementType ... 170

xi

7.1.13. Conclusion .. 171
7.2. UFPOR Need .. 172

7.2.1. IfcConstraint ... 173
7.2.2. Quantitative Requirements ... 175

7.2.2.1. Benchmark ... 176
7.2.2.2. ValueSource ... 177
7.2.2.3. DataValue ... 177
7.2.2.4. ReferencePath ... 179

7.2.3. Qualitative Requirements ... 180
7.2.4. Conclusion .. 184

7.3. UFPOR People ... 185
7.3.1. IfcPerson ... 185
7.3.2. IfcActorRole ... 186
7.3.3. IfcOrganization ... 188
7.3.4. IfcPersonAndOrganization ... 189
7.3.5. Conclusion .. 189

7.4. UFPOR Assessment ... 190
7.4.1. IfcApproval ... 191
7.4.2. Conclusion .. 193

7.5. UFPOR Activity ... 194
7.5.1. IfcProcess .. 194
7.5.2. IfcSpatialZone ... 195
7.5.3. IfcZone .. 196
7.5.4. Conclusion .. 197

7.6. Conclusion .. 197

8. UFPOR SOFTWARE IMPLEMENTATION ... 200

8.1. Introducing UFPOR-IFC .. 201
8.2. UFPOR-IFC Implementation ... 202

8.2.1. Implementation Platform .. 202
8.2.2. Data Models .. 203
8.2.3. Object Traversal .. 204
8.2.4. IFC Physical .. 206
8.2.5. Persistence Layer .. 207
8.2.6. Unit Testing .. 209

8.2.6.1. Project ... 210
8.2.6.2. Space Type ... 212
8.2.6.3. Space Instance .. 213
8.2.6.4. Conclusion .. 213

8.3. User Interface Prototype ... 214
8.3.1. Implementation Platform .. 214
8.3.2. Introducing the User Interface .. 215

8.4. Conclusion .. 222

xii

9. TESTING AGAINST ARCHITECTURAL PROGRAM SAMPLES 224

9.1. Case Study 1. Office Building .. 224
9.1.1. Program Structure ... 225
9.1.2. UFPOR Compatibility .. 228

9.2. Case Study 2. Healthcare Facility .. 229
9.2.1. Program Structure ... 229
9.2.2. UFPOR Compatibility .. 232

9.3. Case Study 3. Common Programing Requirments 232
9.3.1. Adjacency ... 233
9.3.2. Furniture Size .. 236

9.3.2.1. Handicap Accessibility ... 236
9.3.2.2. Qualitative Characteristics of a Space 238

9.4. Conclusion .. 239

10. CONCLUSION .. 240

10.1. Findings .. 241
10.2. Theoretical Implication .. 241
10.3. Practical Implication .. 242
10.4. Limitations of the Research .. 243
10.5. Future Works .. 244

REFERENCES ... 246

APPENDIX 1 ... 266

APPENDIX 2 ... 282

APPENDIX 3 ... 284

APPENDIX 4 ... 288

xiii

LIST OF FIGURES

Page

Figure 1, Logical Argumentation Spectrum ... 9

Figure 2, Peña's Por Diagram ... 13

Figure 3, Duerk's Por Diagram ... 14

Figure 4, Hershberger's POR Diagram ... 14

Figure 5, IFC 4 Data Schema ... 38

Figure 6, IfcProject ... 43

Figure 7, Property Template and Property Relationship .. 50

Figure 8, AR-5 Adjacency Diagram ... 53

Figure 9, AR-5 Building and Functional Space .. 54

Figure 10, SCie and COBie .. 56

Figure 11, SCie Space Table ... 58

Figure 12, SCie Floor Table ... 59

Figure 13, SCie Contact Table ... 60

Figure 14, SCie Facility Table ... 61

Figure 15, A Partial List of BPie Space Attributes .. 63

Figure 16, Affinity Programming Tool .. 67

Figure 17, Affinity Schematic Design .. 68

Figure 18, Affinity Design to Revit ... 69

Figure 19, Trelligence Affinity Reporting Options .. 71

xiv

Figure 20, Onuma Systems Main User Interface ... 72

Figure 21, Onuma Adjacency Control ... 75

Figure 22, dRofus Home Page ... 76

Figure 23, dRofus Design vs Program Comparison ... 77

Figure 24, dRofus Requirements Entry Interface ... 81

Figure 25, Sannof's Hierarchy of Objectives ... 85

Figure 26, POR Components in Sanoff Model .. 90

Figure 27, Sanoff's POR Model, UML Class Diagram .. 91

Figure 28, Peña's Scopes and Determinants ... 94

Figure 29, Peña Data Class .. 97

Figure 30, Peña's POR Model, UML Class Diagram ... 98

Figure 31, Connection Between Issues and Facts .. 102

Figure 32, Duerk's Hierarchy of Goals...105

Figure 33, Duerk's POR Model, UML Class Diagram .. 112

Figure 34, UFPOR Main Classes and Their Relationships .. 118

Figure 35, UFPOR UML Model .. 120

Figure 36, Sanoff's Model, Objectives and Activities in UFPOR 122

Figure 37, Sanoff's Model, Need Hierarchy and the Future State 122

Figure 38, Areas of Consideration ... 124

Figure 39, Using UFPOR to Support Pena's Model ... 125

Figure 40, Duerk’s Model Analyzing the Existing State in UFPOR 127

Figure 41, Duerk’s Model, Projecting the Future State in UFPOR 128

xv

Figure 42, Sample Space Type Diagram from the POR Excerpt 133

Figure 43, Sample Adjacency Diagram from the POR Excerpt 134

Figure 44, Simplified UML Diagram for POR Excerpt UFPOR Model 137

Figure 45, Mapping Phrases from the POR Excerpt to UFPOR Classes 139

Figure 46, Art School Excerpt's People Table ... 140

Figure 47, Art School Excerpt's Need (a) Table .. 140

Figure 48, Art School Excerpt's Need (b) Table .. 141

Figure 49, Art School Excerpt's Environment Table ... 142

Figure 50, Art School Excerpt's Need (c) Table .. 143

Figure 51, IfcObjectDefinition Subtypes ... 147

Figure 52, IFC Spatial Structure .. 150

Figure 53, IfcRelAggregate vs IfcRelContained .. 154

Figure 54, IfcProject as a Context for the Project, ... 157

Figure 55, Target Homepage .. 215

Figure 56, Target User Authentication ... 216

Figure 57, Target Main Page .. 217

Figure 58, New Project Window in Target .. 218

Figure 59, Target New Space Type Window ... 219

Figure 60, Target New Space Type, Space Constraint .. 220

Figure 61, New Space Type Added to the Document .. 221

Figure 62, New Spaces Added to the Project ... 222

Figure 63, Office Building Program Summary .. 225

xvi

Figure 64, Office Building Program, Department .. 227

Figure 65, Healthcare Facility Program, Summary Page ... 230

Figure 66, Healthcare Facility Program, Surgery Department 231

Figure 67, Spatial Adjacency in IFC .. 234

xvii

LIST OF CODES

Code 1, EXPRESS Specification and Inheritance ... 35

Code 2, .IFC Entity .. 36

Code 3, IFC File Sample .. 37

Code 4, IfcRoot .. 39

Code 5, IfcObjectDefinition ... 40

Code 6, IfcRelAssigns .. 41

Code 7, IfcRelDefinesByType ... 42

Code 8, IfcBuildingElement Inheritance Graph ... 46

Code 9, IfcPropertyDefinition .. 48

Code 10, IfcPropertyTemplate ... 49

Code 11, IfcSpatialElement Inheritance Graph .. 148

Code 12, Pset_SpaceOccupancyRequirements Properties ... 152

Code 13, IfcRelContainedInSpatialStructure Inheritance Graph 153

Code 14, IfcSpatialStructureElement Entity Definition ... 155

Code 15, IfcElementCompositionEnum .. 155

Code 16, IfcProject Inheritance Graph ... 158

Code 17, IfcSite Attributes ... 159

Code 18, IfcPostalAddress Inheritance Graph ... 159

Code 19, Pset_SiteCommon ... 160

Page

xviii

Code 20, Qto_SiteBaseQuantities .. 161

Code 21, Pset_BuildingCommon ... 162

Code 22, Qto_BuildingBaseQuantities .. 164

Code 23, Pset_BuildingStoreyCommon .. 165

Code 24, Qto_BuildingStoreyBaseQuantities .. 166

Code 25, Pset_SpaceCommon ... 167

Code 26, Qto_SpaceBaseQuantities ... 168

Code 27, IfcSpatialZoneTypeEnum ... 169

Code 28, IfcSpatialElementType Inheritance Graph ... 170

Code 29, IfcConstraint Inheritance Diagram ... 174

Code 30, IfcMetric Express Specification .. 175

Code 31, IfcBenchmarkEnum .. 176

Code 32, IfcMetricValueSelect .. 177

Code 33, IfcMeasureWithUnit ... 178

Code 34, IfcMeasureValue ... 179

Code 35, IfcSimpleValue ... 179

Code 36, IfcReference .. 180

Code 37, IfcObjective Inheritance Graph .. 181

Code 38, IfcLogicalOperatorEnum .. 182

Code 39, IfcObjectiveEnum ... 182

Code 40, IfcPerson Inheritance Graph ... 186

Code 41, IfcActorRole Inheritance Graph ... 187

xix

Code 42, IfcRoleEnum ... 187

Code 43, IfcOrganization Inheritance Graph ... 188

Code 44, IfcPersonAndOrganization Inheritance Graph ... 189

Code 45, IfcApproval Express Specification ... 191

Code 46, IfcRelAssociatesApproval Inheritance Graph .. 192

Code 47, IfcResourceObjectSelect Express Specifications ... 193

Code 48, IfcRoot Inheritance Graph .. 203

Code 49, IfcRoot Java Implementation .. 203

Code 50, Object Traversal in Java UFPOR-IFC Classes ... 205

Code 51, IfcProject IFC Physical ... 206

Code 52, IFC Physical File Templates ... 207

Code 53, IfcRoot with JDO Annotations ... 209

Code 54, Project Unit Test Input .. 211

1

1. INTRODUCTION

The Program Of Requirements (POR) is the key document that defines the goals

for a building design project and thus guides all subsequent design and construction

activities. Current practices in the Architecture/Engineering/Construction/Operations

(AECO) industry do not effectively document and store POR information to facilitate

seamless compliance of a design and a building with the POR (Kiviniemi, 2005).

Building Information Modeling (BIM) is widely expected to provide an information

repository that can support many, if not all, of the information retrieval and processing

needs of design, construction and operations (Eastman, 2008). Adoption of BIM within

the United States building industry reached over 60% of architectural firms and

construction companies by 2012 (Bernstein et al., 2012). This research investigates what

extensions to BIM are needed to adequately incorporate and integrate POR information

for use in later stages in building design, construction, and operations.

1.1. MOTIVE

The current state of the construction industry is far away from being a healthy

practice (LePatner, 2008). The level of non-value added effort and waste is severely high

in the business model (National Institute of Building Sciences, 2007). BIM has proven to

be a path toward a more efficient AECO industry. BIM supports all of the stakeholders

in the AECO industry to make fact-supported decisions more quickly by providing

access to the required data at any given time throughout the building lifecycle (Eastman,

2008).

2

The emergence of Building Information Modeling has been very influential to

the AECO industry. One of the cornerstones of BIM is the product modeling techniques

and standards that are a necessity to accomplish the premises of BIM (Eastman, 2008).

Based on that, different standards have been created for the AECO industry (e.g. IFC)

(Howard & Björk, 2008).

As a sub-domain within the AECO industry, architectural programming needs to

be connected to the standards developed for the industry. Without this connection the

standards of the AECO industry are missing one of the fundamental parts involved in

any AECO project.

To provide an example, the absence of architectural programming information on

the property inventory records for any organization reduces the reliability of such

information. In April 2008, The Government Accountability Office (GAO) reported that

the Army and the Navy had not verified the accuracy of about 39 and 59 percent of their

real estate property inventory records, respectively (GAO, 2008). Such inaccuracy

makes budget allocation for the newly proposed infrastructure very difficult since there

is no way to evaluate the capacity of the existing infrastructures.

American Institute of Architects (AIA) defines a POR as

“An organized collection of the specific information about the client’s
requirements which the architect needs in order to design a particular facility.
This encompasses not only the expressed requirements of the client, but all of the
human, physical and external factors which will influence the design. A program
is communication. It transmits and interprets the needs of the client to the
designer.” (Palmer, 1981).

There are different interpretations of this definition in the AECO industry. Some

architectural firms tend to focus on quantitative factors while others may include

3

qualitative information in a POR as well (Hershberger, 1999). Academics have also

proposed different methods in preparing a POR. A POR, either in a format of an

informal conversation, or as a well-composed document included in the design contract,

is the departure point in every design project (Hershberger, 1999). Yet existing BIM

modeling standards lack the necessary fields to represent PORs. Therefore, architectural

programming information is not included in BIM databases resulting in no conversation

about the architectural programming requirements by other stakeholders such as energy

analyzers and cost estimators through the BIM database. Lost also is the opportunity to

check the design automatically against the POR.

In a conventional practice, members of the design team spend a noticeable

amount of time to summarize the programming requirements and incorporate them into

the design. Designers generate solutions by taking into account all the facts and

limitations, including the programming requirements (Palmer, 1981). Because

programming requirements are not integrated into the design environment (i.e. a BIM

database) finding and extracting required information from the program is an expensive

and time-consuming act (Erhan, 2003).

When the design is sufficiently developed, effort is made to collect the

information from the model and check it back against the POR. This time consuming

process slows down the design and leads to results with a high likelihood of human error

(Erhan, 2003). The value of the programming information is recognized by some

researchers. However, the requirements rarely become an integrated part of the design

model and in most cases are eliminated (Clayton, Johnson, Song, & Al-Qawasmi,

4

1998). This problem has been recognized by the industry and efforts have begun to

search for a solution.

1.2. OVERVIEW OF METHOD AND SCOPE

The goal of this study was to improve the current state of the connection between

architectural programming and the AECO industry through the use of BIM technology.

After analysis of several widely accepted methods for creating a POR, I produced

various data models to express each method. I then synthesized these various data

models into a single unified model (UFPOR). A database prototype was implemented to

test the capabilities of UFPOR in modeling a POR excerpt from the industry. UFPOR

was further adjusted to match the current standards of BIM technology (i.e. IFC). The

result was UFPOR-IFC, a limited version of UFPOR that the current state of IFC can

support. UFPOR-IFC is a blueprint for partially representing architectural programming

content using IFC. I implemented a software prototype to demonstrate the capabilities of

UFPOR-IFC in supporting computer applications. UFPOR-IFC was further analyzed by

modeling two PORs from the industry. The research produced a generic solution that is

not based on a specific approach to POR or a specific workflow in the industry.

Modifications and additions are proposed as the outcomes of the research to improve the

existing tools and standards in BIM technology.

It is worth noting that improving the theories and methodologies for creating a

POR was out of the scope of this research. This research builds on a selected collection

of some of the most popular theories on the content of a POR and explores the

5

capabilities of the current state of BIM technology to embed the architectural

programming information.

Proposing new software is also not within the scope of this study. The results of

this research provide a blueprint for modeling architectural programming information in

IFC. BIM computer applications that support architectural programming information can

implement a subset of the proposed blueprint according to their needs.

Automating the process of auditing and evaluating the design against the

architectural programming criteria is also out of the scope of this research. The research

suggests a structure under which the programming information can be included in a BIM

database. Many may consider that a prerequisite to automating design evaluation within

a BIM process; however any work on design evaluation automation is outside of the

scope of this research.

This research does not provide any suggestions on improving the usability of

architectural programming information throughout the design process. Adding

architectural programming information to a BIM model is the first step in having access

to such information, however further research should undergo to explore how the

information can be utilized most effectively.

1.3. CHALLENGES

The current state of architectural programming in AECO industry and BIM

technology create certain challenges in regard to this study.

6

1.3.1. DIVERSITY OF POR FORMATS

Architectural companies may use different POR formats for different projects based

on the type and the size. A hospital needs a more comprehensive set of requirements

than a summer house. For a summer house the whole program may be reduced to the

total project area set by the client. A POR for a hospital may have different levels of

space packaging, intense adjacency and area requirements, as well as specific layouts for

some spaces.

Architectural companies may have custom POR templates for different building

types. A universal format for architectural programming should be able to easily

accommodate the requirement sets for the projects ranging from a summer house to a

hospital.

Different projects with different size and functions are hard to save in an identical

structure. That creates a challenge for the task of creating a UFPOR.

1.3.2. DIVERSITY OF THE REQUIREMENTS

Architectural programming requirements can vary in scale, assessment methods, and

complexity. They can range from purely quantitative to purely qualitative. The

requirements can be imposed on the whole project or a small building element. Different

domains within the AECO industry can impose requirements to ensure certain qualities

within their respective domains.

The ever-evolving list of architectural programming requirement types makes

proposing a schema or a data format that can accommodate all those requirement types a

challenging task.

7

1.3.3. ADAPTATION BY THE INDUSTRY

Architectural companies typically have their uniquely adapted version of POR. Many

companies have already developed tools such as Excel templates or in some cases MS

Access databases to record their architectural programs. Using these templates enables

them to recycle the requirements in different projects.

A UFPOR will not survive without the support and contribution from the major

architectural design companies. Checking the UFPOR against the POR formats that are

used by some of the major architectural firms will add to the credibility of the UFPOR.

While it is outside the scope of this research, peer-to-peer convertors can be a

valuable option. Peer-to-peer convertors create interoperability between two computer

applications by allowing one application to read the content created by the other

application. Through peer-to-peer convertors, the companies can import their digital

PORs (if they exist) to the UFPOR format, enabling reuse of the requirements and

PORs.

1.4. RESEARCH METHOD

This section clarifies how the means of classic research methodology such as

questions and hypothesis are used to define the problems the study tries to resolve and

how it will resolve them.

1.4.1. RESEARCH QUESTIONS

The study attempts to provide answers for three main questions.

8

• Can a data model be devised that supports the requirements defined in

major POR formats?

o What are the common fields between all the POR formats?

o What are the specific fields for each POR format?

o Can a single data model support multiple POR formats?

• How can UFPOR exchange data with BIM modeling standards?

o Should new data fields be introduced to the BIM data standards?

• Can a POR be stored in BIM modeling standards and be accessible for

retrieval at later stages of the building life cycle?

1.4.2. HYPOTHESIS

This research effort has been organized around proving a few key hypotheses:

• A collection of base classes can be developed that can support the

preponderance of information items in different PORs.

• Existing BIM standards can be enhanced to host the data stored in

UFPOR throughout the lifecycle of a project.

Evidence to support these hypotheses has been gathered largely through logical

argumentations and construction and testing of software models.

1.4.3. METHODOLOGY

Logical argumentation attempts to make sense of some aspect of the cosmos in a

systematically rational manner (Groat & Wang, 2002). Academics and practitioners

within the AECO industry have defined the scope and content of architectural

9

programming. They use logical argumentation to demonstrate why architectural

programming is a necessary activity and what its elements are. Defining the scope of

architectural programming does not involve any equations, computer programs or

mathematical formula; therefore, it fits more toward the Cultural/Discursive end of the

spectrum of logical argumentation. Figure 1 shows the logical argumentation spectrum.

Figure 1, Logical Argumentation Spectrum. Reprinted from
(Groat & Wang, 2002).

The standards for product modeling and Building Information Modeling (BIM)

are also based on logical argumentation. They start from the right side of the spectrum

(Cultural/Discursive) to define their scope and move toward the left side

(Formal/Mathematical) as they propose machine-readable formats to store the

information. Logical argumentation can set the basis for other kinds of research, such as

correlational and statistical studies, model-based research, and experimental research.

Logical argumentation is the backbone of this study. The goal is to enhance the

existing trends in architectural programming through proposing a model as a superset of

several well-accepted models (UFPOR). The first step is to use logical reasoning to find

similar data fields with different names in different data models. The following step is to

enhance the existing machine-readable BIM standards by proposing additional fields or

modifications so that they can host architectural programming information. From that

10

standpoint this research is a secondary logical argumentation to the primary logical

argumentation that has defined the BIM standard.

The discursive logical argumentation is developed to the Formal/Mathematical

level by developing software prototype that demonstrates how the system can be

implemented. The prototypes demonstrate how specific aspects of architectural

programming can be translated to the proposed data model (UFPOR) and defined and

accessed through a computer application.

I also used several test cases to investigate the capabilities of the proposed data

models in modeling specific cases from the industry. The prototypes were defined and

developed with the purpose of serving the selected case studies.

1.5. THE ORGANIZATION OF THE DISSERTATION

Chapter 2 will review the literature focus on BIM, data modeling, and predesign

methods. Chapter 3 is a discussion of commercial software tools for predesign and an

analysis of their strengths and weaknesses. These two chapters lead to a point of

departure for my research. Chapter 4 is an analysis of leading methods for developing a

POR and how each may be expressed as a data model. Chapter 5 explains how these

various ontologies for the POR and data models may be unified into a single data model.

Chapter 6 examines the capabilities of UFPOR in supporting PORs from the industry by

developing a software prototype based on a POR excerpt. Chapter 7 describes how the

model developed in section five can be adapted into IFC. Chapter 8 describes the

implementation of the data model from chapter 7 as a software tool for supporting

predesign. Chapter 9 describes the results of testing the software tool by putting data

11

from POR’s developed by industry into the software tool. Chapter 10 presents the

conclusions from the test, the implications of the research, the limitations of the

research, and suggests future work.

12

2. LITERATURE REVIEW

2.1. ARCHITECTURAL PROGRAMMING METHODS

Over the past 50 years, academics and practitioners have documented several

processes for creating a POR. Amongst them are Problem Seeking (Peña, 1977),

Methods of Architectural Programming (Sanoff, 1977), Information Management for

Design (Duerk, 1993), Programming for Design : From Theory to Practice (Cherry,

1999) and Architectural Programming and Predesign Manager (Hershberger, 1999).

Each of these methods has strengths and weaknesses. Design firms usually adopt one of

these formats and modify them over time to fit their practice.

PORs have always been an essential part of the architectural design processes.

There are books and methodologies on how to collect the data that should be included in

PORs (Preiser, 1975). There are also different opinions on the relationship between

architectural programming and design. Different processes have been devised in which

the POR can be collected, analyzed, and presented to the designer. The final outcome

usually includes the data collection phase, the methods and processes of analyzing data,

and the large-scale goals and objectives that the client has envisioned for the project. The

detailed requirements that the designer should observe throughout the design are usually

the last section of the programming document.

Historically, the formats of the programming documents are very different. They

are also very different in the number of requirements that they would impose on a

project. In some projects the POR is only a couple of pages and in some it is more than a

hundred. The architectural offices usually adopt a version and tailor it to fit their

13

practice. This format depends on the building type, size of the project, and the clients’

requirements (Cherry, 1999).

A brief review of the existing POR models reveals the existing POR formats

have different structures. Figure 2, Figure 3, and Figure 4 show the structure of three

different POR formats.

Figure 2, Peña's POR Diagram

14

Figure 3, Duerk's POR Diagram

Figure 4, Hershberger's POR Diagram

15

All three models follow a general pattern of deriving detailed requirements from

the gathered data, but there are some differences between all these models. To unify all

these models in one model requires a precise analysis and close examination of all the

information categories. Many of these categories, although referred to with different

names, are pointing to the same concepts.

Chapter 4 is an in depth analyses of three well-known theories on architectural

programming and how they can be modeled with the same schema.

2.2. STANDARDS FOR BIM DATABASES

Sharing information is a key concept in BIM technology. BIM creates a database

for each project that is shared by all the design stakeholders (Smith, 2009). All the

participants deposit their information into this database and are informed on all the

changes imposed by the other players. Yet each participant may use different tools and

internal data models to accomplish a task. For example, the energy consultant will not

use the same tools for energy analysis that the MEP engineer would use to design the

plumbing system. Nevertheless, some of the information is used by multiple members of

the team.

Interoperability is the key concept in connecting all these design and analytical

tools (Succar, 2009). Interoperability is gained when all the players use the same

terminology throughout the process (Roddis, Matamoros, & Graham, 2006). For

example, when the architect calls the moving part of an opening system in a wall a

“Door”, it may have a different meaning to the cost estimator who would call all the

moving and stable parts of the opening system a “Door.” Without having a dictionary

16

that defines what a door is, the architect and cost estimator cannot have a productive

conversation.

To support interoperability, several modeling standards have been developed in

the AECO industry. Industry Foundation Classes (IFC), is one of the official standards

(ISO 16739:2013) in the AECO industry.

Standards usually define processes to incorporate the efforts in improving and

enhancing their capabilities. By following such processes, individuals and authorities

can add new capabilities to these standards. The flexibility of a data model is not

determined just by the owners; the data model itself should have a flexible structure as

well (Björk & Laakso, 2010).

Björk (Björk & Laakso, 2010) classifies AECO modeling standards into three

categories: de facto, official, and industry. This classification is based on the

development process and acceptance in the industry. De facto standards gain their

authority by dominating the market and attracting the end users. Official standards are

approved by a standard institute (i.e. ISO standards). Industry standards are the ones that

are backed by industry consortiums. The scope of this study is limited to the official

standard of the AECO industry that has been adopted by ISO and ANSI (i.e. IFC).

IFC is a data exchange standard developed by buildingSMART for BIM. The

object based file format provided by IFC is used by software vendors to create

compatibility between computer applications in AECO industry. The IFC model

specification is open and available (Liebich, 2010). It is registered by ISO as ISO/PAS

16739 and is currently in the process of becoming the official International Standard ISO

17

16739. IFC represents both industry consortium category and official standard. While

identifying the de facto standard is more difficult and subjective, many consider IFC as

the de facto data exchange standard within the AECO industry as well (ISO/IEC, 2013).

In section six and seven of this chapter, I have reviewed IFC as the official data

exchange standard of the AECO industry in details.

Although BIM is a relatively new concept in the AECO industry, both

architectural programming and design computation have been around for a long time and

the relationship between them has been studied before. Researchers have tried to add

PORs to design computation systems since the emergence of computation in

architecture. For example in 1970s, OXSYS, a CAD system to support hospital design

was developed by ARC (Applied Research of Cambridge) in Cambridge, UK. (Richens,

1978). OXSYS was based on a predefined set of building components that included

semantic information besides the geometric information. OXSYX was capable of

recording requirements such as adjacencies and had capabilities in representing a

hierarchical structure for building spaces and space zones (Eastman, 1999).

2.3. CONVERTING DOMAIN KNOWLEDGE INTO SOFTWARE

Proposing software and data exchange standards for an established industry or its

sub-domains requires domain knowledge conversion. This section reviews the principle

that should be followed and the pitfalls that should be avoided for a successful domain

knowledge conversion.

18

2.3.1. SEMANTIC INTEROPERABILITY AND DATA INTEGRATION

One of the main challenges in this study was to create convergence between the

different POR models that were analyzed. During analyzing the models and comparing

them with each other, I noticed similar concepts that are referred to by different names.

In information technology, this problem is a common obstacle in dealing with data from

multiple sources. Semantic interoperability is a branch of information technology that

studies the problem and proposes ways to overcome it.

In Information Technology, data integration is the process of combining different

data sources in order to answer a query posed by a user (Gruber, 2009). In contrast with

the warehouse method that requires a copy of data stored in local databases, data

integration method is based on interaction with the distributed data sources in real time.

(Pontieri, Ursino, & Zumpano, 2003). While this method will provide the users with

fresh and updated data, it may be slower to access the data comparing to the warehouse

method.

The idea of data integration was first introduced in the 1990s. The emergence of

the Internet showcased the significance of this technology. The common example to

demonstrate the usage of data integration involves a user trying to find movies directed

by “Woody Allen” that are in theatres close to a certain location. In order to answer this

query, the system needs to query a couple of different data sources on. It needs to query

a movie database to find all the movies directed by Woody Allen, and another query

should be posted to another data source to find where those movies are on screen. The

results from these two queries should be combined to provide the user with the answer to

19

their query. A data warehouse with a local copy of the queried databases will not be

useful in this case since having access to the most updated data is crucial.

In order to implement a data integration system, access to the semantic of the

data is crucial (Lenzerini, 2002). Without having semantic knowledge about the data

source, accurate data is impossible to acquire. On top of that, there are new data sources

emerging on the Internet every day and if they want to last, they need to efficiently

communicate with the data integration systems that are already in use. The premise of

semantic interoperability is to guarantee that the meaning of the data (their semantic) is

provided to the third party users. (Ouksel & Sheth, 1999). This process involves an

integrated transmission of the meaning with the data. In order to accomplish this task,

each data scheme should include a package that explains all the data fields and their

purpose. In other words, it has some data about the data.

The idea of data integration has a long thread in the AECO industry. By nature,

the AECO industry has numerous stakeholders. Each branch of the AECO industry has

an independent domain, which is formed around the unique expertise that the respective

domain can bring into the industry. In spite of the independence of all these sub-

domains, they all contribute information to the lifecycle of a facility. They consume

information that is provided by other domains and produce information that will be

consumed by another domain. This is an iterative process that historically has been

expensive (Cuff, 1991). Below is an example to illustrate the importance of the issue.

Imagine a scenario where an architect is hired by a school district to design a new

school. While the architectural firm is in charge of providing the design for the school,

20

the architect has to work with other consultants, for example a structural engineer, to

properly include structural and mechanical elements in the design. The structural

engineer needs to have access to the design information in order to add the structural

elements to the design. On the other hand, the architect may modify the design in

response to the changes imposed by the structural engineer. Traditionally the designer

would share the design drawings as CAD files which include the geometry of the design

and some tags that explain the spaces and other elements. The engineers should explore

the drawings and spend some time to understand them. They hand pick the pieces that

matter to them and add the structural elements to the drawings and send it back to the

architect. The architect then will update her drawings by manually adding the structural

elements to the design.

This imaginary scenario is not always as smooth as described above. The

architect may disagree with some of the changes made by the structural engineer, which

may turn this process to an iterative cycle. During this process a lot of time and energy is

wasted due to the absence of an efficient data sharing system.

By applying the principles of data integration and semantic interoperability the

AECO industry can be much more efficient. If there was a shared terminology the

structural engineer could query the data source that the architect used to store the design

information and directly access the right information in real time.

2.3.2. ONTOLOGY

Ontology is a key concept in semantic interoperability. The idea behind ontology

is that within a community (domain) the same concepts and objects should be referred to

21

with the same name. Thomas Gruber defines ontology as "Formal, explicit specification

of a shared conceptualization" (Gruber, 2009). An ontology is a dictionary of all the

concepts within a domain along with the relationship between the concepts.

Without having an ontology within a domain, data integration may become an

impossible task. (Arvidsson & Flycht-Eriksson, 2008). Ontologies are very important

parts of a data integration system. A new data scheme within a domain with an

established ontology should follow the existing definitions and relationships defined by

the ontology. If the ontology is missing some of the required fields, it is important to

investigate the existing applications and if possible use the terminology that is widely

accepted among the users.

2.3.3. AECO ONTOLOGIES

The efforts on creating a comprehensive data standard for the AECO industry

date back to the 1970s (Björk & Laakso, 2010). IGES (Initial Graphics Exchange

Specification) was developed in the 1970s based on the early stages of CAD technology

and it was first released in 1980 by the American National Standards Institute (ANSI)

(Smith & Wellington, 1986) . Another standard was DWG (and the text-based version,

DXF) developed for the modeling software AutoCAD. DXF was developed for the other

CAD vendors for importing and exporting CAD data (Open Design Alliance, 2013).

These standards, although they facilitated data exchange between different

software vendors, had little to do with the ontology of the AECO industry. The CAD

industry was not concerned with the components that all together form a building. It was

mainly concerned with the shapes and geometries. The lack of a standard ontology for

22

concepts for the building industry became critical when people began exploring the use

of simulation software and interoperability with CAD. Although the advantages of

semantically rich 3D models for the AECO industry had been well-documented, such

models never became predominant until software vendors in the AECO industry

switched from the conventional CAD practice to Building Information Modeling (BIM)

in 1990s (Eastman & Siabiris, 1995). Unlike CAD that is helpful in documenting the

geometry, BIM can be used in documenting objects and their properties in the context of

the AECO industry. The widespread usage of BIM has created a new context for

different parties involved in the AECO industry to share data. Different software vendors

created an internal data schema that was interoperable among different applications in

the package proposed by the vendor; soon after the lack of a common ontology became

evident in the industry (Howard & Björk, 2008). While the implementation of BIM did

not happen until 1990s, the idea gained momentum in 1980s and the efforts on creating

the ontology had already started. ISO STEP standardization project started in the 1980s

(Pratt, 2001). STEP stands for Standard for Exchange of Product Data. There was a team

within STEP implementation group who were in charge of the building construction

industry.

In 1988, Wim Gielingh, chairman of AECO committee of ISO/STEP, proposed a

data standard under the name of GARM (General AECO Reference Model). The goal of

GARM was to facilitate data-exchange amongst the computer applications in the AECO

industry (Gielingh, 1988). GARM is an extension of STEP, the Standard for Exchange

of Product Model data. Gielingh adapted STEP for the AECO industry by adding six

23

extra models: Building System Model, Ship Structure Model, Plant Design Model,

Distribution System Model, and General AECO Reference Model.

In the 1990s due to the momentum in the AECO industry to create and develop a

common data model, twelve US companies initiated a cooperation to make their

software applications compatible. These companies eventually formed the International

Alliance for Interoperability (IAI) and developed a data standard under the name of IFC

(Industry Foundation Classes) (Björk & Laakso, 2010; Howard & Björk, 2008). IFC

inherited the efforts done through STEP and adopted most of the terminology and

methodologies including the EXPRESS language. IFC is an open source effort that

benefits from the contribution of several contributors in the industry and academia

(Bazjanvac, 2002).

The majority of BIM design tools exchange data via the IFC format through

export/import features. The IFC format can be potentially used as a wrapper for different

databases in the AECO industry although some believe there are still several parts

missing from the IFC ontology, which makes it less effective (Coates et al., 2010).

2.3.4. ONTOLOGY IMPLICATION IN THIS STUDY

Interoperability is one of the key premises and differentiators of this study. In

order to provide seamless interoperability with other players in the AECO industry, there

are two main challenges.

First, there is a lack of the ontology in architectural programming. Although

architectural programming represents one of the classic tasks in the AECO industry,

there has not been enough effort in creating a comprehensive ontology for this field.

24

Most of the effort has been focused on the content of a POR and the methods in data

gathering. There are different methods in preparing a POR and usually every

architectural firm has its own definition of POR. One of the main reasons for the absence

of such standard is the absence of a super data model similar to IFC that the POR data

model can communicate with. Now after emergence of the IFC data model it looks like a

good time to create the POR ontology. Providing a uniform model for architectural

programming will be one of the main outcomes of this study.

Second, there is a lack of the respective fields in the IFC data model. Having a

POR ontology independent from the IFC data model will not solve the problem

completely. In order to create communication options for the data integration systems,

the relationship between the fields in the POR ontology and the IFC data fields must be

defined.

Previous studies have shown that IFC lacks some of the fields that are required in

the early stages of design (Lee, Chin, & Kim, 2003). POR is the departure point in any

design effort, but much of the data provided through a POR may not be accommodated

in the IFC model.

Although the current version of the AECO ontology covers a large portion of the

terminology used in the industry, there are many parts that are not completely covered

yet. Architectural programming is one of them.

This research includes development of an ontology based on several well-known

and accepted POR formats offered by acknowledged researchers and practitioners. The

UFPOR derives from the developed ontology. Developing an ontology is a critical early

25

step toward achieving value for the industry once it is approved and adopted by an

official consortium and ultimately adopted by the industry itself.

2.3.5. DIFFERENT DATA TYPES IN A POR

A POR imposes qualitative and quantitative requirements over a project (Palmer,

1981). Recording the quantitative requirements is straightforward since they can be

reflected through numeric data fields, but it is more complicated for the qualitative

requirements. The qualitative requirements can be recorded in the UFPOR as text type

requirements or they may be converted to quantities. Quantifying the qualities has a long

thread in architectural and urban design. This procedure is commonly used among city

planners and urban designers (Ewing, Handy, Brownson, Clemente, & Winston, 2006).

Qualitative factors play a very important role in all the well-known POR formats.

Fields such as mission, goals, objectives, policies, and concepts are some examples of

the fields that can be potentially occupied by highly qualitative statements in any POR

(Preiser, 1993).

Although the qualities can be represented using numbers, in some instances the

level of abstraction that is involved in quantification may be unacceptable to the

architectural programmer. In these cases the architectural programmer may decide to

impose the requirements as qualities. This strategy, although it may involve more

computationally expensive operations, is totally acceptable due to the complexities

involved in the architectural design processes (Lawson, 1997). A programmer may

consider “coziness” a quality that cannot be described mathematically, yet he or she may

want to impose it as a requirement on certain spaces.

26

Some of the requirements describe a relationship between the components of a

building, which although not purely qualitative, cannot be defined through simple data

fields either. These requirements can be modeled through simple formulas or

complicated algorithms and measured with the help of software (Kroenke & Auer,

2007). For example in urban design, enclosure as a qualitative attribute for a street is

commonly measured as a function of height to width ratio (Ewing & Handy, 2009).

2.4. ARCHITECTURAL PROGRAMMING AND BIM

Having access to architectural programming information is critical to the

operations of several parties within the AECO community (Succar, 2009). During the

design process, architects and planners constantly evaluate the design against the

programming criteria. After the construction, facility managers need access to the

architectural programming information for a full understanding of the facility

(Hershberger, 1999). A better integration of programming information into BIM

improves interoperability amongst the parties within the AECO industry. While there is

a consensus within the industry on what BIM is and what it should do, there are multiple

implementations of BIM. Some vendors have branded implementations of BIM that rely

on the vendor’s data models, file formats, and graphical user interfaces. Autodesk Revit

and Graphisoft ArchiCAD are two examples of BIM implementations (Duell, Hathorn,

& Hathorn, 2014; MacKenzie, 2015). On the other hand, BIM open standards provide a

neutral solution for data exchange amongst such applications. IFC has become the

standard way to share data among BIM applications (Vanlande, Nicolle, & Cruz, 2008).

A non-profit committee creates IFC definitions through an open process. The definitions

27

are openly published and freely distributed. IFC is regarded by the International

Standards Organization (ISO) as the standard for data sharing in the construction and

facility management industry (Liebich, 2010).

The AECO industry is diverse and the intended uses of BIM are pervasive

therefore, any BIM implementation is continually evolving. Proprietary commercial

products are being updated regularly with new releases. IFC includes a flexible way to

define and utilize data standards to enable incremental growth (Liebich & Wix, 1999).

The most common classes and their attributes are part of the core IFC, but data models

and custom property sets can be defined to expand the core model when needed.

There have been several attempts to make architectural programming information

accessible within the BIM context. While every attempt to solve this problem is different

in terms of their approach, they can be divided in two main categories: bridging between

specific proprietary formats, and integrating into open standard formats.

2.4.1. PROPRIETORY FORMATS AND SOLUTIONS

Some of the attempts to incorporate architectural programming information into

the design process rely on creating a bridge between a specific proprietary BIM

application and a specific proprietary tool for architectural programming. For example,

Trelligence Affinity provides a plugin for Revit architecture that makes the Trelligence

format for architectural programming available in Revit Architecture environment

(About Trelligence, 2015). HKS Architects, one of the largest healthcare designers in

North America, uses a custom Revit Architecture plugin that connects their Revit models

to their format for architectural programming (Barekati, 2012).

28

2.4.2. OPEN STANDARDS

IFC promotes creation of sub-standards within IFC by adding custom property

sets that are geared toward the needs of a specific subset in AECO industry (Liebich,

2009). This aspect of IFC has created the opportunity to define standards for AECO sub-

domains based on IFC. In section 2.8, three of such standards that involve architectural

programming information are discussed.

2.5. OBJECT-ORIENTED DESIGN/PROGRAMMING

Object-oriented design is an approach in software development where a system is

conceptualized as a collection of interacting objects. An object is a group of related

methods and variables that represent a unique entity (Bruegge & Dutoit, 2004). Object-

oriented design is the approach selected by the de-facto and official standards in the

AECO industry. Representing POR structures through object-oriented systems is an

important step in making them interoperable with the existing BIM standards. To

achieve a better understanding of object-oriented design, the following subsections

present some of the fundamental concepts in object-oriented Design.

2.5.1. CLASSES AND INSTANCES

Classes and instances are the main building blocks of any object-oriented system.

They are best explained through real world examples. Imagine a scenario where one

needs to create a software system that represents all the cars in a parking lot. All those

cars can move and carry people (capabilities). They also all have body colors and build

years (attributes). The concept of vehicle is defined based on all the common attributes

29

and capabilities. The vehicle, as a concept, creates a blueprint for all the cars in the

parking garage to follow. By following such a blueprint all the cars share common

attributes and capabilities. In object-oriented Programming, the concept of an

automobile is an example of a class. In contrast to a class, which collects the descriptors

as variable attributes, an instance provides the values to the class attributes. In this

example, Vehicle is a class and all the cars in that parking garage are instances of the

type vehicle.

2.5.2. ATTRIBUTES AND OPERATIONS

Each class has some attributes (variables) and provides some operations

(methods). The class attributes store the information that the class holds directly or

depends on to perform its operations. Class operations represent the capabilities that the

class offers (Page-Jones, 2000). A simple form of class operation is providing access to

the class attributes to read or change the values. In the vehicle example from the

previous section, “weight” and “color” can be examples for class attributes and “get

color” and “accelerate” can be examples for class operations.

2.5.3. INHERITANCE

Inheritance promotes reusability by allowing new classes to extend an existing

class by adding new attributes while retaining all the attributes and capabilities of the

parent class. In the parking lot example, while all the vehicles in the parking garage

share capabilities and attributes, they can be further categorized into smaller groups

where they share further attributes and capabilities. For example, one can have a “Bus”

30

category, a “Motorcycle” category and a “Sedan” category. One can use the concept of

inheritance and create three new classes (Bus, Motorcycle, and Sedan) where they all

inherit from the Vehicle class. That means they inherit and share the capabilities and

attributes on the Vehicle level but they add their unique capabilities and attributes as

well.

Various classes may be organized into an inheritance hierarchy that shows base

classes with the most common methods and attributes and specialized classes that add

attributes and methods.

2.5.4. INFORMATION HIDING

Object-oriented systems provide mechanisms to manage the visibility to the

internal information and implementation of classes and objects. This characteristic is

sometimes referred to as encapsulation and prevents the system from undesirable

changes caused by unauthorized parties. In the parking lot example, in modeling a car an

important attribute is acceleration, and use of the model of the car may require change to

the acceleration. This can be accomplished by exposing a capability (a class method)

called “accelerate”. While the consumer of the class can use this capability in developing

a simulation of driving a car, the internal implementation of the method is hidden. The

user of the class may also query about the physical attributes of the car such as weight,

but those attributes can be kept read-only to prevent the driver from manipulating them.

31

2.5.5. POLYMORPHISM

Polymorphism allows one object to take different roles. Polymorphism can be

accomplished through several mechanisms. For example an instance of “Sedan” can also

be used as an instance of “Vehicle” if needed. It can also expose several other external

interfaces besides Sedan, and Vehicle such as “Private Car” or “Electric Car”. This

capability allows the object-oriented systems to stay versatile and flexible (Stroustrup,

2014).

2.6. UML DIAGRAMS

The Object-Oriented models for a POR are presented through simplified UML

class diagrams. UML is a widely accepted and ISO endorsed method for analyzing and

documenting processes so that they can be implemented as software (Bruegge & Dutoit,

2004). Use of a simplified version of the UML diagrams is intended to increase

readability.

2.7. WHAT IS UML

UML (unified modeling language) is a set of standard graphical languages to

represent an object-oriented system. Through UML diagrams an object-oriented system

can be drafted graphically with precise representation of system architecture, classes,

relationships and other aspects (D'souza & Wills, 1998).

UML defines nine types of diagrams: class (package), object, use case, sequence,

collaboration, statechart, activity, component, and deployment. Each of these diagrams

represents a unique aspect of software architecture during its lifecycle. Below I describe

32

some of the diagrams that are used in understanding the behavior of a software system in

relation to the final users and the industrial domain that it belongs to.

• Class. Class diagrams are the backbone of almost every object-oriented

development process, including UML. They describe the static structure

of a system.

• Package diagram. Classes will be grouped into several packages that

implement a well-defined set of functionality. A package diagram will

show which class belongs to what package and how these packages

would communicate.

• Object. While class diagrams and package diagrams show the static

condition of a system, object diagrams represent the condition of the

system in a given situation based on an instance of a class. They are

usually used to test the functionality of a system under certain

circumstances. They include instances as well as classes.

• Use Case. Use case diagrams are the sequence of actions that the user of a

system is expected to take in order to accomplish a task.

2.7.1. UML DIAGRAMS IN THIS DISSERTATION

In this dissertation, UML diagrams are used to illustrate the data models of the

PORs, and also proposing UFPOR. They are also used as an analytical tool to clarify the

logical argumentation that the study pursues. All the UML diagrams in this dissertation

are class diagrams. In some cases the list of class variables are followed by three dots to

show that more variables can be added (Figure 29). The class diagrams do not show any

33

of the class methods to increase the readability of the models. Each diagrams consists of

two or more classes and their relationships. Arrows and lines that connect the classes

together show the relationships between the classes. Each arrow is annotated with some

text that descries the relationship. The beginning and the end of each connecting line

may be annotated with a number range (e.g. 0..1), the range shows how many instances

of the class can be included in the relationship.

2.8. IFC FILE FORMAT

Industry Foundation Classes (IFC) was initially developed by International

Alliance for Interoperability (IAI) to facilitate data exchange between different parties

involved in the AECO industry (Hietanen & Final, 2006). IFC is useful in describing

building and construction data in a neutral platform format. IFC is an official

International Standard registered under ISO 16739:2013 (ISO/IEC, 2013).

2.8.1. INTODUCTION TO STEP AND EXPRESS

STEP (ISO 10303) is the international standard for product modeling. STEP is

widely used in CAD applications to exchange 3D objects (Pratt, 2001). It is worth noting

that STEP is the biggest standard within ISO, which is an indication of the complexities

involved in product modeling. STEP relies on EXPRESS modeling language to define

data models. IFC also relies on EXPRESS to define its data models.

EXPRESS is a standard data modeling language (Schenck & Wilson, 1994).

Data modeling is a branch of information technology and computer science that defines

the processes and techniques used in investigating a system and creating the data models

34

representing that system (Hirschheim, Klein, & Lyytinen, 1995). Comparing to physical

implementation of a product through a computer system, EXPRESS provides a more

abstract definition. EXPRESS is conceived to support different implementations such as

object-oriented systems and relational databases (Eastman, 1999). Below is a list of

some of the key concepts in EXPRESS

• ENTITY, each entity describes an object including its attributes and behavior.

Entities can have inheritance relationships with each other. In the example above,

the Male entity is a subtype of Person entity.

• SCHEMAS, A group of interrelated entities create a schema. A schema is

capable of modeling a full system through multiple entities. The entities of a

schema are related to each other through inheritance, composition, association, or

other types of relationships. The example above shows family as a system that

can be independently described through its entities such as, father, and mother.

• BASIC TYPES, some of the major basic types in EXPRESS are INTEGER,

REAL, STRING, BOOLEAN, and BINARY. All the entities are directly or

indirectly (through their relationships with other entities) composed of these

basic types.

EXPRESS is the language used in defining IFC schemas and entities. IFC

documentation provides two EXPRESS equivalent for each entity, Inheritance Graph

and EXPRESS Specification. In Express Specification only direct attributes for each

entity are shown. Inherited attributes can be accessed through the provided subtype and

supertype entity names. In Inheritance Graph the supertypes of each entity along with

35

their attributes are shown directly. Code 1 shows the EXPRESS Specification and

Inheritance Graph for IfcObjectDefinition.

EXPRESS Specification

ENTITY IfcObjectDefinition
 ABSTRACT SUPERTYPE OF(ONEOF(IfcContext, IfcObject, IfcTypeObject))
 SUBTYPE OF IfcRoot;
 INVERSE
 HasAssignments : SET OF IfcRelAssigns FOR RelatedObjects;

Nests : SET [0:1] OF IfcRelNests FOR RelatedObjects;
IsNestedBy : SET OF IfcRelNests FOR RelatingObject;
HasContext : SET [0:1] OF IfcRelDeclares FOR RelatedDefinitions;
IsDecomposedBy : SET OF IfcRelAggregates FOR RelatingObject;
Decomposes : SET [0:1] OF IfcRelAggregates FOR RelatedObjects;
HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;

END_ENTITY;
	

Inheritance Graph

ENTITY IfcObjectDefinition
 ENTITY IfcRoot
 GlobalId : IfcGloballyUniqueId;

OwnerHistory : OPTIONAL IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;

 ENTITY IfcObjectDefinition
 INVERSE
 HasAssignments : SET OF IfcRelAssigns FOR RelatedObjects;

Nests : SET [0:1] OF IfcRelNests FOR RelatedObjects;
IsNestedBy : SET OF IfcRelNests FOR RelatingObject;
HasContext : SET [0:1] OF IfcRelDeclares FOR RelatedDefinitions;
IsDecomposedBy : SET OF IfcRelAggregates FOR RelatingObject;
Decomposes : SET [0:1] OF IfcRelAggregates FOR RelatedObjects;
HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;

END_ENTITY;
	
	

Code 1, EXPRESS Specification and Inheritance (BuildingSmart, 2016n)

2.8.2. STEP PHYSICAL FORMAT

The entities and schemas defined in STEP provide the templates to describe a

system. For example, to describe a family, an instance of the Mother entity and an

36

instance of the Father entity are needed. If the family has any children, a “Child” entity

should be created by extending the “Person” entity and then instantiated for every child.

STEP physical format (STEP-File) is the part of EXPRESS standard that

standardizes the format in which a system can be described through the instances of

entities (Peak, Lubell, Srinivasan, & Waterbury, 2004). STEP physical format is a text-

based format with .stp extension that resembles mark-up languages such as XML and

HTML. It is both machine and human readable (Lalmas, 2009). IFC inherits the STEP

physical file as one of its standard formats. The other standard formats are .ifcXML and

.ifcZIP (ISO/IEC, 2007). While both of these formats are also accepted by ISO and

equally powerful as .ifc files, their usage is not as common as .ifc files. In this study only

.ifc format was used to describe IFC models.

Every .ifc file is composed of a header and a body section. The header contains

information about the file itself while the body documents all the instances of entities

that together form the system. Each item in the body describes one instance.

	
STEPId=EntityName(AttributeValue1,	AttributeValue2,	…);	

	

Code 2, .IFC Entity

The STEP Id is only valid in one file exchange; therefore the same entities may

have different STEP Ids over multiple file exchanges. The entity name is determined by

the entity specifications. The attribute values are determined by the instance and should

fit the type and other criteria that are determined by the entity specifications. The

attribute values are associated with attributes by their position in the list. For optional

37

attributes, if the instance does not have any value, an asterisk represents empty value.

Code 3 shows a family described in an .ifc file.

Code 3, IFC File Sample

2.9. IFC SCHEMA LAYERS

There are 38 schemas that together form IFC. These schemas are divided into 4

categories. All the 38 schemas are interrelated with their entities re-appearing in other

schemas. Also the higher-level schemas may build upon the lower-level schemas by

extending their entities.

HEADER;

FILE_DESCRIPTION(description, implementation level);

FILE_NAME(

‘name’,

‘’time,

('The User'), ('The Company'),

'The name and version of the IFC preprocessor',

'The name of the originating software system',

'The name of the authorizing person');

FILE_SCHEMA(('IFC2X2_FINAL'));

ENDSEC;

DATA;

#1=FEMALE('Jill',*,*);

#2=MALE('Jake',*,*);

#3=FEMALE('Jannet,#1,#2);

#4=MALE('John',#1,#2);

ENDSEC;

END-ISO-10303-21;

	

38

Figure 5, IFC 4 Data Schema

2.9.1. CORE SCHEMA

Core Schema provides a collection of base entities that are needed to model a

system in the AECO industry. All the entities in Core Schema are either direct or

indirect extensions of IfcRoot, or are collections that contain IfcRoot subclasses. IfcRoot

only captures the essential attributes such as GUID (Globally Unique Identification),

Name, and Description. Code 4 is the EXPRESS specification for IfcRoot.

39

Code 4, IfcRoot (BuildingSmart, 2016ac)

IfcRoot has three direct children: IfcObjectDefinition, IfcPropertyDefinition, and

IfcRelationship. The direct children of IfcRoot define a foundation for other entities and

do not capture any AECO oriented information. These entities are abstract, which means

they cannot be instantiated directly and need to be extended first.

Four schemas form the Core schema together. Those four schemas are IfcKernel,

IfcControlExtendion, IfcProcessExtension, and IfcProductExtension.

2.9.1.1. IfcKernel

As the name suggests, IfcKernel is a generic layer that contains all the

fundamental abstract entities needed to create a system. The entities in this schema are

generic to the entire product modeling disciplines and are not specialized for the AECO

industry. IfcRoot and its direct subclasses are some of the most important entities in

IfcKernel. These entities are described below.

	
ENTITY	IfcRoot	
	ABSTRACT	SUPERTYPE	OF(ONEOF(IfcObjectDefinition,	IfcPropertyDefinition,	IfcRelationship));	
	 GlobalId : IfcGloballyUniqueId;

OwnerHistory : OPTIONAL IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
	

	UNIQUE	
	 UR1 : GlobalId;

	

END_ENTITY;	
	
	

40

2.9.1.2. OBJECT DEFINITIONS

IfcObjectDefinition is the base entity for defining objects in IFC. It is an abstract

entity that captures the most generic attributes of every object regardless of what the

object represents. Code 5 is the EXPRESS specification for IfcObjectDefinition.

Code 5, IfcObjectDefinition (BuildingSmart, 2016n)

This entity does not define any direct attributes and only declares INVERSE

relationships. INVERSE attributes are not populated through the entity directly, but

rather indicate that the entity can be referenced from other entities. For example an

instance of IfcRelAssigns can reference an instance of IfcObjectDefinition through its

STEP ID. Taking a closer look at IfcRelAssigns in Code 6 can help to understand

inverse relationships:

	
ENTITY	IfcObjectDefinition	
	ABSTRACT	SUPERTYPE	OF(ONEOF(IfcContext,	IfcObject,	IfcTypeObject))	
	SUBTYPE	OF	IfcRoot;	
	INVERSE	
	 HasAssignments : SET OF IfcRelAssigns FOR RelatedObjects;

Nests : SET [0:1] OF IfcRelNests FOR RelatedObjects;
IsNestedBy : SET OF IfcRelNests FOR RelatingObject;
HasContext : SET [0:1] OF IfcRelDeclares FOR RelatedDefinitions;
IsDecomposedBy : SET OF IfcRelAggregates FOR RelatingObject;
Decomposes : SET [0:1] OF IfcRelAggregates FOR RelatedObjects;
HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;
	

END_ENTITY;	
	
	
	

41

Code 6, IfcRelAssigns (BuildingSmart, 2016w)

IfcRelAssigns has a direct relationship with IfcObjectDefinition. This is the same

relationship that is shown in IfcObjectRelationship entity as “INVERSE” relationship.

IfcObject and IfcTypeObject are two main base classes that are used in IFC to

define building elements such as walls, buildings, windows, and doors. They both have

similar entity hierarchies. By using IfcTypeObject, one can capture the common

attributes of similar objects and avoid duplication. For example, imagine a house with

four bedrooms that each has the same door type. To document those four doors through

IFC, the .ifc file will have four IfcDoor instances that capture the unique attributes about

each door (such as their location). There is one instance of IfcDoorType that captures all

the attributes that the doors have in common. A separate entity called

IfcRelDefinesByType is used to relate the objects and their types together (Code 7).

ENTITY IfcRelAssigns
ABSTRACT SUPERTYPE OF (ONE OF
 (IfcRelAssignsToActor
 ,IfcRelAssignsToControl
 ,IfcRelAssignsToGroup
 ,IfcRelAssignsToProcess
 ,IfcRelAssignsToProduct
 ,IfcRelAssignsToResource))
SUBTYPE OF (IfcRelationship);
 RelatedObjects : SET [1:?] OF IfcObjectDefinition; RelatedObjectsType :
OPTIONAL IfcObjectTypeEnum;
WHERE
 WR1 : IfcCorrectObjectAssignment(RelatedObjectsType, RelatedObjects);
END_ENTITY;

	

42

Code 7, IfcRelDefinesByType (BuildingSmart, 2016z)

IfcContext defines the context in which the building elements reside. One of the

subclasses of IfcContext is IfcProject. IfcProject is the root concrete element in an .ifc

file. The spatial structure, building elements, and their types are all parts of IfcProject.

Figure 8 shows how IfcProject connects all the elements together. Chapter 7 explains

IfcProject in more detail and describes how the spatial structure can be assigned to the

project.

	
 ENTITY IfcRelDefinesByType

 SUBTYPE OF (IfcRelDefines);
 RelatedObjects : SET [1:?] OF IfcObject;
RelatingType : IfcTypeObject;

END_ENTITY;

	
	

43

Figure 6, IfcProject. Reprinted from (BuildingSmart, 2016u).

2.9.2. RESOURCE SCHEMAS

Resource Schemas is a collection of utility schemas that are used by other

schemas as their attributes. None of these entities are subclasses of IfcRoot since they do

not independently represent a building element.

IfcGeometryResource is one of the schemas that belong to this group. The

subclasses of this schema are used to describe the geometry of building elements.

44

IfcPolyline, IfcCurve, and IfcLine are some of the entities in this schema. More schemas

from this group are introduced in the next chapter for their usage in UFPOR.

2.9.3. SHARED SCHEMAS

Shared schema represent more specialized entities that are not covered by the

Core Schemas. Some of the entities that are used to create a POR in IFC are in Core and

Resource schema. The detailed attributes that are needed to describe specific building

elements such as doors and windows may create relationships to entities from the shared

or domain schema such as IfcBeam and IfcDoor. Shared Schema falls into 5 different

categories.

2.9.3.1. SHARED BUILDING SERVICES ELEMENTS

With schemas such as IfcHvacDomain, IfcPlumbingFireProtectionDomain, and

IfcElectricalDomain, this category focuses on the building system elements.

Architectural programming requirements concerning areas such as thermal comfort,

lightning levels, and earthquake resistance may use this domain’s entities.

2.9.3.2. SHARED COMPONENT ELEMENTS

This category focuses on detail building components such as various accessories

and fasteners. PORs usually deal with requirements on a larger scale than the one

covered by this category, but entities from this schema can be used in detailed

requirements.

45

2.9.3.3. SHARED BUILDING ELEMENTS

With IfcBuildingElement being the base class for all the entities in this category,

building elements such as wall, beam, column, slab, roof, stair, ramp, window, door and

covering are some of the main entities in this category. PORs can impose direct or

indirect requirements on walls, windows, and doors. The direct subclasses of

IfcBuildingElement are IfcBeam, IfcBuildingElementProxy, IfcChimney, IfcColumn,

IfcCovering, IfcCurtainWall, IfcDoor, IfcFooting, IfcMember, IfcPile, IfcPlate,

IfcRailing, IfcRamp, IfcRampFlight, IfcRoof, IfcShadingDevice, IfcSlab, IfcStair,

IfcStairFlight, IfcWall, IfcWindow. Code 8 shows IfcBuildingElement inheritance

graph.

46

Code 8, IfcBuildingElement Inheritance Graph (BuildingSmart, 2016f)

	
ENTITY	IfcBuildingElement	
	ENTITY	IfcRoot	
	 GlobalId : IfcGloballyUniqueId;

OwnerHistory : OPTIONAL IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
	

	ENTITY	IfcObjectDefinition	
	INVERSE	
	 HasAssignments : SET OF IfcRelAssigns FOR RelatedObjects;

Nests : SET [0:1] OF IfcRelNests FOR RelatedObjects;
IsNestedBy : SET OF IfcRelNests FOR RelatingObject;
HasContext : SET [0:1] OF IfcRelDeclares FOR RelatedDefinitions;
IsDecomposedBy : SET OF IfcRelAggregates FOR RelatingObject;
Decomposes : SET [0:1] OF IfcRelAggregates FOR RelatedObjects;
HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;
	

	ENTITY	IfcObject	
	 ObjectType : OPTIONAL IfcLabel;

	

	INVERSE	
	 IsDeclaredBy : SET [0:1] OF IfcRelDefinesByObject FOR RelatedObjects;

Declares : SET OF IfcRelDefinesByObject FOR RelatingObject;
IsTypedBy : SET [0:1] OF IfcRelDefinesByType FOR RelatedObjects;
IsDefinedBy : SET OF IfcRelDefinesByProperties FOR RelatedObjects;
	

	ENTITY	IfcProduct	
	 ObjectPlacement : OPTIONAL IfcObjectPlacement;

Representation : OPTIONAL IfcProductRepresentation;
	

	INVERSE	
	 ReferencedBy : SET OF IfcRelAssignsToProduct FOR RelatingProduct;

	

	ENTITY	IfcElement	
	 Tag : OPTIONAL IfcIdentifier;

	

	INVERSE	
	 FillsVoids : SET [0:1] OF IfcRelFillsElement FOR RelatedBuildingElement;

ConnectedTo : SET OF IfcRelConnectsElements FOR RelatingElement;
IsInterferedByElements : SET OF IfcRelInterferesElements FOR RelatedElement;
InterferesElements : SET OF IfcRelInterferesElements FOR RelatingElement;
HasProjections : SET OF IfcRelProjectsElement FOR RelatingElement;
ReferencedInStructures : SET OF IfcRelReferencedInSpatialStructure FOR RelatedElements;
HasOpenings : SET OF IfcRelVoidsElement FOR RelatingElement;
IsConnectionRealization : SET OF IfcRelConnectsWithRealizingElements FOR RealizingElements;
ProvidesBoundaries : SET OF IfcRelSpaceBoundary FOR RelatedBuildingElement;
ConnectedFrom : SET OF IfcRelConnectsElements FOR RelatedElement;
ContainedInStructure : SET [0:1] OF IfcRelContainedInSpatialStructure FOR RelatedElements;
	

	ENTITY	IfcBuildingElement	
	INVERSE	
	 HasCoverings : SET OF IfcRelCoversBldgElements FOR RelatingBuildingElement;

	

END_ENTITY;	
	

	

47

2.9.3.4. SHARED MANAGEMENT ELEMENTS

This category holds elements that are used in construction management processes

and generally do not contain architectural information. Cost schedules, purchase orders,

change orders and work orders are some of the entities covered in this category.

2.9.3.5. SHARED FACILITIES ELEMENTS

While IFC considers this category a prerequisite to support the facility

management domain, some of the base classes are of interest for architectural

programming information. Furniture is one of the main entities covered in this category

and furniture requirements are one of the common requirements in architectural

programing information.

2.9.4. DOMAIN SCHEMAS

Domain Schemas contains eight schemas: Building Controls, Plumbing Fire

Protection, Structural Elements, Structural Analysis, HVAC, Electrical, Architecture,

Construction Management. These categories cover detail information about each domain

that is not covered in the lower levels. These categories can be regarded as annexes to

the main IFC schema. Entities from these schemas can be used for more detailed

requirements. For example, Architecture Domain includes several property sets and type

enumerations focused on doors and windows. They can be useful if a POR has

requirements beyond the opening dimensions. For example, the requirements regarding a

door operation type (single swing, double swing, sliding, folding, etc.) can be covered

through applying constraints on the property sets covered in Architecture Domain.

48

2.10. IFC AND PROPERTY SETS

IFC is a large collection of entities that can represent a very large array of

information in the AECO industry. Usually computer applications in the AECO industry

support a predefined subset of IFC. On top of that, the simple form of IFC entities can be

further enriched with custom property sets. Property sets are one of the fundamental

concepts in IFC and are part of the Kernel schema. IfcPropertyDefinition entity is the

base entity for properties (Hietanen & Final, 2006).

Code 9, IfcPropertyDefinition (buildingSMART, 2015a)

Defining a property consists of two steps: first, defining the template and second,

defining the property. Property templates are used to further define the details on a

property. Code 10 shows IfcSimpleProperyTemplate entity as an example for

IfcPropertyTemplateDefinition.

	
ENTITY	IfcPropertyDefinition	
	ABSTRACT	SUPERTYPE	OF(ONEOF(IfcPropertySetDefinition,	IfcPropertyTemplateDefinition))	
	SUBTYPE	OF	IfcRoot;	
	INVERSE	
	 HasContext : SET [0:1] OF IfcRelDeclares FOR RelatedDefinitions;

HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;
	

END_ENTITY;	
	
	

49

Code 10, IfcPropertyTemplate (buildingSMART, 2015c)

IfcProperty entity has several subclasses such as IfcPropertyBoundedValue,

IfcPropertyEnumeratedValue, IfcPropertyListValue, IfcPropertyReferenceValue,

IfcPropertySingleValue, IfcPropertyTableValue, This wide array of choices for attaching

properties to IFC entities makes IFC a flexible data model that’s easy to extend. Figure 9

shows how a property and a property template should be used together.

	

ENTITY IfcPropertyTemplate
 SUBTYPE OF (IfcPropertyTemplateDefinition);

 PropertyType : IfcPropertyTemplateTypeEnum;
PrimaryDataType : OPTIONAL IfcIdentifier;
SecondaryDataType : OPTIONAL IfcIdentifier;
PrimaryUnit : OPTIONAL IfcUnit;
SecondaryUnit : OPTIONAL IfcUnit;
AccessState : OPTIONAL IfcStateEnum;
HasPropertyTemplates : OPTIONAL SET [1:?] OF IfcPropertyTemplate;

INVERSE
 PartOfPropertyTemplate : SET OF IfcPropertyTemplate FOR HasPropertyTemplates;
PartOfPsetTemplate : SET OF IfcPropertySetTemplate FOR HasPropertyTemplates;

WHERE
 CorrectDecomposition : ((PropertyType = IfcPropertyTemplateTypeEnum.COMPLEX)

AND EXISTS(HasPropertyTemplates)) XOR ((PropertyType <>
IfcPropertyTemplateTypeEnum.COMPLEX) AND
NOT(EXISTS(HasPropertyTemplates))) ;

END_ENTITY;

	
	

50

Figure 7, Property Template and Property Relationship. Reprinted from
(buildingSMART, 2015d).

2.10.1. DYNAMICALLY EXTENDIBLE AND STATICALLY DEFINED

PROPERTIES

IFC entities can have two different types of property sets: dynamically

extendable property sets and statically defined property sets (buildingSMART, 2015b).

Dynamically extendable property sets are defined as “a set of properties for which the

IFC model only provides a kind of ‘meta model’, to be further declared by agreement”.

This means no entity definition of the properties exists within the IFC model. The

declaration is done by assigning a significant string value to the Name attribute of the

entity as defined in the entity IfcPropertySet and at each subtype of IfcProperty,

referenced by the property set. Dynamically defined property sets may have an

underlying template provided by IfcPropertySetTemplate.

51

Statically defined property sets are defined as “A property set entity that exists

within the IFC specification. The semantic meaning of each statically defined property

set is declared by its entity type and the meaning of the properties is defined by the name

and data type of the explicit attribute representing it.” (buildingSMART, 2015b).

2.10.2. DYNAMICALLY EXTENDIBLE PROPERTIES AND MVDs

Dynamically extendable property sets (Custom property sets) are in the heart of

defining Model View Definitions (MVD). MVDs are one of the most important concepts

in IFC. IFC specification defines a large array of schemas. Every schema is defined to

support the needs of a specific subset of the AECO industry. Computer applications that

rely on IFC for data exchange are also designed for the usage of a specific subset of the

industry. An MVD is a subset of IFC enriched with dynamically extendable property

sets that is most suitable for a subset of AECO industry (Hietanen & Final, 2006;

Liebich & Wix, 1999; Weise, Katranuschkov, & Scherer, 2003). BuildingSMART.org

provides a standard way of creating MVDs that is documented in the Information

Delivery Manual format, IDM (also ISO29481). MVDs are documented in a format

called MVDXML. BuldingSmart has published an application called "ifcDoc" that can

be used to create MVDs in MVDXML format (buildingSmart, 2015b). Alternatively a

text (or xml) editing application can be used to create or edit an MVD format as long as

all the rules defined by MVDXML are followed.

52

2.11. IFC AND ARCHITECTURAL PROGRAMMING INFORMATION

There have been several initiatives to define IFC model view definitions that are

capable of capturing information that is often in a POR.

2.11.1. IFC AR-5

IFC AR-5 is one of the first attempts to expand IFC capabilities to host

Architectural Programing information. AR-5 was actively under development between

2002 and 2004 with the results being incorporated into IFC 2*2 (Information

requirements specification – [AR-5] early design, 2004). The goal of AR-5 project was

to extend the capabilities of the IFC schema to include early design decisions and

requirements. The intent of AR-5 project was to make early design decisions and

requirements available throughout the design process. The idea is to add an architectural

requirement to an IFC file and later evaluate whether the requirement was met or not.

The research addressed four primary areas: Analysis of Alternatives, Blocking and

Stacking, Bubble Diagram, Review and Revision.

The final report on AR-5 project starts by describing Architectural Programing

process and the types of information included in an Architectural Programing document.

The proposed structure for Architectural Programing in AR-5 is based on the concept of

activities and their relationship. Activities are defined as the facilitated actions that the

users of a building perform in that building. For a school, examples of activities include

learning and playing. The requirements are the result of understanding what the users

need to perform the activities successfully. The list of spaces in a building is derived

53

from the activities. AR-5 also recommends the use of space relationship matrices to

describe space relationships (Figure 10).

Figure 8, AR-5 Adjacency Diagram. Reprinted from (Information

AR-5 defines two space types: building and functional. Building spaces are the

ones that define the anatomy of the building such as rooms, circulation spaces, cores,

and structural depth. Functional spaces correlate with the activities and contain

identifiable actions on the part of the users. Examples of functional spaces are

departments of a hospital or the departure and arrival sections of an airport. Figure 11

shows AR-5 building and functional spaces side by side.

requirements specification – [AR-5] early design, 2004).

54

Figure 9, AR-5 Building and Functional Space. Reprinted from
(Information requirements specification – [AR-5] early design, 2004).

Currently in IFC there are independent class hierarchies for describing the spatial

structure independent from functions and activities. IfcSpatialElement, a sub-class of

IfcProduct is the base class to describe all the spatial elements such as buildings, floors,

and rooms. To describe activities and functions that take place within the spatial

elements, IFC offers IfcSpatialZone and IfcZone. Both classes along with their sub-

classes create class hierarchies specialized for describing functions and activities.

AR-5 takes a broad approach and does not get involved in the details such as the

property sets and their variables. It proposes several concepts to be supported by IFC.

While in the latest versions of IFC all the concepts introduced by AR-5 are supported at

some level, it is not clear whether the level of coverage in IFC is adequate to support all

the programing concepts effectively or not.

2.11.2. SPATIAL COMPLIANCE INFORMATION EXCHANGE (SCie)

Other investigations have explored how to represent the information of POR in a

digital form. SCie specifically addresses the need of access to architectural programming

information throughout the lifecycle of a facility in public projects (East & Nisbet,

55

2009). Public projects are funded by tax revenue and public obligations and the process

of initiating a new facility starts with a POR. In many cases the request for a new facility

is approved or denied based on the program. The POR is also used to estimate the cost of

design and construction. By keeping the architectural programming information

throughout the lifecycle of a facility, organizations can estimate their functional

capacities.

SCie focuses on the delivery of the architectural programming related

information on a facility as part of the handoff from construction to maintenance phase.

SCie is defined as a subset of COBie standard. COBie stands for Construction-Operation

Building Information Exchange (East & Carrasquillo-Mangual, 2012).

COBie focuses on providing a more efficient solution for the significant amount

of time spent on handling information in large construction projects. The backbone of

the solution is a standard format for documenting such information, which as the

inventors describe, can be “ASCII for buildings” (Malleson, Mordue, & Hamil, 2012).

What is special about COBie is that while it is a standard most effective when paired

with software, it has a tabular human readable format that can be used independently.

COBie can be viewed as a collection of Excel worksheets or similar tabular formats such

as Google Sheets.

COBie is an IFC MVD (East, 2016). In COBie all the geometric information is

eliminated. Besides geometry, the tabular format of COBie also eliminates a large

portion of complicated relationship between entities that IFC can represent. There are

several applications that extract COBie files from an IFC file. The goal is to provide

56

necessary information about the facility to the parties in charge of management and

maintenance. Architectural programming is very essential in such information as it

provides a clear picture of the facility's functional capacities.

Figure 10, SCie and COBie. Reprinted from (East & Nisbet, 2009).

SCie is intended to support tracking the changes over time. The creators of SCie

identify the untracked changes as one of the reasons that PORs lose their value as the

project evolves. By using SCie, facility managers and other parties can update the

information that is already documented in SCie in every phase of design and

construction.

SCie requires the inclusions of four different tables from the COBie standard:

Facility worksheet, Floor worksheet, Space worksheet and Contact worksheet. These

57

four tables together represent an important subset of architectural programming

information. Facility table provides general information about the facility and does not

provide any detail on functional capacities as far as spaces and their areas. Floor and

Space table provide similar information on two scales. Both tables provide details on

dimensions and areas such as gross area, interior and exterior plannable area, rentable

area, etc. Figure 13 – 16 show some of the attributes from the four SCie tables.

58

Figure 8, SCie SPACE TABLE Figure 11, SCie Space Table. Reprinted from (East & Nisbet, 2009).

59

Figure 12, SCie Floor Table. Reprinted from (East & Nisbet, 2009).

60

Figure 13, SCie Contact Table. Reprinted from (East & Nisbet, 2009).

61

Figure 14, SCie Facility Table. Reprinted from (East & Nisbet, 2009).

SCie creates an abbreviated version of the POR that is tailored toward facility

maintenance and management. The SCie information can be delivered included in a

COBie file or as a standalone file.

2.11.3. BUILDING PROGRAMMING INFORMATION EXCHANGE

(BPie)

Comparing to SCie, BPie is a more recent effort to capture architectural

programming information through a BIM compatible format. While SCie is more

focused on providing architectural programming information for the FM industry, BPie

offers the following definition: “Building programming is the process of collecting all

62

requirements the building must fulfill” (East, 2012). BPie also regards a POR as a

dynamic document that changes through the lifecycle of the project; therefore it should

be included in BIM models and be available for modification. BPie gathers the

requirements imposed by a POR to support evaluation of the design against them. The

difference between the use cases of the two standards reflects on their content. SCie

addresses the as-built information regardless of whether they fulfill the requirements or

not. SCie relies on architectural programming information since it is a reflection on the

functional capacity of the facility, while BPie regards architectural programming as a

collection of requirements. BPie might include information regarding the required

ventilation airflow of a specific space; such information is not of use in SCie.

The other major difference between the two standards is the data model upon

which they are based. SCie is defined as a subset of COBie as it is meant to support the

FM industry. COBie is a stripped down version of IFC that essentially provides a less

elaborated data model. BPie is defined as a direct MVD within the IFC data model and

provides a more flexible data model that can capture a wider array of information.

BPie relies on five different entities from IFC data model to capture architectural

programming information. The five entities are: Project, Building, Story, Space, and

Zone. Attaching additional properties to these five entities represents the requirements.

These properties are grouped together under several property sets.

63

Figure 15, A Partial List of BPie Space Attributes. Reprinted from
(East & Nisbet, 2009).

2.11.4. CURRENT STATE OF ARCHITECTURAL PROGRAMMING

AND IFC

The three reviewed projects aim to enhance the capabilities of IFC in capturing

architectural programming information in different capacities. Activity is a key word in

64

AR-5. Differentiating between physical spaces and activities is discussed as the key

concept in adding architectural programming requirements to IFC. AR-5 provides

general guidelines and does not engage in detailed discussions on how to incorporate

architectural programming into IFC.

SCie focuses on making architectural programming information accessible for

the facility managers. SCie is defined based on COBie, therefore inheres all the

limitation of the COBie standard. While facility managers can benefit from having

access to parts of architectural programming information, there are many other domains

that benefit from such information.

Comparing to the first two standards BPie has a more inclusive approach in

adding architectural programming information to IFC. In comparison with SCie, using

BPie the requirements are directly added to an IFC file instead of the more limited

COBie format. BPie provides a collection of predefined requirements for five IFC

entities (IfcProject, IfcBuilding, IfcSpace, and IfcZone).

65

3. COMMERCIAL SOFTWARE FOR ARCHITECTURAL PROGRAMMING

Although many of the data modeling standards are used through software

packages, some of the data models propose human readable formats that can be used

without the support of software. In AECO industry, many of the standards are developed

to be used through a software package. DWG, for example, is not considered a human

readable data model. There are other standards in the AECO industry that rely less on

software. COBie for example provides a human readable standard structure.

Weather the output of the standards are human readable or not, the interaction

between the architectural programmers and the data standard is almost always through

software. To understand the common practices and limitations of documenting PORs

though software, this section provides reviews of some of the computer applications that

are designed for this purpose.

3.1. COMMERCIAL TOOLS

Creating a bridge between architectural programming and Computer-Aided

Design has been an appealing matter to software vendors. Trelligence Affinity (About

Trelligence, 2015), Onuma System (About Onuma, 2015), and dRofus (About dRofus

AS, 2015) are three of the major products available in the market to manage POR

information throughout the lifecycle of a facility.

All the solutions cited above approach the problem by creating an independent

user interface and data models to store the programming data. The user starts the design

task in this environment and eventually exports the model to a BIM design tool.

66

Although this approach can potentially solve the problem, it also brings some limitations

to the table. Introducing a brand new gadget to the architects’ toolbox of applications

requires tweaking of the design process and making room for the new tool. The POR

data may also become inextricably tied to the software and thus inaccessible for other

purposes.

3.1.1. TRELLIGENCE AFFINITY

Trelligence is a software development company founded in 2003 based in

Houston, TX. AECO industry is the main focus of the company. All the members of the

management team cited by Trelligence website have a software development

background and prior to their current endeavor have not been involved in the AECO

industry. Trelligence Affinity is the main and only product of the company (About

Trelligence, 2015).

Trelligence Affinity provides solutions for architectural programming, planning

and early stages of design. Trelligence divides the functionalities provided by

Trelligence Affinity into three categories, Programming, Schematic Design, and Design

to Revit.

Affinity Programming allows the users to capture and manage project

requirements, components, notes and relationships. The process of creating a POR in

Affinity starts with creating a new project and placing some departments in the project.

New spaces will be added to the department. Area and adjacency requirements can be

added to the spaces (Figure 18). Adjacency requirements can be added to the program by

modifying the relationship property of the added spaces.

67

Figure 16, Affinity Programming Tool

Affinity Schematic Design allows the user to generate spaces by dragging items

from the program into the design user interface. The application compares the design

information with the program and informs the user if there is any incompatibility in the

space count (Figure 19).

The Schematic Design tool allows the users to add spaces that are not listed in

the programs to the layout. Therefore additional spaces such as hallways and corridors

that are not required by the POR can be added to the layout. The relationship between

the Programming component and the Schematic Design component is a one way

relationship and adding a new space in the Schematic Design component will not update

the POR. Spaces that are added merely through the schematic design tool should be

added manually to the POR as well.

68

Figure 17, Affinity Schematic Design

The space layout is drawn on a 2D plan view. There are no architectural

section/elevation views available to modify the design.

Affinity Design to Revit is an Autodesk Revit Architecture plugin. Through this

plugin the user can import a POR along with a space layout generated in Trelligence

Affinity Programming and Schematic Design tool into Revit. The plugin also includes a

monitoring option, which enables the operator to check requirements compatibility of

the design model within the Revit environment (Figure 20).

69

Figure 18, Affinity Design to Revit

Below are some of the main characteristics of the solution provided by

Trelligence.

• Design Environment, Affinity not only provides the features required to

enter POR requirements, it also provides tools and means for planning

and design. The embedded design and planning tool allows users to draw

basic 2d shapes. The modeling toolset is not comparable to advanced

BIM modeling applications such as Autodesk Revit that the designers and

planners are accustomed to outside of Affinity. The users need to choose

between having direct access to programming information and using less

sophisticated design tools, or using more sophisticated design tools and

compromise on their access to the programming data.

70

• The Scope of Architectural Programming, The current version of Affinity

does not support the entire span of architectural programing information

proposed by the textbooks. Therefore the user may have to use other tools

in conjunction with Affinity to cover those fields. Chapter 4 describes

several textbooks on architectural programming.

• Creating Space Packages, The application provides only one level of

space packaging. Space packaging is categorizing spaces in groups based

on one or multiple common attribute. In Affinity the user can put the

spaces into packages, but one cannot group those packages any further.

While this might be adequate for a simple project, in more complicated

projects (e.g. healthcare facilities) there are multiple levels of packaging

imposed through the program.

• Interaction with BIM Data Models, While the main advantage of BIM is

to manage the project data over the lifecycle of the building, Trelligence

provides a one-way export to Revit architecture. All the programming

requirements provided in Affinity will be added to the Revit model as

room properties but they lose some of their automated verification

functionalities. By exporting the Revit file into another BIM format or

application all the imported room properties will be eliminated from the

generated BIM model.

71

• Adjacency Assessment. While the user can add adjacency requirements to

the Affinity edition of program, there is no mechanism to check if the

requirements are met or not.

• Reporting Option. After entering the POR requirements, Affinity gives

the user the option to present the data entries with different formats. The

user can choose the proper format for different procedures, such as

presenting the POR to the client, design team, and other stakeholders

(Figure 21).

• An Intuitive Relationship Between Design and POR, Trelligence Affinity

provides an intuitive mechanism for placing items from the program into

the design. The users can drag the items from the program and place them

into the design.

Figure 19, Trelligence Affinity Reporting Options

72

3.1.2. ONUMA SYSTEMS

Unlike Trelligence, Onuma is an architectural firm with an interest in software

development for architects. They claim to use their own products during the design

process. Onuma is a Web-based system so it does not require any software installation

prior to use (About Onuma, 2015).

Being a Web-based application enables Onuma to access all the information of

online services (e.g. Google maps) and incorporate them into the BIM model. On the

other hand, it has limited the capabilities of Onuma in providing a more sophisticated

user interface. Below you can see the Onuma user interface (Figure 22).

Figure 20, Onuma Systems Main User Interface

The design functionalities provided by Onuma are very similar to the ones of

Trelligence. One of the main concepts behind Onuma System is to capitalize on all the

73

opportunities of being a Web-based service. This includes an inbuilt messaging system,

interacting with online GIS systems such as Google earth and Google maps, and

interacting with social media.

The incorporation of POR into design in Onuma System is very limited. Every

model in Onuma can be exported to an Excel file and imported back. In other words, you

can have two different views of the same data. The user can initiate a project either in

Excel or in Onuma. By starting the project in Excel the user can assign a target and

dimensions to each space. The user can also assign a room to a certain floor level. When

Onuma System imports the Excel file, it generates respective spaces based on the

defined parameters.

The scope of a POR in Onuma System does not go beyond specifying the area

and the level. There is no automated mechanism to check the design versus the

programming requirements. The requirements are not defined independent from the

design attributes, therefore comparison is impossible. The only mechanism offered by

Onuma System to enforce any requirements is locking the space size and ratio.

Below are the main characteristics of Onuma System.

• Web Based Application, One of the main advantages of web-based

applications is data synchronization. All the members of the design team

work on the same model and avoid generating multiple copies on the

desktop computers (Lapierre & Cote, 2007).

74

• 3D Components, Unlike Trelligence Affinity, the components generated

in Onuma are 3D BIM components. This would add a great deal of

accuracy and practicality to the Onuma System.

• IFC Support, Onuma supports IFC format by providing the capability of

exporting the Onuma System model as an IFC file to other BIM

applications. It is not clear if there is a level of data loss involved during

the conversion.

• Adjacency Control, There is no automated method provided to assess the

adjacencies. After adding adjacency requirements, the adjacencies will be

shown in the model through connecting lines between the design

components (Figure 23).

• Separation of Programming and Design Requirements, There are no

parameters imbedded in the Onuma System models to record the

programming requirements. Therefore any level of comparison between

design and program is out of reach.

• Flexibility, Onuma System has to be kept very simple to run on the Web.

This has limited the software flexibility. Unlike Trelligence Affinity,

custom parameters cannot be added to the POR format.

75

Figure 21, Onuma Adjacency Control

3.1.3. dROFUS

dRofus was originally developed by Nosyko, a leading consulting company for

hospital planning in Norway. dRofus was established as a separate company in 2011 and

commercialized dRofus computer application as a planning and data management tool

for the building industry.

dRofus user interface is very similar to the one of Trelligence Affinity (Figure

24). The rooms are organized in groups and any further packaging of the groups is not

supported. One of the major advantages of dRofus over Trelligence is the import feature

from IFC files that are compatible with BPie standard. (About dRofus AS, 2015).

76

Figure 22, dRofus Home Page

dRofus provides a more comprehensive list of requirements for each room. The

requirements are grouped under these titles: Description, Design/building, Windows and

doors, HVAC, Air conditioning, El power, ICT alarm and signal, Acoustics, Operation,

Fire, Equipment, Pictures/Documents.

Unlike Trelligence and Onuma, dRofus does not provide any design generation

features and the user is limited to creating the POR. To use the created POR in a design

environment, the POR should be exported to the IFC format.

77

The design information can be added to the IFC file generated by dRofus.

Alternatively, the design application can initialize the IFC file and the POR can be

integrated into the same file.

dRofus comes with an IFC viewer that does side by side comparison of the

design and the POR (Figure 25).

Figure 23, dRofus Design vs. Program Comparison

The operator can select any item from the POR and the IFC viewer has the

capability of finding the selected item in the model and zooming into the selected item.

78

The items generated in dRofus can be placed in the Revit model as unplaced

rooms or family instances. All the properties defined in dRofus will be added to the

Revit file as customized properties. To check the design versus the POR the Revit file

should be synchronized with the IFC file that is generated by dRofus. The IFC file later

can be opened in dRofus and the design errors can be reviewed.

Below are the main characteristics of dRofus.

• IFC Support, dRofus is the only system out of the reviewed systems that

has adopted the open BIM practice by adapting BPie model view

definition. (i.e. IFC integration) (Jernigan, 2008).

• Design and POR Connection, dRofus does not provide any design

environment and by supporting IFC, gives the designer a wide range of

computer applications to select from for the design phase.

• Design Assessment, There are too many steps in checking the POR

requirements against the design. This complicated process can decrease

the usability of the tool.

• No Requirement Control in Design Mode, dRofus does not provide design

related features; on the other hand the provided Revit plugin does not

perform any requirement control in the Revit environment. This

workflow can lower the chance of spotting the design errors in real time

by the designer.

79

• No Visual Representation of the Design Errors, The design errors will be

marked up in the tables that are provided through the inbuilt IFC viewer,

but there is no mark-up of the design errors provided in the 3D model.

• IFC Format As The Native File, Using IFC as the native file format is a

bold decision since a text-based file is not the most efficient format for

storing data. On the other hand it eliminates any potential inconsistency

through data conversion.

3.2. LESSONS LEARNED FROM THE REVIEWED APPLICATIONS

All the reviewed applications provide a level of connection between a pre-

defined version of POR and the early stages of design. Their limitations with respect to

the goal of this research can be clustered into several criticisms.

3.2.1. EXPERTS’ VIEWS IN ARCHITECTURAL PROGRAMMING

The commercial applications reviewed in this chapter are not well-grounded in

published expert advice for creating a POR. The software vendors do not provide any

references or studies to support the effectiveness of their proposed model.

Trelligence Affinity provides a limited format for architects to add some

requirements. The default template includes fields for area, equipment, and adjacency

requirements. The user can also group the spaces into departments, but it will not impose

any direct requirements over the design. Adjacency requirements can be added to the

spaces as well. Any further requirements can be added to the space instances in the

format of textual comments (About Trelligence, 2015).

80

Onuma System claims to create a connection between the POR and the design. In

Onuma System there is no distinction between POR requirements and design decisions.

Instead, the application provides two different views for the same data, textual and

graphical. The textual view is based on a tabular format similar to what MS Excel

provides, while in the graphical view the spaces are represented as two-dimensional

shapes. Onuma System considers any modification of the data in the textual (Excel)

view a programming decision, and any modification of data in the graphical view a

design decision.

dRofus takes a different approach to the POR. It provides a list of requirements

that can be added to a space. dRofus lets the user select which fields to fill and which

fields to leave blank (About dRofus AS, 2015). Figure 26 shows dRofus user interface in

requirement entry mode. The list of requirements differentiates dRofus from the other

competition.

81

Figure 24, dRofus Requirements Entry Interface

3.2.2. CONNECTIONS WITH IFC

Greater integration with the entire life cycle of a building can be achieved by

extending the IFC data model by adding the missing fields to make it fully capable of

capturing the programming requirements. This is a basic premise of this research,

Amongst the reviewed applications, dRofus is the only one that provides both

import and export features for IFC format.

82

4. DATA MODELING OF THREE EXPERT METHODS FOR PROGRAMS OF

REQUIREMENT

AIA defines a program of requirement (POR) as “An organized collection of the

specific information about the client’s requirements which the architects need in order to

design a particular facility.” (Palmer, 1981). There are different interpretations of this

definition in Architectural, Engineering, Construction and Operation (AECO) industry

(Hershberger, 1999). Exclusion of architectural programming information makes BIM

data models fall short from the BIM core premise, which advocates the inclusion of the

whole lifecycle of design information. “Can one comprehensive data structure support

all the existing formats for architectural programming?” This is the main focus of this

chapter.

4.1. METHODOLOGY

Among all the existing POR structures, the ones offered by William Peña (Peña

& Parshall, 2001), Henry Sanoff (Sanoff, 1977) and Donna Duerk (Duerk, 1993) were

chosen to represent a scaled collection of diverse POR formats. These scholars were

chosen based on the following main two reasons:

• Recognition in the industry and academia, A short search on any

scholastic database shows that the textbooks used in this research have

been cited several times by other scholars also; they are some of the

bestselling books on architectural programming.

83

• Relevance to the research objectives, As it was mentioned before, not all

the subdomains of architectural programming were of interest to this

research. Textbooks on data gathering techniques, while very useful to

the programmers, would not provide this research with any useful

material. The textbooks selected for this research all devote substantial

portions to requirement types and classifications.

Some of the textbooks used in this chapter provide a straightforward model that

includes programming data types and how they are classified. Some others define it in

fragmented segments throughout the text.

I analysed the texts to extract a complete data model. I used resources from other

authors wherever they were referenced to complete the data model. Each data model

presented in this chapter represents a POR format of one of the authors, as compiled

from the various sources.

4.2. SANOFF’S MODEL

Sanoff describes a program as a statement of intent. He believes a program is a

collection of a desired set of events. Objective is a key concept in organizing a program.

Based on Sanoff’s methodology, the designer tries to achieve some objectives through

the design and therefore, the programmer should help to set these objectives. Sanoff

believes “Management by objectives” (MBO) helps the designer throughout the design.

He describes a cyclical process where every cycle potentially consists of six phases.

• Setting objectives (or goals)

• Prioritizing objectives

84

• Mapping out a plan to achieve the goals (Activities)

• Setting a timeline to achieve the objectives

• Designing a measurement system

• Executing the plan

Sanoff introduces two more concepts besides “Objectives” to articulate this six-

step cycle: “Activity” and “Performance Requirements”. Definitions of each of these

three concepts are presented below in more detail and their relationships explained.

4.2.1. OBJECTIVE

Objectives are the backbone of this model. Sanoff looks at objectives in different

scales and believes that objectives help an organization to define its “purposes of

existence”. Objectives help the organization to:

• Define its “purpose of existence”

• Define areas of responsibility

• Evaluate accomplishments

• Clarify individual pursuits

• Make personal views visible

Sanoff defines a hierarchical model to derive more specific objectives from the

high level goals.

85

Figure 25, Sanoff's Hierarchy of Objectives

4.2.2. ACTIVITY

Activities describe how people utilize spaces. Objectives can be defined without

any direct environmental indication. In the context of an architectural project, one

accomplishes the objectives by modifying or creating built environments. Activities are

the achievement plans. The concept of “Activities” is introduced to connect the

objectives to a built environment.

Sanoff introduces the concept of activities as a path toward spatial requirements.

He defines an activity as an occurrence in which there is a spatial connection between

people and the environment. He suggests breaking down each activity into sub-activities

and also drawing an interaction matrix to discover adjacency and grouping requirements.

86

Sanoff defines a requirement as a quantifiable statement about a proposed behaviour. A

requirement can be based on fact, intuition, or assumption. Sanoff proposes a seven-step

procedure regarding activities.

• Identify the activities for which the artifact is being designed.

• Identify secondary or derived activities.

• Determine the requirements for each activity (based on fact, intuitive fact,

or assumption).

• Determine dimensional and area standards (spaces).

• Analyse activities and predict alternate tentative optimal arrangement.

• Determine and rank activity relationships (adjacencies).

• Synthesize the analysis.

Activities describe human behaviour whereas spaces describe the physical

environment. In that sense, forming the program based on activities is more humane.

One activity may reside in multiple spaces whereas one single space may host multiple

activities.

4.2.3. PERFORMANCE REQUIREMENTS

Sanoff introduces the concept of performance as a bridge between requirements

and the built environment assessment. Performance is a procedure to calculate the

attributes of the physical environment to compare with the requirements imposed in the

previous steps. Performance answers to the users’ needs. A statement of needs is derived

from the following questions.

87

• What usage or function is being considered?

• For whom is the requirement imposed?

• Why is there a need?

• Where will the needs exist?

• When will the needs exist and for how long?

After developing a performance requirement, its performance criteria should be

defined. Performance criteria are characteristics that will be used in evaluating whether

the requirement is satisfied or not. Along with the criteria, the evaluation techniques

should be defined. Some evaluation techniques are based on measuring physical

attributes while some require more sophisticated techniques such as computer

simulation. In other cases the judgement of the experts may be the only possible

evaluation technique.

Sanoff does not further describe the three proposed evaluation techniques. A

numerical requirement would impose a numerical range on an attribute from the project.

Area requirements are the most obvious examples. Theoretically, one can impose a

numerical requirement on any of numerical attributes in a project or assets that can be

presented through numbers (e.g. colours), but Sanoff does not provide a list of those

attributes. One can rely on the BIM data models to cover that shortage. Any numerical

property in a BIM model can be targeted by requirements and limitations can be

imposed.

At the other end of the spectrum are the requirements that need a panel of experts

for evaluation. These requirements can be subjective in nature. The most important

88

condition that they should meet is clarity and readability. The architectural programmer

can communicate directly with the panel of experts to further explain the imposed

requirement.

Simulation requirements are neither direct numerical comparisons nor based on

subjective judgement. They use numeric attributes of a design or a built project and

through computation evaluate capabilities and characteristics of the system. Simulation

can be used to predict thermal behaviour of a building, walking travelling time between

two rooms, and waiting time in a clinic at a specific time and date.

Simulation algorithms should be developed for each requirement specifically.

Each algorithm will rely on a set of attributes that should be supported by the BIM data

models in order to evaluate a BIM model.

4.2.4. SUMMARY OF SANOFF MODEL

The first step in converting Sanoff’s ideas to UML diagrams is to identify and

name the concepts.

• A program consists of three interrelated systems. Objectives, Activities,

and Requirement.

• Objectives can be broken into Sub-Objectives and a priority value can be

assigned to them.

• Each objective should start with “To” and should have a single result to

accomplish.

• To accomplish the result, a timeline should be added to an objective.

89

• Activities connect objectives to the built environment by connecting a

physical process to an objective.

• Activities must be situated in spaces

• Activities can be broken down into sub-activities.

• Activities describe how people would utilize spaces.

• Several activities may reside in one physical space or a single activity

may occupy a group of spaces.

• A requirement can be based on fact, intuition, or assumption.

• Requirements derive from the users’ needs.

• Needs are derived from the following questions.

o What use or function is being considered?

o For whom is the requirement posed?

o Why is there a need?

o Where will the needs exist?

o When will the needs exist and for how long?

• Evaluation techniques can rely on numerical techniques, simulation

techniques, or a panel of experts.

From these bullet points I have identified five major components (classes) in

Sanoff’s model: Objectives, Activities, Needs, Requirements, and Performance Criteria.

Figure 28 shows how these five components are connected to each other.

90

Figure 26, POR Components in Sanoff Model

Figure 29 is a UML diagram that shows the five main classes along with their

attributes and relationships. Every instance of the Objective class has references to other

instances of the same type, defining them as its children and also a reference to a parent

instance of the same class. This pattern is known as Composite pattern in data modeling

and software engineering (Vlissides, Helm, Johnson, & Gamma, 1995) Composite

pattern allows instances of an object to form a tree shape diagram. This pattern is well

suited for our model where more detailed statements are extracted from the more generic

ones.

Performance Criteria class has three sub-classes based on the evaluation method.

The Simulation and Numerical Criteria classes both can have references to respective

91

properties in BIM data models whereas Panel of Expert may refer to an object instead of

a specific property. Numerical Criteria will check the quantity of the respective field by

performing basic algebraic formulas. Simulation instances will treat the values as raw

data to feed them to appropriate algorithms and evaluate the performance of the BIM

model based on the outcomes.

Figure 27, Sanoff's POR Model, UML Class Diagram

92

This diagram is not an elaborated UML diagram hence cannot be used as a

source for implementation. I compared and combine this diagram with similar diagrams

generated by analyzing other POR models.

4.3. PEÑA’S MODEL

Peña considers programming the architect’s first and often most important task.

Peña’s model is simple and straightforward, yet yields tangible results. That is probably

why this model is one of the most widely used models among practitioners (Cherry,

1999). Peña defines several key concepts:

• Goals: What does the client want to achieve and why?

• Facts: What do I know? What is given?

• Concepts: How does the client want to achieve the goals?

• Needs: How much money and space? What level of quality?

• Problem: What are the significant conditions affecting the design of the

building? What are the general directions the designer should take?

Peña defines four main areas, or as he calls them, design determinants, to

structure the types of information needed to define a comprehensive architectural

program: Function, Form, Economy, and Time.

The design determinants are applied to each of the five steps leaving the

programmer with a five by four table.

93

Peña believes only practical goals that can be achieved through concepts should

be part of the program. Facts should be related to goals; otherwise, they bring no value

to the program. He breaks down each of the determinants into smaller parts.

• Function implies “what’s going to happen in this building.” It concerns

activities, relationship of spaces, and people-their number and

characteristics. Key words are people, activities, and relationships.

• Form relates to the site, the physical environment (psychological, too)

and the quality of space and construction. Form is what will be seen and

felt. It is “what is there now” and “what will be there.” Key words are:

Site, Environment and Quality.

• Economy concerns the initial budget and quality of construction, but

also may include consideration of operating and life cycle costs. Key

words are: Initial Budget, Operating Cost, and Life Cycle Costs.

• Time has three classifications-past, present and future-which deals with

the influences of history, the inevitability of changes from the present and

projections into the future. Key words are: Past, Present, and Future.

Peña’s model is straightforward and can be represented through a four by five

table. The model is more complicated when it comes to converting to an object-oriented

model. While it is tempting to take the rows and the column of the table as the base

classes, they do not represent distinct behaviors, which is critical in separating classes

from each other. One can use similar classes to represent a goal and a fact since they are

94

both verbal statements; the difference is they represent two different time spans, one is

about the existing state and the other one is about the desired state. One can use the same

data structure to represent both of them and set a flag as “desired” or “existing.”

Concepts and goals both represent qualitative statements about the desired state.

Concepts are generated when goals are passed through the filter of facts and can imply

spatial solutions. Concepts can be more specific than goals and can be expressed through

textual or graphical statements whereas goals are usually textual statements. Concepts

and goals can be described through similar data structures. A closer look at Peña’s model

shows that the rows and column are more appropriate to be considered as the properties

of the classes than being the classes themselves.

Figure 28, Peña's Scopes and Determinants

To identify the base classes, I took a closer look at the information index and the

categories that Peña defines for each determinant. Peña breaks down each determinant

into three parts:

95

• Function:
o People
o Activities
o Relationships

• Form
o Site
o Environment
o Quality

• Economy
o Initial Budget
o Operating Cost
o Life Cycle Costs

• Time
o Past
o Present
o Future

Looking at all the twelve sub-categories, I could distinguish three distinct

classes: People, Activities, and Environment. Relationship, as the name describes, is to

explain how classes are connected and cannot be taken as an independent class. Site is a

special instance of environment and Quality can be represented through the attributes.

All the sub-categories of Economy determinant are different aspects of “Cost” which can

be applied as an attribute to all the base classes. Time can also be applied to the base

classes as an attribute.

4.3.1. ENVIRONMENT

Environment class represents any form of a built or natural environment that the

project is related to, or contains regardless of form and scale. This would include the

project site, neighboring buildings, existing facilities on site, roads, proposed

departments, rooms and etc. The main attributes to represent an environment are: Name,

96

Location, Number Geometry, Adjacent environment, Cost, Growth, Parent environment,

Children environment.

4.3.2. PEOPLE

People class represents all the people that would have an influence on the project.

That includes Users, Clients, Society, and etc. The main attributes to represent a group

of people are: Number, Related People, Growth, Physical Characteristics, Intellectual

Characteristics, and Emotional Characteristics.

4.3.3. ACTIVITY

People are connected to the environments through activities. Activities represent

how and why people would interact with the environment. The main attributes for

activities are: Privacy level, Users, Environment, Growth, Potential activities to mix

with, Segregation (other activities.)

4.3.4. CONNECTING THE BASE MODELS TO PEÑA’S TABLE

The table’s row can be abstracted into three base classes. Each of the three base

classes should represent these five columns of Goals, Facts, Concepts, Needs and

Problems. A closer look shows that the difference between the five columns is not in the

different attributes that they represent but rather in the scope of those attributes. While

Facts represent the current state, Goals, Concepts and Needs represent the desired state.

Instances of the Environment class can be used to represent the existing structures on the

site as well as a required room proposed by the architectural programmer. In the former

case, the Geometry attribute represents Facts while in the latter it represents the Needs.

97

The attributes of the base classes should be capable of representing all the five scopes

defined by Peña. To reach that goal I defined a special class that I call Peña Data. All of

our attributes will be Peña Data instances.

Figure 29, Peña Data Class
	

As you can see, this class has two fields, an Object holding the value of the

attribute and an enumerated field, of the Scope type, representing the scope of the

attribute. When architectural programmers assign a value to any of the attributes in the

three base classes, besides the value, they should also assign the scope of the attribute as

well. Each attribute can hold a list of paired values and scopes; for example, an existing

room can be represented by an instance of the Environment class. The area attribute can

have two values, the first one representing the current area (scope: Fact) and the second

one representing the required area (scope: Need). Figure 32 is the UML diagram

representing Peña’s model.

98

Figure 30, Peña's POR Model, UML Class Diagram

4.4. DUERK’S MODEL

Duerk’s model is the most recent model out of the three models. She sets the

main goal of her book “Clear Structure for the Process.” When it comes to the

programming process she defines it as “A rigorous set of procedures.” Given the nature

of this study, such a goal made it easier to extract the base classes and their relationships.

99

Duerk defines architectural programming as “A systematic method of inquiry

that delineates the context within which the designing must be done. It also defines the

requirements that a successful project must meet. (Duerk, 1993, p. 8)” She considers

programming the first part of the design process and holds the POR responsible for

fulfilling the future inhabitants’ dreams, hopes, wishes and desires. Duerk divides

programming into two main phases:

• Analysis of the existing state.

• Projection of what the future state should be.

When it comes to the relationship of architectural programming and design, she

considers programming the first part of design and calls it “the basis of good design.”

4.4.1. ANALYSIS OF THE EXISTING STATE

Existing state is the context of the project and includes all the information about

site analysis, user profiles, codes, constraints and climate.

Duerk uses a concept of design issues as the main category for exploring the

existing state. She believes by using this method one can avoid collecting more

information than one knows how to apply or as she calls it “merely interesting facts.”

4.4.2. PEOJECTION OF THE FUTURE STATE

After discovering the existing state, the architectural programmer can make

propositions about the future state. Duerk advocated a four-level hierarchical model for

making decisions about the future state. The four levels are mission statement, project

goals, performance requirements and conceptual relations.

100

4.4.3. ISSUES

Duerk defines an issue as “Any matter, concern, question, topic, proposition, or

situation that demands a design response in order for the project to be successful.

(Duerk, 1993, p. 24)” She believes there are generic issues (e.g. circulation, safety,

territoriality, privacy, image, and flexibility) that apply to every architectural project;

however the priorities may be different. Duerk considers Form, Function, Economy and

Time in Peña’s model design issues. Some of the issues can be broken into separate

parts. For example, circulation, as one of the generic issues, can be divided into

pedestrian circulation and vehicle circulation. While both need to be addressed in the

design, they require separate answers. This is the list of Duerk’s generic issues and their

sub-issues.

• Audibility
o Behaviour Settings

• Circulation
o Information
o Material
o Parking
o Pedestrians
o Vehicles

• Comfort
o Physical
o Psychological

• Convenience
• Durability
• Economy

o Elegant means
o Phasing
o Quality

• Energy Efficiency
• Environmental

o Impact
• Flexibility

101

o Adaptability
o Choice/Variety
o Expansion/Contraction
o Multi-use

• Image
o Identity
o Message
o Ordering/proportion
o Status/hierarchy
o Symbolism

• Integration
o Group participation
o Social

• Legibility
o Layering
o Orientation
o Plan recognition
o Sequence

• Maintenance
• Mood/Ambience

o Attitude
o Emotional response
o Spirit of place

• Olfactory
• Personalization

o Group
o Individual

• Privacy
o Group
o Individual

• Resource
o Management

• Safety
o Accidents
o Hazards

• Security
o Assault
o Robbery
o Unauthorized access/entry
o Vandalism

• Territory
o Group
o Individual

102

• Visibility

	

4.4.4. FACTS

Duerk defines facts as the objective information about the site, climate, context,

and other verifiable measurements. Some of the facts may raise an issue and require a

design answer. Besides the facts that are related to specific issues, there are some facts

that are related to the generic issues and thus should be collected in any project.

Other facts may gain significance from the project specific issues. Those facts are

collected based on the specific project issues. Figure 33 shows how project specific facts

and issues are related.

Figure 31, Connection Between Issues and Facts

Duerk proposes a list of generic facts that should be collected for every project:

• Site
o Climate

! Degree days
! Precipitation
! Solar exposure

103

! Wind speed and direction
o Codes

! Building
! Zoning

o Site condition
! City services/transit
! Geology
! Hydrology
! Noise
! Odours
! Site features
! Soil bearing capacity
! Topography
! Utilities
! Views to and from site

o Traffic levels
! Bicycles
! Pedestrians
! Vehicles

• Person/User
o Activity analysis
o Age group
o Anthropometrics
o Disability
o Environmental history
o Number of people/groupings

! Organizational structures
o Perceptual abilities
o Personality
o Roles
o Rules
o Values

• Context
o Cultural
o Demographic
o Economical
o Ethical
o Ethnic
o Historical
o Political
o Social

104

Duerk divides generic facts into three main categories: Site, Person/User, and

Context.

4.4.5. SOLUTIONS

Any potential design alternative in response to an issue is a solution. In Duerk’s

hierarchical solution model the mission statement is the root of all the solutions and at

the top level the solutions can take physical forms. Solutions can target different aspects

of design. Some solutions can affect the used materials while others would affect

lighting or form. Bigger issues may lead to solutions that affect more than one design

area and as they become more specific they may focus only on one area. Duerk mentions

the following main categories for solutions’ design areas.

• Composition Strategies
• Equipment
• Form

o Colour
o Dimension
o Direction

• Lighting
• Material

o Building
o Interior
o Landscape
o Texture
o Transparency

• Orientation
• Space

o Definition
o Enclosed
o Open

105

4.4.6. VALUES AND GOALS

In Duerk’s model values are where the people involved in a project including

clients, users, and authorities can have an impact on the project. Different people have

different values and require different solutions. To reflect the values more

systematically, Duerk proposes a method in which issues turn into goals by going

through the filter of values. Based on this model the project goals are directly or

indirectly connected to an issue/value pair. The indirect route goes through parent goals.

Duerk defines a goal as “A concise statement of the designer’s promise to the client

about the quality of the design in relationship to a particular issue. (Duerk, 1993, p. 27)”

4.4.7. HIERARCHY OF GOALS

To manage the goals in a project, Duerk proposes a hierarchical model where

each goal has a parent goal and can be broken down into smaller and more detailed goals

(children goals.) The hierarchy starts with a “Mission Statement”. Mission statement is

“A statement that concisely expresses the reason a client undertakes a project in the first

place. (Duerk, 1993, p. 36) “The full hierarchy of goals is shown in Figure 34. “Goals”

are the direct children of the mission statement in the hierarchy and each goal is

associated with a design issue. Duerk also advocates associating each goal with a

priority. Vague and open to interpretation words should be avoided in defining goals.

Goals can also contradict or overlap each other. For example, privacy and security can

be seen together as two associated goals whereas they may contradict visibility, which

may be one of the goals of the project. Here is a pattern that Duerk (Duerk, 1993, p. 46)

proposes for defining goals:

106

“The project SHOULD (verb of intention or “being” such as

“promote,” “project,” “encourage” goes here) (an adjective or

descriptive phrase goes here to define the QUALITY desired) (a noun

goes here to focus on the area of concern).

Besides the hierarchy, Duerk defines different types for goals as well. She

defines four main types of goals:

• Process and resource goals

• Educational goals

• Personal goals

• Project specific goals

Figure 32, Duerk's Hierarchy of Goals. Reprinted from
(DUERK, 1993, P. 9).

107

4.4.8. PERFORMANCE REQUIREMENT

Duerk defines a Performance Requirement (PR) as “A statement about the

measurable level of function that a designed object must provide for a goal to be met.”

(Duerk, 1993, p. 48)Performance Requirements are associated with the goals and

guarantee that the qualities defined by the goals will be met in the project. Each goal will

result in several PRs and each PR should be associated with one sub-issue. Figure 34

shows the relationship between Mission, Goal, Performance Requirement and Concept.

Duerk declares three characteristics for a PR; it should be: specific, measurable and

operational.

In describing “Measurable” Duerk defines three types of measures: binary,

scalar, and judgment. Binary measures can only take two states: satisfied, or unsatisfied.

Binary measures are used for the Performance Requirements that impose a clear level of

performance to the project. Scalar measures define an acceptable range of answers using

a physical measurement (inch, cubic feet per minute, dollars, BTUs, humidity, decibels,

foot candles, etc.) Performance Requirements regarding costs usually use scalar

measures to define an acceptable monetary range. Judgment is an evaluation based upon

priorities and values. Duerk believes that where there is no reliable scalar or binary

measure, judgment should take over. Judgmental measurements are based upon personal

values and can be delegated to experts.

4.4.9. CONCEPTS

Concepts are the last piece of Duerk’s model. Unlike all the previous parts,

“concepts are graphical sets of relationships among several of the elements under an

108

architect’s control such as form” (Duerk, 1993, p. 60). Concepts can be big enough to

encompass the entire project, or they can illustrate the ideal solution for a small part of

the project.

Concepts can address the project in different scales. If a concept is developed

against the whole project, it’s called mega-concept, theme, or parti. Concepts can also

address goals and performance requirements.

Duerk mentions these characteristics for concepts

• A concept answers a question

• It can be diagrammed simply

• It should have a brief caption

• It should be the most generic answer to the problem

4.4.10. SUMMARY OF DUERK’S MODEL

Although Duerk’s model presents a more clear structure for a POR, it is rather

challenging to propose an object-oriented system to capture all the data. Some of the

bold topics such as “Facts” and “Issues” could be the base classes, but one can also

consider “User”, “Context” and “Site” as base classes and treat Facts as their attributes

or a secondary class that its instances can be part of the base classes. Issues can also be

regarded as a base class or as required attribute for the “Goals”.

All the entities of the solution hierarchy, which includes Mission, Goal,

Performance Requirement, and Concept, can be represented through the same class

where each instance has a part-of-a relationship with higher scale instances. For example

several instances of the solution class representing “goals” can have part-of-a

109

relationships with an instance that represents the “mission”. By following this pattern

one can create a tree like structure representing all the solutions.

In analyzing the existing state, Duerk introduced Site, Person/User, and Context

as the major categories. One can consider Site and Context the instances of the same

class but in different scales. While site refers to the part of surroundings that is acquired

by the owners and dedicated to the project, context has a wider range and includes the

society and the urban or rural texture that the project interacts with. Similar to the

solutions hierarchy, one can represent Context and Site by using the same class where

Site has a part-of-a relationship with the Context.

Person/User is the third part of Duerk’s triangle of the existing state. One can

dedicate a class to represent Users, but Duerk also talks about the Client as a source for

facts when she introduces the concept of Values. One can represent User and Client

through instances of the same class as they represent similar concepts. On a slightly

different approach, a superclass representing the common attributes of User and Client

can be devised. The superclass is extended by classes representing User and Client

where they can add specific attributes to represent User and Client.

Based on the conversation above, I devised a UML diagram capable of

representing Duerk’s model with the following classes.

4.4.10.1. USER

This class represents the needs, attributes, values and grouping of the users. In

that sense, this class represents not only facts, but also values. Each instance of this class

can contain sub-categories of users within itself. For example in designing a library,

110

library visitors can be described through an instance of the “User” class, but the class

can also contain smaller groups that are defined based on their age such as “Children”

and “Adults” where their specific characteristics will be described.

4.4.10.2. CLIENT

Client class represents similar facts in comparison with the User class, but they

each have exclusive attributes. Client class has exclusive attributes that represent the

administrative and organizational role of the individuals who are in charge of the project.

In some cases the client and the user can be the same.

4.4.10.3. SITE

This class represents information about the piece of land that is dedicated to the

project. The information represented by this class can be divided into three categories,

climate, code, and site conditions.

4.4.10.4. CONTEXT

This class represents similar information to the Site class, but on a larger scale.

Context also represents social and demographical information about the human context

where the project is located. Other information represented by this class includes

political and economical facts about the context of the project.

4.4.10.5. SOLUTION

All the elements representing the future state can be represented through one

class with a hierarchical order where instances can form part-of-a relationship with each

111

other. Solutions are the result of passing the issues through the filter of values; therefore

each solution is related to one or more values. Each solution also responds to one or

several issues; therefore “Issue” is a key attribute of the solution class. Each solution can

be broken down into smaller solutions, which have part-of-a relationship with the

original solution. Some solutions can be measurable (performance requirements). Figure

35 is the simplified UML model representing Duerk’s model

112

Figure 33, Duerk's POR Model, UML Class Diagram

113

5. A DATA MODEL FOR A UNIFORM FORMAT FOR PROGRAM OF

REQUIREMENTS

UFPOR encompasses the three models that were analyzed in the previous

chapter. I started with the similarities shared by all the three models to form a solid

foundation, then incorporated the unique characteristics of each model through adding

flexible and generic parts to the model.

One can discern a lot of similarities in Peña’s, Sanoff’s and Duerk’s models.

They all provide a path from present to future as an inherent process of design. They

propose techniques to study the clients through their values, goals, and financial budget

to guide them toward their mission.

They all also incorporate similar topics. “Goal” and its synonyms are ubiquitous

in all models. All models decompose the big goals into attainable and measurable

requirements. They emphasize “People” and try to incorporate descriptions of people.

Users, clients, society and owners are all human beings with goals, values and desires

that can contradict each other. All three models propose different ways to discover

different groups of people who are influential in a project. They include

“Environments,” whether existing or proposed for future, whether as small as a room or

as big as a city. They all advocate studying the existing environments such as the city in

which one is proposing a new project, the neighborhood, project site, and existing

structures in the site to understand what one should add to this collection. They also

incorporate “Activities” as the interaction between people and environments. One cannot

114

decide what our buildings should be and what they should not be if one does not know

how people would use the place and interact with its components. All the models also

incorporate a hierarchy of goals, objectives and requirements. These are different ways

to describe what the project or a specific part of a project “Need”s to succeed. An area

requirement is what a room needs to operate successfully and a “Mission Statement” is

what the whole project needs to succeed.

5.1. UFPOR BASE CLASSES

Five primary classes were identified as parts of all the three models that were

studied. They may be referred to with different names, but all three major models in the

previous chapter share the same concepts.

5.1.1. ENVIRONMENT

A new environment is usually the final goal of an architectural project.

Environments, in their most generic sense, are the main topic in a POR. I define

environment as an entity that can host and contain people or other environments. By this

definition a city is an environment because it can host buildings (other environments)

and the people who live in that city. A bathroom or a walk-in closet is also an

environment because it can temporarily host people. This definition is scale independent.

It is also not limited to the environments that are built by human beings.

5.1.2. PEOPLE

People are the reason that we care for places. People can take different roles in a

project. Users, clients, society, and authorities are all groups of people with values,

115

requests and powers. While they have different roles, they share a lot of attributes.

Similar to places, people can be broken into categories as well. “Users” of a school can

be divided into students, teachers, and the administrative staff.

5.1.3. ACTIVITY

Activities define the connection between the people and the places. Activities are

the reason why people make places and they are the main topic in a POR. One studies

people to know what they want to do (activities) and then defines places where those

activities can happen. Similar to the places and people, activities can be broken down

into sub-activities. For example “Preparing food” as an activity can be broken into

“Storing Ingredients,” “Washing Dishes,” “Cooking” and some more activities. As you

can see activities are usually associated with a verb.

5.1.4. NEED

One of the main purposes behind a POR is to ensure the clients that the final

project will match their expectations and fulfill their needs. “Need” is a special class in

UFPOR. Needs create a web where all parts of a POR get connected to each other. One

starts with people and by discovering their needs proceeds to activities, then by

discovering activities’ needs one discovers Environments. Detailed and quantified space

requirements are attached to environments as their needs. From the data-modeling

standpoint, a project mission (the largest need of a project) and a required area assigned

to a room are both needs, even though they are at the two ends of a tree structure. While

large needs are hard to measure, it is very easy to measure the success of smaller and

116

quantified needs. One can analyze and evaluate large goals that are hard to measure to

produce smaller and more measurable goals. PORs break down large and qualitative

goals into smaller quantitative goals that are easy to measure, and then one can evaluate

the success of answering the large needs based on the success of their children needs.

5.1.5. ASSESSMENT

Needs may project their fulfillment assessment to their sub-needs either directly

or by proposing Activities or Environments and defining their needs. All the needs

together will form a tree-like structure of connected needs. Fulfillment of each need

should be either directly or indirectly assessed. Direct assessment happens through

execution of the “Assessment” attached to the need, and indirect assessment happens

through evaluating the fulfillment of the child needs. The assessment class can contain

the following attributes.

• Type, The assessment can be based on Nominal, Ordinal, Interval or

Ratio.

• Attribute under Assessment, The attribute that is being measured

• Acceptance Criteria, Based on the assessment type, acceptance criteria

should be defined. It can be a numerical range for Interval and Ratio

types. Nominal and Ordinal assessments are based on human judgment

and an acceptance criteria should be defined; for example it can be

approval from both the client and users.

• Assessor, For Nominal and Ordinal assessments involved “People”

should be mentioned. For Interval and Ratio assessments, an “Assessor”

117

implementation that defines the mathematical equations used in the

assessment should be referenced.

• Result, The assessment will produce several types of results based on the

assessment type and the result will be assigned to this attribute.

5.2. UFPOR KEY CONCEPTS

To further define the base classes and identify their sub-classes and attributes,

there are some key concepts to keep in mind. Knowing these key concepts helps in

defining the subclasses and their attributes.

5.2.1. TIME

Looking at each of the base classes of UFPOR through the filter of time helps to

identify all the sub-classes that need to be extended for every base class. “User” is a sub-

class of “People” in the future, while “Client/Owner” is more related to the present time.

When it comes to “Environment”, it should be studied in past, present, and future. While

the existing structures represent the past, neighbors and the site belong to the present

time. The proposed spaces and departments, which are the result of architectural

programming phase, represent the future.

5.2.2. COMPOSITION

Composition is a design pattern in object-oriented design where instances of a

certain type can hold a reference to a list of objects of the same type and form a tree

structure representing the whole system (Vlissides et al., 1995). By using the

composition pattern one can theoretically model the physical aspects of a building by

118

using only one class (Environment.) Rooms are defined with part-of-a relationship with

the departments and departments hold a part-of-a relationship with the building. The

same pattern can be used to create activities and sub activities as well as creating a

hierarchical model for needs.

Figure 36 shows the relationship between the three main base classes and the

main concepts of UFPOR. Studying people’s needs results in discovering activities and

analyzing activities and understanding what each activity needs helps to understand the

environment and also how to assess the environment. One can also study the base classes

and their relationships in different scales and times to understand the existing situation

and propose changes for the future.

Figure 34, UFPOR Main Classes and Their Relationships

119

5.3. UFPOR UML MODEL

Figure 37 is s UML diagram representing the main base classes and their

relationships. To simplify the model, class methods are not added to the diagram. The

attributes are added as examples to demonstrate the range of data that can be captured by

each class. This data model can be used as a blueprint to create comprehensive data

models supporting a wide range of POR structures. Additional attributes can be added to

each class based on the POR structure. The simple lines show Association Relationship

between classes. The number or the range of numbers shows how many instances of a

class can be associated with the other class. A class with association relationship with

itself uses the composition pattern (also called Reflexive Association). The empty

diamond arrow represents Aggregation Relationship. Aggregation Relationship indicates

one class is part of another class with the condition that the aggregated class can outlive

the container class. In this diagram the Geometry is part of the Environment. The filled

diamond arrow shows Composition Aggregation relationship the difference between

Composition Aggregation and Aggregation is that in Composition Aggregation the

aggregated class cannot outlive the container.

120

Figure 35, UFPOR UML Model

5.4. MODELLING THE THREE EXPERTS MODELS WITH UFPOR

5.4.1. SANOFF’S MODEL

Sanoff proposes a procedural process where studying people leads to discovering

objectives, and studying objectives leads to discovering activities and studying activities

leads to a tree structure of what the users need in order to perform their activities. Sanoff

advocates tree structures in organizing objectives, which can be modeled through the

UFPOR Need class. UFPOR also supports a tree structure for organizing activities. By

studying activities, a hierarchical model for needs, performance requirements, and

performance criteria is developed.

121

The concept of Time in UFPOR can be used to devise a two-state UFPOR model

to represent Sanoff’s model. The first model represents the present time where the users,

their objectives, and their activities are studied (Figure 38). The users can be modeled

through UFPOR People class. Goals and objectives from Sanoff’s model can be modeled

through instances of UFPOR Need class. UFPOR supports forming a tree structure by

associating instances of UFPOR Need class through part-of-a relationships. The

instances of UFPOR Need class representing objectives and goals can form a tree

structure to match the Sanoff’s model. Activities from Sanoff’s model can be modeled in

a tree structure by using UFPOR Activity class. Figure 38 shows how the concepts from

Sanoff’s model fall into categories, which can be modeled by UFPOR classes.

Figure 39 represents the future state where analyzing the discovered activities

from the first model produces performance criteria, performance requirements and

needs. A new tree structure using instances of UFPOR Need class can be used to model

and connect performance criteria, performance requirements and needs together. A tree

structure of the proposed spaces can be created using instances of UFPOR Environment

class. Each space can be associated to a set of performance criteria. UFPOR People and

UFPOR Activity were only used in the present state model and are grayed out in Figure

39.

122

Figure 36, Sanoff's Model, Objectives and Activities in UFPOR

Figure 37, Sanoff's Model, Need Hierarchy and the Future State

123

5.4.2. PEÑA’S MODEL

Peña defines a five-step process to define a POR, the five steps are: establishing

goals, collecting facts, uncovering concepts, determining needs and stating the problem

(Peña, 1977 , p. 24). In each step four areas of consideration including function, form,

economy, and time should be explored (Figure 40). The combination of the five steps

and four considerations creates a five by four table that summarizes Peña’s model.

The concept of creating different time scopes is instrumental in translating Peña’s

model to an object-oriented system. It allows the usage of the same classes to represent

several concepts. In UFPOR the concept of Time serves the same purpose in a more

flexible way. Instead of changing the scope of a particular class, one can move the whole

model from past to future for data gathering and analysis in different time spans.

If UFPOR is capable of representing Peña’s five by four table, then it can

represent Peña’s model. UFPOR base classes cover the areas of considerations. UFPOR

Environment class covers Form consideration, and Function consideration gets covered

by UFPOR People and Activity class. Economy consideration does not correlate to a

specific class in UFPOR; instead cost-related attributes are added to all UFPOR classes.

Time consideration promotes paying attention to different time spans (past, present, and

future); Time is also an inherent concept in UFPOR which allows creation of parallel

models covering different time spans.

From the five steps that form Peña’s model columns, Goals, Concepts, and Needs

form a tree structure through the usage of UFPOR Need class. The other two steps are

Fact and Problem. The former represent the present time while the latter represents

124

future. Through the concept of Time in UFPOR, a two-phase model (one representing

present and one representing future) can provide the required tools for representing

Peña’s model.

Figure 38, Areas of Consideration. Reprinted from (Peña, 1977, p. 30).

Adjacencies and groupings are also key concepts in Peña’s model. In different

time scopes and for different entities, the adjacent and separated entities should be

documented (or proposed if it is related to the future state). The concept of composition

in UFPOR provides a flexible way to group the entities together and create part-of-a

relationships between them.

125

Figure 39, Using UFPOR to Support Pena's Model

5.4.3. DUERK’S MODEL

Preparing a POR by following Duerk’s model starts with collecting facts in three

different categories: Context, Site, and People/User. Facts will be grouped together

based on issues. Solutions are proposed in a hierarchical tree structure where the Mission

Statement is the root of the tree and concepts are the leaves.

Duerk defines two major steps in preparing a POR. The first step is Analyzing

the Existing State, and the second step is Projecting the Future step. One can use the

concept of Time in UFPOR to organize Duerk’s model in UFPOR in a two-state-model.

126

The first state reflects how UFPOR can be used in analyzing the existing state (Figure

42), while the second state shows the projected future state (Figure 43).

In analyzing the existing state, an instance of Environment class is used to study

the project site and another instance is used to study the urban context (if applicable).

The instance representing the site forms a part-of-a relationship with the instance

representing the urban context. Depending on the project, other instances of

Environment class can be added to the tree structure. For example if studying the state or

country where the project is located has any significance (raises issues) it can be added

to the Environment tree structure.

People class is used to study the social context of the project. Similar to

Environment class, a tree structure can be used is studying the society in different scales

if needed. Activity class is used to document the interaction between the society and the

urban context. Need class is not required to document the existing state in Duerk’s

model.

127

Figure 40, Duerk’s Model Analyzing the Existing State in UFPOR

In Duerk’s model Projecting the Future State is done through a tree hierarchy of

missions, goals, performance requirements and concepts. UFPOR Need class can

support such model since it implements the composition pattern. Environment tree

hierarchy is developed as an outcome of analyzing the Needs and can be modeled by

UFPOR Environment class. Users are studied in detail in Duerk’s model and UFPOR

supports modeling the users as well as the client in a tree hierarchy through People class.

128

One of the attributes that is analyzed for users is their activities. UFPOR provides a

separate structure to document all the information related to the activities. Figure 43

shows how UFPOR can be used in modeling the Projection of the Future State in

Duerk’s model.

Figure 41, Duerk’s Model, Projecting the Future State in UFPOR

5.5. CONCLUSION

The first part of this chapter showed how the three expert models reviewed in the

previous chapter are all based on common principles that enables them to be represented

129

through one model. People, Environment, Activity, and Need are four base classes that

together form UFPOR. Different combinations of these four classes can be used to

represent a POR. The concepts of Time and Composition are critical in using the four

base classes in modeling a POR.

The second part of this chapter examined the capabilities of UFPOR in

representing the expert models. UFPOR provided a flexible blueprint that could

accommodate the three expert models. The three experts models are not equal in how

they use UFPOR base classes to represent their content. UFPOR base classes provide a

flexible toolset for modeling different aspect of the three expert models.

130

6. UFPOR IMPLEMENTATION FOR A POR EXCERPT

The previous chapter describes how the three expert models can be represented

in UFPOR. By demonstrating UFPOR capabilities in modeling the three expert models,

this is an indirect proof of UFPOR capabilities in representing POR models from the

industry that conform into one of the three expert models. This chapter provides a

concrete demonstration of UFPOR capabilities in modeling a POR excerpt from the

AECO industry.

A POR excerpt from a real project was selected to investigate whether the

UFPOR is adequate for achieving a comprehensive representation. The selected POR

excerpt includes several attributes and instances for UFPOR base classes, requiring use

of all UFPOR base classes.

6.1. INTRODUCING THE POR EXCERPT

A POR excerpt was provided by the CRS Center for Leadership & Management

in Design & Construction Industry at Texas A&M University. The excerpt includes

samples for typical instruction spaces from a detailed schematic design program for an

art school (See Appendix 1).

The POR excerpt provides detailed requirements for five instructional spaces: 3D

Foundations – Discussion Room, 3D Foundations – Making Space, Life Room,

Traditional Drawing (a), and Traditional Drawing (b). For each instructional space, a list

of attributes and amenities was provided. Below are the attributes for each instructional

space.

131

• Space Name, The space name describes the space and its main role in a

few words, examples are: “3D Foundations-Making Space”, and

“Traditional Drawing”.

• Description, The space description is a short paragraph defining the

activities and their spatial requirements for that particular space. The

requirements include adjacency requirements, zoning requirements,

security requirements, visibility requirements, lighting requirements, and

special equipment requirements. Here are a few sentences from the

description section: “This room is a priority for natural light”, “This

classroom is intended for the instruction of traditional drawing”, and

“Black-out shades should be provided at windows to control lighting

when required.”

• Qualities, Prescribes the overall space quality through a collection of

adjectives. Examples are: “Messy”, “Semi-open”, “Dirty”, “Clean”, and

“Closed.”

• Quantity, The count for the required instances of this space.

• Number of Occupants, The required headcount of the students and

instructors using this space. For example: “18 + 1” where “18” refers to

the students and “1” refers to the instructor.

• Similar To, None of the five spaces provided in the excerpt use this field.

• Category, The space grouping to which the space belongs: Examples are:

“Fabrication”, and “Classroom.”

132

• Furniture, Provides a list of furniture along with counts that the space is

required to accommodate.

• Equipment, Provides a list of equipment along with counts that should be

embedded in the space.

• Storage, Provides a list of requirements to guaranty the proper

accommodation of tool and material when not in use. Examples are:

“Metal painting storage shelves”, and “Coat hooks.”

• Lighting & Ceiling, Provides qualitative and quantitative requirements on

natural and artificial space lighting. Examples are: “Day-light balanced

wall-wash lighting”, and “Adjustable stage-type lighting at model

platform.”

• Power & Data, Provides specific information about the electricity and

Internet connections. Examples are: “Wireless connectivity throughout”,

and “Hard-wire power and data connections at computer stations.”

• Finishes & Surfaces, Provides requirements on flooring and wall

surfaces. Examples are: “Tackable wall surfaces”, and “Hard-surface

flooring.”

• Notes, Provides requirements that did not fit into any of the above

categories. Examples are: “Black-out shades at windows” and “Locate

near foundation equipment.”

133

• Location, Provides requirements on location and adjacencies. Examples

are: “Within fabrication facility”, and “No proximity to fabrication

facility required.”

• Diagram, Provides a conceptual drawing of the space itself or how the

space is connected with other spaces adjacent to it. Figure 44 and Figure

45 are two examples.

Figure 42, Sample Space Type Diagram from the POR Excerpt

134

Figure 43, Sample Adjacency Diagram from the POR Excerpt

6.1.1. REPRESENTING THE EXCERPT USING UFPOR

The architectural programing requirements in the POR excerpt are organized

based on the required spaces. For each space several attributes such as name, quantity,

and occupant count are provided. The space and the attributes can be modeled through

UFPOR Environment class.

Some of the attributes for each space describe the occupants/users (e.g.

instructors and students.) The users can be modeled through UFPOR People.

135

The name of the project (Art School) indicates a high-scale goal for the users in

using the facility, which is learning and teaching art. Sub-goals such as learning and

teaching traditional drawing are implied in each space description. Such goals can be

modeled through UFPOR Need.

Besides the direct space attributes, each space is provided with the activities that

take place in the space, such as discussion, and drawing. Those activities are the result of

analyzing the goals and can be modeled through UFPOR Activity.

For each activity a few requirements are mentioned. For example, for “Making”

activity, “Collaboration” and “Storage Space” are mentioned as the requirements.

Activity requirements can be modeled through UFPOR Need instances. Those UFPOR

Need instances determine the spaces and the direct spatial requirements for each space

such as “Wireless connectivity” and “Hard-surface flooring.”

Figure 46 is a simplified UML diagram that shows how the POR excerpt can be

presented using UFPOR base classes. UFPOR People class is used to represent the

occupants/users. Two instances of this class (student, instructor) were introduced in the

excerpt.

UFPOR Need was used in three capacities. The first capacity (marked in Figure

46 as “Need (a)” is to capture occupants/users goals in using the facility. “Learning Art”

is an instance of the Need (a) class representing a high-level goal. “Learning Drawing”

and “Learning 3D Foundations” are two other instances that can maintain a part-of-a

relationship with the “Learning Art” instance.

136

Each instance of Need (a) class can result in one or more activities that are

performed by the users (represented by UFPOR People) in the facility. For example to

achieve “Learning 3D Foundations” as a goal (represented by UFPOR Need), the facility

should support activities such as “Discussion” and “Light Fabrication”. Such activities

can be represented by instances of UFPOR Activity class.

Instances of the Activity class can impose spatial requirements. In other words,

they have spatial needs. Such needs are captured in Need (b) class. For example “Light

Fabrication” activity requires “Dedicated zone for fabrication.”

A list of required spaces (in this example the classrooms) results from the

activities’ needs. Those spaces are represented through UFPOR Environment class.

“Traditional Drawing Classroom” is an example for that. UFPOR Environment is shown

as “Environment” in Figure 46 and captures a list of attributes for each classroom

including Name, Quantity, and Occupant count.

The spatial requirements that are directly imposed on each instance of the

Environment class are captured through instances of “Need (c)” class. “Wireless

connectivity” and “Hard-surface flooring” are two examples for that.

137

Figure 44, Simplified UML Diagram for POR Excerpt UFPOR Model

6.2. EXCERPT APPLICATION IMPLEMENTATION

There are two minimum requirements for an implementation platform for

UFPOR. The first one is the capability to define data templates (representing classes)

and second one is to create connections between the data templates. QuickBase is a

cloud-based development platform similar to MS Access, which allows users to create

data management applications that consist of connected data tables (QuickBase, 2016).

A data management application with six main data tables representing the six

main tables of the excerpt UFPOR model was created in QuickBase. Additional

auxiliary data tables were added to the application to better support the content of each

138

table and the relationships between the tables. For example the adjacency requirements

were captured through a separate table attached to Need (c) table.

6.3. REFORMATTING THE EXCERPT INTO UFPOR FORMAT

Each phrase from the excerpt corresponds with one of the tables of the UFPOR

model. Figure 47 shows how data entities from the excerpt were identified for each

table. A level of interpretation is involved in translating the text to the data models. For

example, “Storage” can be modeled as an instance of Need (c) class which would be

associated with an instance of the Environment class. In a different approach “Storage”

can be directly modeled by an instance of Environment class.

139

Figure 45, Mapping Phrases from the POR Excerpt to UFPOR Classes

Besides the explicit entities that can be mapped to the UFPOR tables directly, the

excerpt also includes implicit data entities for UFPOR data tables. For example, the

excerpt implies that the students attend the Art School with the goal of learning art.

Therefore “Learning Art” is an entity for Need (a) table. On the other hand, instructors

have the goal of teaching art, which creates another entity for Need (a) table.

Figure 48 shows the People table with its content. The table includes fields for

name and description along with RELATIONSHIP fields to add connections to Need (a)

table.

140

Figure 46, Art School Excerpt's People Table

Figure 49 shows Need (a) table. The table has six data rows representing the data

entities and ten columns representing the available attributes for each entity. The first

two attributes are title and description, which describe what the instance is. The other

eight fields represent the internal relationships between the entities of the table as well as

external relationships with Activity and People table. Through the internal relationships

entities can form part-of-a relationships with each other. For example the need of

“Learning drawing” has a part-of-a relationship with “Learning art” need. Through an

external relationship with Activity table, several activities can be associated with each

entity of Need (a) table. The table also has an external relationship with People table,

which identifies with which group of people the entities correspond.

Figure 47, Art School Excerpt's Need (a) Table

141

Figure 50 shows Activity table. In figure 50, the data rows representing the

entities are only the activities that correspond with “3D Foundation, Discussion” space.

The table provides six columns. The first two columns provide name and description

attributes for each activity while the next four columns provide relationships between

this table and both Need (a) and Need (b) tables.

Figure 48, Art School Excerpt's Need (b) Table

Figure 51 shows Environment table. With sixteen columns this table is the

biggest table amongst the POR excerpt tables. Eight columns are dedicated to the direct

attributes of each entity including Name, Quality, Quantity, Occupant Count, Note,

Category, Similar to, and Diagram, while the other eight columns manage the

relationships between entities from Environment table and other tables. Environment

table is connected with Need (b) and Need (c) table. It also has a relationship with an

auxiliary table to manage adjacency requirements as well as an internal relationship to

define part-of-a relationship between the entities.

142

Figure 49, Art School Excerpt's Environment Table

Figure 52 shows Need (c) table populated with the entities related to 3D

Foundations-Discussion Room. This table provides eight columns with six of them

providing direct attributes and two of them managing the relationship between this table

and Environment table. The direct attributes are Name, Description, Type, Size, Notes,

and Count. The Type attribute is selected from a collection of preselected values and

determines the category of the requirement. The choices are Furniture, Equipment,

Storage, Lighting & Ceiling, Lighting, Power & Data, Finishes & Surfaces, and Storage.

143

Figure 50, Art School Excerpt's Need (c) Table

6.4. CONCLUSION

UFPOR provided the required structure to capture all the information presented

by the Art School POR excerpt. All four base classes of UFPOR were used in capturing

data entities from Art School POR excerpt. The base classes were further adjusted by

additional attributes to accommodate data fields for capturing all the attributes from the

text.

According to the concept of Time in UFPOR, several instances of each base class

can be used to capture POR information in different time spans. Three instances of Need

class were used to capture all the Need-related entities of Art School POR excerpt.

144

While the three instances of Need class (Need (a), Need (b), Need(c)) did not represent

distinct time spans, they did form a sequential relationship with each other. The concept

of Time in UFPOR can be re-defined to better accommodate sequential instances of the

same base class that may not necessarily exhibit distinct time spans, but form a

sequential relationship with each other.

The concept of Composition was used in multiple occasions to form part-of-a

relationships between the entities of a table with other entities from the same table.

The Art School POR excerpt provided several entities that were not explicitly

included in the POR’s text. Those entities were captured by the developed prototype.

Capturing the implied requirements is not possible without knowing the basic concepts

of UFPOR and making logical conclusions from the provided data. To convert an

existing POR to UFPOR format the individuals in charge of the task need to be educated

on the basic concepts of UFPOR.

145

7. ADAPTING THE UFPOR TO THE IFC

To examine the research hypothesis and evaluate the capabilities of IFC in

representing the data supported by UFPOR, a subset of IFC (an MVD) that is capable of

representing UFPOR should be identified.

To propose an MVD that can represent UFPOR, I found one or more entities in

IFC for each UFPOR class that can represent the same data. IFC entities were evaluated

in five capacities. First, their definition and the category that they belong to should

match the respective UFPOR class; second, their capability in representing the same

attributes either directly or through dynamically extendable or statically defined custom

property sets; third, the selected entities should be able to represent UFPOR

relationships; forth, the selected entities should be capable of implementing the

composition pattern; fifth, the selected entities should be capable of representing

different time spans such as past, present, and future.

Throughout this chapter the IFC entities, their attributes and property sets reflect

the designed/built condition as opposed to the desired/programmed condition unless it is

mentioned explicitly. For example IfcBuildingStorey entity provides a property set

called Pset_BuildingStoreyCommon, which, as the name suggests, is meant to capture

the most common attributes for a building story. Pset_BuildingStoreyCommon provides

seven properties. Amongst them are GrossAreaPlanned, which captures total planned

area for the building story and NetAreaPlanned, which captures the total planned net

146

area. Besides these two attributes, which explicitly reflect planned areas, the rest of

properties reflect the actual design/build values for the property.

In section two of this chapter I show how qualitative and quantitative

requirements can be applied to the entities and their properties to add the

desired/programmed state.

7.1. UFPOR ENVIRONMENT

Spaces, their combination, and their relationships are one of the concepts that are

well explored in architectural programming textbooks. IFC provides a mature structure

for defining spatial structures.

The “Product Extension” schema is where the entities related to UFPOR

Environment class are defined. IfcProduct and IfcTypeProduct are the two main classes

in the “Product Extension”. I discussed their differences and how they can be combined

to define building elements in Chapter 2. IfcSpationalElement, a subclass of IfcProduct,

and IfcSpatialElementType, a subclass of IfcTypeProduct are the base classes to define

spatial structures (Figure 53).

147

Figure 51, IfcObjectDefinition Subtypes

7.1.1. IfcSpatialElement

IfcSpatialElement is an abstract class that represents some of the most common

attributes of the spatial structures. It has three subclasses. IfcExternalSpatialStructure,

IfcSpatialStructureElement, and IfcSpatialZone. Code 11 shows the entity definition for

IfcSpatialElement.

148

Code 11, IfcSpatialElement Inheritance Graph (BuildingSmart, 2016af)

Explaining the attributes of this entity and the patterns that it offers which are not

applicable to UFPOR Environment is outside of the scope of this research. Here I only

analyze the attributes that can be of use to document UFPOR Environment class through

IFC.

7.1.2. SPATIAL DECOMPOSITION

UFPOR Environment class implements the composition pattern, which allows

every instance of this class to have a part-of-a relationship with another instance. That is

how one can form spatial packages and create a hierarchy of spaces where smaller

	
ENTITY	IfcSpatialElement	
	ENTITY	IfcRoot	
	 GlobalId : IfcGloballyUniqueId;

OwnerHistory : OPTIONAL IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
	

	ENTITY	IfcObjectDefinition	
	INVERSE	
	 HasAssignments : SET OF IfcRelAssigns FOR RelatedObjects;

Nests : SET [0:1] OF IfcRelNests FOR RelatedObjects;
IsNestedBy : SET OF IfcRelNests FOR RelatingObject;
HasContext : SET [0:1] OF IfcRelDeclares FOR RelatedDefinitions;
IsDecomposedBy : SET OF IfcRelAggregates FOR RelatingObject;
Decomposes : SET [0:1] OF IfcRelAggregates FOR RelatedObjects;
HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;
	

	ENTITY	IfcObject	
	 ObjectType : OPTIONAL IfcLabel;

	

	INVERSE	
	 IsDeclaredBy : SET [0:1] OF IfcRelDefinesByObject FOR RelatedObjects;

Declares : SET OF IfcRelDefinesByObject FOR RelatingObject;
IsTypedBy : SET [0:1] OF IfcRelDefinesByType FOR RelatedObjects;
IsDefinedBy : SET OF IfcRelDefinesByProperties FOR RelatedObjects;
	

	ENTITY	IfcProduct	
	 ObjectPlacement : OPTIONAL IfcObjectPlacement;

Representation : OPTIONAL IfcProductRepresentation;
	

	INVERSE	
	 ReferencedBy : SET OF IfcRelAssignsToProduct FOR RelatingProduct;

	

	ENTITY	IfcSpatialElement	
	 LongName : OPTIONAL IfcLabel;

	

	INVERSE	
	 ServicedBySystems : SET OF IfcRelServicesBuildings FOR RelatedBuildings;

ReferencesElements : SET OF IfcRelReferencedInSpatialStructure FOR RelatingStructure;
	

END_ENTITY;	
	
	

149

spaces reside within bigger spaces. IFC also provides a way to implement the same

pattern to some extend. IFC defines spatial structure as “A hierarchical tree of spatial

structure elements (site, building, [storey], space) ultimately assigned to the project.

(BuildingSmart, 2016at)”

IfcRoot provides two inverse relationships called “IsDecomposedBy” and

“Decomposes”. The former is used to fill out the parent role and the latter is used for the

children role. IfcRelAggregates is the entity that connects the spatial element together.

IFC imposes some restrictions on how the spatial elements can relate to each other in the

project’s spatial structure “The order of spatial structure elements being included in the

concept for building projects are from high to low level: IfcProject, IfcSite, IfcBuilding,

IfcBuildingStorey, IfcSpace. Therefore a spatial structure element can only have parts of

an element at the same or lower level. (BuildingSmart, 2016a)”

150

Figure 52, IFC Spatial Structure, (BuildingSmart, 2016ah)

151

Figure 54 shows how instances of IfcRelAggregate entity can be used to form the spatial

structure. The root of every spatial structure is an instance of IfcProject, which is

discussed later in this chapter.

7.1.3. IfcSpatialStructure PROPERTY SETS

IFC provides a collection of property sets to further define instances of

IfcSpatialStructure, Pset_AirSideSystemInformation,

Pset_SpaceFireSafetyRequirements, Pset_SpaceLightingRequirements,

Pset_SpaceOccupancyRequirements, Pset_SpaceThermalRequirements,

Pset_ThermalLoadAggregate, and Pset_ThermalLoadDesignCriteria are the standard

property sets provided by IfcSpatialStructure. These property sets provide standard

channels to attach requirements to instances of IfcSpatialStructure. Amongst these

property sets Pset_SpaceOccupancyRequirements represents information about the

users, who in UFPOR are captured by UFPOR People.

Pset_SpaceOccupancyRequirements is defined as “Properties concerning work activities

occurring or expected to occur within one or a set of similar spatial structure elements.

(BuildingSmart, 2016ao)” Below are the properties that reside within this property set.

152

Code 12, Pset_SpaceOccupancyRequirements Properties

OccupancyType is defined based on the national building code (The architect's

handbook of professional practice, 2014). The major types are Assembly (Group A),

Business (Group B), Educational (Group E), Factory (Group D), High Hazard (Group

H), Institutional (Group I), Mercantile (Group M), Residential (Group R), Storage

(Group S), and Utility and Miscellaneous (Group U). This property set can be in

accordance with the UFPOR People class. More details are covered in section 7.3.

OccupancyType (P_SINGLEVALUE / IfcLabel):

Occupancy type for this object. It is defined according to the presiding national code.

OccupancyNumber (P_SINGLEVALUE / IfcCountMeasure):

Number of people required for the activity assigned to this space.

OccupancyNumberPeak (P_SINGLEVALUE / IfcCountMeasure):

Maximal number of people required for the activity assigned to this space in peak time.

OccupancyTimePerDay (P_SINGLEVALUE / IfcTimeMeasure):

The amount of time during the day that the activity is required within this space.

AreaPerOccupant (P_SINGLEVALUE / IfcAreaMeasure):

Design occupancy loading for this type of usage assigned to this space.

MinimumHeadroom (P_SINGLEVALUE / IfcLengthMeasure):

Headroom required for the activity assigned to this space.

IsOutlookDesirable (P_SINGLEVALUE / IfcBoolean):

 An indication of whether the outlook is desirable (set TRUE) or not (set FALSE)

	

153

7.1.4. COMPOSING VERSUS CONTAINING IN SPATIAL STRUCTURE

IfcSpatialElement provides an inverse attribute called ContainsElement. This

relationship is with a set of IfcRelContainedInSpatialStructure instances (BuildingSmart,

2016y).

Code 13, IfcRelContainedInSpatialStructure Inheritance Graph (BuildingSmart,
2016y)

IfcRelContainedInSpatialStructure and IfcRelAggregates have similar

definitions. IFC specifications are very intentional about differentiating between the two.

IfcRelContainedInSpatialStructure is used to connect a spatial element with building

elements such as walls and stairs, which form that spatial element while

IfcRelAggregates defines the spatial structure. Figure 55 shows the difference between

these two relationsips. IfcRelAggregates is the one that is appropriate for creating a

spatial structure as long as the spatial entities are subsets of IfcSpatialElement. To add

more detailed entities such as walls, and stairs IfcRelContainedInSpatialStructure should

be applied. UFPOR Environment class implements the Composition pattern with no

	
ENTITY	IfcRelContainedInSpatialStructure	
	ENTITY	IfcRoot	
	 GlobalId : IfcGloballyUniqueId;

OwnerHistory : OPTIONAL IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
	

	ENTITY	IfcRelationship	
	ENTITY	IfcRelConnects	
	ENTITY	IfcRelContainedInSpatialStructure	
	 RelatedElements : SET [1:?] OF IfcProduct;

RelatingStructure : IfcSpatialElement;
	

END_ENTITY;	
	

	

154

scale limitations, therefore both IfcRelAggregates and

IfcRelContainedInSpatialStructure are needed to recreate UFPOR Environment class in

IFC.

Figure 53, IfcRelAggregate VS IfcRelContained (BuildingSmart, 2016y)

7.1.5. IFCSPATIALSTRUCTUREELEMENT

IfcSpatialStructureElement is one of the three subsets of IfcSpatialElement and

the super type of IfcBuilding, IfcBuildingStory, IfcSite, and IfcSpace (Code 14).

155

Code 14, IfcSpatialStructureElement Entity Definition (BuildingSmart, 2016ah)

IfcSpatialStructureElement adds only one optional attribute to its super class.

CompositionType is an important attribute in forming the spatial structure. IFC puts

some restrictions on spatial structure definitions. Amongst them, an instance of

IfcSpatialElement (IfcBuilding, IfcSite, IfcBuildingStory, IfcSpace) can only decompose

to the spatial element of similar or lower level. If it decomposes to elements of the same

level, the CompositionType of the parent element should be set as Complex and the

CompositionType of the children should be set as Partial.

Code 15, IfcElementCompositionEnum (BuildingSmart, 2016h)

	
ENTITY	IfcSpatialStructureElement	
	ABSTRACT	SUPERTYPE	OF(ONEOF(IfcBuilding,	IfcBuildingStorey,	IfcSite,	IfcSpace))	
	SUBTYPE	OF	IfcSpatialElement;	
	 CompositionType : OPTIONAL IfcElementCompositionEnum;

	

	INVERSE	
	 ContainsElements : SET OF IfcRelContainedInSpatialStructure FOR RelatingStructure;

	

	WHERE	
	 WR41 : (HIINDEX(SELF\IfcObjectDefinition.Decomposes) = 1) AND (

IFCKERNEL.IFCRELAGGREGATES IN
TYPEOF(SELF\IfcObjectDefinition.Decomposes[1])) AND ((IFCKERNEL.IFCPROJECT
IN TYPEOF (SELF\IfcObjectDefinition.Decomposes[1].RelatingObject)) OR (
IFCPRODUCTEXTENSION.IFCSPATIALSTRUCTUREELEMENT IN TYPEOF
(SELF\IfcObjectDefinition.Decomposes[1].RelatingObject)))

	

END_ENTITY;	
	
	

	
TYPE IfcElementCompositionEnum = ENUMERATION OF
 (COMPLEX,

ELEMENT,
PARTIAL);

END_TYPE;
	
	

156

7.1.5.1. IFCSPATIALSTRUCTUREELEMENT PROPERTY SETS

Besides inheriting all the property sets from its super classes,

IfcSpatialStructureElement provides a new property set called Pset_PropertyAgreement.

This property set is to capture the occupancy type and other details and is useful for

facility management purposes. According to this property set, the specifications of the

users of the IfcSpatialStructureElement instances should be captured through

IfcOccupant instances.

7.1.6. IfcProject

Even though IfcProject is not a subclass of IfcSpatialStructureElement, it is the

root of IFC spatial composition. IfcProject also provides a shared context for subclasses

of IfcObject (including subclasses of IfcSpatialStructureElement) and subclasses of

IfcObjectType. While some of the properties can be attached directly to instances of

IfcSpatialStructureElement, instances of IfcSpatialElementType can be used to define

more generic attributes that are shared by several instances. Figure 56 shows the

relationship between IfcProject, IfcObject, and IfcObjectType.

157

Figure 54, IfcProject as a Context for the Project, (BuildingSmart, 2016u)

IfcProject does not provide any predefined property or quantity sets. Custom

property sets can always be used to attach programming related attributes to IfcProject.

Code 16 shows the inheritance graph for IfcProject.

158

Code 16, IfcProject Inheritance Graph (BuildingSmart, 2016u)

7.1.7. IfcSite

IFC specification defines a site as “A defined area of land, possibly covered with

water, on which the project construction is to be completed. A site may be used to erect,

retrofit or tear down building(s), or for other construction related developments.

(BuildingSmart, 2016ae)”. The attributes added by IfcSite entity to its superclass are

optional attributes focused on the location of the site.

	
ENTITY	IfcProject	
	ENTITY	IfcRoot	
	 GlobalId : IfcGloballyUniqueId;

OwnerHistory : OPTIONAL IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
	

	ENTITY	IfcObjectDefinition	
	INVERSE	
	 HasAssignments : SET OF IfcRelAssigns FOR RelatedObjects;

Nests : SET [0:1] OF IfcRelNests FOR RelatedObjects;
IsNestedBy : SET OF IfcRelNests FOR RelatingObject;
HasContext : SET [0:1] OF IfcRelDeclares FOR RelatedDefinitions;
IsDecomposedBy : SET OF IfcRelAggregates FOR RelatingObject;
Decomposes : SET [0:1] OF IfcRelAggregates FOR RelatedObjects;
HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;
	

	ENTITY	IfcContext	
	 ObjectType : OPTIONAL IfcLabel;

LongName : OPTIONAL IfcLabel;
Phase : OPTIONAL IfcLabel;
RepresentationContexts : OPTIONAL SET [1:?] OF IfcRepresentationContext;
UnitsInContext : OPTIONAL IfcUnitAssignment;
	

	INVERSE	
	 IsDefinedBy : SET [0:?] OF IfcRelDefinesByProperties FOR RelatedObjects;

Declares : SET OF IfcRelDeclares FOR RelatingContext;
	

	ENTITY	IfcProject	
END_ENTITY;	
	

	

159

Code 17, IfcSite Attributes (BuildingSmart, 2016ae)

IfcCompoundPlaneAngleMeasure is a compound measure of plane angle in

degrees, minutes, seconds, and optionally millionth-seconds of arc. IfcPostalAddress is

the equivalent of a conventional postal address (Code 18).

Code 18, IfcPostalAddress Inheritance Graph (BuildingSmart, 2016t)

7.1.7.1. IfcSite PROPERTY SETS

Pset_SiteCommon provides several properties that are applicable to UFPOR

Environment class (Code 19).

	
ENTITY IfcSite;
 RefLatitude : OPTIONAL IfcCompoundPlaneAngleMeasure;
RefLongitude : OPTIONAL IfcCompoundPlaneAngleMeasure;
RefElevation : OPTIONAL IfcLengthMeasure;
LandTitleNumber : OPTIONAL IfcLabel;
SiteAddress : OPTIONAL IfcPostalAddress;

	
	

	
ENTITY	IfcPostalAddress	
	ENTITY	IfcAddress	
	 Purpose : OPTIONAL IfcAddressTypeEnum;

Description : OPTIONAL IfcText;
UserDefinedPurpose : OPTIONAL IfcLabel;
	

	INVERSE	
	 OfPerson : SET OF IfcPerson FOR Addresses;

OfOrganization : SET OF IfcOrganization FOR Addresses;
	

	ENTITY	IfcPostalAddress	
	 InternalLocation : OPTIONAL IfcLabel;

AddressLines : OPTIONAL LIST [1:?] OF IfcLabel;
PostalBox : OPTIONAL IfcLabel;
Town : OPTIONAL IfcLabel;
Region : OPTIONAL IfcLabel;
PostalCode : OPTIONAL IfcLabel;
Country : OPTIONAL IfcLabel;
	

END_ENTITY;	
	
	

160

Code 19, Pset_SiteCommon (BuildingSmart, 2016am)

These properties capture some of the more common attributes on the project site

scale.

7.1.7.2. IfcSite QUANTITY SETS

IfcSite provides one quantity set Qto_SiteBaseQuantities with only two attributes

(Code 19).

Reference (P_SINGLEVALUE / IfcIdentifier) :

Reference ID for this specified type in this project (e.g. type 'A-1'). Used to store the non-
classification driven internal project type.

BuildableArea (P_SINGLEVALUE / IfcAreaMeasure) :

The area of site utilization expressed as a maximum value according to local building codes.

SiteCoverageRatio (P_SINGLEVALUE / IfcPositiveRatioMeasure) :

The ratio of the utilization, TotalArea / BuildableArea, expressed as a maximum value. The ratio
value may be used to derive BuildableArea.

FloorAreaRatio (P_SINGLEVALUE / IfcPositiveRatioMeasure) :

The ratio of all floor areas to the buildable area as the maximum floor area utilization of the site as
a maximum value according to local building codes.

BuildingHeightLimit (P_SINGLEVALUE / IfcPositiveLengthMeasure) :

Allowed maximum height of buildings on this site - according to local building codes.

TotalArea (P_SINGLEVALUE / IfcAreaMeasure) :

Total planned area for the site. Used for programming the site space.[1]

	

161

Code 20, Qto_SiteBaseQuantities (BuildingSmart, 2016ar)

7.1.8. IfcBuilding

According to IFC specifications “A building represents a structure that provides

shelter for its occupants or contents and stands in one place. The building is also used to

provide a basic element within the spatial structure hierarchy for the components of a

building project (together with site, storey, and space). (BuildingSmart, 2016e)”

IfcBuilding adds the address of the building as well as the elevation value of the terrain

to its superclass IfcSpatialStructureElement.

7.1.8.1. IfcBuilding PROPERTY SETS

IfcBuilding provides five additional property sets to the ones it inherits from its

super classes. Amongst those Pset_BuildingCommon is the only property set with

“planned” properties (Code 21).

GrossPerimeter :

Perimeter of the site boundary, measured in horizontal projection.

GrossArea :

Gross area for this site, measured in horizontal projections.

	

162

Code 21, Pset_BuildingCommon (BuildingSmart, 2016an)

Reference (P_SINGLEVALUE / IfcIdentifier) : Reference ID for this specified type in this project (e.g.
type 'A-1'). Used to store the non-classification driven internal project type.

BuildingID (P_SINGLEVALUE / IfcIdentifier) : A unique identifier assigned to a building. A temporary
identifier is initially assigned at the time of making a planning application. This temporary identifier is
changed to a permanent identifier when the building is registered into a statutory buildings and
properties database.

IsPermanentID (P_SINGLEVALUE / IfcBoolean) : Indicates whether the identity assigned to a building
is permanent (= TRUE) or temporary (=FALSE).

ConstructionMethod (P_SINGLEVALUE / IfcLabel) : The type of construction action to the building,
the project deals with, e.g. new construction, renovation, refurbishment, etc.

FireProtectionClass (P_SINGLEVALUE / IfcLabel) : Main fire protection class for the building which is
assigned from the fire protection classification table as given by the relevant national building code.

SprinklerProtection (P_SINGLEVALUE / IfcBoolean) : Indication whether this object is sprinkler
protected (TRUE) or not (FALSE).

SprinklerProtectionAutomatic (P_SINGLEVALUE / IfcBoolean) : Indication whether this object has an
automatic sprinkler protection (TRUE) or not (FALSE).

OccupancyType (P_SINGLEVALUE / IfcLabel) : Occupancy type for this object. It is defined
according to the presiding national building code.

GrossPlannedArea (P_SINGLEVALUE / IfcAreaMeasure) : Total planned gross area for the building
Used for programming the building.

NetPlannedArea (P_SINGLEVALUE / IfcAreaMeasure) : Total planned net area for the building Used
for programming the building.

NumberOfStoreys (P_SINGLEVALUE / IfcInteger) : The number of storeys within a building.
Captured for those cases where the IfcBuildingStorey entity is not used. Note that if IfcBuilingStorey
is asserted and the number of storeys in a building can be determined from it, then this approach
should be used in preference to setting a property for the number of storeys.

YearOfConstruction (P_SINGLEVALUE / IfcLabel) : Year of construction of this building, including
expected year of completion.

YearOfLastRefurbishment (P_SINGLEVALUE / IfcLabel) : Year of last major refurbishment, or
reconstruction, of the building (applies to reconstruction works).

IsLandmarked (P_SINGLEVALUE / IfcLogical) : This builing is listed as a historic building (TRUE), or
not (FALSE), or unknown.

	

163

The other property sets are Pset_UtilityConsumptionPHistory which captures

consumption of utility resources; PsetOutsideDesignCriteria which provides properties

that are used as the basis for calculating thermal loads at peak conditions;

Pset_BuildingUse and Pset_BuildingUseAdjacent provide information about the real

estate context of the building itself and the buildings adjacent to it.

7.1.8.2. IfcBuilding QUANTITY SETS

IfcBuilding provides a single standard quantity set called

Qto_BuildingBaseQuantities which contains high level dimensional information about

the building (Code 21).

164

Code 22, Qto_BuildingBaseQuantities (BuildingSmart, 2016ap)

7.1.9. IfcBuildingStorey

IfcBuildingStroey breaks down a building into separate horizontal entities.

Buildings with complex horizontal divisions can benefit from the composition type

attribute that this entity inherits from IfcSpatialStructureElement by assigning any of

COMPLEX, ELEMENT, or PARTIAL values to it. For example in split-level houses,

two levels that are separated with a few stairs can be defined as PARTIAL stories. A

single COMPLEX storey can host the partial storeys and connect them together.

Height (Q_LENGTH): Standard gross height of this building, from the top surface of the construction
floor, to the top surface of the construction floor or roof above. Only provided if there is a constant
height.

EavesHeigth (Q_LENGTH): Standard net height of this storey, from the top surface of the construction
floor, to the bottom surface of the construction floor or roof above. Only provided if there is a
constant height.

FootprintArea (Q_AREA): Gross area of the site covered by the building(s).

GrossFloorArea (Q_AREA): Sum of all gross areas of spaces within the building. It includes the area of
construction elements within the building. May be provided in addition to the quantities of the spaces
and the construction elements assigned to the building. In case of inconsistencies, the individual
quantities of spaces and construction elements take precedence.

NetFloorArea (Q_AREA): Sum of all net areas of spaces within the building. It excludes the area of
construction elements within the building. May be provided in addition to the quantities of the spaces
assigned to the building. In case of inconsistencies, the individual quantities of spaces take
precedence.

GrossVolume (Q_VOLUME) Sum of all gross volumes of spaces enclosed by the building. It includes
the volumes of construction elements within the building. May be provided in addition to the
quantities of the spaces and the construction elements assigend to the building. In case of
inconsistencies, the individual quantities of spaces and construction elements take precedence.

NetVolume (Q_VOLUME): Sum of all net volumes of spaces enclosed by the building. It excludes the
volumes of construction elements within the building. May be provided in addition to the quantities
of the spaces assigned to the building. In case of inconsistencies, the individual quantities of spaces
take precedence.

	

165

7.1.9.1. IfcBuildingStorey PROPERTY SETS

IfcBuildingStorey provides similar property sets to IfcBuilding.

Pset_BuildingStoreyCommon provides a collection of common building storey

attributes and includes gross and net planned areas (Code 23).

Code 23, Pset_BuildingStoreyCommon (BuildingSmart, 2016al)

7.1.9.2. IfcBuildingStorey QUANTITY SETS

IfcBuildingStorey provides a single quantity set called

Qto_BuildingStoreyBaseQuantities similar to the one that IfcBuilding provides

(Code, 24).

Reference (P_SINGLEVALUE / IfcIdentifier) : Reference ID for this specified type in this project (e.g.
type 'A-1'). Used to store the non-classification driven internal project type.

EntranceLevel (P_SINGLEVALUE / IfcBoolean) : Indication whether this building storey is an
entrance level to the building (TRUE), or (FALSE) if otherwise.

AboveGround (P_SINGLEVALUE / IfcLogical) : Indication whether this building storey is fully above
ground (TRUE), or below ground (FALSE), or partially above and below ground (UNKNOWN) - as in
sloped terrain.

SprinklerProtection (P_SINGLEVALUE / IfcBoolean) : Indication whether this object is sprinkler
protected (TRUE) or not (FALSE).

SprinklerProtectionAutomatic (P_SINGLEVALUE / IfcBoolean) : Indication whether this object has an
automatic sprinkler protection (TRUE) or not (FALSE). It should only be given, if the property
"SprinklerProtection" is set to TRUE.

LoadBearingCapacity (P_SINGLEVALUE / IfcPlanarForceMeasure) : Maximum load bearing capacity
of the floor structure throughtout the storey as designed.

GrossPlannedArea (P_SINGLEVALUE / IfcAreaMeasure) : Total planned area for the building storey.
Used for programming the building storey.

NetPlannedArea (P_SINGLEVALUE / IfcAreaMeasure) : Total planned net area for the building
storey. Used for programming the building storey.

	

166

Code 24, Qto_BuildingStoreyBaseQuantities (BuildingSmart, 2016aq)

7.1.10. IfcSpace

IfcSpace is the last link in the chain of spatial elements. According to the

definition it represents “an area or volume bounded actually or theoretically

(BuildingSmart, 2016an)”. Spaces are also dedicated to a specific function within a

building. Similar to the other subclasses of IfcSpatialStructureElement, spaces can have

the composition type of COMPLEX, ELEMENT, or PARTIAL.

GrossHeight (Q_LENGTH) : Standard gross height of this storey, from the top surface of the
construction floor, to the top surface of the construction floor or roof above. Only provided is
there is a constant height.

NetHeigtht (Q_LENGTH) : Standard net height of this storey, from the top surface of the
construction floor, to the bottom surface of the construction floor or roof above. Only provided is
there is a constant height.

GrossPerimeter (Q_LENGTH) : Perimeter of the outer contour of the building story without taking
interior slab openings into account.

GrossFloorArea (Q_AREA) : Sum of all gross areas of spaces within the building storey. It includes
the area of construction elements within the building storey. May be provided in addition to the
quantities of the spaces and the construction elements assigend to the storey. In case of
inconsistencies, the individual quantities of spaces and construction elements take precedence.

NetFloorArea (Q_AREA) : Sum of all net areas of spaces within the building storey. It excludes the
area of construction elements within the building storey. May be provided in addition to the
quantities of the spaces assigend to the storey. In case of inconsistencies, the individual quantities
of spaces take precedence.

GrossVolume (Q_VOLUME) : Sum of all gross volumes of spaces enclosed by the building storey.
It includes the volumes of construction elements within the building storey. May be provided in
addition to the quantities of the spaces and the construction elements assigend to the storey. In
case of inconsistencies, the individual quantities of spaces and construction elements take
precedence.

NetVolume (Q_VOLUME) : Sum of all net volumes of spaces enclosed by the building storey. It
iexcludes the volumes of construction elements within the building storey. May be provided in
addition to the quantities of the spaces assigend to the storey. In case of inconsistencies, the
individual quantities of spaces take precedence.

	

167

7.1.10.1. IfcSpace PROPERTY SETS

IfcSpace adds six new property sets on top of the ones that it inherits from

IfcSpatialStructureElement. Amongst the new property sets Pset_SpaceCommon

provides the most common properties for a space that includes NetPlannedArea and

GrossPlannedArea (Code, 25).

Code 25, Pset_SpaceCommon (BuildingSmart, 2016an)

7.1.10.2. IfcSpace QUANTITY SETS

IfcSpace provides one single quantity set called Qto_SpaceBaseQuantities, which

provides dimensional information about the space (Code, 26).

Reference (P_SINGLEVALUE / IfcIdentifier) : Reference ID for this specified type in this project (e.g.
type 'A-1'). Used to store the non-classification driven internal project type.

IsExternal (P_SINGLEVALUE / IfcBoolean) : Indication whether the element is designed for use in
the exterior (TRUE) or not (FALSE). If (TRUE) it is an external element and faces the outside of the
building.

GrossPlannedArea (P_SINGLEVALUE / IfcAreaMeasure) : Total planned gross area for the space.
Used for programming the space.

NetPlannedArea (P_SINGLEVALUE / IfcAreaMeasure) : Total planned net area for the space. Used
for programming the space.

PubliclyAccessible (P_SINGLEVALUE / IfcBoolean) : Indication whether this space (in case of e.g., a
toilet) is designed to serve as a publicly accessible space, e.g., for a public toilet (TRUE) or not
(FALSE).

HandicapAccessible (P_SINGLEVALUE / IfcBoolean) : Indication whether this space (in case of e.g.,
a toilet) is designed to serve as an accessible space for handicapped people, e.g., for a public toilet
(TRUE) or not (FALSE). This information is often used to declare the need for access for the disabled
and for special design requirements of this space.

	

168

Code 26, Qto_SpaceBaseQuantities (BuildingSmart, 2016as)

Height (Q_LENGTHt) : Total height (from base slab without flooring to ceiling without suspended
ceiling) for this space (measured from top of slab below to bottom of slab above). To be provided
only if the space has a constant height.

FinishCeilingHeight (Q_LENGTH) : Height of the suspended ceiling (from top of flooring to the
bottom of the suspended ceiling). To be provided only if the space has a suspended ceiling with
constant height.

FinishFloorHeight (Q_LENGTH) : Height of the flooring (from base slab without flooring to the
flooring height). To be provided only if the space has a constant flooring height.

GrossPerimeter (Q_LENGTH) : Gross perimeter at the floor level of this space. It all sides of the
space, including those parts of the perimeter that are created by virtual boundaries and openings
(like doors).

NetPerimeter (Q_LENGTH) : Net perimeter at the floor level of this space. It excludes those parts of
the perimeter that are created by by virtual boundaries and openings (like doors). It is the
measurement used for skirting boards and may includes the perimeter of internal fixed objects like
columns.

GrossFloorArea (Q_AREA) : Sum of all floor areas covered by the space. It includes the area covered
by elementsinside the space (columns, inner walls, etc.) and excludes the area covered by wall
claddings.

NetFloorArea (Q_AREA) : Sum of all usable floor areas covered by the space. It excludes the area
covered by elements inside the space (columns, inner walls, built-in's etc.), slab openings, or other
protruding elements. Varying heights are not taking into account (i.e. no reduction for areas under a
minimum headroom).

GrossWallArea (Q_AREA) : Sum of all wall (and other vertically bounding elements, like columns)
areas bounded by the space. It includes the area covered by elements inside the wall area (doors,
windows, other openings, etc.).

NetWallArea (Q_AREA) : Sum of all wall (and other vertically bounding elements, like columns) areas
bounded by the space. It excludes the area covered by elements inside the wall area (doors,
windows, other openings, etc.).

GrossCeilingArea (Q_AREA) : Sum of all ceiling areas of the space. It includes the area covered by
elementsinside the space (columns, inner walls, etc.). The ceiling area is the real (and not the
projected) area (e.g. in case of sloped ceilings).

NetCeilingArea (Q_AREA) : Sum of all ceiling areas of the space. It excludes the area covered by
elementsinside the space (columns, inner walls, etc.). The ceiling area is the real (and not the
projected) area (e.g. in case of sloped ceilings).

GrossVolume (Q_VOLUME) : Gross volume enclosed by the space, including the volume of
construction elements inside the space.

NetVolume (Q_VOLUME) : Net volume enclosed by the space, excluding the volume of construction
elements inside the space.

	

169

7.1.11. IfcSpatialZone

IfcSpatialZone provides the ability to create spatial groupings that do not fit into

the building, floor, and space, hierarchy. IfcSpatialZone is a subclass of

IfcSpatialElement and adds only one more attribute (PredefinedType) to its superclass

(Code, 27).

Code 27, IfcSpatialZoneTypeEnum (BuildingSmart, 2016ai)

IfcSpatialZone can be used to impose common properties on a group of spaces

that may not be physically adjacent to each other but fall into the same category. While

some of the predefined categories (e.g. Occupancy, and Security) may be useful to

define groupings, “UserDefined” type may be more useful when none of the predefined

types match the intent. If the PredefinedType is set as UserDefined, the ObjectType

attribute (inherited from IfcObject) should be used to assign an arbitrary type to the

instance of IfcSpatialZone.

It is worth mentioning that IfcSpatialZone should not be mistaken for IfcZone

(BuildingSmart, 2016aj), which is a subclass of IfcSystem. While the former can carry

	
TYPE	IfcSpatialZoneTypeEnum	=	ENUMERATION	OF	(
	CONSTRUCTION,		
	FIRESAFETY,		
	LIGHTING,		
	OCCUPANCY,		
	SECURITY,		
	THERMAL,		
	TRANSPORT,		
	VENTILATION,		
	USERDEFINED,		
	NOTDEFINED);	
END_TYPE;	

	

170

geometrical attributes, the latter provides a more loose structure to create groupings.

IfcZone is investigated later in this chapter.

7.1.12. IfcSpatialElementType

As mentioned in previous chapter, subclasses of IfcObjectType are used to

capture common properties of their respective subclass of IfcObject.

IfcSpatialElementType is a subclass of IfcObjectType, which is used to capture the

common properties of IfcSpatialElement instances. Below is the inheritance graph for

IfcSpatialElementType (Code, 28).

Code 28, IfcSpatialElementType Inheritance Graph (BuildingSmart,
2016ag)

	
ENTITY	IfcSpatialElementType	
	ENTITY	IfcRoot	
	 GlobalId : IfcGloballyUniqueId;

OwnerHistory : OPTIONAL IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
	

	ENTITY	IfcObjectDefinition	
	INVERSE	
	 HasAssignments : SET OF IfcRelAssigns FOR RelatedObjects;

Nests : SET [0:1] OF IfcRelNests FOR RelatedObjects;
IsNestedBy : SET OF IfcRelNests FOR RelatingObject;
HasContext : SET [0:1] OF IfcRelDeclares FOR RelatedDefinitions;
IsDecomposedBy : SET OF IfcRelAggregates FOR RelatingObject;
Decomposes : SET [0:1] OF IfcRelAggregates FOR RelatedObjects;
HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;
	

	ENTITY	IfcTypeObject	
	 ApplicableOccurrence : OPTIONAL IfcIdentifier;

HasPropertySets : OPTIONAL SET [1:?] OF IfcPropertySetDefinition;
	

	INVERSE	
	 Types : SET [0:1] OF IfcRelDefinesByType FOR RelatingType;

	

	ENTITY	IfcTypeProduct	
	 RepresentationMaps : OPTIONAL LIST [1:?] OF IfcRepresentationMap;

Tag : OPTIONAL IfcLabel;
	

	INVERSE	
	 ReferencedBy : SET OF IfcRelAssignsToProduct FOR RelatingProduct;

	

	ENTITY	IfcSpatialElementType	
	 ElementType : OPTIONAL IfcLabel;

	

END_ENTITY;	
	
	

171

ApplicableOccurance is an important property for all subclasses of

IfcTypeObject. ApplicableOccurance value specifies which subclasses of IfcObject can

be enhanced. For example, IfcSpatialZoneType is to capture the common attributes for a

group of IfcSpatialZone instances; therefore one must set the ApplicableType value in

IfcSpatialZoneType as “IfcSpatialZone”.

IfcSpaceType and IfcSpatialZoneType are the only concrete subclasses of

IfcSpatialElementType. IFC does not provide a type equivalent for IfcBuilding, and

IfcBuildingStorey. The absence of the mentioned types creates inconvenience and

redundancy in capturing properties in large projects where multiple buildings or building

stories can share requirement.

7.1.13. CONCLUSION

IFC provides a wide range of entities and property sets that can be used to model

the spatial structure of a project, but all those entities are designated to model the

designed or built state. Some entities and property sets provide properties to capture

information from the architectural programming phase, for example the property set

Pset_SpaceCommon provides two properties GrossPlannedArea and NetPlannedArea to

capture architectural programming information for a space. Such properties are attached

to entities like IfcSpace that captures the designed and build state. Therefore they cannot

be used independently until an instance of IfcSpace is placed in the project during the

design phase.

The concept of Time is a key concept in UFPOR. It allows UFPOR Environment

to gather information about the history of the project and the site (past), study the current

172

state (present), and propose requirements for the future state. IFC provides a wide range

of entities to model a designed spatial structure, but those entities do not cover different

time spans. IFC provides solutions to attach correlated properties that each represents the

same information but in different time phases (for example GrossPlannedArea and

GrossArea) but all those properties are attached to entities that are added to the project in

design phase. In this workflow such information cannot be captured until an instance of

IfcSpace is added to the project.

 Composition is another key concept in UFPOR. IFC provides several

mechanisms to create a hierarchical spatial structure. The hierarchy starts with an

instance of IfcProject at the root and can have leaves as small as building elements such

as space walls and floors. The structure of the spatial tree must follow the IFC rules

where predefined entities of IfcProject, IfcBuilding, IfcBuildingStorey, and IfcSpace can

form a tree structure as long as the logical order for aggregation is maintained.

IfcSpatialZone can be used to group the leaves together where they share common

properties. IfcRelContainedInSpatialStructure expands the leaves of the hierarchy to

include building elements such as walls, roofs, and floors, but there is no mechanism to

extend the root of the tree to include entities beyond the project site such as region, city,

and state.

7.2. UFPOR NEED

In representing a POR, UFPOR Need can take multiple roles. For example it can

document clients goals and objectives in a hierarchical structure. UFPOR Need can also

model the requirements that are directly imposed on instances of UFPOR Environments.

173

Area requirements are probably the most obvious examples. An instance of the

Environment class should be in a certain area range to host the required activities. One

can impose such instances of Need directly on a single property within the Environment

class.

IfcConstraintResource, one of the schemas offered by Resource schemas,

provides a complete set of classes to model different types if constraints and

requirements. Through this schema constraints can be applied to the subclasses of

IfcObjectDefinition and IfcPropertyDefinition. In addition to that, constraints can be

directly placed on a property.

7.2.1. IfcConstraint

IfcConstraint is in the center of Constraint Schema. Code 29 is the inheritance

graph for IfcConstraint.

174

Code 29, IfcConstraint Inheritance Diagram (BuildingSmart, 2016g)

Each constraint must have a name and optionally a description. Constraint grade

should also be assigned to the constraint through one of the values represented by

IfcConstraintEnum including HARD, SOFT, ADVISORY, USERDEFINED, and

NOTDEFINED.

Constraint grade specifies the enforcement level of the constraint. HARD

constraint must be satisfied; SOFT constraint should be satisfied whereas ADVISORY

constraints do not posses any obligation power. If USERDEFINED is selected as the

ConstraintGrade value, the UserDefinedGrade property should be assigned to the

constraint. UserDefinedGrade should be defined by the user and is assigned to the

constraint as a simple string value.

	

ENTITY	IfcConstraint	
	ABSTRACT	SUPERTYPE	OF(ONEOF(IfcMetric,	IfcObjective));	
		Name	:	IfcLabel;	
		Description	:	OPTIONAL	IfcText;	
		ConstraintGrade	:	IfcConstraintEnum;	
		ConstraintSource	:	OPTIONAL	IfcLabel;	
		CreatingActor	:	OPTIONAL	IfcActorSelect;	
		CreationTime	:	OPTIONAL	IfcDateTime;	
		UserDefinedGrade	:	OPTIONAL	IfcLabel;	
	INVERSE	
		HasExternalReferences	
:	SET	OF	IfcExternalReferenceRelationship	FOR	RelatedResourceObjects;	
		PropertiesForConstraint	
:	SET	OF	IfcResourceConstraintRelationship	FOR	RelatingConstraint;	
	WHERE	
		WR11	:	(ConstraintGrade	<>	IfcConstraintEnum.USERDEFINED)	OR	
((ConstraintGrade	=	IfcConstraintEnum.USERDEFINED)	AND	
EXISTS(SELF\IfcConstraint.UserDefinedGrade))(ConstraintGrade	<>	
IfcConstraintEnum.USERDEFINED)	OR	
((ConstraintGrade	=	IfcConstraintEnum.USERDEFINED)	AND	
EXISTS(SELF\IfcConstraint.UserDefinedGrade));	
END_ENTITY;	

	

175

CreatingActor property specifies the relationship between the UFPOR NEED

class and UFPOR PEOPLE class. Through this property one can specify who is

imposing the constraint. CreatingActor is of IfcActorSelect type, which allows the

CreatingActor type to be selected from an enumeration of IfcOrganization, IfcPerson,

and IfcPersonAndOrganization.

In IFC constraints can be either qualitative or quantitative. IfcConstraint provides

two subclasses, IfcMetric and IfcObjective. IfcMetric is used to model quantitative

requirements whereas IfcObjective should be used to model qualitative requirements.

7.2.2. QUANTITATIVE REQUIREMENTS

IfcMetric is designed to capture quantitative requirements in IFC. Multiple

instances of IfcMetric can be associated with one property to constrain the value of that

property in different ways.

IfcMetric adds four additional attributes to IfcConstraint class (Code 30).

Code 30, IfcMetric Express Specification (BuildingSmart, 2016l)

	
ENTITY	IfcMetric	
	SUBTYPE	OF	IfcConstraint;	
	 Benchmark : IfcBenchmarkEnum;

ValueSource : OPTIONAL IfcLabel;
DataValue : IfcMetricValueSelect;
ReferencePath : OPTIONAL IfcReference;
	

END_ENTITY;	
	
	

176

7.2.2.1. BENCHMARK

Benchmark attribute is to capture the way that instances of IfcMetric restrict their

respective objects or properties. An example can help to clarify this concept. Imagine a

scenario where one need to impose an area constraint on a room. The constraint may

impose a maximum allowed area on the space. Alternatively, one may want to impose a

minimum allowed area on a space. Benchmark provides an enumeration of logical

comparators to define the relationship between the constraint and the constrained object

or property. Code 31 is a list of all possible values for Benchmark.

Code 31, IfcBenchmarkEnum (BuildingSmart, 2016d)

§ GREATERTHAN: Identifies that a value must be greater than that set by the
constraint.

§ GREATERTHANOREQUALTO: Identifies that a value must be either greater than or
equal to that set by the constraint.

§ LESSTHAN: Identifies that a value must be less than that set by the constraint.

§ LESSTHANOREQUALTO: Identifies that a value must be either less than or equal to
that set by the constraint.

§ EQUALTO: Identifies that a value must be equal to that set by the constraint.

§ NOTEQUALTO: Identifies that a value must be not equal to that set by the constraint.

§ INCLUDES: Identifies that an aggregation (set, list or table) must include the value
(individual item) set by the constraint.

§ NOTINCLUDES: Identifies that an aggregation (set, list or table) must not include the
value (individual item) set by the constraint.

§ INCLUDEDIN: Identifies that a value (individual item) must be included in the
aggregation (set, list or table) set by the constraint.

§ NOTINCLUDEDIN: Identifies that a value (individual item) must not be included in the
aggregation (set, list or table) set by the constraint.

	

177

7.2.2.2. VALUESOURCE

ValueSource provides an optional field to capture a human readable description

for the constraint.

7.2.2.3. DATAVALUE

DataValue captures the value provided by the constraint to be compared with

the associated object. The type of DataValue can be selected from an enumeration of

the types provided through IfcMetricValueSelect (Code 32).

Code 32, IfcMetricValueSelect (BuildingSmart, 2016m)

Amongst the supported types for IfcMetricValueSelect, IfcMeasureWithUnit and

IfcValue are applicable in capturing architectural constraints. The rest provide

sophisticated channels to enforce more accurate constraint that are not typical to

architectural programming.

The difference between IfcUnit and IfcMeasureWithUnit is an additional

property in IfcMeasureWithUnit to capture the unit of the constraint. To avoid

redundancy I only cover IfcMeasureWithUnit.

	
	 TYPE IfcMetricValueSelect = SELECT (

 IfcMeasureWithUnit,
IfcTable,
IfcTimeSeries,
IfcAppliedValue,
IfcValue,
IfcReference);

END_TYPE;
	

	
	

178

 IfcMeasureWithUnit provides a way to associate a simple pair of value-unit

measurement to the constraint (Code 33).

Code 33, IfcMeasureWithUnit (BuildingSmart, 2016k)

Both ValueComponent and UnitComponent provide a large array of options to

define the constraining values. IfcValue can be of one of the three types of

IfcMeasureValue, IfcSimpleValue and IfcDerivedMeasureValue.

IfcDerivedMeasureValue is to capture values that are derived through

mathematical equations and is useful in adding mechanical, electrical, and thermal

constraint on building elements. IfcMeasureValue and IfcSimple value can be used to

capture architectural constraints. IfcMeasureValue can be used to constrain any of the

measurements shown in Code 34.

	
 ENTITY IfcMeasureWithUnit;

 ValueComponent : IfcValue;
UnitComponent : IfcUnit;

END_ENTITY;

	
	

179

Code 34, IfcMeasureValue (BuildingSmart, 2016j)

IfcSimpleValue provides the basic data types.

Code 35, IfcSimpleValue (BuildingSmart, 2016ad)

7.2.2.4. REFERENCEPATH

A constraint can either be associated directly with an object, or with a property of

that object. When a constraint is associated with an object, it can be associated with a

TYPE IfcMeasureValue = SELECT
 (IfcVolumeMeasure,

IfcTimeMeasure,
IfcThermodynamicTemperatureMeasure,
IfcSolidAngleMeasure,
IfcPositiveRatioMeasure,
IfcRatioMeasure,
IfcPositivePlaneAngleMeasure,
IfcPlaneAngleMeasure,
IfcParameterValue,
IfcNumericMeasure,
IfcMassMeasure,
IfcPositiveLengthMeasure,
IfcLengthMeasure,
IfcElectricCurrentMeasure,
IfcDescriptiveMeasure,
IfcCountMeasure,
IfcContextDependentMeasure,
IfcAreaMeasure,
IfcAmountOfSubstanceMeasure,
IfcLuminousIntensityMeasure,
IfcNormalisedRatioMeasure,
IfcComplexNumber);

END_TYPE;

	

	
TYPE IfcSimpleValue = SELECT
 (IfcInteger,

IfcReal,
IfcBoolean,
IfcIdentifier,
IfcText,
IfcLabel,
IfcLogical);

END_TYPE;

	

180

specific property of that object. ReferencePath allows to specify to which property the

constraint is applied.

Code 36, IfcReference (BuildingSmart, 2016v)

TypeIdentifier provides a way to specify the type of the attribute that the

constraint is aiming at. AttributeIdentifier is to capture the name of the attribute. It is

worth mentioning that AttributeIdentifier can identify both direct and reverse attributes.

InstanceName and ListPosition are useful when the constraint is pointed toward a

collection. The former identifies the right instance based on the name (If the instance has

a “Name” attribute, otherwise the first STRING-base attribute is used), while the latter

finds the right instance based on the location in the collection.

InnerReference can be used to create a chain of references if the constraint is

placed on an indirect attribute of an IfcObject, for example an attribute of an associated

object.

7.2.3. QUALITATIVE REQUIREMENTS

IfcObjective captures the qualitative requirements. IfcObjective has a more

simple structure that IfcMetric since it is merely based on textual description of the

	
ENTITY	IfcReference;	
	 TypeIdentifier : OPTIONAL IfcIdentifier;

AttributeIdentifier : OPTIONAL IfcIdentifier;
InstanceName : OPTIONAL IfcLabel;
ListPositions : OPTIONAL LIST [1:?] OF INTEGER;
InnerReference : OPTIONAL IfcReference;
	

END_ENTITY;	
	
	

181

requirements and does not deal with mathematical equation nor does with complex data

types.

Code 37, IfcObjective Inheritance Graph (BuildingSmart, 2016o)

BenchmarkValues creates a way to aggregate other constraints under a

qualitative constraint by providing a list of IfcConstraint. The list can include qualitative

and quantitative constraints.

LogicalAggregator can be provided to complement the BenchMarkValues list.

Through LogicalAggregator a logical operator can be attached to the BenchMarkValues

list to clarify the relationship between all the constraints in the list.

ENTITY	IfcObjective	
	ENTITY	IfcConstraint	
	 Name : IfcLabel;

Description : OPTIONAL IfcText;
ConstraintGrade : IfcConstraintEnum;
ConstraintSource : OPTIONAL IfcLabel;
CreatingActor : OPTIONAL IfcActorSelect;
CreationTime : OPTIONAL IfcDateTime;
UserDefinedGrade : OPTIONAL IfcLabel;
	

	INVERSE	
	 HasExternalReferences : SET OF IfcExternalReferenceRelationship FOR RelatedResourceObjects;

PropertiesForConstraint : SET OF IfcResourceConstraintRelationship FOR RelatingConstraint;
	

	ENTITY	IfcObjective	
	 BenchmarkValues : OPTIONAL LIST [1:?] OF IfcConstraint;

LogicalAggregator : OPTIONAL IfcLogicalOperatorEnum;
ObjectiveQualifier : IfcObjectiveEnum;
UserDefinedQualifier : OPTIONAL IfcLabel;
	

END_ENTITY;	
	
	

182

Code 38, IfcLogicalOperatorEnum (BuildingSmart, 2016i)

ObjectiveQualifier is an enumeration of the objective constraint type that

clarifies the intention behind imposing the constraint by declaring the domain which

imposed the constraint. This is an important attribute in modeling UFPOR Need

instances through IFC since it enables us to clarify the intention of the constraint.

Code 39, IfcObjectiveEnum (BuildingSmart, 2016p)

	
	
TYPE IfcLogicalOperatorEnum = ENUMERATION	OF (
 LOGICALAND,

LOGICALOR,
LOGICALXOR,
LOGICALNOTAND,
LOGICALNOTOR);

END_TYPE;
	

	

	
	
TYPE	IfcObjectiveEnum	=	ENUMERATION	OF	(
	CODECOMPLIANCE,		
	CODEWAIVER,		
	DESIGNINTENT,		
	EXTERNAL,		
	HEALTHANDSAFETY,		
	MERGECONFLICT,		
	MODELVIEW,		
	PARAMETER,		
	REQUIREMENT,		
	SPECIFICATION,		
	TRIGGERCONDITION,		
	USERDEFINED,		
	NOTDEFINED);	
END_TYPE;

	
	

183

DesignIntent and Requirement are more applicable to architectural constraints.

Here is a list of the definitions for all the constraint types provided by

ObjectiveQualifier.

• CODECOMPLIANCE: A constraint whose objective is to ensure

satisfaction of a code compliance provision.

• CODEWAIVER: A constraint whose objective is to identify an

agreement that code compliance requirements (the waiver) will not be

enforced.

• DESIGNINTENT: A constraint whose objective is to ensure satisfaction

of a design intent provision.

• EXTERNAL: A constraint whose objective is to synchronize data with

an external source such as a file.

• HEALTHANDSAFETY: A constraint whose objective is to ensure

satisfaction of a health and safety provision.

• MERGECONFLICT: A constraint whose objective is to resolve a

conflict such as merging data from multiple sources.

• MODELVIEW: A constraint whose objective is to ensure data conforms

to a model view definition.

• PARAMETER: A constraint whose objective is to calculate a value

based on other referenced values.

• REQUIREMENT: A constraint whose objective is to ensure satisfaction

of a project requirement provision.

184

• SPECIFICATION: A constraint whose objective is to ensure

satisfaction of a specification provision.

• TRIGGERCONDITION: A constraint whose objective is to indicate a

limiting value beyond which the condition of an object requires a

particular form of attention.

If the value of ObjectiveQualifier is set to USERDEFINED,

UserDefinedQualifier attribute should be set for the constraint.

7.2.4. CONCLUSION

While one of the responsibilities of UFPOR Need is to impose direct qualitative

and quantitative requirements on properties of the spatial structure, it plays a more

fundamental role in forming an architectural programming model. UFPOR Need is one

of the four main classes that represent an architectural programming document. It

provides the required means to capture users’ and clients’ desire and mission. It also

creates a hierarchical data structure where the mission statement for the project can be

expanded to detailed requirements. It also helps to create the spatial structure by

discovering spatial “needs” of the project activities.

IfcConstraint schema provides a comprehensive foundation to attach qualitative

and quantitative requirements to a single property such as the space area or to an object

such as an instance of IfcSpace. Neither IfcConstraint schema nor any other schema or

185

entity in IFC provides a similar data structure to UFPOR Need where a hierarchical tree

of needs can be modeled.

7.3. UFPOR PEOPLE

In the previous section I showed how instances of IfcConstraint can be associated

with UFPOR People class through the CreatingActor attribute. In this section I go over

different ways that one can create UFPOR People class through IFC.

IfcActorResource schema is dedicated to modeling a person or an organization

(group of people). IfcActorResource schema is a relatively small schema with three main

entities: IfcPerson, IfcOrganization, and IfcPersonAndOrganization. Besides these three

main entities this schema provides other supporting entities such as IfcPostalAddress and

IfcTelecomAddress that complement the three main entities of this schema.

7.3.1. IfcPerson

According to the definition IfcPerson represents an individual human being.

186

Code 40, IfcPerson Inheritance Graph (BuildingSmart, 2016r)

Most of the attributes of IfcPerson are self-explanatory as they describe simple

attributes of a person such as first and last name. EngagedIn attribute, which is an

inverse relationship, allows IFC to connect the instances of IfcActor and IfcOrganization

together.

The Roles attribute is an important one when it comes to modeling UFPOR

People through IFC since it allows us to differentiate between different groups of people

involved in a project.

7.3.2. IfcActorRole

IfcActorRole indicates the role that is performed by a person (IfcPerson) or an

organization (IfcOrganization).

	
ENTITY	IfcPerson;	
	 Identification : OPTIONAL IfcIdentifier;

FamilyName : OPTIONAL IfcLabel;
GivenName : OPTIONAL IfcLabel;
MiddleNames : OPTIONAL LIST [1:?] OF IfcLabel;
PrefixTitles : OPTIONAL LIST [1:?] OF IfcLabel;
SuffixTitles : OPTIONAL LIST [1:?] OF IfcLabel;
Roles : OPTIONAL LIST [1:?] OF IfcActorRole;
Addresses : OPTIONAL LIST [1:?] OF IfcAddress;
	

	INVERSE	
	 EngagedIn : SET OF IfcPersonAndOrganization FOR ThePerson;

	

	WHERE	
	 IdentifiablePerson : EXISTS(Identification) OR EXISTS(FamilyName) OR EXISTS(GivenName);

ValidSetOfNames : NOT EXISTS(MiddleNames) OR EXISTS(FamilyName) OR EXISTS(GivenName);
	

END_ENTITY;	
	
	

187

Code 41, IfcActorRole Inheritance Graph (BuildingSmart, 2016b)

Role is the key attribute for IfcActorRole. The value for Role attribute is selected

from IfcRoleEnum (Code 42).

Code 42, IfcRoleEnum (BuildingSmart, 2016ab)

 	
ENTITY IfcActorRole;
 Role : IfcRoleEnum;
UserDefinedRole : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;

INVERSE
 HasExternalReference : SET OF IfcExternalReferenceRelationship FOR

 RelatedResourceObjects;

WHERE
 WR1 : (Role <> IfcRoleEnum.USERDEFINED) OR ((Role =

IfcRoleEnum.USERDEFINED) AND
EXISTS(SELF.UserDefinedRole));

END_ENTITY;

	

	
TYPE	IfcRoleEnum	=	ENUMERATION	OF	(
	SUPPLIER,		
	MANUFACTURER,		
	CONTRACTOR,		
	SUBCONTRACTOR,		
	ARCHITECT,		
	STRUCTURALENGINEER,		
	COSTENGINEER,		
	CLIENT,		
	BUILDINGOWNER,		
	BUILDINGOPERATOR,		
	MECHANICALENGINEER,		
	ELECTRICALENGINEER,		
	PROJECTMANAGER,		
	FACILITIESMANAGER,		
	CIVILENGINEER,		
	COMMISSIONINGENGINEER,		
	ENGINEER,		
	OWNER,		
	CONSULTANT,		
	CONSTRUCTIONMANAGER,		
	FIELDCONSTRUCTIONMANAGER,		
	RESELLER,		
	USERDEFINED);	
END_TYPE;

	
	

188

IFC provides a long list of predefined roles. The last option on the list is

USERDEFINED, if USEDEFINED is selected from the list, the optional

UserDefinedRole on the instance of IfcActorRole should be defined.

7.3.3. IfcOrganization

IfcOrganization is similar to IfcActor with the difference of defining a group of

actors.

Code 43, IfcOrganization Inheritance Graph (BuildingSmart, 2016q)

IfcOrganization provides two additional attributes in comparison with IfcActor.

IsRelatedBy and Relates. They are two ends of an inverse relationship that can be

established between different instances of IfcOrganization to associate them with each

other. Notice that Engages attribute is the equivalent of EngagedIn in IfcActor.

	
ENTITY	IfcOrganization	
	ENTITY	IfcOrganization	
	 Identification : OPTIONAL IfcIdentifier;

Name : IfcLabel;
Description : OPTIONAL IfcText;
Roles : OPTIONAL LIST [1:?] OF IfcActorRole;
Addresses : OPTIONAL LIST [1:?] OF IfcAddress;
	

	INVERSE	
	 IsRelatedBy : SET OF IfcOrganizationRelationship FOR RelatedOrganizations;

Relates : SET OF IfcOrganizationRelationship FOR RelatingOrganization;
Engages : SET OF IfcPersonAndOrganization FOR TheOrganization;
	

END_ENTITY;	
	
	

189

7.3.4. IfcPersonAndOrganization

This entity provides a way to assign different roles to IfcActor by defining an

organizational context for them. This entity is useful when an individual is evolved with

the project in more than one capacity or through different organizations.

Code 44, IfcPersonAndOrganization Inheritance Graph (BuildingSmart,
2016s)

7.3.5. CONCLUSION

IfcActorResource schema provides the required means to model the individuals

that are involved in the design and construction phase of a project. UFPOR People on

the other hand, represents a more diverse spectrum. Not only the contractors and

designers can be modeled through UFPOR People, the society where the project is

placed, the potential users and the people who live within the project’s vicinity are also

subjects of UFPOR People.

 UFPOR People provides a flexible structure where the users of a project can be

categorized in a tree structure, for example in a library project the users are divided into

the service providers and visitors. Visitors can be further categorized based on their age

groups, interests and other attributes. The result is a tree structure of prototype individual

	
ENTITY	IfcPersonAndOrganization	
	ENTITY	IfcPersonAndOrganization	
	 ThePerson : IfcPerson;

TheOrganization : IfcOrganization;
Roles : OPTIONAL LIST [1:?] OF IfcActorRole;
	

END_ENTITY;	
	

190

groups whereas in IfcActorResource each entity is tied to a specific individual with a

name and physical address.

IfcOrganization provides mechanisms to group individuals together by adding

them to the same organization. This is quite different in comparison with UFPOR People

groupings where the groups are formed based on their common attributes.

Generalizing IfcActorResource schema to the extent that covers the semantics of

UFPOR People is a very challenging task. IfcActorResource schema is designed to

model the individuals and organizations that are involved in design and construction of a

project. On the other hand, the users are one of the main topics in UFPOR People, which

cannot be modeled through IfcActorResource schema.

7.4. UFPOR ASSESSMENT

The requirements imposed through Constraint Resource schema need to go

through an assessment process. In UFPOR, Assessment class is designated for this

purpose. In IFC, Approval Resource schema is dedicated to manage the assessment

process. It is worth mentioning that the quantitative requirements imposed through

IfcMetric will be assessed through mathematic equations and Constraint Resource

provides the infrastructure for evaluating the quantitative requirements.

While one of the main use cases for Approval Resource schema is in conjunction

with Constraint Resource, there are cases for using this schema independently as well.

For example the approval process of a plan, a proposal, or a change can be managed

through the Approval Resource schema.

191

IfcApprovalResource schema contains three entities to manage the approval

process. IfcApproval, IfcApprovalRelationship, and IfcResourceApprovalRelationship.

7.4.1. IfcApproval

IfcApproval is the entity at the heart of ApprovalResource schema (Code 45).

Code 45, IfcApproval Express Specification (BuildingSmart, 2016c)

Most of the direct attributes of this entity are self-explanatory and all of them are

optional attributes. Identifier is dedicated to a computer interpretable Id by which the

approval is known. “Status” attribute reflects the result of approval and can be any of the

values of Requested, Processed, Approved, and Not Approved.

The RequestingApproval and GivingApproval attributes form the relationship

between the Approval Resource and the Actor Resource schema and are the equivalent

of the relationship between UFPOR Assessment and UFPOR People.

	
ENTITY	IfcApproval;	
		Identifier	:	OPTIONAL	IfcIdentifier;	
		Name	:	OPTIONAL	IfcLabel;	
		Description	:	OPTIONAL	IfcText;	
		TimeOfApproval	:	OPTIONAL	IfcDateTime;	
		Status	:	OPTIONAL	IfcLabel;	
		Level	:	OPTIONAL	IfcLabel;	
		Qualifier	:	OPTIONAL	IfcText;	
		RequestingApproval	:	OPTIONAL	IfcActorSelect;	
		GivingApproval	:	OPTIONAL	IfcActorSelect;	
	INVERSE	
		HasExternalReferences	
:	SET	OF	IfcExternalReferenceRelationship	FOR	RelatedResourceObjects;	
		ApprovedObjects	:	SET	OF	IfcRelAssociatesApproval	FOR	RelatingApproval;	
		ApprovedResources	:	SET	OF	IfcResourceApprovalRelationship	FOR	RelatingApproval;	
		IsRelatedWith	:	SET	OF	IfcApprovalRelationship	FOR	RelatedApprovals;	
		Relates	:	SET	OF	IfcApprovalRelationship	FOR	RelatingApproval;	
	WHERE	
		HasIdentifierOrName	:	EXISTS	(Identifier)	OR	EXISTS	(Name);	
END_ENTITY;

	
	

192

The relationship between instances of IfcApproval and the objects and properties

in need of approval are formed through an inverse relationship called ApprovedObjects

managed by IfcRelAssociatesApproval instances. Code 46 shows the inheritance graph

for IfcRelAssociatesApproval.

Code 46, IfcRelAssociatesApproval Inheritance Graph (BuildingSmart,
2016x)

IfcDefinitionSelect includes all the subtypes of IfcObjectDefinition and

IfcPropertyDefinition. However that does not include the Constraint Resource Schema.

To attach instance of IfcApproval to any entity from the Resource schemas including

Constraint Resource schema, instances of IfcResourceApprovalRelationship can be

attached to IfcApproval through ApprovedResources inverse attribute. Through

IfcResourceApprovalRelationship instances of IfcApproval can be attached to any of the

entities from IfcResourceObjectSelect including IfcConstraint. Below is the full list of

all the entities included in IfcResourceObjectSelect.

	
ENTITY	IfcRelAssociatesApproval	
	ENTITY	IfcRoot	
	 GlobalId : IfcGloballyUniqueId;

OwnerHistory : OPTIONAL IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
	

	ENTITY	IfcRelationship	
	ENTITY	IfcRelAssociates	
	 RelatedObjects : SET [1:?] OF IfcDefinitionSelect;

	

	ENTITY	IfcRelAssociatesApproval	
	 RelatingApproval : IfcApproval;

	

END_ENTITY;	
	
	

193

Code 47, IfcResourceObjectSelect Express Specifications (BuildingSmart, 2016aa)

7.4.2. CONCLUSION

UFPOR Assessment provides the mechanisms to check the design versus the

specific quantitative and qualitative requirements from the architectural programming

document. Comparing to other UFPOR classes, UFPOR Assessment has a more simple

structure. UFPOR Assessment neither implements the composition pattern since it does

not need to form a tree structure nor covers different time spans.

IfcApprovalResource schema provides the required data structures that are

needed to model UFPOR Assessment through IFC. That being said,

IfcApprovalResource is limited by IfcActorResource schema. In previous section I

discussed how IfcActorResource schema does not provide the semantics needed to

model UFPOR People in IFC. Without the ability to model the UFPOR People in IFC

one cannot assign approving roles to the intended individuals correctly, therefore with

	

TYPE	IfcResourceObjectSelect	=	SELECT	(
	IfcPropertyAbstraction,		
	IfcPhysicalQuantity,		
	IfcAppliedValue,		
	IfcContextDependentUnit,		
	IfcConversionBasedUnit,		
	IfcProfileDef,		
	IfcActorRole,		
	IfcApproval,		
	IfcConstraint,		
	IfcTimeSeries,		
	IfcMaterialDefinition,		
	IfcPerson,		
	IfcPersonAndOrganization,		
	IfcOrganization,		
	IfcExternalReference,		
	IfcExternalInformation);	
END_TYPE;

	
	

194

the current state of IFC IfcApprovalResource provides partial mechanisms to model

UFPOR Assessment.

7.5. UFPOR ACTIVITY

In comparison with other UFPOR classes, Activity is perhaps the most exclusive

one to PORs. Activity is an abstract concept that clarifies the intersection of UFPOR

People and Environment. UFPOR Environment represents the final product of studying

the activities. In that sense activities are more about how the product is utilized and not

directly about the product itself. That might be why it is rather challenging to find

appropriate data structures to model UFPOR Activities in IFC. I distinguished three IFC

entities that can potentially be used in modeling UFPOR Activities. IfcProcess,

IfcSpatialZone, and IfcZone.

7.5.1. IfcProcess

According to IFC (2016ak), IfcProcess represents “one individual activity or

event, that is ordered in time, that has sequence relationships with other processes, which

transforms input into output, and may connect to other processes through input output

relationships. An IfcProcess can be an activity (or task), or an event. It takes usually

place in building construction with the intent of designing, costing, acquiring,

constructing, or maintaining products or other and similar tasks or procedures”.

IfcProcess is conceptually similar to the definition of UFPOR Activity. The main

differentiator is the instances of IfcProcess form a sequence of processes where each

process consumes the outcome of another process and produces incomes for the next

195

process. The relationship limits IfcProcess to the activities that occur during the

construction phase and makes it a long stretch to use it for functional activities that occur

in the building by users. Besides that, using the same data structure to model

construction activities and how the users would use the facility creates semantic

ambiguity for the project.

7.5.2. IfcSpatialZone

According to the Ifc specifications (2016ak) “A spatial zone is a non-hierarchical

and potentially overlapping decomposition of the project under some functional

consideration. A spatial zone might be used to represent a thermal zone, a construction

zone, a lighting zone, a usable area zone. A spatial zone might have its independent

placement and shape representation.”

Although IfcSpatialZone is a subclass of IfcSpatialElement and based on the

definition Activities are independent entities, conceptually they are very close to each

other. The composition of the activities can be accomplished through a hierarchical

relationship similar to spaces. IfcRelAggregates will be used to create the hierarchy.

The downside is that IfcRelAggregates is semantically a strong relationship that

is used to define composition/decomposition relationship. According to the IFC

definition (BuildingSmart, 2016ak) : “Decompositions imply a dependency, implying

that the whole depends on the definition of the parts and the parts depend on the

existence of the whole.” The relationships between activities should be more flexible

than a composition relationship.

196

The most significant downside of using IfcSpatialZone is the semantic ambiguity

that would be introduced to the project. UFPOR activities are abstract concepts that are

not bound to any physical form and shape. Using IfcSpatialZone implies the presence of

shape and form, which does not fit UFPOR Activities. Besides that, one may need to

apply instances of IfcSpatialZone to fully represent UFPOR Environment in IFC, using

the same entity with two different semantics creates significant confusion and

compromises the integrity of the data model.

7.5.3. IfcZone

In contrast with IfcSpatialZone, IfcZone provides a more loose association

between different zones and does not provide geometrical representation attributes.

According to the definition (2016aj)“A zone is a group of spaces, partial spaces or other

zones”. Zone structures may not be hierarchical (in contrary to the spatial structure of a

project). That means one individual IfcSpace may be associated with zero, one, or

several instances of IfcZone. IfcSpace instances are grouped into an IfcZone by using

the objectified relationship IfcRelAssignsToGroup as specified at the super type

IfcGroup.”

While the data structure provided by IfcZone seems like a good fit to represent

the required data, the entity definition still implies a different concept than UFPOR

activity. UFPOR Activity is an independent entity from the spatial structure of the

project. IfcZone provides a flexible mechanism to group entities of the spatial structure

together.

197

7.5.4. CONCLUSION

The concept of activity is a key concept in the reviewed expert models. UFPOR

Activity provides the mechanisms that are needed to model not only what will take place

in a facility, but also why and how the users of a facility would use it. It also provides

the required data structure to form a hierarchical tree of the activities.

None of the IFC entities that were discussed in this chapter semantically match

UFPOR Activity. IfcZone and IfcSpatialZone are both part of the spatial structure,

which in UFPOR is an independent concept from UFPOR Activity. Using those entities

will create semantic confusion. IfcProcess is dedicated to model the activities that are

performed during the construction phase by the individuals and parties involved in the

construction phase and not the users of the project. IfcProcess does not provide the

required attributes nor the semantics that are needed to model UFPOR Activity.

7.6. CONCLUSION

IFC provides comprehensive schemas to model not only the designed and built

state of a facility, but also the organizations and individuals who are involved in the

construction phase and their activities. IFC is less comprehensive in modeling the pre-

design phase including the architectural programming phase.

UFPOR People includes the society, users of a facility and the individuals who

are involved in the design and construction of the project. The current state of IFC only

supports modeling of individuals and organizations who are the direct participants in the

design and construction phase.

198

UFPOR Need creates hierarchical tree structures to gather information on areas

such as users’ needs, spatial needs of users’ activities, and the mission statement and

goals of the clients. The current state of IFC only supports modeling of the detailed and

direct requirements that are mapped to a specific object (e.g. a specific space) or a

specific attribute on that object (e.g. space area)

UFPOR Activity is not supported on any level in the current state of IFC.

UFPOR Activity is a key aspect of architectural programming phase without which

understanding the relationships between the users and the facility is near impossible.

UFPOR Environment captures information on the existing and proposed spatial

structures related to the project. The current state of IFC provides comprehensive data

structures to create a spatial tree structure of the designed facility. The same schemas can

be used to document the existing structures within or around the project site as well. The

current state of IFC does not provide separate schemas to create a spatial structure for

the desired state that reflects the result of architectural programming phase.

The concept of Time is a key concept in UFPOR where the base classes should

be able to capture information on different time spans such as present, past, and future.

The current state of IFC can support a single state and falls short in supporting multiple

states within the same model. To support the implementation of UFPOR such limitations

should be removed.

The current state of IFC provides several techniques to enhance the entities

through dynamic and static property sets. Therefore where entities exist that

199

semantically match the UFPOR classes, their attribute scope can be enhanced to

accommodate the ones of UFPOR classes.

200

8. UFPOR SOFTWARE IMPLEMENTATION

In the previous chapter the limitations of IFC in implementing UFPOR were

discussed. IFC provides limited support for UFPOR Need and UFPOR Environment and

does not provide any applicable support for UFPOR Activity and UFPOR People.

Besides limited support for UFPOR base classes, the concept of Time that is

fundamental in UFPOR is not supported by IFC. For all these limitations the current

state of IFC does not fully support UFPOR. This chapter takes an empirical approach to

explore the practical capabilities of IFC in supporting UFPOR on limited basis.

A prototype application was implemented to explore the capabilities of IFC in

supporting UFPOR Need and UFPOR Environment. Implementing a prototype helped to

answer three questions. First, with the current limited support for UFPOR in IFC, to

what extent a POR can be presented in IFC? To answer this question, a software system

was devised to partially implement the IFC compatible UFPOR model. Through logical

argumentation the semantic and structural limitations of IFC were shown. Several tests

were implemented to explore the robustness of the system.

Second, can the current status of UFPOR support in IFC provide the basis for a

user facing application? To answer this question, I created an application that allows

users to enter project information along with their requirements into the data model.

Third, how would the IFC compatible UFPOR support real projects? To answer

this question, two programming documents produced by two well-known architecture

firms were tested against the IFC compatible UFPOR model.

201

8.1. INTRODUCING UFPOR-IFC

Throughout this chapter, the acronym UFPOR-IFC is used to describe the subset

of UFPOR that is supported by IFC. UFPOR-IFC has two main parts, first, the subset of

UFPOR Need that represents direct qualitative and quantitative requirements on UFPOR

Environment attributes, and second, the subset of UFPOR Environment that represent

the desired state of the environment tree structure limited with IfcProject at the top (root

of the tree structure), and the individual spaces (represented by IfcSpace) at the bottom.

The second part of UFPOR-IFC is based on the entities that form the spatial

structure in IFC. These entities include IfcProject, subclasses of IfcSpatialElement

(including IfcBuilding, IfcBuildingStorey, IfcSpatialZone, IfcSite and IfcSpace) and

subclasses of IfcSpatialElementType (including IfcSpatialZoneType, and

IfcSpaceType). All these entities were analyzed in detail in chapter 7.

The first part of UFPOR-IFC is based on the subclasses of IfcConstraints

including IfcMetric and IfcObjective which were covered in chapter 7 as well.

In chapter 7 it was concluded that current state of IFC does not support explicit

distinction between the desired/programmed and designed/built states; however UFPOR-

IFC should represent the desired/programmed state. In UFPOR-IFC the

desired/programmed state is implied by having non-filled properties on spatial structure

entities that are bound by requirements. For example a POR may include maximum and

minimum area limitations for a particular space. To model such space in UFPOR-IFC,

said space is added to the spatial structure with a property representing the area. The area

property will not exhibit any value, but is constraint by two instances of IfcMetric

202

entities. The designed/build value is added to the IFC file during design/construction. At

that point one can assess the fulfillment of the imposed requirements.

8.2. UFPOR-IFC IMPLEMENTATION

8.2.1. IMPLEMENTATION PLATFORM

IFC entities were initially developed based on a collection of open sourced C++

classes. The current version of IFC documented in EXPRESS is technology-independent

and can be implemented in any programming language supporting object-oriented

programming principles.

I chose Java programming language to implement the BIM compatible UFPOR

because of my personal familiarity with the technology, its strong OOP features, and its

popularity within the software development community.

Java is s general-purpose computer language that supports object-oriented, and

multi-thread programming. Java was developed and released in 1990s by Sun

Microsystem. Much of the syntax is driven from C and C++ programming languages

(Bloch, 2001).

Over the next three sections, I describe the three steps required to implement the

BIM compatible version of UFPOR-IFC in Java. The first section goes over creating the

data models, the second section describes how to store the content of the data models in

a database, the third section explains how to extract an IFC physical output from the

database and the data models, and the fourth section describes how to test the whole

system.

203

8.2.2. DATA MODELS

The first step is re-creating the required IFC schemas through Java classes. I

replicated each IFC entity to a Java class and recreated the hierarchical structure required

to implement the low level entities. Code 48 shows IfcRoot EXPRESS specification as

an example.

Code 48, IfcRoot Inheritance Graph (BuildingSmart, 2016ac)

Code 49 is the Java implementation of IfcRoot. The class methods are eliminated

from the Code to increase code readability.

Code 49, IfcRoot Java Implementation

	
ENTITY	IfcRoot	
	ENTITY	IfcRoot	
	 GlobalId : IfcGloballyUniqueId;

OwnerHistory : OPTIONAL IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
	

END_ENTITY;	
	
	

	
public abstract class IfcDecRoot {

protected IfcDecGloballyUniqueId globalId;

private IfcDecOwnerHistory ownerHistory;

private IfcDecLabel nameText;

private IfcDecText descriptionText;

}

	

204

IfcRoot example shows that IFC entities can be implemented using Java classes

without compromising the specification.

8.2.3. OBJECT TRAVERSAL

In chapter 7 it was shown how IfcProject provides an entering point to the IFC

object graph. To manage the model correctly and produce the IFC Physical file, it is

critical to traverse from the instance of IfcProject to every IFC entity in the project. For

that purpose the concept of “related objects” was introduced and implemented by the

Java classes representing UFPOR-IFC. This capability enabled every UFPOR-IFC Java

class to report back all of their relating objects. By iterating the same method, a tree-like

structure can be created that includes all entities forming the project. Code 50 shows

how IfcProject reports its related objects.

205

Code 50, Object Traversal in Java UFPOR-IFC Classes

First, the list of relating objects are requested from the super class, in this case

IfcContext is the super class. After attaining the list of relating objects from the super

class, The content of UnitsInContext attribute (instance of IfcUnitAssignment) and the

content of IsDefinedBy attribute (instance of IfcRelDefinedByProperties) are added to

the list. In the next step all the instances of IfcSpaceType created in the project are

retrieved from the database and added to the list. Instances of IfcSpaceType are only

	
 @Override

 public ArrayList<IfcFileObject> getRelatedObjects() {

 ArrayList<IfcFileObject> results = super.getRelatedObjects();

 results.add(getUnitsInContext());

 results.addAll(getIsDefinedBy());

 ArrayList<IfcDecSpaceType> spaceTypes = null;

 if (getSpaceTypes() != null && getSpaceTypes().size() > 0) {

 try {

 spaceTypes =EnvironmentServiceImpl.getSpaceTypeByKey(getSpaceTypes());

 for (IfcDecSpaceType spaceType : spaceTypes) {

 addDeclare(spaceType);

 }

 } catch (NotLoggedInException e) {

 e.printStackTrace();

 }

 }

 results.add(declaresObject);

 return results;

 }

	

206

stored by their keys. This allows to reuse the instances of IfcSpaceType in more than one

project; it also helps to keep the data models in a reasonable scale.

8.2.4. IFC PHYSICAL

To generate the IFC physical file, each IFC object needs to be translated into a

textual descriptive string. Code 51 is an example showing the textual description of an

IfcProject instance.

Code 51, IfcProject IFC Physical

The first element is the item number; this number may be different every time the

IFC physical file is generated and is used internally within the document to reference the

object. All the values after the entity name within the parenthesis are separated with

commas and come in the same order that are defined in the EXPRESS specification. The

first attribute is the globalId attribute which is inherited from IfcRoot. The dollar sign is

used for the void optional values. References to other objects are stored via the item

numbers (e.g., #6).

Generating the IFC physical file for IFC compatible UFPOR requires two steps.

First, A string template for each entity is created. The template is modified at runtime by

using Java string library to embed the entity attribute values. Code 52 shows a few

examples of the templates for IfcProject, IfcUnit and IfcPropertySingleValue.

#3= IFCPROJECT ('340ryhzQ15d8rqO7t8Yu1r', $, TestProject, $, $, TestProject Long, $, $, #6);

	

207

Code 52, IFC Physical File Templates

Before fill out the template for the entities, an element number should be

assigned to every entity. Without knowing the element number for the entities, filling out

the value for attributes that point to other entities is not possible, therefore assigning an

element number to every entity is a prerequisite of creating IFC physical file.

The algorithm to assign a number to each object is based on a collection of all the

entities related to the project, the algorithm starts by adding the instance of IfcProject to

the collection. The collection then assigns a number to the instance of IfcProject that

represents the project (#1). The algorithm proceeds by traversing to all the other objects

through retrieving the related objects from each object. A number is assigned to each

object as they are added to the collection.

Now that each item has a number ,other entities can referenced them by

searching the collection. The IFC physical string for each entity can be generated by

prepending their number followed by “=” to the beginning of their filled out template.

8.2.5. PERSISTENCE LAYER

There are several technologies available to assist with the persistence of the

content of Java classes into a database. These technologies create a separation layer

"IFCPROJECT ('%1$s', %2$s, %3$s, %4$s, %5$s, %6$s, %7$s, %8$s, %9$s);";

"IFCSIUNIT(%1$s, %2$s, %3$s, %4$s);";

"IFCPROPERTYSINGLEVALUE(%1$s, %2$s, %3$s, %4$s);";

208

between the database and Java classes and facilitate the interaction. JDO (Java Data

Objects) is one of these technologies developed by Sun Microsystems (Russell, 2010)

that was used for UFPOR-IFC. According to Oracle “The Java Data Objects architecture

defines a standard API to data contained in local storage systems and heterogeneous

enterprise information systems, such as ERP, mainframe transaction processing and

database systems. The architecture also refers to the Connector architecture which

defines a set of portable, scalable, secure, and transactional mechanisms for the

integration of EIS with an application server. (Oracle, 2009)”

After adding the required libraries to the project, the data fields of the Java

classes were annotated to fulfill JDO requirements. The annotations determine whether

the value of a field is persisted by JDO or not. Code 53 is the annotated version of

IfcRoot. Variables annotated by “Persistent” annotation will be stored to the database.

209

Code 53, IfcRoot with JDO Annotations

More details on JDO are outside of the scope of this research and irrelevant to the

findings. By using JDO the application is capable of working with a wide range of

database/data storage technologies. Google App Engine was selected for the database

layer . According to Google “Google App Engine lets you build and run applications on

Google’s infrastructure. App Engine applications are easy to create, easy to maintain,

and easy to scale as your traffic and data storage needs change. With App Engine, there

are no servers for you to maintain. You simply upload your application and it’s ready to

go. (Zahariev, 2009)”

8.2.6. UNIT TESTING

Before evaluating the performance of the system in handling real POR data, One

should examine that all parts of the system including storing data in Java classes, storing

	
	

@PersistenceCapable

@Inheritance(strategy = InheritanceStrategy.SUBCLASS_TABLE)

public abstract class IfcDecRoot {

@Persistent

protected IfcDecGloballyUniqueId globalId;

@Persistent

private IfcDecOwnerHistory ownerHistory;

@Persistent

private IfcDecLabel nameText;

@Persistent

private IfcDecText descriptionText;

}

	

210

them in Google App Engine through JDO, and creating IFC physical file from the

retrieved data work as expected.

Unit testing is a software testing methodology that runs units of the system with

control data and checks the outcome against the control data to assure the expected

results were produced (Hamill, 2004). The definition of “unit” is context dependent and

depends on the objectives of the test. There are several libraries and frameworks that

work with Java, JDO, and Google App Engine. I used JUnit to handle the nuances of

testing. I defined three test scenarios that I explain over the next three sections (Cheon

& Leavens, 2002).

8.2.6.1. PROJECT

The objective for this test was to determine if the system can correctly perform

the following steps.

• Create an instance of IfcProject.

• Add area units to the created IfcProject.

• Add area requirement to the created IfcProject.

• Store the instance in Google App Engine.

• Retrieve the instance.

• Produce the IFC physical file from the retrieved instance.

Code 54 shows the content of an instance of IfcClientProject that was passed to

the test as the control data.

211

Code 54, Project Unit Test Input

The project contains name, longname, maximum and minimum area, as well as

the SI units used in the project. The system could successfully perform all the defined

objectives. Appendix 2 is the IFC physical outcome of the test that was produced in the

final step.

public static IfcClientProject getNewTestProject() {

 IfcClientProject testProject = new IfcClientProject()

 testProject.setMinArea(200);

testProject.setMaxArea(400);

testProject.setName("TestProject");

testProject.setLongName(new IfcClientLabel("TestProject" + " Long"));

IfcClientSIUnit.IfcSIUnitName unitName1 = IfcClientSIUnit.IfcSIUnitName.valueOf("METRE");

IfcClientSIUnit lengthUnit = new IfcClientSIUnit(IfcClientNamedUnit.IfcUnitEnum.LENGTHUNIT, null,
unitName1);

testProject.getUnitsInContext().addUnit(lengthUnit);

IfcClientSIUnit.IfcSIUnitName unitName2 =
IfcClientSIUnit.IfcSIUnitName.valueOf("SQUARE_METRE");

IfcClientSIUnit areaUnit = new IfcClientSIUnit(IfcClientNamedUnit.IfcUnitEnum.AREAUNIT, null,
unitName2);

testProject.getUnitsInContext().addUnit(areaUnit);

IfcClientSIUnit.IfcSIUnitName unitName3 = IfcClientSIUnit.IfcSIUnitName.valueOf("CUBIC_METRE");

IfcClientSIUnit volumeUnit =

new IfcClientSIUnit(IfcClientNamedUnit.IfcUnitEnum.VOLUMEUNIT, null, unitName3);

testProject.getUnitsInContext().addUnit(volumeUnit);

return testProject;

}

	

212

8.2.6.2. SPACE TYPE

In this unit test the objectives from the previous unit test were expanded to

include the following item.

• Create an instance of IfcSpaceType.

• Attach a property set to the created space type.

• Attach a quantity set to the created space type.

• Attach properties to the defined property set.

• Attach quantities to the defined quantity set.

• Attach constraints to the defined properties and quantities.

• Persist all the objects in Google App Engine.

• Retrieve the project.

• Create a physical IFC file from the retrieved project.

• Assert all the values from the IFC outcome match the control data.

The test starts by grabbing the project that was created in the previous unit test

and then attaching an instance on IfcSpaceType along with the quantity and property sets

and their constraints.

The system could successfully perform the test and the retrieved values from the

IFC physical file matched the control data. Appendix 3 is the IFC physical output from

the test.

213

8.2.6.3. SPACE INSTANCE

In this scenario the objectives from the previous test were expanded by adding an

instance of IfcSpace to the project. Below is the list of additional objectives for this test

scenario.

• Create an instance of IfcSpace.

• Attach the instance of IfcSpace to the instance of IfcSpaceType.

• Attach the instance of IfcSpace to the instance of IfcProject.

• Persist the project through Google App Engine.

• Retrieve the project for Google App Engine.

• Check the project and IfcSpace instance against the control data.

The test starts by retrieving the project created in the previous section. An

instance of IfcSpace was created and was enhanced by attaching it to the instance of

IfcSpaceType. The IfcSpace instance was then attached to the project. The project was

persisted to the Google App Engine and then retrieved. The IFC physical output

produced from the retrieved project matched the control data. Appendix 4 is the IFC

physical file that was produced as the output of this test.

8.2.6.4. CONCLUSION

By following the unit testing principals I could prove that the devised system is

capable of representing UFPOR-IFC entities and producing IFC physical files from

them. By generating the IFC physical files in each test scenario, I also produced three

examples showing how IFC physical file can handle UFPOR-IFC information.

214

8.3. USER INTERFACE PROTOTYPE

8.3.1. IMPLEMENTATION PLATFORM

In previous section by using unit testing techniques I showed that the devised

system could successfully handle the creation of an IFC physical file that carries

UFPOR-IFC information. In this section I move the focus toward usability. The main

objective for this section is to answer this question: Can the devised system be used in

user facing systems where the user can interact with the UFPOR-IFC information stored

in IFC entities? To answer the question, a graphical user interface was developed to

communicate with the system that I tested in previous section.

Any user interface framework that supports HTTP protocol can be used for the

prototype. HTTP stands for Hypertext Transfer Protocol and is the foundation of data

communication for the World Wide Web ecosystem (Fielding et al., 1999). That

includes applications on Windows OS, Mac OS, iOS, Android, and Web applications

running in browser.

To maximize accessibility I decided to create a Web application. The application

is called Target and can be accessed through ufpor-bim.appspot.com.

GWT (Google Web Toolkit) technology was used to implement the framework.

GWT is a development toolkit that facilitates development of complicated applications

in a browser (Dewsbury, 2007). By using GWT developers can write every layer of a

Web application in Java programming language. GWT compiles the Java code to

Javascript which is the language that Web browsers understand. By using GWT some of

the data models from the system that were created in previous section were reused.

215

8.3.2. INTRODUCING THE USER INTERFACE

Figure 60 shows the first page of Target.

Figure 55, Target Homepage

Google authentication services were used to manage user information and keep

track of created projects. Users can log into Target with any Google account as shown in

the Figure 61.

216

Figure 56, Target User Authentication

After signing in with a Google account, the user is redirected to the main page

where they can create a new project (IfcProject).

217

Figure 57, Target Main Page

The screen is divided into four main sections. The top area hosts the menus to

control user and project related information. The right section hosts a panel that allows

users to add new UFPOR Environments by creating instances of subclasses of

IfcSpatialStructureElementType. The current implementation is limited to the instances

of IfcSpaceType entity. The bottom section displays the IFC output based on user

actions. The middle section allows the user to create a spatial hierarchy by dragging and

dropping created IfcSpaceType instances from the right panel. To start a new project, the

user should start “New” option from the file menu. Figure 63 shows the window that

will open upon clicking on “New” from the file menu.

218

Figure 58, New Project Window in Target

The “New Project” window allows provide two tabs to define a new project.

From the “General” tab users can define project name, maximum and minimum area,

and a long name for the project. From the setting tab, the users can select their desired

unit for length, area, and volume. After defining all the required fields, Target will send

the information to Google App Engine over an HTTP request and receives the produced

IFC physical file. The output then will be displayed in the bottom section. Also a root

node will be added to the tree structure as shown in Figure 64.

After creating the project, the user can add new IfcSpaceType entities to the

project. By clicking on the “plus” sign under the Environment panel in the right section.

219

A new window will pop up to define a new instance of IfcSpaceType as shown in Figure

64.

Figure 59, Target New Space Type Window

From the “New Space Type” window the user can enter general information

about the new space type through “General” tab. Besides General tab there are other tabs

for additional requirements such as area constraints and height constraint. Figure 65

shows the tab related to Area Constraints.

220

Figure 60, Target New Space Type, Space Constraint

 After entering all the required information and by clicking on the green check

button, the information will be send the Google App Engine through an HTTP request

and a new version of the IFC Physical file will be returned and displayed in the bottom

section. Also, the newly created IfcSpaceType will be added to the Environment tab as

shown in Figure 66. The user can add as many instances of IfcSpaceType as they desire

to the project.

221

Figure 61, New Space Type Added to the Document

The user can drag and drop the created Space Types from the Environment tab to

the space hierarchy tree. Upon dropping the Space Type to the tree structure an HTTP

request is sent to Google App Engine and a new instance of IfcSpace is added to the

project’s spatial structure, also a new version of IFC physical file is returned and added

to the bottom section. Figure 67 shows a space tree hierarchy that includes three instance

of IfcSpace.

222

Figure 62, New Spaces Added to the Project

8.4. CONCLUSION

The current state of IFC provides limited support for UFPOR. UFPOR-IFC,

which is a subset of UFPOR was defined based on these limitations. UFPOR-IFC

consists of a spatial structure and a collection of requirements that are directly imposed

on the entities of the spatial structure and their properties.

Through running the unit tests, it was proven that the current state of IFC is

capable of supporting UFPOR-IFC entities. It was also proven that the content of

UFPOR-IFC can be transferred to IFC physical files. The generated IFC physical file

223

can be processed by IFC compatible BIM computer applications, the applicability of the

processed information is defined by the scope of each BIM computer application.

While UFPOR-IFC does not fully support the content of PORs it is valuable in

creating a bridge between POR information and BIM models. UFPOR-IFC is the overlap

of UFPOR and the current state of IFC. UFPOR-IFC can be used as a link between

UFPOR and other BIM applications where the content of PORs are stored in a fully

UFPOR compatible format and are linked to the rest of BIM model through UFPOR-

IFC.

By developing a graphical user interface it was proven that UFPOR-IFC can be

the base for user facing applications where the users can enter and manipulate POR

documents that include a link with BIM models.

224

9. TESTING AGAINST ARCHITECTURAL PROGRAM SAMPLES

In previous section UFPOR-IFC was defined and tested by implementing a

software prototype. In this section I examine the capabilities of UFPOR-IFC in capturing

architectural programming requirements by analyzing two real-world PORs. The two

PORs are selected from two well-known architectural design firms. The question I try to

answer is “”In which capacity and to what extent can UFPOR-IFC support POR

examples from the industry?”. I answer this question by analyzing architectural

programming documents, classifying the information they provide into separate

categories and finding respective data fields to capture the data in UFPOR-IFC.

Two different well-known architectural firms provide both of the architectural

programs used in this section. Due to their request I cannot share the names and all the

data revealing their names have been eliminated from the documents.

To showcase the capabilities of UFPOR-IFC that were not revealed by the two

PORs, a third case study was added in form of a collection of requirements. The goal

was to showcase the capabilities of UFPOR-IFC in modeling qualitative requirements as

well as complicated quantitative requirements.

9.1. CASE STUDY 1. OFFICE BUILDING

The first case study is an expansion program for a 190,000 sqft office building.

The office building is used for legal affairs and provides space for lawyers and

administrative staff.

225

9.1.1. PROGRAM STRUCTURE

The first program is for a two-phase expansion for an office building. The

program is organized into a collection of MS Excel worksheets. The first worksheet

summarizes the project by Code all the departments and sections within each department

(Figure 56). The project is divided into three main departments, “Legal Staff”,

“Administration”, and “Support and Conferencing”. Each main department is further

defines into business units.

Figure 63, Office Building Program Summary

PROJECT NAME LLP
PROJECT ADDRESS tbd

 PROJECT NUMBER tbd

PROGRAMMING REPORT SUMMARY EXISTING MOVE-IN

EXISTING 2016 2019
HEAD SEAT HEAD SEAT

BUINSES UNIT CODE BUSINESS UNIT COUNT AREA COUNT COUNT AREA COUNT COUNT AREA

LEGAL STAFF
1.0 CORPORATE 25 7,792 22 21 5,092 22 21 5,092

2.0 EMPLOYEE BENEFITS 27 8,282 27 27 6,015 27 27 6,015

3.0 INTERNATIONAL GROUP 2 600 2 2 462 2 2 462

4.0 LABOR AND EMPLOYMENT 132 37,915 128 127 25,108 128 127 25,108

5.0 LITIGATION 58 17,668 66 63 12,738 66 63 12,738

6.0 REAL ESTATE 20 5,831 19 19 4,169 19 19 4,169

SUBTOTAL PRACTICE AREAS 264 78,088 264 259 53,585 264 259 53,585

ADMINISTRATION
20.0 ACCOUNTING & FINANCE 70 17,269 70 70 7,646 70 70 7,646

21.0 ADMINISTRATION 4 951 4 4 492 4 4 492

22.0 CONFERENCE CENTER SUPPORT 7 215 6 1 92 6 1 92

23.0 CONFLICTS 22 4,798 22 20 1,923 22 20 1,923

24.0 DOCKET 4 862 4 4 369 4 4 369

25.0 DOCUMENT SOLUTIONS 17 3,815 17 12 1,262 17 12 1,262

26.0 HUMAN RESOURCES & BENEFITS 10 3,468 13 13 2,308 13 13 2,308

27.0 LIBRARY 5 9,185 5 5 1,342 5 5 1,342

28.0 MARKETING & BUSINESS DEVELOPMENT 13 3,494 14 14 1,615 15 15 1,708

29.0 OPERATIONS 18 5,415 18 1 4,246 18 1 4,246

30.0 PRACTICE MANAGEMENT 14 3,469 14 12 1,238 16 13 1,331

31.0 PROFESSIONAL DEVELOPMENT 3 691 5 5 523 5 5 523

32.0 RECORDS 15 17,062 18 18 9,569 18 18 9,569

33.0 SECRETARIES 57 7,892 62 62 7,631 62 62 7,631

34.0 WORK 2 815 2 2 462 2 2 462

35.0 CLIENT SOLUTIONS 24 6,412 49 49 7,708 57 57 8,446

36.0 CONSULTING 1 260 1 0 0 1 0 0

37.0 TECHNOLOGY SERVICES GROUP 58 18,557 59 36 4,362 59 36 4,362

SUPPORT & CONFERENCING
40.0 RECEPTION & CONFERENCE CENTER 21,223 21,223

41.0 SHARED SUPPORT SPACES 47,669 47,669

SUBTOTAL ADMINISTRATION & SUPPORT 344 383 328 121,680 394 338 122,603

TOTAL STAFF COUNT 608 647 587 658 597

TOTAL USF (includes circulation) 175,265 176,188
usf/person 271 299 268 295

TOTALS TOTAL RSF (estimated add-on factor) 1.14 306,475 199,802 200,854
rsf/person 504 504 309 340 305 336
rsf/attorney 1406 904 970 909 975

USF 161,563 161,563
Delta -13,702 -14,625
RSF 191,736 191,736
Delta -8,066 -9,118

PLANNING

226

For example “Practice Areas” department includes six units: Corporate,

Employee Benefits, International Group, Labor and Employment, Litigation, and Real

Estate. Administration department includes eighteen units, and Support and

Conferencing includes two.

The summary page provides summary information for each business unit. At the

bottom at the worksheet total area for the project under each column is calculated. The

calculation includes and additional 14% for the building elements. The information is

divided into three categories, “Existing”, “Move-In”, and Planning. Each category

provides three data points, Head Count, Seat Count, and Area.

Each business unit is further defined in a separate worksheet. Figure 57 shows

the detail view for “Corporate” business unit.

227

Figure 64, Office Building Program, Department

Each “Business Unit” is divided into multiple “Work Sites”. Each “Work Site” is

dedicated to a user group. For example Corporate “Business Unit” contains seventeen

“Work Sites”. For each “Work Site” the worksheet provides the same information that is

PROJECT NAME LLP
PROJECT ADDRESS tbd

0

PROJECT NUMBER tbd

PROGRAMMING REPORT CORPORATE 1.0 MOVE-IN PLANNING

EXISTING 2016 2019
TOTAL PROGRAM HEAD SEAT HEAD SEAT

WORKSITE CODE WORKSITE TYPE COUNT AREA AREA AREA COUNT COUNT AREA COUNT COUNT AREA

LEGAL STAFF
A Equity Partner 6 195 1,170 150 6 6 900 6 6 900

B Income Partner 10 195 1,950 150 10 10 1,500 10 10 1,500

C Associate 4 195 780 150 4 1 150 4 1 150

D Counsel 1 195 195 150 1 1 150 1 1 150

E Of Counsel 1 195 195 150 1 1 150 1 1 150

F Staff Attorney 0 195 0 150 0 0 0 0 0 0

G Retired Partner 1 195 195 0 1 1 0 1 1 0

H Paralegal 2 140 280 80 2 2 160 2 2 160

I Case Manager 0 195 0 100 0 0 0 0 0 0

J Case Assistants 0 140 0 80 0 0 0 0 0 0

K Contract Attorney 0 60 0 80 0 0 0 0 0 0

attorney totals
partners 16 16 16
associates 4 4 4
counsel/of counsel/staff/retired 3 3 3
subtotal 23 23 20 23 20
Attorneys in Offices 18 18 18 18
Staff Attorney Workspaces 0 0 0 0
Attorney in Workspaces 2 1 2 1

ADMINISTRATION
M C-Suite 0 195 0 150 0 0 0 0 0 0

N Administrative (Office-based) 0 169 0 100 0 0 0 0 0 0

O Administrative (Open seating) 0 140 0 60 0 0 0 0 0 0

Q Conflicts Attorneys 0 140 0 60 0 0 0 0 0 0

P Administrative (benching) 0 140 0 45 0 0 0 0 0 0

R Shared Auxiliary Staff 0 0 0 0 0 0 0 0 0 0

SUBTOTAL 25 4,765 22 21 3,010 22 21 3,010

AUXILIARY SPACE TYPE

T&E FILE ROOM (300) Trusts & Estates File Room 1 300 300 300 1 300 1 300

CORPORATE FILE ROOM (100) Corporate Minute Book File Room 1 100 100 100 1 100 1 100

SUBTOTAL 300 300 300

SUBTOTAL USF 5,065 3,310 3,310
INTERNAL CIRCULATION 2,727 35% 1,782 1,782STAFF

COUNT USF
HEAD

COUNT
SEAT

COUNT USF
HEAD

COUNT
SEAT

COUNT USF
TOTALS TOTAL 25 7,792 22 21 5,092 22 21 5,092

Comments

228

provided in the “Summary” sheet for business units. The information is similarly divided

into three columns under “Existing”, “Moving”, and “Planning”. At the bottom of each

Business Unit worksheet is a summary row that adds area, head count and other

information from every row. it also adds an additional area (35%) for “Internal

Circulation”.

9.1.2. UFPOR COMPATIBILITY

The most important objects in this POR are “Business Units”, and “Work Sites”.

They can be both modeled with a combination of IfcSpace and IfcSpatialZone instances.

Both IFC entities are capable of carrying multiple quantity and property sets which is

very helpful in facilitating gathering requirements and properties in three different

categories (Existing, Move In, and Planning). The programming document does not

include any information that requires use of UFPOR Activity class. The add-on factors

for building elements and internal circulation can be added as custom properties to the

project. Since the only information about the users is a plain headcount associated with

Work Units, it can be added as a property directly to the instances of IfcSpace and

IfcSpatialZone and avoid adding instances of IfcActor to the project.

Given the absence of UFPOR Activity and limited use of UFPOR Need and

UFPOR People, UFPOR-IFC is capable of capturing all the information presented in

this POR.

229

9.2. CASE STUDY 2. HEALTHCARE FACILITY

The second case study is an expansion to an existing 258,000 sqft healthcare

facility. The expansion includes a new patient tower and also a new building for

nutrition services and support services.

9.2.1. PROGRAM STRUCTURE

Similar to the example, this POR is composed of multiple Excel worksheets and

starts with a summary page (Figure 70). The summary page breaks down the program

into buildings and building stories. There are one or more departments under each

building story. For each department the summary page provides five programming

properties and an optional comment. The properties include departmental gross square

footage (DGSF), building gross square footage, calculated renovation square footage,

master plan square footage, and the difference square footage, which is obtained by

subtracting Master plan SF from BGSF.

230

Figure 65, Healthcare Facility Program, Summary Page

Each department is broken down into sections, sub-sections, and rooms in a

separate worksheet. Figure 71 shows the detail on the surgery department.

HKS Project #12242.002 July 2010 !Page 1

Mount Carmel St. Ann's Hospital Departmental Space Program

Department

7/12/10
Program

DGSF

7/12/10
Calculated

NEW BGSF

7/12/10
Calculated

RENOV.
Master Plan

SF
Difference

SF1

1
2
3 BED STORAGE and REPAIR 913 1,214 0 1,214
4 DISCHARGE LOBBY 462 614 0 614
5 STERILE PROCESSING & DISTRIBUTION 53,946 0

6 MECHANICAL / ELECTRICAL ROOM
7 CENTRAL ENERGY PLANT ADDITION 1,800
8 SUMMARY - LOWER LEVEL 55,321 0 1,828
9 GROUND FLOOR LEVEL

10 INTERVENTIONAL CARDIOLOGY SUITE 25,515 25,515 26,000 -485
11 SUMMARY - GROUND FLOOR LEVEL 25,515 26,000 -485
12 FIRST FLOOR LEVEL
13 SURGERY DEPARTMENT (Expansion) 6,390 6,390 6,390
14 CARDIOVASCULAR UNIT (30 Beds) 21,812 26,174 26,174
15 SUMMARY - FIRST FLOOR LEVEL 28,202 0 32,564
16 SECOND FLOOR LEVEL
17 ORTHO / NEURO / SPINE UNIT (30 Beds) 21,835 26,202 26,202
18 SUMMARY - SECOND FLOOR LEVEL 21,835 0 26,202
19 Subtotal 239,911 79,719 6,390 53,800 94,017
20
21
22
23 FIRST FLOOR LEVEL
24 NUTRITION SERVICES 17,328 6,900 10,428 17,328
25 STAIRS and Corridor relocation (2nd Fl) 1,000
26 CLEAN LINEN 820 820
27 BODY HOLDING ROOM 170 170
28 SUMMARY - FIRST FLOOR LEVEL 18,318 6,900 12,418 0 17,328
29 Subtotal 18,318 53,800 228,877
30 Total Square Footage 258,228 107,600 322,894

Nutrition Services and Support Services

LOWER LEVEL
New Patient Tower and Connected Spaces

231

Figure 66, Healthcare Facility Program, Surgery Department

For each departmental section, sub-section, and room, the program defines four

assets: quantity, unit area, total area and comments. The areas from all the spaces in a

department are added together to produce the total net area. Then net area is multiplied

232

by “Net to Gross Factor” to produce the departmental gross area. The departmental gross

area is included in the summary page.

9.2.2. UFPOR COMPATIBILITY

This POR is similar to the previous POR in terms of organization and content.

The main difference is the fact that this program not only provides a list of departments

along with their spaces, it also assign each department to a building floor in a specific

building. The addition of buildings and building stories provides an opportunity to

benefit from IfcBuilding and IfcBuildingStorey classes to classify the data. In addition to

those two entities, IfcSpace, and IfcSpatialZone can be used to create the spatial

structure.

Similar to the previous case study, the program does not contain any entities that

would require the usage of UFPOR Activity. The program does not provide any

information about the users, clients, or any other group that would require instances

UFPOR People to model.

UFPOR-IFC is capable of capturing all the information presented in this POR.

9.3. CASE STUDY 3. COMMON PROGRAMING REQUIRMENTS

Two PORs were analyzed in the previous section and showed how IFC_UFPOR

can support the imposed spatial structure and quantitative requirements. Neither of the

PORs contained qualitative requirements. In this section sample on how some of the

more complicated and qualitative requirements can be modeled through UFPOR-IFC are

233

presented. Examples were selected to showcase the capabilities of UFPOR-IFC in

modeling complex requirements.

9.3.1. ADJACENCY

Similar to other spatial requirements, adjacency requirements can be imposed

through subclasses of IfcConstraint and associated to subclasses of IfcSpatialElement.

Subclasses of IfcSpatialElement do not provide a list of their adjacencies; therefore the

adjacency requirement cannot be imposed directly as IfcMetric instances. Adjacencies

for an instance of IfcSpace are determined by analyzing BoundedBy inverse relationship

(Figure 72).

234

Figure 67, Spatial Adjacency in IFC

That makes adjacency requirements a special case of IfcObjective where they can

be assessed by analyzing the IFC model. The limitation is that the adjacency

requirements can be only imposed on instances of IfcSpace.

To clarify how this pattern can be implemented imagine a small office suite with

a reception, conference room, a break room and a private office with a requirement on

the break room to be adjacent to the private office. Here is how the adjacency

requirement and the assessment process can be implemented.

235

The requirement can be imposed on either or both the break room and the private

office through an instance of IfcObjective. Four properties should be used on

IfcObjective Entity, Name, Description, and UserDefinedGrade. Name property content

will be “adjacencyRequirement” and Description property should store a list of space

GUIDs that the space is required to be adjacent to. Let’s imagine the adjacency

requirement is for the office, and the break room’s GUID is 1234. The office will have

an instance of IfcObjective attached to it with the name property set as

“adjacencyRequirement” and the description property set as “[1234]”.

This adjacency requirement is assessed based on the shared building elements

between the two spaces. Therefore the acceptance criteria should be clarified by

providing a list of acceptable building elements. A list of acceptable building elements

can be added as an array to the UserDefinedGrade. For example if the adjacency should

provide physical accessibility, the list can be defined as: [IfcVirtualElement, IfcDoor,

IfcRamp], but if visual connection is enough to make two spaces adjacent, IfcWindow

can be added to the qualifying list. If the adjacency requirement is imposed to define

wet and dry zones by keeping the wet spaces next to each other, IfcWall can be added to

the list since neither visual nor physical accessibility is required.

To assess the requirement, all the instances of IfcRelSpaceBoundary attached to

both the office and the break room should be examined to find a qualifying building

element in common. A shared building element is qualifying only if it is mentioned in

the list of building elements in UserDefinedGrade.

236

9.3.2. FURNITURE SIZE

To return to the office example, imagine a scenario where one wants to add a

requirement for the private office to have a desk not smaller that a certain size. Such

requirement is in fact two separate requirements, one on the private office and one on the

desk itself.

Adding a size requirement to a desk is no different that adding a size requirement

to a space. A custom property set with the required properties such as size can be

defined. The desk will be represented by an instance of IfcFurniture where the

PredefinedType property is set to Desk. The rest is similar to adding area requirements

to the instances of IfcSpace.

The second requirement is on the private office itself where, similar to adjacency

requirements, one is monitoring one of the IfcSpace inverse relationship properties.

Instances of IfcFurniture are attached to instances of IfcSpatialElement through

ContainsElements inverse property. An instance of IfcObjective entity can be used to

impose the requirement with its Name property set to “furniture” and its Description

property presenting an array of furniture GUIDs that are required in the private office.

 To assess the requirement the software will search all the instances of

IfcRelContainedInSpatialStructure in ContainsElements inverse property for the required

GUIDs. The requirement is satisfied as soon as the GUID is found.

9.3.2.1. HANDICAP ACCESSIBILITY

Going back to the office example, imagine a scenario where one wants the whole

office to be accessible for handicapped individuals. While this might be documented as

237

one requirement on the project, handicap accessibility is a collection of several

requirements from ADA and ABA standards (ADA & ABA handbook, 2004). The

project needs to be accessible for the handicapped in terms of accessible routes,

entrances, ramps and curbs, accessible means of egress, accessible toilet rooms and etc.

Let us focus on controlling the ramps for the private office space. The logic is

based on having ramp accessibility wherever two spaces are connected through stairs.

The process is similar to controlling adjacencies where common instances of IfcElement

between the two spaces are of interest. This time instances of IfcStair are of interest. If

there are any instances of IfcStair adjacent to the private office, at least one instance of

IfcRamp should be adjacent to the office as well. Failure in finding an instance of

IfcRamp adjacent to the office is equal to failure in satisfying the requirement. In reality

the process might be more complicated where an indirect ramp access, provided through

one of the adjacent spaces, is also acceptable.

To check the project for accessible toilet rooms, the requirements should be

broken down into smaller requirements that can be assessed individually. For example

area requirements should be imposed on bathroom area to insure a flawless wheelchair

maneuvering. That can be accomplished the same way the area requirements were

imposed on the instances of IfcSpace. A separate requirement should be imposed to

guarantee the inclusion of grab-bars on the side and rear walls next to the toilet. That is

also similar to imposing requirements to have a desk of a certain size in the office space.

238

9.3.2.2. QUALITATIVE CHARACTERISTICS OF A SPACE

Requesting a specific quality for a space is not out of ordinary in architectural

projects. IFC provides all the required data models and processes to model qualitative

requirements and their evaluation; therefore UFPOR-IFC can support the creation and

assessment of such requirements. To return to the office example, imagine the client

wants the break room to have certain qualities such as playfulness and coziness.

The requirement can be modeled through an instance of IfcObjective, the client

can verbalize his or her requirement in detail through UserDefinedQualifier property on

the instance of IfcObjective. In this example the value may be set to “The break room

should provide a cozy and playful environment”. ObjectiveQualifier property can be

used to further classify why such requirement is imposed, in this case the user may select

DESIGNINTENT as the value of ObjectiveQualifier property (other possible values

were described in chapter 7). The instance of IfcObjective will be attached to the

instance of IfcSpace that represents the break room through an instance of

IfcRelAssociatesConstraint. The client will be modeled through an instance of IfcPerson

and referenced through the CreatingActor on IfcConstraint instance.

As the project moves forward and the break room starts to form the assessment

process begins. Several instances of IfcApproval can be attached to the instance of

IfcConstraint representing the requirements through IfcResourceApprovalRelationship.

Through IfcApproval the assessment sessions can be documented. The client can

approve or reject the playfulness and coziness of the break room by looking at the

drawings, 3d renderings or other sources of design representations. The client may go

239

through several iterations until he or she is satisfied with the design, at that point an

instance of IfcApproval representing the satisfactory status of the design will be attached

to the requirement.

9.4. CONCLUSION

The first two case studies that were reviewed in this section both have less

sophisticated structure and more limited data types when compared with UFPOR. While

IFC had some limitations in implementing some of the data types from UFPOR (e.g.

Activity) the current version of IFC was capable of capturing all the attributes of both of

the samples.

In the last case study I could show how UFPOR-IFC is capable of documenting

more complicated requirements such as adjacencies and handicapped accessibility.

The current version of IFC even though needs some improvements to capture all

the data types that may be presented by a POR, is adequate in providing support for a

large array of programming documents in architectural firms. It also provides the means

to capture and control more sophisticated requirements such as adjacencies and

handicapped accessibility.

240

10. CONCLUSION

The study set out to explore the capabilities of the current BIM standard data

models to capture architectural programming information. As a prerequisite the study

sought a parent format that can bring together the existing formats for a program of

requirement (UFPOR). The study showed how UFPOR can represent three expert

models. UFPOR was further tested by representing a POR excerpt from the industry.

After that, the study explored the capabilities of IFC in presenting UFPOR. A separate

data model was devised as the result of the analysis (UFPOR-IFC). UFPOR-IFC was

implemented though a computer application. The integrity of the computer application

was tested through several test scenarios. UFPOR-IFC was further analyzed by

documenting two PORs from the industry and a collection of qualitative and complex

requirements. The key questions that were answered by this study were:

• Can a universal model for architectural program of requirements

(UFPOR) be devised that can be used as a super model to capture the

information from different formats?

• If the answer is yes, can IFC as the standard data exchange format for

BIM support the UFPOR in capturing the requirements and controlling

the design against the requirements (UFPOR-IFC)?

• If the answer is yes, can UFPOR-IFC support a computer application that

can capture the requirements and evaluate the design?

241

10.1. FINDINGS

Detailed findings for each chapter were summarized at the end of each chapter.

This section synthesizes the findings for each chapter and brings them together to answer

the research questions.

The study answered the first question by analyzing a collection of three POR

formats. Despite different terminologies and different structures suggested by different

scholars, a common data model blueprint (UFPOR) can support the content of all the

PORs documented based on the reviewed POR formats.

An analysis of the IFC RC4 schema provided answers to the second question.

IFC provides counterpart structures for some of the UFPOR classes. The UFPOR-IFC

model is a subset of IFC that is capable of representing limited aspects of UFPOR

Environment and UFPOR Need. UFPOR-IFC does not provide any support for UFPOR

People and UFPOR Activity due to the limitations of the current state of IFC.

The study answered the third question by creating a prototype application to

capture UFPOR-IFC compatible entities in IFC physical format. The prototype showed

that UFPOR-IFC can be used to capture and exchange architectural programming

information.

10.2. THEORETICAL IMPLICATION

Several books have been written on architectural programming. Besides them,

there have been numerous conference papers and book chapters dedicated to the subject.

Small and large architectural companies have also dedicated resources to the matter. One

of the topics that have been discussed widely is the content and structure of a

242

programming document. Different structures have been proposed and new terminologies

have been introduced. The study showed that a single data model can support a wide

range of those structures and terminologies.

One format may be superior to another format in providing a more human

readable document by better naming and organization, it does not provide superiority by

providing additional information.

As the number of BIM computer applications grows, the need for a solid

exchange data format is becoming more crucial. IFC provides a framework where such

exchange formats can be created. IFC provides the grammar and glossary needed for

communication, yet it provides enough flexibility to create data exchange formats for the

wide range of applications used in the AECO industry.

The current state of IFC does not provide all the required schemas to fully

support architectural programming information. While the support for UFPOR

Environment and UFPOR Need are limited but significant, IFC does not provide any

support for UFPOR People and UFPOR Activity. IFC does not support documenting a

project in a sequential basis or in different time spans; such capability is fundamental in

UFPOR.

10.3. PRACTICAL IMPLICATION

Computer applications to document architectural programming requirements and

further control the design versus the programming requirements have been a need in the

industry. As this field grows, having a common standard to capture and transfer such

data becomes more important. The study showed the limitations of IFC in providing

243

such standard. The study also showed the current state of IFC is capable of providing

limited support of architectural programming information. While the current state of IFC

cannot provide a data exchange platform for complete architectural programming

information, it can be used as a link between architectural programming information

management applications and other BIM tools.

By adopting a standard such as UFPOR-IFC, architects can link architectural

programing information to their desired collection of BIM computer applications. Given

the current state of IFC, the architectural programming information cannot be fully

captured in the IFC model and a separate data repository should maintain architectural

programming information throughout the lifecycle of the project.

10.4. LIMITATIONS OF THE RESEARCH

For practical reasons the study was limited to analyzing a small collection of the

literature on architectural programming. Thus from a theoretical standpoint the proposed

UFPOR and UFPOR-IFC models are compatible with the formats derived from the

literature analyzed in this study. While the methodology provided by the study can be

used in adding other programming structures to the collection, minor modifications may

be required as the collection grows.

IFC provides a large framework in which data exchange formats can be delimited

and defined. The inherent flexibilities in IFC schemas and entities such as custom

properties are fundamental in defining data exchange standards. Similarly UFPOR-IFC

is not a finalized standard for the exchange of architectural programming information. It

is rather a blueprint that shows how such standard can be created. Finalizing a standard

244

based on UFPOR-IFC requires defining additional custom properties for UFPOR base

classes.

The study was largely limited to logical argumentation in examining the

hypothesis, supplemented by the empirical tests of implementing software and testing

the software on some simple cases. While the nature of the study made logical

argumentation the right methodology, if the industry adopts the results of the study,

more experimental methods can be used to further test the hypothesis.

10.5. FUTURE WORKS

This study opens up the doors for future work for both practitioners and

researchers in the AECO industry.

The study revealed shortcomings in the current state of IFC in supporting

UFPOR, but shows that small modifications could lead to much greater utility.

Consideration of these changes by standards organizations could lead to advances of

significant benefit to the industry. The shortcomings should be communicated with

buildingSMART. BuildingSMART can choose to make the required changed in the

future versions of IFC so that the architectural programming information can be fully

supported by IFC.

The main outcome of this study was UFPOR-IFC, a BIM compatible framework

for architectural programming information. A consortium of key stakeholders in the

AECO industry should standardize the proposed UFPOR-IFC. Such act would open the

doors for architectural programming information to become accessible in the BIM

computer applications.

245

After standardization on the proposed UFPOR-IFC, more experimental tests

should be conducted to further refine the model based on the AECO industry needs and

expectations.

The capabilities of UFPOR-IFC to create meaningful connections between

architectural programing information stored in UFPOR and other BIM computer

applications should be analyzed through case studies. Based on the findings, the

enhancements on IFC to fully support UFPOR can be ordered by prioritizing the

enhancements that create a stronger connection between UFPOR and other BIM

computer applications.

The study showed that UFPOR-IFC can support both quantitative and qualitative

requirements on the spatial elements. The study also showed examples of how different

types of requirements can be documented and evaluated using UFPOR-IFC. Further

studies on specific types of requirements such as adjacencies and handicap accessibility

should analyze the capabilities and limitations of UFPOR-IFC in terms of computer

software implementation and data modeling in more detail.

246

REFERENCES

About dRofus AS. (2015). Retrieved from http://drofus.no/en/product.html.

About Onuma. (2015). Retrieved from http://onuma-bim.com/

About Trelligence. (2015). Retrieved from http://www.trelligence.com/index.php

ADA & ABA handbook (2004). Los Angeles, CA: BNI Building News.

The American Institute of Architects (2014). The architect's handbook of professional

practice: Edition 15. Hoboken, NJ: Wiley.

Arvidsson, F. & Flycht-Eriksson, A. (2008). Ontologies I. Retrieved from

http://www.ida.liu.se/~janma56/SemWeb/Slides/ontologies1.pdf.

Barekati, E. (2012). HKS BIM+Programming. Fiatech 2012 Technology Conference and

Showcase, Miami.

Bernstein, H. M., Jones, S. A., Russo, M., Laquidara-Carr, D., Taylor, W., Ramos, J.,

Fitch, E. (2012). The business value of BIM in north america. SmartMarket Report,

64.

Björk, B. C. & Laakso, M. (2010). CAD standardisation in the construction industry—A

process view. Automation in Construction, 19(4), 398-406.

247

Bloch, J. (2001). Effective java : Programming language guide. Boston, MA: Addison-

Wesley.

Bruegge, B. & Dutoit, A. H. (2004). Object-oriented software engineering using UML,

patterns and java. Upper Saddle River, NJ: Prentice Hall.

buildingSMART. (2015a). IfcPropertyDefinition. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifckernel/lexical/ifcpropertysetdefinition.htm

buildingSMART. (2015b). IfcPropertySetDefinition. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifckernel/lexical/ifcpropertysetdefinition.htm

buildingSMART. (2015c). IfcPropertyTemplate. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc1/html/ifckernel/lexical/ifcpropertytemplate.htm

buildingSMART. (2015d). IfcSimplePropertyTemplate. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifckernel/lexical/ifcsimplepropertytemplate.htm

buildingSMART. (2016a). Composition. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc4/html/schema/templates/composition.htm

248

buildingSMART. (2016b). IfcActorRole. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc1/html/ifcactorresource/lexical/ifcactorrole.htm

buildingSMART. (2016c). IfcApproval. Retrieved from http://www.buildingsmart-

tech.org/ifc/review/IFC4Add1/rc1/html/schema/ifcapprovalresource/lexical/ifcappro

val.htm

buildingSMART. (2016d). IfcBenchmarkEnum. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcconstraintresource/lexical/ifcbenchmarkenu

m.htm

buildingSMART. (2016e). IfcBuilding. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcproductextension/lexical/ifcbuilding.htm

buildingSMART. (2016f). IfcBuildingElement. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifcproductextension/lexical/ifcbuildingelement

.htm

buildingSMART. (2016g). IfcConstraint. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC4x1/html/schema/ifcconstraintresource/lexical/ifcconstraint.htm

buildingSMART. (2016h). IfcElementCompositionEnum. Retrieved from

http://www.buildingsmart-

249

tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcelementcompositionen

um.htm

buildingSMART. (2016i). IfcLogicalOperatorEnum. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcconstraintresource/lexical/ifclogicaloperatore

num.htm

buildingSMART. (2016j). IfcMeasureValue. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x3/TC1/html/ifcmeasureresource/lexical/ifcmeasurevalue.htm

buildingSMART. (2016k). IfcMeasureWithUnit. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x3/TC1/html/ifcmeasureresource/lexical/ifcmeasurewithunit.htm

buildingSMART. (2016l). IfcMetric. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcconstraintresource/lexical/ifcmetric.htm

buildingSMART. (2016m). IfcMetricValueSelect. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcconstraintresource/lexical/ifcmetricvaluesele

ct.htm

250

buildingSMART. (2016n). IfcObjectDefinition. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifckernel/lexical/ifcobjectdefinition.htm

buildingSMART. (2016o). IfcObjective. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc4/html/schema/ifcconstraintresource/lexical/ifcobjective.htm

buildingSMART. (2016p). IfcObjectiveEnum. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC4x1/html/schema/ifcconstraintresource/lexical/ifcobjectiveenum.ht

m

buildingSMART. (2016q). IfcOrganization. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcactorresource/lexical/ifcorganization.htm

buildingSMART. (2016r). IfcPerson. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcactorresource/lexical/ifcperson.htm

buildingSMART. (2016s). IfcPersonAndOrganization. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifcactorresource/lexical/ifcpersonandorganizat

ion.htm

buildingSMART. (2016t). IfcPostalAddress. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc4/html/schema/ifcactorresource/lexical/ifcpostaladdress.htm

251

buildingSMART. (2016u). IfcProject. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifckernel/lexical/ifcproject.htm

buildingSMART. (2016v). IfcReference. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc4/html/schema/ifcconstraintresource/lexical/ifcreference.htm

buildingSMART. (2016w). IfcRelAssigns. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x3/TC1/html/ifckernel/lexical/ifcrelassigns.htm#definition

buildingSMART. (2016x). IfcRelAssociatesApproval. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifccontrolextension/lexical/ifcrelassociatesappr

oval.htm

buildingSMART. (2016y). IfcRelContainedInSpatialStructure . Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcproductextension/lexical/ifcrelcontainedinsp

atialstructure.htm

buildingSMART. (2016z). IfcRelDefinesByType. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/beta1/html/ifckernel/lexical/ifcreldefinesbytype.htm

buildingSMART. (2016aa). IfcResourceObjectSelect. Retrieved from

http://www.buildingsmart-

252

tech.org/ifc/IFC4/Add2/html/schema/ifcexternalreferenceresource/lexical/ifcresourc

eobjectselect.htm

buildingSMART. (2016ab). IfcRoleEnum. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC4/Add2/html/schema/ifcactorresource/lexical/ifcroleenum.htm

buildingSMART. (2016ac). IfcRoot. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifckernel/lexical/ifcroot.htm

buildingSMART. (2016ad). IfcSimpleValue. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x3/TC1/html/ifcmeasureresource/lexical/ifcsimplevalue.htm

buildingSMART. (2016ae). IfcSite. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcproductextension/lexical/ifcsite.htm

buildingSMART. (2016af). IFCSpatialElement. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifcproductextension/lexical/ifcspatialelement.

htm

buildingSMART. (2016ag). IfcSpatialElementType. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifcproductextension/lexical/ifcspatialelementt

ype.htm

253

buildingSMART. (2016ah). IfcSpatialStructureElement. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcspatialstructureelement

.htm

buildingSMART. (2016ai). IfcSpatialZoneTypeEnum. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC4/Add2/html/schema/ifcproductextension/lexical/ifcspatialzonetype

enum.htm

buildingSMART. (2016aj). IfcZone. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifcproductextension/lexical/ifczone.htm

buildingSMART. (2016ak). IfcZone. Retrieved from http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifcproductextension/lexical/ifczone.htm

buildingSMART. (2016al). Pset_BuildingStoreyCommon. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifcproductextension/pset/pset_buildingstoreyc

ommon.htm

buildingSMART. (2016am). Pset_SiteCommon . Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/beta2/html/psd/IfcProductExtension/Pset_SiteCommon.xml

254

buildingSMART. (2016an). Pset_SpaceCommon . Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/psd/Pset_SpaceCommon.xml

buildingSMART. (2016ao). Pset_SpaceOccupancyRequirements. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/psd/Pset_SpaceOccupancyRequirements.xml

buildingSMART. (2016ap). Qto_BuildingBaseQuantities . Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifcproductextension/qset/qto_buildingbasequa

ntities.htm

buildingSMART. (2016aq). Qto_BuildingStoreyBaseQuantities. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc2/html/schema/ifcproductextension/qset/qto_buildingstoreyba

sequantities.htm

buildingSMART. (2016ar). Qto_SiteBaseQuantities. Retrieved from

http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/schema/ifcproductextension/qset/qto_sitebasequantities

.htm

buildingSMART. (2016as). Qto_SpaceBaseQuantities. Retrieved from

http://www.buildingsmart-

255

tech.org/ifc/IFC4/final/html/schema/ifcproductextension/qset/qto_spacebasequantiti

es.htm

buildingSMART. (2016at). Spatial Decomposition. Retrieved from

http://www.buildingsmart-tech.org/ifc/IFC4/final/html/schema/templates/spatial-

decomposition.htm

Cheon, Y. & Leavens, G. T. (2002). A simple and practical approach to unit testing: The

JML and JUnit way. ECOOP 2002—Object-oriented programming (pp. 231-255)

New York: Springer Publishing Company.

Cherry, E. (1999). Programming for design: From theory to practice. New York: John

Wiley.

Clayton, M. J., Johnson, R. E., Song, Y., & Al-Qawasmi, J. (1998). A study of

information content of as-built drawings for USAA. Texas A&M University,

College Station, Texas: CRS Center.

Coates, P., Arayici, Y., Koskela, L., Kagioglou, M., Usher, C., & O’Reilly, K. (2010).

The limitations of BIM in the architectural process. First International Conference

on Sustainable Urbanization, Hong Kong, China.

Cuff, D. (1991). Architecture : The story of practice. Cambridge, Mass: MIT Press.

Dewsbury, R. (2007). Google web toolkit applications. Upper Saddle River, NJ: Pearson

Education.

256

D'souza, D. F. & Wills, A. C. (1998). Objects, components, and frameworks with UML:

The catalysis approach. Boston, Mass: Addison-Wesley.

Duell, R., Hathorn, T., & Hathorn, T. R. (2014). Autodesk revit architecture 2015

essentials: Autodesk official press. Hoboken, NJ: John Wiley & Sons.

Duerk, D. P. (1993). Architectural programming: Information management for design.

New York: Van Nostrand Reinhold.

East, B. (2016). COBie MVD. Retrieved from

http://docs.buildingsmartalliance.org/MVD_COBIE/

East, W. (2007). Construction operations building information Exchange (COBIE). (No.

ERDC/CERL TR-07-30). US Army Corps of Engineers.

East, W. (2012). Building programming information exchange (BPie). National Institute

of Building Sciences.

East, W. & Carrasquillo-Mangual, M. (2012). The COBie guide: A commentary to the

NBIMSUS COBie standard. buildingSMART alliance.

East, W. & Nisbet, N. (2009). Spatial compliance information exchange (SCie).

buildingSMART alliance.

257

Eastman. (2008). BIM handbook: A guide to building information modeling for owners,

managers, designers, engineers, and contractors. Hoboken, NJ: John Wiley &

Sons.

Eastman, C., Jeong, Y., Sacks, R., & Kaner, I. (2010). Exchange model and exchange

object concepts for implementation of national BIM standards. Journal of

Computing in Civil Engineering, 24(1), 25-34.

Eastman, C. M. (1999). Building product models : Computer environments supporting

design and construction. Boca Raton, FL: CRC Press.

Eastman, C. M. & Siabiris, A. (1995). A generic building product model incorporating

building type information. Automation in Construction, 3(4), 283-304.

Erhan, H. (2003). Interactive computational support for modeling and generating

building design requirements (Doctoral dissertation, Carnegie Mellon University)

Retrieved from ProQuest Dissertation and Theses database. (UMI No. 3350504).

Ewing, R., Handy, S., Brownson, R. C., Clemente, O., & Winston, E. (2006). Identifying

and measuring urban design qualities related to walkability. Journal of Physical

Activity & Health, 3, 223.

Ewing, R. & Handy, S. (2009). Measuring the unmeasurable: Urban design qualities

related to walkability. Journal of Urban Design, 14(1), 65-84.

258

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee,

T. (1999). Hypertext Transfer Protocol--HTTP/1.1. Internet Engineering Task

Force. Retrieved from: http://ietf.org/rfc/rfc2068.txt

GAO. (2008). The nation’s long-term fiscal outlook april 2008 update. (No. GAO-08-

783R). United States Government Accountability Office.

Gielingh, W. (1988). General AEC referenoe model (GARM). ISO TC 184/SC4/WG1

Document N329.

Groat, L. N. & Wang, D. (2002). Architectural research methods. New York: J. Wiley.

Gruber, T. (2009). A translation approach to portable ontology specifications.

Knowledge Acquisition 5, 199–220.

Hamill, P. (2004). Unit test frameworks: Tools for high-quality software development

Sebastopol, CA: O'Reilly Media, Inc.

Hershberger, R. G. (1999). Architectural programming and predesign manager. New

York: McGraw-Hill.

Hietanen, J. & Final, S. (2006). IFC model view definition format. Technical Report.

International Alliance for Interoperability.

259

Hirschheim, R., Klein, H. K., & Lyytinen, K. (1995). Information systems development

and data modeling: Conceptual and philosophical foundations. Cambridge,

England: Cambridge University Press.

Howard, R. & Björk, B. C. (2008). Building information modelling-experts' views on

standardisation and industry deployment. Advanced Engineering Informatics, 22(2),

271-280.

International Alliance for Interoperability- UK Chapter (2004). Information

requirements specification – [AR-5] early design. London, England

ISO/IEC. (2007). ISO 10303-28:2007 Industrial automation systems and integration --

product data representation and exchange -- part 28: Implementation methods:

XML representations of EXPRESS schemas and data, using XML schemas. Geneva,

Switzerland: ISO/IEC.

ISO/IEC. (2013). ISO 16739:2013 Industry Foundation Classes (IFC) for data sharing

in the construction and facility management industry. Geneva, Switzerland:

ISO/IEC.

Jernigan, F. E. (2008). Big BIM, little bim: The practical approach to building

information modeling : Integrated practice done the right way! (2nd ed.). Salisbury,

MD: 4Site Press.

260

Kiviniemi, A. (2005). Requirements management interface to building project models

(Doctoral dissertation, Stanford University). Retrieved from ProQuest Dissertation

and Theses database. (UMI No. 3162341).

Kroenke, D. & Auer, D. J. (2007). Database concepts (3rd ed.). Upper Saddle River, NJ:

Pearson Prentice Hall.

Lalmas, M. (2009). XML retrieval. San Rafael, CA: Morgan & Claypool Publishers.

Lapierre, A. & Cote, P. (2007). Using open web services for urban data management: A

testbed resulting from an OGC initiative for offering standard CAD/GIS/BIM

services. Paper presented at the Urban and Regional Data Management. Annual

Symposium of the Urban Data Management Society, 381-393. London, England:

Taylor & Francis.

Bazjanvac, V. (2002). Early lessons from deployment of IFC compatible software.

Fourth Euro. Conf. Product Process Modeling. Portoroz, Slovacia.

Lawson, B. (1997). How designers think: The design process demystified. London,

England: Architectural Press.

Lee, K., Chin, S., & Kim, J. (2003). A core system for design information management

using industry foundation classes. Computer‐Aided Civil and Infrastructure

Engineering, 18(4), 286-298.

261

Lenzerini, M. (2002). Data integration: A theoretical perspective. Paper presented at the

Symposium on Principles of Database Systems: Proceedings of the Twenty-First

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

3(05) 233-246.

LePatner, B. B. (2008). Broken buildings, busted budgets: How to fix america's trillion-

dollar construction industry. University of Chicago Press.

Liebich, T. (2009). IFC2 Edition 3 Model implementation guide. buildingSMART

International.

Liebich, T. (2010). Unveiling IFC2x4-the next generation of OPENBIM. Paper

presented at the Proceedings of the 2010 CIB W78 Conference, 8.

Liebich, T. & Wix, J. (1999). Highlights of the development process of industry

foundation classes. Paper presented at the Proceedings of the 1999 CIB W78

Conference, 18.

MacKenzie, S. H. & Rendek, A. (2015). ArchiCAD 19-the definitive guide. Birmingham,

UK: Packt Publishing.

Malleson, A., Mordue, S., & Hamil, S. (2012). The IFC/COBie report. Open BIM

Network.

National Institute of Building Sciences. (2007). United states national building

information modeling standard : Transforming the building supply chain through

262

open and interoperable information exchanges. Washington, DC: National Institute

of Building Sciences.

Open Design Alliance. (2013). Open design specification for .dwg files version 5.3.

Retrieved from: https://www.opendesign.com

Oracle. (2009). Java data objects 2.3. Retrieve from: https://db.apache.org/jdo/

Ouksel, A. M. & Sheth, A. (1999). Semantic interoperability in global information

systems. ACM Sigmod Record, 28(1), 5-12.

Page-Jones, M. (2000). Fundamentals of object-oriented design in UML. New York,

NY: Addison-Wesley.

Palmer, M. A. (1981). The architect's guide to facility programming. New York, NY:

Architectural Record Books.

Peak, R. S., Lubell, J., Srinivasan, V., & Waterbury, S. C. (2004). STEP, XML, and

UML: Complementary technologies. Journal of Computing and Information

Science in Engineering, 4(4), 379-390.

Peña, W. & Parshall, S. (2001). Problem seeking: An architectural programming primer

(4th ed.). New York: Wiley.

263

Pontieri, L., Ursino, D., & Zumpano, E. (2003). An approach for the extensional

integration of data sources with heterogeneous representation formats. Data &

Knowledge Engineering, 45(3), 291-331. doi:10.1016/S0169-023X(02)00192-1

Pratt, M. J. (2001). Introduction to ISO 10303—the STEP standard for product data

exchange. Journal of Computing and Information Science in Engineering, 1(1),

102-103.

Preiser, W. F. E. (1975). Programming for habitability: Symposium proceedings,

september 22-24, 1974, allerton house, university of illinois. Paper presented at the

Monograph Series - University of Illinois at Urbana-Champaign, Dept. of

Architecture, iv, 119.

Preiser, W. F. E. (1993). Professional practice in facility programming. New York: Van

Nostrand Reinhold.

QuickBase. (2016). About QuickBase. Retrieved from http://quickbase.intuit.com/about-

us

Richens, P. (1978). The OXSYS system for the design of buildings. Paper presented at the

CAD78: 3rd Inter. Conf. on Computers in Engineering and Building Design,

Sussex, UK.

264

Roddis, W., Matamoros, A., & Graham, P. (2006). Interoperability in building

construction using exchange standards. Intelligent Computing in Engineering and

Architecture, 576-596.

Russell, C. (2010). JavaTM data objects 3.0. (No. JSR 243). Sun Microsystems.

Sanoff, H. (1977). Methods of architectural programming. Stroudsburg, PA: Dowden,

Hutchinson & Ross.

Schenck, D. A. & Wilson, P. R. (1994). Information modeling the EXPRESS way Oxford

University Press, USA.

Smith, D. (2009). In Tardif M. (Ed.), Building information modeling: A strategic

implementation guide for architects, engineers, constructors, and real estate asset

managers. Hoboken, NJ: Wiley.

Smith, B. & Wellington, J. (1986). Initial graphics exchange specification (IGES). (No.

PB86-199759). National Institute of Standards and Technology.

Stroustrup, B. (2014). Programming: Principles and practice using C++ 2nd ed. Upper

Saddle River, NJ: Addison-Wesley

Succar, B. (2009). Building information modelling framework: A research and delivery

foundation for industry stakeholders. Automation in Construction, 18(3), 357-375.

265

Vanlande, R., Nicolle, C., & Cruz, C. (2008). IFC and building lifecycle management.

Automation in Construction, 18(1), 70-78.

Vlissides, J., Helm, R., Johnson, R., & Gamma, E. (1995). Design patterns: Elements of

reusable object-oriented software. Boston, MA: Addison-Wesley.

Weise, M., Katranuschkov, P., & Scherer, R. J. (2003). Generalised model subset

definition schema. CIB REPORT, 284, 440.

Zahariev, A. (2009). Google app engine. Helsinki, Finland: Helsinki University of

Technology.

266

APPENDIX 1

DETAILED SCHEMATIC DESIGN PROGRAM

for an

ART SCHOOL

(sample of some typical instruction spaces)

267

SPACE NAME: 3D Foundations - Discussion Room

DESCRIPTION

This classroom should be adjacent to the 3D Foundations: Making zone

with butcher block tables for "light fabrication" activities. Students need to go

back and forth between the working tables, the main fabrication facility and this

classroom for foundations classes. Within the classroom the class will have

discussions and lecture activities. On occasion, it would be beneficial to move

the classroom tables to the side of the room to have "closed" in-class critiques.

Darkness is required when projecting. Storage can be just outside the classroom

in the working/critique zone.

QUALITIES: Clean, Closed

QUANTITY: 3

NUMBER OF OCCUPANTS: 18 + 1

SIMILAR TO:

CATEGORY: Classroom

AMENITIES:

FURNITURE
• (9) 24" X 60" OR (6) 24" X 72" FLIP-TOP TABLES ON CASTERS

W/BOARD COVER.
• (19) CHAIRS
• (1) INSTRUCTOR'S TABLE FULLY INTEGRATED WITH STUDENT

DISCUSSION TABLES

268

EQUIPMENT
• (1) E001: CEILING MTD. PROJECTOR*
• (1) E002: PROJECTION SCREEN*
• *(1) ALTERNATE: FLAT SCREEN TV
• (2) E004: SPEAKER
• (1) E110: INSTRUCTOR'S COMPUTER

STORAGE
• (10) SELF-ACCESS TOOL & EQUIPMENT STORAGE
• (10) COAT HOOKS
• STORAGE FOR STUDENTS BELONGINGS TO KEEP WORK

SURFACES CLEAR
• (1) PAD-LOCKED SHORT TERM INSTRUCTOR'S LOCKER
• (6) COIN-TYPE LOCKERS FOR SMALL STUDENTS' SMALL

VALUABLES

LIGHTING & CEILING
• DAY-LIGHT BALANCED WALL-WASH LIGHTING (5000-5500 K) AT

TACKABLE SURFACES
• DIRECT I INDIRECT GENERAL LIGHTING
• CEILING OPEN-TO DECK IS PREFERRED

POWER & DATA
• WIRELESS CONNECTIVITY THROUGHOUT
• POWER ACCESSIBLE FROM CENTER OF ROOM
• HARD-WIRE POWER & DATA CONNECTIONS AT INSTRUCTOR'S

TABLE

FINISHES & SURFACES
TACKABLE WALL SURFACE
• WRITABLE SURFACE AT TEACHING AREAS (MARKER BOARDS OR

"IDEA PAINT"
• BLOCKING AT SELECT WALLS FOR MOUNTING PROJECTS AND

EQUIPMENT
• HARD-SURFACE FLOORING

NOTES
• LOCATE NEAR FOUNDATIONS EQUIPMENT

269

LOCATION: Within Fabrication facility

DIAGRAM: Adjacency

270

SPACE NAME: 3D Foundations – Making Space

__

DESCRIPTION

This working area should be directly adjacent to the 3D Foundations

Classroom. During a class, students and the teacher will use this area for hands-

on light fabrication such as gluing, cutting, models etc. The "discussion" &

"making" zones work as one space for a class but are distinct enough so that the

discussions can be focused and quiet while the fabricating area can get messy

and students can collaborate. Within the making area there should be storage

for 3D objects such that the objects are visible to other classes and students.

When a foundations class is not in the making zone, people working in the

fabrication facility could use the making zone as lay-out or light fabrication

space.

QUALITIES: Messy, Semi-open

QUANTITY: 2·3

NUMBER OF OCCUPANTS: 18 + 1

SIMILAR TO:

CATEGORY: Fabrication

271

AMENITIES:

FURNITURE
• (18) 20" X 32" STATIONS (BUTCHER BLOCK TYPE), ADJUSTABLE

HEIGHTS
• (19) STOOLS
• (1) 20" X 32" INTEGRATEABLE INSTRUCTORS

WORK/DEMONSTRATION SURFACE
• (1) SINK

STORAGE
• (7) METAL SHELVES 36"W x 24"D x 72"H
• (1) PAD-LOCKED SHORT·TERM INSTRUCTORS LOCKER
• (10) SELF·ACCESS TOOL & EQUIPMENT STORAGE

LIGHTING & CEILING
• DAY-LIGHT BALANCED WALL-WASH LIGHTING (5000-5SOO K)

TACKABLE SURFACES
• DIRECT /INDIRECT GENERAL LIGHTING
• CEILING OPEN-TO DECK IS PREFERRED

POWER & DATA
• WIRELESS CONNECTIVITY THROUGHOUT
• POWER ACCESSIBLE FROM CENTER OF ROOM

FINISHES & SURFACES
• TACKABLE WALL SURFACE
• BLOCKING AT SELECT WALLS FOR MOUNTING PROJECTS AND

EQUIPMENT
• HARD-SURFACE FLOORING

NOTES
• EXHAUST/VENTILATION REQUIREMENTS
• LOCATE NEAR FOUNDATIONS EQUIPMENT

LOCATION: Within Fabrication facility

DIAGRAM: Adjacency

272

273

SPACE NAME: Life Room

__

DESCRIPTION

This classroom is intended for painting, drawing and anatomical modeling

with clay. Students work from a live model therefore windows need black-out

shades and the entry to the room should be discreet and secure from the

corridor and painting storage. The model would benefit from a separate

changing area with storage for sheets and belongings. An area to store furniture

while not in use is needed. Storage is also required for paintings and clay

projects. The room should have an art sink with storage underneath for supplies

and clay. This room is a priority for natural light.

QUALITIES: Dirty, Closed

QUANTITY: 1

NUMBER OF OCCUPANTS: 18 + 1

SIMILAR TO:

CATEGORY: Classroom

AMENITIES:

FURNITURE
• (18) EASELS
• (18) DRAWING HORSES
• (18) 20" X 30" MOVEABLE PALETTE TABLES

274

• (19) STOOLS
• (1) 8'x4' MODEL PLATFORM ON LOCKING CASTERS
• (3) 4' W X 6' H WORK APPARATUSES
• (1) INSTRUCTOR'S TABLE

EQUIPMENT
• (1) E001: CEILING MTD. PROJECTOR*
• (1) E002: PROJECTION SCREEN*
• *(1) ALTERNATE FLAT SCREEN TV
• (2) E004: SPEAKER
• (3) E110: COMPUTER (2 FOR STUDENTS, 1 AT INSTRUCTOR'S

TABLE)
• (1) E006: SCANNER
• (1) SINK

STORAGE
• METAL PAINTING STORAGE SHELVES
• AREA FOR EASELS, DRAWING HORSES AND TABLES WHILE NOT

IN USE.
• AREA FOR CLAY-PROJECT RACKS ON CASTERS
• LOCKING STORAGE FOR MODEL SUPPLIES AND BELONGINGS
• CUBBY FOR (18) 22"x30"x1/2" THICK DRAWING BOARDS
• (10) COAT HOOKS
• STORAGE FOR STUDENT BELONGINGS TO KEEP WORK

SURFACES CLEAR
• (1) PAD-LOCKED SHORT-TERM INSTRUCTOR'S LOCKER

LIGHTING & CEILING
• DAY-LIGHT BALANCED WALL-WASH LIGHTING (5000-5500 K) AT

TACKABLE SURFACES
• DIRECT /INDIRECT GENERAL LIGHTING
• CEILING OPEN-TO DECK IS PREFERRED
• ADJUSTABLE STAGE-TYPE LIGHTING AT MODEL PLATFORM

POWER & DATA
• WIRELESS CONNECTIVITY THROUGHOUT
• HARD-WIRE POWER & DATA CONNECTIONS AT COMPUTER

STATIONS
• HARD-WIRE POWER & DATA CONNECTIONS AT INSTRUCTOR'S

TABLE

FINISHES & SURFACES
• TACKABLE WALL SURFACE

275

• WRITABLE SURFACE AT TEACHING AREAS (MARKER BOARDS OR
"IDEA PAINT")

• BLOCKING AT SELECT WALLS FOR MOUNTING PROJECTS AND
EQUIPMENT

• HARD-SURFACE FLOORING

NOTES
• BLACK-OUT SHADES AT WINDOWS
• EXHAUST I VENTILATION REQUIREMENTS

LOCATION: No proximity to fabrication facility required

DIAGRAM: Space Type

SPACE NAME: Traditional Drawing

276

__

DESCRIPTION

This classroom is intended for the instruction of traditional drawing.

Students use a drawing horse and work from still life objects. This room is a

priority for natural light. Black-out shades should be provided at windows to

control lighting when required.

QUALITIES: Messy, Closed

QUANTITY: 1

NUMBER OF OCCUPANTS: 18 + 1

SIMILAR TO:

CATEGORY: Classroom

AMENITIES:

FURNITURE
• (18) DRAWING HORSES
• (4) EASELS
• (6) STOOLS
• (2) 4" X 4" X 30" OBJECT PLATFORM ON LOCKING CASTERS
• (3) 4' W X 6' H LARGE-SCALE WORK APPARATUSES
• (1) INSTRUCTOR'S TABLE

EQUIPMENT
• (1) E001: CEILING MTD. PROJECTOR*
• (1) E002: PROJECTION SCREEN*
• *(1) ALTERNATE FLAT SCREEN TV
• (2) E004: SPEAKER
• (2) E110: COMPUTER (1 FOR STUDENTS, 1 AT

277

INSTRUCTOR'S TABLE)
• (1) E006: SCANNER
• (1) SINK

STORAGE
• CUBBY FOR (18) 22"x30"x1/2" THICK DRAWING BOARDS
• (10) COAT HOOKS
• STORAGE FOR STUDENT BELONGINGS TO KEEP WORK

SURFACES CLEAR
• PAD-LOCKED INSTRUCTOR STORAGE

LIGHTING & CEILING
• DAY-LIGHT BALANCED WALL-WASH LIGHTING (5000-5500 K) AT

TACKABLE SURFACES
• DIRECT I INDIRECT GENERAL LIGHTING
• CEILING OPEN-TO DECK IS PREFERRED
• ADJUSTABLE STAGE-TYPE LIGHTING AT PLATFORMS

POWER & DATA
• WIRELESS CONNECTIVITY THROUGHOUT
• HARD-WIRE POWER & DATA CONNECTIONS AT COMPUTER

STATIONS
• HARD-WIRE POWER & DATA CONNECTIONS AT INSTRUCTOR'S

TABLE

FINISHES & SURFACES
• TACKABLE WALL SURFACE
• WRITABLE SURFACE AT TEACHING AREAS (MARKER BOARDS OR

"IDEA PAINT")
• HARD-SURFACE FLOORING
• BLOCKING AT SELECT WALLS FOR MOUNTING PROJECTS AND

EQUIPMENT

NOTES
• BLACK-OUT SHADES AT WINDOWS
• EXHAUST /VENTILATION REQUIREMENTS

LOCATION: No proximity to fabrication facility required

278

DIAGRAM: Space Type

279

SPACE NAME: Traditional Drawing

__

DESCRIPTION

This classroom is intended for the instruction of graphic design and other

digital design classes. There should be computer stations for all students with

lay-out space adjacent to the computer stations. There should be areas for

students to meet and collaborate adjacent to computer stations.

QUALITIES: Clean, Closed

QUANTITY: 1-2 (DEPENDING ON QUANTITY OF INTEGRATED

DESIGN STUDIOS

NUMBER OF OCCUPANTS: 18 +1

SIMILAR TO:

CATEGORY: Classroom

AMENITIES:

FURNITURE
• (18) COMPUTER WORKSTATIONS WITH MEETING SPACE

ADJACENT FOR GROUPS OF 4 STUDENTS
• (19) CHAIRS
• (1) INSTRUCTOR'S TABLE

EQUIPMENT
• (1) E001: CEILING MTD. PROJECTOR*
• (1) E002: PROJECTION SCREEN*
• *(1) ALTERNATE FLAT SCREEN TV
• (2) E004: SPEAKER

280

• (19) Ell0: COMPUTER (18 FOR STUDENTS, 1 AT INSTRUCTOR'S
TABLE).

• (1) E006: SCANNER

STORAGE
• (10) COAT HOOKS
• STORAGE FOR STUDENT BELONGINGS TO KEEP WORK

SURFACES CLEAR
• (1) PAD-LOCKED SHORT-TERM INSTRUCTOR'S LOCKER

LIGHTING & CEILING
• DAY-LIGHT BALANCED WALL-WASH LIGHTING (5000-5500 K) AT

TACKABLE SURFACES

POWER & DATA
• WIRELESS CONNECTIVITY THROUGHOUT
• HARD-WIRE POWER & DATA CONNECTIONS AT COMPUTER

STATIONS
• HARDWIRE POWER & DATA CONNECTIONS AT INSTRUCTOR'S

TABLE

FINISHES & SURFACES
• TACKABLE WALL SURFACE
• WRITABLE SURFACE AT TEACHING AREAS (MARKER BOARDS OR

"IDEA PAINT")
• HARD-SURFACE FLOORING

NOTES
• BLACK-OUT SHADES AT WINDOWS

LOCATION: No proximity to fabrication facility required

DIAGRAM: Space Type

281

282

APPENDIX 2

FILE_DESCRIPTION (

 ('TestProject Long'),

 '2;1');

FILE_NAME (

 'TestProject.ifc',

 '2015/11/04T20:21:10',

 ('test'),

 ('test@test.com'),

 'UFPOR APP 0.0.1',

 'UFPOR DEMO beta',

 'test.com');

FILE_SCHEMA (('IFC4RC4'));

ENDSEC;

DATA;

#1= IFCRELDEFINESBYPROPERTIES(0ZVvjO83j4bxxwT$dbeXpg, *, *, *, (#3), #4);

#2= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 200.0, *);

#3= IFCPROJECT ('340ryhzQ15d8rqO7t8Yu1r', $, TestProject, $, $, TestProject Long, $,
$, #6);

#4= IFCELEMENTQUANTITY(3w8fL5RwDAmfsGxPvt1i4g, *, *, *, *, (#12));

#5= IFCSIUNIT(*, .VOLUMEUNIT, $, .CUBIC_METRE);

#6= IFCUNITASSIGNMENT((#9, #10, #5));

#7= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#11, #2), LOGICALAND, REQUIREMENT,
*);

#8= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #7, (#12));

#9= IFCSIUNIT(*, .AREAUNIT, $, .SQUARE_METRE);

#10= IFCSIUNIT(*, .LENGTHUNIT, $, .METRE);

#11= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 400.0, *);

#12= IFCQUANTITYAREA(NetFloorArea, *, *, 0.0, *);

283

ENDSEC;

END-ISO-10303-21;

284

APPENDIX 3

ENDSEC;

END-ISO-10303-21;

ISO-10303-21;

HEADER;

FILE_DESCRIPTION (

 ('TestProject Long'),

 '2;1');

FILE_NAME (

 'TestProject.ifc',

 '2015/11/05T14:11:44',

 ('test'),

 ('test@test.com'),

 'UFPOR APP 0.0.1',

 'UFPOR DEMO beta',

 'test.com');

FILE_SCHEMA (('IFC4RC4'));

ENDSEC;

DATA;

#1= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#44, #53), LOGICALAND,
REQUIREMENT, *);

#2= IFCQUANTITYLENGTH(FinishFloorHeight, *, *, 0.0, *);

#3= IFCQUANTITYLENGTH(NetPerimeter, *, *, 0.0, *);

#4= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #49, (#31));

#5= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #33, (#59));

#6= IFCPROPERTYSINGLEVALUE('GrossPlannedArea', '*', '1400.0', *);

#7= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#23, #22), LOGICALAND,
REQUIREMENT, *);

#8= IFCQUANTITYAREA(NetFloorArea, *, *, 0.0, *);

#9= IFCPROPERTYSINGLEVALUE('HandicapAccessible', '*', 'TRUE', *);

285

#10= IFCPROPERTYSET(0p4LQrO9jEiQYpy0hCfVr0, *, *, *, (#14, #63, #29, #6, #54,
#39, #9));

#11= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #7, (#25));

#12= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#65, #62), LOGICALAND,
REQUIREMENT, *);

#13= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#32, #36), LOGICALAND,
REQUIREMENT, *);

#14= IFCPROPERTYSINGLEVALUE('ReferenceId', '*', '1234', *);

#15= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#35, #46), LOGICALAND,
REQUIREMENT, *);

#16= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 2800.0, *);

#17= IFCSIUNIT(*, .AREAUNIT, $, .SQUARE_METRE);

#18= IFCRELDECLARES(1BKBkR1oXBLQDoYKJ1$UFy, *, 'null', 'null', #27, (#38));

#19= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #42, (#55));

#20= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #61, (#68));

#21= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#47, #60), LOGICALAND,
REQUIREMENT, *);

#22= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 200.0, *);

#23= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 400.0, *);

#24= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 2200.0, *);

#25= IFCQUANTITYAREA(NetFloorArea, *, *, 0.0, *);

#26= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #12, (#64));

#27= IFCPROJECT ('04b4oIU$D5suhk5KYRrzoO', $, TestProject, $, $, TestProject Long,
$, $, #56);

#28= IFCSIUNIT(*, .VOLUMEUNIT, $, .CUBIC_METRE);

#29= IFCPROPERTYSINGLEVALUE('IsPublic', '*', 'TRUE', *);

#30= IFCQUANTITYAREA(NetCeilingArea, *, *, 0.0, *);

#31= IFCQUANTITYAREA(GrossWallArea, *, *, 0.0, *);

#32= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 12.0, *);

286

#33= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#69, #43), LOGICALAND,
REQUIREMENT, *);

#34= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 1200.0, *);

#35= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 500.0, *);

#36= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 10.0, *);

#37= IFCELEMENTQUANTITY(0I2U$B16j2MxoYXUo7hwhi, *, *, *, *, (#59, #8, #31, #55,
#30, #68, #45, #2, #64, #3));

#38= IFCSPACETYPE ('3i8EHLgFP9nu3Av2oYJaVb', *, name!, description, *, (#10, #37),
*, *, *, EXTERNAL, longname);

#39= IFCPROPERTYSINGLEVALUE('PubliclyAccessible', '*', 'FALSE', *);

#40= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #13, (#45));

#41= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#51, #34), LOGICALAND,
REQUIREMENT, *);

#42= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#66, #24), LOGICALAND,
REQUIREMENT, *);

#43= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 2400.0, *);

#44= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 12.0, *);

#45= IFCQUANTITYLENGTH(FinishCeilingHeight, *, *, 0.0, *);

#46= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 400.0, *);

#47= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 2600.0, *);

#48= IFCELEMENTQUANTITY(3NC66Q7AvCAfKNT4gwSr3W, *, *, *, *, (#25));

#49= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#16, #58), LOGICALAND,
REQUIREMENT, *);

#50= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #1, (#2));

#51= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 1400.0, *);

#52= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #41, (#30));

#53= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 10.0, *);

287

#54= IFCPROPERTYSINGLEVALUE('NetPlannedArea', '*', '1200.0', *);

#55= IFCQUANTITYAREA(NetWallArea, *, *, 0.0, *);

#56= IFCUNITASSIGNMENT((#28, #71, #17));

#57= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #15, (#3));

#58= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 2400.0, *);

#59= IFCQUANTITYAREA(NetFloorArea, *, *, 0.0, *);

#60= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 2200.0, *);

#61= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (), LOGICALAND, REQUIREMENT, *);

#62= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 300.0, *);

#63= IFCPROPERTYSINGLEVALUE('IsExternal', '*', 'FALSE', *);

#64= IFCQUANTITYLENGTH(GrossPerimeter, *, *, 0.0, *);

#65= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 400.0, *);

#66= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 2600.0, *);

#67= IFCRELDEFINESBYPROPERTIES(3iRJFZcpT8rBp3s9rKQUOB, *, *, *, (#27), #48);

#68= IFCQUANTITYLENGTH(Height, *, *, 0.0, *);

#69= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 2800.0, *);

#70= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #21, (#8));

#71= IFCSIUNIT(*, .LENGTHUNIT, $, .METRE);

ENDSEC;

END-ISO-10303-21;

288

APPENDIX 4

ISO-10303-21;

HEADER;

FILE_DESCRIPTION (

 ('TestProject Long'),

 '2;1');

FILE_NAME (

 'TestProject.ifc',

 '2015/11/05T14:31:16',

 ('test'),

 ('test@test.com'),

 'UFPOR APP 0.0.1',

 'UFPOR DEMO beta',

 'test.com');

FILE_SCHEMA (('IFC4RC4'));

ENDSEC;

DATA;

#1= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 300.0, *);

#2= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO, null,
400.0, *);

#3= IFCRELDECLARES(04IXQz60n5$R3IfFDsai00, *, 'null', 'null', #29, (#39));

#4= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #57, (#12));

#5= IFCSIUNIT(*, .LENGTHUNIT, $, .METRE);

#6= IFCQUANTITYAREA(NetCeilingArea, *, *, 0.0, *);

#7= IFCQUANTITYAREA(GrossWallArea, *, *, 0.0, *);

#8= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 2400.0, *);

#9= IFCPROPERTYSINGLEVALUE('IsPublic', '*', 'TRUE', *);

#10= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 2800.0, *);

289

#11= IFCRELDEFINESBYPROPERTIES(0g2b181mTF5uuwbjGrZw_c, *, *, *, (#29), #48);

#12= IFCQUANTITYAREA(NetFloorArea, *, *, 0.0, *);

#13= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #40, (#55));

#14= IFCPROPERTYSET(0zzoOA49nFC9E75Y83OvCb, *, *, *, (#58, #27, #9, #15, #25,
#24, #68));

#15= IFCPROPERTYSINGLEVALUE('GrossPlannedArea', '*', '1400.0', *);

#16= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 400.0, *);

#17= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 10.0, *);

#18= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#30, #8), LOGICALAND,
REQUIREMENT, *);

#19= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#56, #43), LOGICALAND,
REQUIREMENT, *);

#20= IFCQUANTITYAREA(NetFloorArea, *, *, 0.0, *);

#21= IFCQUANTITYLENGTH(Height, *, *, 0.0, *);

#22= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #64, (#72));

#23= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 2400.0, *);

#24= IFCPROPERTYSINGLEVALUE('PubliclyAccessible', '*', 'FALSE', *);

#25= IFCPROPERTYSINGLEVALUE('NetPlannedArea', '*', '1200.0', *);

#26= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #67, (#21));

#27= IFCPROPERTYSINGLEVALUE('IsExternal', '*', 'FALSE', *);

#28= IFCSIUNIT(*, .AREAUNIT, $, .SQUARE_METRE);

#29= IFCPROJECT ('06UCsZcYj03u4CthbWZeds', $, TestProject, $, $, TestProject Long,
$, $, #60);

#30= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 2800.0, *);

#31= IFCRELDEFINESBYTYPE(null, *, 'null', 'null', #39, (#70));

#32= IFCQUANTITYLENGTH(FinishCeilingHeight, *, *, 0.0, *);

#33= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 2600.0, *);

#34= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#2, #1), LOGICALAND, REQUIREMENT,
*);

290

#35= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 2200.0, *);

#36= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 10.0, *);

#37= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #34, (#41));

#38= IFCELEMENTQUANTITY(1kc59Wurf2P94ZkRLMc4lu, *, *, *, *, (#20, #55, #7, #74,
#6, #21, #32, #72, #41, #51));

#39= IFCSPACETYPE ('null', *, name!, description, *, (#14, #38), *, *, SPACE_COMPLEX,
EXTERNAL, longname);

#40= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#62, #35), LOGICALAND,
REQUIREMENT, *);

#41= IFCQUANTITYLENGTH(GrossPerimeter, *, *, 0.0, *);

#42= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#52, #36), LOGICALAND,
REQUIREMENT, *);

#43= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 1200.0, *);

#44= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #73, (#7));

#45= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#66, #16), LOGICALAND,
REQUIREMENT, *);

#46= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 12.0, *);

#47= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#33, #50), LOGICALAND,
REQUIREMENT, *);

#48= IFCELEMENTQUANTITY(27FG_JMU1CG9Nt_yxGbhfP, *, *, *, *, (#12));

#49= IFCRELAGGREGATES(0BL$j4TGb6OPbWUBwHibvJ, *, 'null', 'null', #29, (#70));

#50= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 2200.0, *);

#51= IFCQUANTITYLENGTH(NetPerimeter, *, *, 0.0, *);

#52= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 12.0, *);

#53= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #42, (#32));

#54= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #45, (#51));

#55= IFCQUANTITYAREA(NetFloorArea, *, *, 0.0, *);

#56= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 1400.0, *);

291

#57= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#59, #71), LOGICALAND,
REQUIREMENT, *);

#58= IFCPROPERTYSINGLEVALUE('ReferenceId', '*', '1234', *);

#59= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 400.0, *);

#60= IFCUNITASSIGNMENT((#69, #5, #28));

#61= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #19, (#6));

#62= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 2600.0, *);

#63= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #47, (#74));

#64= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#46, #17), LOGICALAND,
REQUIREMENT, *);

#65= IFCRESOURCECONSTRAINTRELATIONSHIP(null, null, #18, (#20));

#66= IFCMETRIC ('MAX_VALUE', null, HARD, null, *, *, *, LESSTHANOREQUALTO,
null, 500.0, *);

#67= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (), LOGICALAND, REQUIREMENT, *);

#68= IFCPROPERTYSINGLEVALUE('HandicapAccessible', '*', 'TRUE', *);

#69= IFCSIUNIT(*, .VOLUMEUNIT, $, .CUBIC_METRE);

#70= IFCSPACE('2Z0l10u8z8kQd1Dt_8AUvf', $, $, $, $, $, $, $, COMPLEX, $, $);

#71= IFCMETRIC ('MIN_VALUE', null, HARD, null, *, *, *, GREATERTHANOREQUALTO,
null, 200.0, *);

#72= IFCQUANTITYLENGTH(FinishFloorHeight, *, *, 0.0, *);

#73= IFCOBJECTIVE ('null', *, HARD, *, *, *, *, (#10, #23), LOGICALAND,
REQUIREMENT, *);

#74= IFCQUANTITYAREA(NetWallArea, *, *, 0.0, *);

ENDSEC;

END-ISO-10303-21;

