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ABSTRACT

The author has developed a suite of algorithms for solving the perturbed Lam-

bert’s problem in celestial mechanics. These algorithms have been implemented as

a parallel computation tool that has broad applicability. This tool is composed of

four component algorithms and each provides unique benefits for solving a particular

type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration)

for solving the unperturbed Lambert’s problem. This algorithm not only provides a

“warm start” for solving the perturbed problem but is also used to identify which

of several perturbed solvers is best suited for the job. The second algorithm solves

the perturbed Lambert’s problem using a variant of the modified Chebyshev-Picard

iteration initial value solver that solves two-point boundary value problems. This

method converges over about one third of an orbit and does not require a Newton-

type shooting method and thus no state transition matrix needs to be computed. The

third algorithm makes use of regularization of the differential equations through the

Kustaanheimo-Stiefel transformation and extends the domain of convergence over

which the modified Chebyshev-Picard iteration two-point boundary value solver will

converge, from about one third of an orbit to almost a full orbit. This algorithm

also does not require a Newton-type shooting method. The fourth algorithm uses

the method of particular solutions and the modified Chebyshev-Picard iteration ini-

tial value solver to solve the perturbed two-impulse Lambert problem over multiple

revolutions. The method of particular solutions is a shooting method but differs

from the Newton-type shooting methods in that it does not require integration of

the state transition matrix. The mathematical developments that underlie these

four algorithms are derived in the chapters of this dissertation. For each of the al-
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gorithms, some orbit transfer test cases are included to provide insight on accuracy

and efficiency of these individual algorithms. Following this discussion, the combined

parallel algorithm, known as the unified Lambert tool, is presented and an explana-

tion is given as to how it automatically selects which of the three perturbed solvers to

compute the perturbed solution for a particular orbit transfer. The unified Lambert

tool may be used to determine a single orbit transfer or for generating of an extremal

field map. A case study is presented for a mission that is required to rendezvous with

two pieces of orbit debris (spent rocket boosters). The unified Lambert tool software

developed in this dissertation is already being utilized by several industrial partners

and we are confident that it will play a significant role in practical applications, in-

cluding solution of Lambert problems that arise in the current applications focused

on enhanced space situational awareness.
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1. INTRODUCTION

Lambert’s problem is the classical two-point boundary value problem (TPBVP)

in celestial mechanics that was first posed and solved by Johann Heinrich Lambert in

1761. It is known to have a unique solution for the fractional orbit transfer between

prescribed positions with a prescribed “time of flight”. Solving this problem requires

determining the orbital arc (typically, solving for the initial velocity) connecting pre-

scribed initial and final position vectors, which correspond to the specified flight time.

In the modern literature, Richard Battin [1] developed an immortal and the most

widely used and general algorithm for solving the unperturbed Lambert problem

(Keplerian motion). His universal algorithm generates not only the unique solution

for the fractional orbit case, but also admits the multiple solutions associated with

multiple revolution orbit transfers and admits hyperbolic orbit arcs.

The most common solution approach for generalizing the Lambert problem to

include perturbations is to utilize the state transition matrix sensitivity of the final

state with respect to the initial velocity, and iterate via Newton’s method on the three

components of initial velocity to “hit” the final desired position at the prescribed final

time. The unperturbed Lambert solution can be used as an efficiently computable

“warm start” to solve the perturbed problem.

One motivation for this research is to respond to the various challenges in Space

Situational Awareness (SSA) with a difficult “data association” problem. Short

tracks of many newly observed objects, widely separated in time, must be processed

to determine orbits and correlate the observations of tracked objects, if possible,

with each other and with existing space object data bases. For the case of radar

measurements, a full position vector can be formed from measured range vectors at

1



two measured epochs. This naturally gives rise to a Lambert-type problem statement

to connect any pair of measurements, conjectured to be the same object, with an

orbit arc consistent with the equations of motion.

In the current state of the practice, hundreds of thousands of hypotheses must

frequently be tested to find feasible preliminary orbits connecting time-displaced

short tracks of unknown space objects. These preliminary orbits and the underlying

data associations are taken as the starting conjecture and orbit estimates for further

correlation. “Short” tracks may be separated by up to several orbits, so ignoring

the effects of perturbations will typically introduce residual errors much larger than

the measurement errors, which can obviously corrupt the data association process.

In the current state of practice for processes involving radar measurements, data

association hypotheses are tested for preliminary orbit estimation using the Keple-

rian Lambert solutions for sufficiently short arcs, but higher force model precision is

needed to accommodate hypothesis testing over longer time intervals where neglect-

ing perturbations can lead to larger propagation errors than measurement errors. It

is desirable to have a general and efficient Lambert algorithm that permits a state

of the art force model. When more than several hundred thousand hypotheses are

tested daily (including perturbations), the computational cost can exceed many CPU

days per month. The anticipation of a new radar space fence giving an order of mag-

nitude increase to ∼ 200, 000 more presently un-trackable debris objects (visible to

our sensors) means that already high computational costs are about to dramatically

increase [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

Testing millions of hypotheses will be required to solve the data association prob-

lem. Also, “all-on-all” conjunction analysis and probability of collisions will be ex-

tremely difficult using existing orbit propagation tools. Thus the issue of finding an

optimal solution to a generally perturbed TPBVP lies near the heart of computa-
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tional challenges in SSA. The inclusion of perturbations in Lambert’s problem and

the development of more efficient and robust methods are therefore of strong interest

to advance SSA.

In addition to the data association problem, which deals with tracking, there is

also the problem of debris removal that must be considered. The satellite collision

of Iridium and Kosmos, in 2009, demonstrated the seriousness of the orbit debris

problem. In an instant hundreds of thousands of small, presently un-trackable frag-

ments with much higher than hypervelocity bullet speeds began orbiting the Earth.

This debris is hazardous to operational satellites and reducing the risk of future col-

lisions is possible by rendezvous, capture and de-orbit missions to remove the largest

and/or most dangerous derelict objects. There are over 500 USA-launched spent

rocket boosters in low Earth orbit. Considering the possibility that a “debris miti-

gation” spacecraft can be developed to de-orbit spacecraft in neighboring orbits, we

have an “orbiting traveling salesman” problem to find the optimal sequence. Deter-

mining the globally optimal sequence of maneuvers for retrieving orbital debris can

require simulating thousands of feasible transfer trajectories. The ∆v cost for each

must be computed and displayed in an extremal field map (EFM) in order to effec-

tively distinguish globally optimal from infeasible and sub-optimal orbit maneuver

regions, as a function of take-off and arrival time.

The focus of this dissertation is the development of a unified Lambert tool (ULT)

that has led to four algorithms, one that solves the Keplerian problem and three

that solve the perturbed Lambert’s problem. These three perturbed algorithms all

make use of modified Chebyshev-Picard iteration (MCPI) in some way, shape of

form. The first algorithm, a-iteration or p-iteration, is a variant of a well-known

Keplerian Lambert solver that reduces the TPBVP problem to an iteration on the

semimajor axis (semilatus rectum) until convergence upon a solution that satisfies
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the specific boundary conditions with the desired time of flight [16]. This is essen-

tially the classical algorithm adopted as a convenient warm start for the perturbed

algorithms. However, any solution of the Keplerian Lambert problem could be used

for the warm start. The arc-length or true anomaly angle spanned by the transfer

trajectory is the parameter that governs the automated selection of the appropriate

perturbed algorithm, and the selection is based on the respective algorithm conver-

gence characteristics. The second algorithm solves the perturbed problem using the

standard MCPI-TPBVP algorithm [17, 18], which does not require a Newton-like

shooting method, however the domain of convergence is limited to about one third

of an orbit. The third algorithm extends this domain of convergence to about ninety

percent of a transfer orbit period through regularization with the Kustaanheimo-

Stiefel (KS) transformation [19]. This is the next most efficient of the perturbed set

of algorithms. The fourth algorithm uses the method of particular solutions (MPS)

and the MCPI initial value problem (IVP) algorithm for solving multi-revolution

perturbed transfers [20, 21]. This method does require “shooting” but differs from

Newton-like shooting methods in that it does not require propagation of a state tran-

sition matrix. This leads to efficiency and also permits ease of parallelization. These

algorithms accommodate state of the art force models and the ULT as a whole is

implemented in C/C++ and in parallel, using message passing interface (MPI), for

high performance computation on a 192 core computer cluster. The mathematics

underlying each algorithm are developed in this dissertation.

Variations of MCPI play a major role in each of the four methods (except a-

and p-iteration) in the ULT, and thus a detailed description of Orthogonal Approx-

imation (Chap 2), the MCPI IVP and BVP Formulations (Chap 3), and Recent

Enhancements (Chap 4) are given before developing the algorithms. The following

chapters build on these foundational developments starting with KS Regularization
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(Chap 5) and MPS (Chap 6). A formulation for solving low thrust transfers orbit

transfers using MCPI and MPS is also discussed (Chap 7). Chapter 8 fuses these

orbit transfer techniques together into the ULT. This is followed by a demonstration

of the parallel implementation of the ULT for generating EFM (Chap 9). Finally

this dissertation concludes with a summary of the key contributions of this work and

discusses the implications for future research.
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2. ORTHOGONAL APPROXIMATION

A derivation for approximating a “general” smooth function of one variable is

presented in this chapter. The discrete orthogonality of Chebyshev polynomials is

used for efficiently determining the coefficients of the approximated function. The

linear combination of basis functions also allows efficient analytical integration to be

carried out through the Picard iteration computations presented in Chapter 3.

2.1 Function Approximation

Function approximation is a mathematical procedure whereby a certain target

function is approximated with another approximating function that closely matches

the “target/true” function. This is an extremely useful technique when the target

function is “difficult to work with”. For example, the approximation may be far

easier to integrate than the true function. Consider a satellite in orbit about the

Earth. It’s motion is described by a nonlinear differential equation that is a func-

tion of position, velocity, gravitational acceleration and time. Given certain orbital

information (i.e. position, velocity, acceleration) at a particular instant in time, one

may determine these same parameters again at some future time by integrating the

differential equation of motion that describes the orbit. In reality, many situations

require the integration to be carried out numerically, and thus obtaining an accur-

ate approximation of the function to be integrated can be crucial to arriving at the

correct answer (to within a desired tolerance).

Approximating the true function is ideally done in a way that minimizes the

difference (or error) between the true function and the approximate function. Least

squares technique is a common method that includes a metric for determining the

quality of an approximation. Once a good approximation is achieved, i.e. the error
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falls below a certain desired threshold, the approximated function may be used in

place of the true function to predict future values of the function or its integral with

known bounds on approximation accuracy. In general, the desired error threshold

value is selected by the user and may be varied depending on the degree of precision

required for a particular calculation.

There are an infinite variety of ways to approximate a function. If a linear combin-

ation of basis functions is used, one important property is that the basis functions be

“complete”. Completeness means, for practical purposes, that any smooth function

can be replaced to arbitrary accuracy if enough measurements and basis functions

are used. An interesting approximation technique is the use of the orthogonal Cheby-

shev polynomials (Appendix A), developed by the Russian mathematician, Rafnuty

Lvovich Chebyshev. Chebyshev polynomials play an important role in the numerical

integration technique known as modified Chebyshev-Picard iteration. More on this

in the following chapters.

One of the great challenges associated with function approximation is the limit-

ation imposed by computers. Obviously floating point word length (“machine pre-

cision”) and the frequently competing demands of speed, precision and storage con-

straints provide an implicit bound on arithmetic precision achievable. Approximating

functions of more than one variable, that require hundreds of terms to ensure that the

desired error threshold is met, may require excessive computational power and time.

If arbitrary basis functions are chosen, one frequently encounters large matrices that

must be inverted to compute the coefficients of the approximated function. Further-

more, the larger the number of basis functions, the more expensive the coefficients

are to compute. If such calculations are to be performed in real-time, and possibly

on-board spacecraft, it is vital that computational efficiency be optimized accord-

ingly. Orthogonality of basis functions leads to diagonalization of the matrix that
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must be inverted and therefore bypasses the expense and accuracy loss of matrix

inversion. The cosine distribution of nodal points are consistent with discrete ortho-

gonality of Chebyshev polynomials that is known to typically lead to near uniform

approximation errors. Near uniform approximation errors are very attractive for the

applications considered in this dissertation.

2.2 Domain Transformation

The function to be approximated in this section is a single-valued function of one

independent variable (x), and is given by g(x) in the following derivation.

g(x), {xmin ≤ x ≤ xmax} (2.1)

The first step is to transform the function from its current domain onto a domain

that has lower and upper bounds of −1 and 1 respectively. It is necessary that

this transformation be carried out as the classical Chebyshev polynomials are only

defined on the interval from −1 to 1. The transformation is done by introducing

a new independent variable, ξ, such that {−1 ≤ ξ ≤ 1}. The forward and reverse

transformations are given in Eqs 2.2 and 2.3 respectively.

x(ξ) = xmin + (ξ + 1) (xmax − xmin) /2 (2.2)

ξ(x) = 2 (x− xmin) / (xmax − xmin)− 1 (2.3)

There are an infinity of other nonlinear mappings of x onto {−1 ≤ ξ ≤ 1}. The

above linear transformation is the most widely used, however [22] introduces an

alternate asymmetric nonlinear transformation for gravitation field modeling. When

ξ = 1 is substituted into Eq. 2.2, the result is x(1) = xmax, and similarly for ξ = −1
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the result is x(−1) = xmin. As desired, this maps the x values from the function g(x)

onto the [−1, 1] domain. All the function approximation calculations are carried

out while the data/function is in this form. Once the calculation is complete, the

data can be mapped back to the original domain using Eq. 2.3. When ξ(x) = 1 is

substituted into Eq. 2.3, the result xmax = x, and similarly for ξ(x) = −1 the result

is xmin = x. Substituting the forward transformation into Eq. 2.1 gives Eq. 2.4.

This is the “transformed” function that is to be approximated.

f(ξ) ≡ g(x(ξ)) = g (xmin + (ξ + 1) (xmax − xmin) /2) (2.4)

2.3 Approximation and Error

The approximation of f(ξ) may be written as the sum of the N + 1 polynomial

terms, where {φ0(ξ), φ1(ξ), ..., φN(ξ)} are linearly independent basis functions, and

{a0, a1, ..., aN} are the coefficients of these basis functions. Chebyshev polynomials

are chosen as the basis functions for most of the remainder of this dissertation. The

finite degree polynomials (up to degree N) give the approximation

f(ξ) ≈
N∑
α=0

aαφα(ξ). (2.5)

For discrete measurement samples, a set of sample points or nodes (Section 2.6)

are introduced. These are given by {ξ0, ξ1, ..., ξM ;M ≥ N}. The sample points

(nodes) are the locations where actual values of the true function are computed.

The difference between the true value and the approximated value at each measure-

ment node is known as the residual approximation error and is given by:

rj = f(ξj)−
N∑
α=0

aαφα(ξj); j = 0, 1, ...,M. (2.6)
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Here rj is the residual at the jth specific sample point, f(ξj) is the value of the

true function the jth sample point, and the “summation” term is the approximating

function.

2.4 Vector-matrix Notation

In vector-matrix notation Eq. 2.6 becomes the linear system

r = f− Φa, (2.7)

where

f =



f(ξ0)

f(ξ1)

...

f(ξM)


, Φ =



φ0(ξ0) φ1(ξ0) · · · φN(ξ0)

φ0(ξ1) φ1(ξ1) · · · φN(ξ1)

...
...

. . .
...

φ0(ξM) φ1(ξM) · · · φN(ξM)


, a =



a0

a1
...

aN


. (2.8)

Eq. 2.7 can be rearranged into the more familiar notation e = b−Ax = 0 (i.e.

Ax = b), where f is the b vector, A is the Φ matrix, and x is the a vector of coeffi-

cients that we wish to solve for. The least squares minimization of rTWr leads to a

solution for a (the normal equations) in Eq. 2.9, where W = diag
{

1
2
, 1, 1, ..., 1, 1, 1

2

}
is a positive definite weight matrix chosen to preserve orthogonality. This weight mat-

rix together with “cosine sampling” discussed below guarantee discrete orthogonality

of Chebyshev polynomial approximation with ΦTWΦ diagonalized. A derivation of

least squares and a mathematical explanation for the chosen weight are given in

Appendix B, sections B.1 and B.2 respectively.

a =
(
ΦTWΦ

)−1
ΦTW f. (2.9)
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2.5 Orthogonality Conditions

The explicit solution for the coefficients of Eq. 2.9 is given by the independ-

ent/uncoupled ratios of inner products as

aα =
〈φα(ξ), f(ξ)〉
〈φα(ξ), φα(ξ)〉

≡

M∑
j=0

Wjφα(ξj)f(ξj)

M∑
j=0

Wjφ2
α(ξj)

≡ 1

cα

M∑
j=0

Wjφα(ξj)f(ξj), forα = 0, 1, 2, ..., N.

(2.10)

An important special case arises when the Chebyshev polynomials {T0(ξ), T1(ξ), ..., TN (ξ)}

are used as the basis functions, namely {φ0(ξ), φ1(ξ), ..., φN (ξ)} = {T0(ξ), T1(ξ), ..., TN (ξ)}. This

is discussed by several authors [23, 24], and is explained in detail in this chapter.

2.6 Cosine Sampling

The M + 1 sample points are chosen using a cosine relationship as shown in

Eq. 2.11. This type of node sampling is also known as the CGL nodes in honor of

Chebyshev-Gauss-Lobatto:

ξj = −cos(jπ/M), j = 0, 1, 2, ...,M. (2.11)

The cosine nodes of Eq. 2.11 locate all M–1 extrema of the Chebyshev polynomials,

as well as the two end points of the approximation interval. It is important to note

that cosine sampling causes the sample points to cluster near the ±1 boundaries as

the degree N of the approximation increases. The errors are smaller near the centers

of the supporting data for an obvious (qualitative) reason, there are redundant data

on either side of the interpolated value. One the other hand, near the ±1 ends of

the interval, there is data only on one side of the interpolation point. The cosine

concentration of nodes near ±1 serves to compensate for the fact that there are no
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measurements to the left of the ξ = −1 and to the right of ξ = +1. It is well known

that Chebyshev least square approximation with cosine nodes usually leads to near

uniform errors in spite of the compact support on the ±1 interval. This charac-

teristic is shown graphically in Figure 2.1, along with uniformly spaced samples for

comparison. Cosine sampling is puposefully chosen to reduce the runge effect. This

effect is clearly illustrated in Figure 2.2. For circumstances where we desire piecewise

continuous approximation of a function over long intervals (e.g. a many-revolution

propagation orbit via MCPI, see Chapter 4), clearly having the approximation ac-

curacy degrade at interval (segment) boundaries is highly undesirable.

An alternative orthogonal approximation can be based on the following cosine

nodes

ξj = −cos((j − 1

2
)π/M), j = 0, 1, 2, ...,M. (2.12)

Note that the nodes of Eq. 2.10 include all of the extrema of Tα(ξ) as well as the

ξ = ±1 end points, whereas the alternative of Eq. 2.12 locates the nodes at the zeros

of Tα(ξ) and does not include the end points. As known in the literature [25] the

nodes of Eq. 2.10 are superior to ensure best approximation accuracy at the ends

of the interval. This is needed for best performance of MCPI under the frequent

situation where approximation is done in piecewise segments and joined head-to-tail

over large domains.
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Uniform Sampling (M = 2)

  Cosine Sampling (M = 2)

Uniform Sampling (M = 3)

  Cosine Sampling (M = 3)

Uniform Sampling (M = 4)

  Cosine Sampling (M = 4)

Uniform Sampling (M = 20)

  Cosine Sampling (M = 20)
−1 0 1

ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ

Figure 2.1: Cosine Nodes [22].

Figure 2.2: The Runge effect is clearly seen in the power series approximation whereas
the Chebyshev approximation with cosine nodes has smaller more nearly uniform
errors.
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2.7 Chebyshev Approximation Coefficients

Upon substituting the sample points of Eq. 2.11 and the chosen weight matrix,

it is easy to verify that orthogonality conditions are satisfied and the least square

coefficients of Eq. 2.10 are specifically

aα =
1

cα

{
M∑
j=0

WjTα(ξj)f(ξj)

}

=
1

cα

{
1

2
Tα(ξ0)f(ξ0) + ...+ Tα(ξM−1)f(ξM−1) +

1

2
Tα(ξM)f(ξM)

}
, (2.13)

where the denominators cα in Eq. 2.13 are the positive constants

cα =
M∑
j=0

WjT
2
α(ξj) =

{
1

2
T 2
α(ξ0) + T 2

α(ξ1) + ...+ T 2
α(ξM−1) +

1

2
T 2
α(ξM)

}
, α = 0, 1, ..., N,

(2.14)

or, more explicitly it can be verified (Appendix B, Section B.2.3) that the denomin-

ator inner products reduce to simply

c0 = 〈T0(ξ), T0(ξ)〉 = M

cα = 〈Tα(ξ), Tα(ξ)〉 = M/2, α = 1, 2, ..., N − 1

c
N

= 〈TN(ξ), TN(ξ)〉 = M, if M = N (interpolation case)

c
N

= 〈TN(ξ), TN(ξ)〉 = M/2, if M > N (least squares case)


. (2.15)

It is important to note that for M ≥ N the least squares method may be used for

determining the solution (coefficients) for the system. However, if M = N the least

squares Chebyshev approximation reduces to the Chebyshev interpolation.
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The final coefficients for least square approximation are computed directly from

the discrete inner products of Eq. 2.13 as

a0 = 〈T0(ξ),f(ξ)〉
〈T0(ξ),T0(ξ)〉 = 1

M { 1
2
T0(ξ0)f(ξ0)+...+T0(ξM−1)f(ξM−1)+

1
2
T0(ξM )f(ξM )}

aα = 〈Tα(ξ),f(ξ)〉
〈Tα(ξ),Tα(ξ)〉 = 2

M { 1
2
Tα(ξ0)f(ξ0)+...+Tα(ξM−1)f(ξM−1)+

1
2
Tα(ξM )f(ξM )}, α=1,2,...,N−1

aN = 〈TN (ξ),f(ξ)〉
〈TN (ξ),TN (ξ)〉 = 1

C
N
{ 1

2
TN (ξ0)f(ξ0)+...+TN (ξM−1)f(ξM−1)+

1
2
TN (ξM )f(ξM )},


cN=M,M=N

cN=M
2
,M>N



.

(2.16)

Note that the coefficients of Eq. 2.16 are computed independently, and the absolute

value of each coefficient is the maximum contribution of that term – this enables

convenient means for obtaining efficient and accurate truncated approximations, as

well as insight for adapting the order of the approximation.

2.8 Vector Matrix Notation

If a vector-matrix form is desired for the least squares solution for the coefficients,

Eq. 2.16 can be expressed as

a =
(
ΦTWΦ

)−1
TW f = V TW f = Af. (2.17)

This is in the same form as the least squares minimization Eq. 2.9, where
(
ΦTWΦ

)−1
=

V = diag
{

1
c0
, 1
cα
, 1
cα
, ..., 1

cα
, 1
cα
, 1
cN

}
, T = ΦT and W and f are the same. The Cheby-

shev least square operator matrix (A) is simply given by Eq. 2.18 for M = N , and

Eq. 2.19 for M > N . Note that the only difference between the two A matrices is

the final row.
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For M = N ,

A =



1
2

1
M
T0(ξ0)

1
M
T0(ξ1) · · · 1

M
T0(ξM−1)

1
2

1
M
T0(ξM)

1
2

2
M
T1(ξ0)

2
M
T1(ξ1) · · · 2

M
T1(ξM−1)

1
2

2
M
T1(ξM)

...
...

. . .
...

...

1
2

2
M
TN−1(ξ0)

2
M
TN−1(ξ1) · · · 2

M
TN−1(ξM−1)

1
2

2
M
TN−1(ξM)

1
2

1
M
TN(ξ0)

1
M
TN(ξ1) · · · 1

M
TN(ξM−1)

1
2

1
M
TN(ξM)


. (2.18)

For M > N ,

A =



1
2

1
M
T0(ξ0)

1
M
T0(ξ1) · · · 1

M
T0(ξM−1)

1
2

1
M
T0(ξM)

1
2

2
M
T1(ξ0)

2
M
T1(ξ1) · · · 2

M
T1(ξM−1)

1
2

2
M
T1(ξM)

...
...

. . .
...

...

1
2

2
M
TN−1(ξ0)

2
M
TN−1(ξ1) · · · 2

M
TN−1(ξM−1)

1
2

2
M
TN−1(ξM)

1
2

2
M
TN(ξ0)

2
M
TN(ξ1) · · · 2

M
TN(ξM−1)

1
2

2
M
TN(ξM)


. (2.19)

In general, matrix A is an [N + 1] × [M + 1] matrix. The number of rows is

determined by the degree of the polynomial (number of terms), and the number of

columns is determined by the number of sample points (ξ). Of course when M = N ,

the matrix A is square and it is given by Eq. 2.18.

2.9 Return to Approximation (Section 2.3)

Having completed the derivation to compute the coefficients (a) we return to

Eq. 2.5, also shown below on the L.H.S. of Eq. 2.20. The approximated function

is determined as the inner product of the coefficients (aα) with the basis function

(φα(ξ)), or in our case Chebyshev polynomials (Tα(ξ)). Thus the function f(ξ) on the

L.H.S. of Eq. 2.20 becomes equivalent to the sum on the R.H.S. Using summation
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notation the function is approximated as follows. Note that in this notation the first

element of V and W is the zero-zero element.

f(ξ) ≈
N∑
α=0

aαφα(ξ)=
N∑
α=0

{
M∑
j=0

VαjWαjTα(ξj)f(ξj)

}
Tα(ξ) (2.20)

2.10 Summary

A derivation for approximating a “general” function of one variable is presented

in this chapter. The first step transforms the function onto the domain [−1, 1] for

which the classical Chebyshev are exist. This is followed by a discussion on func-

tion approximation using the orthogonal Chebyshev polynomials. The least squares

method for determining the coefficients of the Chebyshev polynomials, and the spe-

cific weight matrix is discussed. It highlights the orthogonality conditions which

dictates that no matrix inversion is required, greatly simplifying the overall calcula-

tion. The absence of a matrix inversion together with a complete set of orthogonality

functions mean that we have a spectral approximation that can efficiently approach

machine precision. With an efficient, robust and adaptive method for computing the

coefficients of the approximated function, we proceed on to Chapter 3 and discuss

how these come into play when combined with Picard iteration.
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3. MCPI IVP AND BVP FORMULATIONS

This chapter provides a detailed mathematical explanation of the MCPI formu-

lation for solving general IVPs and TPBVPs. These methods are extended upon in

the latter chapters of this dissertation to solve problems that do not easily fit into

the standard MCPI IVP and TPBVP formulations.

3.1 Modified Chebyshev Picard Iteration

MCPI is an attractive numerical method for solving linear or nonlinear differential

and integral equations, and it combines the discoveries of two great mathematicians:

Emile Picard (Picard Iteration) and Rafnuty Chebyshev (Chebyshev Polynomials).

A brief description of each technique is given in the following sub-sections, with the

more detailed mathematical description of each given in Appendix A and C.

MCPI differs from the well-known integrators used widely in astrodynamics, such

as Gauss-Jackson, Runge-Kutta-Nystrom and ODE45 in that MCPI is an iterative

path approximation numerical integrator rather than a time-step extrapolation inte-

grator. That is, a relatively long state trajectory arc is approximated continuously

and can be updated at all time nodes simultaneously on each path iteration. As will

be evident below, a slight modification of the MCPI initial value solver makes the

algorithm applicable to TPBVPs. The solution of TPBVPs utilizing MCPI does not

require a local-linearization-based shooting method.

3.1.1 Picard Iteration

Picard iteration was developed during the mid to late 1800s by Émile Picard

following a first discovery by Joseph Liouville in 1833. It is a successive path ap-

proximation technique that is generally used for proving the existence and uniqueness
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of solutions to the IVP. In later years Picard extended the capabilities to deal with

systems of second order differential equations, and this also allowed natural solutions

to the BVP to be computed [26]. A number of other people also worked to develop

Picard iteration [27, 28, 29, 30, 31]

Over a large space of time intervals and starting approximations for most dy-

namical systems, Picard iteration is a contraction mapping (as discussed below) that

converges to the solution satisfying both the differential equation and the boundary

conditions. Consider the nonlinear first order differential equation

dx(t)

dt
= f(t,x(t)), t ∈ [t0, tf ], x ∈ Rn+1, f ∈ Rn+1, (3.1)

where f is a smooth differentiable vector function.

Picard observed that the first order differential equation (Eq. 3.1) with an ini-

tial condition x(t0) = x0, can be rearranged, without approximation, to obtain the

following integral equation:

x(t) = x(t0) +

∫ t

t0

f(τ,x(τ))dτ. (3.2)

This re-arrangement does not appear to have made any progress towards finding

the solution since the unknown trajectory x(t) is contained within the integrand on

the right hand side. However, given some starting estimate x 0(t) for the path, a

sequence of approximate solutions xi(t) (where i = 1, 2, 3...,∞) of the true solution

x(t) that satisfies this differential equation and the prescribed boundary conditions,

may be obtained through Picard iteration using the following Picard sequence of
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approximate paths {x0(t),x1(t), ..., xi−1(t),xi(t), ...}:

xi(t) = x(t0) +

∫ t

t0

f(τ,xi−1(τ))dτ, i = 1, 2, ... (3.3)

Picard proved an important convergence theorem that essentially states that for

smooth, differentiable, single-valued nonlinear functions f (t,x(t)), the Picard se-

quence of trajectories represents a contraction operator that converges to the unique

solution of the IVP. That is, if there is a time interval |tf − t0| < δ and a starting

trajectory x0(t) satisfying ‖x0(t)− x(t)‖ < ∆, for suitable finite bounds (δ,∆), then

the Picard sequence converges to the unique solution of Eq. 3.1. Bai [18] discusses

the literature on estimating the theoretical convergence bounds (δ,∆). As a practi-

cal matter the available theory for estimating (δ,∆) is known to typically give very

conservative estimates and for general nonlinear systems, the convergence domain

can be accurately estimated through adaptive numerical methods. Picard did not

establish a numerically attractive means to compute the sequence of integrals, so as

a numerical method to approximate x(t), Picard iteration had limited adoption until

the mid 1900s. The rate of convergence of Picard iteration depends on the particu-

lar problem and is typically an (approximately) geometric rate. Insights have been

obtained recently that, for the main problem in astrodynamics (orbit propagation),

make Picard iteration attractive compared to current state of the practice ordinary

differential equation solvers.

3.1.2 Chebyshev Polynomials

In 1857 the Russian mathematician, Rafnuty Lvovich Chebyshev, developed a set

of orthogonal polynomials that are now referred to as Chebyshev polynomials [23].

Following this a number of authors made contributions using Chebyshev polynomials:

[24, 32, 33, 34, 35, 36, 37, 38]. Orthogonality means that every pair of polynomials in
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a set of basis functions are orthogonal to each other (on a specific domain and with

a specific inner product definition). Orthogonality can be defined as a function of

the independent variable τ , over the domain {−1 ≤ τ ≤ 1} in either the continuous

or discretely sampled sense. We will adopt a discrete sampling approach to ortho-

gonality in this dissertation. Orthogonality is extremely important in the field of

approximation theory because it means that the coefficients that linearly combine

the basis functions to approximate a given function can be computed independently

as simple ratios of inner products, with no matrix inversion. The Chebyshev ortho-

gonal polynomials are also a complete set, an arbitrary given continuous function

can always be well approximated, to arbitrary precision, by a sufficient number of

samples and terms in the Chebyshev series (ignoring finite precision of computation

of course).

Chebyshev polynomials are usually generated by the three term recurrence rela-

tion as follows:

T0(τ) = 1, (3.4)

T1(τ) = τ, (3.5)

Tk+1(τ) = 2τTk(τ)− Tk−1(τ), k = 1, 2, ... (3.6)

The classical Picard iteration method for solving IVPs and BVPs had little ad-

option for practical computation until the mid-to-late 1900s. The primary challenge,

that was eventually overcome, was how to efficiently, accurately and adaptively ap-

proximate the integral on each Picard iteration. Clenshaw and Norton [39] developed

an approach that satisfactorily addressed this challenge. They developed a variant of

Picard iteration based on an approximation of the integrand of Eq. 3.3 using Cheby-
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shev polynomials. First the integrand (e.g. orbital differential equation of motion) in

Eq. 3.3 is approximated using the orthogonal Chebyshev polynomials, and then each

term is integrated analytically, term-by-term over the previous path approximation.

The first one (or two, for the second order generalization) coefficients can be used

to satisfy the boundary conditions. Thus each Picard iteration is designed so that it

satisfies the known boundary conditions exactly, and the iteration process leads to a

high precision satisfaction of the differential equation.

3.2 MCPI Notations

The process to compute the coefficients obtained through orthogonal function ap-

proximations in the previous chapter is implemented in the Picard iteration technique

in this chapter. The previous chapter dealt with a general function approximation,

however in this chapter the focus is specifically on approximating the integrand and

carrying out the integration to establish a convergent sequence of trajectory approx-

imations over a given time interval. Notice, assuming we have a problem for which

the Picard sequence will converge from a large family of starting paths x0(t), only the

accuracy of the integrals in the Picard iterations on the final two iterations dictates

the final convergence accuracy. Said another way, we have found that the accuracy

of the force model approximation can be adjusted (if this permits efficiency gains)

during the iteration, consistent with the accuracy of the current path iteration.

The symbols used for the MCPI calculation presented in this chapter differ slightly

from those used for “general function approximation” technique presented in Chapter

2. In particular:

• The sample independent variable ξ are denoted by τ , a transformed time vari-

able.

• The function to be approximated (f(ξ)) is transformed to g(τ), or more spe-
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cifically g(τ,xi−1(τ)) as specified below in Eq. 3.10, approximated by Eq. 3.12.

• The coefficient vector aα are replaced by vectors Fk and βk for approximating

the integrand and the updated state trajectory of the Picard sequence of Eq.

3.3.

• Finally, the generic basis function (φk(ξ)) is replaced specifically with the or-

thogonal Chebyshev polynomials (Tk(τ)).

These notations are adopted in order to maintain consistency with previous public-

ations that incorporate the MCPI derivation.

3.3 Time Domain Transformation

Eq. 3.7 is an ordinary differential equation where t is the independent variable

and x is a vector of dependent variables, typically in seconds. The initial and final

times are given by t0 and tf respectively, and x(t = t0) = x0 is the initial condition.

dx

dt
= f(t,x) (3.7)

In order to use Chebyshev polynomials as the approximating function, the tra-

jectory must be transformed from the time domain (t) onto a domain (τ) ranging

from −1 to 1. The linear transformation adopted is given as follows:

t = w1 + w2τ, w1 = (tf + t0)/2, w2 = (tf − t0)/2, −1 ≤ τ ≤ 1. (3.8)

Differentiating t with respect to τ gives

dt

dτ
= w2, (3.9)
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and multiplying dx
dt

from Eq. 3.7 and dt
dτ

from Eq. 3.9 results in the following slightly

transformed system of ODEs:

dx

dτ
= w2f(w1 + w2τ,x) ≡ g(τ,x). (3.10)

Eq. 3.10 is simply Eq. 3.7 transformed from the time domain into the τ domain.

3.4 First Order Picard Method

Picard Iteration for the transformed system is written by analogy with Eq. 3.2

as

xi(τ) = x0 +

∫ τ

−1
g(s,xi−1(s))ds i = 1, 2, ... (3.11)

3.4.1 Computation of R.H.S. Integrand Approximation

Chebyshev polynomials are used to approximate the integrand on the R.H.S. of

Eq. 3.11. It is important to note that the entire trajectory, most generally (or a large

segment of the trajectory), is approximated on each Picard iteration step. That is,

for each iteration (i) all sample points (τj) are used over a large time interval for

the trajectory approximation. Since this approximation is done within the integral,

the upper index of the summation is only performed to N − 1 (Eq. 3.12) instead of

N , as on the L.H.S. Integration increases the degree of the polynomial from N − 1

to N and therefore care must be taken to ensure that post integration leads to the

same degree polynomial on either side of the Picard iteration expression Eq. 3.11.

g(s,xi−1(s)) =
N−1∑
k=0

Fi−1
k Tk(s) ≡ Fi−1

0 T0(s)+Fi−1
1 T1(s)+Fi−1

2 T2(s)+...+Fi−1
N−1TN−1(s).

(3.12)
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Using the discrete orthogonality property of Chebyshev polynomials derived in

Chapter 2, the coefficient vectors Fi−1
k can be calculated immediately through

Fi−1
k =

M∑
j=0

VkjWkjg(τj,x
i−1(τj))Tk(τj). (3.13)

In Eq. 3.13, W = diag
{

1
2
, 1, 1, ..., 1, 1, 1

2

}
, and V = diag

{
1
M
, 2
M
, 2
M
, ..., 2

M
, 2
M
, 1
M

}
or

V = diag
{

1
M
, 2
M
, 2
M
, ..., 2

M
, 2
M
, 2
M

}
for M = N or M > N respectively. Note also

that in this notation the first element of W and V is the zero-zero element since the

summation starts from zero (i.e. W00 and V00). In order to verify the statements

made in this paragraph the reader should refer to the derivations in the latter sections

of Chapter 2.

The coefficients {F0,F1, ...,FN−1} are computed as the summation of the N − 1

products that are generated through multiplication of the force function g with the

Chebyshev polynomial (Tk), evaluated at the CGL point τj (see Section 2.6).

3.4.2 Computation of LHS

The unknown trajectory (xi(τ)) or L.H.S. of Eq. 3.11 is also written in terms

of an approximating function, the sum of the inner product of coefficients (βk) and

Chebyshev polynomials (Tk(τ)). This is done to allow the L.H.S. and R.H.S. of

Eq. 3.11 to be equated as described in the following section.

xi(τ) =
N∑
k=0

βikTk(τ) ≡ βi0T0(τj)+βi1T1(τj)+βi2T2(τj)+...+βiNTN(τj), j = 0, 1, 2, ...,M.

(3.14)

3.4.3 Substitution: LHS and RHS

Substituting Eq. 3.12 and Eq. 3.14 into Eq. 3.11 results in Eq. 3.15. Since

Picard iteration starts from an initial “transformed time” condition of −1 in the τ
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domain, the first term on the R.H.S. is x(−1).

xi(τ) =
N∑
k=0

βikTk(τ) = x(−1) +

∫ τ

−1

N−1∑
k=0

Fi−1
k Tk(s)ds. (3.15)

Looking at Eq. 3.15 we have “three variables”: Tk(s) and Fi−1
k are known and βik is

unknown. Thus equating the coefficients of Tk(τ) on the L.H.S. and R.H.S. of Eq.

3.15 allows the βik coefficients to be determined in terms of the approximated and

known Fi−1
k coefficients. Several examples are given in Appendix D to demonstrate

this process to derive general formulae for the βik coefficients that are independent of

the selected polynomial degree and the number of sample points. The result is the

following generalized formulae for determining the coefficients from the integration

and the free boundary condition:

βi0 = x0 +
k=N∑
k=1

(−1)k+1βik, (3.16)

βi1 =
1

2

(
2Fi−1

0 − Fi−1
2

)
, (3.17)

βik =
1

2k

(
Fi−1
k−1 − Fi−1

k+1

)
, k = 1, 2, ..., N − 1, (3.18)

βiN−1 =
Fi−1
N−2

2(N − 1)
, (3.19)

and

βiN =
Fi−1
N−1

2N
. (3.20)
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3.4.4 Vector Matrix Notation

The values that were derived in the previous section can be written in a vector

matrix representation as shown in the equations that follow. These developments

permit us to collect one-time computations and various inner products in a way that

makes Picard iteration efficient for modern computation.

βi =



x0 +
(
βi1 − βi2 + βi3 + · · ·+ (−1)N+1βiN

)
1
2

(
2Fi−1

0 − Fi−1
2

)
1
4

(
Fi−1

1 − Fi−1
3

)
...

1
2k

(
Fi−1
k−1 − Fi−1

k+1

)
...

1
2(N−1)F

i−1
N−2

1
2N

Fi−1
N−1



(3.21)

More specifically, the βi coefficients may be “built” through matrix addition and

multiplication as shown in Eq. 3.22. TheRmatrix is given byR = diag
(
1, 1

2k
, ..., 1

2N

)
,

the kth (k = 3, ..., N − 1) column of the first row of the S matrix is calculated

as S(1, k) = (−1)k
(

1
2(k−2) −

1
2k

)
, and F i−1 is the vector of coefficients calculated

through approximation on the R.H.S. of Eq. 3.12. This matrix RS is obviously

invariant for N specified. F i−1 is calculated as F i−1 = Ag, where A = V TW is the

matrix obtained in Chapter 2.
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This F i−1 vector is now used in Eq. 3.22 to obtain the vector of βi coefficients.

Thus the procedure for computing the F i−1 vector of coefficients is: F i−1 = V TWg.

The derivation presented over the last few pages leads to the following equation for

calculating the βi coefficients,

βi = RSF i−1 = RSV TWg. (3.24)

Since the product RSV TW is constant (for N fixed), it obviously maps the calcula-

tion of the force g directly into the new Chebyshev coefficients of the updated Picard

trajectory approximation. The product RSV TW can be computed once and stored

as a single matrix, however it is more convenient to group, compute and store the

matrix product as the “Chebyshev fit matrix” Cf = V TW , and the “Chebyshev

integration matrix” CI1 = RS. The reason for storing the matrix product separately

is that some problems require having the intermediate “fit” result available for other

computations. Thus the ith position coefficients and position vector are respectively

computed as:

βi = CI1Cfg(X i−1) +X0 (3.25)

X i = Cxβ
i. (3.26)

The “initial condition matrix” is X0 = col [x0, 0, 0, ..., 0] εRM+1, the “Chebyshev

interpolation matrix” is Cx, and the solution is given byX i = col {xi (τ0) , ..., xi (τM)}.

The Chebyshev interpolation matrix is essentially T (τ) where the values of τ are

chosen in such a way that the solution is output at the user desired times. This

is not necessarily a cosine distribution, in fact when an ephemeris is required the

desired output will be uniformly spaced time steps. The result in Eqs 3.25 and 3.26

is the MCPI numerical integration method for solving first order ODEs.
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3.5 Second Order Picard Method

A very similar approach is employed for solving second order ODEs. The Picard

iteration for solution of a second order system is given in Eq. 3.27, where the accel-

eration g(xi−1, vi−1), that can be a function of position xi−1 and velocity vi−1 along

the previous iteration, is integrated twice.

xi(τ) = x0 +

∫ τ

−1

{
v0 +

∫ s

−1
g(q,xi−1(q), vi−1(q))dq

}
ds i = 1, 2, ...ds i = 1, 2, ...

(3.27)

In summation notation this may be written as

vi(τ) =
N−1∑
k=0

βikTk(τ) = v(−1) +

∫ s

−1

N−2∑
k=0

Fi−1
k Tk(q)dq, (3.28)

xi(τ) =
N∑
k=0

αikTk(τ) = x(−1) +

∫ τ

−1

N−1∑
k=0

{
v(−1) +

∫ s

−1

N−2∑
k=0

Fi−1
k Tk(q)dq

}
ds. (3.29)

Note the integrand approximation for Picard iteration is applied to velocity, but the

velocity approximation is integrated analytically (without further integrand fitting)

to obtain the kinematically consistent position approximation.

Analogous to the first order case the coefficients for the velocity can be computed

as follows:

βi0 = v0 +
k=N−1∑
k=1

(−1)k+1βik, (3.30)

βi1 =
1

2

(
2Fi−1

0 − Fi−1
2

)
, (3.31)

βik =
1

2k

(
Fi−1
k−1 − Fi−1

k+1

)
, k = 1, 2, ..., N − 1, (3.32)

βiN−2 =
Fi−1
N−3

2(N − 2)
, (3.33)
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βiN−1 =
Fi−1
N−2

2(N − 1)
. (3.34)

The coefficients for position can be computed as follows:

αi0 = x0 +
k=N∑
k=1

(−1)k+1αik, (3.35)

αi1 =
1

2

(
2βi0 − βi2

)
, (3.36)

αik =
1

2k

(
βik−1 − βik+1

)
, k = 1, 2, ..., N − 1, (3.37)

αiN−1 =
βiN−2

2(N − 1)
, (3.38)

αiN =
βiN−1
2N

. (3.39)

The main difference is that the approximation of the forcing function is done

to degree N − 2 instead of N − 1 as integration will be performed twice, and in-

stead of just one integration matrix CI1, there are two matrices, one that allows the

coefficients of the forcing function (acceleration) to be computed in terms of the coef-

ficients of the velocity CI1, and one that allows the coefficients of the velocity to be

computed in terms of the coefficients of the position CI2. The CI2 integration matrix

is one column larger than CI1. The second order MCPI-IVP can be formulated as

follows, where βi are the velocity coefficients, V 0 = col [v0, 0, 0, ..., 0] εRM+1 is the

“initial condition matrix” for velocity, αi are the position coefficients, and V i and

X i are the respective velocity of position solutions. Note that there is no re-fitting

of the velocity in this formulation. The position coefficients are computed directly

from the coefficients of the velocity, thus maintaining kinematic consistency.

βi = CI1Cfg(X i−1,V i−1) + V 0 (3.40)
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V i = Cvβ
i. (3.41)

αi = CI2β
i +X0 (3.42)

X i = Cxα
i. (3.43)

For specified Chebyshev polynomial order and node location, the matrices Cf , CI1,

CI2, Cv,Cx are constant, so a simple matrix multiplication operates on the new force

vector g(X i−1,V i−1) to update the trajectories V i and X i at all nodes. This cal-

culation is carried out at each ith step of the iteration. Each time the βi and αi

coefficients are updated to define the new trajectory approximation for use in the in-

tegrand Eq. 3.11 for the next step (i+1). The the solutions are iteratively improved

until some accuracy requirements are satisfied.

3.6 MCPI Boundary Value Problem

The MCPI-TPBVP algorithm is the first of the perturbed solvers that form part

of the ULT in this dissertation. The formulation presented herein is similar to the

standard MCPI-IVP algorithm in that the trajectory is computed from coefficients,

however since the initial velocity is unknown, the first two coefficients in the series

must be constructed in a way that bypasses the unknown initial velocity and instead

enforces the known initial and final boundary conditions. The entire set of resulting

position coefficients does not require a priori knowledge of the initial velocity, thus

allowing TPBVPs to be solved without using a Newton-type shooting method [17].

This method is convergent over about one third of an orbit and it may be extended

to about ninety percent of an orbit with regularization (see Chap 5 and ref [19]). To

solve the Lambert problem over larger arcs a shooting method (such as MPS) must

be used (see Chap 6 and [21]), and we must admit multiple local solutions.

We present a new formulation to compute the coefficients that differs from Bai’s
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[18] formulation, and follows the developments of the kinematically consistent MCPI-

IVP Picard iteration developed by Macomber [40]. It is mathematically equivalent

to the standard formulation but is attractive as it can be constructed in a sparse

matrix that can be easily coded.

The MCPI-TPBVP method is formulated as a “cascade”. That is the first inte-

gration allows the velocity coefficients (βi) to be obtained in terms of the acceleration

coefficients (F i−1), and the second kinematically consistent, exact integration allows

the position coefficients (αi) to be obtained in terms of the velocity coefficients (βi).

Put another way, the first integration is an integration of the acceleration Chebyshev

fit, the second integration is a simple quadrature and is kinematically consistent.

The coefficients for these two steps are shown below. Note the repeating pattern

that allows these coefficients to be formulated into a sparse matrix for easy coding.

Note however, that the unknown initial velocity appears in the coefficients of αi0,

αi1 and βi0. These two coefficients can be reformulated in terms of the initial and

final position vectors and thus bypass the unknown initial velocity. The velocity

coefficients are computed as follows:

βi0 = v0 +
k=N−1∑
k=1

(−1)k+1βik, (3.44)

βi1 =
1

2

(
2Fi−1

0 − Fi−1
2

)
, (3.45)

βik =
1

2k

(
Fi−1
k−1 − Fi−1

k+1

)
, k = 1, 2, ..., N − 1, (3.46)

βiN−2 =
Fi−1
N−3

2(N − 2)
, (3.47)

βiN−1 =
Fi−1
N−2

2(N − 1)
. (3.48)
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The position coefficients are computed as follows:

αi0 = x0 +
k=N∑
k=1

(−1)k+1αik, (3.49)

αi1 =
1

2

(
2βi0 − βi2

)
, (3.50)

αik =
1

2k

(
βik−1 − βik+1

)
, k = 1, 2, ..., N − 1, (3.51)

αiN−1 =
βiN−2

2(N − 1)
, (3.52)

αiN =
βiN−1
2N

. (3.53)

The first two position coefficients (αi0 and αi1) that contain the unknown initial

velocity are computed using the known initial and final position as follows:

x(−1) =
k=N∑
k=0

αikTk(−1) (3.54)

x(1) =
k=N∑
k=0

αikTk(1) (3.55)

This leads to

αi0 −αi1 +αi2 + ...+ (−1)NαiN = x(−1) (3.56)

αi0 +αi1 +αi2 + ...+αiN = x(1) (3.57)

The first two coefficients can be recovered as shown.

αi0 = x(1) + x(−1)−
(
αi2 +αi4 +αi6 + ...

)
(3.58)
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αi1 = x(1)− x(−1)−
(
αi3 +αi5 +αi7 + ...

)
(3.59)

The position solution is obviously obtained by multiplying the position coefficients

(αi) by the Chebyshev polynomials, where the values of τ are selected by the user

in order to and provide the solution at desired discrete time locations. A “pseudo”

velocity (“∆v” integral of acceleration) can be determined from the current velocity

coefficients (βi) in a similar manner, however it will be offset by the unknown initial

velocity constant. This constant must first be solved for from the position solution.

The procedure for doing this is to equate the two αi0 coefficients shown in Eq. 3.57

and Eq. 3.58. The first one is essentially the “IVP” coefficient and the second is the

“BVP” coefficient. Equating these clearly reveals that the unknown initial velocity

appears linearly and thus can be easily computed. Once this constant is added to

the “∆v” pseudo velocity coefficients (βi) the true velocity may be obtained.

The matrix representation of the MCPI-TPBVP is similar to that of the MCPI-

IVP but differs in that the initial velocity must be reconstructed for the known final

boundary condition. The “pseudo” velocity coefficients are computed as

βi = CI1Cfg(X i−1,V i−1), (3.60)

where g(X i−1,V i−1) is the forcing function (acceleration), Cf is the “Chebyshev

fit matrix”, and CI1 is a sparsely populated “integration matrix”. The position

coefficients are computed as

αi = CB2CI1Cfg(X i−1,V i−1) +X0f . (3.61)

CB2 is the sparsely populated integration matrix. X0f is a vector with the first two

components being xf + x0 and xf − x0 respectively. The remaining elements in this
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vector are zeros. The position solution is computed as

Xi = Cxα
i, (3.62)

and the velocity solution is computed as

V i = Cxβ
i + CxV 0. (3.63)

The “pseudo velocity” Cxβ
i is the integrand of acceleration and differs from the

velocity only through the velocity initial condition. V 0 is a vector where the first

element is v0 and the remaining elements are zeros. v0 is obtained from equating the

αi0 coefficients as described above.

3.7 Chapter Summary

The formulations for the MCPI-IVP and MCPI-BVP were presented in this chap-

ter. An obvious, but simultaneously subtle truth, even though the differential equa-

tion is nonlinear, is that in this implementation of Picard iteration the constants of

integration are always rigorously linearly contained as un-determined coefficients in

the αi0, α
i
1, β

i
0 that can be computed to rigorously satisfy the boundary conditions

on each iteration. The fact that a TPBVP can be solved with iteration (on non-

linearly contained parameters) is an important feature of this approach. It turns

out that there are exactly the required number (2n for a system of n second order

differential equations, n for a system of n first order differential equations) of lin-

early contained free constants on each iteration to specify any combination of initial

position and velocity or terminal position and velocity as boundary conditions. As a

consequence, any combination of initial and terminal linear boundary conditions can

be imposed exactly, on each Picard iteration. So the distinction between solving an
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IVP and a TPBVP reduces to how the first one or two linearly contained coefficient

vectors in the Chebyshev series are determined as a function of boundary conditions.

This truth enables TPBVPs to be solved without a shooting method (based on local

linearizations with respect to initial conditions). The specified boundary conditions

are enforced on the solution on each iteration. This is accomplished for TPBVPs

using a close cousin of the same Picard algorithm used to solve IVPs. Picard itera-

tions converge analogously to refine path approximations whether solving an IVP or

a TPBVP. However, as reported by [18], and consistent with our results in Chapter

5, the details of how the boundary constants enter the Picard formulation does affect

the time interval over which the Picard sequence converges to the path satisfying the

governing differential equations. The IVP version of Picard iteration typically has

about one order of magnitude larger maximum time interval for convergence than

that for the corresponding TPBVP. Quite apart from numerical experiments, on the-

oretical grounds, we can anticipate that Picard iteration methods will necessarily fail

for multi-revolution Lambert problems (known to have multiple solutions) because

the Picard convergence theorem requires the unknown solution to be the unique so-

lution of the differential equations that satisfies the prescribed boundary conditions.

It is well known that multi-revolution TPBVP in celestial mechanics have multiple

solutions for prescribed boundary position vectors and time of flight, while Lambert’s

theorem tells us that the solution is unique for the fractional orbit case. Chapter 5

sheds much more light on this subject and ultimately leads to an important set of

algorithms.
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4. RECENT MCPI ENHANCEMENTS

A brief overview of some recent enhancements made to the MCPI algorithm by

the research group at Texas A&M is presented in this chapter. Much of the work

presented in this chapter is a summary of the following two papers [41, 42], to which

Woollands made significant contributions as a co-author. Some of this work also

formed part of Bani Younes and Macomber’s PhD dissertations [22, 40]. These

enhancements to the general MCPI algorithm are further refined in this dissertation

and thus deserve a brief explanation before proceeding.

4.1 Historical Overview

The original fusion of orthogonal approximation theory and Picard iteration was

introduced by Clenshaw and Norton in 1963 [39]. Feagin also contributed in this area;

his PhD dissertation on Picard Iteration using Chebyshev Approximation established

the first vector-matrix version of Picard iteration utilizing orthogonal basis functions,

in 1973 [43]. In 1980, Shaver wrote a related dissertation giving insights on parallel

computation in an early parallel computer architecture using Picard Iteration and

Chebyshev approximation [44]. Fukushima [45] also addressed parallelization of Pi-

card iteration and again in a particular software and computer architecture, however

his parallel implementation paradoxically did not result in a computational speedup.

Bai and Junkins revisited the Picard-Chebyshev approach and developed im-

proved algorithms for solving IVPs and TPBVPs [46, 17]. They established new

convergence insights (much less conservative that classical bounds) and optimized

the solution of IVPs utilizing vector-matrix formulations that are published in Bai’s

PhD dissertation [18]. Bai and Junkins [46, 17] also showed that MCPI, when ap-

plied to the state/co-state differential equations derived from Pontryagin’s principle,
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led to an accurate and efficient means for indirect calculus of variations based on

trajectory optimization. Their trajectory optimization solution, however, converged

only over about 1/3 of an orbit and was based on an unusual performance metric.

The unique indirect optimal control problem posed by Bai involved a hybrid im-

pulsive/continuous admissible control and the performance index penalized only the

boundary impulsive velocity increments - the result was a boundary value problem

with the unknown initial costates contained linearly in the MCPI-BVP formulation,

and being uniquely related to the velocity boundary conditions. The main drawback

in Bai’s optimal control formulation is the relatively small interval over which the

resulting TPBVP associated with the stiff state/co-state differential equations are

solvable using Picard iteration. This MCPI optimal control algorithm was compared

to a pseudo spectral solution of the same example problem and showed improved

accuracy, efficiency and robustness of convergence. These results used polar coor-

dinates. Woollands redid the problem solved by Bai using Cartesian coordinates

in three dimensions and found analogous convergence properties [47]. Other coor-

dinates and associated differential equations require further investigation. We also

mention that, in general, when an admissible control and performance index is used,

we find that the initial costates are not always linearly contained in MCPI. If the

costates are contained in a nonlinear fashion, a shooting method is needed. Thus a

Picard-Chebyshev approach for a general indirect optimal control problem remains

an elusive problem.

Following this work, Bani Younes and Junkins developed methods to include high

order gravity perturbations [22, 48, 49, 50] to more efficiently compute the motion

of satellites orbiting in the vicinity of the Earth. Their work was aimed at efficient

solution of IVPs in the presence of general perturbations. Bani Younes gave special

attention to finite element gravity models to speed up gravity computation in MCPI.
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Since then further enhancements have been made by several investigators at Texas

A&M. Recent work includes variable fidelity and radially adaptive gravity approx-

imations [42, 51, 41], segmentation/order tuning [52], multi-orbit accuracy and nu-

merical stability studies [53], Kustaanheimo-Stiefel regularization [54], and using the

method of particular solutions [20] to solve TPBVPs [21]. These studies also in-

clude significant benchmarks of MCPI algorithms as compared to traditional high

order integrators such as RK(12)10 and Gauss-Jackson 8th order (perhaps the most

important state-of-the-practice algorithm for celestial mechanics).

4.2 Segmentation

While MCPI converges over a large time domain, more than an orbit for the

perturbed case [22] and up to three orbits for the unperturbed case [18], multi-day,

week, or longer time intervals obviously require multiple time segments for the low

Earth orbit (LEO) case. Even though accurate Picard convergence can be achieved

over fairly large intervals, using the longest convergent interval is not necessarily the

most efficient approach for solving these problems. As the domain over which we

seek convergence increases, so does the number of nodes required for achieving the

desired level of accuracy. It is easy to verify that the rate of convergence of Picard

iterations decreases approximately linearly as the time interval of the solution seg-

ment is increased, and ultimately fails at some maximum time interval. To minimize

computational expense, while constraining accuracy, it necessary to allow both the

time span of the segments and the number of nodes per segment to be subject to

optimization.

Optimal segmentation and node density for the perturbed two-body problem

depends on a number of parameters including eccentricity (e), perigee radius (rp), the

model adopted for perturbing accelerations, and accuracy of the desired solution. The
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following papers published by the research group at Texas A&M [52, 42, 41] present

detailed studies to gain approximate insight into the optimal segmentation scheme for

the perturbed two-body problem. One result is a multidimensional surface which can

be accessed with the initial conditions (mapped into the initially osculating perigee

radius and eccentricity), the maximum degree of the gravity model, and the desired

number of significant figures in the final trajectory. We can find the interpolated

output for the orbit segmentation break points (in time) and the number of nodes

for the application of MCPI. This tuning approach is designed to be conservative and

enforces symmetry with an odd number of segment break points per orbit (1,3,5,...).

A key issue is to maintain approximately uniform accuracy across all segments. This

tuning scheme also ensures that sub-optimal nodal density is consistent with the

physics to avoid redundant and superfluous nodes near apogee that may otherwise

occur. Obviously, following a segment accurate to (say) 10−8 relative error by a

more accurate segment locally accurate to (say) 10−10 relative error is simply wasting

computation time. We can never regain in subsequent segments accuracy sacrificed

in a poorly tuned earlier segment. We mention, that when the force model differs

from that used to tune the segment breaks and node density, we can expect this

tuning to be sub-optimal. We may therefore need further adaption to efficiently

maintain a prescribed relative error.

Figure 4.1 shows a Molniya orbit (12 hour period) with five segments. The multi-

segment solutions are straightforward, and the end state of the mth segment becomes

the initial state for the (m+ 1)th segment. The number of nodes per segment is held

constant in this example. Note that the segments closer to perigee span a shorter time

duration and also have a higher spatial node density. This is a result of symmetric

segment breaks as a function of eccentricity consistent with Kepler’s second law -

time breaks are optimized as symmetric true anomaly breaks associated with the
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Keplerian orbit that osculates at perigee of each revolution. This automatically

generates higher node density at perigee where the object reaches maximum velocity

and the nonlinear variations in the gravity field are most significant. Properly tuned,

this approach leads to approximately uniform errors on a given time segment and

also, approximately identical segment-to-segment error norms.

The study [40] generated a database of sub-optimal segmentation parameters cor-

responding to various osculating two-body trajectories. With the initial conditions

one may simply extract the nominal segmentation scheme from the database prior to

integrating the equations of motion. In a way, this is similar to GJ and RKN(12)10

where the pre-calculated table of differences and interpolation coefficients and user

insight are used to prescribe the nominal time step at the beginning, prior to inte-

gration. For example, for all satellites in the vicinity of the Earth, i.e. for space

situational awareness studies, a one off data base can be generated that spans the

range of all possible orbits to permit near optimal performance. For other types of

trajectories, i.e. interplanetary missions, other approaches for determining optimal

segmentation must be utilized.
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Figure 4.1: A 12 hour Molniya orbit is propagated using MCPI in five segments.

4.3 Warm/Hot Starts

A two-body warm start, computed by means of Battin’s [1] analytical F&G so-

lution (IVP) or a-iteration (TPBVP), is used to start the first MCPI iteration. We

note that the F&G solution here refers to the exact transcendental function analyt-

ical expression [1] for F&G not the, perhaps more familiar, poorly converging time

power series. This warm start immediately brings the relative accuracy down to

the < 1 × 10−3 relative error (region for segments ≤ 1 orbit) and greatly reduces

the number of Picard iterations required for convergence. A hot start is used on

all subsequent orbits (taking dominant zonal perturbations into account), bringing

the relative accuracy down another two orders of magnitude prior to iterating with
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the high degree and order gravity model. The hot start is computed using the con-

verged solution on the previous orbit. At the end of the previous orbit, the difference

between the converged solution and the two-body analytical warm start solution is

calculated. This is then added to the two-body (warm start) on the following orbit

to produce a hot start. This hot start is conceptually an approximate Encke dis-

placement and is the net departure motion due to all non-two-body perturbations on

the previous orbit. It is most effective for LEO because of the high correlation of the

orbit-to-next-orbit perturbations, and is implemented generally in the MCPI algo-

rithm. For the case of zonal perturbations and static atmosphere rotating uniformly

with the Earth, this approach turns out to be an excellent hot start, with approxima-

tion errors usually to the right of the 6th significant digit. Even in the most general

gravity field and drag model, for low eccentricity LEO orbits, the errors are usually

to the right of the 5th significant digit. The warm/hot start concept is illustrated

heuristically in Figure 4.2. This hot start is but one hot start method, we can also

make use of Brouwer theory to approximate the effect of the zonal harmonics and

cannonball drag.

4.4 Gravity Approximations

A spacecraft in an atmosphere-skimming orbit with a perigee radius of about

1.04 Earth radii experiences far greater perturbative gravitational effects compared

with those experienced at an apogee radius of (say) 7 Earth radii. Close to the

Earth the gravitational acceleration is affected much more by the higher degree

and order gravity terms, and also changes rapidly along an eccentric orbit due to

the more rapid motion near perigee. To compute gravitational acceleration with

significant figure accuracy at 1.04 Earth radii we require degree and order> 200 in the

spherical harmonic series, whereas at most degree and order 6 is typically required for

45



GOAL:(Put(the(nodes(densely(
where(we(need(them,(and(sparsely(

where(we(don’t((

TRUE(ANOMALY(
SEGMENTING(SCHEME(

−5 0 5 10 15 20

−5

0

5

10

15

Segment(#1(–([0,100]deg((

Segment(#2–([100,260]deg(
Segment(#3(–([260,360]deg(

9"

MCPI Algorithmic Improvements 

True(n31th(orbit(
(

Warm(
(n31th(orbit)(Converged"displacement"

on"n:1th"orbit"

True(nth(orbit(((

(
Hot(
(

Warm(
(nth(orbit)(

Converged"
displacements"
from"n:1th"orbit"

Converged"Δ r"nodal""
displacements"on"nth"orbit"

MULTI3ORBIT(“HOT(START”(

Figure 4.2: Schematic demonstrating the Warm/Hot Start approach [41].

geostationary orbits (GEO). Only degree and order 10 is required to compute 16 digit

acceleration at 7 Earth radii. Obviously we must distinguish arithmetic precision

from physical accuracy. Thus it is essential to consider the full, computationally

more expensive and more “dimpled” gravity field, gravity model. Since the strength

of the gravitational field decreases by 1
rn

, the perturbative effects are far smaller at

apogee and a lower fidelity gravity model is required. We take advantage of this

physical truth and apply radial adaptation as illustrated qualitatively in Figure 4.3.

In Figure 4.4 we present a Molniya orbit that shows the equivalent gravity spherical

harmonic degree required for approximating a (40,40) degree and order gravity field.

This curve is just for illustration; it has the same qualitative behavior for (200, 200)

gravity models. Note that near apogee the spacecraft is far enough from the Earth

that the same level of accuracy is obtained by performing the calculation with a much

lower degree model. If only a physical gravitational acceleration accuracy of 8 digits

is desired then only a 4th degree expansion is required at GEO. Radial adaptation
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ensures that the appropriate fidelity model is used to achieve the required accuracy

in the minimum possible computation time; it avoids the computation of terms that

can be known a priori to be negligible.

In addition to applying radial adaptation it is also not necessary to evaluate

gravity, even the computationally cheaper radially adapted gravity, on every single

iteration. Since Picard iteration requires multiple path approximations we can tune

the fidelity of the force model to match the evolving accuracy associated with the

rate of Picard convergence. Also, the final few iterations are extremely near the

previous iterations, and this motivates the use of local force approximations in the

very near vicinity of the nodes of the previous iterations.

The numerical process adopted begins by employing a simplified model that in-

cludes the analytical two-body solution and the J2 to J6 zonals [1]. After a specific

tolerance is met (1 × 10−3) the radially adapted gravity is called and one iteration

is completed with this high fidelity gravity (EGM2008 ). At this time the local dif-

ference (∆g) at each node, between high fidelity gravity and two-body plus J2 to

J6 is computed. Subsequent iterations are carried out by once again calling the

simple two-body plus J2-J6 model and adding the difference (∆g). Every fourth

iteration the high fidelity model is called again and the same subtraction procedure

is performed. Each time bringing the trajectory closer to convergence until the final

tolerance is met. While this process is heuristic, we have validated it and showed we

achieve both high accuracy and efficiency. It can be shown to be the first term in

the local Taylor series about each node of previous iteration. In general, about three

high fidelity gravity calls are made at the nodes of a segment spanning a third of a

LEO orbit to achieve a machine precision Hamiltonian. These local approximations

together with resulting variable fidelity gravity model create significant speedups as

documented by [42].
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Figure 4.5 depicts not only the variable fidelity gravity model, but also demon-

strates the nature of the warm/hot start. Convergence patterns are plotted for each

of the five segments of the Molniya orbit, for a duration of two orbits. The warm

and hot starts are applied to the first and second orbit respectively. Each curve

corresponds to a particular segment of the orbit. The blue, green and magenta dots

represent the J2-J6, low and high fidelity gravity, respectively. Note the reduced

starting relative tolerance for the red trajectories (second orbit) with respect to the

black trajectories (first orbit), due to implementation of the hot start. As is evident,

only one “full” gravity computation is required on each segment for the hot-start

orbits, thus drastically reducing multi-revolution propagation cost. We have verified

that negligible accuracy loss is incurred compared to using full-gravity on all force

computations. These enhancements reduce the cost by over one order of magnitude.

Multi-orbit propagation is where the hot start gives MCPI a significant advantage.
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Figure 4.4: Gravity degree required over a Molniya orbit to produce a machine
precision gravity acceleration.
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4.5 Computational Speedup

It is important to make the distinction between the present implementation of

MCPI, and other related attempts to fuse orthogonal approximation and Picard iter-

ation, that claim poor performance statistics compared with various other numerical

integrators [55]. The algorithm utilized in the present study incorporates insights

from [42, 53, 41, 52] that collectively separate it from the independently programmed

“MCPI” algorithms utilized in [55]. One of the key speedups is achieved through local

force approximation that takes full advantage of the fixed-point nature of Picard it-

eration; the approximation nodes quickly converge to the close neighborhood of fixed

points in the force field. Most fundamentally, some care is required for integration

methods (including MCPI) that have two or more parameters that control efficiency,

accuracy and stability. For example, simply holding fixed the time interval for path

approximation as one orbit period will lead to badly sub-optimal results. The al-

gorithms in [52, 42, 51, 41] address the proper tuning and demonstrate excellent

stability, precision, and efficiency as compared to state of the practice algorithms.

The MCPI method is a fixed point algorithm, thus every nodal point ultimately

converges to a fixed point in the force field. The terminal iterations are in the

very near vicinity of a fixed point and following [22], we know local gravity can be

accurately approximated with very inexpensive local algorithms. As a consequence

of the local force approximations, variable fidelity gravity models as described above

can be introduced that are several orders of magnitude less expensive than brute

force re-computation of the globally valid spherical harmonic series on subsequent

neighboring Picard iterations.
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4.6 Chapter Summary

A brief overview of some recent enhancements made to the MCPI algorithm by

the research group at Texas A&M was presented in this chapter. Much of the work

presented in this chapter was published in the following papers [41, 42], to which

Woollands made a significant contributed as a co-author. This work formed part

of Macomber’s and Bani Younes’ respective PhD dissertations. These insights more

than compensate for the geometric convergence rate of Picard iteration (by making

most of the Picard iterations “very cheap”) and lead to an efficient as well as accurate

means for orbit propagation. These enhancements to the general MCPI algorithm

are utilized and extended in the following chapters of this dissertation.
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5. REGULARIZATION?

A new approach is presented here for solving TPBVPs and IVPs using the KS

transformation and MCPI. The first section introduces the transformation and gives

the main insights and steps for deriving the perturbed two-body equations of motion

in KS variables. A full derivation is presented in Appendix E. The second section

discusses a special coordinate system that is utilized to avoid certain ambiguities that

arise as a result of the non-unique mapping of KS to Cartesian variables. Boundary

conditions for this special coordinate choice also permits important insights needed to

resolve a consistency and uniqueness issue that arises in redundant KS coordinates.

Following this we present a section on an analytical KS Lambert solver that is used

as a warm start for solving the perturbed problem. The sections following these

developments present key issues with regard to convergence advantages afforded by

the KS boundary value formulation, and the numerical results of a study conducted

reveal relative merits of three methods for solving the perturbed Lambert’s problem.

This work was presented at the 37th Annual AAS Guidance & Control Conference

[54], and was also published in the Journal of Guidance Control and Dynamics [19]

(the special issue in honor of the late R.H. Battin).

5.1 KS Regularization Transformation

Our interest in the KS regularized Lambert’s problem is motivated by the re-

sults in two classical papers from the 1970s [56] and [57]. Kritz [57] considered the

Keplerian unperturbed problem, and Engels and Junkins [56] developed an approx-

?Reprinted with permission from “New Solutions for the Perturbed Lambert Problem Using
Regularization and Picard Iteration” by R. Woollands, A. Bani Younes, J. Junkins, 2015. Journal
of Guidance, Control and Dynamics, v 38, p 1548-1562, Copyright 2015 by the American Institute
of Aeronautics and Astronautics.
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imate solution of the J2-perturbed Lambert problem in KS variables. The present

developments go further, considering general perturbations and novel algorithms for

efficiently computing the numerical solutions of generally perturbed Lambert prob-

lems in KS variables. The previous perturbed Lambert solvers sought approximate

solutions to O(J2). When extending the formulations to seek high precision Lambert

solutions that accommodate general perturbations we encountered and solved cer-

tain subtle issues associated with prescribing consistent boundary conditions in the

redundant KS coordinates. Furthermore, by avoiding the approximations of the ear-

lier papers and taking advantage of the MCPI developments, near machine precision

solution of the two-point boundary-value-problem can be obtained.

The Kustaanheimo-Stiefel (KS) transformation [58] is a method for rigorously

linearizing, without local approximation, the TPBVP through a judicious coordinate

transformation. We begin by writing the classical differential equations of orbital

motion in the most familiar rectangular Cartesian coordinates:

d2r

dt2
= − µ

r3
r + F (5.1)

where r = [X Y Z 0]T , r = | r |. The KS transformation involves transforming both

the position coordinates and the independent time variable. The position transfor-

mation can be written compactly in matrix form as

r =



X

Y

Z

0


= L(u)u , where L(u) =



u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1


, u =



u1

u2

u3

u4


.

(5.2)
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The most frequently used (non-unique) inverse transformation [54, 56, 57] is given

by:

u =



(
(r+X)

2

) 1
2

Y

(2(r+X))
1
2

Z

(2(r+X))
1
2

0


. (5.3)

The operator L(u) has many interesting properties [58, 56, 54] including

L−1(u) =
1

r
LT (u), and L(u)v = L(v)u . (5.4)

It is important to note that the second of Eqs 5.4 is only valid for the planar

case for arbitrary u and v . Given a 4D u-vector, L(u)v = L(v)u holds only if v

satisfies L4(u)v = 0, i.e. v is perpendicular to the fourth row of L(u). This gives

rise to [59] the bilinear constraint (φ = L4(u)u ′ = 0) and φ = 0 can be verified to be

an exact integral of the KS equations of motion developed below. In order for the

motion to be physically plausible, the bilinear constraint must be satisfied initially

and for all time. This means geometrically that any physically admissible velocity,

u ′, in KS variables will at all times remain orthogonal to L4(u). Also, since φ = 0 is

an exact integral of the governing differential equations, the bilinear constraint is (in

theory) automatically satisfied for the entire IVP trajectory once the initial position

consistent with Eq 5.2 and “orthogonal” initial velocity in KS variables have been

chosen. However, it is not automatically satisfied for the TPBVP. If geometrically

feasible initial and final u vectors are chosen at random we must think carefully.

There are an infinity of choices of feasible position u boundary conditions, so how

do we ensure “dynamical feasibility” in the sense that the initial and final u ’s are

actually the initial and final points that lie on the particular trajectory of Eq. 5.11?
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Due to the redundancy of the u-space, two sets of admissible initial and final

boundary conditions exist for any prescribed Cartesian position, and also, an infin-

ity of inertial frames can be chosen! As we show below, a one parameter family of

initial and final u-points belong to each set (for a given choice on the initial Carte-

sian axes), satisfying Eqs 5.2 at the initial and final time. It turns out there is a

one-to-one correspondence of points (initial and final) in feasible dynamically con-

sistent u-space. Mapping the Cartesian coordinates into consistent initial and final

u-vectors is not trivial, because we find that each point in the feasible initial set

flows into a specific dynamically consistent point in the final set. Resolving the am-

biguity introduced because an infinite set of u ’s geometrically correspond to a given

(X, Y, Z) is a key aspect of the KS Lambert algorithm, in order to correctly specify

terminal points that lie on the same dynamical path in u-space. The final boundary

conditions reside on a “fiber” [59] with a constant radius (
√
rf ) locating a point

on the geodesic on the four-dimensional (4D) sphere. The feasible final boundary

condition on this fiber can not be determined analytically, as we find it is a function

of the unique perturbed space through which the trajectory travels, following the

selection of the particular geometrically consistent initial conditions. While we can

resolve this problem completely for the case of planar motion where the space curve

fiber degenerates into two distinct points (because for the planar case only the first

two elements of u are needed, the transformation is not redundant), we must resort

to numerical methods for general 4D KS dynamics to implicitly select the proper dy-

namically consistent final boundary condition. More on this is given in the following

section.

Another interesting property of the KS transformation is: r = uTu , which is

easily proven by squaring both sides of Eq 5.2. Obviously, quadratic combinations of

the elements of u produce both the rectangular coordinates and the radial distance.
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The mapping from u to (X, Y, Z) is unique, for all u . However, the inverse from

(X, Y, Z) to u (the right most of Eqs 5.3) is not unique, and the given inverse

transformation is the most popular of the set of inverse mappings.

It is well known that any transformed time coordinate that is linearly proportional

to r, together with Eqs 5.2, maps the nonlinear differential equations (Eqs 5.1) into

4 oscillators in u-space. The nonlinearities vanish identically as F → 0. The F

vector here is the Cartesian perturbing acceleration components augmented with a

zeroth fourth element. We restrict attention in the present discussion to the case

of perturbed elliptic orbits for which the instantaneous Keplerian energy (α = 1/a)

is positive, where a = a(t) and we adopt the following implicit time transformation

E → t.

dt

dE
=

(
1
√
µα

)
r, α =

2

r
− ṙT ṙ

µ
. (5.5)

Note that d
dE

= d
dt

dt
dE

, so that, after some manipulation, we can show

u ′ =
du

dE
=

1

2
[
√
µα]−1/2LT (u)ṙ . (5.6)

After considerable algebra, we derive the the resulting differential equations:

d2u

dE 2 +
1

4
u =

r

2µα

[
I +

4

r

du

dE

du

dE

T]
LT (u)F , (5.7)

and time is related to the perturbed change in eccentric anomaly from Eq. 5.5

through the integral:

t = t0 +

∫ E

0

(
r(φ)√
µα(φ)

)
dφ. (5.8)
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Finally, for F 6= 0, it can be shown that [54] α satisfies the variation-of-parameters

differential equation

dα

dE
= − 4

µ

du

dE

T

LT (u)F , (5.9)

and also, the osculating energy in the classical Keplerian energy form of Eq. 5.5 can

be transformed to the new form of the osculating energy constraint

α =
2

r

[
1 +

4

r

du

dE

T du

dE

]−1
. (5.10)

The first expression for α (Eq. 5.5) is the Cartesian form of the Keplerian energy

equation, whereas the second expression (Eq. 5.10) is the KS transformed Keplerian

energy equation. This equation holds in the presence of perturbations for α(t) as an

osculation constraint in the variation of parameters. Thus α in Eq. 5.7 does not have

to be solved by a differential equation (i.e. Eq. 5.9) as is frequently done. Rather

it is a known function of the instantaneous KS state variables, given in Eq. 5.10.

Notice E is the perturbed change in eccentric anomaly, not the eccentric anomaly

itself.

Substitution of Eq. 5.10 into Eq. 5.7 gives the new and elegant form for the

generally perturbed differential equation of motion in the KS variables:

d2u

dE2
+

1

4
u =

r2

4µ

[
1 +

4

r

du

dE

T du

dE

] [
I +

4

r

du

dE

du

dE

T]
LT (u)F . (5.11)

This form Eq. 5.11 of the KS transformed differential equations is an original contri-

bution from the research leading to this dissertation. Since the spherical harmonic

series first non-zero term has a multiplicative factor of, 1
r2

, and all higher order terms

contain 1
rn

, the multiplication by r2 on the RHS of Eq. 5.11 simply reduces by 2 the

denominator powers of r in all the spherical harmonic series representation of the
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gravitational perturbations. In particular, for the second zonal harmonic, r2 in the

denominator of this second zonal harmonic perturbation is canceled. The formula-

tion therefore has a regularizing effect not only on the unperturbed problem but also

on the dominant gravitational perturbation.

For an arbitrary force, the differential equations Eq. 5.5 - Eq. 5.11 must be

solved numerically, however for small forces, they represent a weakly-coupled, weakly-

nonlinear oscillator description of orbital motion and these equations are attractive

from several points of view. From the work of Bai and Junkins [46, 17] and the

classical Picard literature, we know that the convergence of the Picard method is a

function of the “strength” of the dominant terms of the differential equation. There-

fore, the 1
4

coefficient of Eqs. 5.7 and Eqs. 5.11 suggests a basis for optimism that

significant convergence advantages will be achieved in these transformed differential

equations, compared to Eqs. 5.1, for reducing the number of Picard iterations and

also increasing the maximum interval over which the Picard contraction mapping it-

erations will converge. We can anticipate these will be advantages for both the IVP

and for the TPBVP. As will be evident below, these heuristic expectations are con-

sistent with numerical reality and represent a significant computational advantage,

especially for the Lambert problem.

In this section we have derived a new form for the transformed equation of motion

(Eq. 5.11) in KS variables. By using the osculating constraint for α, we eliminate the

need to solve the work/energy differential equation (Eq. 5.9) for α as is frequently

done (with time variables that differ from E) in the classical references [56, 57]. Thus

our KS differential equations are of order nine, not ten as is the case in the usual KS

developments. In the following section we formulate the Keplerian Lambert problem

in KS variables. This is somewhat analogous to Battin’s classical Lambert solution,

but in new variables. While formally analogous, our formulation here is not as general
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as Battin’s. He considers all species of conics (elliptical, parabolic and hyperbolic),

and for the elliptic case, he considers the multiple revolution transfers as well. In

this dissertation we only consider the elliptical case. The relatively straightforward

universal generalizations are left for future developments. The present developments

apply to the majority of practical applications and the level of abstraction associated

with the universal variable treatment is avoided for this “first rendition” treatment

to increase qualitative insight. However, and importantly, we do generalize (in this

dissertation) the Keplerian Lambert results to consider arbitrary smooth perturba-

tions and demonstrate the formulation to efficiently solve perturbed TPBVPs using

a (40, 40) spherical harmonic gravity model.

5.2 Special Inertial Cartesian Coordinate System

Now let us consider the case of general perturbations. The TPBVP turns out

to have some subtleties that arise due to the infinity of u vectors that correspond

to given Cartesian coordinates. First, consider the three scalar equations implicit in

5.2:

X = u21 − u22 − u23 + u24,

Y = 2(u1u2 − u3u4),

Z = 2(u1u3 + u2u4).

(5.12)

Also squaring Eq. 5.2 allows us to establish

r = u21 + u22 + u23 + u24. (5.13)
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Adding the first of Eq. 5.12 and 5.13 yields the nice result

u21 + u24 = R2 =
r +X

2
. (5.14)

So it is clear that (u1, u4) lie on a circle of radius R =
√

(r +X)/2, and so all infinity

of possible (u1, u4) pairs can be parameterized by the angle φ = tan−1(u4
u1

) or,

u1 = R cosφ, u4 = R sinφ, 0 ≤ φ < 2π. (5.15)

Eliminating (u1, u4) as a function of φ, we can solve the second pair of equations 5.12

simultaneously for (u2, u3) as

u2 =
1

2R
(Y cosφ+X sinφ), u3 =

1

2R
(−Y sinφ+ Z cosφ). (5.16)

Eqs 5.14- 5.16 define a four dimensional space curve or “fiber” that is a geodesic

that lies on the surface of the four dimensional sphere of radius
√
r. Sweeping φ over

the 2π range generates all infinity of points along the fiber of geometrically feasible

ui coordinates corresponding to the given (X, Y, Z). There is one additional subtlety

that turns out to offer a way to simplify the most general case. As is well known, the

same Cartesian form of the equations of motion r̈ = − µ
r3
r + F holds for an infinity

of inertial Cartesian coordinate system choices, therefore, we are free to choose the

fixed inertial coordinate system orientation, so long as we are careful to project the

force Cartesian components and boundary conditions appropriately into this chosen

inertial frame. Notice at either initial or final time, that the boundary conditions and

therefore, the above equations simplify significantly if one of the inertial Cartesian

axes is aligned with either the initial or final position vector (Figures 5.1 and 5.2). It

is also useful to rotate the inertial frame about the fixed axis so that the XY -plane
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lies in the unperturbed plane of motion. We can either use the initial position and

velocity vector to define the inertial plane, or we can use (for TPBVPs) the prescribed

initial and final position vectors to define the inertial plane. For both cases, and for

small elapsed time, we can expect the out-of-plane motions to be small and in some

circumstances, this truth is useful to guide heuristics in applications.

As one example, if the inertial system is chosen such that the initial or final

position vector aligns with the X-axis, such that X = r, Y = Z = 0, at that point,

then R =
√
r and the above space curve assumes its simplest form as

u21 + u24 = r, {u1 =
√
r cosφ, u4 =

√
r sinφ} and {u2 = 0, u3 = 0}. (5.17)

See Figure 5.3 for a geometric interpretation of the mapping from Cartesian coordi-

nates into the infinite set of {u1, u2, u3, u4} coordinates, for this specific example. In

this case the locus of feasible vectors is a circle of radius
√
r in the (u1, u4) plane.

This is one of the few examples where one can fully visualize a space curve in a

four-dimensional space!

We mention, Eq. 5.14 is a projection of the 4D space curve into the (u1, u4)

plane. It is easy to verify, by subtraction of the first of Eqs 5.12 from 5.13 that the

projected curve in the (u2, u3) plane is another circle:

u22 + u23 = R2 =
r −X

2
, (5.18)

which can be used to derive an alternate form for the space curve:

u2 = R cosψ, u3 = R sinψ, 0 ≤ ψ < 2π, (5.19)

u1 =
1

2R
(Y cosψ + Z sinψ), u4 =

1

2R
(−Y sinψ + Z cosψ). (5.20)
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Notice, even though the infinite set of u vector boundary conditions exist for any

given {X, Y, Z}, once {X, Y, Z} and any particular consistent u are selected, the

corresponding velocity forward and inverse mapping of (Ẋ, Ẏ , Ż) to from u ′ is unique:



Ẋ

Ẏ

Ż

0


=

2
√
µα

r
L(u)u ′ ⇐⇒ u ′ =

r

2
√
αµ

LT (u)



Ẋ

Ẏ

Ż

0


. (5.21)

The above developments can be used to resolve a key issue: Once an initial u

vector is selected from among the infinity of possibilities, the corresponding velocity

is computed from the second of Eqs 5.21 and then solution of the KS differential

Eq. 5.8 leads to a corresponding unique trajectory (u(τ),u ′(τ)). Even if the initial

(u(τ),u ′(τ)) state is such that Eq. 5.2 gives the correct final Cartesian {Xf , Yf , Zf},

we need to focus on the truth that the arrival u(τ(Ef )) will correspond to only one

of the infinity of u vectors consistent with {Xf , Yf , Zf}. So, when we attempt to

prescribe an initial and final u vector to solve a TPBVP in u-space, if we hold the

initial u fixed, we must only determine the single unknown variable φ to correctly

prescribe the terminal boundary condition for u(τ(Ef )) that makes the arrival state

of the unique MCPI Lambert solution of the KS differential equation 5.11, consistent

with the boundary condition imposed at the initial time. Thus a one-dimensional

search over the set of feasible u boundary conditions is required to find φ that

generates the particular u(τ(Ef )). However, through a judicious choice of the inertial

frame, and using a warm start from Keplerian motion, we have been able to construct

a reasonably efficient solution process having φ = 0 if perturbations vanish, and that

evidently ensures the desired root for φ for the perturbed case is typically small.
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Figure 5.1: Inclined inertial plane defined by initial position vector and the initial
velocity vector [19].

This small φ enables algorithms to quickly find the φ such that the initial and final

boundary conditions in u-space are the desired terminal states along the unique

solution of the KS differential equations and correspond to the specified Cartesian

terminal coordinates.

5.3 Analytical Lambert Solver

It is useful to first consider solving the planar KS Keplerian special case (which

has an analytical solution), before discussing the general three dimensional Lambert

problem in KS variables. The upper left 2 × 2 sub-matrix of L(u) is the needed

subset of the position transformation and the resulting equations simplify to the

classical Levi-Civita transformation [1, 60] discovered in 1920, some forty years prior
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Figure 5.2: Inclined inertial plane defined by the initial position vector and the final
position vector [19].

Figure 5.3: The feasible u - locus is simply a circle of radius u in the (u1,u4) plane
[19].
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to the more general KS result [58]. Since the planar KS transformation reduces to a

two-to-two mapping (X, Y )⇐⇒ (u1, u2), the root structure is greatly simplified and

the fiber of solutions in 4D reduce in 2D to fixed points (roots) as discussed below.

Restricting the motion to the plane (Z(t) = 0), the general KS transformation

simplifies as follows:

 X

Y

 = L(u)u , where L(u) =

 u1 −u2

u2 u1

 . (5.22)

The inverse mapping is

for X ≥ 0 : u = ±


(

(r+X)
2

) 1
2

Y

(2(r+X))
1
2

 or for X < 0 : u = ±


Y

(2(r−X))
1
2(

(r−X)
2

) 1
2

 . (5.23)

As is evident above in Eqs. 5.2 and the planar special case of Eq. 5.22, the map-

ping from u-space to Cartesian space is unique. As expected, the inverse mapping

is not unique, but it is greatly simplified to a 2-to-2 mapping for the planar case.

In fact for the planar case (Z(t) = 0), for (X, Y ) specified, only two real points in

u-space exist, given in Eq. 5.23. For IVPs, as long as we avoid the potential division

by zero at x = ±r (by following the sign of rules evident in Eq 5.23), the solution of

these equations is very well-behaved. For IVPs we only need to use these equations

once at initial time, and the inverse mapping in Eq. 5.22 (or more generally Eq. 5.2)

is non-singular and unique everywhere. For TPBVP, however, we have to resolve

the sign ambiguities carefully, otherwise we may accidentally request the algorithm

to look for a one-and-a-fraction orbit transfer instead of a fractional orbit transfer.

Note that two revolutions occur in Cartesian space for each revolution in u-space,

quite analogous to quaternion representation of rotational motion.
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For a given set of boundary conditions, there are two possible solutions that

depend on the sign of the final position in u-space. If the angle between the initial

and final boundary conditions is less than π, and the number of revolutions is odd (a

fraction of the first orbit is considered an odd revolution and a fraction of the second

orbit is even etc.), then there is no sign change on the final position. However,

in the odd orbits, when there is more than an angle of π between the initial and

final position then there is a sign change on the final boundary condition. The

opposite sign convention occurs for an even orbit. For retrograde orbits, the above

sign convention holds, but it is all reversed.

Using the planar KS transformation (Levi-Civita transformation) it is evident

that solving the four uncoupled harmonic oscillators of Eq. 5.7 or Eq. 5.11 (where

F = 0) has an analytical solution simply given by

u = u0 cos
E

2
+ 2

du

dE

∣∣∣∣
0

sin
E

2
,
du

dE
= −1

2
u0 sin

E

2
+
du

dE

∣∣∣∣
0

cos
E

2
. (5.24)

Or, in state transition matrix form:

 u

du
dE

 =

 Φ11 Φ12

Φ21 Φ22


 u0

du
dE

∣∣
0

 , (5.25)

where the sub-matrices are Φ11 = cos E
2
I, Φ12 = 2 sin E

2
I, Φ21 = −1

2
sin E

2
I, Φ22 =

cos E
2
I.

The integral of Eq. 5.8 can be carried out analytically for the F = 0 case to

obtain a form of Kepler’s equation

α
3
2
√
µ (t− t0) = E − (1− αr0) sinE − α

1
2σ0 (cosE − 1) ,

√
µσ0 ≡ r 0 · ṙ 0. (5.26)

67



E denotes the change in the classical eccentric anomaly from initial conditions to the

current state, i.e. herein E is not referenced to perigee, but rather to initial position.

There is a single unique orbit for the fractional orbit transfer case, except for the co-

linear position case in which the orbit plane is not unique). The singularity structure

for the Keplerian special case has been found to carry over to the gravitationally

perturbed generalization of this two-point boundary value problem. The preservation

of singularity structure in the presence of perturbations is a consequence of the

geometric truth that the osculating orbit plane is undetermined when the initial and

final position vectors are co-linear.

From Eq. 5.22, we can eliminate initial velocity in u-space as a function of the

final boundary conditions

du

dE

∣∣∣∣
0

=
1

2 sin
Ef
2

(
uf − u0 cos

Ef
2

)
. (5.27)

We now outline the completion of the solution of the Keplerian Lambert’s problem

in KS variables. Using the energy equation

α =
2

r0
− drT

dt

∣∣∣∣
t0

dr

dt

∣∣∣∣
t0

=
2

r0

[
1 +

4

r0

drT

dE

∣∣∣∣
t0

dr

dE

∣∣∣∣
t0

]−1
, (5.28)

and also using Eq. 5.28, we can eliminate α and σ0 = r0.ṙ0√
µ

in Eq. 5.26 as a function

of (u0,uf , Ef ), leaving only Ef as an unknown. Then the modified Eq. 5.26 with

all unknowns on the RHS eliminated except Ef can be iterated via a Newton/secant

method to converge on the correct final eccentric anomaly (Ef ) for a given final time

(tf ). An initial guess for the final eccentric anomaly is computed from true anomaly,

using the dot product of the initial and final position vectors.

This method is well-behaved and convergence is reliable. For our study in this
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chapter we consider only fractional orbit cases. Solving Lambert’s problem analyti-

cally not only provides the final eccentric anomaly (corresponding to the final time),

but it also provides a warm start solution approximation for solving the perturbed

problem.

It may seem that the warm start developed above would only work for planar

orbits, however, with a bit of thought, we can use this for any inclined orbit in 3D

Cartesian space or 4D u-space. We construct a plane defined by the initial and

final positions and use the corresponding constant direction cosine matrix to project

the initial Cartesian coordinates from the equatorial frame into this special inertial

frame. The warm start is computed in this special orbit frame where z = 0 and

where there are no u3 or u4 components.

Our KS Lambert solver is somewhat analogous to Battin’s classical Lambert

solution [1], but in new variables. Although, for geometrical clarity and to address the

most common applications, we have developed these results for the elliptic (positive

α case). It is clear that by following the pattern of reference [58] and especially

reference [56], a universal analogy of the above developments can be developed that

is applicable to all species of elliptical, parabolic and hyperbolic motion. We leave

this generalization for future work.

The present KS special case analytical solution of the Keplerian Lambert prob-

lem can virtually certainly be improved upon. It is computationally competitive

with p-iteration which is not generally preferred over Battin’s algorithm in terms of

the iteration efficiency and universal generality. However, our ultimate goal here is

the development of generalized Lambert methods that accommodate rather general

perturbations for which the classical Lambert algorithms do not apply. The present

KS Lambert Keplerian solution should be viewed as a demonstration and not as the

final word. It sets the stage for the perturbed Lambert algorithms below in KS space.
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Figure 5.4: Keplerian Lambert solver comparison to p-iteration [19].

5.4 Theoretical Convergence

The domain over which the MCPI-IVP will converge is finite, and this gives rise

to easily solvable challenges when the desired time interval over which a solution

is sought is greater than the domain of convergence. For the TPBVP, Bai and

Junkins [18] also studied MCPI convergence, and found that the interval was typically

about one order of magnitude smaller for the TPBVP compared to the corresponding

IVP. Bai and Junkins [17] did an MCPI convergence analysis using a simple linear

oscillator to provide some insight on the matter. We reiterate the key points of their

study here, for reader convenience, and extend the developments to investigate the

convergence domain (time of flight interval between the specified terminal positions)

specifically for the KS transformed equations of motion.
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Consider a TPBVP described by the following equation, where c is a scalar:

d2x (t)

dt2
= −cx (t), tε[t0, tf ], x (t0), x (tf ) = x f . (5.29)

This can be solved iteratively using the equation below, which is obtained from Eqs

3.61 and 3.62 in Chapter 3, where g(X i−1,V i−1) has already been transformed from

the time domain into the τ domain.

Xi = CxCB2CI1Cfg(X i−1,V i−1) + CxX0f . (5.30)

More specifically, for Eq. 5.29

Xi = −cw2
2CxCB2CI1CfX

i−1(t) + CxX0f , w2 =
dt

dτ
=
tf − t0

2
. (5.31)

It is known from linear systems theory that this sequence is convergent to a

fixed point only if all the eigenvalues of the matrix [cw2
2CxCB2CI1Cf ] are contained

within the unit circle. That is, Eq. 5.31 must be a contraction mapping for conver-

gence to a fixed point. Furthermore, the largest norm eigenvalue dictates the rate

of Picard iteration convergence. The eigenvalues of [CxCB2CI1Cf ] for various N are

shown in Figure 5.5. In contrast [17] to the complex eigenvalues for the IVP that

are attracted to fixed points on a small circle near the origin, inside the unit sphere,

the real eigenvalues of [CxCB2CI1Cf ] for the case of a TPBVP are attracted to fixed

points on a straight line inside the unit circle. The maximum magnitude of eigen-

values of λmax ([CxCB2CI1Cf ]) is almost invariant for large N approaches a constant

λmax ([CxCB2CI1Cf ]) ≈ 0.4053 with respect to increasing the Chebyshev order.
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The necessary condition for convergence is given by

cw2
2λmax ([CxCB2CI1Cf ]) ≤ 1. (5.32)

Rearranging this with the unknown quantities on the left and known quantities on

the right gives the following.

c(tf − t0)2 ≤
4

λmax ([CxCB2CI1Cf ])
≤ 4

0.4053
≈ 9.87. (5.33)

It is clear that the time interval and the linear coefficient c will dictate the domain

over which the method will converge. Satisfying this condition guarantees that Picard

iteration will converge, for a fixed N , but it does not guarantee that N is sufficiently

large to accurately approximate the solution. That is, while the solution will converge

to some specific approximation, more nodes may be required to accurately capture

the system dynamics with desired precision. While still theoretically convergent,

as the LHS of Eqs 5.32 and 5.33 approach the RHS, the eigenvalues approach the

stability boundary of the unit circle and very near the unit circle, the convergence

may be too slow to be considered practically convergent.

Performing the same analysis for the KS transformed equations of motion results

in the following necessary condition for convergence.

1

4
(Ef − E0)

2 ≤ 4

0.4053
≈ 9.87. (5.34)

Note the c in Eq. 5.33 is replaced by 1
4

in Eq. 5.34. This dictates (Ef − E0) ≤ 6.28 ≈

2π, so this (remarkably!) shows that the theoretical upper bound is one orbit period;

this bound can only be approached because convergence rate will approach zero as

(Ef − E0)→ 6.28. Since Lambert’s theorem says that there is a unique solution only
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Table 5.1: Test case orbits [19].
Orbit type Semimajor axis a (km) Eccentricity e

LEO 8,000 0.125
MEO 10,963 0.4
GTO 26,352 0.6
HEO 26,554 0.72

for up to one orbit case, it is immediately evident that no other coordinate choice can

possibly lead to a Picard iteration with a large convergence interval! To investigate

how this (Ef − E0) ≤ 2π theoretical bound maps into enhanced convergence, we

computed the theoretical domain of convergence for the four test case orbits given

in Table 5.1, for Cartesian and KS equations of motion.

Although this convergence analysis is formulated for linear systems, we use it

approximately on the nonlinear Cartesian equations of motion (Eq. 5.35) simply

to provide some insight on what we can expect to see with regard to numerical

convergence. The Keplerian orbit equations in Cartesian and KS variables are given

below.

r̈ = − µ
r3
r , (5.35)

u ′′ = −1

4
u . (5.36)

As an example, we compute the approximate theoretical domain of convergence

(in # orbits) at perigee for the LEO orbit given in Table 5.1. The local linear

approximation of the equation means that the local c will vary around any non-

circular the orbit. The smallest value for the domain of convergence would coincide

with perigee, and thus should provide the most conservative guess.

At perigee, tf − t0 ≤
√

4

cλmax([CxCB2CI1Cf ])
, where for a low eccentricity orbit

with r0 = 7000 km, we adopt the approximation, c = µ
70003

= 1.1621 × 10−6. This
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results in a maximum time-of-flight of tf − t0 ≤ 34745 s. The approximate domain

of convergence can then be computed as (tf− t0)/P ≤ 0.4 orbits, where P = 2π
√

a3

µ
.

For an elliptical orbit, we find basing this approximation on r0 = perigee radius, while

using a = actual semimajor axis proves conservative. If we do the same computation

for the KS problem we get Ef − E0 ≤
√

4

λmax([CxCB2CI1Cf ])
, where c = 1

4
. Therefore

Ef − E0 ≤ 6.28 radians = 2π, and the theoretical domain of convergence when

integrating KS variables is 1 orbit.

The above computation is done for the other test case orbits, and all the theoret-

ical results are displayed in Figure 5.6. Note that the theoretical convergence upper

bound on transfer time, when solving the Keplerian Lambert problem by MCPI in

Cartesian variables decreases with increasing eccentricity. This is not the case in

KS variables, and in fact all orbits theoretically have the same MCPI domain of

convergence (about one orbit), regardless of eccentricity. Obviously invariance with

respect to the eccentricity variations is a fundamental advantage.

Of course, this discussion is qualitative, since equations of motion in Cartesian

coordinates are nonlinear and rigorous local linearization will cause the effective c to

vary around the orbit, and the theoretical value computed above does not rigorously

represent the attainable convergence. However, we have done numerical studies that

show that these theoretical bounds are usually optimistic and agree within about

10 − 15% with the actual upper bound time interval over which MCPI can achieve

practical convergence. In KS coordinates, the motion is linear without approximation

and c = 1
4

is rigorously constant. Based on this theoretical analysis it is clear that the

KS transformation is extremely powerful when the resulting regularized differential

equations are solved by MCPI and give the maximum theoretical convergence limit

of one orbit. Clearly, the elimination of the eccentricity dependence of the domain

of MCPI convergence is “better than useful!”.
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Having considered the MCPI-TPBVP, we conduct the same analysis for the

MCPI-IVP. The necessary condition for convergence is shown below, with the max-

imum eigenvalues of the [CxCI2CI1Cf ] displayed in Figure 5.7.

c(tf − t0)2 ≤
4

λmax ([CxCI2CI1Cf ])
≤ 4

0.003
≈ 1300. (5.37)

The theoretical domain of convergence for the IVP is presented in Figure 5.8. It is

interesting to note that the theoretical domain of convergence for the MCPI-IVP is

much greater than that for the MCPI-TPBVP, and in KS variables the domain of

convergence is increased for both the IVP and TPBVP compared with that achievable

in Cartesian variables. Once again, we see that in KS coordinates, the theoretical

domain of convergence does not degrade with increasing eccentricity. In the following

sections we compute the domain of convergence numerically and anticipate that these

insightful theoretical results will be an optimistic estimate of the truth.

5.5 Keplerian Lambert Problem Solver by MCPI: Cartesian vs KS

To study the numerical domain of convergence for Lambert’s problem, we use

the MCPI-TPBVP implementation to integrate the Keplerian equations of motion

in both Cartesian and KS variables. The four test cases given in Table 5.1, with

varying semimajor axis and eccentricity span the region of interest. We anticipate

that the Keplerian MCPI results will provide an indication of the ideal range of

convergence associated with perturbations, and these results will also show how much

the introduction of perturbations “costs” in terms of reduction of the convergence

domain. In all cases the Hamiltonian is preserved to machine precision.

Figure 5.9 shows the results for these four orbits. In each test case the thin solid

line and thick solid line represent the domain of convergence for the problem solved

using KS and Cartesian variables respectively. As anticipated, the practical conver-
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gence is a bit less than the theoretical one-orbit bound. It is clear that implementing

the KS transformation has enabled the domain of convergence to be vastly improved

relative to the usual Cartesian coordinate formulation.

These results simply demonstrate the superiority, with regard to convergence, of

the MCPI-TPBVP implementation in KS variables compared with that in Cartesian

variables. Since we already have analytic methods (except for iteration of a single

transcendental equation) for solving the Keplerian Lambert problem, for example

Battin’s method, a-iteration [16], p-iteration [61], and our KS Lambert solver pre-

sented in the previous section, there is no evident advantage to solve the Keplerian

problem using MCPI. However, when considering the perturbed problem, which is
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discussed below, integrating the perturbed KS equations of motion becomes an ex-

tremely useful and efficient compared with other methods. A final observation: using

segmentation to establish piecewise continuous approximation, the MCPI algorithm

for the IVP can propagate orbits over arbitrarily long time intervals. However, for

the BVP, if we wish to avoid shooting methods, the maximum interval over which

MCPI converges is a very important issue. It is evident that, for up to 95% of an

orbit, all fractional orbit Keplerian Lambert transfers can be solved by MCPI (no

linearization based shooting method is required), and in the developments below, we

show this also holds true for the gravitationally perturbed Lambert problem with

a modest reduction in the maximum time interval for convergence. Even with the

KS formulation, for the multi-revolution orbit transfers, we must resort to nonlinear

shooting algorithms.

5.6 Perturbed Lambert Problem: KS vs Cartesian

We now extend the formulation to consider perturbations. As mention in a

previous section, the MCPI-TPBVP is not a Newton-like shooting method and is

advantageous from the point of efficiency. However, solving a TPBVP requires spec-

ifying both the initial and final positions. These are usually known in Cartesian

space and can be converted to KS space. However, as mentioned earlier, it is readily

verified that the final boundary condition in the perturbed u-space is not unique.

This presents challenges that we discuss below, as well as our method and algorithm

for solving this important problem.

At every instantaneous point along a Cartesian trajectory (X(t), Y (t), Z(t)) there

is an instantaneous sphere of radius
√
r = uTu in u-space that contains the geodesic

of Eq 5.17. This instantaneous geodesic contains all the feasible u points consistent

with the projection r = L(u)u . A particular unique trajectory for (u(E),u ′(E))
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ensues from solving the KS differential equations 5.11 with the initial conditions

u(0) =
1

r0
LT (u(0))r0 and u ′(0) =

r0
2
√
µα0

LT (u)ṙ 0. (5.38)

Note, u ′(0) cannot be chosen independently of u(0), because admissible u ′(0) must

satisfy L4(u(0))u ′(0) = 0. Associated with u(E) there is a specific φ(E) consistent

with the instantaneous u1(E), u4E, viz tan(φ(E)) = u4(E)
u1(E)

.

Thus the time varying sphere of radius
√
r(E) of feasible u vectors sweeps out a

4D tube in u-space that initiates with a radius
√
r0 and terminates with a final radius

√
rf . Also, for any specific inertial frame orientation choice, a geodesic curve gives

the feasible u(E) corresponding to (X(t), Y (t), Z(t)), located at a point on the in-

stantaneous sphere of radius
√
r completely defined by the angle φ(0) = tan−1(u4(0)

u1(0)
),

an angle in the u1(0), u4(0) plane. Traditionally the specific choice of φ0 = 0 is made.

Note for general 3D perturbed motion, we cannot constrain φ(E) = 0 along the u

trajectory, because φ(E) = tan−1(u4(E)
u1(E)

) must always hold true. All of this is leading

up to the key points: The desired solution (u(E),u ′(E)) for a TPBVP has a specific

φ(E) history which initiates with some arbitrary φ(0) and arrives with some specific

φ(Ef ) = φf . We will not know φf a priori. A key issue is finding φf so u(Ef ) can

be computed such that it lies on the solution of the KS differential equations that

initiates at φ0 = 0.

Our method to solve this problem is a hybrid use of the the MCPI-KS-TPBVP

algorithm and the MCPI-KS-IVP. We solve the TPBVP in u-space using the bound-

ary conditions computed by transforming the Cartesian boundary conditions into

u-space.

{u
TPBV P

(E),u ′
TPBV P

(E), φf} = KS
TPBV P

(u0,u(Ef )), (5.39)
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where u(Ef ) lies on the geodesic admissible fiber of final boundary conditions given

by Eqs 5.14 to 5.16, a point on the circle of radius
√

(rf ) in Figure 5.3:

u(Ef ) = g(Xf , 0, 0, φf ), (5.40)

where g represents the u1, u2, u3 and u4 given in Figure 5.3. That is, it is the space

curve for the special coordinate system, generated by sweeping φf .

Since we have a weakly perturbed problem, we anticipate that the warm start

will be near the final solution; this produces an initial u-space velocity estimate (u ′)

that is close to the ultimate desired final velocity but it slightly violates the bilinear

constraint. Although the trajectory computed by the MCPI-KS-TPBVP meets the

final boundary conditions, we find when converted back to Cartesian space the vector

has a small 4th component, which is not physically possible and is of course due to the

bilinear constraint not being exactly satisfied. In order to trim this 4th component

we convert the u ′ into Cartesian velocity and just set the small 4th component equal

to zero. We then convert this physically admissible Cartesian velocity back to the u-

space and input this now physically feasible KS velocity (u ′) and the initial position

boundary condition in u-space into the MCPI-KS-IVP as shown below.

{u
IV P

(E),u ′
IV P

(E), φ(Ef )} = KS
IV P

(u0,u
′
0), (5.41)

where

u ′
TPBV P

(0) =
r 0

2
√
µα0

L(u(0))ṙ(0), (5.42)

and

φf =
u4

IV P
(Ef )

u1
IV P

(Ef )
. (5.43)
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We evaluate the converged u trajectory for the desired time interval and find

that the final boundary condition in u-space is slightly perturbed from that which

we originally prescribed on the plane. Figure 5.10 illustrates the geodesic curves and

the initial and final boundary conditions in perturbed u-space. We use this new final

boundary condition to compute φf , which we use to compute an updated feasible final

position inu-space. The MCPI-KS-TPBVP is run one more time with this new final

boundary condition. Remarkably, the resulting solution has been found to reliably

meet the initial and final boundary conditions in Cartesian space and also preserve

the Hamiltonian to machine precision. While we have no theoretical guarantee of

this convergence behavior, it has been consistent over a family of numerical tests.
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The perturbed Lambert’s problem is simulated with gravity perturbations, us-

ing the EGM2008 spherical harmonic gravity model [22]. As with the unknown

final boundary condition, discussed in the previous paragraphs, the final eccentric

anomaly (Ef ) corresponding to the final time (tf ) is also no longer analytically com-

putable. Thus we make use of the two-body final time (and final eccentric anomaly),

computed with our analytical KS Lambert solver, as an initial guess for solving the

perturbed problem. The analytical KS Lambert solver also provides the two-body

trajectory solution that is used as a warm start for solving the perturbed problem.

It is advantageous to use this regularized KS warm start as opposed to a warm start

generated using the (Cartesian) analytical F&G solution, but either will work. Note

the node spacing should be chosen as eccentric anomaly changed mapped onto −1 to

1, using cosine sampling, in order to facilitate efficient convergence of MCPI. Once

the Picard iterations have converged, the final time (and final eccentric anomaly)

is updated using the secant method. This Picard/secant sequence of iterations is

repeated until the final solution satisfies both the specified time and Picard toler-

ances. Typically about four or five secant iterations are required for convergence to

the desired final time.

All of our perturbed MCPI-TPBVP algorithms make use of a radially adaptive

gravity approximation [51, 41], and a variable fidelity force model [42, 41]. While

maintaining a machine precision Hamiltonian, these enhancements greatly increase

the overall efficiency of our algorithms by reducing the number of “full” force function

evaluations required for convergence. Figure 5.11 shows the typical variable fidelity

convergence pattern, where the large dots represent the usual (“full”) force function

evaluations and the crosses represent the low fidelity force function evaluations. Refer

to Chapter 4 for more details on the gravity approximations.

To demonstrate the efficiency of our algorithm, we solve the test case orbits in Ta-
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Figure 5.11: Variable fidelity gravity convergence pattern [19].

ble 5.1 using MATLAB’s fsolve where Runge-Kutta-Nystrom 12(10) and Gauss-Jackson 8

are the adopted integrators. In all cases the methods were tuned to maintain

a machine precision Hamiltonian. The results reveal that our regularized MCPI-

TPBVP/IVP algorithm is the most efficient method for solving the perturbed Lam-

bert’s problem over this interval. That is, over an interval that falls outside of the

range attainable using the MCPI-TPBVP in Cartesian variables (about one third of

an orbit) and inside of the range attainable using the MCPI-TPBVP in KS variables

(just short of 1 orbit). Figures 5.12 to 5.15 shows these results.

5.7 Initial Value Problem: Cartesian vs KS Equations of Motion Solved via MCPI

The KS transformation and Picard iteration can also be applied to solving IVPs,

much the way the classical Cartesian differential equations have been solved by MCPI

[40]. Similarly, the final two-body eccentric anomaly is determined analytically using
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Figure 5.12: Function evaluation comparison of three methods for solving the per-
turbed Lambert’s problem, for a low Earth orbit [19].
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Figure 5.13: Function evaluation comparison of three methods for solving the per-
turbed Lambert’s problem, for a medium Earth orbit [19].
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Figure 5.14: Function evaluation comparison of three methods for solving the per-
turbed Lambert’s problem, for a geostationary-transfer orbit [19].
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Figure 5.15: Function evaluation comparison of three methods for solving the per-
turbed Lambert’s problem, for a Molniya orbit [19].
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the classical Kepler equation for the change in eccentric anomaly given the time. As

expected, we find that the domain of convergence achievable for the IVP in KS

variables is greatly increased compared with that in Cartesian variables. The KS

implementation achieves practical convergence over 8 orbits with no dependence on

eccentricity orbits compared with the Cartesian implementation that ranges from

about 1.5 to 4 orbits, depending on the eccentricity of the orbit. These numbers

agree relatively well with the theoretical values computed in a previous section, more

so for the Cartesian implementation than for KS. The theoretical results predict

about 12 orbits for the KS implementation, however, our experiments revealed that

2000 nodes are required for the trajectory to converge over 8 orbits. That is, while

Picard’s method theoretically converges over such long time arcs, the number of basis

functions required (> 2000) are usually not attractive. Numerical challenges begin

to arise and integrating the motion in “one segment” is not particularly efficient due

to slowness of convergence as the eigenvalues approach the unit circle.

Fractional orbit segmentation should be used in practice to reduce the number of

iterations (because shorter segments) converge faster due to the approximately linear

relationship between number of Picard iterations and segment length. This picture

is complicated, however, due to the dependency of convergence on the number of

nodes for N > 45, and also the dependency of accuracy on both the number of nodes

and the segment length. However, we usually find the optimum number of nodes

30 ≤ N ≤ 70. A recent study by Macomber et al. [52] shows that 3 to 5 segments

per orbit, with the number of nodes/segments being tuned for each segment length

and force model, typically leads to optimal efficiency for the Cartesian equations of

motion. Typically, fewer than ten Picard iterations are needed with a warm start

over optimal fraction of an orbit segments. Only one or two of these Picard iterations

will require the “full” force model. The fixed point nature of convergence permits use
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of local force approximations to make most of the local force computations extremely

cheap compared to the full force model. Thus the number of Picard iteration is not

nearly as important as the number of effective full force computations at each node.

See Chapter 4 for more details.

All the gravity approximations and optimal segmentation enhancements are in-

cluded in the MCPI-KS-IVP algorithm. Unlike the perturbed Lambert problem, we

do not require a secant method to solve for the final eccentric anomaly corresponding

to the desired final time. Instead we solve the perturbed KS IVP with the two-body

final eccentric anomaly (Ef ) plus 2% (we found this conservative and ensures we

integrate past the final time of interest). After convergence, it is easy to isolate any

“real” Ef interior point by algebraic interpolation/iteration of the Chebyshev orbit

approximation. A qualitative difference between this approach and that used for the

perturbed Lambert’s problem is that a repetitive Picard/secant iteration scheme is

not required in each iteration. For the IVP the secant method is only required once,

after the Picard iterations have converged, to isolate the final time of interest.

Looking at Figures 5.16 and 5.17 we see that the KS transformation does have a

slight advantage over the Cartesian IVP implementation, but it is not as significant

as it is for Lambert’s problem. When a variable fidelity gravity model is applied,

as was done for the perturbed Lambert’s problem, we find that the number of full

force evaluations required for the solution to converge to machine precision is the

same for both the Cartesian and KS implementations. Thus the benefit that the KS

implementation provides is a saving of perhaps one or two low fidelity force function

evaluations per node.

Using the KS transformation and MCPI for solving IVPs produces nice academic

results, however, in reality these do not apparently provide a significant advantage

over the already very efficient Cartesian IVP implementation of MCPI [42].
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Figure 5.16: MCPI-IVP number of iterations required for convergence: Cartesian vs
KS [19].

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

n
o
d
e
s

IVP Perturbed: MCPI & KS−MCPI

 

 

MCPI−LEO

MCPI−LEO (KS)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1000

2000

n
o
d
e
s

 

 

MCPI−MEO

MCPI−MEO (KS)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1000

2000

n
o
d
e
s

 

 

MCPI−GTO

MCPI−GTO (KS)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

n
o
d

e
s

# of orbits

 

 

MCPI−HEO

MCPI−HEO (KS)

Figure 5.17: MCPI-IVP number of nodes required for convergence: Cartesian vs KS
[19].
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Pursuing this KS IVP analysis involved considerable effort and enabled us to

gain valuable insight about this problem. It is important that this (not what we

anticipated or desired) outcome be documented in the event that others consider

pursuing this same avenue. While the KS MCPI transformed equations of motion

did not show an advantage for solving the IVP, the advantage remains very significant

for solving the perturbed Lambert problem.

5.8 Summary

A new approach was presented in this chapter for solving TPBVPs and IVPs us-

ing the Kustaanheimo-Stiefel transformation and MCPI. The first section introduced

the transformation that is used for deriving the perturbed two-body equations of mo-

tion in KS variables. A special coordinate system is discussed in the second section

that is utilized to avoid certain ambiguities that arise as a result of the non-unique

mapping of KS to Cartesian variables. Following this we presented the analytical KS

Lambert solver that is used as a warm start for solving the perturbed problem. The

sections following outlined the theoretical domain of convergence advantages afforded

by KS, and the numerical results of a study conducted to compare three methods for

solving the perturbed Lambert’s problem. The conclusion of this study is that reg-

ularizing the perturbed two-body equations of motion using the KS transformation

considerably extends the domain over which the MCPI-TPBVP implementation will

converge. We also show significant reductions in the computational costs are achieved

by using MCPI-KS-TPBVP for solving Perturbed Lambert’s problems.

We note that Figure 5.10 is for heuristic purposes only. The vector u(E) locates

a point on a space curve which resides on a time-varying (E = E(t)) 4D sphere of

radius
√
r(t) =

√
r(E(t)). The radius is variable in a fairly general fashion in the

presence of perturbations but will pass it’s minimum at perigee and maximum at
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apogee (we note the Keplerian motions or perigee and apogee must be generalized

for perturbed motion to correspond to the extrema of the perturbed motion.) In

reality, all of the infinity of 4D spheres swept out as |u(E(t))| =
√
r(E(t)) varies

share a common origin. It is therefore difficult to draw the space curve in u-space,

and hence, we separated the origins of initial and final spheres in the heuristic sketch

of Figure 5.10.
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6. METHOD OF PARTICULAR SOLUTIONS?

The method of particular solutions [20] is the third perturbed Lambert algo-

rithm that forms part of the ULT, and it is the focus of this chapter. MPS is a

broadly applicable shooting-type method for solving nonlinear two-point boundary

value problems but it differs from the much-better-known Newton-shooting method

in that integration of the state transition matrix is not required. Unlike the previous

two chapters in which algorithms were presented for solving the perturbed Lambert

problem over a limited domain of convergence (less than one orbit), MPS converges

over multiple revolutions but at the price of increased computational cost. Although

less efficient than the previous two algorithms, our studies reveal that MPS is more

efficient than the Newton-shooting method, especially when used in conjunction with

MCPI. The first two sections of this chapter provide a mathematical description of

the method, and this is followed by a section on a-iteration (Keplerian Lambert

solver) that is used as a warm start for solving the perturbed problem with MPS.

In multi-revolution cases there is not a unique solution to Lambert’s problem and

this issue is also discussed. Finally, to demonstrate the MPS algorithm, we present

results from a simulation to rendezvous with two spent rocket boosters. This work

was presented at the 25th Space Flight Mechanics Conference [21], and is accepted

for publication in the Journal of the Astronautical Sciences [62].

?Reprinted with permission from “Multiple Revolution Solutions for the Perturbed Lambert
Problem using the Method of Particular Solutions and Picard Iteration by R. Woollands, J. Read,
A. Probe, J. Junkins, 2016. Journal of Astronautical Sciences, Copyright 2016 by the American
Astronautical Society.
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6.1 Classical Shooting Method

Consider a natural second order differential equation of the form:

r̈ = g (t, r, ṙ,u) , (6.1)

where r is an n-vector of “position” coordinates, ṙ is an n-vector of “velocity” co-

ordinates, and u is a prescribed function of time m-vector of “control inputs”. In

this chapter we consider only impulse maneuvers, so we set u = 0 during coasting

transfer orbits.

The classical solution to the generalized (perturbed) Lambert’s problem, for a

general right hand side of Eq. 6.1, involves a Newton iteration method whereby we

require the n × n partial derivatives of the terminal position with respect to the

initial velocity [∂r (tf ) /∂v (t0)] to satisfy the 2n× 2n differential equations Eq. 6.2.

[∂r (tf ) /∂v (t0)] is the final time computation of the lower right n× n sub-matrix of

the state transition matrix Φ(t, t0).

Φ̇(t, t0) =

 0 I

∂g/∂r ∂g/∂ṙ

Φ(t, t0), Φ(t0, t0) = I. (6.2)

To implement the classical shooting method, these 4n2 differential equations (Eq.

6.2) couple to the 2n nonlinear equations of Eq. 6.1. These 4n2 + 2n differential

equations can be solved iteratively with the initial velocity updated following each

iteration using the Newton iteration shown below. In Eq. 6.3 Φ21(t, t0) = ∂r(t)
∂r(t0)

is

the 3× 3 (2, 1) sub-matrix of Φ(t, t0) from solution of Eq. 6.2.

ṙk+1(t0) = ṙk(t0) + Φ−121k
(tf , t0) {rk(tf )− rf} ; k = 1, 2, ... (6.3)
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The k subscript denotes the solution of Eqs. 6.1 and 6.2 with the kth iterative trial

value for the unknown initial velocity vector ṙ0(t0) = v0.

For the Lambert problem of orbital dynamics, r is a 3 × 1 vector of inertial

Cartesian coordinates, and v = ṙ is the corresponding 3 × 1 inertial velocity vec-

tor. For sufficiently close starting iteration, one can expect convergence in a single

digit number of iterations. However, obtaining a sufficiently close starting estimate

is not always easy and that is part the challenge for each physical problem. This

is especially acute for the case of multi-revolution orbit transfers where there are

more than one feasible transfer orbit. In many cases, approximate versions of the

governing differential equations permit, for example Battin’s solution [1] of the two-

body Lambert’s problem, to start iterations for the fully perturbed system. Battin’s

formulation generates all solutions, including the multiple revolution local roots. Uti-

lizing the most attractive of the Keplerian starting iteratives is virtually always good

enough for weakly perturbed orbit mechanics problems. When the perturbations are

too large for convergence with the analytical two-body Lambert starting approxima-

tion, a homotopic method can frequently be designed that sweeps some embedded

parameter such that the solution departs from a known solution to ultimately arrive

at the solution of the fully perturbed problem at hand. However, in the presence

of the most general right hand side of Eq. 6.1, and a poor starting estimate, the

problem is more challenging and each iteration has to pay the overhead associated

with computing the partial derivatives by solving Eq. 6.2. This is a burden that

must be paid to use this method.

We discuss below an alternative local linearity-based approach that is more at-

tractive in that there is no need to compute the state transition matrix and thereby,

we avoid solving the n × n differential equations (Eq. 6.2). This alternate shoot-

ing technique is known as the method of particular solutions, as developed in [20].
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We combine MPS with the MCPI-IVP integration method and solve the perturbed

two-body orbital equations of motion.

6.2 Method of Particular Solutions

The Method of Particular Solutions [20] makes use of a reference trajectory

rref (t), ṙref (t), r̈ref (t) and all neighboring solutions of Eq. 6.1 can be re-formulated

exactly in terms of a departure motion ∆r(t) as

r(t) = rref (t) +4r, ṙ(t) = ṙref (t) +4ṙ, r̈(t) = r̈ref (t) +4r̈. (6.4)

From Eq. 6.4 and Eq. 6.1, we can write the exact departure motion differential

equation:

4r̈ = g (t, rref (t) +4r, ṙref (t) +4ṙ) + u− r̈ref (t). (6.5)

Now consider the circumstance that r̈ref (t) is a solution of the differential equation

which satisfies “good” initial boundary conditions, in this case, the ∆’s can be ex-

pected to be small, r̈ref (t) = g (t, rref (t), ṙref (t)) and to a linear approximation, the

exact nonlinear Eq. 6.5 could be replaced by an approximate linear equation of the

form

4r̈ = A4r +B4ṙ +O(42). (6.6)

where A, B are time varying Jacobians of g with respect to r, ṙ evaluated along

rref (t). To within the accuracy with which the linear terms of Eq. 6.6 approximates

the exact departure motion of Eq. 6.5, we can consider the departure motion linear.

Note, the reference trajectory is not generally held invariant, the initial conditions

can be iteratively updated to reflect improved knowledge. Consider the case that

the reference motion satisfies the known left boundary position coordinates exactly

rref (t0) = r0, and the initial velocity ṙref (t0) represents the current best estimate
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of the unknown initial velocity. For this given (or just computed) rref (t), consider

three neighboring variant trajectories obtained by varying the initial velocity by

small linearly independent (typically orthogonal) perturbations. Typically, as a rule

of thumb, the initial perturbations should occur in the last three significant digits of

the motion; for example if the numerical solution is accurate to 10 digits, the norm of

the independent initial condition perturbations could be |∆ṙj(t0)| ≈ 10−7 |ṙref (t0)|

to obtain the neighboring initial velocities

rj(t0) = rref (t0) = r0; ṙj(t0) = ṙref (t0) +4ṙj(t0); j = 1, 2, 3. (6.7)

Now solve the differential Eq. 6.1 for each of the 3 particular solutions rj(t). Now

we can compute the exact departure motions

4rj(t) = rj(t)− rref (t). (6.8)

These exact departure motions are particular solutions and conjectured to approxi-

mately satisfy the linear differential equation in Eq. 6.6. Since independent velocity

initial conditions were used, it is assumed that these trajectories span the space of

interest and all neighboring trajectories of interest that also satisfy the linear depar-

ture motion Eq. 6.6. The linear combination of any particular solution of a linear

differential equation satisfies the differential equation as well, and the general solu-

tion as a linear combination of three (in general n) departure motions can be written

in the form:

4r(t) ≈
3∑
j=1

αj4rj(t)⇒ r(t) ≈ rref (t) +
3∑
j=1

αj4rj(t). (6.9)
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Figure 6.1: A schematic showing the departure motion space for the method of
particular solutions [62].

If the ∆’s were rigorously in the linear domain, of course, Eq. 6.9 would hold with

negligible error. Here we consider only 3 variant trajectories because the admissible

initial variations are only the unknown initial velocity coordinates. That is, we

contain rj(t0) = rref (t0) and ∆rj(t0) = 0.

Figure 6.1 shows a conceptual example of the departure motion for the three

particular solutions. Notice that rB (tf ), the target position, lies at the vertex of

the 3-D parallelpiped, which is a scaled version of the space spanned by ∆rj; the

vector rB (tf ) is approximated (to within the assumption of linearity) from the linear

combination of the three αj∆rj. For the case shown, all three αj’s are less than 1,

but the requirement is that the current miss vector ∆rB = rB (tf )− rref (tf ) lies in

the region approximated by Eq. 6.6.
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Evaluating Eq. 6.9 at the final time and imposing the desired result that r(tf ) =

rf , leads to the solution for the coefficients of linear combination


α1

α2

α3

 ≈
[
4r1(tf ) 4r2(tf ) 4r3(tf )

]−1
{rB(tf )− rref (tf )} . (6.10)

Given the αis, we can compute the departure 4r(t) and the time derivatives at any

time t.

4r(tf ) = α14r1(tf ) + α24r2(tf ) + α34r3(tf ), (6.11)

4ṙ(tf ) = α14ṙ1(tf ) + α24ṙ2(tf ) + α34ṙ3(tf ). (6.12)

The velocity departure equation obviously holds at time t0, so the time derivative of

Eq. 6.10, evaluated at time t0, allows a new estimate for the initial velocity to be

calculated.

ṙnew(t0) = ṙref (t0) +
3∑
j=1

αj4ṙj(t0). (6.13)

We mention that occasionally the volume shown in Figure 6.1 can collapse into a

plane, and in extreme cases into a line, as a consequence of the particular sensitivities

of the local position variations at certain times and also due to the orthogonal velocity

variations at t0. While rare, these rank deficiencies can be overcome in several ways.

The decision to use orthogonal independent velocity variations at t0 is heuristically

reasonable but it is not a constraint. Instead, we can introduce sets of random initial

velocity variations. We are also not constrained to use only three particular solutions

if a rank deficiency in Eq. 6.13 is encountered.

Given an invertible matrix in Eq. 6.10, Eq. 6.1 can now be re-solved with the

reference trajectory’s initial velocity replaced by ṙnew(t0). The procedure is repeated
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to compute three reference neighboring trajectories, which will result in new α’s

from Eq. 6.13. We iterate for improved α’s using Eq. 6.10 and 6.13, analogous

Newton’s method, but without the necessity of the partials ∂r
∂ṙ0

(from computing a

state transition matrix).

Any numerical integrator can be used for solving two-point boundary problems

with MPS, however using MCPI affords an avenue for increased efficiency that is

not available with other step-by-step integrators. We take advantage of the path

approximation nature of MCPI (that is, nodes iteratively converge to fixed points

in space) and utilize a variable fidelity force model for propagating the reference

trajectory as described in Macomber’s dissertation [40]. We use the following accel-

eration computations to approximate a full spherical harmonic gravity model, where

TB indicates an unperturbed two-body acceleration; alowref and the approximation

of the full gravity, aapproxref , are computed first for the reference trajectory:

alowref = aTBref + a(J2+J3+J4+J5+J6)ref (6.14)

afullref = a(40×40) spherical harmonic gravity (6.15)

aapproxref = aTBref + a(J2+J3+J4+J5+J6)ref + (afullref − alowref ) (6.16)

The particular solutions are then assumed to lie close to the reference trajectory, and

their accelerations may be approximated using

aapproxparticular = aTBparticular + a(J2+J3+J4+J5+J6)particular + (afullparticular − alowparticular)

(6.17)
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Remarkably, we demonstrate that computing the particular solutions with only

low fidelity approximation function evaluations, that is, two-body plus zonal pertur-

bations plus the difference between the full force evaluation and two-body plus zonal

perturbations on the reference trajectory , greatly increases the efficiency of the al-

gorithm while maintaining machine precision accuracy. Later we show that solving

the perturbed Lambert’s problem using MPS with MCPI is about an order of mag-

nitude faster compared with the classical shooting method and a tenth-twelfth order

Runga-Kutta (RK(12)10) integrator [63, 64].

6.3 a-iteration

We now discuss an analytical method for solving the Keplerian TPBVP [16]. For

the TPBVP, the initial position vectors (r1 and r2) and time of flight (tdesired) are

known, but what is unknown is the initial velocity (ṙ1) that is required to reach

the final position in the desired time interval. General TPBVP shooting methods

require a guess for the initial velocity to propagate the trajectory forward over the

desired time interval. The miss distance between the current final position and the

desired final position is used to refine the initial velocity guess, and the propagation

is repeated iteratively until convergence. In contrast, a-iteration requires an initial

guess for a (semimajor axis), and assuming two-body motion, the resulting trajectory

will always terminate at the desired final position. However, the time of arrival is

uncertain and it is unlikely that the initial guess for a would allow the spacecraft to

arrive at the desired time. The error in the flight time, based on its sensitivity to a, is

what must be iterated in order to determine the correct value of a that corresponds

to the desired time of flight.

Prussing [16] provides a comprehensive mathematical explanation of Lambert’s

problem, and over several pages of algebra leads us to the following transcendental
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equation that must be iterated via Newton’s method to solve for the value of a

corresponding to tdesired.

√
µtdes = a3/2 (α− β − (sin (α)− sin (β))) , (6.18)

where α and β are given by Eq. 6.19 and Eq. 6.20 respectively, and µ is the

gravitational parameter. The parameters c and s are the chord and semiperimeter

and are defined in [16].

sin
(α

2

)
=
( s

2a

)1/2
. (6.19)

sin

(
β

2

)
=

(
s− c

2a

)1/2

. (6.20)

When solving Lambert’s problem there exists a minimum semimajor axis
(
am = s

2

)
associated with the minimum energy orbit transfer, and any transfer with a semi-

major axis less that am will result in an orbit that does not have enough energy to

hit the desired target position. Thus a good initial guess for starting the iterations

would be a = 1.001am.

The time of flight associated with this minimum energy transfer is computed as

follows:

√
µtm =

(
s3

8

)1/2

(αm − βm + sin (βm)) , (6.21)

where αm = π and sin
(
βm
2

)
=
(
s−c
s

)1/2
. For 0 ≤ θ ≤ π, βm = βm0 and for π ≤ θ ≤ 2π,

βm = −βm0 . In addition to tm (transfer time corresponding to minimum energy

ellipse) there is also the minimum time in which the elliptic transfer can be made.

This is denoted as tp, or the parabolic transfer time.

√
µtp =

√
2

3

(
s3/2 − sgn(sin(θ))(s− c)3/2

)
, (6.22)
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where the signum function, which is defined in Eq. 6.23, takes care of the sign change

for transfer angles of θ < π to θ > π.

sgn(x) =

 1 for x > 0

−1 for x < 0
. (6.23)

To summarize, Eq. 6.18 can be used to compute all elliptic transfers in the range

0 ≤ θ ≤ 2π where the values of α and β are determined from the principle values as

follows:

0 ≤ θ ≤ 2π, β = β0, (6.24)

π ≤ θ ≤ 2π, β = −β0, (6.25)

tdes ≤ tm, α = α0, (6.26)

tdes > tm, α = 2π − α0. (6.27)

To demonstrate the algorithm, two example transfers are computed between two

circular orbits that represent Earth and Mars (Figure 6.2). Both transfers sweep

through an angle of 70◦ but in a different specified time of flight. Figure 6.3 shows

a dashed curve that is a Eq. 6.18 swept for various a values. Note the two branches

that are separated by tm. Note that the two orbit transfers shown in Figure 6.2 lie

on different branches of the curve shown in Figure 6.3. The solution on the lower

branch was computed with α = α0 whereas the solution on the upper branch was

computed with α = 2π − α0.

6.4 Multiple Revolution Solutions

When the desired time of flight is long enough for the transfer orbit to make one

or multiple complete revolutions of the focus (θ ≥ 2π) we find that the solution to
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Figure 6.2: Two example transfers computed between two circular orbits representing
Earth and Mars.

Figure 6.3: Transfer time as a function of semimajor axis for transfers with an angle
of θ = 70◦ between two circular orbits at 1 AU radii to 1.524 AU.
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Lambert’s problem is no longer unique, and in fact there are 2N+1 distinct solutions

to the problem. As before, the semimajor axis is related to the desired time of flight

through the following transcendental equation that differs only from Eq. 6.18 in that

there is an additional term of 2Nπ added in the parenthesis.

√
µtdes = a3/2 (2Nπ + α− β − (sin (α)− sin (β))) (6.28)

Figure 6.5 shows the time of flight as a function of sweeping the semimajor axis

over a certain range for different values of N . Note that on each curve for which

N > 0 there is a minimum possible transfer time (tminN) which is marked by the blue

dots. As expected, there is no minimum time-of-flight for the N = 0 case because

as the time is decreased the orbit will eventually switch from an elliptic transfer to

a parabolic transfer.

The value of tmN (Eq. 6.29) that corresponds to the minimum energy orbit with

semimajor axis
(
am = s

2

)
is marked by the red dots in Figure 6.5. This value is

critical to the solution process for isolating the multiple roots because it separates

each curve into and upper and lower branch, each of which contains a solution.

√
µtmN =

(s
2

)3/2
((2N + 1) π − βm + sin (βm)) . (6.29)

To start the solution process the value of Nmax must be determined. This is done

by root solving f(a) = 0 (Eq. 6.30) with different values of N > 0. The function

f(a) is given by

f (a) = (6Nπ + 3 (α− β)− (sin (α)− sin (β))) ∗ (sin (α− β) + (sin (α)− sin (β))) ...

−8 (1− cos (α− β)) , (6.30)
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where the derivative, which is required for Newton’s method, is given by

f ′ (a) = ∂f
∂a

= ((6Nπ + 3ξ − η) (cos (ξ) + cos (α)) ...

+ (3− cos (α)) (sin (ξ) + η)− 8 sin (ξ))
(
− 1
a

tan
(
α
2

))
...

+ ((6Nπ + 3ξ − η) (− cos (ξ)− cos (α)) ...

+ (−3− cos (β)) (sin (ξ) + η) + 8 sin (ξ))

(
−1

a
tan

(
β

2

))
, (6.31)

and ξ ≡ α−β and η = sin (α)−sin (β). A good initial guess is a = 1.001am since the

converged value will be bigger than am. Once the value of a is found for a particular

N > 0, tminN can be computed using Eq. 6.28. If tdes is less than say tmin3, then

Nmax = 2 and there are 5 solutions which must be found. If tdes = tminNmax then

the two solutions on the Nmax branch are equal and there are a total of 4 unique

solutions.

Once the number of solutions is determined, another Newton iteration is require

for determining the values of these solutions which are the a’s that correspond to the

specified tdes. That is, Eq. 6.32 must be satisfied iteratively, where ∆t is the current

transfer time estimate on a particular iteration.

g(a) = tdes(a)−∆t = 0. (6.32)

The derivative, which is also required for Newton’s method, is given by

∂∆t

∂a
=

1
2

(
a
µ

) 1
2

sin (α− β) + (sin (α)− sin (β))
f (a) , (6.33)

where the values of α and β are computed using Eqs. 6.19 and 6.20 respectively.

If ∆t ≤ tmN then α = α0 is used and the solution falls on the lower branch; if
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∆t > tmN then α = 2π−α0 and the solution falls on the upper branch. If tminNmax ≤

∆t ≤ tmNmax , that is the time of flight on the current iteration is greater than the

minimum possible time in which to make the transfer, but smaller than the time of

flight corresponding to the minimum energy transfer ellipse, then the situation is a

little more challenging as both solutions fall on the lower branch of the curve and

thus α = α0 for both solutions. In this case the solutions lie on opposite sides of

atmin, the semimajor axis associated with the minimum possible transfer time, and

this information can be used to pick an appropriate initial guess for a.

Figures 6.5 and 6.4 show an example of the multiple solutions that exist for

making a transfer between Earth and Mars, through an angle of θ = 270◦, in a

specified time of flight. Note the five colored dots in Figure 6.5 that represent the

five unique orbits shown in Figure 6.4. Each of these transfer trajectories has an

associated ∆v cost that is require for making the transfer between these orbits.

6.5 Terminal Velocity Vectors

Once the value of a is known the terminal velocity vectors can be computed.

These may be written as a set of skewed unit vectors that are co-linear to the local

radius and the chord respectively.

u1 ≡
r1
r1
, (6.34)

u2 ≡
r2
r2
. (6.35)

uc ≡
(r2 − r1)

c
. (6.36)

Prussing states that the initial velocity vector (v1) can be expressed as

v1 = (B + A)uc + (B − A)u1 (6.37)
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Figure 6.4: Multiple solutions for transferring between two circular orbits, repre-
senting Earth and Mars, in the same specified time of flight through an angle of
θ = 270◦.
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Figure 6.5: Transfer time as a function of semimajor axis for transfers with an angle
of θ = 270◦ between two circular orbits at 1 AU radii to 1.524 AU. All transfers
occur in the same time of flight. The three different dashed black curves represent
solutions for the N = 0 case (lower curve), N = 1 (middle curve) and N = 2(upper
curve).
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where

A =
( µ

4a

)1/2
cot
(α

2

)
, (6.38)

B =
( µ

4a

)1/2
cot

(
β

2

)
, (6.39)

and the values of α and β are determined from Eqs. 6.19 and 6.20 respectively. The

final velocity vector (v2) is computed as follows:

v2 = (B + A)uc − (B − A)u2. (6.40)

Knowing the value for the initial and final velocity on the transfer orbit allows a

∆v value for the specific transfer to be computed. This cost metric is used later in

the dissertation to quantify the solution with respect to other possible solutions for

making the transfer.

It is important to note that in general, not all the possible solutions are feasible.

Some will collide with the Earth, some exceed escape velocity, and others, near π and

multiples of π, are undefined as a result of the plane ambiguity that is associated with

a 180◦ transfer in Lambert’s problem. In addition, if the transfer orbit ∆v exceeds

an upper limit imposed by the mission then that solution will also be treated as

infeasible.

6.6 Algorithm Efficiency: MPS vs Newton-Shooting

To compare the computational efficiency of MPS to the Newton-shooting method,

where RK(12)10 is used as the integrator, we perform three example orbit transfers

spanning LEO, MEO and GTO. For each simulation the orbit transfer is computed

considering a (40 × 40) degree and order EGM2008 gravity model in a compiled C

code environment. A two-body initial guess was used to start each simulation, and in

all three test cases MCPI-MPS outperforms the Newton-RK(12)10 shooting method
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Figure 6.6: Timing comparison for varying time-of-flight LEO transfers using MCPI-
MPS and Newton-RK(12)10-shooting [62].

to obtain a machine precision orbit transfer solution in less time. Figure 6.6 shows

the computation time in milliseconds for transfers between LEO orbits. Similarly,

Figures 6.7 and 6.8 show the computation times for orbit transfers in MEO and

GTO.

6.7 Chapter Summary

The method of particular solutions, which is the third perturbed Lambert algo-

rithm that forms part of the ULT was presented in this chapter. MPS is a shooting-

type method for solving nonlinear two-point boundary value problems but it dif-

fers from the well-known Newton-shooting method in that integration of the state

transition matrix is not required. The first two sections of this chapter provided

a mathematical description of the method, and this was followed by a section on

a-iteration (Keplerian Lambert solver) that is used as a warm start for solving the
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Figure 6.7: Timing comparison for varying time-of-flight MEO transfers using MCPI-
MPS and Newton-RK(12)10-shooting [62].

Figure 6.8: Timing comparison for varying time-of-flight Geosynchronous-Transfer
orbit transfers using MCPI-MPS and Newton-RK(12)10-shooting [62].

112



perturbed problem with MPS. In many cases there is not a unique solution to Lam-

bert’s problem and the nature of the multiple solutions was discussed in detail in

Section 6.4. Finally a numerical study showed the superiority of MPS compared to

the Newton-shooting method with regard to efficiency.
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7. LOW-THRUST SUB-OPTIMAL TRANSFERS

The mathematical formulation for the Low-Thrust Sub-optimal (LTSO) transfers

is presented in this chapter. The method makes use of MPS and the MCPI-IVP to

iteratively solve for the coefficients of the Chebyshev polynomial that parameterize

each of two steering angles orienting the thrust vector. This unique implementation

of minimum norm direct optimization is attractive in that it does not require partial

derivatives, yet we have shown that we can converge efficiently using a relatively high

dimensional parameterization of the control variables.

7.1 Low-Thrust Sub-optimal Formulation

Consider the situation that a spacecraft is initially in Orbit A and it is desired

for it to make a transfer to Orbit B. The object in Orbit A may be considered a

“conjectured-to-be-maneuverable” resident space object (RSO) and the object in

Orbit B as a valuable space asset. The objective is to determine the optimal transfer

or set of transfers from Orbit A to Orbit B, that will allow for a continuous-magnitude-

variable-direction low thrust maneuver to be carried out in near-minimal time. The

value of the constant low thrust being applied is constrained by the assumed thrust

capabilities of the low thrust engine on board the spacecraft. Typical low thrust

values are less than 1 N [65].

The problem is formulated in classical orbital element space, where a is the semi-

major axis, e is the eccentricity, i is the orbit inclination, ω is the argument of perigee,

Ω is the right ascension of the ascending node, f is the true anomaly, and M is the

mean anomaly (see Figure 7.1). Formulating the problem in element space provides

several advantages, one being that the first five initial elements (ai, ei, ii,Ωi, wi) and

first five final elements (af , ef , if ,Ωf , wf ) can be specified and the time dependent
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final elements (ff ,Mf ) can be left free. That is, the problem can be solved so that

the spacecraft arrives at any position in the final orbit, and if desired, slight period

miss-match additional phasing can be done to inexpensively rendezvous with the

target object. If the problem were to be formulated in Cartesian variables, then

both the final position and velocity could be satisfied (six constraints rather than

five) in order to be injected into the desired final orbit without additional ∆f re-

quirements. This would also mean that only one specific point in that orbit could be

targeted rather than admitting any phasing in the orbit. In addition to the above

mentioned attributes, formulating the problem in element space also increases the

domain over which the MCPI-IVP will converge, by about one order of magnitude

[66]. The nominally constant elements are “slow variables” in the presence of low

thrust. The elements undergo a much smaller time rate of change than the “fast

variables”, Cartesian position and velocity. Fast variables are typically changing one

order of magnitude faster than the osculating elements.

Figure 7.1: Orbit elements [67].
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Gauss’ Variational Equations, which present the time derivatives of the classical

orbit elements in the presence of an arbitrary force, are shown in Eqs 7.1 through

7.7 , where p is the semilatus rectum, h is the magnitude of the angular momentum

vector, r is the magnitude of the radius vector, and ar, aθ, ah are the perturbing

accelerations in the three orthogonal directions (radial, transverse, normal). The

perturbing accelerations in these equations can be just the spherical harmonic gravity

perturbation components, or just the components of low thrust perturbations, or the

sum of both plus all other perturbations.

da

dt
=

2a2

h

(
e sin (f) ar +

p

r
aθ

)
, (7.1)

de

dt
=

1

h
(p sin (f) ar + ((p+ r) cos (f) + re) aθ) , (7.2)

di

dt
=
r cos (θ)

h
ah, (7.3)

dΩ

dt
=
r sin (θ)

h sin i
ah, (7.4)

dw

dt
=

1

he
(−p cos (f) ar + (p+ r) sin (f) aθ)−

r sin (θ) cos (i)

h sin (i)
ah, (7.5)

df

dt
=

h

r2
+

1

he
(p cos (f) ar − (p+ r) sin (f) aθ) , (7.6)

dM

dt
= n+

b

ahe
((p cos (f)− 2re) ar − (p+ r) sin (f) aθ) . (7.7)

The control vector is given by u(t) = T [ar aθ ah] , which can also be written as

u(t) = S [cos (α) cos (δ) , sin (α) cos (δ) , sin (δ)], where S is the non-dimensionalized

magnitude of the constant low thrust induced acceleration, α is the in-plane (ir,iθ)

azimuthal steering angle , and δ is the out-of-plane (elevation) steering angle. These

angles are measured relative to the moving unit vectors (ir, iθ, ih) which osculate the

instantaneous position and velocity. For orbit transfers in the vicinity of the Earth,
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which are required for SSA applications, a range of non-dimensional thrust values

are considered from 0.05 N (S = 8.5× 10−6) to 1 N (S = 1.7× 10−4), for a 600 kg

spacecraft. The non-dimensional distance unit is 1 Earth radii (DU = 6, 738, 137

m) and the corresponding time unit is computed as TU =
√
DU3/µ⊕ = 806.8104

seconds.

In the previous chapter MPS was used to update the initial velocities required for

hitting the target position in the desired time of flight. In this chapter MPS is used

to solve a minimum norm direct optimization problem by adjusting the low order

Chebyshev coefficients that parameterize the steering angles along the trajectory.

The essential idea is that a 2m family of independent neighboring quasi-linear vari-

ations can be generated by introducing 2m variations in parametric representation

of α(t) and δ(t). The in-plane and out-of-plane steering angles are approximately

parameterized as follows: α =
m∑
i=0

ηiTi(τ); m < 10, and δ =
m∑
i=0

κiTi(τ); m < 10,

where η and κ are the respective independent Chebyshev coefficients and T are the

Chebyshev polynomials.

Consider the problem in the general form:

ẋ(t) = f (t,x,p) ; x (t0) = x0, x (tf ) = xf ,

p = [η0, κ0; η1, κ1; ...; ηm, κm] ; with x ∈ Rn; p ∈ R2m; p ≥ n; m ≥ n.
(7.8)

The augmented system is defined as z =

 z1

z2

 =

 x

p

 ⇒ ż = F (t, z), where

p is the vector containing the Chebyshev coefficients that parameterize the steering

angles. Suppose there exists some preliminary initial estimate pc and that a small
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variation is applied to each element of p in turn. That is pi = pc + ∆pi where

∆p0 =



∆η0

η1
...

ηm

κ0

κ1
...

κm



; ∆p1 =



η0

∆η1
...

ηm

κ0

κ1
...

κm



; ..., ∆pm+1 =



η0

η1
...

ηm

∆κ0

κ1
...

κm



; ..., ∆p2m+1 =



η0

η1
...

ηm

κ0

κ1
...

∆κm



.

(7.9)

This means that for each MPS iteration the Gauss’ variational equations are

integrated 21 times, once for the reference trajectory and once for each of the par-

ticular solutions (variation of coefficient). This process could obviously be easily

parallelized. Notice that the ηkTk(τ) and κkTk(τ) parameterize angles measured in

radians. The norms of (ηk, κk) coefficients are therefore the maximum that the kth

term contributes to (α, δ). Thus, it is easy to choose ∆ηk and ∆κk to be small but

large enough to make a computationally significant variation in α(t) and δ(t) in the

near-linear range. In this case, all of the ∆’s were set to 10−8, after experimenta-

tion. The 2(m+ 1) resulting trajectories from solving ż = F (t, z) with the ith of the

2(m+ 1) tweaked p-vectors are

zi(t) = f (t,p) = f (t,pi + ∆pi) = zc(t) + ∆zi(t). (7.10)

All small neighboring departures ∆z(t) =

 ∆x(t)

∆p

 are approximated as a
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linear combination combination as ∆x(t) =
m∑
i=1

γi∆xi(t). A particular neighboring

∆x(t) is desired such that the final departure from ∆xc(t) satisfies

∆x(tf ) = xf − xc(tf )

=
m∑
i=1

γi∆xi(tf )

=

[
∆x1(tf ) ∆x2(tf ) · · · ∆xm(tf )

]
γ1
...

γm


≡ [∆X(tf )] Γ.

(7.11)

Minimizing {Γ}T {Γ} leads to

Γ = [∆X(tf )]
T
(

[∆X(tf )] [∆X(tf )]
T
)−1

∆x(tf ). (7.12)

Obviously Eq. 7.10 represents an assumption that ∆x(tf ) lies in a local linear

region. LTSO requires a starting iteration. We found a very simple process ap-

pears to converge universally. If the final orbit has a larger semimajor axis than

the initial orbit, then the thrust vector is initially aligned with the velocity vector

(athrust = S(ṙ/ |ṙ|)) and the equations or motion are integrated until the first time

(t∗) that the osculating semimajor axis exceeds the target time. This amounts to a

“gravity turn” trajectory. This is the starting trajectory, where the corresponding

α(t) and δ(t) are easily found and used to compute the initial guess for the control.

Once the solution converges for the user specified final time, the procedure is

repeated with a reduced final time until the time is reduced to the point where any

smaller final time specified prevents the algorithm from converging i.e. no feasible

minimum norm solution for the terminal constraints. Obviously if final time is speci-

fied smaller than the actual minimum time, then the final state is not reachable. This
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leads to a near-minimum time trajectory that satisfies the initial and final boundary

conditions in the minimum time-of-flight. If m is sufficiently large this sub-optimal

solution will typically be graphically identical to the actual minimum time maneuver.

7.2 Algorithm Performance

The domain over which the LTSO algorithm will converge is limited by two

factors: the domain of convergence of the MCPI-IVP when integrating Gauss’ varia-

tional equations, and the domain over which MPS will converge. [66] showed the the

domain of convergence of the MCPI-IVP is as much as 50 orbits when integrating

Gauss’ variational equations. This is substantially more compared to integrating the

perturbed two-body orbit equations of motion in Cartesian variables. Although the

domain of convergence is large, it does not lead to optimal computational efficiency

to integrate such large arcs, as was discussed in Chap 4, and segmentation is used

with the average segment size being about one orbit period of the departure orbit

(close enough to optimal for this study). These segments are patched together and

thus the MCPI-IVP domain of convergence is no longer a limiting factor on the

convergence of LTSO.

The domain over which MPS will converge is dependent on the initial starting

elements, the thrust level, and the specified time-of-flight. Two examples of low

thrust maneuvers that were computed with LTSO are shown in Figures 7.2 (LEO)

and 7.3 (MEO). The respective direction components of the normalized thrust vector

are shown in Figures 7.4 and 7.5. The components vary smoothly with time implying

that the motion of the thruster is smooth and not chaotic. Figures 7.6, 7.7, 7.8 and

7.9 show the variation in the orbital elements for these two transfers. It is clear that

the elements also vary slowly over time and that to make a large orbit change would

take many spirals. If the target elements exceed the MPS domain of convergence

120



Figure 7.2: Low thrust transfer departing low Earth orbit.

then the problem must be solved using a multiple-shooting method. In the current

work multiple-shooting is not considered and is left for future work. It is also evident

that the present approach will solve a large family of practical low-thrust transfer

problems.

121



Figure 7.3: Low thrust transfer departing medium Earth orbit.
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Figure 7.4: Time history of the normalized thrust direction vector for the trajectory
shown in Figure 7.2.

Figure 7.5: Time history of the normalized thrust direction vector for the trajectory
shown in Figure 7.3.
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Figure 7.6: Variation in the classical orbit elements (a, e, i) for the low thrust transfer
departing low Earth orbit.

Figure 7.7: Variation in the classical orbit elements (Ω, w, f) for the low thrust
transfer departing low Earth orbit.
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Figure 7.8: Variation in the classical orbit elements (a, e, i) for the low thrust transfer
departing medium Earth orbit.

Figure 7.9: Variation in the classical orbit elements (Ω, w, f) for the low thrust
transfer departing medium Earth orbit.
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7.3 Chapter Summary

The LTSO transfer algorithm makes use of MPS and the MCPI-IVP to iteratively

solve for the coefficients that parameterize the steering angles of the control vector.

This unique implementation of minimum norm direct optimization is attractive in

that it does not require solution of auxiliary different equations to compute partial

derivatives. The problem is formulated and solved using the classical orbital ele-

ments, however, these exhibit singularities for zero eccentricity and zero inclination

orbits. There are several ways to overcome this challenge that are mentioned here

but will be left for future work (e.g. use of equinoctual elements [66]).
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8. UNIFIED LAMBERT TOOL

The ULT is a numerical tool developed by the author in C/C++ that com-

bines the Keplerian Lambert solver (a-iteration) and three perturbed Lambert solvers

(MCPI-BVP, MCPI-KS-TPBVP, MPS) into an accurate and efficient means for solv-

ing Lambert’s problem. The ULT is also implemented in parallel using Message

passing Interface (MPI) and when required is run on the Texas A&M LASR Lab

SSA Cluster. Many situations require solving hundreds of thousands of Lambert

problems and this is where the parallel implementation is particularly useful. The

need for solving hundreds of thousands of trajectories arises when one considers solv-

ing the challenging SSA data association problem, or for the generation of EFMs to

determine an optimal ∆v rendezvous maneuver. A case study for these two problems

is presented in the latter chapters of this dissertation to demonstrate the capability

and power of the algorithm.

8.1 Sub-Algorithms

The ULT consists of four Lambert algorithms written in a C/C++ environment

and a suit of MATLAB post-processing tools. Each Lambert problem that the ULT

is tasked with solving is first computed using a-iteration [16], the Keplerian Lam-

bert algorithm, and then if a perturbed trajectory is required the ULT automatically

selects the best suited perturbed algorithm for the job. There are three perturbed al-

gorithm choices, and the arc length or true anomaly angle spanned by the Keplerian

transfer trajectory is the parameter that governs the automated selection of the ap-

propriate perturbed algorithm. This selection is based on the algorithm convergence

characteristics of the respective perturbed solvers.
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The first perturbed algorithm solves the Lambert problem using the standard

MCPI-TPBVP. This algorithm does not require a Newton-like shooting method and

is the most efficient of the perturbed solvers presented herein, however the domain

of convergence is limited to about a third of an orbit. The second perturbed algo-

rithm extends the domain of convergence of the MCPI-TPBVP solver to about 90%

of an orbit, through regularization with the KS transformation. This is the second

most efficient out of the perturbed set of algorithms. The third perturbed algorithm

uses MPS and the MCPI-IVP for solving multi-revolution perturbed transfers. This

method does require “shooting” but differs from Newton-like shooting methods in

that it does not require propagation of a state transition matrix. A detailed descrip-

tion of the algorithms and test cases to demonstrate the respective performance were

presented in the preceding chapters.

8.2 Parallelization

The ULT is implemented in parallel, using MPI, on the 192 core space situational

awareness computer cluster at the LASR Lab, Texas A&M University. The nature of

the parallelization is general in the sense that ULT can compute multiple trajectories

at any instant in time if they are independent, but it is specific in the sense that a

unique “front end” to the ULT is required for solving different types of problems.

For example, to solve the data association problem with radar measurements, the

ULT will accept a configuration file with a user specified number of candidate paired

initial and final positions (typically hundreds or thousands) and the corresponding

user specified times-of-flight. The paired initial and final positions must be pre-

computed from the radar measurements, and the time-of-flight corresponds to the

time between measurements. In a brute force manner the ULT would consider each

pair of position points and attempt to find a solution (initial velocity) that would
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allow for a feasible transfer between the points in the specified time-of-flight. The

only limitation to this computation is the number of compute nodes available for

performing the task.

If for example, an EFM is required then the parallelization is slightly different

because each trajectory is not independent of each other. That is, information from

the previous trajectory (true anomaly transfer angle) is used for computing the next

trajectory. There are two possible layers of parallelization that may be utilized. The

first layer involves the length of the transfer (single or multi-revolution). The second

layer of parallelization is related to each “vertical row” (increasing time-of-flight) on

the EFM. As a result the speedup provided by this implementation is only limited

by the number of compute nodes available on the LASR Cluster.

8.3 User Input

The user input required by the ULT differs slightly for solving different types

of problems. Below is a brief description of the initial conditions and simulation

parameters required in the configuration file(s). Figure 8.1 also shows a flow diagram

that demonstrates how the ULT operates for generating EFMs.

1. Keplerian OR perturbed final solution?

2. Single trajectory OR EFM?

(a) Single trajectory

i. Specify initial and final position (Cartesian or classical elements).

ii. Specify the desired time-of-flight.

(b) Data Association

i. Specify all initial and final positions (Cartesian or classical elements).

ii. Specify all the corresponding times-of-flight.
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(c) EFM

i. Specify departure and arrival orbit (Cartesian or classical elements).

ii. Specify EFM dimensions.

A. Maximum time-of-flight (y-axis)

B. Maximum time past arbitrary starting point (x-axis)

3. Gravity Model (EGM2008 or GMAT)

(a) Specify spherical harmonic degree and order

(b) Specify atmospheric drag parameters

(c) Specify third body effects
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8.4 EFM Output

The output from the ULT consists of several arrays of data that can be plotted to

generate EFMs using the MATLAB software in the post-processing folder. There is

an option to plot two-body EFMs or perturbed EFMs for departure ∆v , arrival ∆v,

and combined ∆v (departure plus arrival), each for a specific number of revolutions.

The EFMs shown in this chapter were computed using p-iteration as the Keplerian

solver in the ULT. For simplicity only the combined ∆v perturbed EFMs are plotted

(Figures 8.2 to 8.6). Following this the combined perturbed EFM is shown in Figure

8.7. Notice that towards the top of the EFM there are several “holes” indicating that

the perturbed algorithm (MPS) failed to converge. The two-body (not shown) and

perturbed EFMs for this test case the were essentially the same to graphical precision

(without the holes). Over long time intervals, especially for highly eccentric orbits,

the EFM for the perturbed case will differ graphically from the Keplerian case of

course.

In the Figures 8.2 through 8.7 the magenta represents the infeasible transfer

regions. These may be considered infeasible for a number of reasons, for example

the ∆v exceeds a limit that is user specified and reflects the physical capability of

the engine; the transfer trajectory collides with the Earth; the transfer trajectory

is hyperbolic (exceeds escape velocity); the algorithm was unable to converge due

to numerical limitations like a transfer through an angle of 180◦. The blue regions

represent feasible transfer regions, with lighter shades representing lower ∆v transfers

and darker regions representing more expensive transfers. Notice that a region in

the EFM that is infeasible for a transfer trajectory through a specified number of

revolutions (i.e. 0 ≤ tf ≤ 2π, Figure 8.2) may be feasible for a different number of

revolutions (i.e. 2π ≤ tf ≤ 4π, Figure 8.3). In addition, an expensive transfer for a
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certain number of revolutions may be cheaper for a different number of revolutions.

The appearance of these EFM will of course change based on the initial phasing of

the orbiting objects and the shapes of the orbits.

The final plot shows which algorithm performed the computations for generat-

ing the perturbed trajectory. Red represents the MCPI-BVP which is the fastest

algorithm of the three but has the smallest domain of convergence, yellow represents

the MCPI-KS-TPBVP which is the next fastest algorithm, and blue represents the

MCPI-MPS which converges over multiple revolutions.
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Figure 8.2: Extremal field map for transfers with a true anomaly angle between 0
and 2π. The color bar is ∆v squared in km2/s2.

Figure 8.3: Extremal field map for transfers with a true anomaly angle between 0
and 4π. The color bar is ∆v squared in km2/s2.
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Figure 8.4: Extremal field map for transfers with a true anomaly angle between 0
and 6π. The color bar is ∆v squared in km2/s2.

Figure 8.5: Extremal field map for transfers with a true anomaly angle between 0
and 8π. The color bar is ∆v squared in km2/s2.
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Figure 8.6: Extremal field map for transfers with a true anomaly angle between 0
and 10π. The color bar is ∆v squared in km2/s2.

Figure 8.7: Combined perturbed extremal field map showing the minimum cost for
all the multi-revolution “layers”. The color bar is ∆v squared in km2/s2.
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Figure 8.8: Extremal field map showing which perturbed algorithm was utilized for
performing the computations. Red represents orbit transfers computed using the
MCPI-BVP, yellow represents orbit transfers using the MCPI-KS-BVP, and blue
represents orbit transfers using MCPI-MPS.
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9. PARALLEL GENERATION OF EXTREMAL FIELD MAPS

There are over 500 USA-launched and over 1000 Soviet-launched spent boosters

in low Earth orbit. The combined mass of these upper-stage boosters represent

approximately half of all the mass of debris objects orbiting the Earth. Orbital

debris is hazardous to operational satellites and reducing the danger is possible by

orbit rendezvous, capture and de-orbit missions directed at the most high priority

debris objects. Determining the optimal maneuver sequence for rendezvous with

these large derelict objects requires simulating hundreds of thousands of feasible

transfer trajectories. In this chapter the ULT is used for generating EFMs in order

to determine the optimal maneuver sequence for rendezvous with two spent boosters.

9.1 Optimal Maneuver Sequence

We simulate a “retrieval” spacecraft in a reference orbit and require it to ren-

dezvous with two pieces of debris in different LEO orbits (Orbit 1 and Orbit 2 in

Table 9.1). Each piece of debris is assumed to be a spent Delta Upper Stage (mass

approx 6000 kg). The ULT (in particular p-iteration [61]) is used to compute the

two-body transfer trajectory for each feasible solution, and the ∆v values are shown

in an EFM.

The mass was selected based on the ∆v values required to place the debris in

an re-entry orbit with a perigee radius of 100 km. We perform a “representative”

calculation to determine the approximate mass of fuel required for conducting the

mission, assuming a specific impulse of 358 s (≈ kerosene or RP1) and a final mass

of no less than 20% of the original mass of the retrieval vehicle. That is, 80%

of the retrieval vehicle is assumed to be fuel. This rough computation provides

some numbers in the relevant domain for conducting the simulation, however, more
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accurate computations would of course be required for the engine, propellant and

spacecraft considered for a specific mission.

The mission requirement is to carry out the maneuvers and rendezvous with both

pieces of debris using the minimum ∆v. Whether to rendezvous with object 1 first

and then fly to object 2, or vice versa, is unknown. To determine this we generate an

EFM for transfers from the Reference to Orbit 1 (Figure 9.1). The transfer trajectory

that corresponds to the point on the EFM with the minimum ∆v is selected as the

first phase in this transfer sequence. A second EFM is then generated for the transfers

from Orbit 1 to Orbit 2 (Figure 9.2). The trajectory that resulted in the minimum

∆v transfer from Orbit 1 to Orbit 2 is selected as the second phase in the sequence.

Following this the total ∆v for the sequence is computed. The same procedure is

performed for computing the minimum ∆v to transfer from the Reference to Orbit 2

(Figure 9.3), and then to Orbit 1 (Figure 9.4). The EFMs generate the local extrema

for a large family of take-off and arrival times for each transfer so that the global

extremal can be found.

Figure 9.1 is the EFM for transfers from the Reference orbit to Orbit 1. The

maximum ∆v cost displayed on the plot is 3.5 km/s. The color bar reveals how the

cost varies for different starting positions past perigee (horizontal axis) and varying

time-of-flight (vertical axis). The black represents all infeasible regions, and regions

where the cost exceeds 3.5 km/s. It is interesting to note that towards the top of

the figure some yellow regions meet with red regions. Each of these represent a

different type of transfer (lob, first multi-revolution, second multi-revolution and so

on). In certain circumstances, as one type of transfer may become infeasible, i.e. the

multi-revolution transfer may collide with the Earth, another more expensive type

(perhaps the lob) will become the transfer option (red).

Looking at Figure ?? it appears that the optimal transfer would be one of the
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Table 9.1: Orbital elements [62].
Elements Reference Orbit Orbit 1 Orbit 2

Semimajor axis (A) 7500 km 7000 km 8000 km
Eccentricity (e) 0.1 0.05 0.07
Inclination (i) 28.5◦ 33.5◦ 23.5◦

RA of Ascending Node (Ω) 0◦ 0◦ 0◦

Argument of Periapses (w) 0◦ 0◦ 0◦

Table 9.2: ∆v Maneuvers [62].
Maneuvers Sequence 1 Sequence 2

Acceleration ∆v1 0.5658 km2/s2 0.3798 km/s
Decceleration ∆v1 0.3532 km2/s2 0.2977 km/s

De-orbit ∆v1 0.0495 km2/s2 0.2468 km/s
Acceleration ∆v2 0.7329 km2/s2 0.6842 km/s
Decceleration ∆v2 0.6556 km2/s2 0.7268 km/s

De-orbit ∆v2 0.2468 km2/s2 0.0495 km/s
TOTAL ∆v 2.6040 km2/s2 2.3850 km/s

multi-revolution cases where the shading is yellow. The magenta star at the top right

is the global minimum on this EFM, and this trajectory is selected for making the

transfer between the Reference orbit and Orbit 1.

Figure 9.2 is the EFM for all feasible transfers from Orbit 1 to Orbit 2. The

global minimum is shown with the magenta star. Figure 9.3 is the EFM for all

feasible transfers from the Reference orbit to Orbit 2, with the global minimum

depicted by the magenta star. Finally, Figure 9.4 is the EFM for all the feasible

transfers from Orbit 2 to Orbit 1. Again the global minimum is marked with the

magenta star.

Figures 9.5 and 9.6 show the transfer sequences from the Reference to Orbit 1 to

Orbit 2 and from the Reference to Orbit 2 to Orbit 1 respectively. For the first case
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Figure 9.1: Two-body EFM showing the minimum velocity orbit transfer maneuvers
between the Reference orbit and Orbit 1. The maximum allowable ∆v is 3.5km2/s2

for this 5◦ inclination plane change. The magenta star marks the global minimum ∆v
transfer. The blue dots represent the example transfer trajectories shown in Figure
?? [62].
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Figure 9.2: Two-body EFM showing the minimum velocity orbit transfer maneuvers
between the Orbit 1 and Orbit 2. The maximum allowable ∆v is 2km2/s2 for this 10◦

inclination plane change. The magenta star marks the global minimum ∆v transfer
[62].
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Figure 9.3: Two-body EFM showing the minimum velocity orbit transfer maneuvers
between the Reference and Orbit 2. The maximum allowable ∆v is 1km2/s2 for
this 5◦ inclination plane change. The magenta star marks the global minimum ∆v
transfer [62].
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Figure 9.4: Two-body EFM showing the minimum velocity orbit transfer maneuvers
between the Orbit 2 and Orbit 1. The maximum allowable ∆v is 2.5km2/s2 for
this 10◦ inclination plane change. The magenta square star the global minimum ∆v
transfer [62].
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the optimal ∆v sequence is to remain in the Reference orbit for about 7 hours (black

line), then apply a ∆v (green line) to get onto the first transfer orbit (blue line).

The transfer between the Reference and Orbit 1 takes about 5 hours. Following

this a ∆v (red line) is applied to rendezvous with the debris in Orbit 1. The two

docked spacecraft (debris removal craft and debris) remain in Orbit 1 for about 5

hours (black line). During this time the vehicle passes through apogee three times

(magenta dots). All of these apogee passages are ideal times to release the debris

onto a re-entry orbit. The ∆v for this re-entry orbit (assuming a perigee radius of

100 km) is given by the small vertical magenta line at the end of this black line. At

about 17 hours the debris removal vehicle applies a ∆v (green line) to move onto

the second transfer trajectory (blue line). This transfer takes about 3 hours, after

which a ∆v is applied to rendezvous with the second piece of debris in Orbit 2. After

rendezvous the vehicle travels for a short time in Orbit 2 before reaching apogee. At

this time a ∆v is applied to send the second piece of debris in to a re-entry orbit,

also with a perigee radius of 100 km. The total time for this sequence of maneuvers

is about 21 hours, with a total ∆v of about 2.6 km/s. The exact numbers are shown

in Table 9.2.

A similar sequence of maneuvers is applied for the second case, the Reference

to Orbit 2 to Orbit 1. Here the total time-of-flight is just short of 11 hours, with

a total ∆v of about 2.4 km/s. Based on this analysis, the optimal ∆v sequence of

maneuvers for conducting this orbit debris removal mission would be to transfer from

the Reference to Orbit 2 and then to Orbit 1.

At some future time (after many revolutions), an optimal transfer region on the

two-body EFM may not be optimal compared with a “perturbed” EFM. Thus, if

high precision transfers are desired it is essential to include perturbations and drag

in the simulation as was demonstrated in Chapter 8. However, an important point

144



to note is that even though a trajectory may be simulated with high precision, in

reality the uncertainty in the achieved ∆v from the physical maneuver (i.e. the

rocket engine) may be greater than the errors of the simulated solution. Thus the

level of accuracy needed for each situation requires several considerations. Presently,

these mission-specific considerations will dictate whether or not perturbations and

drag should be included when generating the EFM.

For this simple problem with only two pieces of debris considered, we needed to

generate 4 EFMs, for an additional piece of debris 15 EFMs would be required to seek

an optimal solution - the resulting “orbit transfer traveling salesman problem”. The

problem would become even more complicated if, instead of selecting the minimum

∆v in each EFM, we took into account the fact that the sum of the minimum ∆v’s

may not be the absolute optimal way to make the transfer. That is, a moderately low

∆v for the first maneuver could lead to a “super low” ∆v for the second maneuver.

The total may be less than the procedure adopted for the above example. In addition,

if there is a finite time constraint and a fuel constraint then a different outcome could

also be observed. However, independent of the degree or number of constraints, in

all cases it is anticipated that the generation of EFMs is essential to give “global

visibility” of the family of feasible transfers and therefore, a crucial tool to find the

optimal (or desirable sup-optimal) maneuver sequence.
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10. CONCLUSION

The author developed a suite of algorithms for solving the perturbed Lambert

problem in celestial mechanics. These algorithms were implemented as a parallel

computation tool that has broad applicability. This tool is composed of four sub-

algorithms and each provides unique benefits for solving a particular type of orbit

transfer problem. The first algorithm utilizes a Keplerian solver (a-iteration or p-

iteration) for solving the unperturbed Lambert’s problem. This algorithm not only

provides a “warm start” for solving the perturbed problem but also helps to identify

which of the several perturbed solvers is best suited for the job.

The second algorithm solves the two-point boundary value problem using a vari-

ant of the modified Chebyshev-Picard iteration approach to solve for two-impulse

Lambert transfers. This method converges over about one third of an orbit and does

not require a Newton-type shooting method; no state transition matrix needs to be

computed.

The third algorithm makes use of regularization of the differential equations

through the Kustaanheimo-Stiefel transformation and extends the domain of con-

vergence over which the modified Chebyshev-Picard iteration two-point boundary

value problem will converge, from about one third of an orbit to almost a full orbit.

This algorithm also does not require a Newton-type shooting method. The fourth

algorithm uses the method of particular solution and the modifed Chebyshev-Picard

iteration initial value solver to solve the perturbed two-impulse Lambert problem

over multiple revolutions. The method of particular solutions is a shooting method

but differs from the Newton-type shooting methods in that it does not require inte-

gration of the state transition matrix.
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The mathematical developments that underlie these four sub-algorithms were

derived in the chapters of this dissertation. For each of the algorithms, some orbit

transfer test cases are included to provide insight on accuracy and efficiency of these

individual algorithms. Following this discussion, the combined parallel algorithm,

known as the unified Lambert tool, was presented and an explanation was given as

to how it automatically selects which of the three sub-algorithms to use for computing

the perturbed solution for a particular orbit transfer. The unified Lambert tool may

be used to determine a single orbit transfer or for the generation of extremal field

maps. A case study was presented for a mission that was required to rendezvous

with two pieces of orbit debris (spent rocket boosters).

The results of this dissertation can be used for mission planning, orbit transfer,

and space situational awareness applications. The extremal field maps permit graph-

ical and numerical “what if” questions to be quickly posed and answered. For future

research, it is recommended that the sub-optimal continuous thrust orbit transfer

techniques be used to initiate an iteration of the two-point boundary value problems

associated with the indirect, calculus of variations approach to trajectory optimiza-

tion. Specifically the minimum time optimal continuous thrust transfer problem.

Since the take-off time is free, there are an infinite family of these, and given a range

of feasible take-off times, we could find the take-off time that results in minimum

time of flight (which is also minimum fuel). We could also vary the thrust level

and generate an extremal field map showing take-off times, arrival times and thrust

levels.

The unified Lambert tool software developed in this dissertation is already being

utilized by several industrial partners and we are confident that it will play a signifi-

cant role in practical applications, including solution of Lambert problems that arise

in the current applications focused on enhanced space situational awareness.
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APPENDIX A

CHEBYSHEV POLYNOMIALS

In 1857 the Russian mathematician, Rafnuty Lvovich Chebyshev, developed a

series of orthogonal polynomials that are now referred to as Chebyshev polynomials

[23]. There are two types of Chebyshev polynomials and these are distinguished as

follows: Chebyshev polynomials of the first kind denoted by (Tk), and Chebyshev

polynomials of the second kind denoted by (Uk). For simplicity, throughout this

dissertation the term Chebyshev polynomials is used to refer to only the first kind

of Chebyshev polynomials.

In order to define Chebyshev polynomials and derive the recurrence relation (a

similar procedure was outlined in Bai’s dissertation [18]) we start with the following

identity:

cos((n+ 1)θ) = 2 cos(θ) cos(nθ)− cos((n− 1)θ). (A.1)

This identity is a rearrangement of Eq. (B.21) and can be proven using the “Sums-

to-Products” identity as follows.

cos(α + β) = cosα cos β − sinα sin β (A.2)

Substitute α = nθ and β = θ in first to form one version of the equation, and then

substitute α = nθ and β = −θ to form a second version. Add the two together as

follows:

cos(nθ + θ) = cos(nθ) cos θ − sin(nθ) sin θ (A.3)
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and

cos(nθ − θ) = cos(nθ) cos(−θ)− sin(nθ) sin(−θ). (A.4)

Adding these results in

cos(nθ + θ) + cos(nθ − θ) = 2 cos(nθ) cos θ, (A.5)

and simple rearrangement leads to Eq. (A.1) as desired. The next step is to write

cos(nθ) as a summed function of itself. This is shown below, along with some veri-

fication to prove the identity:

cos(nθ) =
n∑
i=0

ci cosi(θ) (A.6)

The validity of the preceding formula is tested using n = 0, 1, 2, 3. The ci are to

be determined functions ci(θ). For n = 0,

1 = c0. (A.7)

For n = 1,

cos θ = 1 + c1 cos θ ⇒ c1 =
cos(θ)− 1

cos(θ)
. (A.8)

For n = 2,

cos(2θ) = 1 + (cos(θ)− 1) + c2 cos2(θ) =⇒ c2 =
cos(2θ)− cos(θ)

cos2(θ)
. (A.9)
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For n = 3,

cos(3θ) = 1+(cos(θ)−1)+(cos(2θ)−cos(θ))+c3 cos(3θ) =⇒ c3 =
cos(3θ)− cos(2θ)

cos3(θ)
.

(A.10)

Substituting the coefficients c0, c1, c2, c3 in to the the equation for n = 3 leads to

cos(3θ) = cos(3θ), thus proving by induction that Eq. (A.6) holds true. Eq. (A.6)

and the first three ci also suggests that cos(nθ) is a polynomial in cos(θ), and thus

for a fixed n the the nth Chebyshev polynomial is defined as

cos(nθ) = Tn cos θ. (A.11)

If τ = cos θ we obtain the following:

Tn(τ) = cos(n arccos(τ)), for τ in [−1, 1] (A.12)

Chebyshev polynomials are actually cosine curves with a somewhat disturbed hori-

zontal scale, but the vertical scale has been untouched. Eq. (A.12) can be extended

to Eq. (A.13) when necessary:

Tm(Tn(τ)) = Tnm(τ), (A.13)

since

cos(m arccos(cos(n arccos(τ)))) = cos(mn arccos(τ)). (A.14)

Referring to Eq. (A.1) is is clear that the recurrence relation for cosines

leads to the recurrence relation for Chebyshev polynomials as shown be-

low.

T0(τ) = 1 (A.15)
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T1(τ) = τ (A.16)

Tk+1(τ) = 2τTk(τ)− Tk−1(τ). (A.17)

The continuous orthogonality of Chebyshev polynomials satisfies

∫ 1

−1
Tn(τ)Tm(τ)

1√
1− τ 2

=


0 : n 6= m

π : n = m = 0

π
2

: n = m 6= 0.

(A.18)

The discrete orthogonality of the Chebyshev polynomials using the GCL nodes is

given as

k=N∑
k=0

′′Tn(τk)Tm(τk) =


0 : n 6= m

N : n = m = 0

N
2

: n = m 6= 0,

(A.19)

where ′′ conveys that both the first and last terms in the summation are multiplied

by a half, similar to the weight matrix (W ) notation discussed in Chapter 2. The

number of CGL nodes (N+1) for the Nth order Chebyshev polynomials are computed

using

τk = cos

(
kπ

N

)
. (A.20)

The integration of the Chebyshev polynomials have the following property:

∫
Tk(τ)ds =

1

2

(
Tk+1

k + 1
− Tk−1
k − 1

)
. (A.21)
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Figure A.1: The first six Chebyshev Polynomials of the first kind [68].

Chebyshev polynomials of the first kind are related to Chebyshev polynomials of

the second kind through

dTk
dτ

= kUk−1. (A.22)

It is important to note that another set of polynomials also exist that are the

zeros of the Chebyshev polynomials. These are give defined by

τk = cos

(
(2k + 1)π

2N

)
, k = 0, 1, ...N. (A.23)

Fox [24] performed a comparison of these two formula and concluded that first have

theoretical advantages for cases of slow convergence. They are also economic in that

when the number of points is doubled, the old matching points may be reused. Figure

A.1, displays the first six Chebyshev polynomials.
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APPENDIX B

ORTHOGONAL APPROXIMATION

The material in this appendix supplements that presented in Chapter 2. MCPI

uses least squares approximation and for completeness we derived this in Section B.1.

This is followed by a derivation of the particular choice of weight matrix that pre-

serves orthogonality and allows an expensive matrix inversion to be avoided (Section

B.2). Finally this appendix includes examples for computing the coefficients of the

least squares approximation (Section B.2.3).

B.1 Least Squares Derivation

In vector-matrix notation Eq. 2.6 from Section 2.3 becomes the linear system

r = f− Φa, (B.1)

where

f =



f(ξ0)

f(ξ1)

...

f(ξM)


, Φ =



φ0(ξ0) φ1(ξ0) · · · φN(ξ0)

φ0(ξ1) φ1(ξ1) · · · φN(ξ1)

...
...

. . .
...

φ0(ξM) φ1(ξM) · · · φN(ξM)


, a =



a0

a1
...

aN


. (B.2)

Eq. B.1 can be rearranged into the more familiar notation e = b−Ax = 0 (i.e.

Ax = b), where f is the b vector, A is the Φ matrix, and x is the a vector of

coefficients that we wish to solve for. Depending on the dimensions of Φ we can

either solve to obtain an exact solution, or find the “best/closest” solution using the
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least squares or minimum norm methods.

If M and N are equal (i.e. # of unknowns = # of equations) then an exact

solution can be found. If M < N (i.e. # of unknowns < # of equations) then

the minimum norm method must be used, and if M > N (i.e. # of unknowns >

# of equations) then the least squares method must be employed. Since both M ,

the number of sample points, and N , the degree of the approximating polynomial,

are selected/determined manually we anticipate that solving using minimum norm

methods can be avoided. Therefore only the least squares method is considered and

derived in this appendix.

Starting with

Ax = b, (B.3)

in the usual least squares fashion, the error that we wish to minimize is given by

e = b− Ax. (B.4)

Traditionally the least squares cost function, J given in Eq. B.5, must be minimized.

The cost function may be thought of as the “quality or goodness” of the fit.

J = min
eTe

2
, (B.5)

J =
1

2
eTe =

1

2
(b− Ax)T (b− Ax) . (B.6)

Distributing the transpose produces

J =
1

2

(
bT − xTAT

)
(b− Ax) . (B.7)
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Expanding the above equation leads to the following:

J =
1

2
bTb− 1

2
bTAx− 1

2
xTATb+

1

2
xTATAx. (B.8)

Simplifying results in

J =
1

2
bTb− bTAx+

1

2
xTATAx. (B.9)

To minimize J we differentiate and set it equal to zero.

∂J

∂x
= 0− ATb+ ATAx = 0 (B.10)

Thus,

ATAx = ATb (B.11)

and we have the usual “normal equations” for the least squares approximation [61]

x =
(
ATA

)−1
ATb. (B.12)

Eq. B.12 shows that the vector of coefficients of the approximating polynomial (x)

may be determined in terms of the known quantities b and A. If desired, a positive

definite weight matrix may also be included in the cost function. This would lead to

Eq. B.6 becoming J = 1
2
eTWe = 1

2
(b− Ax)T W (b− Ax), and finally the normal

equations Eq. (B.12) are generalized to x =
(
ATWA

)−1
ATWb.

For MCPI the cost function is specifically

J =
1

2
(f− Φa)T W (f− Φa) , (B.13)
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where W = W T is a positive definite weight matrix, and the least squares minimiz-

ation solution for a leads to the normal equations in Eq. 2.9. For more details refer

to Crassidis & Junkins [69].

a =
(
ΦTWΦ

)−1
ΦTW f. (B.14)

B.2 Weight Matrix

If W is restricted to be a diagonal matrix, and a special class of orthogonal

functions (Chebyshev polynomials) is chosen such that the matrix of ΦTWΦ is also

diagonal orthogonal, then the inverse of the diagonal matrix ΦTWΦ is trivial. That

is, the inverse of a diagonal matrix is simply the matrix with the reciprocal of each

element on the diagonal. This is given in Eq B.15.

(
ΦTWΦ

)−1
= diag

{
1/
(
ΦTWΦ

)
ii

}
≡ diag

{
1/m00 1/m11 · · · 1/mNN

}
(B.15)

B.2.1 Elements of ΦTWΦ

The typical element of ΦTWΦ is a discrete inner product denoted mαβ = mβα,

and invoking the condition that ΦTWΦ be a diagonal matrix directly gives rise to

the orthogonality conditions, requiring the typical pair of orthogonal basis functions’

inner products obey:

mαβ = mβα ≡ 〈φα(ξ), φβ(ξ)〉 ≡
M∑
j=0

Wjφα(ξj)φβ(ξj) =

 0, for α 6= β

mαα = cα > 0, for α = β

 ,

(B.16)
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where mαβ is the typical term in ΦTWΦ. More specifically (for M = 2),

mαβ =


m00 m01 m02

m10 m11 m12

m20 m21 m22

 =
(
ΦTWΦ

)
, (B.17)

where
(
ΦTWΦ

)
is given by,

(
ΦTWΦ

)
=


φ0(ξ0) φ0(ξ1) φ0(ξ2)

φ1(ξ0) φ1(ξ1) φ1(ξ2)

φ2(ξ0) φ2(ξ1) φ2(ξ2)



W0 0 0

0 W1 0

0 0 W2



φ0(ξ0) φ1(ξ0) φ2(ξ0)

φ0(ξ1) φ1(ξ1) φ2(ξ1)

φ0(ξ2) φ1(ξ2) φ2(ξ2)

 .
(B.18)

The matrix multiplication computation leads to the following:

m00 = W0φ
2
0(ξ0) +W1φ

2
0(ξ1) +W2φ

2
0(ξ2),

m11 = W0φ
2
1(ξ0) +W1φ

2
1(ξ1) +W2φ

2
1(ξ2),

m22 = W0φ
2
2(ξ0) +W1φ

2
2(ξ1) +W2φ

2
2(ξ2),

m01 = m10 = W0φ0(ξ0)φ1(ξ0) +W0φ0(ξ0)φ1(ξ0) +W2φ0(ξ2)φ1(ξ2),

m02 = m20 = W0φ0(ξ0)φ2(ξ0) +W1φ0(ξ1)φ2(ξ1) +W2φ0(ξ2)φ2(ξ2),

m12 = m21 = W0φ1(ξ0)φ2(ξ0) +W1φ1(ξ1)φ2(ξ1) +W2φ1(ξ2)φ2(ξ2).

(B.19)

If {φ0(ξ), φ1(ξ), φ2(ξ)} are an orthogonal set, then m01 = m10 = 0, m02 = m20 = 0,

and m12 = m21 = 0, and all that is left are the diagonal terms of the m matrix.

The orthogonality conditions depend jointly on the set of basis functions, the set

of node locations and the weight matrix (W = W T ). Consistent with the classical

orthogonality conditions for Chebyshev polynomials, the weight matrix is defined as

follows W = diag
{

1
2
, 1, 1, ..., 1, 1, 1

2

}
.
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B.2.2 Why Half?

The choice of a half for the first and last elements in the weight matrix is discussed

in [24], pages 25 through 32. At the fundamental level, once the basis functions

and nodes are chosen, the weights are “whatever that have to be” to ensure the

orthogonality conditions are satisfied. Their discussion and derivation is summarized

in this section. Note that the interior nodes are at the extrema of the N Chebyshev

basis functions, where the boundary nodes are not extrema.

The orthogonal Chebyshev polynomials may be calculated using Eq. A.15 to Eq.

A.17 or using the cosine trigonometric identity given in Appendix A, also shown

below, where k = 0, ..., N .

φk(ξj) = cos(k arccos(ξj)), ξ ∈ [−1, 1], (B.20)

As part of the least squares analysis, that was discussed in previous section, the

sum in Eq. B.16 must be computed. This is the product of two basis functions

using the form shown in Eq. B.20, φα(ξ) = cos (αx) and φβ(ξ) = cos (βx), where

xj = arccos(ξj). Since ξj = −cos
(
iπ
M

)
, x = arccos (ξj) = arccos

(
−cos

(
iπ
M

))
=

(Mπ−jπ)
M

. Making use of the “products-to-sums” cosine trigonometric identity leads

to the following expression:

cos (αx) cos (βx) =
1

2
(cos ((α + β)x) + cos ((α− β)x)) . (B.21)

This implies that the product of the two basis functions within the “summation”

may be written purely as a sum of cosine terms. Looking at an example of M = 3,

166



and selecting α and β to be 2 and 3 respectively results in the following.

M∑
j=0

φα(ξj)φβ(ξj) =
M∑
j=0

1

2
(cos ((α + β)xj) + cos ((α− β)xj)) , (B.22)

which becomes

3∑
j=0

φ2(ξj)φ3(ξj) =
1

2
(cos ((2 + 3)x0) + cos ((2− 3)x0) + ...

...+ cos ((2 + 3)x1) + cos ((2− 3)x1) + ...

...+ cos ((2 + 3)x2) + cos ((2− 3)x2) + ...

+ cos ((2 + 3)x3) + cos ((2− 3)x3)) , (B.23)

More specifically,

3∑
j=0

φ2(ξj)φ3(ξj) =
1

2

cos

(
(2 + 3)

(3π − 0π)

3

)
︸ ︷︷ ︸

=0

+ cos

(
(2− 3)

(3π − 0π)

3

)
︸ ︷︷ ︸

=0

+ ...

...+ cos

(
(2 + 3)

(3π − π)

3

)
︸ ︷︷ ︸

= 10π
3
≡θ1

+ cos

(
(2− 3)

(3π − π)

3

)
︸ ︷︷ ︸

=− 2π
3
≡θ2

+ ...

...+ cos

(
(2 + 3)

(3π − 2π)

3

)
︸ ︷︷ ︸

= 5π
3
=2θ1

+ cos

(
(2− 3)

(3π − 2π)

3

)
︸ ︷︷ ︸

=−π
3
=2θ2

+ ...

...+ cos

(
(2 + 3)

(3π − 3π)

3

)
︸ ︷︷ ︸

=5π=3θ1

+ cos

(
(2− 3)

(3π − 3π)

3

)
︸ ︷︷ ︸

=−π=3θ2

 (B.24)
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The purpose of the “lower” braces and θ′s will become apparent shortly.

For orthogonality, the inner product of the two basis functions (φ2 and φ3) must

be zero. Thus Eq. (B.24) must equal zero. In order to achieve this, now consider

another trigonometric identity that is a sum of cosine terms shown in Eq. (B.21). It

is clear that when θ = Mπ the R.H.S. becomes zero.

1

2
+ cos (θ) + cos (2θ) + ...+ cos ((M − 1) θ) +

1

2
cos (Mθ) =

1

2
sin (Mθ) cot

(
1

2
θ

)
(B.25)

This trigonometric identity is similar to the cosine sum that results from the inner

product in Eq. B.24, if θ is set equal to (α + β) π
3
. For θ = (α− β) π

3
we have

another form of Eq. B.21, so in fact Eq. B.24 is the sum of twice Eq. B.21, one with

θ1 = (α + β) π
3

and the other with θ2 = (α− β) π
3
. This is shown in Eq. B.26 with

the θ1 terms colored in red to aid in identifying the two series.

1

2
+

1

2
+ cos θ1 + cos θ2 + cos 2θ1 + cos 2θ2 +

1

2
cos 3θ1 +

1

2
cos 3θ2 = 0. (B.26)

Independently comparing the red (or black) parts of Eq. B.26 to Eq. B.21, it

is clear that the only difference is that the first and last terms of the identity (Eq.

B.21) are 1
2

the size of those in Eq. B.26. Thus in order to achieve orthogonality

the R.H.S. of Eq. (B.24) must take on the form of the L.H.S. of Eq. (B.26).

To achieve this we must apply a 1
2

weight to the first and last boundary terms,

while all the rest are unity (these nodes locating the extrema of the M Chebyshev

sample points). It is for this reason that the we adopt the particular weight matrix

of W = diag
{

1
2
, 1, 1, ..., 1, 1, 1

2

}
, to ensure orthogonality.
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B.2.3 Coefficients

A step-by-step verification of Eq. 2.15, in Section 2.7, is given for a few select

example cases.

B.2.3.1 Verification of c0

Consider the case for c0 and M= 4. From Eq. 2.15

c0 = 〈T0(ξ), T0(ξ)〉, (B.27)

and from Eq. 2.14

c0 =
1

2
T 2
0 (ξ0) + T 2

0 (ξ1) + T 2
0 (ξ2) + T 2

0 (ξ3) +
1

2
T 2
0 (ξ4). (B.28)

The zeroth Chebyshev polynomial is given by

T0 = 1, (B.29)

and therefore

c0 =

{
1

2
+ 1 + 1 + 1 +

1

2
= 4

}
= M. (B.30)

B.2.3.2 Verification of cα = c1

Consider the case for N = 1, i.e. (cα = c1), and M = 4. From Eq. 2.15

c1 = 〈T1(ξ), T1(ξ)〉, (B.31)
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and from Eq. 2.14

c1 =
1

2
T 2
1 (ξ0) + T 2

1 (ξ1) + T 2
1 (ξ2) + T 2

1 (ξ3) +
1

2
T 2
1 (ξ4). (B.32)

The first Chebyshev polynomial is given by

T1 = ξ, (B.33)

and the cosine sample points are calculated as follows:

ξ0 = −cos(
0π

4
) = −1, (B.34)

ξ1 = −cos(
π

4
) ∼= −0.7071, (B.35)

ξ2 = −cos(
2π

4
) = 0, (B.36)

ξ3 = −cos(
3π

4
) ∼= 0.7071, (B.37)

ξ4 = −cos(
4π

4
) = 1. (B.38)

Substituting these sample points back into Eq. B.33 gives

T 2
1 (ξ0) = (−1)2, (B.39)

and similarly,

T 2
2 (ξ1) = (−0.7071)2, T 2

2 (ξ2) = 0, T 2
2 (ξ3) = (0.7071)2, T 2

2 (ξ3) = 1. (B.40)
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Therefore, as expressed in Eq. 2.15

cα =

{
c1 =

1

2
+

1

2
+ 0 +

1

2
+

1

2
= 2

}
=
M

2
. (B.41)

B.2.3.3 Verification of cα = c2

Consider the case for N = 2, i.e. (cα = c2), and M = 4. From Eq. 2.15

c2 = 〈T2(ξ), T2(ξ)〉, (B.42)

and from Eq. 2.14

c2 =
1

2
T 2
2 (ξ0) + T 2

2 (ξ1) + T 2
2 (ξ2) + T 2

2 (ξ3) +
1

2
T 2
2 (ξ4). (B.43)

The second Chebyshev polynomial is given by

T2 = 2ξ2 − 1, (B.44)

and the cosine sample points are the same as for the c1 calculation. Substituting

these sample points back into Eq. (B.44) gives

T 2
2 (ξ0) = 1, (B.45)

and similarly,

T 2
2 (ξ1) = 0, T 2

2 (ξ2) = 1, T 2
2 (ξ3) = 0, T 2

2 (ξ3) = 1. (B.46)
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Therefore, as expressed in Eq. 2.15

cα =

{
c2 =

1

2
+ 0 + 1 + 0 +

1

2
= 2

}
=
M

2
. (B.47)

B.2.3.4 Verification of cα = c3

Consider the case for N = 3, i.e. (cα = c3), and M = 4. From Eq. 2.15

c3 = 〈T3(ξ), T3(ξ)〉, (B.48)

and from Eq. 2.14

c3 =
1

2
T 2
3 (ξ0) + T 2

3 (ξ1) + T 2
3 (ξ2) + T 2

3 (ξ3) +
1

2
T 2
3 (ξ4). (B.49)

The third Chebyshev polynomial is given by

T3 = 4ξ3 − 3ξ, (B.50)

and the cosine sample points are the same as for the c1 calculation. Substituting

these sample points back into Eq. (B.50) gives

T 2
3 (ξ0) = 1, (B.51)

and similarly,

T 2
3 (ξ1) =

1

2
, T 2

3 (ξ2) = 0, T 2
3 (ξ3) =

1

2
, T 2

3 (ξ3) = 1. (B.52)
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Therefore, as expressed in Eq. 2.15

cα =

{
c3 =

1

2
+

1

2
+ 0 +

1

2
+

1

2
= 2

}
=
M

2
. (B.53)

B.2.3.5 Verification of cN = c4 where N = M

Consider the case for N = 4, i.e. (cα = c4), and M = 4. From Eq. 2.15

c4 = 〈T4(ξ), T4(ξ)〉, (B.54)

and from Eq. 2.14

c4 =
1

2
T 2
4 (ξ0) + T 2

4 (ξ1) + T 2
4 (ξ2) + T 2

4 (ξ3) +
1

2
T 2
4 (ξ4). (B.55)

The fourth Chebyshev polynomial is given by

T4 = 8ξ4 − 8ξ2 + 1, (B.56)

and the cosine sample points are the same as for the c1 calculation. Substituting

these sample points back into Eq. B.56 gives

T 2
4 (ξ0) = 1, (B.57)

and similarly,

T 2
4 (ξ1) = 1, T 2

4 (ξ2) = 1, T 2
4 (ξ3) = 1, T 2

4 (ξ3) = 1. (B.58)

173



Therefore, as expressed in Eq. 2.15

cα =

{
c4 =

1

2
+ 1 + 1 + 1 +

1

2
= 4

}
= M. (B.59)

B.2.3.6 Verification of c
N

where M > N

Consider the present interpolation case for N = 4, i.e. (cN = c4), and M = 5.

From Eq. 2.15

c4 = 〈T4(ξ), T4(ξ)〉, (B.60)

and from Eq. 2.14

c4 =
1

2
T 2
4 (ξ0) + T 2

4 (ξ1) + T 2
4 (ξ2) + T 2

4 (ξ3) + T 2
4 (ξ4) +

1

2
T 2
4 (ξ5). (B.61)

The fourth Chebyshev polynomial is given by

T4 = 8ξ4 − 8ξ2 + 1, (B.62)

and the cosine sample points are calculated as follow:

ξ0 = −cos(
0π

5
) = −1, (B.63)

ξ1 = −cos(
π

5
) ∼= −0.8090, (B.64)

ξ2 = −cos(
2π

5
) ∼= −0.3090, (B.65)

ξ3 = −cos(
3π

5
) ∼= 0.3090. (B.66)

ξ4 = −cos(
4π

5
) ∼= 0.8090. (B.67)
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ξ5 = −cos(
5π

5
) = 1. (B.68)

Substituting these sample points back into Eq. B.62 gives

T 2
4 (ξ0) = 1, (B.69)

and similarly,

T 2
4 (ξ1) = 0.6545, T 2

4 (ξ2) = 0.0955, T 2
4 (ξ3) = 0.0955 T 2

4 (ξ4) = 0.6545, T 2
4 (ξ5) = 1.

(B.70)

Therefore, as expresses in Eq. 2.15

c
N

=

{
c3 =

1

2
+ 0.6545 + 0.0955 + 0.0955 + 0.6545 +

1

2
=

5

2

}
=
M

2
. (B.71)

The computations in this section verify Eq. 2.15, in Section 2.7.
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APPENDIX C

PICARD ITERATION

The equation below, with an of initial condition x(t0) = x0, is a first order

differential equation for a scalar case.

dx

dt
= f(x, t) (C.1)

A sequence of approximate solutions, xi(t)(i = 1, 2, ...,∞), to this differential equa-

tion may be obtained through Picard iteration using the following recursion formula;

xi(t) = x(t0) +

∫ t

t0

f
(
xi−1, s

)
ds. (C.2)

This exists in a time domain D surrounding the point (t0, x0(t)), and is defined in a

function space by the inequalities

| t− t0 |≤ a, | x(t)− x0(t) |≤ b. (C.3)

If f(x(t), t) is a single-valued continuous function of x and t, and if f(x(t), t)

satisfies the Lipschitz condition, then the sequence produced by Eq. C.2 will converge

to a unique and continuous solution satisfying the differential equation (Eq. C.1).

The Lipschitz condition is a smoothness condition that restricts the increase of a

function. For a function f(x(t), t), if (x(t), t) and (X(t), t) are two points in the

domain D, then

| f(x(t), t)− f(X(t), t) |< K | x(t)−X(t) |, (C.4)
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where the Lipschitz contant of the function f is given by K. It has been shown by

[70] that the continuity of f(x(t), t) is not necessary and that the requirements for

f(x(t), t) are that it is bounded. Also, all the integrals of the form
∫ t
0
f(xi, s)ds do

exist.

For a system of equations that exhibit the first order form as shown below, with

m dependent variables,

dx1
dt

= f1(x1(t), x2(t), ..., xm(t), t) (C.5)

dx2
dt

= f2(x1(t), x2(t), ..., xm(t), t) (C.6)

...

dxm
dt

= fm(x1(t), x2(t), ..., xm(t), t), (C.7)

[70] demonstrated that if over the m+ 1 variables in the augmented list, f1, f2, ..., fm

are single-valued, continuous functions that are restricted to lie in the domain D

defined by

| t− t0 |≤ a, | x(t)− x0(t) |≤ b1, ..., | x(t)− xm(t) |≤ bm; (C.8)

and if M is the greatest of the upper bounds of f1, f2, ..., fm in the domain D; and if h

is the least of b1
M
, b2
M
, ..., bm

M
; and let t be further restricted if necessary by | t− t0 |< h;

the Lipschitz condition has the form
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| fr(X1(t), X2(t), ..., Xm(t), t)− fr(x1(t), x2(t), ..., xm(t), t) |< ...

... K1 | X1(t)− x1(t) | +K2 | X2(t)− x2(t) | +...+Km | Xm(t)− xm(t) |, (C.9)

where r = 1, 2, ...,m. The iteration then having the form

xir(t) = xr(t0) +

∫ t

0

fr
(
xi−11 , xi−12 , ..., xi−1m , s

)
ds (C.10)

will converge to the unique and continuous solution shown in Eq. C.5 through Eq.

C.7.
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APPENDIX D

MCPI COEFFICIENT DERIVATION

This appendix provides some additional details that were not included in Chap-

ter 3, but are useful for understanding how the MCPI algorithm is derived. The

following developments continue the formulations from Sections 3.4, 3.5 and 3.6.

One distinction that must be made clear is that these developments present a subtle

difference compared with those presented in Bai’s PhD dissertation [18]. Macomber’s

dissertation [40] also mentioned this subtle difference, referencing in-house tutorial

notes prepared by Woollands. Those in-house tutorial notes have become the con-

tents of Chapter 3 and this appendix. This appendix is, in some sense, a “brute

force” approach wherein all Chebyshev polynomials are replaced by their equivalent

power series of degree N in τ . This permits ease of integration and collection of

terms. This approach, while not necessary to derive MCPI, has appeal on heuristic

grounds.

D.1 First Order MCPI-IVP

In Chapter 3 some steps were shown that resulted in a set of general formulae

for determining the coefficients (β) of the “solution” trajectory. In this section

we provide a more detailed derivation for the coefficients of the first order MCPI-

IVP using two example cases for N = 5 and N = 6 respectively. Recall that the

coefficients of the forcing function F were derived in Chapter 2 and Appendix B,

and that they were obtained through least squares approximation. The β coefficients

may then be determined in terms of these known F coefficients.
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D.1.1 N = 5

Note that the upper limit of the summation on the R.H.S. is N − 1, not N ,

because integration increases the degree of the polynomial by one. In Eq. D.2

through Eq. D.9 and the coefficient summary tables, the superscript i has been left

off to prevent clutter.

xi(τ) =
N∑
k=0

βikTk(τ) = x(−1) +

∫ τ

−1

N−1∑
k=0

F i−1
k Tk(s)ds. (D.1)

L.H.S.

β0T0 + β1T1 + β2T2 + β3T3 + β4T4 + β5T5 = R.H.S. (D.2)

Substitute the Chebyshev polynomials Tn(τ) as a power series in τ from Eq. (3.4)

to Eq. (3.6).

β0+β1τ+β2(2τ
2−1)+β3(4τ

3−3τ)+β4(8τ
4−8τ 2+1)+β5(16τ 5−20τ 3+5τ) = R.H.S.

(D.3)

β0 + β1τ + 2β2τ
2 − β2 + 4β3τ

3 − 3β3τ + ...

...+ 8β4τ
4 − 8β4τ

2 + β4 + 16β5τ
5 − 20β5τ

3 + 5β5τ = R.H.S (D.4)

Collect the coefficients for τ 0 to τ 5.
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Degree Coefficient

τ 0 β0 − β2 + β4

τ 1 β1 − 3β3 + 5β5

τ 2 2β2 − 8β4

τ 3 4β3 − 20β5

τ 4 8β4

τ 5 16β5

Table D.1: Collecting the L.H.S. coefficients of τ (N = 5).

R.H.S.

L.H.S. = x0 + F 0

∫ τ

−1
T0(s)ds+ F 1

∫ τ

−1
T1(s)ds+ F 2

∫ τ

−1
T2(s)ds+ ...

...+ F 3

∫ τ

−1
T3(s)ds+ F 4

∫ τ

−1
T4(s)ds (D.5)

Substitute the Chebyshev polynomials.

L.H.S. = x(−1) + F 0

∫ τ

−1
1ds+ F 1

∫ τ

−1
sds+ F 2

∫ τ

−1

(
2s2 − 1

)
ds+ ...

...+ F 3

∫ τ

−1

(
4s3 − 3s

)
ds+ F 4

∫ τ

−1

(
8s4 − 8s2 + 1

)
ds (D.6)

Integration yields the following:

L.H.S. = x(−1) + F 0 [s]τ−1 + F 1

[
1

2
s2
]τ
−1

+ F 2

[
2

3
s3 − s

]τ
−1

+ ...

...+ F 3

[
s4 − 3

2
s2
]τ
−1

+ F 4

[
8

5
s5 − 8

3
s3 + s

]τ
−1
. (D.7)
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Evaluate the terms from −1 to τ to get

L.H.S. = x(−1) +F 0 [τ + 1] +F 1

[
1

2
τ 2 − 1

2

]
+F 2

[
2

3
τ 3 − τ −

(
−2

3
− (−1)

)]
+ ...

...+ F 3

[
τ 4 − 3

2
τ 2 −

(
1− 3

2

)]
+ F 4

[
8

5
τ 5 − 8

3
τ 3 + τ −

(
−8

5
+

8

3
− 1

)]
. (D.8)

Expand and simplify as follows:

L.H.S. = x(−1) + F 0τ + F 0 +
1

2
F 1τ

2 − 1

2
F 1 +

2

3
F 2τ

3 − F 2τ −
1

3
F 2 + ...

...+ F 3τ
4 − 3

2
F 3τ

2 +
1

2
F 3 +

8

5
F 4τ

5 − 8

3
F 4τ

3 + F 4τ −
1

15
F 4. (D.9)

Collect the coefficients for τ 0 to τ 6.

Degree Coefficient

τ 0 x(−1) + F 0 − 1
2
F 1 − 1

3
F 2 + 1

2
F 3 − 1

15
F 4

τ 1 F 0 − F 2 + F 4

τ 2 1
2
F 1 − 3

2
F 3

τ 3 2
3
F 2 − 8

3
F 4

τ 4 F 3

τ 5 8
5
F 4

Table D.2: Collecting the R.H.S. coefficients of τ (N = 5).

Equate the terms from the L.H.S. and the R.H.S. starting with β5.

βi5 =
1

10
F i−1

4 (D.10)

βi4 =
1

8
F i−1

3 (D.11)
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βi3 =
1

6

(
F i−1

2 − F i−1
4

)
(D.12)

βi2 =
1

4

(
F i−1

1 − F i−1
3

)
(D.13)

βi1 =
1

2

(
2F i−1

0 − F i−1
2

)
(D.14)

To solve for β0 substitute τ = −1 into Eq. D.4 and Eq. D.5. Equating leads to the

following result.

βi0 = x(−1) + βi1 − βi2 + βi3 − βi4 + βi5. (D.15)

D.1.2 Example N = 6

In this section we perform the same computations as above, to determine the β

coefficients as a function of the F coefficients, but with N = 6.

xi(τ) =
N∑
k=0

βikTk(τ) = x(−1) +

∫ τ

−1

N−1∑
k=0

F i−1
k Tk(s)ds. (D.16)

Degree Coefficient

τ 0 β0 − β2 + β4 − β6

τ 1 β1 − 3β3 + 5β5

τ 2 2β2 − 8β4 + 18β6

τ 3 4β3 − 20β5

τ 4 8β4 − 48β6

τ 5 16β5

τ 6 32β6

Table D.3: Collecting the L.H.S. coefficients of τ (N = 6)
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Degree Coefficient

τ 0 x(−1) + F 0 − 1
2
F 1 − 1

3
F 2 + 1

2
F 3 − 1

15
F 4 − 1

6
F 5

τ 1 F 0 − F 2 + F 4

τ 2 1
2
F 1 − 3

2
F 3 + 5

2
F 5

τ 3 2
3
F 2 − 8

3
F 4

τ 4 F 3 − 5F 5

τ 5 8
5
F 4

τ 6 8
3
F 5

Table D.4: Collecting the R.H.S. coefficients of τ (N = 6).

Equate the terms from the L.H.S. and the R.H.S. starting with β6.

βi6 =
1

12
F i−1

5 , (D.17)

βi5 =
1

10
F i−1

4 , (D.18)

βi4 =
1

8

(
F i−1

3 − F i−1
5

)
, (D.19)

βi3 =
1

6

(
F i−1

2 − F i−1
4

)
, (D.20)

βi2 =
1

4

(
F i−1

1 − F i−1
3

)
, (D.21)

βi1 =
1

2

(
2F i−1

0 − F i−1
2

)
, (D.22)

βi0 = x(−1) + βi1 − βi2 + βi3 − βi4 + βi5 − βi6. (D.23)

D.1.3 Coefficients Summarized

Looking at the previous two examples it is easy to see that a set of general

formulae may be derived for the β coefficients as a function of the F coefficients.

These formulae are given below and are the same as those given in Eqs 3.16 through

3.20 in Chapter 3. These coefficients for β can be arranged in a vector matrix form as
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shown in Eqs 3.21 through 3.23 in Chapter 3, thus allowing a one time computation

of the matrices prior to integration.

βi0 = x0 +
k=N∑
k=1

(−1)k+1βik, (D.24)

βi1 =
1

2

(
2F i−1

0 − F i−1
2

)
, (D.25)

βik =
1

2k

(
F i−1
k−1 − F

i−1
k+1

)
, k = 1, 2, ..., N − 1, (D.26)

βiN−1 =
F i−1
N−2

2(N − 1)
, (D.27)

and

βiN =
F i−1
N−1

2N
. (D.28)

D.2 Second Order MCPI-IVP

The formulation for the second order case is similar to that of the first order case

but since integration is performed twice, the method can be formulated in a cascade

fashion where the result from the first integration (velocity) is directly integrated to

obtain the second result (position). This approach preserves kinematic consistency.

Note that for the first integration the upper limit of the summation for the coefficients

approximating the forcing function is N −2, and in the second integration the upper

limit of the summation is increased to N − 1. The upper limits are applied because

integration increases the degree of the polynomial by one. The approximation of the
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solution trajectory on the L.H.S is of course summed to N .

xi(τ) =
N∑
k=0

αikTk(τ) = x(−1)+

∫ τ

−1

N−1∑
k=0

{
v(−1) +

∫ s

−1

N−2∑
k=0

F i−1
k Tk(q)dq

}
ds. (D.29)

Solving for α directly in terms of F is possible but it leads to a set of complicated

formulae that do not exhibit any obvious pattern, thus making it very challenging

to code the method for arbitrary N . Instead we consider formulating the coefficients

of β in terms of F , and then the coefficients of α in terms of β. This results in two

nice sets of general formulae the resemble those derived for the first order case.

D.2.1 Velocity Approximation

Consider the following velocity approximation for N = 6,

vi(τ) =
N−1∑
k=0

βikTk(τ) = v(−1) +

∫ τ

−1

N−2∑
k=0

F i−1
k Tk(s)ds. (D.30)

Substituting in the Chebyshev polynomials, simplifying and equating leads to the

following set of equations:

βi5 =
1

10
F i−1

4 , (D.31)

βi4 =
1

8
F i−1

3 , (D.32)

βi3 =
1

6

(
F i−1

2 − F i−1
4

)
, (D.33)

βi2 =
1

4

(
F i−1

1 − F i−1
3

)
, (D.34)

βi1 =
1

2

(
2F i−1

0 − F i−1
2

)
, (D.35)

βi0 = x(−1) +
(
βi1 − βi2 + βi3 − βi4 + βi5

)
. (D.36)
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These can be constructed as a set of general formulae as follows:

βi0 = x0 +
k=N−1∑
k=1

(−1)k+1βik, (D.37)

βi1 =
1

2

(
2F i−1

0 − F i−1
2

)
, (D.38)

βik =
1

2k

(
F i−1
k−1 − F

i−1
k+1

)
, k = 1, 2, ..., N − 3, (D.39)

βiN−2 =
F i−1
N−3

2(N − 2)
, (D.40)

and

βiN−1 =
F i−1
N−2

2(N − 1)
. (D.41)

D.2.2 Position Approximation

Consider the following position approximation for N = 6,

xi(τ) =
N∑
k=0

αikTk(τ) = x(−1) +

∫ τ

−1

N−1∑
k=0

βikTk(s)ds. (D.42)

Substituting in the Chebyshev polynomials, simplifying and equating leads to the

following set of equations:

αi6 =
1

12
βi5 (D.43)

αi5 =
1

10
βi4 (D.44)

αi4 =
1

8

(
βi3 − βi5

)
(D.45)

αi3 =
1

6

(
βi2 − βi4

)
(D.46)
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αi2 =
1

4

(
βi1 − βi3

)
(D.47)

αi1 =
1

2

(
2βi0 − βi2

)
(D.48)

αi0 = x0 +
(
αi1 −αi2 +αi3 −αi4 +αi5 −αi6

)
(D.49)

These can be constructed as a set of general formulae as follows:

αi0 = x0 +
k=N∑
k=1

(−1)k+1αik, (D.50)

αi1 =
1

2

(
2βi0 − βi2

)
, (D.51)

αik =
1

2k

(
βik−1 − βik+1

)
, k = 1, 2, ..., N − 1, (D.52)

αiN−1 =
βiN−2

2(N − 1)
, (D.53)

and

αiN =
βiN−1
N

. (D.54)

The sets of general formulae that are derived in this section can be represented

in vector matrix notation as shown in Eqs 3.40 through 3.43 in Chapter 3. These

matrices can be computed and stored for arbitrary values of N and then called when

required by the MCPI algorithms.

D.3 Second Order MCPI-TPBVP

To derive the MCPI-TPBVP the same approach is used and the final result only

differs in the way the first two α coefficients are computed as these contain the

unknown constant of integration for the first integration (i.e. the unknown initial
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velocity). The necessary details for deriving the MCPI-TPBVP are already given in

Chapter 3, Section 3.6. Also presented is the approach for extraction of the unknown

initial velocity post integration.
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APPENDIX E

KS DERIVATION

Considerable algebra is required to derive the perturbed two-body equations of mo-

tion (Eq. 5.11) shown in Chapter 5. In this appendix we present a step-by-step

derivation for the planar (two-dimensional) case starting with the Cartesian per-

turbed two-body equations of motion.

r̈ = − µ
r3
r + F , (E.1)

and for Z(t) = 0 this reduces to

 Ẍ

Ÿ

 = − µ
r3

 X

Y

+ F . (E.2)

Restricting the motion to the plane we know that the following relationship is true

 X

Y

 = L(u)u , where L(u) =

 u1 −u2

u2 u1

 . (E.3)

Eq. E.2 now becomes

 Ẍ

Ÿ

 = − µ
r3

 u1 −u2

u2 u1


 u1

u2

+ F . (E.4)
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Taking the time derivative of Eq. E.3 leads to

 Ẋ

Ẏ

 =

 u̇1 −u̇2

u̇2 u̇1


 u1

u2

+

 u1 −u2

u2 u1


 u̇1

u̇2

 . (E.5)

Note that d
dE

= d
dt

dt
dE

and from Eq. 5.5 dt
dE

=
(

1√
µα

)
r, where α = 2

r
− ṙT ṙ

µ
. To

simplify notation we adopt the following convention for derivatives ˙( ) =
√
µα

r
( )′,

where the dot represents derivatives with respect to time and the prime represents

derivatives with respect to eccentric anomaly. The right hand side of Eq. E.5 can

now be written as

 Ẋ

Ẏ

 =

√
µα

r

 u′1 −u′2

u′2 u′1


 u1

u2

+

√
µα

r

 u1 −u2

u2 u1


 u′1

u′2

 , (E.6)

which can be further simplified to

 Ẋ

Ẏ

 =
2
√
µα

r

 u1 −u2

u2 u1


 u′1

u′2

 . (E.7)

Differentiating with respect to time again leads to

 Ẍ

Ÿ

 =
−2√µα
r2

ṙ

 u1 −u2

u2 u1


 u′1

u′2

+
√

µ
α
α̇
r

 u1 −u2

u2 u1


 u′1

u′2

+ · · ·

· · ·+ 2µα

r2

 u′1 −u′2

u′2 u′1


 u′1

u′2

+
2µα

r2

 u1 −u2

u2 u1


 u′′1

u′′2

 . (E.8)
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In Eq. E.8, ṙ =
√
µα

r
r′ and α̇ is the time derivative of α = 2

r
− ṙT ṙ

µ
(more on

this later in the derivation). Since r = u21 + u22, r
′ = 2(u1u

′
1 + u2u

′
2), and thus

ṙ =
2
√
µα

r
(u1u

′
1 + u2u

′
2). Substituting these into Eq. E.8 results in

 Ẍ

Ÿ

 =
−4√µα
r3

 u21u
′
1 + u1u2u

′
2 −u1u′1u2 − u22u′2

u1u
′
1u2 + u22u

′
2 u21u

′
1 + u1u2u

′
2


 u′1

u′2

+ · · ·

· · ·+
√

µ
α
α̇
r

 u1 −u2

u2 u1


 u′1

u′2

+ 2µα
r2

 u′1 −u′2

u′2 u′1


 u′1

u′2

+ · · ·

· · ·+ 2µα

r2

 u1 −u2

u2 u1


 u′′1

u′′2

 . (E.9)

The first and third terms can be combined using the following substitution, 1 =

r
r

=
u21+u

2
2

r
, which allows a common denominator to be created.

 Ẍ

Ÿ

 = −4µα
r3

 u21u
′2
1 + u1u

′
1u2u

′
2 − u1u′1u2u′2 − u22u′22

u1u
′2
1 u2 + u′1u

2
2u
′
2 + u21u

′
1u
′
2 + u1u2u

′2
2

+ · · ·

· · ·+
√

µ
α
α̇
r

 u1 −u2

u2 u1


 u′1

u′2

+ 2µα
r3

 u21u
′2
1 + u′21 u

2
2 − u21u′22 − u22u′22

2u21u
′
1u
′
2 + 2u22u

′
1u
′
2

+ · · ·

· · ·+ 2µα

r2

 u1 −u2

u2 u1


 u′′1

u′′2

 . (E.10)
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Combining the first and third terms leads to

 Ẍ

Ÿ

 = µα
r3

 −4u21u
′2
1 + 4u22u

′2
2 + 2u21u

′2
1 + 2u′21 u

2
2 − 2u21u

′2
2 − 2u22u

′2
2

−4u1u2 (u′21 + u′22 )

+ · · ·

· · ·+
√
µ

α

α̇

r

 u1 −u2

u2 u1


 u′1

u′2

+
2µα

r2

 u1 −u2

u2 u1


 u′′1

u′′2

 . (E.11)

Further simplification leads to

 Ẍ

Ÿ

 = 2µα
r3

 −u
2
1u
′2
1 + u22u

′2
2 + u′21 u

2
2 − u21u′22

−2u1u2 (u′21 + u′22 )

+ · · ·

· · ·+
√
µ

α

α̇

r

 u1 −u2

u2 u1


 u′1

u′2

+
2µα

r2

 u1 −u2

u2 u1


 u′′1

u′′2

 . (E.12)

Even further simplification leads to

 Ẍ

Ÿ

 = 2µα
r3

 − (u21 − u22)u′21 − (u21 − u22)u′22

−2u1u2 (u′21 + u′22 )

+ · · ·

· · ·+
√
µ

α

α̇

r

 u1 −u2

u2 u1


 u′1

u′2

+
2µα

r2

 u1 −u2

u2 u1


 u′′1

u′′2

 . (E.13)

Even further simplification leads to

 Ẍ

Ÿ

 = −2µα
r3

 (u21 − u22) (u′21 + u′22 )

2u1u2 (u′21 + u′22 )

+ · · ·
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· · ·+
√
µ

α

α̇

r

 u1 −u2

u2 u1


 u′1

u′2

+
2µα

r2

 u1 −u2

u2 u1


 u′′1

u′′2

 . (E.14)

Even further simplification leads to

 Ẍ

Ÿ

 = −2µα
r3

(u′21 + u′22 )

 u21 − u22

2u1u2

+ · · ·

· · ·+
√
µ

α

α̇

r

 u1 −u2

u2 u1


 u′1

u′2

+
2µα

r2

 u1 −u2

u2 u1


 u′′1

u′′2

 . (E.15)

Recall

 Ẍ

Ÿ

 = − µ
r3

 u21 − u22

2u1u2

+ F . (E.16)

Equating Eq. E.15 and Eq. E.16 and canceling µ
r3

leads to the following

−2α (u′21 + u′22 )

 u21 − u22

2u1u2

+ α̇r2√
µα

 u1 −u2

u2 u1


 u′1

u′2

+ · · ·

· · ·+ 2αr

 u1 −u2

u2 u1


 u′′1

u′′2

 = −

 u21 − u22

2u1u2

+
r3

µ
F . (E.17)
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Rearrange as follows

 u1 −u2

u2 u1


 u′′1

u′′2

 =
−(1−2α(u′21 +u′22 ))

2αr

 u21 − u22

2u1u2

+ · · ·

· · ·+ r2

2µα
F − α̇r

2α
√
µα

 u1 −u2

u2 u1


 u′1

u′2

 . (E.18)

Note that

L(u)LT (u) = rI = r

 1 0

0 1

 and LT (u) = rL−1(u), (E.19)

which leads to

 u1 −u2

u2 u1


−1

=
1

r

 u1 −u2

−u2 u1

 . (E.20)

Using Eq. E.20, u′′1 and u′′2 can be written as

 u′′1

u′′2

 =
−(1−2α(u′21 +u′22 ))

2αr2

 u1 u2

−u2 u1


 u21 − u22

2u1u2

+ r
2µα

 u1 u2

−u2 u1

F + · · ·

· · · − α̇r

2α
√
µα

 u1 u2

−u2 u1


−1  u1 −u2

u2 u1


 u′1

u′2

 . (E.21)
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Further simplification leads to

 u′′1

u′′2

 =
− (1− 2α (u′21 + u′22 ))

2αr2

 u1 (u21 + u22)

u2 (u21 + u22)

+
r

2µα
LT (u)F− α̇r

2α
√
µα

 u′1

u′2

 .

(E.22)

Simplifying further leads to

 u′′1

u′′2

 =
− (1− 2α (u′21 + u′22 ))

2αr

 u1

u2

+
r

2µα
LT (u)F − α̇r

2α
√
µα

 u′1

u′2

 .

(E.23)

Note (u′21 + u′22 ) =

 u′1

u′2


T  u′1

u′2

, but from Eq. E.7

 u′1

u′2

 =
1

2
√
µα

 u1 u2

−u2 u1


 Ẋ

Ẏ

 . (E.24)

So

(u′21 + u′22 ) = 1
4µα

 Ẋ

Ẏ


T  u1 −u2

u2 u1


 u1 u2

−u2 u1


︸ ︷︷ ︸

(u21+u22)I=rI

 Ẋ

Ẏ

 · · ·

=
r

4µα

(
Ẋ2 + Ẏ 2

)
=

r

4µα
v2. (E.25)
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Substituting Eq. E.25 into Eq. E.23 gives

 u′′1

u′′2

 =
−
(

1− 2α r
4µα

v2
)

2αr

 u1

u2

+
r

2µα
LT (u)F − α̇r

2α
√
µα

 u′1

u′2

 . (E.26)

Further simplification leads to

 u′′1

u′′2

 = − 1

2α

(
1

r
− v2

2µ

) u1

u2

+
r

2µα
LT (u)F − α̇r

2α
√
µα

 u′1

u′2

 . (E.27)

Recall that the energy integral is given as

α =
1

a
=

2

r
− v2

µ
= 2

(
1

r
− v2

2µ

)
. (E.28)

Substituting the energy integral into the first term of Eq. E.27 leads to

 u′′1

u′′2

 = −1

4

 u1

u2

+
r

2µα
LT (u)F − α̇r

2α
√
µα

 u′1

u′2

 . (E.29)

Note that

α =
2

r
− ṙT ṙ

µ
, (E.30)

where ṙ = 2L(u)du
dt

=
2
√
αµ

r
L(u)u ′.
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The Cartesian velocity dot-product can be written as

ṙT ṙ =
4αµ

r2
u ′TLT (u)L(u)u ′. (E.31)

This leads to an alternate form of the vis-viva equation in KS variables

α =
2

r

[
1 +

4

r
u ′Tu ′

]−1
. (E.32)

Differentiating to obtain α̇, and using r2 = rTr and the derivative 2rṙ = 2ṙTr in

Eq. E.30, gives

α̇ = − 2

µ
ṙTF = − 2

µ

2
√
µα

r
u ′TLT (u)F =

−4

r

√
α

µ
u ′TLT (u)F . (E.33)

Substituting this into Eq. E.29 gives

 u′′1

u′′2

 = −1

4
u +

r

2µα
LT (u)F +

2

µα
u ′TLT (u)Fu ′. (E.34)

The third term of Eq. E.34 can be rearranged as follows:

term 3 =
2

µα

 u′1

u′2


T  u1 u2

−u2 u1


 f1

f2


 u′1

u′2

 . (E.35)
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Further rearranging leads to

term 3 =
2

µα

 (u1f1 + u2f2)u
′
1

(−u2f1 + u1f2)u
′
2


 u′1

u′2

 , (E.36)

and then

term 3 =
2

µα

 u′1 (u1u
′
1 − u2u′2) f1 + u′1 (u2u

′
1 + u1u

′
2) f2

u′2 (u1u
′
1 − u2u′2) f1 + u′2 (u2u

′
1 + u1u

′
2) f2

 . (E.37)

Factorizing out the perturbing forces f1 and f2 gives

term 3 =
2

µα

 u′1 (u1u
′
1 − u2u′2) u′1 (u2u

′
1 + u1u

′
2)

u′2 (u1u
′
1 − u2u′2) u′2 (u2u

′
1 + u1u

′
2)


 f1

f2

 . (E.38)

Still further rearranging results in

term 3 =
2

µα

 u′1

u′2


 u1u

′
1 − u2u′2

u2u
′
1 + u1u

′
2


T

F , (E.39)

and then

term 3 =
2

µα

 u′1

u′2


 u′1

u′2


T  u1 u2

−u2 u1

F . (E.40)
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This leaves us with a nice form for the third term

term 3 =
2

µα
u ′u ′TLT (u)F . (E.41)

Substituting Eq. E.41 back into Eq. E.34 and factorizing out the L matrix and

the perturbing forces produces

 u′′1

u′′2

 = −1

4
u +

r

2µα

[
I +

4

r
u ′u ′T

]
LT (u)F . (E.42)

Finally, substituting α from Eq. E.32 into Eq. E.42 gives the following elegant

two-dimensional equations of motion.

 u′′1

u′′2

+
1

4
u =

r2

4µ

[
1 +

4

r
u ′Tu ′

] [
I +

4

r
u ′u ′T

]
LT (u)F . (E.43)

These equations for the two-dimensional case are easily extended into four dimensions

by including the u3 and u4 components into the u vector. The resulting equations

are the same as those shown in Eq. 5.11 from Chapter 5.
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