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ABSTRACT

Vision-aided navigation is the process of fusing data from visual cameras with

other information sources to provide vehicle state estimation. Fusing information

from multiple sources in a statistically optimal manner requires accurate stochastic

models of each information source. Developing such a model for visual measurements

presents a number of challenges.

Vision-aided navigation systems rely on a set of computer vision methods

known as feature detection and tracking to abstract visual camera images into a

data source amenable to state estimation. It is nearly universally assumed that

the measurements produced by these methods have independent and identically dis-

tributed (IID) errors. This study presents evidence that directly contradicts these

assumptions. Novel models for visual measurements that eliminate the IID assump-

tion are developed. Estimators are designed around the models and tested. Results

demonstrate a significant performance advantage over existing methods and also

reveal new challenges and paradoxes that motivate further research.

In addition to improving vision-aided navigation models, a set of flexible and

robust data-driven estimation techniques are developed and demonstrated on both

canonical problems and problems in vision-aided navigation.

ii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 MAXIMUM LIKELIHOOD AND ROBUST M-ESTIMATION . . . . . . . 18

2.1 MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 The Incidental Parameters Problem . . . . . . . . . . . . . . . 23
2.1.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 A Motivating Example: Location Estimation . . . . . . . . . . . . . . 29
2.3 M-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Influence Function . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Gross-Error Sensitivity . . . . . . . . . . . . . . . . . . . . . . 41
2.3.3 Breakdown Point . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.4 Minimax Bias and Variance: Location Problem . . . . . . . . 44
2.3.5 Nonlinear Regression . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.6 M-Estimates of Scale . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.7 M-Estimates of Location and Scale . . . . . . . . . . . . . . . 62
2.3.8 Nonlinear Regression with Unknown Scale . . . . . . . . . . . 67
2.3.9 Leverage Points . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.10 Leverage Point Example: Attitude Estimation . . . . . . . . . 75

2.4 Computing M-Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 An Important Note . . . . . . . . . . . . . . . . . . . . . . . . 83

2.5 Covariance of M-Estimates . . . . . . . . . . . . . . . . . . . . . . . . 85
2.5.1 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.6 Selecting a Nominal Model . . . . . . . . . . . . . . . . . . . . . . . . 88

iii



2.6.1 Kolmogrov-Smirnov Test . . . . . . . . . . . . . . . . . . . . . 91

3 PROBABILISTIC SENSOR MODELS . . . . . . . . . . . . . . . . . . . . 92

3.1 Feature Detection and Tracking . . . . . . . . . . . . . . . . . . . . . 92
3.1.1 Why Use Features? . . . . . . . . . . . . . . . . . . . . . . . . 95
3.1.2 State of the Practice . . . . . . . . . . . . . . . . . . . . . . . 97
3.1.3 A Unified Approach . . . . . . . . . . . . . . . . . . . . . . . 98
3.1.4 Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.1.5 Feature Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2 Camera Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.2.1 Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3 Range Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.3.1 Dense Versus Sparse . . . . . . . . . . . . . . . . . . . . . . . 114

3.4 IMUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.4.1 IMU Propagation Errors . . . . . . . . . . . . . . . . . . . . . 122
3.4.2 IMU Error Information Matrix . . . . . . . . . . . . . . . . . 127

3.5 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4 EXPERIMENTAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . 133

4.1 Rendering Tool for Analysis . . . . . . . . . . . . . . . . . . . . . . . 134
4.1.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2 LENS: LASR Embedded Navigation Stack . . . . . . . . . . . . . . . 139
4.2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.3 Batch Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.1 Attitude Parametrization . . . . . . . . . . . . . . . . . . . . . 146
4.3.2 Solving for Scale . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.3.3 Fixing Gauge Freedom . . . . . . . . . . . . . . . . . . . . . . 149

4.4 Computer Vision Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 149
4.4.1 RANSAC OLTAE . . . . . . . . . . . . . . . . . . . . . . . . . 151

5 VISUAL MEASUREMENT MODELING . . . . . . . . . . . . . . . . . . 153

5.1 Test Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2.1 Serial Correlations . . . . . . . . . . . . . . . . . . . . . . . . 160
5.3 Autoregressive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.4 Landmark-Walk Model . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.5 Correlated Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.6 Alpha-Correlated Error Model . . . . . . . . . . . . . . . . . . . . . . 175
5.7 Alpha-Correlated Pixel-Walk Model . . . . . . . . . . . . . . . . . . . 177
5.8 Summary of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.9 Scale Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.10 Sampling the Error Distribution . . . . . . . . . . . . . . . . . . . . . 184

iv



5.10.1 Landmark-Walk Model . . . . . . . . . . . . . . . . . . . . . . 185
5.10.2 Other Error Models . . . . . . . . . . . . . . . . . . . . . . . . 186
5.10.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 186
5.10.4 Tables of Distribution Fits . . . . . . . . . . . . . . . . . . . . 191

5.11 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.11.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 203
5.11.2 Basic Performance Study . . . . . . . . . . . . . . . . . . . . . 208
5.11.3 Sensitivity to Initial Guess . . . . . . . . . . . . . . . . . . . . 216
5.11.4 Selecting Estimators . . . . . . . . . . . . . . . . . . . . . . . 223
5.11.5 Blocked Paired-Different Tests . . . . . . . . . . . . . . . . . . 225
5.11.6 Linear Covariance Analysis . . . . . . . . . . . . . . . . . . . . 231
5.11.7 Mixed-Simulation Analysis . . . . . . . . . . . . . . . . . . . . 239

5.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6 DATA-DRIVEN ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . 245

6.1 Minimum Variance Estimators . . . . . . . . . . . . . . . . . . . . . . 247
6.1.1 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . 254

6.2 Auxiliary Measurements for Visual Features . . . . . . . . . . . . . . 259
6.3 Maximum Conditional Likelihood Estimation . . . . . . . . . . . . . 264

6.3.1 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 268
6.4 An Approach for Small Samples . . . . . . . . . . . . . . . . . . . . . 273

6.4.1 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . 275
6.5 Application to Vision-Aided Navigation . . . . . . . . . . . . . . . . . 277
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

v



LIST OF FIGURES

FIGURE Page

2.1 The Cauchy and normal PDF. . . . . . . . . . . . . . . . . . . . . 31

2.2 Location estimate errors using least squares under the normal and

Cauchy distribution. Some samples of the estimate error under

Cauchy measurement errors fall outside the plot limits. . . . . . . 32

2.3 Location estimate errors using the Cauchy MLE under the normal

and Cauchy distribution. The line labeled expected PDF is for the

estimate error of the Gaussian MLE under Gaussian errors. . . . 34

2.4 Maximum asymptotic bias and variance for the median location es-

timate under standard normal and standard Cauchy errors. Note

the large number of samples needed for the bias to dominate the

variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Maximum asymptotic bias and variance for the Huber location es-

timate under standard normal and standard Cauchy errors. Note

the large number of samples needed for the bias to dominate the

variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



2.6 Sum of maximum asymptotic bias squared and variance for the

Huber and median location estimates under standard normal and

standard Cauchy errors. The Huber cost is preferable for moderate

sample sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Sum of maximum asymptotic bias squared and variance for the

Huber and median location estimates under standard normal and

standard Cauchy errors. The Huber cost is preferable for moderate

sample sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8 PDF of the contaminated distribution used for the experiments in

the leverage point study. The PDF is a mixture of the Gaussian

(green) and Laplace (red) PDFs. . . . . . . . . . . . . . . . . . . 77

2.9 Histogram of attitude errors for the {n1 = 0, n2 = 10} case (abso-

lute value of Euler angle). . . . . . . . . . . . . . . . . . . . . . . 79

2.10 Histogram of the difference in attitude errors for the {n1 = 0,n2 =

10} case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.11 Histogram of attitude errors for the {n1 = 1, n2 = 9} case (absolute

value of Euler angle). . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.12 Histogram of the difference in attitude errors for the {n1 = 1, n2 =

9} case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



2.13 Convergence of iterative reweighted least squares algorithm for

two different weighting schemes. The IRLS-1 does not converge

to the optimal solution while the IRLS-2 does. . . . . . . . . . . . 85

3.1 Allan Variance for the VN100 gyros . . . . . . . . . . . . . . . . . 121

3.2 Allan Variance for the VN100 accelerometers . . . . . . . . . . . . 122

4.1 Sample image of Temple 1 comet using rendering tool. . . . . . . 135

4.2 Difference between extracted corners and estimated corner loca-

tions on checkerboard pattern assuming the model parameters are

correct. Each color represents a different image. . . . . . . . . . . 138

4.3 Experimental setup to calibrate the LENS-to-camera pose. The

LENS frame is defined by the Vicon beacons. The checkerboard

also has a frame defined by small beacons located at a subset of

the checkerboard corners. . . . . . . . . . . . . . . . . . . . . . . 142

4.4 Calibration images from the Point Grey Blackfly (left) and Swiss

Range intensity image scaled by four in size (right). . . . . . . . . 144

4.5 Block diagram of the developed computer vision pipeline. . . . . . 150

5.1 A subset of six images out of twenty along a descent trajectory.

The lighting angle changes during the sequence. The first image

is in the top-left and the others are ordered clockwise. . . . . . . 156

viii



5.2 Block structure of the linearized system for constant landmarks

and IID errors (two cameras, three landmarks): Jacobian (left)

and Hessian (right). The blue and white blocks represent non-

zero and zero terms respectively. The red lines partition the pose

and landmark parameters. . . . . . . . . . . . . . . . . . . . . . . 159

5.3 Illustration of pseudo-residual generation process for studying vi-

sual feature localization errors. . . . . . . . . . . . . . . . . . . . 161

5.4 Median-absolute-deviation for each component of rrri,1,k versus im-

age index i for three different trajectory classes. Each class has

100 sets of 20 images with 200 landmarks per set. . . . . . . . . 164

5.5 Estimate of error scale versus index for the first-order autoregres-

sive model of visual errors. The semi-transparent lines are the

results for individual trials, the thick solid lines are the bootstrap

means, and the dashed lines are the bootstrap means plus or minus

three times the bootstrap standard deviations. . . . . . . . . . . . 166

5.6 Block structure of the linearized system for the autoregressive

model (four cameras, four landmarks): Jacobian (left) and Hes-

sian (right). The blue and white blocks represent non-zero and

zero terms respectively. The red lines partition the pose and land-

mark parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

ix



5.7 Block structure of the linearized system for the random walk model

(three cameras, three landmarks): Jacobian (left) and Hessian

(right). The blue and white blocks represent non-zero and zero

terms respectively. The red lines partition the pose and landmark

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.8 Block structure of the linearized system for the correlated error

model (four cameras, four landmarks): Jacobian (left) and Hessian

(right). The blue and white blocks represent non-zero and zero

terms respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.9 Block structure of the linearized system for the correlated error

model (three cameras, three landmarks): Jacobian (left) and Hes-

sian (right). The blue and white blocks represent non-zero and

zero terms respectively. The red lines partition the pose parame-

ters, landmark parameters, and nuisance parameters. . . . . . . . 180

5.10 Approximate samples from error distribution under the standard

model. Samples genereated with 100 sets of 20 images along ran-

dom descent trajectories. . . . . . . . . . . . . . . . . . . . . . . . 188

5.11 View of the tails of the samples in Figure (5.10) . . . . . . . . . . 188

5.12 CDF of samples and distributions in Figure (5.10) . . . . . . . . . 189

x



5.13 Approximate samples from error distribution under the landmark-

walk model. Samples generated with 100 sets of 20 images along

random descent trajectories. . . . . . . . . . . . . . . . . . . . . . 190

5.14 View of the tails of the samples in Figure (5.13) . . . . . . . . . . 190

5.15 CDF of samples and distributions in Figure (5.13) . . . . . . . . . 191

5.16 Approximate samples from error distribution under the correlated

error model. Samples generated with 100 sets of 20 images along

random descent trajectories. . . . . . . . . . . . . . . . . . . . . . 192

5.17 View of the tails of the samples in Figure (5.16) . . . . . . . . . . 192

5.18 CDF of samples and distributions in Figure (5.16) . . . . . . . . . 193

5.19 Statistical blocking implemented in this study. . . . . . . . . . . . 205

5.20 Median estimator performance over ten datasets from each trajec-

tory class versus estimator scale parameter. Initial pose estimate

from vision pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.21 RMS error for various estimators on each of ten datasets from each

trajectory class. Initial pose estimate from vision pipeline. . . . . 210

5.22 RMS error for multiple estimators on the long-orbit (top) and

descent (bottom) trajectory class. . . . . . . . . . . . . . . . . . . 226

xi



5.23 Long-orbit trajectory class: Box-and-whisker plot for RMS posi-

tion (top) and angle (bottom) errors. Bottom: Box-and-whisker

plot for RMS angle errors. . . . . . . . . . . . . . . . . . . . . . . 227

5.24 Descent trajectory class: Box-and-whisker plot for RMS position

(top) and angle (bottom) errors. Bottom: Box-and-whisker plot

for RMS angle errors. . . . . . . . . . . . . . . . . . . . . . . . . . 228

5.25 Percent change in expected sum of squared angle and position

errors between the autogressive and standard estimator when the

errors are autoregressive (α = 1). . . . . . . . . . . . . . . . . . . 235

5.26 Geometry of different motion cases for autoregressive errors. . . . 237

6.1 CMF of N
n2 plotted for multiple values of pβ1 . When n is small

(n/N < 0.1), this term dominates the variability in the empirical

variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.2 Several trials of empirical variance computed on 1000 Gaussian

samples as a function of β1 when βββ = [β1,∞,∞]. . . . . . . . . . . 252

6.3 Several trials of empirical variance computed on 10,000 Gaussian

samples as a function of β1 when βββ = [β1,∞,∞]. . . . . . . . . . . 253

6.4 WSRT p-values from 10 trials (on four different distributions)

comparing a trained-estimator to various minimax optimal Hu-

ber estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

xii



6.5 Normalized median difference in error, (Med(etrained)−Med(eother))
Med(etrained)

, be-

tween the trained estimator and all others for each of 10 trials on

four different distributions. . . . . . . . . . . . . . . . . . . . . . . 256

6.6 Trained cost and derivative from 10 trials of 10000 Cauchy-

distributed errors plotted with the true Cauchy MLE cost and

derivative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

6.7 The median L1 norm of localization error versus the SSD evalu-

ated at the feature location measurement. . . . . . . . . . . . . . 262

6.8 The median L1 norm of localization error versus the L1 norm of

SSD centroid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

6.9 The median L1 norm of localization error versus the trace of the

sandwich covariance. . . . . . . . . . . . . . . . . . . . . . . . . . 263

6.10 Difference in estimate error squared between the trained estima-

tors and Huber estimators (various ε) for four distributions. . . . 271

6.11 Difference in estimate error squared between the trained estima-

tors and Huber estimators (various ε) for four distributions. . . . 273

6.12 MCLE cost function resulting from small-sample training with

thirty bins for the auxiliary measurement (only ten bins shown

for clarity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

xiii



6.13 Difference in estimate error squared between the small sample

trained estimator and Huber estimators (various ε). . . . . . . . . 277

6.14 Violin plot of RMS position error (top) and attitude error (bot-

tom) for several autoregressive estimators including the trained

Huber-Rolloff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

6.15 Mixed-simulation test. Violin plot of RMS position error (top)

and attitude error (bottom) for several autoregressive estimators

including the trained Huber-Rolloff. . . . . . . . . . . . . . . . . . 283

xiv



LIST OF TABLES

TABLE Page

2.1 RMS error of Gaussian and Cauchy MLE under Gaussian and

Cauchy errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 VN100 gyroscope parameters from test data at 200 Hz. . . . . . . 123

3.2 VN100 accelerometer parameters from test data at 200 Hz. . . . . 123

4.1 Results of three calibrations on a set of forty images. . . . . . . . 137

5.1 Descent Trajectory Results: Scale estimates for various dis-

tributions under the assumption of the three models. Different

goodness of fit statistics are reported for each. . . . . . . . . . . . 194

5.2 Long-Orbit Trajectory Results: Scale estimates for various

distributions under the assumption of the three models. Different

goodness of fit statistics are reported for each. . . . . . . . . . . . 196

5.3 Short-Orbit Trajectory Results: Scale estimates for various

distributions under the assumption of the three models. Different

goodness of fit statistics are reported for each. . . . . . . . . . . . 197

5.4 Results of sensitivity study. Median and maximum difference in

RMS error between solutions using nominal and perturbed initial

guesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

xv



5.5 Table of WSRT p-values and percent reduction in errors for the au-

toregressive estimator with automatic scale estimation compared

to all instances of the standard estimator. . . . . . . . . . . . . . 230

5.6 Table of WSRT p-values and percent reduction in errors for the

correlated error estimator with σ = 0.1 Cauchy cost compared to

all instances of the standard estimator. . . . . . . . . . . . . . . . 231

5.7 Test results of a two-sided WSRT: A number near zero suggests

that the standard estimator performed better than the autoregres-

sive estimator and a number near one suggests the autoregressive

estimator performed better than the standard estimator on the

given block of datasets. . . . . . . . . . . . . . . . . . . . . . . . . 242

6.1 Resulting variance and β0 value for ten training trials under Gaus-

sian, Laplace, and Cauchy distributions. . . . . . . . . . . . . . . 269

6.2 Empirical variance of several estimators for a training sample. . . 279

6.3 Table of WSRT p-values and percent reduction in errors for the

trained estimator compared to Cauchy and Huber estimators of

various scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

6.4 Mixed-simulation test. Table of WSRT p-values and percent re-

duction in errors for the trained estimator compared to Cauchy

and Huber estimators of various scale. . . . . . . . . . . . . . . . 283

xvi



1 INTRODUCTION

Navigation is the process of determining a vehicle’s state as a function of time.

Such a process is necessary for both controlling a vehicle along a desired trajectory as

well as for a variety of other tasks such as the processing of scientific and intelligence

data. The vehicle’s state may consist of the vehicle’s position and orientation, and

their derivatives, relative to a coordinate-frame of interest. Other quantities may

also be desired depending on the application.

Modern navigation systems consist of both a suite of sensors which measure

quantities related to the six degree-of-freedom vehicle motion and computer-based

algorithms used to fuse the sensor output into a vehicle state estimate. In designing

the computer-based algorithms, a mathematical model to relate each sensor output

to the vehicle state is needed. Physical constraints and the dynamics of the system

must also be modeled in a similar manner. Such models may depend on nuisance

parameters which must be estimated in addition to the vehicle state of interest. While

it is possible to use deterministic sensor models for some simple navigation tasks, all

sensors are inherently stochastic. Because navigation systems typically have a sensor

suite providing redundant information, accounting for the stochastic nature of each

sensor can lead to more accurate and robust systems.

The process of computing a quantity as a function of stochastic measurements

related to the quantity is known as estimation. Estimation is rooted in probability
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theory and is critical in modern navigation system design. Probability theory pro-

vides a complete foundation for designing estimation routines when exact stochastic

models of each sensor are provided. In practice, there is usually uncertainty in the

stochastic model itself. This truth has implicitly degraded and limited the success

of vision-aided navigation systems.

The requirement for specifying exact sensor models presents two challenges.

First, the system designer must attempt to develop a sufficiently accurate model.

Second, the system designer must ensure that discrepancies between the true sensor

and its model do not seriously degrade the estimation routine. These two challenges

are especially difficult for visual cameras imaging complicated scenes.

Visual cameras have received significant attention in the engineering literature

for their potential use in navigation systems. They are low-cost and their measure-

ments provide a rich source of information about both the operating environment

and vehicle motion relative to it. While visual cameras have become well-established

in certain applications involving well-controlled environments, there remains many

obstacles that restrict their domain of applicability and limit the quality of achievable

results. These obstacles are largely due to the explicit dependence and sensitivity of

visual measurements on the operating environment which complicates the modeling

task. As a result, estimators that use visual cameras, compared to other sensors,

must be more robust to departures from the assumed model which are inevitable.

The primary motivation of this dissertation is to improve vision-aided navigation
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systems by developing more accurate models for visual camera measurements and

by developing robust estimators that use the developed models.

In attempting to do accomplish this goal, several general problems in esti-

mation are encountered. These problems relate to the design of estimators around

incomplete model specifications. This motivates the development of data-driven esti-

mators which are trained for minimum asymptotic variance using experimental data

collected on the system of interest.

estimators designed using empirical system data.

1.1 Background

Visual cameras measure the wavelength-weighted intensity of light integrated

over an exposure time at each of a very large number (> 105) of pixels which are ar-

ranged in a rectangular grid on an imaging plane. Each pixel corresponds to a narrow

(< 0.05◦) viewing frustum centered on a particular direction. The transformation

between the pixel number and the direction is computed via a projection model of

the sensor. This model is parameterized by the so-called intrinsic camera parameters

which are estimated by a calibration process. With this in mind, a calibrated visual

camera can be treated as a directional light sensor.

The expected visual camera output in a given scene can be computed with the

scene’s plenoptic function which gives the intensity of light in a particular direction

(2D), at a particular position (3D), at a particular wavelength (1D), at a particular
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time (1D) [1]. Given the seven-dimensional plenoptic function, a camera model,

and a trajectory (position and attitude as a function of time), the expected images

at any discrete set of time instances is fully determined. The true images will be

distributed in a neighborhood about the expected image since the light-intensity

measurements have their own stochastic errors. This is one means by which to

model visual measurements for their use in navigation. Unfortunately, this path is

terribly complicated. Because the plenoptic function depends on the full geometry

and surface properties of the scene as well as all lighting sources, it is inherently

infinite dimensional. Even if it is discretized, there would still need to be a very

large number of parameters to be jointly estimated along with the state quantities

of primary interest. Image processing techniques offer a means to overcome this

problem.

A set of image processing techniques known as feature detection, description,

and tracking methods abstract images from a grid of intensity measurements to a set

of pixel location measurements. These methods assume that the scene contains a set

of point-landmarks that can be uniquely identified in multiple images. The methods

both detect and measure the pixel locations that these point-landmarks project to

in image space. This leads to a drastic reduction in the number of auxiliary param-

eters. In particular, instead of depending on the plenoptic function, the expected

measurements only depend on the scene-space positions of the landmarks which must

be parameterized. While this provides an enormous advantage, it does produce one
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new difficulty as a side-effect. The difficulty is that a probabilistic model is much

more difficult to capture. Even if a perfect probabilistic model was available for

the raw pixel intensity measurements, the image processing algorithms involve com-

plicated scene-dependent transformations of the raw data. An empirical approach

seems the only way forward.

In order to develop an empirical probabilistic model for visual feature mea-

surements, experimental data must be available. Notation must be introduced to

describe this.

Let the position of a point landmark j be represented by xxx j and the pose,

namely position and attitude, of camera i be represented by θθθ i. The measurement

of landmark j by camera i is represented by ỹyyi, j. It is nearly universally assumed

that ỹyyi, j is the sum of a deterministic function of landmark position and camera

pose, h(θθθ i,xxx j), and an error term ννν i, j The errors are assumed to be independent and

identically distributed (IID):

E
{

ννν i, jννν
T
k,l
}
= 0 if i 6= k or j 6= l (1.1)

Lastly, the landmark position is assumed to be a constant (i.e. not changing with

the image index i). For classic references using these assumptions, see Triggs [2],

Hartley and Zisserman [3], or Davison [4].

The structural part of the model, h(θθθ i,xxx j), is developed as follows. First, under

the assumption of constant point-landmark positions, the line-of-sight (LOS) direc-

tion from the sensor to the point-landmark is a simple function of camera pose and
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landmark position. Second, physics-based models of the optics imply that this direc-

tion corresponds to a particular location on the image plane. Third, it is assumed

that the feature tracker can determine this image plane location. The probabilistic

portion of the model accounts for the fact that the image plane location determined

by the feature tracker is imperfect. If the first two steps can be accepted, on account

of the fact that they are derived from physics-based principles, an empirical study

can determine a model for the probabilistic component.

In particular, if a batch of measurements ỹyyi, j for many landmarks and cameras is

available along with ground truth for the landmark positions and camera poses, then

samples of the error distribution can be computed directly: ỹyyi, j−h(θθθ i,xxx j). The main

difficulty with doing this in practice is getting accurate ground truth data. Special

vision targets with well-surveyed corner-like landmarks (think checkerboards) are

very useful for landmark position ground truth. Also, metrology systems and optical

calibration equipment can be used to obtain pose ground truth. However, it appears

that such a study has never been done, possibly because errors in the ground truth

data may dominate the computed error samples in practice. In addition, ground

truth landmark positions in general scenes are not uniquely determined.

Instead of a direct approach to studying feature localization errors, a hastier

approach has been taken in the literature. Least-squares estimators are commonly

used for visual measurements. In particular, these estimators find the parameters
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that minimize the cost

J = ∑
i

∑
j
||ỹyyi, j−h(θθθ i,xxx j)||2 (1.2)

This type of estimator is the Maximum Likelihood Estimator (MLE) under the as-

sumption of IID isotropic Gaussian errors. Furthermore, and more heuristically, if

the measurement equation was linear then this estimator would be the best (mini-

mum variance) linear unbiased estimator (BLUE) by the Gauss-Markov theorem [5].

Statistical tests can then be applied to the residuals to check for consistency with

the assumption of Gaussian errors.

One common theme found in the literature is that a straight-forward applica-

tion of least-squares estimation leads to poorer than expected results. The culprit is

often so-called outlier measurements: ones with much larger than expected errors.

These may be due to poorly localized features or erroneously labeled correspondences.

The solution often taken is to dichotomize between good measurements, those that

are nearly Gaussian with a scale on the order of one or two pixels (or less), and bad

measurements, those with errors larger than a few pixels.

Despite the lack of rigorous evidence to support the assumption of Gaussian

IID errors and constant landmark positions, much of the literature on vision-aided

navigation relies on it. At a high-level, the problem of focus in this dissertation is:

Given feature tracking measurements extracted from visual images of a

general scene and any other well-modeled sensor, jointly estimate the

camera pose and landmark positions.
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Historically, the field of photogrammetry has relied on bundle adjustment to solve

this problem [2].

Bundle adjustment is an umbrella term and encompasses a number of particular

methods. At its core, bundle adjustment computes an estimate as the solution on

a nonlinear optimization problem. The nonlinear optimization adjusts the bundle of

rays associated with line-of-sight directions (i.e. feature measurements) from many

overlapping images to many landmarks to minimize an MLE cost function.

The MLE is an estimation framework that will be discussed in detail in Section

2. For the current discussion, it suffices to say that the MLE has a number of sta-

tistically optimal properties when the input observations have perfect probabilistic

models. In addition, it is important to stress that the MLE is not a single algorithm:

it is a framework. It requires the specification of likelihood equations for each in-

formation source: sensors, dynamics, constraints, etc. The likelihood equations for

various information sources are then combined to form the optimization problem.

Critically, the likelihood equation for one information source does not depend on

what other information sources are in the estimator.

The correctness of each likelihood equation in an MLE (i.e. how well it cap-

tures the true nature of the information source) is important as it determines, in

loose terms, how much confidence is placed in each information source. Therefore,

the development of improved likelihood equations for an information source can be

expected to improve the overall estimator performance. As stated previously, the in-
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herent difficulty in modeling feature tracking methods raises doubts about the quality

of the commonly used likelihood equations for such measurements. As a result, a

key aim of this dissertation is to improve such models.

The use of the MLE, and the commonly associated visual models, is not re-

stricted to bundle adjustment in photogrammetry. Over the past 15 years, there

has been a large volume of literature on the so-called Simultaneous Localization and

Mapping (SLAM) problem. The SLAM problem is the same problem as the bundle

adjustment problem stated above. However, the term is typically used in applications

involving mobile robots that need near real-time state estimates.

One of the earliest stochastic approaches to SLAM is based on the work of

Smith and Cheeseman where they proposed a stochastic map [6]. The map contained

two-dimensional landmark positions which were augmented to a three-dimensional

vehicle state (two-dimensional position and bearing). The joint state was propagated

and updated using an Extended Kalman Filter (EKF).

The first practical six degree-of-freedom SLAM implementation using only a

monocular camera is the MonoSLAM system presented by Davison et al [4, 7].

That system implemented an EKF with a state vector consisting of camera po-

sition, attitude, their derivatives and a 3N-dimensional sub-block containing the

three-dimensional positions of N landmarks. The system assumed a zero-mean IID

Gaussian model for both the process noise and measurement noise. The estimate of

state and covariance was used to define search regions for each feature in the current
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image. No explicit mention of outlier features is mentioned in their paper. However,

as features not found cannot be used in the estimator, and due to the fact that any

feature found outside the search region could amount to an outlier, outliers were

implicitly rejected.

Much of the ensuing research after Davison on vision-aided SLAM involved

improvements to the filter: (1) better landmark parameterizations, (2) lower com-

putational complexities, and (3) improved outlier rejection. Civera and Davison

proposed an inverse-depth parameterization for landmarks which essentially reduced

the nonlinearity in the measurement equations leading to a more accurate state co-

variance in the EKF [8]. Montemerlo et al. demonstrated a way to exactly factor the

problem so that, conditioned on the state estimates, each landmark can be estimated

independently of all others [9]. This was implemented as a particle filter, known as

FastSLAM and had much lower computational complexity than the EKF. An im-

provement in the proposal distribution used by the particle filter was later published

under the name FastSLAM 2.0 [10]. Both implementations assumed Gaussian IID

errors.

Outlier rejection has typically relied on the strict labeling of measurements as

either inliers or outliers using Random Sample and Consensus (RANSAC) methods

[11]. Computer vision applications using RANSAC include Kalmansac and the work

of Nister [12, 13].

All of the above methods, although not necessarily derived under the MLE,
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make heavy use of the standard assumptions. One more recent development that

improves on the above-mentioned SLAM solutions is the incorporation of batch esti-

mation techniques as opposed to purely sequential filtering. Excellent summaries are

provided by Strasdat et al [14, 15]. The main conclusion is that a full MLE bundle

adjustment that grows in size as new data is collected is the optimal solution. In

addition, various approaches are proposed to bound the size of the problem. This in-

cludes the use of a sliding window of data, creation of locally optimal sub-maps that

are mathematically connected through a smaller number of six degree-of-freedom

transformations, and the selection of a small subset of cameras (often called key-

frames) to be used in the optimization.

The early work on this front was the PTAM system of Klein and Murray

[16]. PTAM performed bundle adjustment using a small subset of cameras. The

optimization was processed in the background while a front-end tracking system

computed pose estimates and recorded new feature measurements for the next round

of bundle adjustment. A different approach, also using bundle adjustment, was taken

by Konolige and Agrawal in their FrameSLAM system. They used bundle adjustment

to optimize the pose and landmarks of closely spaced cameras to create small sub-

maps. A higher-level optimization procedure was then used to solve for the relative

pose of sub-maps using features that spanned multiple sub-maps. Various other

modifications to SLAM using MLE bundle adjustments methods exist.

Again, at the core of all these methods is the same common assumptions about
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visual feature measurements. As Strasdat summarizes [14]:

BA [bundle adjustment] in SFM [structure from motion], or the extended

Kalman filter (EKF) and variants in SLAM all manipulate the same

types of matrices representing Gaussian means and covariances. The clear

reason is the special status of the Gaussian as the central distribution of

probability theory which makes it the most efficient way to represent

uncertainty in a wide range of practical inference. We therefore restrict

our analysis to this domain.

The IID nature of the errors is also implicit in the MLE solutions developed. A pri-

mary motivation of this dissertation is to challenge these assumptions for the purpose

of developing improved estimators. The nearly universal use of these assumptions

make such a study especially important with potentially broad impacts.

In addition to developing improved models of visual measurements for the pur-

poses of MLE, this dissertation addresses two broader problems. The first is the

design of M-estimators, a close cousin of the MLE, given only samples from a prob-

ability distribution as opposed to the exact equation. The method for M-estimator

design developed in this dissertation is referred to as data-driven estimation and has

a direct application to vision-aided navigation.

The second problem is the incorporation of auxiliary measurements into M-

estimators. Auxiliary measurements are defined, in this dissertation, as observations

that are paired with the primary observation of interest and provide information
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about the quality of the primary observation. In the context of vision-aided navi-

gation, feature detection and matching scores may serve as auxiliary measurements.

The potential use of such information extracted from empirical training data and

applied to new problems is a second aspect of data-driven estimation developed in

this dissertation.

A summary of the approach to address the discussed problems is given below.

1.2 Approach

1. Perform an empirical study to determine the validity of the constant-landmark

and IID error assumptions for visual feature measurements in general scenes.

2. Develop improved structural models for visual feature measurements in general

scenes that relax the constant-landmark and IID error assumptions.

3. Develop techniques to automate the design of estimators given samples from

an unknown error distribution.

4. Develop techniques to automate the incorporation of auxiliary measurements

into estimators.

5. Design estimators around improved visual feature measurement models that are

inherently robust to small departures from the model and that give improved

performance over existing estimator design.

6. Leverage auxiliary measurements and the data-driven estimation techniques

developed in this dissertation to improve vision-aided navigation performance.
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To be clear, this dissertation does not propose any particular SLAM or bundle

adjustment method. The literature on such methods is extensive. Instead, the

focus is on developing models for visual measurements that can be incorporated into

nearly any SLAM or bundle adjustment method. As these methods rely heavily

on the MLE, the results of this dissertation can be utilized whenever visual feature

measurements are used regardless of which other sensors are used in the problem of

interest. Furthermore, the contributions on data-driven estimation have potentially

broad impacts outside the scope of vision-aided navigation; it is anticipated that

these are important first steps to continued research.

1.3 Overview

This dissertation is organized as follows. Section 2 discusses MLE and its robust

extension known as M-estimation. M-estimators systematically reduce estimator

sensitivity to modeling errors which are inevitable in estimation problems: no model

is perfect.

Section 3 presents some of the commonly used sensor models for vision-aided

navigation. In particular, commonly used probabilistic models for visual cameras,

range cameras, and inertial measurement units (IMU) are given. Section 2 and

Section 3 are necessary for results developed in later sections.

Section 4 discusses two experimental methods used in this dissertation to gen-

erate measurements with accurate ground truth for sensor trajectories. The first
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method is a high-fidelity visual and range image rendering tool and the second

method is a hardware system consisting of real sensors. Details of the set up, calibra-

tion, and validation of these two systems are given. The measurements, simulated

or real, from the experimental methods are used in a flexible batch estimator which

is discussed at the end of Section 4. The estimator assumes the measurement model

can be partitioned into a deterministic component that is a function of unknown

parameters and a probabilistic component that is independent of the unknown pa-

rameters. The two components are assumed to act additively to generate measure-

ments. The estimator architecture enables the user to independently specify models

for the structural component and probabilistic component. This flexibility is critical

for developing the contributions of this dissertation.

Improving the structural and probabilistic models used in vision-aided naviga-

tion is a primary contribution of this dissertation. Addressing both model compo-

nents simultaneously is difficult as their designs are inherently coupled. Consider a

case where a probabilistic model is perfectly known and a structural model is given

which has systemic errors. The systemic errors will look like probabilistic errors that

are larger than expected from the known probabilistic model and with different cor-

relation structure. This can severely degrade estimator performance. On the other

hand, consider the opposite case where the structural model is perfectly known

and the probabilistic model is unknown. Again, this will degrade estimator perfor-

mance as the errors are improperly modeled and hence a true Maximum Likelihood

15



Estimate cannot be obtained.

Systemic errors in the structural model are inevitable. Therefore, a logical path

forward in designing better models for estimators is to attempt various hypothesized

structural models and then attempt to determine what the required probabilistic

model is that can account for both the systemic errors and the truly random errors.

The design of these models requires a combination of physical insight and empiri-

cal evidence from realistic measurements with accurate ground truth. It is critical

to accept the fact that in the majority of applications, no perfect structural and

probabilistic model can be found with finite datasets. Furthermore, in applying the

developed models to perform estimation tasks on new datasets or with slightly dif-

ferent systems, one cannot be certain that the model is equally applicable to the new

data. This is where the robust M-estimators play a crucial role: they are inherently

robust to modeling error.

As stated in the previous paragraph, hypothesizing a family of structural mod-

els is a first step in improving estimation results. Section 5 presents a set of standard

assumptions used in the structural component of vision-aided navigation measure-

ment models. The section then uses the experimental methods to build evidence

to judge the extent to which these assumptions are inappropriate. This motivates

the alternative models, also presented in Section 5, which attempt to remove the

standard assumptions. A systematic study is performed on the structural models

and the necessary probabilistic models to make them consistent with the data are
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developed. This development is performed on simulated data which is much easier

to obtain in abundance.

The selected probabilistic model must specify both a parametric form and the

values of the parameters themselves (e.g. normal distribution with a particular vari-

ance). It is possible to leave some parameters free and adapt them for the given

dataset. This is a very distinct concept from using test data to fully specify a model.

Allowing parameters of the probabilistic model to be jointly estimated as nuisance pa-

rameters adds flexibility to the estimator and extends the applicability of the model.

Methods to jointly estimate these nuisance parameters are given in detail. Results

on simulated data are given in Section 5 for the various combinations of structural

models and probabilistic models with and without probabilistic model nuisance pa-

rameters. The various tradeoffs between complexity, accuracy, and robustness are

assessed.

Section 6 presents the motivation, development and application of data-driven

estimation methods. In particular, methods are presented to design inherently robust

estimators using many samples from an unknown error distribution. A subset of these

methods incorporates auxiliary measurements to improve the estimator performance.

Examples to evaluate performance gains are given on both generic problems and for

vision-aided navigation.

Concluding remarks are given in Section 7.
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2 MAXIMUM LIKELIHOOD AND ROBUST

M-ESTIMATION

Maximum Likelihood Estimation (MLE) is a widely used method for parameter

estimation in probabilistic systems. The core idea is to define the optimal parame-

ter estimate as the parameter value that maximizes the probability of the observed

measurements conditioned on the unknown parameters. While other metrics may

be more desirable in certain applications, the MLE lends itself to very practical and

computationally efficient solutions. In addition, desired properties such as minimum

variance, consistency, and statistical efficiency are reached by the MLE asymptoti-

cally under fairly lax restrictions.

MLEs are designed under the assumption that the input data are distributed

exactly according to a parametric model. On the other end of the spectrum are

so-called non-parametric estimation techniques that attempt to fit the data with a

model of appropriate complexity with minimal assumptions about the true underly-

ing system. In many applications, the reality lies between these two extremes: the

data is approximately distributed according to an available parametric model. Unfor-

tunately the MLE and other classical parametric techniques are extremely sensitive

to departures of the true system from the assumed model. While nonparametric

techniques may offer a path around this difficulty, they do not readily incorporate

approximate knowledge of the true system and therefore are not as efficient (in a
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statistical sense) as needed. Robust estimation techniques offer an excellent middle

ground. Although various approaches exist for robustifying classical estimators like

the MLE, they all have one notion in common: designing for improved insensitivity

to modeling errors.

This section first gives a brief overview of the MLE and its properties. A simple

example is then given to motivate the need for more robust approaches. A robust

procedure that is directly applicable to the vision-aided navigation problem (and any

multivariate estimation problem) are M-estimators. The M-estimators are discussed

both from a theoretical and a practical point of view. The properties and issues

discussed will be utilized in novel approaches to vision-aided navigation presented in

later sections.

2.1 MLE

This section gives a brief overview of the MLE. The MLE is first put into context

among estimators in general. Then assumptions behind commonly used properties of

the MLE are discussed and issues specific to vision-aided navigation are highlighted.

The MLE is just one method used to derive estimators: many others exist.

Estimators are most commonly a deterministic function of a set of measurements YYY .

The set of measurements YYY is assumed to come from a probability distribution pθθθ (YYY )

parameterized by θθθ which is an unknown parameter vector. The estimator computes

an estimate of g(θθθ) as a function of the measurements: T (YYY ) where g() is an arbitrary
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function (possibly identity). For a given θθθ , the distribution pθθθ (YYY ) and the function

T will determine the distribution of estimates, and hence a distribution of estimator

errors eee = T (YYY )−g(θθθ). In most applications, the desired estimator properties can be

expressed in terms of the distribution of eee. This includes properties like unbiasedness,

minimum variance, and potentially more expressive properties like minimizing the

probability that the error exceeds some bound. While shaping the distribution of eee

via the choice of estimator T () at various values of θθθ is conceptually elegant, it is

extremely difficult to do in practice on general problems.

One case that admits an easy solution is the case of linear Gaussian mea-

surements. In particular, θθθ is to be estimated and pθθθ (YYY ) is a multivariate Gaus-

sian with mean Hθθθ and covariance Q where H is a known full rank matrix and Q

is a known positive-definite matrix. The probability distribution of θθθ conditioned

on the measurements is Gaussian with mean (HT Q−1H)−1HT Q−1YYY and covariance

(HT Q−1H)−1. Selection of the mean as the estimate is then a uniformly unbiased

minimum variance estimator. In this particular example, but not in general, the

MLE leads to the same exact result.

While designing an estimator to obtain particular characteristics on the error

distribution is desirable, it is not practical in most settings. The MLE on the other

hand is straight-forward to apply in a broad class of problems. Furthermore, the

MLE asymptotically obtains many desirable properties which are discussed in the

next section. One last point should be made that is pertinent to both the MLE
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and any other estimator requiring the measurement model pθθθ (YYY ). The measurement

model is almost always based on various assumptions and empirical data and is

therefore imprecise. Many estimators do not account for this in their design and

may therefore be sensitive to such discrepancies. The M-estimators discussed in this

section explicitly consider measurement model impreciseness in their design.

2.1.1 Properties

In order to derive an MLE, a parametric probabilistic measurement model is

needed. Let p(yyy |θθθ) be the conditional probability of a measurement yyy given unknown

parameters θθθ , both being scalar or vector quantities. The MLE estimate of θθθ is

θ̂θθ ≡ argmaxθθθ p(yyy |θθθ) (2.1)

The MLE is especially convenient when the vector of all measurements yyy can

be partitioned into a set of N independent measurements {yyy1, yyy2, . . . , yyyN}. By the

definition of independence,

p(yyy |θθθ) =
N

∏
i=1

p(yyyi |θθθ) (2.2)

using a slight abuse of notation (i.e. the particular form of p(· | ·) is determined by the

first argument to allow for non-identically distributed measurements). The definition

of the MLE in Equation (2.1) is unaltered if the conditional probability function is

transformed by any function that is monotonically increasing on the interval [0, 1].

By applying the logarithm function to the right-hand side of Equation (2.2), the
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product is transformed to a summation of independent terms:

log(p(yyy |θθθ)) =
N

∑
i=1

log(p(yyyi |θθθ)) (2.3)

In addition, note that minimizing the negative-log-likelihood is equivalent to maxi-

mizing the likelihood. Therefore the negative-log-likelihood will be referred to as the

MLE cost. This form is more convenient for both proving various properties of the

MLE and for deriving practical optimization algorithms.

Crassidis and Junkins summarize well-known MLE properties [17]:

1. Consistent: As N tends to infinity, the estimate will converge (in probability

or almost surely depending on the assumptions) to the true value.

2. Asymptotic Normality: The distribution of the estimate approaches a normal

distribution with mean equal to the truth and a variance that scales with N−1.

3. Asymptotic Efficiency: As N tends to infinity, the MLE becomes the best

consistent estimator in a mean-squared error sense.

4. Functional Invariance: Applying any transformation φφφ = g(θθθ) does not alter

the MLE in the sense that g(argmaxθθθ p(yyy |θθθ)) = argmaxφφφ p(yyy |φφφ) (with an abuse

of notation on the second argument of the likelihood function).

The functional invariance property is important for navigation problems and

vision-aided navigation (VAN) in particular because various parameterizations exist

for the unknown position, attitude, and scene structure. The property implies that

the optimal solution in one parameterization is equivalent to the optimal solution

under a different parameterization. However, certain parameterizations will lead to
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numerical algorithms that converge more quickly on the solution. As a general rule

of thumb, the more linear the measurement is in the parameters, the better the

convergence will be [18].

Another important issue to keep in mind is that the asymptotic properties of

the MLE require certain subtle assumptions that do not apply in general naviga-

tion problems. The underlying cause is that the number of unknown parameters

increases with the number of measurements. This issue was first addressed in a 1948

econometrics paper by Neyman and Scott in which they coined they term the inci-

dental parameters problem [19]. This problem will briefly be discussed below as it is

important for navigation applications.

2.1.2 The Incidental Parameters Problem

The incidental parameters problem demonstrates the breakdown of the MLE

properties when the number of parameters scales with the number of the measure-

ments. To show this, the consistency proof for the MLE will be outlined. To prove

consistency, first define the score of the i-th measurement as the gradient of the

log-likelihood

sssi(θθθ) =
∂

∂θθθ
log(p(yyyi |θθθ)) (2.4)
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which is a vector when the measurement yyyi is scalar and θθθ is a vector [17, 20]. This

vector can be shown to have an expected value of zero:

E{sssi(θθθ)}=
∫

sssi(θθθ)p(yyyi |θθθ)dyyyi (2.5)

=
∫ p′(yyyi |θθθ)

p(yyyi |θθθ)
p(yyyi |θθθ)dyyyi (2.6)

=
∂

∂θθθ

∫
p(yyyi |θθθ)dyyyi (2.7)

=
∂

∂θθθ
1 (2.8)

= 000 (2.9)

The variance of the score is the Fisher Information matrix which is positive semi-

definite and finite. Because each sssi has zero-mean and bounded variance, the law of

large numbers (LLN) applies to its sample average:
1
N

N

∑
i=1

sssi(θθθ)→ 000 (2.10)

Clearly
1
N

N

∑
i=1

sssi(θ̂θθ) = 000 (2.11)

is a necessary condition for the estimate. A Taylor series expansion of this condition

about the true parameter,
1
N

N

∑
i=1

sssi(θ̂θθ) =
1
N

N

∑
i=1

sssi(θθθ)+
1
N

N

∑
i=1

sss′i(θθθ)(θ̂θθ −θθθ) (2.12)

along with Equation (2.10) shows that the estimator is consistent if the matrix

1
N ∑

N
i=1 sss′i is nonsingular. The matrix is singular in the case that any element of

θθθ appears in only a finite number of measurements even as N tends to infinity. In

that case the corresponding row and column (and diagonal element) of the matrix
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will tend to zero which will cause the singularity.

Neyman and Scott refer to this issue as the incidental parameters problem. They

distinguish between structural parameters, those appearing in an infinite number of

measurements, and incidental parameters, those appearing in only a finite number of

measurements, as N tends to infinity. They also refer to an infinite set of measure-

ments as partially consistent if the set has a finite number of structural parameters

and an infinite number of incidental parameters. Their primary conclusions are that

for a partially consistent set of measurements:

1. The incidental parameters are not consistent which is unsurprising. More im-

portantly, the structural parameters are not necessarily consistent.

2. Even if the structural parameters are consistent, the structural parameter es-

timates are not necessarily asymptotically efficient.

Although not well known in the aerospace literature, the result of Neyman and

Scott is very important. For the VAN problem with a finite number of images, MLE

estimates of the motion parameters are not necessarily consistent or asymptotically

efficient as the number of landmarks goes to infinity. Similarly, for the case of a

finite number of landmarks, the landmark parameters are not necessarily consistent

or asymptotically efficient as the number of images goes to infinity. These facts

are important to keep in mind when deriving estimates and their corresponding

uncertainties 1!
1In the linear Gaussian case, the estimates still follow a Gaussian distribution so unbiased

minimum variance estimators can still be derived. Note that the results of Neyman and Scott
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It should also be briefly noted that this concept is distinct from observability.

Observability is concerned with the uniqueness of the mapping from the system

input-output history to the current system state. This definition does not make

recourse to probability theory which is central to the incidental parameters problem.

Observability is required, but does not guarantee, a consistent estimate.

2.1.3 An Example

As a brief example of the incidental parameters problems, consider measure-

ments of the form

yi, j = xi + z j +νi, j ∀i ∈ {2,2, . . . ,M,(M+1)} , ∀ j ∈ {1,2, . . . ,N} (2.13)

y1, j = z j +νi, j j ∈ {1,2, . . . ,N} (2.14)

where xi are M unknowns and z j are N unknowns to be estimated and the νi, j are IID

Gaussian errors with variance σ2. This is a linear Gaussian system with measurement

matrix

H =

 0N×M IN×N

IM×M⊗1N×1 1M×1⊗ IN×N

 (2.15)

when the parameter vector is stacked with the xi on top and the z j on bottom. Also,

1a×b is an a×b matrix with all elements equal to one, 0a×b is an a×b matrix with

all elements equal to zero, and Ia×a is an a× a identity matrix. In addition, A⊗B

represents the Kronecker product between matrices A and B.

As stated above for linear Gaussian systems, the parameters conditioned on

the measurements are also Gaussian with known mean and covariance: the inciden-

26



tal parameters problem does not change this! Therefore the standard least squares

estimator is efficient in the minimum variance sense (note the not necessarily key-

words in the above results). However, we must check whether or not the estimator

is consistent. To do so, obtain the parameter covariance expression P:

P = σ
2(HT H)−1

= σ
2


0M×N IM×M⊗11×N

IN×N 11×M⊗ IN×N

]


 0N×M IN×N

IM×M⊗1N×1 1M×1⊗ IN×N



−1

= σ
2


IM×M⊗11×N1N×1 1M×1⊗11×N

11×M⊗1N×1 IN×N +11×M1M×1⊗ IN×N



−1

= σ
2


NIM×M 1M×N

1N×M (M+1)IN×N



−1

(2.16)

where the Kronecker properties (A⊗B)T =AT ⊗BT and (A⊗B)(C⊗D) = (AB)⊗(CD)

are used. Using the block matrix inverse identity from Appendix B of Crassidis

and Junkins, the marginal variance of the stacked xi parameters and the marginal

variance of the stacked z j parameters can be obtained (i.e. the top-left and bottom
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right diagonal blocks of P: Pxx and Pcc respectively) [17]:

Pxx =

(
NIM×M−

1
M+1

1M×N1N×M

)−1

(2.17)

=

(
NIM×M−

N
M+1

1M×M

)−1

(2.18)

Pzz =

(
(M+1)IN×N−

1
N

1N×M1M×N

)−1

(2.19)

=

(
(M+1)IN×N−

M
N

1N×N

)−1

(2.20)

(2.21)

Note that the matrices that need to be inverted are both the sum of an invertible

matrix and a rank-one matrix. Therefore the result of Miller can be used [21]:

(G+H)−1 = G−1− 1
tr(HG−1)

G−1HG−1 (2.22)

where G is invertible and H is rank-one. Using this result yields

Pxx =
1
N
(IM×M +1M×M) (2.23)

Pzz = (M+1)IN×N−
M
N

1N×N (2.24)

Note that the diagonal elements which are the variance of xi and z j are 2
N and

M + 1− M
N respectively (up to the scalar σ2). Clearly as N → ∞, the variance of

xi goes to zero implying that the estimate is consistent. On the other hand, the

estimate of z j is not consistent: neither N, nor M, nor any combination of the two

going to infinity can make the variance go to zero.

This example problem was designed to be analogous to the vision-aided navi-

gation problem where xi represents the camera pose and z j represents the landmark

position, and each landmark is measured once from a known pose. It was shown
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that the estimates of the xi (camera poses) were consistent as N (the number of

landmarks) goes to infinity but the estimates of z j were not consistent regardless of

N or M (number of images). The reason for this makes sense intuitively. From the

first image alone which has known pose in Equation (2.14), each landmark position

can be estimated up to some error, namely ν1, j. Then for any other image, the

measurement equation is equivalent to

yi, j = xi +νi, j +ν1, j (2.25)

Using the N measurements
{

yi,1,yi,2, . . .yi,N
}
to estimate xi is equivalent to the lo-

cation estimation problem (to be discussed in detail below). The standard sample

mean gives a consistent estimate. Unfortunately the results for this simple problem

do not exactly carry over to the vision-aided navigation problem as multiple images

from different poses are required to estimate landmark position to within a finite

uncertainty.

In addition to the incidental parameters problem, there is a second issue un-

dermining the power of the MLE. In particular, inconsistencies between the model

and true system can lead to a reduction (sometimes drastic) in performance. This is

the subject of the next section.

2.2 A Motivating Example: Location Estimation

The location estimation problem is a canonical example of an estimation prob-

lem for which the MLE is suitable. The problem will be discussed below and some
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perhaps surprising inadequacies of the MLE in practical applications will be shown.

The location estimation problem is to obtain an estimate for the scalar param-

eter θ given measurements

yi = θ +νi (2.26)

where νi are corrupting errors that are IID. If the errors are assumed to be zero-mean

Gaussian variables with variance σ2, then the MLE cost function becomes the widely

used least squares cost function:

θ̂ = argminθ

N

∑
i=1

(yi−θ)2 (2.27)

The resulting estimate is the sample average. This estimate is unbiased and has

minimum variance, σ2/N, among all unbiased estimators. While this may seem like

a done deal, what if we consider the case where the Gaussian assumption is not

precisely correct?

To study this with a simple numerical example, we let N = 40 and perform

10,000 trials of the location estimation problem for two cases. The first case has

standard normal errors and the second case has Cauchy errors. The scale parameter

of the Cauchy distribution is set such that the resulting PDF of the Cauchy and

normal are equal at x = ±3. A plot of the distributions is shown in Figure (2.1).

In each trial, the MLE under the assumption of Gaussian errors (i.e. the sample

average) is obtained. The resulting errors are shown in the histogram in Figure

(2.2).

Clearly the least squares estimator has very poor performance under Cauchy
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Figure 2.1: The Cauchy and normal PDF.

error. The reader may wonder how this is a criticism of the MLE. The reason is that

in practice the true PDF is seldom known and such an extreme sensitivity of the

estimator to the underlying error is dangerous. Even if experiments are performed

to obtain samples from it, it may be difficult to distinguish one PDF from another

with a finite number of samples. As Figure (2.1) suggests, the Cauchy distribution

appears to have a tighter scale when looking at the middle 99.7 % of the distribution.

However, the extreme tails are in fact much wider for the Cauchy which is ultimately

what corrupts the resulting estimate. Those regions of the distribution are the least

understood in experimentation (since there will be very few samples from there).

To explore what would happen if we instead used the Cauchy distribution to

derive an MLE, the example above is repeated. The Cauchy distribution with scale
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Figure 2.2: Location estimate errors using least squares under the normal and Cauchy
distribution. Some samples of the estimate error under Cauchy measurement errors
fall outside the plot limits.

γ is

p(y |θ) =

[
πγ

(
1+
(

y−θ

γ

)2
)]−1

(2.28)

The corresponding cost function for the location is obtained by taking the negative-

log of Equation (2.28) which yeilds

θ̂ = argminθ −log

[
πγ

(
1+
(

y−θ

γ

)2
)]−1

(2.29)

= argminθ log(πγ)+ log

(
1+
(

y−θ

γ

)2
)

(2.30)

= argminθ log

(
1+
(

y−θ

γ

)2
)

(2.31)

The solution is computed using the SciPy implementation of Brent’s method [22, 23].
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RMS Error Least Squares Cauchy MLE
Gaussian 0.16 0.18
Cauchy 14.2 0.045

Table 2.1: RMS error of Gaussian and Cauchy MLE under Gaussian and Cauchy
errors.

The results are shown in Figure (2.3). The orange histogram bars represent

the estimate errors when the N = 40 measurements are corrupted with Cauchy errors

(as in the previous plot as well). Clearly changing the cost function gives a vast

improvement for the estimates on Cauchy corrupted measurements. This is displayed

clearly in Table 2.1. The RMS error is reduced by a factor of 315! Interestingly, the

estimates that use measurements corrupted with normal errors have only a slight

degradation, a 12% increase in RMS error, when the Cauchy MLE cost is used.

Comparing these estimates to their expected distribution, the solid back line, makes

this obvious to see.

The degradation is inevitable because the least squares estimates are both the

MLE and minimum variance unbiased estimates. The fact that the degradation

is so slight is surprising. If we were unsure of whether the errors were Cauchy or

normal, then using the Cauchy MLE seems more desirable: the slight reduction

in efficiency at the normal is rewarded with major improvements at the

Cauchy.

The field of robust statistics formalizes this qualitative tradeoff. The so-called

M-estimators are an extremely powerful tool in robust statistics that are a key part
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Figure 2.3: Location estimate errors using the Cauchy MLE under the normal and
Cauchy distribution. The line labeled expected PDF is for the estimate error of the
Gaussian MLE under Gaussian errors.

of this dissertation. They are the subject of the next section.

2.3 M-Estimators

M-estimators are defined as any estimator whose output is determined by min-

imizing a cost function. The MLE is a subset of these estimators whose cost function

is the likelihood function (or a monotonically increasing function of the likelihood).

Early work by Tukey demonstrated the deficiencies of classical parametric techniques

(especially those designed around the normal distribution) and discussed the con-

cept of contaminated distributions as a more realistic model [24]. Huber was the

first to set up a rigorous theory of robustness through a minimax approach: find the
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best estimator for the worst-case distribution in a neighbourhood [25]. This initial

theory was followed up by a much different approach by Hampel [26, 27]. Hampel’s

approach is based on the influence function which, loosely speaking, gives the rate of

change in an estimator with respect to the amount of contamination at a given loca-

tion. Although this is an infinitesimal approach that does not need the explicit use

of neighborhoods of distributions about a model, it gives the same result as Huber’s

minimax approach in certain canonical problems.

This section will define the M-estimator, present various measures of quantita-

tive robustness, discuss properties, and tailor the generic M-estimator to problems

of interest. Practical methods of solving for the M-estimate will be given.

Let the M-estimate θ̂θθ be defined as

J (θθθ) =
N

∑
i=1

ρ(yyyi;θθθ) (2.32)

θ̂θθ = argminθ J (θθθ) (2.33)

A necessary condition for an optimal estimate is

000 =
∂

∂θθθ

N

∑
i=1

ρ(yyyi;θθθ) (2.34)

=
N

∑
i=1

ψ(yyyi; θ̂θθ) (2.35)

where ψ() is the derivative of ρ() with respect to θθθ . The main philosophy behind

M-estimators is to choose the cost function to simultaneously give good performance

if the measurements happen to come from the assumed model and acceptable per-

formance if the measurements happen to diverge from the model by some amount
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(to be formalized below).

In an ideal scenario, all uncertainties in a problem can be exactly specified

and the distribution of parameters conditioned on the measurements can be deter-

mined. This hypothetical distribution of parameters could then be used to choose

the optimal estimate (by any optimality criterion). This is the essence of Bayesian

methods. M-estimators are removed from this in two ways. First, they admit the

truth; the distribution of all random quantities is not known precisely. So-called

robust Bayesian methods do this as well by creating a super model of uncertainties

about the assumed probabilistic model [28]. Second, robust M-estimators do not

attempt to compute a distribution of parameters conditioned on the measurements.

While this may limit the types of optimality criteria that can be designed around,

it leads to much more computationally efficient estimators as compared to Bayesian

solutions.

Compared to Bayesian (and robust Bayesian) methods, M-estimators approach

model uncertainty in a very different way. Bayesian estimators attempt to parame-

terize the discrepancy between a nominal statistical model and a true system which

leads to a range of possible outcomes depending on what the true system really is.

On the other hand, robust M-estimators specify a neighborhood of models that true

system must fall into. The estimate is then designed around the worst-case model

in that neighborhood. Therefore, as long as the true system exists in that neighbor-

hood, the performance will be equal to or better than the performance obtained at
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the design model.

The following subsections discuss various properties of M-estimators that are

relevant to later sections.

2.3.1 Influence Function

The influence function is due to Hampel and is a good starting point for a

discussion of robustness [26]. A key concept in studying the influence function and

many other robustness properties is to treat the estimate as a functional T (F) of a

distribution F . Note that the distribution F can be the empirical distribution for N

samples xi:

Fn(x)≡
1
N

N

∑
i=1

1xi(x) (2.36)

where 1xi(x) is the unit-step function at xi.

First consider a nominal distribution F (i.e. a cumulative distribution function

(CDF) over some domain Ω) that is contaminated with a second distribution G by

amount t where t ∈ [0,1]: (1− t)F + tG. The estimator T is Gateaux differentiable

at F if there exists a function a such that for all G (see Hampel page 83 and Huber

Section 2.5 [27, 29])

lim
t→0+

1
t
[T ((1− t)F + tG)−T (F)] =

∫
Ω

a(u)dG(u) (2.37)

37



Now let G(u) = δx(u) (i.e. the unit impulse at x). Then

IFF,T (x)≡ lim
t→0+

1
t
[T ((1− t)F + tδx)−T (F)] (2.38)

≡ lim
t→0+

1
t
[T ((1− t)F + tδx)−T (F)] (2.39)

=
∫

Ω

a(u)δx(u) (2.40)

= a(x) (2.41)

is the influence function of the estimator T at F . Gateaux differentiability is required

for the influence function to be defined. Note that we assume the measurements are

scalar quantities and the parameter to be estimated is a vector. Therefore IFF,T (x)

is generally vector quantity (a scalar only in the special case of a scalar parameter).

The so-called influence function is a quantitative assessment of an estimators’

robustness. Loosely speaking, it is the derivative of an estimate under distribution

F with respect to the amount of contaminating mass at a particular location x. It

is useful in assessing the asymptotic properties of an estimator subject to infinites-

imal perturbations from the nominal model. While the infinitesimal aspect of the

influence function may be suspect, the reader may find it useful to compare this to

Lyapunov stability analysis.

Lyapunov stability analysis uses a scalar positive-definite function of system

state to summarize the system output. For continuous-time systems a Lyapunov

derivative must be negative definite to obtain asymptotic stability in a neighborhood

about an equilibrium point. The estimator functional T is analogous to a Lyapunov

function, the contamination amount is analogous to time, and the distribution is
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analogous to system state. At a nominal model, we have a condition analogous to

an equilibrium: ∫
IFF,T (x)dF(x) = 000 (2.42)

which follows from Equation (2.37) and Equation (2.38). We then consider how

small perturbations in distribution (state) by contamination amount t (time) change

the estimate (Lyapunov function). Similarly to how a Lyapunov function must be

negative for all possible perturbations in state (i.e. negative-definite), the influence

function must be finite for all possible perturbations in distribution δx.

The useful properties of the influence function can be determined by a first

order expansion of the estimate T (G) about T (F) for G in a small neighborhood

about F . First, by the Glivenko-Cantelli theorem, the empirical distribution Fθθθ n

tends to the true distribution Fθθθ in probability and almost surely. Therefore T (Fθθθ n)

tends to T (Fθθθ ). If the estimator is Fisher consistent, then

T (Fθθθ ) = θθθ ∀θθθ (2.43)

which, with the above, implies T (Fθθθ n) tends to θθθ . In words, an estimator that is

consistent at the parametric model, regardless of the parameter value, will also be

consistent at the empirical distribution of samples obtained from the parametric

model.

Now apply an expansion of T (G) about T (F)

T (G)≈ T (F)+
∫

IFT,F(x)(dG(x)−dF(x))+R (2.44)

= T (F)+
∫

IFT,F(x)dG(x)+R (2.45)
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where R is a remainder term. Boos and Serfling give conditions under which R is

on the order of the contamination amount t [30]. In particular, if the estimator

is consistent and the influence function is bounded then R is on the order of t.

While other conditions are possible, this condition is important in practice because

bounding the influence function is a key step in robustifying an estimator. In those

cases,

T (G)≈ T (F)+
∫

IFT,F(x)dG(x) (2.46)

and the central limit theorem (CLT) implies

T (FN)−T (F)≈ 1
N

N

∑
i=1

IFT,F(xi) (2.47)

Therefore the estimator asymptotic variance is

V (T,F) =
∫

IFT,F(x)IFT,F(x)T dF(x) (2.48)

Note the explicit dependence on both the estimator and distribution: the two do not

have to be related as they are in expressions for the MLE.

There is one last expression to derive in this section. In particular, given the

vector-valued function ψ and its associated estimator functional T , we would like to

have a convenient way to determine the influence function. To do so, begin with the

necessary condition for the estimator∫
ψ(x,T (G))dG(x) = 000 (2.49)

Now let G = (1− t)F + tδc and substitute into the necessary condition to obtain∫
ψ(x,T ((1− t)dF + tδc))((1− t)dF + tδc) = 000 (2.50)
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Now take the derivative with respect to t to obtain

000 =
∫

∂

∂T
(ψ(x,T (G))

∂T ((1− t)dF + tδc)

∂ t
dG

+
∫

ψ(x,T (G))(δc−dF) (2.51)

Now evaluating at t = 0, using the definition of the influence function, and the identity

in Equation (2.42) yields

000 =
∫

∂

∂θθθ
(ψ(x,θθθ)) IF(c,T,F)dF +ψ(c,T (F)) (2.52)

Solving for the influence function and making a change of variables (for notational

consistency) yields

IF(x,T,F) =

(∫
∂

∂θθθ
(ψ(u,θθθ))dF(u)

)−1

ψ(x,T (F)) (2.53)

This expression is simply a specialization of the influence function to M-estimators

which will be useful below.

The key conclusion of this subsection is that the influence curve quantifies how

well the estimate holds up for infinitesimal perturbations, in the sense of contami-

nation amount rather than contamination location, about the assumed model. This

is in contrast to the breakdown point which quantifies how much contamination the

estimator can handle without failing completely.

2.3.2 Gross-Error Sensitivity

The gross-error sensitivity is derived from the influence function presented in

the previous section [26]. There are several variants. The unstandardized version is
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defined as [27]:

γ
? = sup

x
||IFT,F(x)|| (2.54)

To see the importance of this quantity, let F be the true distribution and G be

F with ε contamination of δx in Equation (2.46). The estimator asymptotic bias is

bbb(x) = εIFT,F(x) (2.55)

Therefore the gross-error sensitivity is defined as the norm of the worst-case asymp-

totic bias among all distributions G in the ε-contamination neighborhood of F [29].

A slightly more useful form of gross-error sensitivity is given by the information-

standardized form [27]:

γ
?
I ≡ sup

x

(
IFT,F(x)

T
J(T (F))IFT,F(x)

)1/2
(2.56)

where J(T (F)) is the Fisher information matrix

J(T (F))≡
∫

sss(x,θθθ)sss(x,θθθ)
T
dF(x) (2.57)

and the score defined in Equation (2.4) This definition is invariant to a transformation

of the parameters θθθ .

2.3.3 Breakdown Point

Consider the ε-contaminated distribution obtained about the assumed model

Fo, defined as the one parameter family of models

F(x) = (1− ε)Fo(x)+ εG (2.58)

The breakdown point is the largest ε such that the estimator error remains bounded

for all G.
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For example, the sample mean as an estimate of the mean of a distribution is

the MLE when the nominal distribution is normal. This is asymptotically

µ̂ =
∫

xdF(x) (2.59)

Substituting the contaminated distribution

µ̂ =
∫

x((1− ε)dFo(x)+ εdG(x)) (2.60)

which yields

µ̂ = (1− ε)E{Fo(x)}+ εE{G(x)} (2.61)

Since G is arbitrary (i.e. can have arbitrarily high mean), any ε > 0 can lead to

unbounded estimate error for distributions in the ε-contaminated neighborhood of

F .

On the opposite end of the spectrum, consider the median as an estimate of

the mean of a distribution. It is defined as the solution to

0 =
∫

sign(x− µ̂)dF(x) (2.62)

It will be shown below that this estimate under the above contamination with G= δx?

at infinity is

µ̂ = F−1
o

(
1

2(1− ε)

)
(2.63)

Since the inverse CDF F−1
o (x) becomes undefined for x > 1, the breakdown point for

the median is ε = 0.5. In words, the median estimate error is bounded when up to

50% of the contamination is arbitrarily large. The penalty paid for this robustness

is a reduction in estimator efficiency at the normal distribution.
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2.3.4 Minimax Bias and Variance: Location Problem

The equations of the preceding section give the asymptotic bias and variance

of an M-estimator of location for measurements corrupted by any distribution. An

interesting problem is to determine the cost function that minimizes bias or variance

under the worst case distribution. In most applications, we have a nominal model

for the distribution that has some uncertainty associated with it. Therefore instead

of considering the worst case distribution among all possible distributions, we con-

sider only those distributions in some neighborhood of the nominal model. While

many neighborhoods definitions are possible, the so called ε-contaminated neigh-

borhoods are especially convenient. Given a nominal model, F , the ε-contaminated

neighborhood is defined as the set

Pε(F) = {Fε |Fε = (1− ε)F + εG} (2.64)

where G is any distribution. The minimax bias and variance estimators will be

determined below.

Assume that the nominal model is the standard normal distribution and con-

sider the cost function

ρ(x) =


1
2x2 |x| ≤ k

k|x|− 1
2k2 |x|> k

(2.65)
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with corresponding ψ

ψ(x) =


x |x| ≤ k

ksign(x) |x|> k

(2.66)

and ψ ′

ψ
′(x) =


1 |x|< k

0 |x|> k

(2.67)

Recall that the negative-log-likelihood gives the minimum asymptotic variance

for any distribution. So if we design an MLE around a distribution Ce−ρ(x), then

that estimator is minimum variance for that distribution. It remains to investigate

if such a distribution also maximizes the variance. To see this, use the expression

for asymptotic variance derived above and specialize it to the given distribution and

cost function (substitute Equation (2.53) into Equation (2.48)) to get the variance

expression:

V (T,F) =
E
{

ψ2}
F

E{(ψ ′)2}F
(2.68)

which for the above cost function and contaminated distribution yields
E
{

ψ2}
E{(ψ ′)2} =

(1− ε)E
{

ψ2}
F + ε

∫
|x|>k k2g(x)dx

(1− ε)2E{ψ ′}2
F

(2.69)

where g is the PDF associated with the CDF G. Clearly, the variance is maximized by

any distribution that places all of its mass outside of the interval [−k,k] (maximizes

the numerator with no change to the denominator). This is precisely what the

distribution constructed by Ce−ρ(x) does. Therefore this is the minimax variance
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solution.

The minimax bias solution for any symmetric nominal model is the median

which can be demonstrated in two steps. The first step is to determine the maximum

bias distribution in a contamination neighborhood about any symmetric distribution

for the median location estimate. The second step is to show that no estimate can

have a smaller bias than the median at all distributions in the neighborhood.

In particular, the median estimate under distribution F (with PDF f = (1−

ε) fo(x)+ εg(x)) is obtained from

0 =
∫

sign(x− θ̂)((1− ε) fo(x)+ εg(x))dx (2.70)

where fo is the nominal model symmetric about zero. Note that the bias is then

equal to the estimate θ̂ (since the true value is zero). Performing the integration

yields

0 = Fo(θ̂)(1−2ε)+ εq (2.71)

where q is defined as

q =
∫

sign(x− θ̂)g(x)dx (2.72)

Rearranging gives a bias of

b≡ θ̂ = F−1
o

(
1+ ε(q−1)

2(1− ε)

)
(2.73)

Note that q is at least −1 if all the mass of g sits to the left of the resulting θ̂

and at most 1 if all mass sits to the right. Either way the magnitude of the bias is

maximized by placing all mass entirely to the right or to the left (which makes sense
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intuitively).

Next, it must be shown that no estimate can achieve a smaller bias. Consider

any estimator that is translation invariant (i.e. adding a constant to all data will

shift the estimate by that same constant). The asymptotic estimate can be expressed

as a functional T (F) of the underlying distribution F . By definition T (F(x+ c)) =

T (F(x))+ c. Therefore if we consider two contaminated distributions, one with all

mass on the left and one with all mass on the right, say F+(x) = Fo(x + b) and

F−(x) = Fo(x− b), then the difference in the estimates at the two distributions is

T (F+)−T (F−) = 2b. Clearly both distributions belong to the neighborhood about

Fo and no estimator can achieve a bias magnitude less than b at both distributions.

Since the median does achieve this bias, it is the minimax bias solution. To be clear,

no distribution in the neighborhood can cause the median to give a worse estimate

and no estimator can do better than the median at all possible distributions.

At this point we have shown that the Huber cost is the minimax asymptotic

variance solution and the median is the minimax asymptotic bias solution. It is

worthwhile to study the variance of the median and the bias of Huber for several

values of ε and N (assuming N is large enough for asymptotics to apply).

The variance of the median can be computed with Equation (2.68), using the

fact that ψ ′(x) = 2δ (x) where δ (x) is the unit-impulse at zero. The result is

Pθ =
1
N

∫
sign2(x−θ) f (x)dx

(
∫

2δ (x−θ) f (x)dx)2 (2.74)

=
1
N

1

4((1− ε) fo(θ)+ εg(θ))2 (2.75)
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Clearly this is maximized when g(θ) = 0 which occurs when all mass of g sits to one

side of the estimate. The result is

Pθ =
1
N

1
4(1− ε)2 f 2

o (θ)
(2.76)

Figure (2.4) plots the maximum asymptotic bias and variance of the median as

a function of the number of samples N for two cases of a standard normal nominal

model and a standard Cauchy nominal model (i.e. scale parameter equal to one).

In both cases the contamination is 1% of the total distribution (i.e. ε = 0.01). Note

that the maximum asymptotic bias is independent of N and the maximum variance

approaches the plotted curve asymptotically. The key takeaway from this plot is

that the variance will dominate the square of bias for reasonable sample sizes: up to

8000 for both distributions. This suggests that the median is not a good estimate

for minimizing total error squared (i.e. variance plus bias squared).

To show a similar result for the Huber cost function, we must derive the asymp-

totic bias of that estimate under the worst case contamination. An expression for

bias can be obtained by subtracting T (F) from both sides of Equation (2.46) and

substituting the expression for the influence function in Equation (2.53) which yields

b =
E{ψ}
E{ψ ′}

(2.77)

where the expectation is evaluated at the true distribution. For the Huber cost under

PDF f , this is

b =

∫−k
−∞
−k f (x)dx+

∫ k
−k x f (x)dx+

∫
∞

k k f (x)dx∫ k
−k f (x)dx

(2.78)
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Figure 2.4: Maximum asymptotic bias and variance for the median location esti-
mate under standard normal and standard Cauchy errors. Note the large number of
samples needed for the bias to dominate the variance

The bias is maximized when the contaminating mass falls outside of the interval

[−k,k] since this would both maximize the numerator and minimize the denominator

in the above expression. When this is done and the fact the nominal model is

symmetric is used, the above equation reduces to

b =
kε

(Fo(k)−Fo(−k))(1− ε)
(2.79)

Figure (2.5) is analogous to Figure (2.4) discussed above with the exception

that the cost being studied is the Huber cost. The key takeaway from this figure is

that variance tends to dominate the bias for reasonable sample sizes: 2000 for the

normal and up to 7000 for the Cauchy. Comparing the two figures, we can see that

the bias is in fact smaller for the median than for the Huber for both distributions.
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Figure 2.5: Maximum asymptotic bias and variance for the Huber location esti-
mate under standard normal and standard Cauchy errors. Note the large number of
samples needed for the bias to dominate the variance.

This is consistent with the theory. This suggests that the Huber cost is preferred

when total squared error must be minimized and sample sizes are fairly small. Figure

(2.6) addresses this in further detail

Figure (2.6) plots the maximum asymptotic sum of bias squared and variance

for the Huber and median estimates at the standard and normal. This figure makes it

clear that the median is only preferred for very large sample sizes. This is especially

true for the normal distribution. The discrepancy is much smaller for the Cauchy.

One last topic that is instructive to study is the sample size N at which bias

squared is equal to variance as a function of the contamination amount ε . Figure

(2.7) plots this for both the Huber and median estimates at both the Cauchy and
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Figure 2.6: Sum of maximum asymptotic bias squared and variance for the Huber
and median location estimates under standard normal and standard Cauchy errors.
The Huber cost is preferable for moderate sample sizes.

normal distribution. The key takeaway from this plot is that the sample size needed

to make the median a better estimate than the Huber decreases exponentially with

increasing contamination. This implies that both the sample size and contamination

amount must be considered when selecting a suitable cost function.

2.3.5 Nonlinear Regression

This section discusses M-estimators for nonlinear regression problems: given

measurements that are a nonlinear function of the parameters, obtain an estimate

of the unknown parameters. The estimator definition and necessary conditions are

given. Bias and covariance expressions are derived
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Figure 2.7: Sum of maximum asymptotic bias squared and variance for the Huber
and median location estimates under standard normal and standard Cauchy errors.
The Huber cost is preferable for moderate sample sizes.

Consider scalar measurements of the form

yyyi = hi(θθθ)+ννν i (2.80)

where hi() is a measurement function and ννν i is an IID unobservable random vari-

able from a distribution F . The vector of parameters θθθ must be estimated. This

measurement form is especially common in aerospace applications. The results of

this section will be related to similar expressions in the literature (specialized for the

given measurement form) and will be used in later sections.
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The M-estimate has the form ρ(yyyi−hi(θθθ)) and necessary condition

000
T
=

∂J (θ̂θθ)

∂θθθ

=−
N

∑
i=1

ψ(yyyi−hi(θ̂θθ))
∂hi(θ̂θθ)

∂θθθ

=−
N

∑
i=1

ψih′i (2.81)

where ψ is a scalar function that is the derivative of ρ and h′i is the derivative of

hi. The last line in the equation uses short-hand notation to make the following

expressions more readable.

The above problem reduces to the scalar location estimation problem when

hi(θ̂θθ) = θ which is the focus of Huber [25, 29]. The analysis below generalizes the

results of Huber and others to any measurement function. After the analysis, it will

be shown that the results of Huber are recovered by setting hi(θ̂θθ) = θ in the final

expressions. Similarly, the derived expressions will be shown to be consistent with

that of Hampel’s which are in terms of the influence function [27].

First consider a first-order Taylor series expansion of the necessary condition

in Equation (2.81) about the parameter θθθ o.

000
T
=

∂J (θ̂θθ)

∂θθθ

=
∂J (θθθ o)

∂θθθ
+

∂ 2J (θθθ o)

∂θθθ
2

(
θ̂θθ −θθθ o

)
(2.82)

∂J (θθθ o)

∂θθθ
=−

N

∑
i=1

ψih′i (2.83)

∂ 2J (θθθ o)

∂θθθ
2 =−

N

∑
i=1

[
ψ
′
i h
′T
i h′i +ψih′′i

]
(2.84)

where ψ ′ is the derivative of ψ .
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Note that the summation in Equation (2.83) contains N terms. Let λ ≡E{ψi}.

Let the variance be σ2
ψ ≡ VAR [ψi]. Then the N terms have mean and variance

λh′i and σ2
ψh′ih

′T
i respectively. Assuming these quantities are finite, the law of large

numbers (LLN) can be used to determine the asymptotic expected value
1
N

∂J (θθθ o)

∂θθθ
→−λ

N

N

∑
i=1

h′i (2.85)

A similar use of the LLN applied to the summation in Equation (2.84) yields
1
N

∂ 2J (θθθ o)

∂θθθ
2 → A≡− 1

N
E
{

ψ
′
i
} N

∑
i=1

h′
T

i h′i−
λ

N

N

∑
i=1

h′′i (2.86)

The next step is to apply a form of the Central Limit Theorem to the terms

in Equation (2.83). The particular form is given by Kevei for the scalar case [31]:

Given IID variables xi with mean µ and finite variance, and constants ai,N such that

maxi ai,N → 0 as N→ ∞

N

∑
i=1

ai,N(xi−µ)→N (0,1) (2.87)

if and only if
N

∑
i=1

a2
i,N = VAR [xi]

−1 (2.88)

A corollary can be easily obtained from this and applied for our purposes. First

add µ ∑
N
i=1 ai,N to the sum, assuming the series is convergent, to obtain

N

∑
i=1

ai,Nxi→N

(
µ

N

∑
i=1

ai,N ,1

)
(2.89)

Now let ai,N = ci
N VAR [x]−1/2 N√

∑
N
j=1 c2

j

. This choice satisfies the condition in Equation

(2.88). Therefore
N

∑
i=1

ci

N
VAR [x]−1/2 N

∑
N
j=1 c2

j
xi→N (µ

N

∑
i=1

ai,N ,1) (2.90)
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Dividing the terms by VAR [x]−1/2 N√
∑

N
j=1 c2

j

yields

1
N

N

∑
i=1

cixi→N

(
µN−1

N

∑
i=1

ci,VAR [x]N−2
N

∑
i=1

c2
i

)
(2.91)

This last equation is precisely what is needed to obtain the asymptotic result:
1
N

∂J (θθθ o)

∂θθθ
→N

(
−λ

N

N

∑
i=1

h′i, σ
2
ψ

1
N2 h′

T

i h′i

)
(2.92)

To see this most clearly, just note that the ci in Equation (2.91) are any particular

element of the vector h′i.

Finally, using Equation (2.82) to obtain

θ̂θθ −θθθ o =−
(

∂ 2J (θθθ o)

∂θθθ
2

)−1
∂J (θθθ o)

∂θθθ
(2.93)

and applying Slutsky’s Theorem with Equation (2.92) and Equation (2.86) yields

θ̂θθ →N (µµµθ ,Pθ ) (2.94)

where

µµµθ = A−1 λ

N

N

∑
i=1

h′i (2.95)

and

Pθ =
σ2

ψ

N2 A−1

(
N

∑
i=1

h′
T

i h′i

)
A−1 (2.96)

The special case of the location problem leads to the following simplifications:

A =−E
{

ψ
′
i
}

(2.97)

µµµθ =− λ

E
{

ψ ′i
} (2.98)

Pθ =
1
N

σ2
ψ

E
{

ψ ′i
}2 (2.99)

These equations are consistent with the results of Huber.

55



To show consistency with that of Hampel, we need to derive the influence

function. The estimator at G will asymptotically satisfy

000 = ∑
i

[
h′i
∫

ψ(yyyi−hi(T (G))−ννν)dG(ννν)

]
(2.100)

Substituting g(x) = (1− ε) f (x)+ εδc(x) yields

000 = ∑
i

[
h′i
∫

ψ(yyyi−hi(T (G))−ννν)((1− ε) f (ννν)+ εδc(ννν))dννν

]
(2.101)

= ∑
i

[
εh′i
∫

ψ(yyyi−hi(T (G))−ννν)(δc(ννν)− f (ννν))dννν

+h′i
∫

ψ(yyyi−hi(T (G))−ννν) f (ννν)dννν

]
(2.102)

Taking the derivative with respect to ε yields

000 = ∑
i

[
h′i
∫

ψ(yyyi−hi(T (G))−ννν)(δc(ννν)− f (ννν))dννν

+h′ih
′T
i

∫
ψ
′(yyyi−hi(T (G))−ννν)

∂T (G)

∂ε
f (ννν)dννν

+h′′i
∫

ψ(yyyi−hi(T (G))−ννν) f (ννν)dννν

]
(2.103)

Note the derivative of T (G) with respect to ε is the influence function which can be

pulled out of the integral. Doing this and evaluating at ε = 0 yields

IFF,T (c) =
∂T (G)

∂ε
(2.104)

= M−1
∑

i

[
h′i
∫

ψ(yyyi−hi(T (F))−ννν)(δc(ννν)− f (ννν))dννν

]
(2.105)

= M−1
∑

i

[
h′i
∫

ψ(yyyi−hi(θθθ)−ννν)(δc(ννν)− f (ννν))dννν

]
(2.106)

= M−1
∑

i

[
h′i
∫

ψ(−ννν)(δc(ννν)− f (ννν))dννν

]
(2.107)

= M−1
∑

i

[
h′iψ(−c)

]
(2.108)

where the assumption that the estimator is consistent is used. The matrix M is
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defined by

M ≡ ∑
i

[
h′ih
′T
i

∫
ψ
′(−ννν) f (ννν)dννν

+h′′i
∫

ψ(yyyi−hi(T (G))−ννν) f (ννν)dννν

]
(2.109)

= E
{

ψ
′}

∑
i

h′ih
′T
i +E{ψ}∑

i
h′′i (2.110)

=−NA (2.111)

Using Equation (2.48) with Equation (2.108) gives the variance

V (T,F) = M−1

[∫
∑

i

[
h′iψ(−c)

]
∑

i

[
h′iψ(−c)

]T

f (c)dc

]
M
−T (2.112)

= σ
2
ψM−1

∑
i

[
h′ih
′T
i

]
M
−T (2.113)

=
σ2

ψ

N2 A−1
∑

i

[
h′ih
′T
i

]
A
−T (2.114)

which is equivalent to the derived variance in Equation (2.96). Therefore the equa-

tions given by Hampel, although derived through a different method, are equivalent

to the above results for the given measurement model [27].

Note that if the the matrix M is singular, then the influence function and vari-

ance are undefined. This amounts to an observability condition on the measurement

model.

Refering to Equation (2.95), it is clear that the estimator is Fisher consistent

at the model if

λ ≡ E{ψ} (2.115)

= 0 (2.116)

where the expectation is with respect to the assumed model. The ψ function defining
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the estimator should be selected to satisfy this.

Now, if the above expression is nearly true at neighboring distributions and the

second derivative terms are much smaller than the first derivative terms (i.e. nearly

linear measurements) then the expression for A in Equation (2.86) reduces to

A =
−1
N

E
{

ψ
′} N

∑
i

h′ih
′T
i (2.117)

Then the estimator covariance expression reduces to

Pθθθ =
E
{

ψ2}
E
{
(ψ ′)2

} [ N

∑
i=1

h′ih
′T
i

]−1

(2.118)

which is a very interesting (and apparently novel) result. It implies that for a given

set of measurements (i.e. the functions hi()), the M-estimator which optimizes

any covariance criterion can be obtained by simply optimizing over the

scalar

v≡
E
{

ψ2}
E{ψ ′}2 (2.119)

which is precisely the scalar quantity studied in the location estimation

problem! Therefore any results obtained in that problem are applicable to the more

general linear regression problem (and approximately applicable to the nonlinear

regression problem).

2.3.6 M-Estimates of Scale

M-estimators are generally not scale invariant. In particular,

θ̂θθ(cy1,cy2, . . .) 6= cθ̂θθ(y1,y2, . . .) (2.120)
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For example, the Huber estimate depends on the variance of the normal distribution

being designed around. This is not the case for the least squares estimate. A second

example is the use of a hard threshold for outlier rejection in Kalman-like sequential

estimators: the threshold will depend on the scale of nominal errors. If the error scale

is unknown a priori then it must be jointly estimated with the primary parameters of

interest. This is the subject of the next section. This section will discuss estimators

for pure scale problems which will be leveraged in the next section.

Consider measurements of the form

yi = νi (2.121)

where νi is modeled as a random variable with nominal distribution

νi ∼
1
σ

f
(

νi

σ

)
(2.122)

The MLE for this problem is

σ̂ = argmaxσ

N

∏
i=1

1
σ

f
(yi

σ

)
(2.123)

= argmaxσ −N logσ +
N

∑
i=1

log f
(yi

σ

)
(2.124)

The solution satisfies
N

∑
i=1

ψs

(yi

σ

)
= 0 (2.125)

where ψs is

ψs

(yi

σ

)
≡ 1+σ

∂

∂σ
log f

(yi

σ

)
(2.126)

= 1−
f ′
(yi

σ

)
f
(yi

σ

) yi

σ
(2.127)

The scale estimate can be expressed as a functional S(F) of the underlying
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distribution F (where F is the CDF corresponding to the PDF f ). Asymptotically,

the estimate satisfies ∫
ψs

(
y

S(G)

)
dG(y) = 0 (2.128)

under a distribution G. This expression can be used to study the breakdown point

of the estimator by replacing G with (1− t)F + tδ∞ for t ∈ [0,1]. This gives

0 =
∫

ψs

(
y

S(G)

)
((1− t)F + tδ∞) (2.129)

= (1− t)
∫

ψs

(
y

S(G)

)
dF(y)+ tψs(∞) (2.130)

The estimate breaks down when t is large enough to make S(G)→ ∞. The smallest

t to do so is the breakdown point. To solve for this, assume S(G)→ ∞ so that

0 = (1− t)ψs(0)+ tψs(∞) (2.131)

t =
−ψs(0)

ψs(∞)−ψs(0)
(2.132)

In order for the breakdown point to be non-zero, the ψs function must be bounded

at ∞.

Equation (2.53) can be used to obtain the influence function which is

IF(x,T,F) =
ψs(x/S(F))∫

ψ ′s(y/S(F)) y
S(F)2 dF(y)

(2.133)

The influence function can be used to compute the asymptotic variance using Equa-

tion (2.48) which yields

V (S,F) =

∫
ψ2

s (x/S(F))dF(y)(∫
ψ ′s(y/S(F)) y

S(F)2 dF(y)
)2 (2.134)

Huber points out that choosing to find estimators, ψs, that minimize this variance

(even with conditions on robustness) is a poor choice. Instead, optimizing over the
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standardized variance, V (S,F)/S2, leads to better results [29].

One such result is from Huber that is analogous to the minimax asymptotic

variance estimator for ε-neighborhoods considered in a previous section. The esti-

mator is

ψs(x) =


x2−1 |x|< x1

x2
1−1 |x|> x1 ≥

√
2

(2.135)

where x1 is a constant determined by ε [25, 29]. Although optimal for variance, this

estimator has either fairly large bias at the normal (54.7 % for x1 = 1.234) or low

breakdown point ( < 20 % for x1 = 2.37). Andrews et al. empirically showed that

when scale is a nuisance parameter, it is more important to have low bias and high

breakdown point event at the cost of higher variance [32]. Analytical reasoning for

this will be presented in the next section on the joint location and scale problem.

For the rest of this section, alternative scale estimators will be presented that will

be leveraged in later sections.

Hampel gives a brief study of the median absolute deviation (MAD) in [26].

This scale estimate is

σ̂ = Median(y−Median(y)) (2.136)

which has the maximum breakdown point (50 %) and lowest gross-error sensitiv-

ity. The downside is very low efficiency at the Gaussian which is pointed out by

Rousseeuw who proposed alternatives with much higher efficiency and only slightly

worse gross-error sensitivity [26] [33].
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Many authors propose a MAD normalized (MADN) so that the estimate is

asymptotically unbiased for the scale parameter of a particular distribution (for ex-

ample: [34, 35]) For the normal distribution, this is

MADN(y) =
MAD(y)

0.675
(2.137)

In most applications, the scale is not a primary parameter of interest. It is often

treated as a nuisance parameter. The next section will discuss the use of scale

estimates in combination with location estimates.

2.3.7 M-Estimates of Location and Scale

A key part of this dissertation is applying robust estimation techniques to

vision-aided navigation which is a nonlinear regression problem. Nonlinear regression

was discussed above for the case of an assumed error model that was fully specified

(e.g. normal with a specific variance). However, in some cases, we would prefer to

only assume a parametric error model that does not have all parameters specified

(e.g. normal with unknown variance). In particular, the error scale may be unknown

a priori. Before discussing this in the context of nonlinear regression, the problem of

jointly estimating location and scale will be considered in this section. The intuitive

concepts for the location and scale problem are applicable to the nonlinear regression

with unknown scale problem.

Consider the measurement model

yi = θ +νi (2.138)
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where νi is modeled as a random variable with nominal distribution

νi ∼
1
σ

f1

(
νi

σ

)
(2.139)

The θ and σ are treated as unknowns with θ being the primary parameter of interest

and σ being a nuisance parameter. The estimator of θ can be made scale invariant

by jointly estimating σ .

There are three distinct approaches to the problem. The first is to jointly

optimize a single cost function over the unknown parameter θ and the scale σ . In

this method, the derivatives with respect to θ and with with respect to σ define two

necessary conditions for the optimal estimate. Under certain conditions, these two

equations can be treated as implicit definitions of the estimate. A second method is

to define the estimate as the solution to two implicit equations to define the estimate.

Unlike the first method, the two equations do not have to be derived from the same

cost function. The third method is to obtain a scale-invariant estimate of θ (such as

least squares), use the resulting residuals to estimate σ , and then use any estimator

(not necessarily scale-invariant) to determine a new estimate of θ . Then the final

estimate will be scale-invariant because the scale was determined entirely by the data

without any a prior assumption.

Before discussing the mathematical details of the methods, a high-level com-

ment is needed. The scale is a nuisance parameter and the need for an accurate

estimate of it is driven only by the need for an accurate estimate of θ . Therefore

the estimator of scale should be selected to tune the properties of θ rather than the
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properties of the scale estimate itself.

First consider the MLE which maximizes

(θ̂ , σ̂) = argmax(θ ,σ)

N

∏
i=1

1
σ

f1

(
yi−θ

σ

)
(2.140)

= argmax(θ ,σ)−N logσ +
N

∑
i=1

log f1

(
yi−θ

σ

)
(2.141)

Taking the derivative with respect to the unknowns gives the necessary conditions
N

∑
i=1

ψ

(
yi−θ

σ

)
= 0 (2.142)

N

∑
i=1

ψs

(
yi−θ

σ

)
= 0 (2.143)

where ψ(x) is the derivative of − log f1(x) and ψs(x) = ψ(x)x−1 . To be clear

ψ

(
yi−θ

σ

)
≡ ∂

∂θ
log f1

(
yi−θ

σ

)
(2.144)

=
f ′1
(

yi−θ

σ

)
f1

(
yi−θ

σ

)−1
σ

(2.145)

0 =
−N
σ

+
∂

∂σ
log f1

(
yi−θ

σ

)
(2.146)

ψs

(
yi−θ

σ

)
≡ σ

∂

∂σ

(
− logσ + log f1

(
yi−θ

σ

))
(2.147)

=
f ′1
(

yi−θ

σ

)
f1

(
yi−θ

σ

)−(yi−θ)

σ
−1 (2.148)

=

(
yi−θ

σ

)
ψ

(
yi−θ

σ

)
−1 (2.149)

Any estimator defined through Equation (2.142) and Equation (2.143) with ψ

and ψs related by ψs(x) = ψ(x)x−1 is an MLE under some distribution. As already

discussed, one approach to robust estimation is to choose that distribution such that

it is similar to the nominal model and such that the resulting estimator is insensitive
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to departures from the assumed model.

Another approach is to choose ψ and ψs not related by ψs(x) =ψ(x)x−1 which

gives the designer more flexibility in tuning the estimator. Huber’s Proposal 2 is an

example of this [25]. That estimator sets ψ based on the minimax variance estimator

for location and ψs based on the minimax variance estimator for scale.

Yet another approach is to first obtain a scale-invariant estimate of location,

use the resulting residuals to estimate scale, and then use the scale estimate in a

different location estimator.

For the first two methods, the influence function for the joint estimate, [θ , σ ]

can be computed from Equation (2.53) as

IF(x,T,F) =

 ψ(x/S(F))S(F))/
∫

ψ ′(x/S(F))dF(x)

ψs(x/S(F))S(F))/
∫

ψ ′s(x/S(F)) x
S(F)dF(x)

 (2.150)

when ψ is odd and ψs is even which is required for scale and translation invariant

estimators [27]. Note that the estimate S(F) enters into the influence function for

location (i.e. the first element of the vector) while the location component does not

enter into the scale part. This means that the breakdown of the scale estimator

implies breakdown of the location estimator but not vice-versa.

The Proposal 2 estimator of Huber has been studied in the literature [25] which

uses ψ and ψs from Equation (2.66) and Equation (2.135) which are the minimax

asymptotic location and scale estimates respectively. The scale ψs from Equation

(2.135) can be generalized as

ψs(x) = min
(
x2

1−β ,x2−β
)

(2.151)
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where β = 1 in the original equation. The parameter β can be selected for asymptotic

consistency at a particular model which implies that β = β (x1) In that case, and with

x1 = k, the breakdown point is

ε =
β (k)

β (k)+ k2 (2.152)

As k increases from zero, β (k) decreases, and the net effect is a reduction in the

breakdown point but an increase in efficiency at the model: a common theme in

robust estimation!

Huber tabulates the worst-case asymptotic variance of location under symmet-

ric ε-contamination for estimators studied considered in the Princeton study (for

many ε values) [29, 32]. Monte Carlo results are also tabulated in [36]. There are

some clear trends. First, for moderate contamination ε ∈ [0.01,0.05], the Huber

location cost of Equation (2.66), performs just as well when the scale determined

either with Equation (2.135) or with the MAD. However, if there is a chance of large

ε-contamination, then the MAD scale estimate is better than Equation (2.135) when

paired with the ψs of Equation (2.66) (i.e. it is more robust for the same efficiency

loss at the model). The redescending M-estimators of Hampel paired with MAD

provide even greater robustness for large ε-contamination with reasonable efficiency

loss [27]. These qualitative trends are important in designing estimators for nonlinear

regression with unknown scale.
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2.3.8 Nonlinear Regression with Unknown Scale

Nonlinear regression for the case of known error scale was addressed above. This

section will discuss the problem when this scale is unknown and must be determined

simultaneously.

The measurement model is

yyyi = hi(θθθ)+ννν i (2.153)

where the unknown error ννν i is assumed to come from a distribution F of the form

F(ννν) =
1
σ

F1(ννν/σ) (2.154)

The normal distribution with variance σ2 is one of many possible models with this

form (also the Laplace distribution and Cauchy distribution).

The MLE solution is

θ̂θθ = argmaxθθθ ,σ ∏
1
σ

F1((yyyi−hi(θθθ))/σ) (2.155)

= argmaxθθθ ,σ ∏
1
σ

F1((yyyi−hi(θθθ))/σ) (2.156)

= argminθθθ ,σ N logσ − 1
N ∑F1((yyyi−hi(θθθ))/σ) (2.157)

The necessary conditions are found by taking the derivative of the above equation

with respect to both θθθ and σ . This yields

000 = ∑
f ′1((yyyi−hi(θθθ))/σ)

f1((yyyi−hi(θθθ))/σ)
h′i(θθθ) (2.158)

1 =
1
N ∑

f ′1((yyyi−hi(θθθ))/σ)

f1((yyyi−hi(θθθ))/σ)
((yyyi−hi(θθθ))/σ) (2.159)

To generalize these necessary conditions for an M-estimator, define a cost ρ() which

67



is analogous to − log f1 and then

000 = ∑ψ(ri)h′i(θθθ)

000 = ∑ψs(ri) (2.160)

where ψ(r) = ρ ′(r), ψs(r) = ψ(r)r−1, and ri = (yyyi−hi(θθθ))/σ .

There are no straight-forward minimax results for this problem. Nevertheless,

expressions for the asymptotic bias and covariance are useful in assessing tradeoffs

in the estimator design. The derivation is similar to that of the nonlinear regression

with known scale case.

Begin with the necessary conditions in Equation (2.160). Perform a Taylor

series expansion about some nominal parameter value (θθθ o,σo).

000 =

 1
N ∑ψ(ri)h′i(θθθ)

1
N ∑ψs(ri)


(θ̂θθ ,σ̂)

(2.161)

≈

 1
N ∑ψ(ri)h′i(θθθ)

1
N ∑ψs(ri)


(θθθ o,σo)

+A

θ̂θθ −θθθ o

σ̂ −σo

 (2.162)

A≡ ∂

∂ [θθθ , σ ]

 1
N ∑ψ(ri)h′i(θθθ)

1
N ∑ψs(ri)

 (2.163)

=
1
N ∑


(

ψ(ri)h′′i −ψ ′(ri)h′ih
′T
i /σ

) ( 1
σ

ψ ′(ri)rih′i
)

−1
σ

ψ ′s(ri)h′i
−1
σ

ψ ′s(ri)ri


(θθθ o,σo)

(2.164)

Making use of Slutsky’s Theorem as in the section on nonlinear regression yields
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the asymptotic distribution of the M-estimate asθ̂θθ −θθθ o

σ̂ −σo

∼N (µµµ
θ̄θθ
, P

θ̄θθ
) (2.165)

where

µµµ
θ̄θθ
= E{A}−1E


 1

N ∑ψ(ri)h′i(θθθ)

1
N ∑ψs(ri)


(θθθ o,σo)

 (2.166)

P
θ̄θθ
= E{A}−1COV


 1

N ∑ψ(ri)h′i(θθθ)

1
N ∑ψs(ri)


(θθθ o,σo)

E{A}−T (2.167)

The limiting quantities in the above expression can be evaluated as

E{A}= 1
N ∑

E{ψ(r)}h′′i −E{ψ ′(r)}h′ih
′T
i /σ

1
σ
E{ψ ′(r)r}h′i

−1
σ
E{ψ ′s(r)}h′i

−1
σ
E{ψ ′s(r)r}

 (2.168)

COV


 1

N ∑ψ(ri)h′i(θθθ)

1
N ∑ψs(ri)


=

 1
N VAR [ψ(r)]∑h′ih

′T
i

1
NE{ψ(r)ψs(r)}∑h′i

1
NE{ψ(r)ψs(r)}∑h′Ti VAR [ψs(r)]

 (2.169)

The above resulting equations are cumbersome. Some simplifications can be

made for many practical problems. As an example, consider the case where the

measurements are linear and distributed as

yi ∼N (h′Ti θθθ ,σ2
o ) (2.170)
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and the estimators is designed around the Gaussian assumption:

ψ(x) = x (2.171)

ψs(x) = x2−1 (2.172)

This example will demonstrate how to apply the equations and will also verify that

they are consistent with this classical problem. There are several expectations that

must be taken under the assumption that θ̂θθ = θθθ .

E{ψ(r)}= 0 (2.173)

E
{

ψ
′(r)
}
= 1 (2.174)

E{ψs(r)}= σ
2
o/σ

2−1 (2.175)

E
{

ψ
′(r)r

}
= 0 (2.176)

E
{

ψ
′
s(r)
}
= 2σ

2
o/σ

2 (2.177)

E{ψ(r)ψs(r)}= 0 (2.178)

VAR [ψ(r)] = σ
2
o/σ

2 (2.179)

VAR [ψs(r)] = 2σ
4
o/σ

4 (2.180)

Then the above matrices reduce to the following

E{A}=

 −1
Nσ2 ∑h′ih

′T
i 0

0 −2σ2
o/σ3

 (2.181)

COV


 1

N ∑ψ(ri)h′i(θθθ)

1
N ∑ψs(ri)


=

 σ2
o

Nσ4 h′i(θθθ) 0

0 2σ2
o

Nσ2

 (2.182)
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The estimator bias is asymptotically zero and the covariance is asymptotically

P
θ̄θθ
=

σ2
o (∑h′ih

′T
i )−1 0

0 σ2
o

2N

 (2.183)

which is in agreement with results for classical linear regression under normal errors.

Obviously the advantage of Equation (2.166) and Equation (2.167) is that any pair

of estimator and distribution can be used.

2.3.9 Leverage Points

Consider the simplified expression for the covariance of a parameter vector θθθ

in the nonlinear regression case:

Pθθθ =
E
{

ψ2}
E
{
(ψ ′)2

} [ N

∑
i=1

h′ih
′T
i

]−1

(2.184)

This expressions assumes that asymptotic results apply to all elements of θθθ . Even if

the number of measurements goes to infinity, asymptotic results may not necessarily

apply unless all parameters are infinitely observable: each element of θθθ must show

up in an infinity of measurements (loosely speaking). Remember the incidental

parameters problem!

The issue becomes especially precarious for applications with a finite number

of measurements where the hi equations are not explicitly known ahead of time.

The vision-aided navigation problem is a prime example of this! Visual features

are identified autonomously in real-time as a camera observes the environment. The

locations of the features ultimately drive the shape of the hi equations. Those readers

familiar with the problem of attitude estimation from star line-of-sight measurements
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will appreciate the following example which is similar in structure.

Consider a spacecraft with two narrow field-of-view (FOV) star trackers pointed

in orthogonal directions. The first star tracker sees a large number of stars (up to

approximately 20) which gives good observability on two degrees of freedom (DOF)

of attitude. The third DOF, namely roll about the first star tracker’s boresight can be

estimated without using the second star tracker, although with much less accuracy.

Asymptotic theory suggests an MLE for all three DOF will tend to a Gaussian about

the true attitude with decreasing covariance as the number of measurements increases

(albeit a non-isotropic Gaussian). Now assume we get a single star measurement from

the second, orthogonally oriented, star tracker. While we expect the measurement

to be useful from geometric considerations (the corresponding h′ih
′T
i term will reduce

the maximum eigenvalue of the covariance matrix), the unfortunate side effect is that

the asymptotic theory breaks down: a single measurement almost entirely determines

the estimate of one element of θθθ . Even if the breakdown point of the estimator’s ψ

function is high, a single bad measurement with undue influence can ruin the overall

estimate. Such measurements are referred to as leverage points.

A more canonical example of a leverage point comes in the problem of esti-

mating the slope and intercept of a line on the (x,y) plane. If all but one of the

measurements are clustered near x = 0 and one measurement takes on a very large

x value, then the latter measurement will have undue influence on the resulting es-

timate.
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There is no clear answer to this problem in the literature. On the one hand,

leverage points are good in that they can give great observability to certain param-

eters. On the other hand, they are bad because they can effectively reduce (signifi-

cantly) the breakdown point of an estimator. Intuitively, if the information provided

by a leverage point is consistent with the rest of the data, then it should be given

large weight. Similarly, if the leverage point drastically changes the estimate and

greatly increases the residuals of all other measurements, then it should be down

weighted. Hampel gives various approaches to doing so [27]. The main idea is to

adjust the estimator necessary condition from

∑ψ(ri)h′i = 000 (2.185)

to something of the form

∑wiψ(ri/δi)h′i = 000 (2.186)

The wi can be selected to down weight measurements while the δi term can be used

to scale residuals outside of the inlier region of the ψ section [25, 27, 37]. Mallows

sets δi = 1 and relies entirely on the wi which is determined as follows. [38, 39]

Let P be the the so-called hat matrix which transforms the i’th measurement

into the i’th predicted measurement in a linear model (for example, see [40]). It is
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called this because the matrix puts the hat on the measurement:

Pi j ≡ h′Ti

[
∑
k

h′kh′Tk

]−1

h′j (2.187)

ŷi ≡ E{yi|y1,y2, . . . ,yN} (2.188)

= ∑
j

Pi jy j (2.189)

ŷyy = Pyyy (2.190)

From classical least squares analysis, the variance of the fitted residual ŷi− yi under

Gaussian errors of variance σ2 is

VAR [ŷi− yi] = (1−Pii)σ
2 (2.191)

The Mallows estimator sets

wi =
√

1−Pii (2.192)

which is essentially adjusting the scale σ based on the quantity Pii If Pii = 1, then

this means that one, and only one, measurement impacted the fit of ŷi (namely yi

itself). Clearly this is not a desirable situation. On the other end of the spectrum,

as the number of measurements contributing to the fit of ŷi increases to infinity, Pii

will tend to zero and the weight will tend to unity. The downside of this estimator

is that it always down weights points with high leverage: even if they are consistent

with the data. The estimator of Schweppe seeks to overcome this.

The Schweppe estimator chooses the same weight as the Mallows estimator. In

contrast to Mallows, Schweppe sets δi = wi [41]. Therefore if we have a ψ function

like that of Huber, then a large but accurately measured leverage point will fall into

74



the linear region of ψ causing the wi and δi to cancel out and giving the measurement

high weight. On the other hand, a poor measurement with high leverage can fall

outside of the linear region of ψ and the measurement is treated as in the Mallows

estimator.

The drawback of the Schweppe estimator is a lack of efficiency at the model [37].

Krasker and Welsch seek to overcome this by deriving an estimator that minimizes

asymptotic variance subject to a bound on sensitivity [38]. This is consistent with

the general approach of Hampel to deriving robust estimators [27]. The full details

of the Krasker-Welsch estimator will not be repeated here as they are contained in

the reference.

In summary, the existence of leverage points can limit the applicability of the

asymptotic theory used to derive traditional M-estimators. While the literature

contains a variety of methods for detecting and dealing with leverage points, there is

no universal solution. Therefore studying the extent to which they exist in a given

application and how to properly incorporate them into the final estimate is critical.

Such a study will be presented in this dissertation for vision-aided navigation that

has not been shown before.

2.3.10 Leverage Point Example: Attitude Estimation

The star tracker problem was used as an example to discuss the potential dan-

gers introduced by leverage points. A numerical example was designed to demon-

strate this in more detail. Interestingly, while robust estimators have been applied to
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attitude estimation (see [42]), it does not appear that leverage-resistant estimators

have been used for the attitude estimation problem. Therefore this section presents

a novel contribution of this dissertation.

To perform this study, nT = 2000 trials of the following experiment were re-

peated. A set of n1 and n2 stars (i.e. inertial frame unit vectors) were randomly gen-

erated in two 25◦ field-of-view sensors directed along vvv1 = [0,0,1] and vvv2 = [1,0,0]

respectively. These inertial frame unit vectors were used to simulate image-plane

measurements for two orthogonally directed star trackers using the simple projection

equation:

yyyi,k =

yi,k,1

yi,k,2

= π(RiRs/cuuuk)+ννν i,k (2.193)

where Ri is the orientation of the i’th star tracker relative to the spacecraft frame,

Rs/c is the spacecraft attitude relative to the inertial frame, and uuuk is a particular

star. The function π() is the simple projection functionx/z

y/z

= π([x,y,z]) (2.194)

The random noise ννν i,k is sampled from the contaminated distribution

p(ννν) = 0.9N (0,0.001)+0.1L (0,0.01) (2.195)

which is an ε = 0.1 contaminated normal distribution with σ = 0.001 and with a

Laplace distribution of scale σ = 0.01 as the contaminant. Note that the combined

variance of this distribution is 0.00452. A plot of this distribution with the component

Gaussian and Laplace overlaid is shown in Figure (2.8).
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Figure 2.8: PDF of the contaminated distribution used for the experiments in the
leverage point study. The PDF is a mixture of the Gaussian (green) and Laplace
(red) PDFs.

The simulated measurements are passed to two estimators. The first estimator

is the Huber M-estimator:

R̂≡ argmin
2

∑
i=1

ni

∑
k=1

2

∑
j=1

ρ((yi,k, j− ŷi,k, j)/σ) s.t. R̂ ∈ SO(3) (2.196)

and the second estimator is a Schweppe-type estimator [43, 29, 27]:

R̂≡ argmin
2

∑
i=1

ni

∑
k=1

2

∑
j=1

w2
i,k, jρ((yi,k, j− ŷi,k, j)/(σwi,k, j)) s.t. R̂ ∈ SO(3)

wi,k, j = 1−
[
H(HT H)−1HT ]

``
(2.197)

where H is the Jacobian of the stacked measurement vector with respect to a small

change in attitude (small angle approximation [17]), ` is the index into the stacked

measurement vector corresponding to yi,k, j, and ρ() is the Huber cost defined in

Equation (2.65) with k = 3.0. Also, ŷi,k, j is the predicted measurement conditioned
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on R̂. Note that the summation of i sums over the two sensors and the summation

j sums over the two image-plane components of each sensor.

For this study, two cases are considered: {n1 = 0,n2 = 10} and {n1 = 1, n2 =

9}. The first case represents a control case as we expect the amount of leverage

for any particular measurement to be small when all measurements come from the

same sensor. In this first case, the rotation about the vvv2 axis will be the most

uncertain as all measurements are concentrated along that direction. The second

case is designed to have a single measurement with very high leverage. In particular,

this will be the second component of the only measurement in the first sensor: y1,1,2.

Intuitively, the estimator will adjust the roll about the vvv2 direction almost entirely

based on this single measurement. Therefore asymptotic results do not apply and a

bad measurement can seriously corrupt the resulting attitude estimate. Note that on

any given trial, the same measurements are passed to both estimators in both cases.

The results for the first case are shown in Figure (2.9) and Figure (2.10). Both

estimators give similar performance with a slight advantage for the Scweppe estima-

tor. This is because for only 10 measurements which had a (nearly) uniform random

location in the second sensor field-of-view, some may have moderate leverage and

hence the moderate advantage in some cases. However, extremely high leverage

points are very unlikely in this case.

On the other hand, there is one extremely high leverage point in every trial of

the second case. The results of this are shown in Figure (2.11) and Figure (2.12).
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Figure 2.9: Histogram of attitude errors for the {n1 = 0, n2 = 10} case (absolute
value of Euler angle).

Figure 2.10: Histogram of the difference in attitude errors for the {n1 = 0,n2 = 10}
case.
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Figure 2.11: Histogram of attitude errors for the {n1 = 1, n2 = 9} case (absolute
value of Euler angle).

The results are very striking. The Scweppe-type estimator outperforms the Huber

estimator in 65% of cases but the more interesting part is how the especially poor esti-

mates are nearly eliminated by the Scweppe-type estimator. At the 99’th percentile,

the Huber estimates have nearly double (1.92 times) the error as the Scweppe-type

estimates. This behavior was anticipated in the above discussion.

One final point should be made that is not clear in the figures above. In the

typical case, the addition of one measurement along the first sensor direction does

improve the estimates for both estimators. The median attitude error for the Huber

estimate for n1 = 0 and n1 = 1 was 8.42×10−4 and 4.92×10−4 radians respectively.

For the Scweppe-type estimator, the median attitude error for the Huber estimate for

n1 = 0 and n1 = 1 was 7.84×10−4 and 4.97×10−4 radians respectively. Clearly, on
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Figure 2.12: Histogram of the difference in attitude errors for the {n1 = 1, n2 = 9}
case.

the same test data, the two estimators give similar performance for the typical case.

It is the odd event of a single bad measurement at a leverage point that corrupts the

Huber estimator and gives the Scweppe-type estimator the advantage.

2.4 Computing M-Estimates

The previous sections discussed the theory behind M-estimates. This section

will briefly demonstrate how to actually compute M-estimates. Any nonlinear itera-

tive least squares software can be easily modified to do so. A good implementation

of the Levenberg-Marquardt algorithm or the Dog-Leg algorithm are perfect starting

places for an M-estimation solver [44, 45, 46]. In their basic form, these algorithms
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can solve problems of the form

θ̂θθ = argminθθθ (yyy−hhh(θθθ))T W (yyy−hhh(θθθ)) (2.198)

where both yyy and the function hhh() are vector-valued with elements yi and hi(). If W

is a diagonal matrix with elements wi then the above problem is equivalent to

θ̂θθ = argminθθθ ∑
i
(yi−hi(θθθ))

2 wi (2.199)

The necessary condition is

000 = ∑
i

Hi

(
yi−hi(θ̂θθ)

)
wi (2.200)

where Hi is the Jacobian evaluated at the solution. The optimization algorithms

iteratively compute parameter corrections and terminate once the above necessary

condition is met to within some tolerance. Typically wi is a constant held fixed across

iterations.

The iterative weighting approach adjusts the wi between iterations to find an

M-estimate solution to

θ̂θθ = argminθθθ ∑
i

ρ (yi−hi(θθθ)) (2.201)

which has the necessary condition

000 = argminθθθ ∑
i

Hiρ
′ (yi−hi(θθθ)) (2.202)

The weight is chosen as

w(k+1)
i =

ρ ′
(

yi−hi(θθθ
(k))
)

(
yi−hi(θθθ

(k))
) (2.203)

From this weighting scheme and Equation (2.200), the necessary condition at con-
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vergence is

000 = ∑
i

Hi

(
yi−hi(θ̂θθ)

) ψ

(
yi−hi(θ̂θθ)

)
(

yi−hi(θ̂θθ)
) (2.204)

which is the same necessary condition for the solution of the M-estimation problem

in Equation (2.202).

Note that if some measurements are inherently coupled and can not be broken

up into independent scalar components, a modification must be made. Consider

for example an error ννν that is Gaussian with covariance R which is not diagonal.

The weight is computed in a completely analogous way. The square-root of the

weighted-least-squares cost
√

rT R−1r is computed. The weight is then simply

w(r) =
ψ

(√
rT R−1r

)
√

rT R−1r
(2.205)

2.4.1 An Important Note

The previous section presented a method to compute the robust parameter

estimate by modifying an iterative least squares solver. Huber refers to this as the

location-step and is known more generally as iterative reweighted least squares [47].

The excellent book on camera geometry and estimation by Hartley and Zisserman

includes an appendix on robust estimation [3]. However, the weighting function given

there is different. In particular, they give

w(r) =

√
ρ(r)
r2

This seems to be motivated by the heuristic that scaling the least squares cost r2

by this weight gives the desired cost ρ(r). This has been used for example in [48].
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Mathematically, it appears that these two algorithms are not the same. A simple

example demonstrates that this is the case.

Consider the simple regression problem

(â, b̂) = argmin(a,b) ∑
i

ρ(yi− (axi +b)) (2.206)

Data was simulated for this problem with 150 measurements and with a = 1, b = 1.

The data xi are known exactly and the measurements yi have additive standard (unit

variance) normal errors. Three different solutions were considered. The first is an

iterative reweighted least squares using the weighting in Hartley and Zisserman [3].

The second is an iterative reweighted least squares using the weighting in Huber

(which is similar to others and shown to give the correct necessary conditions in

the previous section) [29]. The third method is a Sequential Quadratic Program

(SQP) algorithm implemented in SciPy which will converge on the correction solution

because the problem is convex.

The results are shown in Figure (2.13). The background color was generated

by sweeping through the parameter space and is used to verify that the SQP solu-

tion is correct. The IRLS-2 algorithm using the weighting scheme presented in the

previous section converged to the correct solution while the IRLS-1 algorithm using

the weighting scheme in Hartley and Zisserman does not converge correctly.
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Figure 2.13: Convergence of iterative reweighted least squares algorithm for two
different weighting schemes. The IRLS-1 does not converge to the optimal solution
while the IRLS-2 does.

2.5 Covariance of M-Estimates

Many applications require some type of uncertainty bound associated with an

estimate. In many aerospace applications, it is common to assume that the estimate

is approximately Gaussian with a given covariance. This section will briefly discuss

methods to compute the expected covariance of an M-estimate.

One simple approach is to make a small modification to the classical least

squares covariance. Consider the linear system

yyy = Hθθθ +ννν (2.207)

ννν ∼N (000,R) (2.208)
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The estimate given by

θ̂θθ =
(
HTWH

)−1
HTWyyy (2.209)

with an arbitrary weight matrix W is unbiased with covariance(
HTWH

)−1
HTWRWH

(
HTWH

)−1 (2.210)

The classical solution is to choose W = R−1 to obtain the minimum variance,(
HT R−1H

)−1 solution. As described in the previous section, M-estimation techniques

above can be interpreted as a weighted least squares method where a diagonal W

matrix is determined by the data. The weights computed during the M-estimation

computation can be substituted into the diagonal elements of the covariance expres-

sion above. Furthermore, if R = σ2I then the covariance expression reduces to

σ
2 (HTWH

)−1
HTW 2H

(
HTWH

)−1 (2.211)

An alternative method that can more accurately capture the underlying (and

possibly non-Gaussian) error distribution is to utilize the expressions derived above

such as Equation (2.167). Clearly the expectations cannot be evaluated if the under-

lying distribution is unknown. To resolve this issue, the so-called sandwich estimator

can be used which simply replaces all expectation operations with sums over the

residual data [49]. While this method can give asymptotically correct covariances, it

does not account for bias and can therefore underestimate the total estimation errors

[50].

Huber gives several covariance expressions that utilize the sandwich estimator
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philosophy [29, 36]. These are of the form

K
N

N− p
1/N ∑ψ(yi−hi(θ̂θθ))

2(
1/N ∑ψ(yi−hi(θ̂θθ))2

)2 (H
T H)−1 (2.212)

where p is the number of parameters in θθθ . The term N/(N− p) accounts for the

fact the residuals under-represent the errors. Note that this term tends to unity for

N >> p. The factor K can be used to obtain asymptotically correct results at the

model when

K = 1+
p
N

VAR [ψ]

E{ψ ′}2 (2.213)

where the expectation is evaluated at the nominal model.

2.5.1 Bootstrapping

Another technique for computing confidence bounds is bootstrapping [40]. This

is a simple yet powerful concept and is an extension of the classical jackknife tech-

nique of Quenouille [51, 40].

Let θ̂θθ be an estimate from N measurements and let θ̂θθ (−i) be an estimate with the

i-th measurement removed (i.e. using N−1 measurements). Let eeei be the weighted

discrepancy Nθ̂θθ +(N−1)θ̂θθ (−i). Then the jackknife covariance can be computed as

P̂ =
1

N−1

N

∑
i=1

(
eeei−1/N

N

∑
j=1

eee j

)(
eeei−1/N

N

∑
j=1

eee j

)T

(2.214)

The bootstrap technique is similar in that a covariance or confidence interval is

constructed by comparing various estimates computed from different subsets of the

data. Instead of systematically leaving one measurement out at a time, the boot-

strap method randomly samples a subset of n measurements to compute a particular
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estimate. This is repeated m times resulting in m different estimates θ̂θθ (i,n). The

bootstrap covariance is then

P̂ =
1
m

m

∑
i=1

(
θ̂θθ (i,n)−1/N

N

∑
j=1

θ̂θθ ( j,n)

)(
θ̂θθ (i,n)−1/N

N

∑
j=1

θ̂θθ ( j,n)

)T

(2.215)

Although both these methods require repeatedly obtaining M-estimates, they

do give a good idea of the variability in the estimates subject to perturbations in the

dataset. The computational burden for nonlinear measurements is alleviated by the

fact that a given estimate can be used as a good starting guess for each M-estimate

computation. Unfortunately, like other variance estimation methods, the bootstrap

cannot account for systemic bias or correlated error across all measurements.

2.6 Selecting a Nominal Model

This section briefly discusses model selection for estimation problems. The

model is the relationship between the measurements and the parameters of interest.

This task is critical yet often overlooked. Model selection can be informed by various

sources such as physical principles and experimental results. Considerations as to

the number of available measurements, model complexity, and computational cost

must be taken into account in choosing a model. A few common issues that are

applicable to vision-aided navigation are discussed in this section.

The data available for estimation is typically partitioned into a set of individual

measurements that are independent of each other when conditioned on all unknown

model parameters. The model for each individual measurement of the set is typically
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partitioned into an idealized part that deterministically relates parameters to noise

free measurements and an additive probabilistic part that is independent of the

parameters in the deterministic part. Nuisance parameters may appear in both the

deterministic and probabilistic part of the model. These assumptions are convenient

for practical M-estimation methods. However, issues can arise.

One common issue with the above assumptions is a lack of independence be-

tween the probabilistic portion of the model across measurements. Measurements

that represent a time series can have positive serial correlations that are difficult to

deal with. Solutions to this problem in the literature are very limited and require

lots of insight into the application of interest. Typical approaches include using a

weight matrix that captures the correlation (like in classical least squares), adding

parameters for a bias that evolves in time, and statistical tests for the amount of

correlation such as the Durbin-Watson test [52, 53, 54].

Another issue is the assumption of independence between the deterministic and

probabilistic portion of the model. Systemic errors in the deterministic portion of the

model may invalidate this assumption. Experimental testing can determine whether

or not this is the case. If the assumption is invalid, attempts can be made to capture

it with added nuisance parameters. This dissertation will investigate this problem

in the context of vision-aided navigation.

Lastly, the issue of selecting the probabilistic model must be addressed. A

core theme of this section is that the MLE is excellent if it is designed around
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the true probabilistic model but can fail if the design model differs slightly from

the truth. Robust estimation methods can be designed for minimax optimality in a

neighborhood near a nominal model. An open question is how to choose this nominal

model.

A clean theoretical approach is as follows. Generate a large amount of experi-

mental measurements with perfect ground truth for the deterministic model parame-

ters. For the measurement model yi = hi(θθθ)+νi, this would involve ground truth for

θθθ . This allows for samples of the noise νi to be obtained. As the number of samples

goes to infinity, the distribution of νi can be exactly determined by the Glivenko-

Cantelli theorem [40]. Then the MLE can be designed around the distribution.

In practice, this is not possible for several reasons. First, only a finite number

of samples can be taken. If a nonparametric technique like a kernel density estimate

is used to fit a distribution to the samples, there will inevitably appear to be zero

probability in the regions of the sample space where no samples occurred even if

there is a small chance of such a sample occurring [55, 56, 40]. The resulting MLE

would incorrectly prohibit a residual from occupying this region which can seriously

degrade the estimate. Second, experimental tests are unlikely to replicate the true

operating conditions. This may lead to an imperfect density estimate. Third, such an

approach cannot take into account all possible self-correlations in the data (across

all different time scales). For these reasons and more, it appears that the better

approach is to find a model that is good enough and then design the estimator to
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be insensitive to modeling errors. One way to determine a neighborhood about a

nominal model given experimental data is the Kolmogrov-Smirnov test.

2.6.1 Kolmogrov-Smirnov Test

The one-sided Kolmogrov-Smirnov test computes a p-value for the null hypoth-

esis that a given empirical distribution was obtained from a particular distribution

[57]. Given N samples νi and a nominal model F , the test statistic is

τ = maxν |F(ν)−∑
i

1ν>νi(ν)| (2.216)

Given N and τ , the p-value for the null hypothesis can be found in [57]. Note that

the ε-Kolomogrov neighborhood about F is the set of distributions G such that

ε > maxν |F(ν)−G(ν)| (2.217)

Therefore the p-value can be used to rigorously determine the size of the Kolmogrov

neighborhood about the model F at a given confidence level.
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3 PROBABILISTIC SENSOR MODELS

Estimation methods require probabalistic models that relate the unknown pa-

rameters to the inputs. This section discusses probabalistic models for sensors com-

monly used in navigation.

3.1 Feature Detection and Tracking

Feature tracking is an essential task in vision-aided navigation systems. Visual

and geometric feature tracking enables certain estimation tasks by abstracting the

raw measurements from visual cameras and range sensors into a more convenient

form. Feature tracking has three primary subtasks. First, images of a scene must be

processed to measure the pixel locations of imaged physical points through a process

called feature detection. These physical points will be referred to as landmarks.

Second, a feature descriptor must be computed and associated with each landmark.

The purpose of the feature descriptor is to create a unique signature for each land-

mark. Third, feature matching is used to solve the correspondence problem between

one set of feature descriptors (from an image or map) and a second set of feature

descriptors (from an image). The solution to the correspondence problem is enabled

by a similarity measure or matching score that can be computed between any two

visual descriptors. The space of feature descriptors along with their matching score

represents a metric space. In addition to the matching score, feature tracking can be
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aided by a priori knowledge of sensor motion and scene structure.

At a high level, the process of tracking features works as follows. On the first

image in a sequence, a feature detection algorithm is performed to identify the image-

space locations of new features. The feature detector gives a detection score to each

pixel. Pixels that are local extrema of this score and exceed a predefined threshold are

labeled as features. Then a feature description algorithm is used to obtain descriptors

for all the detected features. The descriptor is typically computed using all pixels

in a neighborhood about the detected feature location. Subsequent images can

be handled in one of two ways. The first way involves reperforming the detection

and description steps and then using the descriptors to find the correspondence

between the first image and current image. The second way, which is only valid for

small motion between images, involves a search about the expected location of each

feature. For each feature, the search is carried out by comparing the descriptor in the

original image to all pixels within a pre-defined search window in the current image.

In both approaches, candidate matches whose score exceeds a threshold are labeled

as matches. The system designer can chose when to identify new landmarks. In the

first approach above, any detected feature that has no valid correspondence can be

labeled as a new landmark. The more common approach is to only instantiate new

landmarks when the number of actively tracked landmarks drops below a predefined

threshold.

A basic understanding of the underlying visual detection, description, and
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matching algorithms is needed for the presentation of methods in later sections that

address the following questions:

• How is a feature detection score related to localization error?

• Can a feature descriptor be used to predict the quality of a feature?

• Can changes in a feature descriptor be used to monitor changes in feature

quality?

• Can the matching score be used to monitor feature quality?

The above questions have received some qualitative attention in the literature. One

should certainly be suspicious of features with low matching and detection scores.

However, these effects have not been rigorously quantified. Furthermore, knowledge

of these effects has not been incorporated into vision-aided navigation systems beyond

the basic dichotomizing of good and bad features based on a threshold score.

This section will discuss why feature tracking is necessary and how it works. An

overview of specific detection, description, and matching algorithms is given. This

discussion will motivate novel methods developed in later sections. The primary

conclusions of this section are:

• Feature tracking produces a measurement abstraction that drastically reduces

the dimensionality of the navigation problem.

• A visual and/or geometric feature is assumed to correspond to a fixed location

in a static scene.

• Feature detection is the process of identifying the image space location of phys-
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ical landmarks in the scene without a priori knowledge.

• Feature tracking is the process of computing the image space trajectory of a

landmark across images separated by short time scales.

• Feature description is the process of associating a landmark with a compact

representation of visual appearance.

• Feature matching is the process of computing correspondences between visual

descriptors across multiple frames.

• Feature description and matching can perform the same task as feature track-

ing.

• The internal state of both feature trackers and descriptor-matcher pairs give

important information about the quality of the output feature trajectory mea-

surement.

3.1.1 Why Use Features?

The problem of parameter estimation using measurements requires a model of

how the unknown parameters relate to the observed measurement. A depth image

from a LIDAR (light detection and ranging) or TOF (time of flight) sensor depends

on the sensor parameters, the pose of the sensor relative to the scene, and the full

geometry of the scene. The scene geometry cannot be parametrized by a finite

number of parameters in general. A visual image is significantly more complex. In

addition to the scene geometry and pose, the image depends on the properties of

the surface and the properties of all lighting sources. Attempting to estimate even
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a discretized version of this parameter space is enormously expensive. Features are

used to overcome these problems: they abstract the raw sensor measurements into a

pixel location of a physical landmark.

The assumption of a set of M landmarks in a scene that can be located in

images reduces the scene parameters from some infinite dimensional space into a

finite dimensional vector. In most approaches to the SLAM problem, this vector

contains the Euclidean coordinates of each landmark leading to a vector of dimension

3M. Although other parameterizations exist, inverse-depth and parallax angle for

example, the assumption of a fixed landmark position is ubiquitous. Later sections

will discuss that assumption in much more detail.

For the purposes of estimation, the feature tracker can be viewed as a black-

box whose outputs are the inputs to the estimator. The desired qualities of a good

feature tracker are

• Detects a large number of landmarks (more measurements give better esti-

mates)

• Feature tracks for a landmark have small errors that are independent between

frames (lower measurement error gives better estimates)

• Feature tracks are persistent over many images (stronger observability gives

better estimates)

In later sections of this dissertation, the internal representation of a feature is used to

predict how well-suited a particular landmark is to the estimation process. The main
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idea is that if landmark quality can be ascertained by the visual description alone,

then intelligent decisions can be made as to which landmarks are incorporated into

the estimator and which are discarded. Furthermore, the landmark quality informa-

tion can be used to select estimator parameters (e.g. weights). The following sections

contain a discussion of feature tracking methods. This background information is

essential to the presentation of methods in later sections.

3.1.2 State of the Practice

As the literature on feature tracking algorithms is enormous, it is wise to focus

attention on those that have been successfully applied to navigation problems. Sur-

prisingly, despite the very large number of algorithms, a fairly small number have

been used for navigation. The multi-scale Shi-Tomasi detector has been used in

many successful SLAM systems [58, 59, 4]. Klein and Murray first used a multi-scale

FAST detector to efficiently get feature candidates. They then discard candidates

whose Harris score (very similar to the Shi-Tomasi score) falls below a predefined

threshold. Leutenegger also took this approach [60]. Another, much newer, detector

called CenSurE has been used in a number of SLAM system to detect new features

[61, 62, 63].

For feature description, there has been an overwhelming trend to use the key-

point image patch itself as the descriptor. All of the above mentioned SLAM systems

do this. However, the methods of matching the descriptor (i.e. image patch) to the

current image differentiates the above algorithms. The image patch matching meth-
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ods can be divided into two categories. The first category warps the representative

patch into the current frame using the landmark position (associated with the patch)

and a prior estimate of pose. The second category does not use any pose informa-

tion to initialize the feature matching. While the first category has the potential

for higher matching success, the second category will be more robust to temporary

increases in pose error.

3.1.3 A Unified Approach

For pose estimation applications, feature tracking algorithms should be able

to return metrics that can be related to tracking error. A large class of tracking

algorithms are designed around the idea that pixel patches undergo a deformation

between images. Therefore tracking error can be partitioned into two sources. The

first source is a modeling error: the discrepancy between the true deformation and

the assumed deformation. The second source is errors in the estimated deformation

parameters due to per-pixel noise. The following analysis generalizes this class of

tracking algorithms. Algorithms that fall outside of this class are often built around

heuristics and are less ammenable to rigorous error analysis. Therefore they are not

discussed here.

Consider an image patch at time t1, I(xxx, t1) ∀xxx ∈W . Assume that under ideal

circumstances, this image patch undergoes a deformation such that

I(f(xxx, θ), t2) = I(xxx, t1)+ν(xxx) (3.1)

where ν(xxx) represents noise in the two images which is not correlated in time or
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space. In this equation, θ parameterizes the deformation function f. Given some

distribution for the noise, a cost function ρ(·) can be selected such that optimizing

ε = ∑
xxx∈W

[ρ (I(f(xxx, θ), t2)− I(xxx, t1))] (3.2)

over the unknown parameters gives a Maximum Likelihood Estimate (MLE) of θ .

The resulting stationarity condition is

000 = ∑
xxx∈W

[S (I(f(xxx, θ), t2)− I(xxx, t1))B(xxx)ggg2(xxx)] (3.3)

where S(·) = dρ(·)
d(·) is the score function, B = ∂ f(xxx,θ)

∂θ
, and ggg2(xxx) is the gradient of the

second image patch.

Such a framework enables the joint design of the feature detection, description,

and matching process. The detector can locate patches, W , such that the solution for

the unknown parameters will be well-conditioned. The descriptor can be the image

patch W itself. The matcher can give a metric on how well the resulting residual ε is

consistent with the assumed noise distribution conditioned on the correct deformation

model.

The most common feature detection and tracking algorithms can be derived by

selecting a quadratic cost ρ(·) = (·)2 which is optimal for Gaussian noise. The two

most commonly used deformation models are the affine model, f(xxx) = Dxxx+ ddd, and

the translation model f(xxx) = xxx+ddd. First consider the translation model which leads

to a score function

000 = ∑
xxx∈W

[(I(f(xxx, θ), t2)− I(xxx, t1))ggg2(xxx)] (3.4)
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Furthermore, let the deformed second image be approximated by a first-order ex-

pansion about an undeformed version: I(f(xxx, θ), t2)≈ I(xxx, t2)+ggg2(xxx)ddd. Substituting

this into the the score function and solving for ddd yields

ddd = A−1eee (3.5)

where

eee = ∑
W

[w(xxx)(I(xxx, t2)− I(xxx, t1))ggg2(xxx)] (3.6)

A = ∑
W

[
w(xxx)ggg2(xxx)ggg

T
2 (xxx)

]
(3.7)

where w(xxx) is an optional weighting function that can be set to unity over the window

to obtain the true MLE. In practice, many methods use a kernel function such as a

Gaussian to emphasize the center of the window. These equations can be used to

justify a large number of feature detection and tracking algorithms.

3.1.4 Feature Detection

Feature detection is the first step in feature tracking. The input to this step is

a visual image or range image or both and the output is a set of pixel locations of

landmarks. The nearly universal approach in feature detection is to apply an interest

operator to all pixel locations in the image and identify local extrema. The interest

operator is a functional of the raw image, f : I(xxx) 7→ f(x), which gives some measure

of how well a feature can be localized. A feature is well localized if an estimate of

location is insensitive to small perturbations (i.e. the addition of per-pixel noise). For

example, an edge can only be localized well in the direction orthogonal to the edge

100



gradient: the location estimate along the edge is highly uncertain (an issue known

as the aperture problem. On the other hand, a right-angle-corner is well localized in

both directions.

These intuitive generalizations motivate all corner detection algorithms in the

literature. The basic idea is that small translational perturbations to an image

patch should give a very low similarity measure to the original patch. Early work

by Beaudet identified the need for strong image gradients in all directions. Later

work by authors like Harris, Stephens, Shi, Tomasi, and Kanade all followed this

direction. Their algorithms can be unified in light of Equation (3.5). The ma-

trix A should be positive definite with eigenvalues far from zero in order for the

displacement to be well-defined. The Tomasi-Kanade detector look for maxima in

min(λ1, λ2) where λi is the i’th eigenvalue of A [64]. The Harris corner detector

computes det(A)2− κtrace(A) = λ1λ2− κ(λ1 + λ2)
2 which is computationally more

efficient that the Tomasi-Kanade detector [65].

Other approaches also attempt to find regions of the image with strong gra-

dients and curvature. The FAST corner detector does this in a very coarse, yet

highly-efficient manner by testing each pixel for a large enough contiguous set of pix-

els on a Bresenham circle that are sufficiently different in intensity than the center

pixel [66].

Many other feature detectors exist in the literature. Surveys by Tuytelaars

and Guo studies many in detail [67, 68]. Further discussion of particular algorithms
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is beyond the scope of this work because many algorithms are just variants on the

above concepts. The primary conclusion is that all detectors find local extrema of

some metric over the image. Features are extrema that exceed some user-defined

threshold. It is expected that the stronger the detection score the better the feature

will be.

The one other issue that should be mentioned is the issue of scale. The above

methods require the specification of a window size. Consider a certain landmark

in the scene that appears as a sharp corner over a small pixel window, say 5× 5,

when viewed at a distance. When viewing this same landmark from a much closer

viewpoint, a 5× 5 pixel window may not be large enough to capture the corner

structure. The landmark has appeared to change scale in this case. Certain feature

detectors are specifically designed to be approximately scale invariant (usually under

some assumptions of pixel deformation). Other feature detectors can be made scale

invariant by constructing so-called image pyramids. An image pyramids is an ordered

set of images such that each successive image is obtained from the previous image

by blurring and subsampling it, starting from the original observed image. This has

the effect of emulating views of the same region of the scene from various distance.

Feature detectors can be applied to each level of the pyramid to detect features at

the various scales. This will be relevant to methods discussed in later sections. Next,

algorithms to track detected features are discussed.
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3.1.5 Feature Tracking

Feature tracking is the process of computing a feature location trajectory across

a set of images given the position in the first image. As mentioned above, there

are two approaches to this: computing descriptors and matching across images or

searching for feature matches in small prediction windows. The latter approach is

more suited to vision-aided navigation tasks and will be discussed in detail here. The

most common descriptor with this approach is the image patch itself.

Given a window in an image, centered at some location, the feature tracker

must find a window in the subsequent image similar in appearance to the window

in the original image. The displacements of this visual patch between images gives

the featue trajectory. Visual tracking methods differ in their similarity metric, the

allowable deformation between frames, and the method of solution for the assumed

deformation. There are also variations in preprocessing steps like image processing

filters and in how the methods chose the size of the window patch.

Early methods assume translational changes only between images and perform

displacement estimation using frequency-domain techniques [69]. They take advan-

tage of the convolution theorem which states that the convolution of two functions

is equal to the inverse Fourier transform of their Fourier domain product. Therefore,

by applying a Fourier transform to two images patches, taking the product, then

taking the inverse Fourier transform, the resulting peak gives the displacement. The

magnitude and sharpness of the peak is used to determine the quality of the resulting
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correspondence. This has been recently applied to terrain relative navigation (TRN)

for extra-terrestrial landing applications [70]. This has also been applied to solving

the dense correspondence problem for stereo cameras [71].

A second set of methods operate in the spatial-domain. Within this set, some

methods simply compute a cost for all displacements between the original and new

image patch. Costs such as the sum of absolute differences (SAD) and the nomralizes

cross-correlation have been proposed [72, 73]. Another set of methods that work in

the spatial domain perform iterative least squares to find the optimal displacement.

In fact, the well known Lucas-Kanade tracker uses the solution to Equation (3.2)

in Equation (3.5) to find the displacement of an image patch from one image to

the next [74]. Other methods have more complicated allowable transformations. For

example, the method by Fuh involves the following cost function [75].

ε(M, ddd, r, c) = ∑
W

[
((rJ(Mxxx+ddd)+ c− I(xxx))2

]
(3.8)

where r and c represent a scaling and offset in pixel intensities respectively. The

introduction of the general matrix M, along with the displacement d, allows for

general affine deformations. Fuh presents a method to eliminate r and c from the

stationarity conditions and in terms of M and ddd. The remaining six-dimensional

parameter space is then searched for an optimum.

One important problem is that that image patch can be appear to change in

size between frames due to motion towards or away from an object. In this case, if

using a window of fixed dimension in pixel space in two frames, the windows will
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not cover the same portion of the scene. Manmatha gives an important early use

of scale space techniques to deal with this issue [76]. The main idea is motivated

by the fact that the convolution of an image with a Gaussian kernel followed by

subsampling emulates gives an image patch that looks like it has been viewed from

a greater distance. Iteratively performing the convolution and subsampling creates

a pyramid of images that emulate views from many distances. Feature tracking can

be performed at each level of the pyramid.

3.2 Camera Models

The key output of the feature tracker is the pixel location of a point landmark.

A camera model is needed to relate this pixel location with the landmark location

and camera pose. Let rrr f/n be a vector from the origin of a scene-fixed reference

frame, n+, to a landmark. Let rrrc/n be a vector from the origin of the same reference

frame to a camera-fixed reference frame, c+. Finally let Rc/n be the rotation matrix

that transforms coordinates from the n+ frame to the c+ frame. The camera frame

merits further discussion.

A common practice in the literature is define the camera frame such that the

origin is at the optical center, the x-axis is along the pixel rows, the y-axis is along

the pixel columns, and the z-axis completes the coordinate system (i.e. outward

along the optical axis). While this may be suitable for simulation and analysis, it is

poorly defined for practical applications. In particular, the user typically only has
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knowledge of a reference frame fixed to the external camera housing. This reference

frame is used to identify all mounting holes. However, even if the camera had an

ideal unique optical sensor and orthogonal coordinate system tied to perfect pixel

rows and columns, the user cannot immediately relate that to the frame attached to

the external housing. This fact is further complicated by the fact that any real lens

introduces distortion that invalidates the ideal pinhole model. The solution to both

of these problems is camera calibration.

Camera calibration is the process of determining a function that maps from

three dimensional points in the camera’s housing frame (or any well-established frame

rigidly attached to the camera, say b+) to two dimensional pixel locations. Let rrr f/b

be the position of a landmark relative to b+. The camera projection function h() is

parameterized by θθθ and determines the pixel location uuu:

uuu = h(
[
rrr f/b

]
b , θθθ) (3.9)

The main idea in calibration is to image a known calibration target:
[
rrr f/n

]
n for many

landmarks. Then an algorithm must be used to jointly estimate θθθ and the unknown

b+-to-n+ pose at each image (so that
[
rrr f/b

]
b can be computed from

[
rrr f/n

]
n). If

an additional laboratory metrology system can determine the camera housing frame

to the calibration target frame at the time of each image, then the unknown body

frame, b+, to camera image frame, c+, can be estimated as well. More explicitly, the

function is

uuu = h
(

Rc/b

(
Rb/n

([
rrr f/n

]
n−
[
rrrb/n

]
n

)
+
[
rrrc/b
]

b

)
, θθθ

)
(3.10)

106



The parameters for θθθ , Rc/b, and
[
rrrc/b
]

b are treated as the constant intrinsic param-

eters and the parameters for Rb/n and
[
rrrb/n

]
n (i.e. pose) are treated as time varying

extrinsic parameters.

There are various models for the function h(). Nearly all models rely on a com-

bination of the ideal pinhole model plus a generic function approximation technique

to account for discrepancies from the pinhole model. The particular choice depends

on the given application. The main drivers of the decision are:

1. How much calibration data and of what quality? A proper balance between

bias and variance will favor less complex models (fewer parameters) when less

calibration data is available. Furthermore, the data must be of high quality: a

large volume of data cannot overcome systemic errors in the data. For example,

calibration targets with surveyed corners must have the target-frame locations

of the corners measured to high accuracy.

2. Desired accuracy? If very high accuracy is needed (say < 0.1 pixels) then this

will necessitate a more complex model which will need more calibration data.

3. Computational complexity? For applications with time constraints (i.e. real-

time navigation), the computational cost of performing the forward and inverse

mapping (i.e. unit-vector in Euclidean coordinates to pixel space and vice-

versa) must be considered.

An excellent and commonly used approach is given in [77]. Their main idea is

to assume the existence of an ideal camera frame. First define the projection function
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which maps from 3D Euclidean coordinates to normalized image space

uuu≡ π([x y z]T ) (3.11)

= [u v]T (3.12)

=

x/z

y/z

 (3.13)

The distortion free pinhole projection equations are an affine transformation of the

projection

uuuo = ho([x y z]T ) (3.14)

= [uo vo]
T (3.15)

=

 fuu+uc

fvv+ vc

 (3.16)

[
uuuT 1

]T
= K

[
π([x y z]T ); 1

]T (3.17)

K =


fu 0 cu

0 fv cv

0 0 1

 (3.18)

where fu, fv, cu, and cv are parameters (i.e. focal length and pixel center). The

authors then assume the addition of radial distortion, decentering distortion, and thin

prism distortion which causes perturbations of δδδ r, δδδ d, and δδδ p respectively. These

terms are motivated by physical considerations of real lenses and can be expressed

108



as

δδδ r = [δru, δrv]
T

=

k1u(u2 + v2)

k2v(u2 + v2)

 (3.19)

δδδ d = [δdu, δdv]
T

=

p1(3u2 + v2)+2p2uv

p2(3v2 +u2)+2p1uv

 (3.20)

δδδ p = [δpu, δpv]
T

=

s1(u2 + v2)

s2(u2 + v2)

 (3.21)

The total distortion δδδ = δδδ r +δδδ d +δδδ p can be expressed as

δu = (a1 +a3)u2 +a4uv+a1v2 +a5u(u2 + v2) (3.22)

δv = (a2 +a4)v2 +a3uv+a2v2 +a5v(u2 + v2) (3.23)

Therefore there are 9 unique parameters θθθ = [ fu, fv,cu,cv,a1,a2,a3,a4,a5]. The final

pixel location (i.e. row and column in the image) is then

uuu′ = h(π([x y z]T )) (3.24)

=

 fu(u+δu(u,v))+uc

fv(v+δv(u,v))+ vc

 (3.25)

This nested model will simplify the design of estimators which require Jacobians of

measurements with respect to parameters.

Given a measured uuu′, the pinhole equations can be used to obtain an approxi-
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mation to the normalized pixel value uuu

u≈ û≡ (u′− cu)/ fu (3.26)

v≈ v̂≡ (v′− cv)/ fv (3.27)

This û and v̂ can be substituted into the distortion equations to get an approximation

to the distortion δ̂δδ ≡ δδδ (û, v̂. This approximation is sufficient for most applications

because the distortion is typically on the order of 1% of the image size and varies

slowly across the image. If more accuracy is needed, this estimate can be used as

a starting guess in a nonlinear solver to more accurately determine the normalized

pixel location. Other forms of θθθ are possible.

The key conclusion of this section is that cameras must be calibrated in order

to relate pixel measurements to a Euclidean reference frame. This calibration uses

noisy measurement data and therefore leads to imperfect calibrations. Systemic

errors in camera models add additional error to the mapping between image space

and reference frames of interest. These errors should be accounted for in estimators

that use pixel locations as a measurement input type.

It should also be noted that other parameterizations of pose can be used. The

form presented above is convenient for navigation applications and is commonly

used. Other parameterizations can be easily converted into the presented one and

vice versa.
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3.2.1 Error Propagation

It is important to study how error propagates through these equations. In par-

ticular, we want to obtain first-order equations of the form Measurement = Function

of Estimated Parameters + Linear Function of Parameter Errors + Random Noise.

This will be done for all measurements that are inputs to the filter (including prob-

abilistic system dynamics which can be treated as a measurement). The resulting

equations are used directly in the estimation

The equations are easily derived using a first-order Taylor series expansion

about the parameters. This dissertation will follow the general notation of Crassidis

and Junkins in that the true value will be represented by an unadorned symbol, say

x, its estimated value will have a hat, x̂, and the difference between the two will be

deltax = x̂− x [17]. Measured values will be adorned with a tilde.

Before deriving the equations another note from Crassidis and Junkins is use-

ful [17]. A rotation matrix Rb/a has three degrees-of-freedom and can take on many

parameterizations. The discrepancy between the true and estimated rotation ma-

trix can be expressed as Rb/a = δRb/aR̂b/a where δRb/a is a small rotation. The

parameterization of R̂b/a can be different from the parameterization of δRb/a. The

parameterization of the latter should be chosen so that the change in the matrix

elements with respect to the parameters in a neighbourhood about δRb/a = I is as

smooth as possible. A small Euler angle rotation δθθθ b/a or a three element differential

quaternion both meet this criteria and are equivalent up to a scale factor of 2. In
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particular δRb/a ≈ I− [(δθθθ b/a)
×] up to first order where [aaa×] is the standard cross

product matrix formed from a three element vector. The equations below will use

this parameterization but it should be noted that the differential quaternion can be

easily substituted.

The Taylor series expansion of Equation (3.25) using Equation (3.10), and

Equation (3.13) yields

ũuu′ = ûuu′+ Juuu′,δθθθ c/b
δθθθ c/b + Juuu′,δθθθ b/n

δθθθ b/n

+Juuu′,δ rrrc/b
δ rrrc/b + Juuu′,δ rrrb/n

δ rrrb/n

+Juuu′,δ rrr f/n
δ rrr f/n

+Juuu′,δθθθ δθθθ +ννν (3.28)

where ννν is random noise. The notation Ja,b represents the Jacobian of a with re-

spect to b. The nested model derived above will simplify the computation of these

Jacobians. In particular, for x = δθθθ c/b, or x = δθθθ c/b, or x = δθθθ c/b, or x = δθθθ c/b, or

x = δθθθ c/b:

Juuu′,xxx = Jh(π),πJ
π([rrr f/n]n),[rrr f/n]n

J[rrr f/n]n,x
(3.29)

The matrix Jh(π),π depends on the camera distortion model used and will not be

given in this section. The matrix J
π([rrr f/n]n),[rrr f/n]n

is common to all camera models

and is

J
π([rrr f/n]n),[rrr f/n]n

=

1/z 0 −x/z2

0 1/z −y/z2

 (3.30)
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where
[
rrr f/n

]
n = [x y z]T . Using Equation (3.10), the other matrices are

J[rrr f/n]n,δθθθ c/b
=

[(
Rc/b

(
Rb/n

([
rrr f/n

]
n−
[
rrrb/n

]
n

)
+
[
rrrc/b
]

b

))X
]

(3.31)

J[rrr f/n]n,δθθθ b/n
= Rc/b

[(
Rb/n

([
rrr f/n

]
n−
[
rrrb/n

]
n

))X
]

(3.32)

J[rrr f/n]n,δ rrr f/n
= Rc/bRb/n (3.33)

J[rrr f/n]n,δ rrrb/n
=−Rc/bRb/n (3.34)

J[rrr f/n]n,δ rrrc/b
= Rc/b (3.35)

In addition, the Jacobian of the measurement with respect to the calibration param-

eters θθθ is specific to the distortion model and will not be given here.

3.3 Range Cameras

The term range camera is used for any device that can measure the range from

the device to a physical surface at many different bearing angles in a short time span.

The extent of many and short in this definition are admittedly imprecise. Devices

like a laser range finder that only measure range along a single axis certainly do

not meet the definition while a device like Microsoft Kinect sensor which outputs

range on a 480 × 640 grid certainly do. The variety of such devices prevents clear

boundaries to be drawn.

For the purposes of analysis, much of the same equations that apply to visual

cameras in the previous section apply to range cameras with some minor modifica-

tion. In particular, there is a parameter vector θθθ and an unknown body-to-sensor

pose that is used to map from a direction in sensor coordinates to a direction and
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offset in body coordinates, and vice verse. The direction in sensor coordinates can

be scaled by the measured range to obtain a 3D vector in sensor coordinates.

The parameter vector θθθ may also contain parameters for computing the range

from lower level measurements. For example, time-of-flight range cameras will typi-

cally need to calibrate clock biases and signal delays.

The nested structure for the visual camera model can be applied here as well

with the exception that no projection function is needed. Therefore all the Jacobians

derived in the previous section apply if the 2×3 projection Jacobian, J
π([rrr f/n]n),[rrr f/n]n

of Equation (3.30) is simply replaced with the 3×3 identity matrix.

3.3.1 Dense Versus Sparse

Before concluding the discussion on range sensors, it should be noted that there

are several distinct ways to incorporate range data into a navigation filter. These

are

1. Auxiliary to Visual Camera: Visual features are detected and tracked in the

visual camera. The range camera is used only to obtain the range to each

feature.

2. Feature Tracking Independent of Visual Tracking: Point cloud features anal-

ogous to visual features are detected and tracked in the range image inde-

pendently of the visual camera. There is an extensive literature on this:

[78, 79, 80, 81]. This adds additional landmark parameters to the problem but

can be a more robust solution from a systems engineering prospective since the
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the failure modes can be separated.

3. Surface Alignment Odometry: This approach aligns the point cloud from a

range image with a previous range image to determine changes in pose over

time. Iterative closest point (ICP) and its variants are at the core of this

approach [82, 83, 84].

4. Absolute Surface Alignment: This approach attempts to build a dense 3D map

of the scene. Range images are aligned to the map surface and used to update

the map estimate. Kinect Fusion and its extension by Conway are examples of

this approach [85, 86, 87, 88].

The best approach varies depending on the application. The dense mapping

approach is excellent for small workspaces and systems with sufficient computational

power. The dense odometry approach is easy to implement and computationally

efficient but cannot be used to accurately propagate pose over extended periods

of time. Tracking features in range images independently is only feasible if the

range image is sufficiently dense For range cameras with a low density of range

measurements, the first approach is suitable. The first approach has the additional

advantage that the scale and observability issues associated with visual-only features

do not arise. This will be the approach used in experiments with range cameras

presented later in the dissertation.
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3.4 IMUs

An inertial measurement unit (IMU) is a device that measures specific accel-

eration and angular velocity which is used to propagate vehicle motion forward in

time. Specific acceleration is simply the acceleration relative to an inertial reference

frame minus gravity. Although these quantities can be estimated from a model of

the forces and torques on a body, an IMU can typically measure the quantities more

accurately and reliably. Therefore the added cost (financial, mass, volume, power) of

an IMU is justified by the increased flexibility and reduced computational complexity

of force and torque modeling.

The IMU measurements are

ãaai = Ri (aaai−ggg)+ααα i + sssi (3.36)

ω̃ωω i = ωωω i +βββ i +ννν i (3.37)

where sssi and ννν i are white-noise processes with covariance σ2
s I and σ2

ν I respectively.

The biases ααα i and βββ i are random walk processes driven by white-noise with covariance

σ2
z I and σ2

wI respectively:

ααα i = ααα i−1 + zzzi (3.38)

βββ i = βββ i−1 +wwwi (3.39)

The discrete-form of the zero-jerk kinematic model for position and velocity is

rrri = rrri−1 +δ tvvvi−1 +
1
2

δ t2 (RT
i (ãaai−ααα i− sssi)+ggg

)
(3.40)

vvvi = vvvi−1 +δ t
(
RT

i (ãaai−ααα i− sssi)+ggg
)

(3.41)
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where the subscripts represent time index. The vector rrr =
[
rrrm/n

]
n is inertial posi-

tion and vvv =
[
rrrm/n

]
n is inertial velocity (time derivative of inertial position). The

rotational dynamics are more difficult to deal with as the rotational parameter propa-

gation is inherently nonlinear. For the purposes of propagating the estimated quater-

nion using the gyro data, the discrete-form of the quaternion update equations can

be used (see [17]).

qqqi+1 = Ω(ω̃ωω i−βββ i−ννν i)qqqi (3.42)

Note that the translational model is second-order (acceleration-level coordi-

nates are measured) while the rotational model is first-order (velocity-level coordi-

nates are measured). In practice this is often sufficient because commonly used IMUs

output data at a high rate ≥ 200 Hz which is much larger than the rate of visual

information which is typically between 10 Hz and 60 Hz.

IMU Parameters

Before moving on to the error model, one more issue with the IMU model

should be clarified. Accelerometer and gyroscope manufacturers typicaly specify the

so called bias stability and noise density of sensors. Sometimes the noise density

may be replaced by the angle random walk for gyroscopes. These quantities are not

equivalent to the white-noise and random walk variances in the above model. In this

section, the parameters of the above model are related to the quantities specified by

the manufacturer. Only gyroscopes are discussed in this section but the results for

accelerometers are directly analagous.
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Consider a single-axis gyroscope at rest. The model is

βi = βi−1 +wi (3.43)

= β0 +
i

∑
j=1

w j (3.44)

ω̃i = βi +νi (3.45)

= β0 +
i

∑
j=1

w j +νi (3.46)

The bias stability is defined as the minimum of the Allan-deviation, AD(N). The

Allan-deviation is computed as follows. First, a large data set of N̄ measurements is

needed with the sensor at rest. For a given bin size N, the Allan-deviation is

µ
(N)
i ≡ 1

N

Ni

∑
j=N(i−1)+1

ω̃ j (3.47)

AVAR(N)≡ 1
2(M−1)

M−1

∑
i=1

[(
µ
(N)
i+1−µ

(N)
i

)2
]

(3.48)

AD(N)≡
√

AVAR(N) (3.49)

where M = floor(N̄/N) is the number of bins. To obtain the expected value for

AVAR(N) in terms of the IMU parameters, the model equations are substituted into
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Equation (3.49) and the expectation is taken as follows.

µ
(N)
i =

1
N

Ni

∑
j=N(i−1)+1

[
β0 +

i

∑
k=1

wk +ν j

]

= β0 +
1
N

Ni

∑
j=N(i−1)+1

[
c1,N, jw j +ν j

]
µ
(N)
i+1 = β0 +

1
N

Ni

∑
j=N(i−1)+1

w j +
1
N

N(i+1)

∑
j=Ni

[
c1,N, jw j +ν j

]
µ
(N)
i+1−µ

(N)
i =

1
N

N(i+1)

∑
j=Ni

(
ν j−ν j−N

)
+

1
N

N(i+1)

∑
j=Ni

(
w j− (c1,N, j−N)w j−N

)
E{AVAR(N)}= 1

2(M−1)

N−1

∑
i=1

E
{(

µ
(N)
i+1−µ

(N)
i

)2
}

=
1

2N2

[
σ

2
w

N

∑
i=1

(
c2

1,N,i +(N− c1,N,i)
2)+2Nσ

2
ν

]
=

1
N

σ
2
ν +

(
2N
3

+
1

3N

)
σ

2
w (3.50)

The location for the minimum can be found by taking the derivative of Equa-

tion (3.50) with respect to N, setting the expression to zero, and solving for N.

Nmin =

√
3σ2

ν

2σ2
w
+

1
2

(3.51)

Substituting Equation (3.51) into Equation (3.50) gives the value of the bias

stability in terms of the model parameters (an ugly but easy to compute expression).

In practice, σ2
ν >> σ2

w. Therefore a reasonable approximation is

AVAR(N)≈ 1
N

σ
2
ν +

2N
3

σ
2
w (3.52)

In this case, the minimum Allan variance is located at Nmin =
3σ2

ν

2σ2
w
. At this location,

the Allan variance is

minAVAR≈ 5
2

σ
2
w (3.53)
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One last point should be made about the about derivations. It was assumed that

the Allan variance was obtained from IMU samples at the same sampling interval

as the IMU model discretization time interval. If this is not true, then the following

correction can be applied where ∆tmodel and ∆tAV are the sampling times for the model

and Allan variance data respectively.

σ
2
w =

2∆tmodel

5∆tAV
(minAVAR) (3.54)

The angle random walk (ARW) is a common parameter found on gyroscope

datasheets (in place of σ2
ν ) and can be defined as follows. If the bias-compensated

gyro signal is integrated over a short time interval, then ARW is the square root of

the expected angle error variance. Let ∆θ be the angle error accumulated over a

period T . The interval should be short enough so that the bias is nearly constant

over the interval. In this case, the error over an interval of length T with sampling

time ∆t nd N measurements (so that T = Nδ t) will be

∆θ ≈
N

∑
i

νiδ t (3.55)

ARW≡

√
E
{

∆θ
2}

T
(3.56)

=

√√√√∆t2E
{

∑
N
i=1 νi ∑

N
j=1 ν j

}
T

(3.57)

=

√
Nσ2

ν ∆t2

T
(3.58)

=

√
T ∆tσ2

ν

T
(3.59)

= σν

√
∆t (3.60)
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Figure 3.1: Allan Variance for the VN100 gyros

Therefore the σν used in the estimator and simulation models can be easily obtained

from the ARW and sampling time reported on the datasheet.

Consider an Allan variance plot with log-log scales (base ten) with log(N) on the

x-axis. When N is small such that 1
N σ2

ν >> 2N
3 σ2

w, the y-axis will be approximately

log(σ2
ν )− log(N). Therefore the ARW can be determined by reading off the value at

N = 1 on this plot.

An example for the VectorNav VN100 6-axis IMU is given below. The results

for the gyros are given in Figure (3.1) and for the accelerometers in Figure (3.2).

The results for the parameters are aggregated into Table (3.1) and Table (3.2) .
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Figure 3.2: Allan Variance for the VN100 accelerometers

3.4.1 IMU Propagation Errors

In order to use IMU data in the weighted least-squares MLE solution, it is

necessary to have an equation for the error in propagating the state between the

time of two images. Let x̂xx0 represent the state estimate at the time of one image

and x̂xxN represent the state estimate at the time of a second image after N IMU

readings, each separated in time by δ t. Then eee = f(x̂xx0)− x̂xxN gives the error when

f() is the function that uses IMU data to propagate the system. The expected value

of eee is zero. To derive the MLE solution, two equations are needed. The first is

the covariance of eee conditioned on zero initial-condition errors (i.e. x̂xx0 = xxx0). The

second is the Jacobian of eee with respect to x̂xx0. Note that when using this form of the

error, the Jacobian with respect to x̂xxN is trivially the negative of the identity matrix.
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Axis BS (rad/s) ARW (rad/s3/2) σ2
ν ((rad/s)2) σ2

w (rad2/s3)
x 1.75e-05 0.011 1.23e-10 6.20e-07
y 4.68e-05 0.014 8.76e-10 1.02e-06
z 1.10e-4 0.0263 4.84e-09 3.47e-06

Table 3.1: VN100 gyroscope parameters from test data at 200 Hz.

Axis BS (m/s) ARW (m/s3/2) σ2
ν ((m/s)2) σ2

w (m2/s3)
x 0.000989 0.239 3.91e-07 0.000286
y 0.000829 0.239 2.75e-07 0.000286
z 0.001755 0.354 1.23e-06 0.000629

Table 3.2: VN100 accelerometer parameters from test data at 200 Hz.

The derivation of these two equations are given below. The derivation proceeds by

subtracting the estimated model (i.e. noise-free with estimated initial quantities)

from the true model. This is very straight-forward for the biases:

δααα i ≡ α̂αα i−ααα i = δααα i−1− zzzi (3.61)

δβββ i ≡ β̂ββ i−βββ i = δβββ i−1−wwwi (3.62)

For the purposes of error analysis, the three-element differential Euler angles θθθ is

used to represent the rotation between times i−1 and i.

Ri =
(
I−
[
(θθθ i)

×])Ri−1 (3.63)

The true value of these angles are related to the angular rate measurement through

θθθ i = δ t(ω̃ωω i−βββ i−ννν i) (3.64)
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Of course, the angular rate used to propagate the estimates does not know the true

bias or noise:

θ̂θθ i = δ t(ω̃ωω i− β̂ββ i) (3.65)

which also assumes that the angular rate is constant. The rotational error is therefore

R̂i ≡
(
I−
[
(δθθθ i)

×])Ri (3.66)

δθθθ i ≡ θ̂θθ i−θθθ i (3.67)

= δ t (δβββ i +ννν i) (3.68)

δqqqi+1 = δqqqi +
1
2

δθθθ i (3.69)

= δqqqi +
1
2

δ t (δβββ i +ννν i) (3.70)

The last line in the above equation is due to the fact that the three-element differential

δqqq quaternion is related to δθθθ through δqqq = 1
2δθθθ . Also note that the first line is

not used to propagate the rotation matrix: it is only used for error analysis. Before

giving the position and velocity errors, the acceleration error must be analyzed.

δaaai ≡ âaai−aaai (3.71)

= R̂T
i (ãaai− α̂αα i)−RT

i (ãaai−ααα i− sssi) (3.72)

= R̂T
i (ãaai− α̂αα i)− R̂T

i
(
I−
[
(δθθθ i)

×])(ãaai−ααα i− sssi) (3.73)

≈ R̂T
i
(
sssi−δααα i−

[
(ãaai)

×]
δθθθ i
)

(3.74)

= R̂T
i
(
sssi−δααα i−2

[
(ãaai)

×]
δqqqi
)

(3.75)
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The position and velocity errors are then easily expressed in terms of the acceleration

error assuming a zero-jerk model.

δ rrri = δ rrri−1 +δ tδvvvi−1 +
1
2

δ t2
δaaai (3.76)

δvvvi = δvvvi−1 +δ tδaaai (3.77)

Because IMUs normally have a much higher data-rate than visual sensors like cam-

eras, it is necessary to get expressions for the state errors due to many individual

IMU readings, say N of them. This can be done as follows using i = 0 for the initial

time index.

δαααN = δααα0−
N

∑
i=1

zzzi (3.78)

δβββ N = δβββ 0−
N

∑
i=1

wwwi (3.79)

δqqqN = δqqq0 +
1
2

N

∑
i=1

δθθθ i (3.80)

= δqqq0 +
1
2

δ t
N

∑
i=1

[
ννν i +δβββ 0−

i

∑
j=1

www j

]
(3.81)

= δqqq0 +
1
2

Nδ tδβββ 0 +
1
2

δ t
N

∑
i=1

[ννν i− (N− i+1)wwwi] (3.82)

= δqqq0 +
1
2

Nδ tδβββ 0 +
1
2

δ t
N

∑
i=1

[ννν i− c1,N,iwwwi] (3.83)

δvvvN = δvvv0 +δ t
N

∑
i=1

δaaai (3.84)

= δvvv0 +δ t
N

∑
i=1

[
R̂T

i
(
sssi−δααα i−2

[
(ãaai)

×]
δqqqi
)]

(3.85)

= δvvv0

+δ t
N

∑
i=1

[
R̂T

i

(
sssi−δααα0−2

[
(ãaai)

×](
δqqq0 +

1
2

Nδ tδβββ 0

))]
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+δ t
N

∑
i=1

[
R̂T

i c1,N,i
(
zzzi−δ t

[
(ãaai)

×]
ννν i
)]

+δ t2
N

∑
i=1

[
R̂T

i
[
(ãaai)

×]c2,N,iwwwi
]

(3.86)

δ rrrN = δ rrr0 +δ t
N

∑
i=1

δvvvi (3.87)

= δ rrr0 +Nδ tδvvv0

+δ t2
N

∑
i=1

[
R̂T

i c1,N,i

(
sssi−δααα0−2

[
(ãaai)

×](
δqqq0 +

1
2

Nδ tδβββ 0

))]
+δ t2

N

∑
i=1

[
R̂T

i c2,N,i
(
zzzi−δ t

[
(ãaai)

×]
ννν i
)]

+δ t3
N

∑
i=1

[
R̂T

i
[
(ãaai)

×]c3,N,iwwwi
]

(3.88)

where the coefficients are c1,N,i = N− i+1, c2,N,i =
1
2(N− i+1)(N− i+2), and c3,N,i =

1
6(N− i+1)(N− i+2)(N− i+3).

The Jacobian of the IMU propagation error eee with respect to the state xxx0 is

easily obtained from inspection of the above equations.

JIMU =



I 0 0 0 1
2Nδ tI

Jrq
IMU I Nδ tI Jrα

IMU Jrβ

IMU

Jvq
IMU 0 I Jvα

IMU Jvβ

IMU

0 0 0 I 0

0 0 0 0 I


(3.89)

Jrq
IMU ≡ −2δ t

N

∑
i=1

R̂T
i
[
(ãaai)

×]c1,N,i (3.90)

Jrα
IMU ≡ −δ t

N

∑
i=1

R̂T
i c1,N,i (3.91)

Jrβ

IMU ≡ −Nδ t2
N

∑
i=1

R̂T
i
[
(ãaai)

×]c1,N,i (3.92)
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Jvq
IMU ≡ −2δ t

N

∑
i=1

R̂T
i
[
(ãaai)

×] (3.93)

Jvα
IMU ≡ −δ t

N

∑
i=1

R̂T
i (3.94)

Jvβ

IMU ≡ −Nδ t2
N

∑
i=1

R̂T
i
[
(ãaai)

×] (3.95)

3.4.2 IMU Error Information Matrix

In performing the MLE solution, the IMU data linking the states at the time

of two consecutive images is treated as a single 15-dimensional measurement. This

matrix, denoted PN , can be written in block form as

PN =



Pqq
N Pqr

N Pqv
N Pqα

N Pqβ

N

Prq
N Prr

N Prv
N Prα

N Prβ

N

Pvq
N Pvr

N Pvv
N Pvα

N Pvβ

N

Pαq
N Pαr

N Pαv
N Pαα

N Pαβ

N

Pβq
N Pβ r

N Pβv
N Pβα

N Pββ

N


(3.96)

There are 15 unique blocks in the above symmetric matrix (e.g. Prv
N =

(
Pvr

N
)T ).

These blocks are derived below using the results from above. For example, Pvq
N =

E
{

δvvvNδqqqT
N
}

is found by simply substituting the above expressions for δvvvN and

δqqqN . To reduce the computational complexity with little-to-no loss in accuracy, the

rotation and measured acceleration are assumed constant over the interval in the

covariance computation. Note that this assumption can lead to unmodeled correla-

tions in the state propagation errors, especially in the case where translation jerk or

angular acceleration are large. In performing the expectations, sums of coefficients of
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the following form are used to simplify the equations (i.e. eliminate the summation

symbol).

γ0,1 ≡
N

∑
i=1

c1,N,i

=
1
2

N2 +
1
2

N (3.97)

γ0,2 ≡
N

∑
i=1

c2,N,i

=
1
2

(
1
3

N3 +N2 +
2
3

N
)

(3.98)

γ0,3 ≡
N

∑
i=1

c3,N,i

=
1
6

(
1
4

N4 +
3
2

N3 +
11
4

N2 +
3
2

N
)

(3.99)

γ1,1 ≡
N

∑
i=1

c1,N,ic1,N,i

=
1
3

N3 +
1
2

N2 +
1
6

N (3.100)

γ1,2 ≡
N

∑
i=1

c1,N,ic2,N,i

=
1
2

(
1
4

N4 +
5
6

N3 +
3
4

N2 +
1
6

N
)

(3.101)

γ1,3 ≡
N

∑
i=1

c1,N,ic3,N,i

=
1
6

(
1
5

N5 +
5
4

N4 +
5
2

N3 +
7
4

N2 +
3
10

N
)

(3.102)

γ2,2 ≡
N

∑
i=1

c2,N,ic2,N,i

=
1
4

(
1
5

N5 +N4 +
5
3

N3 +N2 +
2

15
N
)

(3.103)

γ2,3 ≡
N

∑
i=1

c2,N,ic3,N,i

=
1

12

(
1
6

N6 +
13
10

N5 +
11
3

N4 +
9
2

N3 +
13
6

N2 +
1
5

N
)

(3.104)
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γ3,3 ≡
N

∑
i=1

c3,N,ic3,N,i

=
1

36

(
1
7

N7 +
3
2

N6 +
61
10

N5 +12N4 +
23
2

N3 +
9
2

N2 +
9

35
N
)

(3.105)

Pqq
N =

1
4

δ t2 (Nσ
2
ν +σ

2
wγ1,1

)
I (3.106)

Pqr
N =

1
2

δ t3 (
γ2,0σ

2
ν + γ3,1σ

2
w
)

R̂T [(ãaai)
×] (3.107)

Pqv
N =

1
2

δ t3 (
γ1,0σ

2
ν + γ2,1σ

2
w
)

R̂T [(ãaai)
×] (3.108)

Pqα

N = 0 (3.109)

Pqβ

N = − 1
2

δ tγ1,0σ
2
wI (3.110)

Prr
N = δ t2 (

γ1,1σ
2
s + γ2,2σ

2
z
)

I

−δ t4 (
γ2,2σ

2
ν + γ3,3σ

2
w
)

RT
i
[
(ãaai)

×]2 Ri (3.111)

Prv
N = δ t2 (

γ1,0σ
2
s + γ2,1σ

2
z
)

I

−δ t4 (
γ2,1σ

2
ν + γ3,2σ

2
w
)

RT
i
[
(ãaai)

×]2 Ri (3.112)

Prα
N = −δ tγ2,0σ

2
z RT

i (3.113)

Prβ

N = −δ t2
γ3,0σ

2
wRT

i
[
(ãaai)

×] (3.114)

Pvv
N = δ t2 (Nσ

2
s + γ1,1σ

2
z
)

I

−δ t4 (
γ1,1σ

2
ν + γ2,2σ

2
w
)

RT
i
[
(ãaai)

×]2 Ri (3.115)

Pvα
N = −δ tγ1,0σ

2
z RT

i (3.116)

Pvβ

N = −δ t2
γ2,0σ

2
wRT

i
[
(ãaai)

×] (3.117)

Pαα
N = Nσ

2
z I (3.118)

Pαβ

N = 0 (3.119)
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Pββ

N = Nσ
2
wI (3.120)

3.5 Observability

This section will conclude with a brief section on observability.

The problem of determining pose given visual measurements of surveyed land-

marks has been studied extensively in the literature. Given three or more such cor-

respondences in general positions (i.e. landmarks not on a line), there are up to four

distinct pose solutions [89, 90]. This ambiguity can be resolved with measurement

of a fourth surveyed landmark [91].

The situation is much different if the visual measurements are made of unsur-

veyed landmarks in general position. The only information obtained from a single

image of the landmarks is the identification of a line in camera coordinates for each

landmark to lie on. Given two such images, the situation is much better. Hartley

and Zisserman give an excellent overview of two view reconstruction in Chapter 10

of [3]. In particular, if the fundamental matrix can be estimated and the camera

calibration parameters are known, then the scene and pose can be reconstructed

up to an ambiguity if pose and scale. The pose ambiguity is due to the fact that

there is no information about a global reference frame to map the landmarks in and

estimate pose relative to. The scale ambiguity manifests itself as an unknown dis-

tance between the two cameras, and an unknown distance from the cameras to the

landmarks. The same ambiguity in the two view case is present in the N view case
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[3].

The addition of IMU data to the visual measurements adds significant observ-

ability but also adds new parameters, namely scene scale, IMU biases and possibly

an unknown gravity vector. Furthermore, the inertial motion of the target scene

must be known: if it is not, these parameters must be estimated as well in order

for the IMU information to be used. A paper by Martinelli, a paper by Kelly and

Sukhatme, and a paper by Jones and Soatto, give excellent theoretical results on

this problem [92, 93, 59]. The observability is governed by the particular trajectory

followed. The key result of Martinelli is that for six or more images of two or more

unsurveyed landmarks, the biases, gravity, scale, and trajectory can be reconstructed

up to an ambiguity in pose. This is a well known gauge freedom which is typically

resolved by treating the pose of the first camera as the global reference frame [2].

Kelly takes a different approach and shows that, in addition to scale, IMU biases,

gravity, pose, and velocity, the camera-to-IMU pose is also observable given a suffi-

cient number of images of four or more landmarks. The particular analysis is done

in a continuous time formulation and shows that the parameters are observable in

an arbitrarily small amount of time. Jones and Soatto give more specific cases of the

types of excitation needed to observe the same parameters that Kelly demonstrated

to be observable. They also present a filter to estimate the parameters sequentially

[59].

The observability studies for visual and range camera systems is limited (with
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or without an IMU). However, this case is much simpler and the results of Kelly in

particular can be easily extended [93]. In particular, consider a co-registered visual

and range camera without an IMU. Using the first image in a sequence to define

a global frame, all features detected in the first image can be immediately mapped

without scale ambiguity. If there are three or more such mapped landmarks in

subsequent images, the pose can be determined at those times which allows velocities

and accelerations to be estimated as well.

If the cameras are not co-registered (i.e. there relative pose is unknown) but the

correspondence problem can be solved between the visual images and range images,

then all the above parameters are still observable in addition to the visual to range

camera pose. This follows from the following logic. All features detected in the

first range image can be mapped in that reference frame. From the observability

of visual camera pose from measurements of mapped landmarks, the visual camera

pose relative to the range camera can be immediately computed. Then this reduces

to the above case where the relative pose was assumed known a priori.
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4 EXPERIMENTAL METHODS

This section will discuss two distinct approaches to experimental testing used

in this dissertation.

The first method utilizes a tool chain developed for this dissertation which

renders photo-realistic images. The tool allows for perfect control of the camera

projection model, lighting model, camera trajectory, and the scene. This control

has two distinct advantages. First, it enables a better assessment of the accuracy

of a vision-aided navigation system because any experiments will real images will

inevitably have imperfect ’ground truth’ data and imperfect camera models. Second,

it has an enormous advantage in model validation. In particular, the ubiquitous

constant landmark and IID error assumption can be more easily assessed because

parameters for each landmark can be estimated independently of all other landmarks.

This is because the coupling introduced by jointly estimating pose is removed through

the use of perfect ground truth data. Both of these facts will be leveraged in later

sections.

The second method is to use data from real sensors. A visual camera, range

camera, and IMU on a single platform was developed in the LASR lab [94]. The

system was equipped with Vicon tracking beacons to provide ground truth data and

an extensive calibration procedure was performed as part of this dissertation. The

platform is used to obtain real sensor data to test the algorithms developed in later
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sections. Although the advantage of perfect ground truth in the first method is lost,

it is necessary to demonstrate gains in accuracy and robustness in real systems. This

method accomplishes that task.

This section will discuss these methods in detail. Calibration procedures and

validation of the tools are presented.

4.1 Rendering Tool for Analysis

Developing models to validate models for vision-aided navigation requires an

ability to accurately compute ideal measurements under the model assumptions.

Ideal measurements are defined as the noise-free measurements under a given model.

In order to do this, accurate ground truth data for sensor parameters, both intrinsic

and extrinsic, as well as landmark position are required. This presents two challenges

when using real data. First, attitude errors on the order of 0.01◦ will cause an error on

the order of 1 pixel for common cameras and optics. Therefore, the ability to estimate

ideal measurements to an accuracy of 0.1 pixels with ground truth data is unrealistic

for most ground truth systems. Second, the notion of a true fixed landmark position

in images of real scenes is dubious in an of itself: this is an assumption that this

dissertation challenges. These issues suggest that synthetic data with perfect ground

truth may be a better option for developing models (which can then be verified with

real data). A rendering tool has been developed for this purpose.

The rendering tool can generate photo-realistic images for a given camera model
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Figure 4.1: Sample image of Temple 1 comet using rendering tool.

and trajectory. A high fiedlity geometric model of the Temple-1 comet was obtained

from NASA JPL [95]. An example image using the Oren-Nayar lighting model is

given in Figure (4.1) [96]. The Oren-Nayar lighting model computes the intensity of

light reflected from a rough surface.

Consider a triangle facet model of a scene to be imaged. The important angles

at a particular facet are: the normal-to-sun angle θs and the normal-to-camera angle

θc. The computed reflection is

L = c1c2 cos(θi)(A+Bmax(0,cos(θi−θr))sin(α) tanβ (4.1)

where c1 is the albedo and c2 is proportional to incident light intensity. The α and

β are simply the maximum and minimum of θs and θr respectively. The values of A

and B are functions of the roughness parameter σ :

A = 1− 0.5σ2

σ2 +0.57
(4.2)
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B =
0.45σ2

σ2 +0.09
(4.3)

which is equal to the standard deviation of roughness slopes (i.e. surface slopes at

the scale of an individual facet). This was set as σ = 0.01 for the images rendered

of Temple-1 in this dissertation.

Prior to using the rendering tool for model analysis and algorithm testing, it is

important to verify that the results it gives are consistent with the assumed pinhole

camera model which is done in the next section.

4.1.1 Validation

In this section, a camera calibration is performed on the rendered images. The

rendering tool accepts a camera parameter file as input. The model used is that

given in Equation (3.16) without any additional distortion. The input parameter file

contains a single focal length, f (equal to fu and fv of Equation (3.16)), the principal

point, (cu, cv) and image size for the camera. In comparison with the models given

in The focal length and principal point are used to compute the standard camera

calibration matrix

K =


f 0 cu

0 f cv

0 0 1

 (4.4)

This completely describes the camera model of the rendering tool: no distortion

is added. To verify that the computed images are consistent with this model, the

Caltech camera calibration toolbox is used to perform a calibration [97].
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No distortion; Aspect Ratio = 1.
Parameter Model Estimate Error 1-σ
f 1000.00 999.42 0.58 4.12
cu 322.00 321.67 0.33 1.73
cv 235.00 234.70 0.30 1.74

No Distortion.
Parameter Model Estimate Error 1-σ
fu 1000.00 999.35 0.65 4.13
fv 1000.00 999.35 0.53 4.13
cu 322.00 321.59 0.41 1.74
cv 235.00 234.74 0.26 1.74

Full calibration.
Parameter Model Estimate Error 1-σ
fu 1000.00 999.32 0.68 4.19
fv 1000.00 999.32 0.55 4.18
cu 322.00 322.07 -0.07 4.37
cv 235.00 237.23 -2.23 4.55
d1 0.0000 0.0005 -0.0005 0.0495
d2 0.0000 -0.0402 0.0402 1.7008
d3 0.0000 0.0010 -0.0010 0.0017
d4 0.0000 0.0002 -0.0002 0.0016
d5 0.0000 0.0000 -0.0000 0.0000

Table 4.1: Results of three calibrations on a set of forty images.

Forty images of a checkerboard model are rendered from various poses. The

corners of the checkerboard pattern are extracted and passed to a calibration routine.

Three separate calibrations are performed. The first assumes no distortion and

assumes unit aspect ratio (i.e. square pixels: fu = fv). The second assumes no

distortion but removes the unit aspect ratio assumption. The third does not assume

zero distortion or unit aspect ratio. The results are tabulated in Table (4.1) .

An important implication see in Table (4.1) is that as the number of param-

eters in the calibration model increases, the certainty in the estimates degrades.
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Figure 4.2: Difference between extracted corners and estimated corner locations
on checkerboard pattern assuming the model parameters are correct. Each color
represents a different image.

This is commonly referred to as the bias-variance tradeoff : added model complexity

increases the variability in the results but reduces systemic bias. For the purposes

here, namely model validation, the results are sufficient to conclude that the assumed

model is consistent with the data in all three calibrations.

Using the assumed camera parameters and pose, the estimated measurements

are compared to the extracted corners. The resulting residual errors are plotted in

Figure 4.2. These residuals appear to be zero mean with isotropic covariance on the

order of 0.22 pixels2. This suggests that the model parameters used by the rendering

tool are consistent with the output images. 1

1Note that the pixel convention used here has the origin at the very top left of the image (not
in the top-left pixel center).
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4.2 LENS: LASR Embedded Navigation Stack

This section describes the LASR Embedded Navigation Stack (LENS) devel-

oped by Whitten [94]. The LENS is a flexible platform for prototyping and testing

navigation systems. The key components of the platform relevant to this dissertation

are

1. Point Grey Blackfly 1.3 MP monochrome GigE camera with 12 mm Mega Pixel

fixed focal length lens. The camera has a global shutter and a Sony ICX445

CCD 1/3" 1288 × 964 pixel sensor (3.75 micrometer pixel size).

2. MESA Swiss Ranger 4500 time-of-flight camera. The camera is equipped with

LEDs which transmit a waveform towards the scene. A filter on the camera

lens allows light matching the transmitted wavelength to pass returned light

through to a 176 × 144 grid of pixels which sample the returned intensity.

Correlation with the transmitted pulse is used to measure time-of-flight for

each pixel individually with an accuracy on the order of 1 centimeter.

3. VectorNav VN100 IMU is a sensor suite containing a 3-axis gyroscope, 3-axis

accelerometer, and 3-axis magnetometer. Testing and characterization of the

gyroscope and accelerometer is summarized in Table (3.2) and Table (3.1) .

The magnetometer is not used in the experiments presented in this dissertation.

4. A set of 10 Vicon markers are attached to the LENS to capture ground truth

pose of the platform. Vicon is accurate to 1 millimeter. The baseline of the

markers is on the order of 25 centimeters which should allow for an attitude
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accuracy on the order of 1 milli-radians (i.e. 0.1cm
25cm (10markers)

−1
2 ).

4.2.1 Calibration

The first major challenge in dealing with this system is that the relative pose

between all sensors and the intrinsic parameters of each sensor are unknown a priori.

Consistent with the model developed in Section 3, all sensor poses relative to the

LENS body frame are determined. The LENS frame is defined as the frame that the

Vicon beacon positions are described relative to.

The process to define these positions and rotations is as follows. The LENS

is built as a set of 3/16" rigid acrylic sheets separated by standoffs. Seven of the

beacons are on one sheet and three are on a second. The LENS z-axis is defined to be

normal to these sheets and the x-y plane is defined to pass through the three beacons

on the second plane. Therefore there is only one unique unknown z-value which must

be determined (i.e. it is common to all of the other seven beacons). In addition,

one of the three beacons on the second plane is defined as the origin. The other two

beacons are used to define the y-axis by requiring that they share the same y-value.

Therefore the total number of parameters that describe the beacon locations is 18

(one z-value for seven beacons, an x-value and y-value for each of seven beacons, a

y-value shared between two beacons, and an x-value for each of those two beacons).

These constraints are incorporated into a Vicon template file and a batch of 1000

Vicon frames is used to determine the positions which are output into a skeleton file.

This completes the LENS body frame specification.
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There are two alternatives to estimating the body-to-sensor transformation for

each sensor. The first is to compute them based on the CAD model locations of

the mounting holes of the Vicon beacons and sensors. This method is very easy to

do but is not very accurate for the cameras due to the fact that the exact origin

of the camera frames (visual and range) is difficult to measure precisely. On the

other hand, the method will be fairly accurate for the IMU as the IMU frame is well

defined by the manufacturer relative to mounting holes. The second method has two

steps. The first step is to perform an inter-sensor calibration to get the relative pose

between each sensor. The second step is to take images of a calibration target that

can be tracked in the Vicon lab frame. Since the LENS-to-lab pose and target-to-lab

pose is given by Vicon and the camera-to-target pose can be determined from the

images, the LENS-to-camera pose can be computed. The second method was used

to obtain the calibration and the first method was used as a sanity check on the

resulting solution. An image of the experimental method for the second step of the

second method (obtaining LENS-to-camera pose) is shown in Figure (4.3).

The inter-sensor calibration was performed using a set of tools developed by

Furgale et al [98, 99]. The tool can perform

1. Multiple camera calibration: Compute the intrinsic parameters of multiple

cameras and the inter-camera pose between each pair of cameras given images

(time-synced from all cameras) of a known target.

2. Camera-IMU Calibration: Compute the intrinsic parameters of the camera and
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Figure 4.3: Experimental setup to calibrate the LENS-to-camera pose. The LENS
frame is defined by the Vicon beacons. The checkerboard also has a frame defined
by small beacons located at a subset of the checkerboard corners.

the relative pose between a camera and IMU given images and simultaneous

IMU data.

3. Multiple Camera-IMU Calibration: Computes the intrinsic parameters of each

camera, and the pose of each camera relative to the IMU given time-synced

images and IMU data.

The first tool performs a simple batch optimization over the intrinsinc parameters

of both cameras, the extrinsic parameters for each image of one camera, and the
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inter-camera pose. This is very similar to standard camera calibration.

The second two tools which compute the IMU-to-camera transformations are

much different. They model the IMU-to-target pose as a continuous time function

that is parametrized by spline coefficients. This leads to a lower dimensional pa-

rameter space as compared to estimating the IMU pose at all IMU output times

(because the IMU is a high rate sensor). This requires the camera to have a frame

rate higher than the dominant frequencies of the motion during calibration data col-

lection. Therefore is important to give the camera smooth motion (minimize jerking

as much as possible).

Note that these tools were designed for visual cameras: not the time-of-flight

type cameras. Fortunately, an easy work around was found. The Swiss Ranger can

also output the intensity of returned light. A checker board calibration target was

found that had a significantly different albedo at the wavelength used by the Swiss

ranger. Therefore the returned intensity image could be passed to the calibration

tool as if it was a grayscale image. For this particular calibration tool, the Swiss

Ranger images were too small for the target corner extraction program. The work-

around for this was to simply scale the image by a factor of four and then account

for this in the resulting intrinsic parameters.

The first attempt of this calibration utilized the Multiple Camera-IMU Cali-

bration tool and was unsuccessful. Software was developed to interface with the

cameras and send a software trigger to each camera at the same time. It appears
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Figure 4.4: Calibration images from the Point Grey Blackfly (left) and Swiss Range
intensity image scaled by four in size (right).

that the latency between the software trigger time and actual image capture was

significantly different for each camera. Therefore, the calibration tool could not fit a

single fixed camera-to-camera transformation that was consistent with the data.

To work around this, the inter-sensor calibration was broken into two stages. In

the first stage, the Multiple Camera Calibration tool was used. The LENS was held

stationary while the images were triggered to guarantee no motion during the trigger-

to-capture latency of both cameras. This also had the added benefit of eliminating

motion blur. This was especially important because the exposure time was increased

to compensate for a small aperture and low digital gain which were used to reduce

focusing issues and reduce image noise respectively. A side-by-side comparison of

the images from the two cameras is shown in Figure (4.4).
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4.3 Batch Estimation

A flexible tool for batch estimation was developed for this dissertation. The

tool is an extension of the excellent work of Kuemmerle et al. in developing the

General Graph Optimization tool known as g2o [48]. The open source g2o software

solves graph optimization problems. A graph optimization problem is defined as

follows. The parameters to be optimized over are partitioned into a set of graph

vertices θ̂θθ i. The vertices are connected by edges which represent measurements. The

k’th measurement can constrain nk vertices θ̂θθ k1, . . . θ̂θθ knk
by introducing an error term

eeek into the cost function where eeek is a function of the measurement and associated

vertices. The error term eeek has a weighted squared cost weight matrix Ωk. This

leads to a solution

θ̂θθ = argminθθθ ∑
k∈C

eeek(θ̂θθ k1, . . . θ̂θθ knk
)Ωkeeek(θ̂θθ k1 , . . . θ̂θθ knk

) (4.5)

that is graph optimal.

The g2o software also allows the user to specify an alternative cost function

ρ() for each measurement k individually. The software adjusts the weight matrix on

each iteration in the manner presented in Section 2.4.

In order to use g2o in this dissertation, software defining all vertices, edges,

and cost functions had to be developed. The details of these will be given in Section

5.

The optimizer iteratively computes and applies corrections to the parameters.

On each iteration, a sparse linear system is solved. The solver can be configured by
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the user.

Preliminary testing was performed with both the Gauss-Newton, Levenberg-

Marquardt solver and the Dog Leg algorithm discussed in Section 2.4. The latter two

algorithms gave similar performance which was superior to the first. Ultimately the

Levenberg-Marquardt solver was selected for all results shown in this dissertation.

4.3.1 Attitude Parametrization

One important issue in the vision-aided navigation problem is the parametriza-

tion of attitude. Attitude has three degrees-of-freedom which necessitates at least

three parameters. However, there are no known singularity-free minimal (three el-

ement) parametrizations. Higher dimensional parameterizations require constraints

to be enforced between the parameters. Enforcement of these constraints complicates

the solution.

The g2o software has a convient hook to handle problems of this type. In

particular, the parametrization of the correction of θθθ can be different than the the

parametrization of θθθ itself. In the results in this dissertation, the attitude compo-

nents of θθθ are represented by quaternions. The three-element differential quaternion

δqqq is used to represent the correction to the four-element quaternion qqq. The corrected

quaternion is

qqq←

δqqq

1

⊗qqq (4.6)

where the quaternion multiplication operator is defined in Crassidis and Junkins [17].
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4.3.2 Solving for Scale

A key extension to g2o developed in this dissertation is a scale estimation

module. The module jointly estimates the scale of the errors and the unknown

parameters θθθ . The theory behind this problem is presented in Section 2.3.8. The

current section gives the algorithm implemented in the batch estimator to solve the

necessary conditions given in Equation (2.160) of Section 2.3.8 which are

000 = ∑ψ(ri)h′i(θθθ)

000 = ∑ψs(ri) (4.7)

where ri = (yi− hi(θθθ))/σ is the scaled residual. This algorithm is given by Huber

[29].

Let the residual be computed at the estimate at a given iteration θθθ
(k) and σ (k).

The scale can be updated as

σ
(k+1) = σ

(k)

√
1

ma ∑
i

ψs(ri) (4.8)

where m is the number of measurements and a is a constant used to obtain an

unbiased correction. In the location-scale problem with Gaussian errors, this reduces

to

σ
(k+1) = σ

(k)

√
1

m−n ∑
i

r2
i (4.9)

= σ
(k)

√
1

m−n ∑
i
(yi−hi(θθθ

(k)))2/(σ (k))2 (4.10)

=

√
1

m−n ∑
i
(yi−hi(θθθ

(k)))2 (4.11)
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where n is the number of parameters.

The updated parameters θθθ can be computed as

θθθ
(k+1) = θθθ

(k)+

(
∑

i
wih′i(θθθ

(k))h′Ti (θθθ (k))

)−1

∑
i

wirih′i(θθθ
(k)) (4.12)

where the weight wi is

wi = ψ(ri)/ri (4.13)

which is analagous to Equation (2.203) but with a jointly estimated scale parameter.

The approach by Huber is to recompute both the scale and θθθ parameters on

each iteration [29]. There are other alternatives in the literature. Maronna suggests

using a scale-free estimate such as the L1 norm to get a preliminary estimate of

parameters and then use the corresponding residuals to get a scale estimate [35].

The scale estimate is then used to get a corrected parameter estimate. In this sense,

the algorithm is a one-step scale estimator. Note that Maronna warns against using

the L1 norm in the random-carriers linear regression problem which is not applicable

in this work. The least squares algorithm is also scale indepedent but is known to be

very sensitive to modeling errors. The least-median-of-squares estimator developed

by Rousseeuw is a more robust option for one-step scale estimators [100].

The software developed in this dissertation allows the flexibility of choosing how

often to update the scale (e.g. once or on every iteration) and the ability to change

the cost function after scale estimation is deemed complete. Results for different

schemes will be given in Section 5.
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4.3.3 Fixing Gauge Freedom

Visual measurements are typically used with other measurement types like IMU

and ranging data to estimate sensor trajectories. However, under the motivation of

improving visual measurement models for the purposes of estimation, many tests will

be performed using only visual measurements.

Section 3.5 discusses observability issues for visual only measurements. When

all landmarks are unsurveyed (i.e. their locations are unknown) there is a gauge

freedom of scale and a single rigid-body transformation. To remove the scale am-

biguity, the batch estimator is given a pseudo-measurement between the first and

last camera of the sequence. As long as the cost function associated with this meaa-

surement is monotonically increasing with the magnitude of the error, the ambiguity

will be removed. The particular form of the cost is irrelevant: it does not matter if

the constraint is exactly met or not. Therefore a simple least squares cost is used.

The rigid-body transformation ambiguity is removed by setting the scene refrence

frame to be exactly equal to the camera frame at the time of the first image. This

effectively removes the pose parameters of the first camera from the optimizer.

4.4 Computer Vision Pipeline

A computer vision pipeline was developed which serves two purposes. First,

the pipeline accepts visual images or visual-and-range images and outputs the visual

feature trajectories needed by the estimator. Second, the pipeline computes initial
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Figure 4.5: Block diagram of the developed computer vision pipeline.

estimates of pose and landmark parameters.

A block diagram of the pipeline is shown in Figure (4.5). The first image is

always used to detect features. If a sufficient number of features were tracked (or

detected) in the previous image, then feature tracking is performed on the current

image. Feature tracking simply solves the correspondence problem between features

in two images. The feature locations in the current image are used along with the

feature locations in a previous image (configurable to be the most recent image or

the most recent base image) to perform pose estimation. If range images are avail-

able, this pose estimation uses a RANSAC implementation of the OLTAE algorithm

developed for this dissertation [11, 101]. Otherwise, the fundamental matrix is com-

puted in place of the true 6 DOF pose [3]. The pose estimate is then used for outlier

rejection. The resulting features and pose estimates are outputs of the pipeline.

In the spirit of this dissertation, the outlier rejection threshold are extremely

loose. The majority of features that are rejected are due to failure of the visual
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tracking algorithm to return any correspondence.

The developed pipeline uses OpenCV, an open source computer vision library

[102]. The pipeline was designed to be flexible enough so that any feature detection or

tracking algorithm can be used in a plug-and-play fashion. Unless otherwise noted,

all results use the ORB feature detector and a multi-scale implementation of the

Lukas-Kanade tracker [103, 104, 74, 64].

Before concluding the section, a brief discussion of the RANSAC OLTAE solu-

tion is needed. This implementation is unique to this dissertation and was found to

give excellent performance.

4.4.1 RANSAC OLTAE

The RANSAC OLTAE developed for this dissertation works as follows. Ran-

dom hypothesized consensus sets of three measurements are iteratively generated.

For each hypothesized set:

1. OLTAE is performed to compute pose

2. Measurements are labeled as inliers or outliers with a threshold that depends

on the range to each measurement (so that errors in pixel-space are properly

scaled). This threshold is intentionally set to be very loose.

3. The largest inlier set is used in a robust OLTAE routine.

The robust OLTAE algorithm is an iterative M-estimator using a truncated
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Huber cost function:

ρ(e) =



1
2e2 |e|< δnear

δnear|e|− 1
2δ 2

near δ f ar < |e| ≤ δnear

δnearδ f ar− 1
2δ 2

near |e| ≥ δnear

(4.14)

This estimation routine, although not a primary contribution of this dissertation,

provided more reliable pose estimates. The advantage comes from the combination

of a loose threshold on inliers and the robust nature of the batch solution on inliers.

The loose threshold leads to an acceptable solution in fewer RANSAC iterations and

reduces the false-positive rate for outlier labeling. The robust OLTAE can work

with lower quality preliminary solutions and provides a soft down-weighting of poor

measurements.
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5 VISUAL MEASUREMENT MODELING

This section discusses models for visual measurements which are needed for

vision-aided navigation. This section proceeds as follows. First the standard struc-

tural model is presented. This model assumes constant landmark positions and IID

feature measurement errors. An analysis of the consistency of this model with ex-

perimental data is presented. Evidence of an inconsistency suggests other models

may be necessary. Four novel structural models are proposed which are important

contributions of this dissertation.

For each of the five models, one standard and four novel, the equations are given

and methods of estimating the parameters under a class of probability distributions

for the random errors are discussed. The solution to the estimation problem for the

case of unknown error scale is also given for each model.

Next, a large dataset used to test these models is described. The dataset

involves rendered images over a range of different trajectory types. The dataset

contains ground truth for the trajectory but not ground truth for the landmarks

which are automatically determined by the feature detection algorithm.

The dataset is partitioned into two groups. The first group is used to develop

probabilistic models for the random errors under the assumption of a specific struc-

tural model. The second group is used to test the performance of various estimators

under the assumption of a particular pair of probabilistic and structural models.
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These two datasets will be referred to as the learning dataset and the evaluation

dataset respectively.

In developing the probabilistic model, there are two options. The first option

involves completely specifying the model based on the learning dataset. The second

option involves leaving some parameters of the model free to be jointly estimated

based on the evaluation dataset. In particular, the scale of the errors can be left free.

Both options are considered in this section.

In order to implement the second option, algorithms to jointly estimate the

free parameters must be developed. Such an algorithm is presented in this section.

Modifications of this algorithm to the particular model are highlighted.

The estimators derived from each structural model and associated probabilistic

model are applied to the test dataset. Performance is analyzed both for each tra-

jectory type individually and aggregated over all trajectory types. This is done for

both the case of free and fixed error scale. Key trends of interest between estimator

performance, tuning parameters, and the trajectory class are enumerated. For each

noted trend, a thorough discussion is given with analysis to support explanations for

the trends. Finally, tradeoffs in the designed estimators are summarized.

5.1 Test Datasets

Before getting into the details of the newly developed visual models, test

datasets used to study the models are described. The datasets serve two purposes.

154



The first purpose is in developing the models themselves. The second purpose is

in evaluating estimators designed around the developed models. It is important to

partition the dataset into two separate groups: one for the first purpose and one for

the second. Using the same dataset for both purposes may lead to an overfit of the

model to the particular data. The two sets will be referred to as the learning set and

evaluation set respectively.

Each group has three different classes of camera trajectories. For each trajec-

tory in each group, there are 100 sets of 20 images rendered with the rendering tool

discussed in Section 4.1. Each set has a randomly generated trajectory belonging to

one of three trajectory classes. The trajectory classes are

1. Descent: The camera descends towards the Temple-1 model as the model ro-

tates by 45 degrees relative to the sun. The camera maintains constant comet-

relative attitude and constant position in the plane orthogonal to vertical (i.e.

only altitude changes from 10 to 8 kilometers). The initial comet-relative po-

sition is random (initial altitude is fixed) and the attitude is set such that the

camera points towards the center of the comet and so that the sun is initially

behind the camera. An example is shown in Figure (5.1) where a subset of six

of the twenty images are displayed.

2. Short Orbit: The camera points towards the comet center as it moves through

15◦ of a circular orbit.

3. Long Orbit: The camera points towards the comet center as it moves through
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30◦ of a circular orbit. The altitude is constant at 10 kilometers and the

attitude is set such that the camera points to the comet center with the sun

nominally behind the camera.

A Lucas-Kanade feature tracker was used to generate the feature tracks for

each image set. The feature tracks can either be studied for model development

(learning set) or can be passed to the estimator described in Section 4.3 (evaluation

set). This estimator is configurable: the model type, cost function type, and cost

function parameters can be set via command line arguments. Therefore the same

feature tracks can be run through the various estimators discussed in this section.

Figure 5.1: A subset of six images out of twenty along a descent trajectory. The
lighting angle changes during the sequence. The first image is in the top-left and the
others are ordered clockwise.
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5.2 Standard Model

The standard model used in vision-aided navigation systems with feature track-

ing assumes that all tracked features correspond to landmarks with fixed location

and that each feature measurement error is independent of all others. In particu-

lar, consider landmark j which is located at a fixed location xxx j with respect to a

scene-fixed reference frame. The measurement of this landmark at time i is

ỹyyi, j = π

(
KRc/m

(
Ri
(
xxx j + rrri

)
+
[
rrrc/m

]
m

))
+ννν i, j (5.1)

where Rc/m is the rotation matrix that transform body-fixed-navigation-frame (say

the IMU frame) coordinates to camera coordinates and
[
rrrc/m

]
m is the IMU-to-camera

vector in IMU coordinates. The unknown pose of the IMU relative to global coordi-

nates is represented by the rotation matrix Ri and position vector rrri. The projection

function π () can take on various forms depending on the camera used. More details

can be found in Section 3.2 which presents the same structural model.

Note that, for n` landmarks and nc images, there are 3n`+ 6nc unknown pa-

rameters: three for each landmark and six for each camera. Let θθθ ` and θθθ c represent

the unknown landmark and camera parameters respectively. Also let

θθθ =

θθθ c

θθθ `

 (5.2)

be the joint parameter vector.

For the purposes of the estimator, the random variable ννν i, j is assumed to be a

zero-mean isotropic random variable with each component having a distribution of
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the form

ν ∼ 1
σ

f
(

ν

σ

)
(5.3)

where σ is the scale of the errors. Therefore, an MLE designed around this distri-

bution has a solution

θ̂θθ = argmaxθθθ ∑
i, j

log
1
σ

f
(

1
σ

(
ỹyyi, j−π

(
KRc/m

(
Ri
(
xxx j + rrri

)
+
[
rrrc/m

]
m

))))
(5.4)

This problem has an important sparsity that should be taken advantage of in

order to reduce the computational complexity. To see that this is true, consider the

result from Hartley and Zisserman [3]. Define a joint measurement vector

ỸYY ≡
[
ỹyyT

1,1, ỹyy
T
1,2, . . . , ỹyy

T
1,n`, ỹyy

T
2,1, . . . , ỹyy

T
nc,n`

]T (5.5)

The M-estimate (or MLE) is then equivalent to

θ̂θθ = argmaxθθθ ∑
k

ρ(ỸYY k− ŶYY k) (5.6)

where ρ(x) = log 1
σ

f(x/σ) and the summation is over the individual elements of the

residual vector. Each iteration requires solving an equation of the form

δθθθ
(k+1) =

(
HTWH

)
HTW

(
ỸYY − ŶYY

(k)
)

(5.7)

where W is the diagonal weight matrix, ŶYY
(k) is the expected measurement conditioned

on the current estimate θθθ
(k), and H is the full Jacobian of the predicted measurement

ŶYY
(k) with respect to the parameter correction δθθθ . The equations for these Jacobians

are given in Section 3.2. Note that the H matrix is not fully populated: ŷyyi, j only

depends on two sub-blocks of θθθ . The resulting Jacobian H and Hessian HT H has

the form shown in Figure (5.2).
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Figure 5.2: Block structure of the linearized system for constant landmarks and IID
errors (two cameras, three landmarks): Jacobian (left) and Hessian (right). The
blue and white blocks represent non-zero and zero terms respectively. The red lines
partition the pose and landmark parameters.

If the Hessian matrix is fully populated, then the complexity of the solution

is O((3n`+ 6nc)
3) which is a well-known fact for dense linear systems. The sparse

form of the Hessian shown above allows the elimination of the landmark (or camera)

parameters so that the camera (or landmark) parameter corrections can be solved

for independently. This step has complexity O((6nc)
3) (or O((3n`)3)). Then the

correction to each individual landmark (or camera) parameter block can be computed

independently. This step has complexity O(n`) (or O(nc)). The choice of whether to

first eliminate landmark parameters or camera parameters should be based on the

number of such blocks. If nc > n`, then the camera parameters should be eliminated
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first and vice versa. This is automatically handled by the optimization framework.

5.2.1 Serial Correlations

The standard model has a single three-dimensional position parameter to rep-

resent the landmark at the time of all images. Given a set of feature trajectories (in

image space), landmark positions can be estimated and then used to compute resid-

uals. These residuals could be used as proxies for the true errors to study the error

distribution. This presents three issues. First, statistics on the residuals will appear

smaller than the same statistics on the true errors because the landmark estimate is

biased for the given measurements. Second, all the pseudo-error samples for a given

feature trajectory will be coupled. Third, there is a certain circular logic in esti-

mating the landmark position, which would implicitly assume a preliminary nominal

model, and then using those residuals to obtain a new nominal model. Clearly the

new nominal model will depend on the preliminary one.

A way around this that minimizes the coupling is as follows. Given a single

measurement ỹyy j,k, its known depth λ j,k from the rendered range image, and the

known camera parameters θθθ c j , a scene-frame landmark position can be computed

x̂xx j,k = RT
j

(
RT

c/mπ
−1 (ỹyy j,k

)
λ j,k−

[
rrrc/m

]
m

)
− rrr j (5.8)

This landmark can then be projected into any other image and compared to the

measurement to get a residual

rrri, j,k ≡ ỹyyi,k−π

(
Rc/m

(
Ri
(
xxx j,k + rrri

)
+
[
rrrc/m

]
m

))
(5.9)
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Figure 5.3: Illustration of pseudo-residual generation process for studying visual
feature localization errors.

An illustration of this process with i = 1 and j = 2 is shown in Figure (5.3).

The error rrri, j,k clearly depends on both measurement errors, ννν i,k and ννν j,k. This

dependence can be analyzed as follows. First, let ỹyy j,k = [ũ j, ṽ j]
T . Also define the

forward and the inverse projection functions as

π([x,y,z]) = [ f x/z+ cx, f y/z+ cy]
T (5.10)

π
−1([u,v]) = [(u− cx)/ f , (v− cy)/ f , 1]T (5.11)

(5.12)
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Note that this is the model used in the rendering tool presented in Section 4.1. For

a clearer analysis and without loss in generality, let Rc/m = I and
[
rrrc/m

]
m = 000. Then

the estimated x̂xx j,k is

x̂xx j,k = RT
j
(
π
−1 (ỹyy j,k

)
λ j,k
)
− rrr j (5.13)

= RT
j
(
π
−1 (

π
(
R jxxxk + rrr j

)
+ννν j,k

)
λ j,k
)
− rrr j (5.14)

= RT
j
(
π
−1 ([ū j +νu j , v̄ j +νv j ]

)
λ j,k
)
− rrr j (5.15)

= RT
j

(
1
f
[ū j +νu j − cx, v̄ j +νv j − cy, f ]λ j,k

)
− rrr j (5.16)

= xxxk +RT
j

(
1
f
[νu j , νv j , 0]λ j,k

)
(5.17)

where the first and second term of the last equation is the true landmark position

and the error in the estimated landmark position respectively, under the standard

model assumption.

Now the error term rrri, j,k is

rrri, j,k = ỹyyi,k−π
((

Ri
(
x̂xx j,k + rrri

)))
(5.18)

= ỹyyi,k−π

((
Ri

([
xxxk +RT

j

(
1
f
[νu j , νv j , 0]λ j,k

)]
+ rrri

)))
(5.19)

There are two ways to proceed. The first is to linearize about ννν j,k = 000. In that case,

rrri, j,k ≈ yyyi,k−
∂yyyi,k

∂ννν j,k
ννν j,k (5.20)

where the second term is equal to

∂yyyi,k

∂ννν j,k
ννν j,k = λ j,k

1/z 0 −x/z2

0 1/z −y/z2

RiRT
j


νu j

νv j

0

 (5.21)
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and Rixxxk + rrri ≡ [x,y,z]T . If the rotation between images is negligible, then RiRT
j ≈ I.

If in addition, the translation is small between images, then λ j,k ≈ z. Then

rrri, j,k = ννν i,k− [νu j ,νv j ]
T (5.22)

On the other hand, we can make the simplifying assumptions (RiRT
j ≈ I and λ j,k ≈ z)

without linearizing which yields

rrri, j,k = ννν i,k−ννν j,k (5.23)

These two results are clearly in agreement.

The pseudo-residual rrri, j,k can be computed between any pair of views, i and j,

and for each landmark k. If the errors are truly IID with a constant landmark, then

E
{

rrri, j,krrrT
i, j,k

}
should be constant (i.e. not depending on i, j, or k for i 6= j). The

learning dataset described in Section 5.1 is used to see if this is the case. For all

landmarks in all sets of images, the error rrri,1,k is computed for all i. By setting the

middle index equal to one, we are always using the first image to generate a landmark

position estimate. Instead of estimating the E
{

rrri, j,krrrT
i, j,k

}
as the sample covariance,

the median-absolute-deviation (MAD) is computed for each of the diagonal compo-

nents. As discussed in Section 2.3.6, the MAD is a robust estimate of scale. This is

done for each image index i separately, using data aggregated over all landmarks in

all sets for a given trajectory class. The results are given in Figure (5.4). Clearly,

the MAD increases when plotted against image index. This makes sense intuitively

but is in direct contradiction with the assumed model.

One possible model for the errors is a first-order auto-regressive model of the
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Figure 5.4: Median-absolute-deviation for each component of rrri,1,k versus image index
i for three different trajectory classes. Each class has 100 sets of 20 images with 200
landmarks per set.

form

ννν1, j = eee1, j (5.24)

ννν i, j = αννν i−1, j + eeei, j (5.25)

for i ∈ {2,3, . . . ,N j} for N j images of landmark j. Furthermore, let the errors eeei, j be

distributed as

eeei, j ∼
1
σi

p(eee/σi) (5.26)

This implies that the stochastic process is non-stationary (i.e. the error scale can

vary with the image index i). Note that the Cauchy distribution, Huber distribution,

Gaussian distribution, and Laplace distribution all have this form.

We would like to estimate the parameters of the process given the pseudo-

residuals that we can compute rrri,1,k ≈ ννν i, j−ννν1, j. For the sake of simplicity, each of
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the two components (each direction in the image plane) of the residuals are treated

separately. Define a parameter set consisting of

{α,σ1, . . . ,σN ,ν1,1, . . . ,ν1,M}

where N = 20 is the number of images per set and M is the total number of landmarks

across all sets. The MLE of these parameters is defined as the arguments that

minimize the cost

J =
M

∑
k=1

[
logσ1− log

(
p
(

ν1,k

σ1

))
+ logσ2− log

(
p
(
(r2,1,k−ν1,k−αν1,k

σ2

))
+

T−1

∑
i=2

logσi+1− log
(

p
(

ri+1,1,k−ν1,k−α(ri,1,k−ν1,k)

σi+1

))]
(5.27)

The ν1,k parameters act as fixed-effects and are essentially nuisance parameters.

In order to perform the optimization, the Huber distribution is used which has

the assumed form 1
σ

p(x/σ). The SciPy implementation of limited-memory Broyden-

Fletcher-Goldfarb-Shanno algorithm (with bounds) is used to solve for the parame-

ters [22]. The value of α is restricted to the interval [−1,1] and the error scales are

given a lower bound of 0.001. Each trajectory class is treated separately and ten

trials are performed per trajectory class with two sets of 20 images per trial. For the

long-orbit trajectory, α = 1 in nine out of ten cases (α = 0.93 in one case). For the

short-orbit trajectory, α = 1 in nine out of ten cases (α = 0.73 in one case). For the

descent trajectory, α = 1 in nine out of ten cases (α = 0.96 in one case). In addition,

the parameter identification routine failed to return a valid answer in two, one, and
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Figure 5.5: Estimate of error scale versus index for the first-order autoregressive
model of visual errors. The semi-transparent lines are the results for individual
trials, the thick solid lines are the bootstrap means, and the dashed lines are the
bootstrap means plus or minus three times the bootstrap standard deviations.

one cases out of ten for each of the long-orbit, short-orbit, and descent trajectory

respectively. The resulting scale estimates are shown in Figure (5.5).

Note that it is important to assess the accuracy of these parameter estimates.

Although this is an MLE for the assumed model, both the potential for systemic

errors and the Incidental Parameters Problem prevent the standard variance estimate

from applying. Instead, a bootstrap variance estimate can be obtained [40]. Given

a number of estimates of a parameter θ̂i, the bootstrap mean, µbs, and bootstrap

variance, vbs, are

µbs =
1
N

N

∑
i=1

θ̂i (5.28)
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vbs =
1

N−1

N

∑
i=1

(
µbs− θ̂i

)2 (5.29)

The bootstrap mean and the square root of the bootstrap variance are used to obtain

the heavy-weight and dashed lines of Figure (5.5) respectively.

An important conclusion can be drawn from this figure. Although Figure (5.4)

seems to suggest that the error scales increase rapidly with image index, Figure (5.5)

shows that the error scale is nearly constant. This implies that the apparent increase

in scale is mostly explained by strong-positive error correlations (i.e. α ≈ 1).

One additional note should be made concerning Figure (5.5). The different

trajectory classes have errors with different behaviors. For example, the error scale

for the descent class appears to be larger than that of the other two classes. This

implies that the probabilistic model will inherently depend on the nature of the

motion which is unsurprising. Therefore error scale estimation may be necessary if

the nature of the motion is unknown a priori.

5.3 Autoregressive Model

The autoregressive model is motivated by the empirical results of the previous

section. Similar to the standard model, the expected measurement is

ŷyyi, j = π

(
KRc/m

(
R̂i
(
x̂xx j + r̂rri

)
+
[
rrrc/m

]
m

))
(5.30)

Two types of edges are added to the optimization graph. The first is of the form

eee1, j = ỹyy1, j− ŷyy1, j (5.31)
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which relates the first camera pose to a landmark and is the same edge type used in

the standard model. The second edge type is of the form

eeei, j = (ỹyyi, j− ŷyyi, j)−α(ỹyyi−1, j− ŷyyi−1, j) (5.32)

for i ∈ {2,3, . . .}. Note that if α = 0, which implies zero error correlation, then the

second edge type is the same as the first. Furthermore, the autoregressive model

reduces to the standard model in that case.

The autoregressive model introduces additional coupling as compared to the

standard model. In particular, the upper-left matrix is now block tri-diagonal. Nev-

ertheless, the structure of the problem is still similar which leads to similar computa-

tion times. The structure of the Jacobian and Hessian for the autoregressive model

are shown in Figure (5.6). The added coupling can be seen in the upper-left of the

Jacobian matrix: each measurement (except the first on each feature track) involves

two cameras instead of one which leads to the block tri-diagonal Hessian.

5.4 Landmark-Walk Model

Following similar notation to the previous section, landmark j is located at

location xxxi, j with respect to an inertial reference frame at the time of image i. The

measurement of this landmark at time i is

ỹyyi, j = π

(
KRc/m

(
Ri
(
xxxi j + rrri

)
+
[
rrrc/m

]
m

))
+ννν i, j (5.33)

The landmark location satisfies

xxxi+1, j = xxxi, j +wwwi, j (5.34)
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Figure 5.6: Block structure of the linearized system for the autoregressive model
(four cameras, four landmarks): Jacobian (left) and Hessian (right). The blue and
white blocks represent non-zero and zero terms respectively. The red lines partition
the pose and landmark parameters.

where wwwi, j is an IID zero-mean random variable.

Unlike the standard model, this model allows the landmark to move in 3D

space. Let nc be the number of images and n` be the number of landmarks. If

all landmarks are seen in all images then the total number of parameters in this

problem is 6nc +3ncn` as compared to 6nc +3n` for the standard model. To look at

the asymptotic behavior as nc and n` go to infinity at a fixed ratio α = nc/n`, then

the number of parameters tends to 3αn2
c as compared to (6+3α)nc for the standard

model. With a naive implementation of a least-squares-type of optimizer, the random

walk model has a complexity of O(n6
c) compared to a complexity of O(n3

c) for the
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standard model. This uses the fact that the complexity of solving a linear system is

cubic in the number of parameters.

Furthermore, the model as presented above requires the specification of pseudo-

measurement constraints of the form of the form

E
{

xxxi+1, j− xxxi, j
}
= 000 (5.35)

in addition to the visual feature measurements. This further complicates the graph

structure.

A simple improvement can be made to avoid this and improve the model. To

do so, one can define the landmark j at time i to be

xxxi, j = RT
i

(
RT

c/mπ
−1 (ỹyyi, j

)
λi, j−

[
rrrc/m

]
m

)
− rrri (5.36)

where the inverse projection function π−1 () converts the pixel location to a unit-

vector of camera coordinates and λi, j is an unknown camera-to-surface depth along

the measured direction. This reduces the number of parameters of each landmark

from three to one which reduces the total number of parameters by an amount 2ncn`!

It also eliminates the need to impose the constraints from visual features into the

graph structure. Instead, all graph edges are of the form

E
{

xxxi+1, j(θθθ ci+1,λi+1, j)− xxxi, j(θθθ ci,λi, j)
}
= 000 (5.37)

Clearly the function xxxi, j contains the visual measurement ỹyyi, j.

Similarly to the standard model, we can look at the structure of the Jacobian

and Hessian which are shown in Figure (5.7). Note that the upper-left block of
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the Hessian corresponding to camera parameters is block-tridiagonal. The lower-

right block corresponding to landmark parameters is block-diagonal and of higher

dimension: the sub-blocks contain a tri-diagonal structure. The primary off-diagonal

blocks are densely populated. Therefore, it is always best to eliminate the landmark

parameters first in this model. The solution to the camera parameters is order

O((6nc)
3) which is the same as the standard model. Then the landmark parameters

can be solved for. The solution of each landmark parameter block [λ1, j,λ2, j, . . . ,λnc, j]

is independent (over the index j). The n` landmark blocks each have dimension nc

and are tridiagonal. This means that the complexity of this step is O(n`nc) [105].

This is potentially much larger than in the standard model which has a complexity

of O(n`). The difference in complexity depends on the application (i.e. the relative

number of landmarks and cameras).

One critical aspect of this model, which turns out to be a major drawback, is

that each feature track (i.e. one landmark seen in all images) is treated as an individ-

ual measurement. This is in contrast to the previous two models that treat a single

feature measurement (one landmark in one image) as an individual measurement.

Therefore in this model, the robust cost function acts on an entire feature track

instead of individual feature measurements. This means that a single bad feature

measurement along a track can down weight in entire track leading to an unnecessary

loss in efficiency.

This model is admittedly motivated by a heuristic concept. The motivation is
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Figure 5.7: Block structure of the linearized system for the random walk model (three
cameras, three landmarks): Jacobian (left) and Hessian (right). The blue and white
blocks represent non-zero and zero terms respectively. The red lines partition the
pose and landmark parameters.

that such a model can capture the serial correlations that appear in the data. This

must be validated with testing.

5.5 Correlated Error Model

Consider the landmark measurement equation

ỹyyi, j = π

(
KRc/m

(
Ri
(
xxx j + rrri

)
+
[
rrrc/m

]
m

))
+ννν i, j (5.38)

One way to capture serial correlation is to let

ννν i+1, j =


ννν i, j +wwwi, j i > 1

www1, j i = 1

(5.39)
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where the wwwi, j are assumed to be independent. This model amounts to a random

walk model in image space as opposed to a random walk in scene space presented

in the previous section. Consider stacking the errors for a single landmark as ν̄νν j ≡

[νννT
1, j νννT

2, j . . .ννν
T
nc, j ]

T . If the covariance of wwwi, j is σ2
wI2×2 and E

{
wwwi, jwwwk,l

}
= 0 when i 6= k

or j 6= l, then the covariance of ν̄νν j is

R j = σ
2
w



1 1 1 . . . 1

1 2 2 . . . 2

1 2 3 . . . 3

1 2 3 . . . 4

... ... ... . . . ...

1 2 3 . . . nc



⊗ I2×2 (5.40)

where ⊗ is the Kronecker product. The inverse of this covariance matrix is needed

for use in the estimator. Numerical examples were performed in an attempt to find a

pattern in the inverse of matrices of the above form for different nc. A clear pattern

emerged which can be shown to be the correct inverse.

R−1
j = σ

−2
w



2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

... ... ... ... . . . ...

0 0 . . . −1 2 −1

0 0 . . . 0 −1 1



⊗ I2×2 (5.41)
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To prove that this is the inverse, simply multiply them together:

I I I . . . I

I 2I 2I . . . 2I

I 2I 3I . . . 3I

I 2I 3I . . . 4I

... ... ... . . . ...

I 2I 3I . . . ncI





2I −I 0 0 . . . 0 0 0

−I 2I −I 0 . . . 0 0 0

0 −I 2I −I . . . 0 0 0

... ... ... ... . . . ... ... ...

0 0 0 0 . . . −I 2I −I

0 0 0 0 . . . 0 −I I



=



2I− I −I +2I− I −I +2I− I . . . −I +2I− I

2I−2I −I +4I−2I 2I−4I +2I . . . 2I−4I +2I

2I−2I −I +4I−3I −2I +6I−3I . . . 3I−6I +3I

... ... ... . . . ...

2I−2I −I +4I−3I −2I +6I−4I . . . −(nc−1)I +(nc−1)I

2I−2I −I +4I−3I −2I +6I−4I . . . −(nc−1)I +ncI


which is clearly a large identity matrix.

Similarly to the previous two sections, we can look at the structure of the

Jacobian and Hessian which are shown in Figure (5.8). Note that the Jacobian is the

same as in the standard model but the non-diagonal weight matrix induces a different

structure on the Hessian. In particular, the upper-left becomes densely populated

and the lower-right maintains the block diagonal structure.
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Figure 5.8: Block structure of the linearized system for the correlated error model
(four cameras, four landmarks): Jacobian (left) and Hessian (right). The blue and
white blocks represent non-zero and zero terms respectively.

5.6 Alpha-Correlated Error Model

This model is a generalization of the one presented in the previous section.

Consider additive pixel space errors of the form

ννν i+1, j =


αννν i, j +wwwi, j i > 1

www1, j i = 1

(5.42)

where the wwwi, j are assumed to be independent and α is a scalar constant. When

α = 1, this is the original correlated error model. When α = 0, this is the standard

model. By tuning α in the range [0, 1], one can attempt to capture the correlation
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structure.

Note that the error can also be expressed as

ννν i, j =
i

∑
k=1

α
i−kwwwk, j (5.43)

Then the (i, j) element of the 2×2 block covariance matrix is

E
{

ννν i,cννν
T
j,c
}
= σ

2I2×2

min(i, j)

∑
k=1

α
i+ j−2k (5.44)

The structure of the matrix looks like

R j = σ
2
w



1 α . . . αnc−1

α 1+α2 . . . αnc−2 +αnc

α2 α +α3 . . . αnc−1 +αnc−3 +αnc−5

... ... . . . ...

αnc−1 αnc−2 +αnc . . . ∑
nc
k=1 α2nc−2k


⊗ I2×2 (5.45)

where ⊗ is the Kronecker product. The inverse does not have an obvious analytical

solution in this case. This is not a major issue as the inverse only needs to be

evaluated once because the covariance is independent of the unknown parameters.

In addition, the inverse does not depend on the measurements and can therefore be

computed offline a priori for each possible value of nc (determined by the feature

tracker and application).

Note that the structure and sparsity of the problem is exactly the same as in

the case of the original correlated error model.
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5.7 Alpha-Correlated Pixel-Walk Model

The model presented in this section is the most conceptually appealing of the

above models. The downside to the α-correlated error model of the previous section

is that each feature track (i.e. one landmark in many images) is treated as a single

measurement with a single scalar weight. Therefore, if there is one very poor mea-

surement in a feature track that is otherwise okay, then the entire track will be down

weighted. This is precisely the issue with the correlated error model. It would be

more appropriate to down weight the single poor measurement. However, the means

to do this in a model with truly correlated errors is not clear.

A method to selectively down weight individual measurements with correlated

errors was developed. In particular, consider the measurement model

ỸYY = hhh(θθθ)+Awww (5.46)

where ỸYY is an m-dimensional measurement vector, hhh is a generic measurement func-

tion with unknown parameters of interest, θθθ , A is a constant matrix, and www is an

m-dimensional vector of zero-mean IID random variables. For example, if www is an

isotropic Gaussian with covariance σ2Im×m and hhh(θθθ) = Hθθθ then the MLE is given

by

θ̂θθ = argminθθθ

(
ỸYY −hhh(θθθ)

)T
(AAT )−1 (ỸYY −hhh(θθθ)

)
(5.47)

This optimization problem has the difficulty that each element of ỸYY cannot be treated

independently due to the correlated error: a single outlier element of www can corrupt
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the entire solution.

Instead of the above solution, consider jointly estimating θθθ and www by minimizing

∑
i

ρ(wi) (5.48)

subject to the condition

ỸYY = hhh(θθθ)+Awww (5.49)

For the particular example above, ρ(w) = w2, but any ρ() function can be used. It

can be easily shown that this will give the same result for the above example. In

particular, define www as

www≡ A−1 (ỸYY −hhh(θθθ)
)

(5.50)

then substitute this into the cost function to obtain

θ̂θθ = argminθθθ wwwT www (5.51)

= argminθθθ ∑
i

w2
i (5.52)

= argminθθθ

(
ỸYY −hhh(θθθ)

)T
(AAT )−1 (ỸYY −hhh(θθθ)

)
(5.53)

Clearly this is equivalent to the original cost function.

Implementing this is computationally expensive but a usually very good approx-

imation can be used. In particular, the elements of www are added as vertices to the

optimization graph. In addition, two types of edges are added. The first type models

the cost ρ(wi). The second type approximates the constraint ỸYY i− hhh(θθθ)− (Awww)i by

adding a least-squares error with very high weight to the cost. The weight can be

increased if the constraint is violated beyond a certain threshold. In practice, this
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method has been successful.

The particular form of A has not yet been specified with the exception that

it should be full rank. A natural choice is as follows. Consider images of a single

landmark at many measurement times ỹyyi where the index i denotes measurement

time. Let the errors be

ỹyy1 = h1(θθθ)+www1 (5.54)

ỹyy2 = h2(θθθ)+αwww1 +www2 (5.55)

ỹyy3 = h3(θθθ)+α
2www1 +αwww2 +www3 (5.56)

... (5.57)

Then the matrix A is

A =



1 0 0 . . .0

α 1 0 . . .

α2 α 1 . . .

... ... ... . . . ...

αm−1 αm−2 αm−3 . . . 1


⊗ I2×2 (5.58)

Note that this reduces to the uncorrelated error model when α = 0 and the

amount of correlation increases as α increases. This particular form for α ∈ (0,1] is

intuitively consistent with the way that the Lucas-Kanade feature tracker operates.

If a large error is present in one frame due to some visual artifact, it will likely cause a

very similar error in the next frame. The validity of this model and the performance

of estimators designed around it are studied below.
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Figure 5.9: Block structure of the linearized system for the correlated error model
(three cameras, three landmarks): Jacobian (left) and Hessian (right). The blue and
white blocks represent non-zero and zero terms respectively. The red lines partition
the pose parameters, landmark parameters, and nuisance parameters.

Similar to the other models, we can look at the structure of the Jacobian and

Hessian which are shown in Figure (5.9). This model is inherently more computa-

tionally expensive because of the much larger number of parameters. However, the

Hessian block for the added nuisance parameters (lower-right) has a block diagonal

structure which prevents the model from being prohibitively expensive.

5.8 Summary of Models

The previous sections presented numerous models for visual measurement er-

rors. These models are summarized here. The standard model that is ubiquitous
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in the literature assumes constant landmark positions and additive IID errors. Evi-

dence invalidating either the independence assumption or the identically distributed

assumption was found and motivated four novel models.

Each novel model attempts to capture error correlations in time. The landmark

model does this by allowing the landmark to move and hence removes the constant

landmark position assumption at the cost of adding a very large number of parame-

ters to the model. The other three models remove the independence assumption.

The correlated error model removes the independence assumption in the most

explicit way possible. A feature track is treated as an individual measurement as

opposed to treating the feature location at each image time as individual measure-

ments. The covariance of this stacked measurement captures the correlation by

having non-zero off-diagonal blocks.

The pixel-walk model captures the error coupling by treating the image-space

error as an α-correlated random-walk process. Note that this is the same idea behind

the correlated error model. However, the parameterization is different which enables

each feature to be treated as an individual measurement. This increases the flexibility

of the robustification methods. In addition to the standard model parameters, the

image-space walk-vector between each image time is treated as a parameter. The

walk-vectors are assumed to be IID. Then the linear combinations of walk-vectors

that are treated as the image-space additive errors on the feature locations have

the desired coupling. This model requires hard constraints to be met which are
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approximated through a penalty method.

The autoregressive model is very similar in nature to the pixel-walk model:

it captures the same correlation and treats each feature as an individual measure-

ment. However, this model does not need a penalty method to enforce constraints.

In addition, it has the same relatively low-dimensional parameter space as the stan-

dard model. It does so by a neat parameterization of the individual edges of the

optimization graph (i.e. the individual measurements).

5.9 Scale Estimation

If the scale is unknown a priori then it must be jointly estimated with the

other parameters. A detailed analysis of the general nonlinear regression problem

with unknown scale is given in Section 2.3.8. See Equation (2.169) for the associated

joint covariance. The current section tailors the results of that section for the scale

estimation problem for each of the models presented above.

Consider the MLE cost function

J(θθθ ,σ) = ∑
i
− log(p(ỹyyi−hi(θθθ), σ) (5.59)

where σ is a scale parameter (not necessarily standard-deviation). The method used

to solve this problem is as follows. An initial guess of scale, σ (0), is used to obtain an

initial estimate of θθθ
(0). Then, the algorithms performs iterations in which the scale

parameter is recomputed and used to perform one-step of the nonlinear parameter

correction. This continues until convergence.
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The nonlinear parameter correction is presented in Section 2.3.8. The scale

parameter correction uses gradient descent. In particular,

σ
(k+1) = σ

(k)+ γ
∂J
∂σ

(5.60)

The derivatives depend on the designed cost and distribution. The two key distribu-

tions used in this section will be the Huber and Cauchy distribution.

The Huber cost,

ρ(x,σ) =


1
2x2/σ2 |x|/σ ≤ k

k|x|/σ − 1
2k2 |x|/σ > k

(5.61)

has the corresponding distribution

p(x,σ) =
1√

2πσ2
e−ρ(x,σ) (5.62)

Then the derivative needed for gradient descent is

∂J
∂σ

= ∑
i

1
σ
−


x2

i /σ3 |xi|/σ ≤ k

k|xi|/σ2 |xi|/σ > k

(5.63)

All tests in this section use k = 3.0.

The Cauchy distribution is

p(x,σ) =
1√

πσ (1+ x2/σ2)
(5.64)

Note that σ2 is not the variance of this distribution (the integral defining variance

is undefined for the Cauchy distribution). The derivative for gradient descent is
∂J
∂σ

= ∑
i

1
σ
− 2x2

i /σ3

1+ x2
i /σ2 (5.65)

For the standard model, the scale estimate is applied to each component of each
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feature measurement residual. For the landmark-walk model, the scale estimate

is applied to each component of the landmark-walk parameter estimate. For the

pixel-walk model, the scale estimate is applied to each component of the pixel-walk

parameter estimate. The correlated error model is slightly more difficult to work

with because the measurements are inherently vector-valued. Nevertheless, we can

handle it in the same manner. The vector-valued Huber and Cauchy distributions

are obtained from their scale counterparts by replacing the norms with

x2
i /σ

2→ xxxT
i R−1xxxi (5.66)

where R is the covariance matrix as defined in Equation (5.45). The scalar σw

parameter in Equation (5.45) is the parameter being estimated in the scale step.

5.10 Sampling the Error Distribution

A key part of this dissertation is improving models used for estimation with

visual measurements. To better inform the cost functions, it is desirable to obtain

samples from the error distribution of the measurements. Ideally, a dataset contain-

ing both measurements and perfect truth for all parameters can be used to do this.

While the rendering tool contains truth for the unknown pose trajectory and cam-

era intrinsic parameters, the landmark parameters are not known. The landmark

parameters are inherently difficult to model because they involve a complex inter-

action between the unknown scene, the imaging sensor, and the image processing

algorithms (i.e. feature detection and tracking). The same reasons make it difficult
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to obtain error samples from the models presented above. Methods to get approx-

imate samples from the unknown distributions for each of the models is presented

below.

5.10.1 Landmark-Walk Model

The landmark-walk model is the easiest to generate error samples from. The

measurement, known depth, and known camera pose are used to compute a landmark

position for each feature measurement as in Equation (5.8). The difference for this

model is that this model defines the landmark position. The differences between

the sequential landmark positions for a feature trajectory are direct samples of the

error

wwwi, j = xxxi+1, j− xxxi, j (5.67)

The one drawback of this model is that the errors should obviously depend

on range to the surface. Therefore they will be scaled by the corresponding range

measurement (or estimate) to get a range-normalized error-scale:

wwwi, j = (xxxi+1, j− xxxi, j)/λi, j (5.68)

Note that the range is known for the synthetic images which enables the samples of

wwwi, j to be obtained.
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5.10.2 Other Error Models

For all the other error models, the only viable solution is to rely on the pseudo-

residuals rrri, j,k defined in Equation (5.19) which are approximately:

rrri, j,k = ννν i,k−ννν j,k (5.69)

For the standard model, rrri,1,k for all i and k. Clearly the sum of two error samples

is not a good representation of individual error samples. Under the standard model

assumption, the errors are IID. The residual should be scaled as rrri,1,k/
√

2 so that

the statistics of the scaled pseudo-residuals will be equal to the statistics of the error

samples at the normal distribution.

The α-parameterized models at α = 1 have underlying errors equal to rrri+1,i,k

which is very convenient. The errors are underlying in the sense that they are not the

additive feature localization errors themselves but the errors that define the edges

of the optimization landmark and are therefore the ones that must be well-modeled

(since this is what the cost function must be designed around).

5.10.3 Experimental Results

An experiment was designed to study visuals errors under the models described

above. The Temple 1 comet model and rendering tool as described in Section 4.1 were

used to obtain 100 sets of 20 images for each of three trajectory classes, long-orbit,

short-orbit, and descent trajectories, all of which are described in Section 5.1.

For each set of images, feature detection with the ORB detector is performed
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on the first image. Features are tracked from frame-to-frame with the Lucas-Kanade

tracker as described in Section 4.4. The resulting feature trajectories are then pro-

cessed individually to obtain approximate error samples using the equations pre-

sented in the previous sections of this section. There are approximately 200,000

samples generated (20 images, 100 sets, 100 features per image). For each model,

an attempt is made to fit several distributions. A Gaussian, Cauchy, Laplace, and

generic Kernel Density Estimate (KDE) are fit to all samples. Additionally, a Gaus-

sian is fit to the middle 99 % and middle 95 % of the data. The results for each

model are discussed below. Histogram plots and CDF plots are shown for the descent

trajectory class only. The results are tabulated for all trajectory classes.

The standard model error samples for the descent trajectory are shown in Fig-

ure (5.10) and Figure (5.11). Qualitatively, the Gaussian fit to all samples is very

poor. This is because the true distribution has high kurtosis which inflates the fit-

ted Gaussian variance. The result is an underestimate of the probability over the

majority of the data. The Gaussian fit improves as the data is trimmed from 99 %

to 95 %. The Cauchy and Laplace appear to give good fits. The Laplace fits the

middle 90 % of the data very well but underestimates the tails. The Cauchy is a

very heavy-tailed distribution and therefore better captures the behavior there. Note

that the majority of the errors fall within one pixel of zero.

The landmark-walk model error samples for the descent trajectory are shown

in Figure (5.13) and Figure (5.14). Note that these errors are normalized by the
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Figure 5.10: Approximate samples from error distribution under the standard model.
Samples genereated with 100 sets of 20 images along random descent trajectories.

Figure 5.11: View of the tails of the samples in Figure (5.10)
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Figure 5.12: CDF of samples and distributions in Figure (5.10)

range to the surface along the given pixel ray. This model seems to have even higher

kurtosis than the standard model. The extreme tails stretch the Gaussian fit. Again,

the Cauchy distribution appears to give the best fit to the samples.

The correlated error model for the descent trajectory has samples with much

lower kurtosis than the previous two models. The Gaussian fit to the middle 99% and

95% of the data set and the Laplace both appear to fit the samples well. Nevertheless,

there are still a small number ( < 0.1%) of samples that appear as outliers under

the Gaussian and Laplace. The Cauchy captures these but has a poorer fit to the

middle 99.9 % of the data. One interesting point to notice is the much smaller scale

of the errors in the correlated model as compared to the standard model: 0.15 pixels

compared 1.0 pixels for the middle 95% of the data. This is because these errors
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Figure 5.13: Approximate samples from error distribution under the landmark-walk
model. Samples generated with 100 sets of 20 images along random descent trajec-
tories.

Figure 5.14: View of the tails of the samples in Figure (5.13)
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Figure 5.15: CDF of samples and distributions in Figure (5.13)

involve only a frame-to-frame error instead of frame-to-initial error as is seen in the

standard model.

5.10.4 Tables of Distribution Fits

The results of the previous three subsections are quantitatively summarized in

the tables below. For each distribution and model pair, the scale estimate and three

goodness-of-fit statistics are reported for each trajectory class. The goodness-of-fit

statistics are

1. Total Log-Likelihood: 1
N ∑

N
i log f̂ (xi)

2. Kolmogrov Distance: maxx|F̂(x)−Fn(x)|

3. Cramer von-Mises Criterion:
∫

∞

−∞

(
F̂(x)−Fn(x)

)2 dx

where F̂(x) and f̂ (x) is the estimated distribution and density respectively. A small
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Figure 5.16: Approximate samples from error distribution under the correlated er-
ror model. Samples generated with 100 sets of 20 images along random descent
trajectories.

Figure 5.17: View of the tails of the samples in Figure (5.16)
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Figure 5.18: CDF of samples and distributions in Figure (5.16)

(large negative) total log-likelihood implies that the distribution is a bad fit. This

statistic is especially sensitive to outlier-like samples. It is very important for the total

log-likelihood to be high for the designed distribution. The Kolmogrov distance is

useful for characterizing how much the samples disagree with a particular distribution

at the worst location in the sample space. The smaller the statistic, the better the

fit. The Cramer von-Mises criterion gives a global characterization of the fit (over

the sample space) that is less sensitive to outliers than the total log-likelihood.

Table (5.1) summarizes the scale estimates and goodness-of-fits for each model-

distribution pair for the descent trajectory class. Several conclusions can be drawn

from this table. First, consider the normal distributions with scale estimated from

the full and trimmed samples. The total log-likelihood is an extremely large negative

193



Distributions fitted to standard model errors.
Distribution Scale Est. Likelihood Kolmogrov Cramer von-Mises
Normal 0.671 −∞ 0.150 0.0219
Normal 99 % 0.458 −∞ 0.091 0.00453
Normal 95 % 0.362 −∞ 0.058 0.00247
Cauchy 0.189 -1.268 0.030 0.00402
Laplace 0.344 -1.250 0.042 6.93e-4

Distributions fitted to random-walk model errors.
Distribution Scale Est. Likelihood Kolmogrov Cramer von-Mises
Normal 0.0038 −∞ 0.259 3.60e-4
Normal 99 % 0.0014 −∞ 0.089 1.54e-5
Normal 95 % 0.0010 −∞ 0.036 5.72e-6
Cauchy 0.00057 5.20 0.033 1.29e-5
Laplace 0.0011 5.10 0.054 6.68e-6

Distributions fitted to correlated-error model errors.
Distribution Scale Est. Likelihood Kolmogrov Cramer von-Mises
Normal 0.191 −∞ 0.268 0.0196
Normal 99 % 0.055 −∞ 0.026 5.64e-5
Normal 95 % 0.047 −∞ 0.030 1.30e-4
Cauchy 0.031 1.314 0.056 0.00129
Laplace 0.050 1.309 0.030 1.19e-4

Table 5.1: Descent Trajectory Results: Scale estimates for various distributions
under the assumption of the three models. Different goodness of fit statistics are
reported for each.

number in all cases. It is reported as −∞ because it caused an overflow error with

double-precision arithmetic. This large negative total log-likelihood is due to the

fact that the samples simply cannot be described by a normal distribution. For any

scale (i.e. variance) that captures the majority of the data, there are samples that

appear nearly impossible. The zoomed in figures above illustrate this (i.e. Figure

(5.11), Figure (5.14), and Figure (5.17)).

The error samples for the standard model seemed to be described well with
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both the Cauchy and Laplace distributions. The lower Cramer von-Mises criterion

for the Laplace implies that the Laplace gives a better global fit than the Cauchy.

On the other hand, the lower Kolmogrov distance for the Cauchy implies that the

Cauchy and true distribution lie in a smaller Kolmogrov neighborhood. Interestingly,

the normal distribution fitted to the 5% trimmed samples has a lower Cramer von-

Mises criterion than the Cauchy. From Figure (5.10), it appears this is due to the

better fit for the middle of the data despite the poorer fit in the tails where the true

distribution is already small.

The error samples for the landmark-walk model appear to be more amenable to

a properly scaled normal distribution because of the low Cramer von-Mises criterion

at both the 1% and 5% trimmed normal scale estimates. In fact, the normal with

5% trimmed scale estimate gives the lowest Cramer von-Mises criterion out of all

distributions. This distribution has nearly the lowest Kolmogrov distance as well:

the Cauchy is only 10 % better. Compared to the standard model, the distributions

for error samples seem to fit the landmark-walk model better: the Cramer von-

Mises and total log-likelihoods are more favorable and the Kolomogrov distances are

similar.

The error samples for the correlated error model are qualitatively similar to

those of the random-walk model which is unsurprising because the models are con-

ceptually similar. Again, the normal with scale estimates from trimmed samples

and the Laplace have favorable Cramer von-Mises criteria and Kolmogrov distances.
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Distributions fitted to standard model errors.
Distribution Scale Est. Likelihood Kolmogrov Cramer von-Mises
Normal 0.859 −∞ 0.179 0.0413
Normal 99 % 0.572 −∞ 0.118 0.0116
Normal 95 % 0.408 −∞ 0.067 0.00443
Cauchy 0.190 -0.713 0.019 0.00235
Laplace 0.406 -0.791 0.058 0.00274

Distributions fitted to random-walk model errors.
Distribution Scale Est. Likelihood Kolmogrov Cramer von-Mises
Normal 0.0059 −∞ 0.295 6.89e-4
Normal 99 % 0.0019 −∞ 0.113 3.90e-5
Normal 95 % 0.0012 −∞ 0.035 8.26e-6
Cauchy 0.00067 5.02 0.034 1.33e-5
Laplace 0.0015 4.80 0.080 2.38e-5

Distributions fitted to correlated-error model errors.
Distribution Scale Est. Likelihood Kolmogrov Cramer von-Mises
Normal 0.151 −∞ 0.189 0.00826
Normal 99 % 0.081 −∞ 0.064 5.90e-4
Normal 95 % 0.060 −∞ 0.030 2.42e-4
Cauchy 0.038 1.069 0.044 0.00112
Laplace 0.064 1.057 0.033 1.80e-4

Table 5.2: Long-Orbit Trajectory Results: Scale estimates for various distribu-
tions under the assumption of the three models. Different goodness of fit statistics
are reported for each.

Interestingly, the Cauchy has a relatively high Kolmogrov distance as compared to

other models.

The fitted distributions for the long-orbit and short-orbit trajectory classes

exhibit similar behavior. For the standard model, the normal distribution appears

to be a poor fit regardless of the scale estimate. Although the tighter scale estimates

associated with the trimmed normal do fit better than the untrimmed scale estimate,

the Kolmogrov and Cramer von-Mises scores are higher than they are for both the

196



Distributions fitted to standard model errors.
Distribution Scale Est. Likelihood Kolmogrov Cramer von-Mises
Normal 0.661 −∞ 0.145 0.0201
Normal 99 % 0.513 −∞ 0.108 0.00811
Normal 95 % 0.387 −∞ 0.068 0.00376
Cauchy 0.183 -0.663 0.022 0.00255
Laplace 0.365 -0.685 0.050 0.00148

Distributions fitted to random-walk model errors.
Distribution Scale Est. Likelihood Kolmogrov Cramer von-Mises
Normal 0.0036 −∞ 0.256 3.44e-4
Normal 99 % 0.0013 −∞ 0.076 1.23e-5
Normal 95 % 0.00096 −∞ 0.033 4.87e-6
Cauchy 0.00055 5.24 0.035 1.33e-5
Laplace 0.0011 5.16 0.043 5.23e-6

Distributions fitted to correlated-error model errors.
Distribution Scale Est. Likelihood Kolmogrov Cramer von-Mises
Normal 0.082 1.087 0.099 0.00132
Normal 99 % 0.062 −∞ 0.044 1.85-4
Normal 95 % 0.050 −∞ 0.030 1.63e-4
Cauchy 0.032 1.261 0.048 0.00102
Laplace 0.049 1.318 0.016 3.17e-5

Table 5.3: Short-Orbit Trajectory Results: Scale estimates for various distribu-
tions under the assumption of the three models. Different goodness of fit statistics
are reported for each.

Cauchy and Laplace distribution. Although the Laplace fits have higher Kolmogrov

score than the Cauchy (0.058 vs. 0.019 and 0.050 vs. 0.022), the Cramer von-Mises

score is similar or better than that of the Cauchy fit (0.00274 vs. 0.00235 and 0.00148

vs. 0.00255). This suggests that an L1 type estimator may be well-suited to these

trajectories.

For the landmark-walk model, the normal distribution fit at the tighter error

scale estimates of the trimmed normal appear to give a good fit. The 95% trimmed
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normal estimate has the lowest Cramer von-Mises score and nearly the lowest Kol-

mogrov score of all distribution fits. This suggests a Huber cost function will be

well-suited to this model and trajectory class.

For the α = 1 correlated errors, both the 95% trimmed normal and the Laplace

fit give low Kolmogrov and Cramer von-Mises scores. The Kolmogrov score is espe-

cially low for the Laplace distribution in the short-orbit trajectory class: the empirical

CDF is always within 0.016 of the fitted Laplace CDF. This suggests an L1 type

estimator will have high efficiency in this case.

The above discussion summarizes how well different distributions fit the error

samples under different models. Intuitively, we would expect an MLE designed under

a particular distribution will do better the more accurately the distribution fits the

actual errors. The definition of a better estimate is up to the system designer and

the definition of an accurate fit is not given by theory. The above results give a

good starting place to explore different estimators. This is presented in the following

sections.
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5.11 Performance Analysis

The aim of this section is to study the performance of estimators designed

around the models presented in the previous sections. The introduction to this sec-

tion, given below, describes the estimators to be tested, the input to the estimators,

and the performance metric computed on the output of the estimators.

The five structural models presented above were studied. To fully specify any

model, a probabilistic component must be added. Based on the results of Section

5.10, the Laplace and Cauchy distributions were reasonable fits to the data. In addi-

tion, the normal distribution fits a large percentage, but not all, of the samples. This

motivates two different probabilistic models and hence two different cost functions.

One cost function is the negative-log-likelihood of the multivariate Cauchy dis-

tribution:

ρ(x) = log(1+
1

σ2 rrrT
Ωrrr) (5.70)

where rrr is the difference between the measured and expected value conditioned on

the parameters. Also, Ω is the unit scale version of the inverse of the measurement

covariance. This is simply identity for the all models except the correlated error

model. For the correlated error model, it is defined in Equation (5.41) with σ = 1.

The second cost function is the Huber cost function:

ρ(x) =


1
2x2 |x| ≤ k

k|x|− 1
2k2 |x|> k

(5.71)

where x =
√

rrrΩT rrr/γ2. As γ → 0 for fixed k, the Huber cost function approaches
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the L1 norm which is the negative-log-likelihood of the Laplace distribution studied

above. As γ → ∞ for fixed k, the Huber cost function approaches the least squares

cost which is the negative-log-likelihood of the Gaussian distribution. Because all

measurements are treated with the same scale, the L1 cost and least squares cost are

both scale invariant estimates. For finite non-zero γ values, the Huber cost depends

on scale. For a fixed value of k, say k = 1, decreasing γ will increase the number

of measurements in the outlier-region (i.e. linear region) and hence increase the

number of measurements being down-weighted relative to a least squares cost. If the

errors were truly Gaussian with covariance σ2Ω−1, then |x|2γ2/σ2 is a χ2-variable

with degrees-of-freedom equal to the dimension of rrr. If one would like to let a

proportion p of the measurements be down weighted, then one must use the χ2 CDF

to determine what the ratio γ2/σ2 should be. For example, for 2D measurements

with p = 0.05 and k = 1, the inverse CDF at 1− 0.025 is 5.99 which is the critical

value for |x|2γ2/σ2. Therefore when k = 1, one should set γ2/σ2 = 5.99 or γ2 = 5.99σ2

for a given σ2. In this way, we can use the results of the previous section for the

normal distributions fitted to the trimmed dataset.

The measurement input to the estimator was generated from the computer

vision pipeline developed for this dissertation and discussed in Section 4.4. The

outputs of the pipeline are a data structure containing the feature measurements, an

initial guess of landmark positions, and an initial guess of camera pose relative to

the first image. This is all the necessary inputs for the estimator. However, there is
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one issue. The combination of the measurement function and cost function lead to

non-convex optimization problems in all cases. Therefore the estimator output may

depend on the input initial guess. This will be dealt with explicitly below.

Finally, it is desirable to have performance metrics that can be computed on

the estimator output, namely the camera trajectory. Several performance metrics

are possible and the best choice depends on the given application. The performance

metric used here is the root-mean-square (RMS) translational and angular error

computed for each individual trajectory. This was selected simply because it is

widely used and is easily interpreted.

Before concluding the introduction to this section, a very important note is

in order. Because the focus of this section is to study how well different estimators

perform on visual measurements, no other (non-visual) measurement type is included

as this would conflate the visual measurement cost function with the other measure-

ment cost function. The downside to this is that the metric scale of the trajectory

and scene is unobservable as described in Section 3.5. This can cause numerical

issues in the optimization routine. In addition, the metric scale is needed in order

to compare to the ground truth trajectory (which is known exactly for this dataset).

To overcome this, a pseudo-measurement was added to fix the distance between the

first and last camera. The value of this distance is based on the a priori estimate of

camera pose generated during feature tracking as described in Section 4.4. This re-

solves the numerical issue. To then make a fair comparison to the ground truth, two
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options are possible. The first is to use the ratio between the true and a priori first-

to-last camera distance to scale the trajectory. The second is to numerically solve

for the optimal trajectory scaling that would minimize an error metric computed be-

tween the true and estimated trajectory. The latter gives a fair assessment because

any metric scaling of the trajectory (and landmarks) does not change the likelihood

function (or robust cost). It turns out that both options give nearly identical results.

The latter option was used in all results below.

The rest of this section is organized as follows:

1. A detailed explanation of the experimental design is given. The design specifies

a set of three high-level tests to be performed.

2. The first high-level test results are presented. This test studies the performance

of a large number of estimators on a relatively small number of datasets. In

these tests, the initial guess of pose is taken as the output of the feature tracking

pipeline.

3. The second high-level test results are presented. This test studies the sensitivity

of the estimators’ output to the initial guess. This is performed for a large

number of estimators on a small number of samples.

4. The results of the first two high-level tests are used to select a subset of esti-

mators for further testing. A discussion is given to justify this choice.

5. The third high-level test results are presented. A smaller number of estimators

are used in this test but on a larger number of samples.
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6. A discussion of all results is given.

5.11.1 Experimental Design

This study can be broken up into three tests. The aim of the first test is to

gain a basic understanding of the performance of the estimators derived from the

various probabilistic models and how their internal tuning parameters impact their

performance. The aim of the second test is to study the sensitivity of the output of

each estimator to the initial guess. The first two tests are used to select a subset

of estimators for the third study which is a more rigorous statistical analysis of

performance. Difficulties in designing the tests are discussed below and then details

of the tests are given.

The first difficulty is that there is a large number of estimators to be studied.

In particular, there are five different models. Two of the models have one parameter,

namely scale. Three of the models have two parameters, namely scale and correlation.

Furthermore, two different cost functions, to be discussed below, need to be tested at

each parameter setting. Even if scale and correlation are only tested at five different

values, this leads to ten different estimators for each of the first two models and fifty

estimators for each of the other three models. In addition, the simultaneous scale

estimator for each model adds another two estimators for each of the first two models

and ten estimators for each of the other three models: a total of 204 estimators!

The second difficulty is that each estimator must be applied to many datasets in

order to assess the performance. This is because variability in the estimator output
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(i.e. the performance metric) is due to both the type of estimator and the particular

dataset: the first cause is of primary interest and the second cause is a confounding

factor. Furthermore, there are three aspects of a dataset that cause variability in the

estimator output. The first is the set of visual feature measurements and the second

is the pose estimate that the feature tracker generates which is used as the initial

guess for the estimator. The third difficulty is that the performance of each estimator

is expected to also depend on which trajectory class is used. In summary, there are

three confounding factors: the particular dataset, the initial guess associated with

the dataset, and the trajectory of the dataset. The high-variation in performance due

to confounding factors implies a large number of datasets need to be tested to asses

the performance of an estimator. Coupled with the fact that so many estimators

need to be tested, this represents a large computational burden.

The difficulties caused by confounding factors can be handled by an intelligent

experimental design. First we need to specify the experimental units.

An experimental unit is defined in this study as a particular dataset (i.e. a set

of images with associated feature measurements) and the corresponding initial guess.

The treatments are the individual estimators. The response of each experimental unit

to each treatment is the RMS translational and angular error of the estimator output

on the dataset. In order to increase the power of statistical tests, the variability in

experimental unit response to different treatments can be effectively reduced by

statistical blocking, a commonly used tool in experimental design that groups similar
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Figure 5.19: Statistical blocking implemented in this study.

experimental units together. For the purposes of this study, a three-tiered approach

to blocking has been taken. This approach is illustrated in Figure (5.19).

Figure (5.19) shows the three layers of statistical blocking used. The individual

experimental units are shown in the orange boxes. At the highest level, experimental

units are blocked based on which trajectory class they belong to (shown in light-

green). At the intermediate level, the experimental units are blocked based on the

error level of the initial guess (shown in blue). At the lowest level, the experimental
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units are blocked based on the dataset they are derived from (shown in dark-green).

Estimators are applied to each experimental unit (shown in orange). To compare

two particular estimators at a given noise level and trajectory class, the differences

in performance metric for each experimental unit (associated with that block) are

computed and then used in a Wilson Signed Rank Test (WSRT).

The WSRT is a paired difference test that compares the difference in response

among two treatments for each experimental unit. The WSRT is nonparametric

in the sense that it makes no assumption about the distribution of the individual

samples. The nonparametric property makes it well-suited to the application at

hand.

With the above framework in place, the three primary tests can be discussed.

The first test seeks to understand the performance of all structural models at a variety

of parameters. For this test, ten datasets are used from each of the three trajectory

classes. For each dataset, the initial guess is chosen as the vision pipeline output

pose estimate. The estimators tested are the following. The standard model and

landmark-walk model are used with scale σ ∈ {0.01,0.05,0.1,0.5,1.0} for both the

Huber and Cauchy cost. The autoregressive, pixel-walk, and correlated error model,

are used with scale σ ∈ {0.01,0.05,0.1,0.5,1.0} for both the Huber and Cauchy cost.

It was decided to use α = 1.0 in all tests. When α = 0.0, the α-parameterized

models are mathematically equivalent to the standard model. The choice of β = 1.0

is motivated by the mechanics of the Lucas-Kanade (and similar frame-to-frame
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trackers) which is used in the pipeline and by the testing results of Section 5.2.1.

The results of this first test are given in Section 5.11.2.

One issue with this test has to do with the quality of the initial guess. Note

that the pipeline uses depth measurements in addition to feature tracks. As a result,

the accuracy of the resulting initial guess will be higher than if feature measurements

alone had been used. Therefore, it is possible that for some estimators, the initial

guess is better than the global-optimum for the estimator. This partially motivates

the second and third tests.

The second test uses the same set of estimators as the first test. In the second

test, well-controlled random error is added to the ground truth to be used as the

initial guess for the estimators. Two levels of noise are added. The first is zero-noise

(i.e. the initial guess is the truth). The second is zero-mean Gaussian error with

σ = 0.05 distance units and σ = 0.01 radians added to each component of position

and attitude respectively. Five instances of the second noise level are added per

dataset. The output of the five instances of the second noise level are compared to

the noise free case. Note that this test treats departs from the blocking scheme used

in the other tests. In particular, the purple-colored block in Figure (5.19) (i.e. a

dataset with many initial guesses) is treated as an experimental unit. The results

are given in Section 5.11.3.

The results of the first and second test are used to select a subset of estimators

for the third test. The full blocking scheme of Figure (5.19) is used in the third
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test. A large number of samples is then used which enables the use of the WSRT to

make statistically significant statements about performance. The results are given

in Section 5.11.5.

5.11.2 Basic Performance Study

This section presents results from the first of three tests. The purpose of this

study is to obtain a basic understanding of the performance of the various estimators

and identify viable candidates for further testing. The estimators discussed in the

previous section, designed around the five structural models, are used to estimate the

pose and landmark parameters for ten datasets from each of the three trajectory-

classes. In all cases, the pose estimate output from the vision pipeline is used as

the initial guess. Two sets of plots are generated for the results. The first gives the

median RMS position and angle error over the ten datasets (i.e. one position value

and one angle value per estimator per trajectory). The median is plotted against

the scale of the estimator. The results for each trajectory class are given on separate

plots and are collected in Figure (5.20). The RMS error of each of the ten individual

datasets are given in Figure (5.21). These results are discussed below. Inter-model

trends are discussed first followed by intra-model trends.

The standard model seems to work best with the σ = 0.01 Cauchy cost in the

long-orbit and short-orbit cases and with the σ = 0.1 Cauchy cost in the descent

case. This is surprising as the analysis in Section 5.10 suggested that either a Huber

scale of σ = 0.4 or a Cauchy scale of σ = 0.2 was a good fit for each of the motion
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Figure 5.20: Median estimator performance over ten datasets from each trajectory
class versus estimator scale parameter. Initial pose estimate from vision pipeline.
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Figure 5.21: RMS error for various estimators on each of ten datasets from each
trajectory class. Initial pose estimate from vision pipeline.
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cases (see Table (5.1) for example). This may indicate a more fundamental issue

with the standard model. Also, the fact that performance improves with decreasing

scale for the Huber distribution in particular, suggests an L1 cost may be best as

the very small scale essentially makes the Huber cost look like an L1 cost.

In some cases, the tight Cauchy scale did give large errors. For example, see

the fourth dataset for the short-orbit in Figure (5.21), where the position and angle

errors are especially high for the standard model with Cauchy cost. Part of this may

be a convergence issue. As will be shown in the second test, convergence issues occur

with the Cauchy cost at a small scale.

Another interesting behavior for the standard model is that in some cases, the

attitude error is small relative to other estimators while the position error is large.

See for example, the fifth dataset in the short-orbit case where the standard model

with Cauchy cost and scale 0.01 has the highest position error but nearly the lowest

attitude error. An explanation for that behavior is as follows.

Although the behavior may seem surprising, a simple thought experiment can

provide needed insight. First consider a scenario of a planar scene of mapped land-

marks with a camera pointed normal to the plane and moving along the plane (similar

to what occurs in the short-orbit case). If all features have the same localization er-

ror at one instant in time, then this will cause a large position error but little-to-no

angle error. For a nearly planar scene, large inter-feature error correlations can cause

large position error growth without large angle error growth. This type of correla-

211



tion has not been modeled and its effect on estimator performance in general scenes

is difficult to assess. Nevertheless, it seems to be a reasonable explanation for the

observed behavior. In the cases considered here, where landmarks are not mapped

a priori, the issue can be exacerbated by a lack of observability. This would explain

why the effect is most evident in the short-orbit case where there is less motion than

in the long-orbit case and where all features undergo a similar displacement in image

space.

The results in Figure (5.20) seem to suggest that the landmark-walk estimator

is insensitive to scale in most cases (note that it closely overlaps with the pixel-walk

estimator). This is consistent with Figure (5.21) where all the trend-lines associated

with the landmark-walk model (maroon colored) are closely bunched together. In

addition to being closely bunched together, they also seem to follow the trend-line

for the initial guess itself (black colored). This suggests that the landmark-walk

estimator is frequently converging to a local minima very close to the initial guess.

Convergence issues for this estimator will be confirmed in the second test.

The correlated error model also seems to be insensitive to scale and choice of

cost (Huber or Cauchy). Looking at Figure (5.21), the correlated error model results

do not appear to track the initial guess, unlike in the landmark-walk case. This

suggests that the correlated error model does not suffer the convergence issues that

the landmark-walk model does. This is confirmed in the second test.

The autoregressive model dues have significant variation due to scale and dis-
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tribution in the short-orbit and descent trajectory classes but not in the long-orbit

class. There is a clear reduction in error for the Cauchy cost over the Huber cost at

all scales. In addition, the tighter scales appear to give better performance.

The pixel-walk estimator has very similar trends as the autoregressive estima-

tor. This is unsurprising as these two models are very similar. Again, there seems

to be an advantage for tighter scales and an advantage for the Cauchy cost over the

Huber cost, especially when looking at Figure (5.20). Looking at Figure (5.21), it

does appear that the Huber is competitive with the Cauchy cost in many cases.

This concludes the section on intra-model trends. The next section will compare

the behavior across the different models.

Up to this point, the discussion has focused on the performance on each model.

In the following discussion, the models are compared. First, the results for the long-

orbit trajectory are discussed, followed by the short-orbit cases, and finishing with

the descent cases.

From Figure (5.20), the standard model cost that gives the best typical-case

performance is the σ = 0.01 Cauchy which has an attitude error of 0.0051 radians

and a position error of 0.026 distance units. One key result is that the best-tuned

estimators under each of the newly proposed models does better than the best-tuned

estimator under the standard model! The performance of each novel estimator on the

long-orbit trajectory are briefly summarized below. The landmark-walk model with

a σ = 0.1 Cauchy cost gives 0.0024 and 0.018 angle and position error respectively:
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a reduction of 51 % and 31% over the standard model. The pixel-walk model with

a σ = 0.01 Cauchy cost and α = 1.0 gives 0.0013 and 0.017 angle and position error

respectively: a reduction of 73 % and 35%. The correlated error model with a σ = 0.1

Cauchy cost and α = 1.0 gives 0.0015 and 0.017 angle and position error respectively:

a reduction of 69 % and 35%. The autoregressive model with a σ = 0.01 Cauchy

cost and α = 1.0 gives 0.0017 and 0.017 angle and position error respectively: a

reduction of 65 % and 35%. The fact that each of these estimators can outperform

the standard model by such a large margin is a key result of this dissertation! Several

other trends should be noted.

For the short-orbit case, the standard estimator performs best in the typical

case with a σ = 0.01 Cauchy cost where the angle and position error is 0.0039 and

0.023 respectively. The landmark-walk model with a σ = 0.01 Huber cost gives

0.0012 and 0.00896 angle and position error respectively: a reduction of 69 % and

61%. Similar to the long-orbit case, the landmark-walk model estimator appears very

insensitive to changes in error scale. The pixel-walk model with a σ = 0.01 Cauchy

cost and α = 1.0 gives 0.0013 and 0.014 angle and position error respectively: a

reduction of 67 % and 43%. The correlated error model with a σ = 0.01 Cauchy cost

and α = 1.0 gives 0.0022 and 0.017 angle and position error respectively: a reduction

of 26 % and 35%. The autoregressive model with a σ = 0.01 Cauchy cost and α = 1.0

gives 0.002 and 0.015 angle and position error respectively: a reduction of 49 % and

35%. Again, the newly proposed models all outperform the standard estimator.
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The behavior for the descent trajectory class is different then the previous two

trajectory classes. For the standard estimator, the best version is the Cauchy with

σ = 0.1 which is a much larger scale then what worked best in the previous cases.

The angle and position error are 0.00064 and 0.00125 respectively at that estimator.

The landmark-walk model performs worse than this: 0.00080 and 0.0165 at the

σ = 0.01 Cauchy cost which is the best tuned landmark-walk estimator. This is

an increase of 25% and 32% respectively. The other three novel estimators give

very slightly better performance than the standard model. In particular, the best-

tuned pixel-walk estimator is the σ = 0.1 Cauchy estimator which yields an angle

and position error of 0.00075 and 0.0166: an increase of 14.7% and 24.7%. The

best-tuned correlated error estimator is the σ = 0.5 Cauchy estimator which yields

an angle and position error of 0.00075 and 0.0147: an increase of 14.7% and 15.0%.

The best-tuned autoregressive estimator is the σ = 0.05 Cauchy estimator which

yields an angle and position error of 0.00069 and 0.0138: an increase of 7.2% and

9.4%. Based on these results the α-parameterized estimators have a slight reduction

in performance over the standard estimator for the descent trajectory class.

To summarize the key issues in the above discussion, in the long-orbit and

short-orbit cases, there is clear evidence to suggest that the α-parameterized models

with α = 1 outperform the standard estimator. This trend is not nearly as clear in

the descent motion cases where the α-parameterized estimators give slightly worse

performance. The reason for the different behaviors between the motion cases is
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discussed later in Section 5.11.6. These results are primarily used to develop a basic

understanding of the estimator performance. Along with the results from the second

test which is presented in the next section, the results of this test are used to select

a subset of estimators for a statistically rigorous performance evaluation.

5.11.3 Sensitivity to Initial Guess

Much of the discussion in this section up to this point has been on developing

accurate models of visual measurement errors for the purpose of designing estimators.

Such estimators are an important result in their own right. However, in practice,

optimization algorithms are needed that can obtain the mathematically correct es-

timate. The nonlinearity of the camera projection equations leads to a non-convex

optimization problem even when the cost function is convex (as it is for least-squares

and the Huber cost but not for the Cauchy cost). Therefore there is no guarantee of

convergence to a global minimum. In presenting results on the performance of these

estimators, it is important to have a sense of how well each estimator converges.

A sensitivity study was setup to understand how the estimator output depends

on the input initial guess. To do so, a total of 1+ntrials estimates were obtained for

each of nsets = 10 (5 of the long-orbit and 5 of the descent type) datasets for several

representative estimators. One of the 1+ ntrials estimates uses the ground truth to

initialize the estimator. The other ntrials = 5 estimates use random perturbations

about the ground truth. The random perturbations are generated by adding random

Gaussian errors to the translation vector and rotating the true rotation matrix by a
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small rotation matrix constructed from three random Gaussian Euler angles (1-2-3

sequence). The scale of these errors is σ = 0.02 distance units for translation and

σ = 0.005rad for attitude. These values were selected as they have a similar order of

magnitude as the standard estimator output.

For each of the ntrials trials of each dataset with each estimator, the RMS of the

difference between the resulting estimate and the estimate initialized at the truth is

obtained. Of the ntrials RMS (angle and position) values for each estimator-dataset

pair, both the median and maximum are saved for plotting to see both a typical and

worst-case value. The low number of trials, ntrials = 5, was selected out of practical

constraints. A total of 20 estimators were considered in this analysis and had to

be run on each of nsets(ntrials + 1) datasets. This gave a total of 20× 10× 6 = 1200

estimate computations for this analysis alone. While some of the estimators have

fairly short run times, < 10 seconds for the standard model, the pixel-walk estimator

can take up to 100 seconds. If more resources and time were available, a larger

number of datasets and trials would have been used to obtain a more comprehensive

understanding of convergence.

Note that if this were a convex problem, the RMS difference would be zero

for all ntrials trials, as each trajectory would converge to the same global minimum.

They key question that this section seeks to answer is if typical variations in the

initial guess are large enough to cause the estimator to converge on different local

minima. To be clear, this is not used to determine estimator performance since we
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are comparing estimates to other estimates (and not to ground truth). However, this

will be used to help explain variation in performance across the datasets.

The results are aggregated in Table (5.4) . Note that in the left-hand column,

the standard model is represented by ST, the landmark-walk model by LW, the

correlated error model by CE, the autoregressive model by AR, and the pixel-walk

model by PW. In addition the Huber and Cauchy costs are represented by H and C

respectively. The last identified in the left-hand column is the scale of the estimator.

For example, the estimator in the first row is ST-H-0.01 which is the standard model

with Huber cost at a scale of 0.01. The other columns give the maximum and median

RMS difference, as described above.

Consider the results of the standard estimator in the top eight rows of Table

(5.4) . Some expected trends are as expected. First, the Huber estimator appears

to converge on the same solution in all cases: the RMS difference is on the order of

10−6 and 10−7 for position and angle respectively. The Cauchy with σ = 0.5 gives a

similar result. As the scale of the Cauchy is reduced, the convex region of the Cauchy

cost function shrinks which increases the difficulty in finding the optimal solution.

To see this, note that the Cauchy cost and its first two derivatives are

ρ(x) = log(1+ x2/σ
2) (5.72)

ρ
′(x) =

2x/σ2

1+ x2/σ2 (5.73)

ρ
′′(x) =

2/σ2

1+ x2/σ2 −
4x2/σ4

(1+ x2/σ2)2 (5.74)

The second derivative is positive on the interval [−σ ,σ ] and negative outside of that.
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Long-Orbit Descent
Angle Trans. Angle Trans.

Est. Med. Max Med. Max Med. Max Med. Max
ST-H-0.01 1.3e-6 6.4e-6 1.3e-5 1.0e-4 2.1e-6 1.6e-5 4.7e-5 3.6e-4
ST-H-0.1 1.5e-6 1.1e-5 2.1e-5 9.9e-5 1.2e-6 1.0e-5 2.7e-5 2.4e-4
ST-H-0.5 5.8e-7 3.5e-6 7.5e-6 3.3e-5 7.3e-7 7.3e-6 1.7e-5 1.7e-4
ST-C-0.01 7.6e-4 2.3e-3 1.4e-2 2.9e-2 4.1e-4 1.4e-3 9.7e-3 3.2e-2
ST-C-0.1 2.9e-5 2.0e-4 5.1e-4 3.5e-3 3.2e-5 1.3e-4 7.1e-4 3.0e-3
ST-C-0.5 8.3e-7 3.5e-5 1.1e-5 4.9e-4 2.5e-7 1.7e-6 6.8e-6 4.0e-5
LW-H-0.01 4.2e-3 8.5e-3 7.7e-2 1.4e-1 8.5e-6 4.1e-5 1.9e-4 8.8e-4
LW-H-0.1 4.1e-3 8.6e-3 7.6e-2 1.3e-1 2.5e-5 1.4e-4 5.4e-4 3.0e-3
LW-C-0.01 4.1e-3 8.9e-3 7.2e-2 1.8e-1 6.5e-6 5.7e-5 1.4e-4 1.3e-3
LW-C-0.1 4.0e-3 9.2e-3 7.2e-2 1.3e-1 1.5e-5 1.0e-4 3.1e-4 2.1e-3
CE-H-0.01 1.1e-5 9.0e-5 7.3e-5 6.4e-4 4.5e-6 2.0e-5 1.0e-4 4.5e-4
CE-H-0.1 6.3e-6 6.2e-5 4.4e-5 4.3e-4 5.3e-6 1.8e-5 1.2e-4 4.2e-4
CE-C-0.01 3.6e-6 5.6e-5 3.9e-5 2.9e-4 8.4e-6 2.7e-5 1.8e-4 6.1e-4
CE-C-0.1 8.7e-6 3.0e-5 5.1e-5 1.4e-4 8.1e-6 3.0e-5 1.8e-4 7.0e-4
PW-H-0.01 1.8e-4 5.1e-4 1.2e-3 3.2e-3 8.9e-6 1.6e-5 2.0e-4 3.8e-4
PW-H-0.1 5.0e-4 1.3e-3 2.8e-3 8.5e-3 9.0e-5 3.9e-4 2.0e-3 9.2e-3
PW-C-0.01 3.2e-4 9.2e-4 2.1e-3 7.2e-3 8.4e-5 5.5e-4 1.8e-3 1.3e-2
PW-C-0.1 5.4e-4 1.5e-3 3.1e-3 1.8e-2 1.1e-4 6.6e-4 2.5e-3 1.6e-2
AR-H-0.01 2.2e-6 1.7e-5 1.7e-5 1.0e-4 6.5e-6 3.0e-5 1.5e-4 6.9e-4
AR-H-0.1 1.5e-6 4.5e-5 1.5e-5 3.3e-4 5.9e-6 2.6e-5 1.4e-4 5.8e-4
AR-C-0.01 2.1e-4 5.5e-4 3.7e-3 1.1e-2 2.7e-4 8.0e-4 6.3e-3 1.9e-2
AR-C-0.1 3.5e-6 7.5e-5 4.8e-5 2.9e-4 1.0e-5 7.5e-5 2.3e-4 1.7e-3

Table 5.4: Results of sensitivity study. Median and maximum difference in RMS
error between solutions using nominal and perturbed initial guesses.

Clearly the interval shrinks as σ decreases which may cause either an increase in the

number of local minima or a decrease in the region-of-attraction to the correct local

minimum. On the other hand, the second derivative of the Huber cost

ρ(x,σ) =


1
2x2/σ2 |x|/σ ≤ k

k|x|/σ − 1
2k2 |x|/σ > k

(5.75)

is positive on the interval [−kσ ,kσ ], zero outside of the interval, and negative
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nowhere. Although the Huber cost function is a convex cost function, it is not con-

vex in the pose and landmark parameters which make up the actual estimator cost

function. Nevertheless, this likely explains the reduced sensitivity to the estimators

using a Huber cost. The sensitivity to scale for the Cauchy cost is clearly apparent

in the figures: as the scale goes from σ = 0.5 to σ = 0.1 to σ = 0.01, the RMS angle

differences go from 10−7 to 10−5 to 10−4 with similar changes for position.

Before proceeding, it is worth determining if the small differences for the Huber

cost and the σ = 0.5 Cauchy cost are due to the stopping condition of the optimiza-

tion routine or due to separate but nearly-collocated local minima. The optimization

is terminated when the normalized reduction in cost, (J (k)−J (k+1))/J (k) between

two iterations is below 10−6. Performing a first-order Taylor series expansion of this

expression about a parameter correction δθθθ of zero yields

(J (k)−J (k+1))/J (k) ≈ −1
J (k)

∂J (i+k)

∂δθθθ
(5.76)

If a least squares cost function is used for M = 20 measurements of each of N = 200

landmarks, then a typical value for the cost will be ≈ 2×MN = 8000 (based on the

mean of a χ2-distribution of residuals). The Jacobian of the cost with respect to the

parameter correction is
J (k+1)

∂δθθθ
=

M

∑
i=1

N

∑
j=1

−2
σ2 (ỹyyi, j− ŷyyi, j)

∂ ŷyyi, j

∂δθθθ
(5.77)

Therefore a small parameter correction reduces the cost approximately by a factor
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of
−1

J (k)

∂J (k+1)

∂δθθθ
≈ 1

J (k)

M

∑
i=1

N

∑
j=1

2
σ2 (ỹyyi, j− ŷyyi, j)

∂ ŷyyi, j

∂δθθθ
(5.78)

Now consider the predicted measurement at time i of landmark j:

ŷyyi, j = π
(
R̂ix̂xx j + t̂tt i

)
(5.79)

where

π ([x,y,z]) = [ f x/z+ cx, f y/z+ cy] (5.80)

To perform an order of magnitude analysis, the Jacobian of the predicted measure-

ment with respect to the parameters when f = 1000, R̂i = I, t̂tt i = 000, and x̂xx j = [0,0,8]

(which is representative for this dataset) is

∂ ŷyyi, j

∂ t̂tt i
=

1000/8 0 0

0 1000/8 0

 (5.81)

∂ ŷyyi, j

∂δθθθ i
=

1000/8 0 0

0 1000/8 0

[([0,0,8])×] (5.82)

=

 0 −1000 0

1000 0 0

 (5.83)

A correction of ∆ to either the first two elements of t̂tt i or δθθθ i changes the predicted

measurement by 125∆ or 1000∆ respectively. For the translational change, a typical

change in the least squares cost is a factor of√
VAR

[
(J (k)−J (k+1))/J (k)

]
≈

√√√√VAR

[
1

J (k)

M

∑
i=1

N

∑
j=1

2
σ2 (ỹyyi, j− ŷyyi, j)

∂ ŷyyi, j

∂δθθθ

]

=
1

J (k)

√√√√ N

∑
j=1

4σ2

σ4 1252∆2
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=
1

2MN

√
N

4σ2

σ4 1252∆2 (5.84)

=
2×125∆

40
√

200σ2
(5.85)

= 125×0.0035∆ (5.86)

= 0.44∆ (5.87)

and 3.5∆ for an angular correction (when σ = 1.0). Note that the dependence on σ

is via the error scale and not due to weighting in the cost function. The critical value

of 10−6 for the stopping criteria corresponds to a ∆ of 2.3×10−6 and 2.8×10−7 for

translational and angular corrections respectively. Note that the critical values for ∆

will be slightly larger for the Huber cost than for the least squares cost (in the above

analysis) because the Jacobian of the Huber cost with respect to the parameters

will be equal or less than that of the least squares cost. This is especially true for

measurements with large residuals which further amplifies the effect. The reduction

in the Jacobian is exaggerated for the Cauchy cost whose slopes tend to zero as the

residual magnitude increases.

The above analysis, although very coarse, is in agreement with the spread of the

trials for the Huber cost and σ = 0.5 Cauchy cost in Table (5.4) . This suggests that

these small variations are simply due to the termination criteria of the optimization

routine and not due to convergence to different local minima which is an important

point.

Next, consider the landmark-walk model. The convergence results for this
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model showed much different behavior between the long-orbit and descent trajecto-

ries. From Table (5.4) , the long-orbit case can have variations up to 0.1 distance

units and 0.01 radians just due to convergence issues. These values are about ten

times higher than they are in the descent case.

The pixel-walk model had issues with convergence for the Cauchy costs in both

the long-orbit and descent cases. Interestingly, the issue was more pronounced at the

larger Cauchy scale in the descent case but not the long-orbit case. This behavior

was also seen in the autoregressive model. Possible explanations for this are given

later in Section 5.11.6.

The correlated error model had the most consistent convergence out of the

α-parameterized models. The convergence seemed to be insensitive to the scale

parameter and seemed to be similar between the Cauchy and Huber costs.

This concludes the results for the second study of this test. The results of

this test and the first are used to select a subset of estimators for a more rigorous

analysis. The selection is discussed in the next section followed by the results of the

third test.

5.11.4 Selecting Estimators

This section discusses the selection of a subset of estimators for further testing.

It was desired to include at least one estimator from each of the five models. In

order to demonstrate that an advantage of designing estimators around the four

novel models instead of the standard model, it is important that the standard model
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is given a fair chance. For this purpose, a relatively large number of estimators

were selected for the standard model to ensure that at least one estimator designed

around the standard model was well-tuned. The selected standard model estimators

are those with both the Cauchy and Huber costs at scales 0.01, 0.05, 0.1, and 0.5.

These are all the standard model estimators tested and documented in Section 5.11.2.

Standard model estimators with scale greater than 0.5 were found to have inferior

performance and eliminated from further consideration.

For the autoregressive model, the Cauchy costs were found to have better per-

formance than the Huber costs in Section 5.11.2. In addition, the results of Section

5.11.3 did not reveal a large difference in initial guess sensitivity between the two

costs. Therefore, the Cauchy cost with scale 0.01, 0.05, and 0.1 were selected.

For the pixel-walk model, the Cauchy costs had an advantage is most cases over

the Huber cost. However, there were occasional convergence issues with the Cauchy

cost that were not as pronounced in the Huber cost. In addition the optimal scale

appeared to be around 0.01 to 0.1. Therefore the selected pixel-walk estimators were

one with Cauchy cost at scale 0.05 and one with Huber cost at scale 0.05.

For the correlated error model, the Cauchy cost had superior performance and

there was no significant difference in convergence between the Cauchy and Huber

costs. In addition, the optimal scale appeared to be between 0.1 and 0.5. Therefore

the Cauchy scale with scale 0.1 and 0.5 were selected.

In addition, an estimator to jointly estimate scale was selected for the Cauchy
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and Huber cost for both the standard model and the autoregressive model. The 20

selected estimators, ten standard and ten novel, underwent further testing which is

presented in the next section.

5.11.5 Blocked Paired-Different Tests

This section presents results for the third test of this study. In this test, fifty

datasets were used from both the long-orbit and descent trajectory class. The short-

orbit was not included as it had qualitatively similar behavior to the long-orbit

case. The initial guess for each dataset was corrupted with a high-level of zero-mean

Gaussian noise: σ = 0.25 distance units for translation and σ = 0.03. The RMS

error for translation and attitude were computed by comparing the results from each

estimator on each dataset to the corresponding ground truth for each dataset. The

raw results of the test are given in Figure (5.22). Box-and-whisker plots in Figure

(5.23) and Figure (5.24) give a clearer picture of the relative performance. The

labels in the box-and-whisker plots use the same notation as Table (5.4) with the

additional convention of an X to indicate automatic scale estimation (as in ST-C-X

for example). A discussion is needed to make sense of the raw data.

First, it is clear that of the novel models, the autoregressive model and corre-

lated error model are superior for both the long-orbit and descent trajectory class.

The four estimators derived from the autoregressive model gave similar performance

to each other. The autoregressive estimator with automatic scale estimation gave

very similar performance to the other autoregressive estimators. This is unsurpris-
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Figure 5.22: RMS error for multiple estimators on the long-orbit (top) and descent
(bottom) trajectory class.
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Figure 5.23: Long-orbit trajectory class: Box-and-whisker plot for RMS position
(top) and angle (bottom) errors. Bottom: Box-and-whisker plot for RMS angle
errors.
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Figure 5.24: Descent trajectory class: Box-and-whisker plot for RMS position (top)
and angle (bottom) errors. Bottom: Box-and-whisker plot for RMS angle errors.
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ing as the automatic scale estimation returned a scale between 0.05 and 0.1 in all

cases. Table (5.5) compares all standard estimators to the autoregressive estimator

with automatically estimated scale. For the long-orbit case, the table shows that the

correlated error estimator reduces the angle and position error by more that 65%

and 25% respectively for all instances of the standard model estimator! Addition-

ally for the long-orbit case, the WSRT p-value is reported at essentially zero which

provides strong evidence that the autoregressive estimator dominates the standard

estimator. The advantage of the autoregressive model is significantly reduced in the

descent trajectory case. The reduction in error is on the order of 1% to 10% for both

angle and position. The standard model estimator with σ = 0.1 Cauchy cost is most

competitive with the autoregressive estimator as indicated by the WSRT p-value.

Of the two estimators derived from the correlated model, the σ = 0.1 Cauchy

cost gave the best performance which is clear from Figure (5.23). Table (5.6) com-

pares all standard estimators to the correlated error estimator with σ = 0.1 Cauchy

cost. The results are similar to that of the autoregressive model. In the long-orbit

case, the WSRT p-value provides very strong evidence that the correlated error model

dominates the standard model. In addition, angle and position errors are reduced by

more than 60% and 30% relative to all instances of the standard model estimator.

Like in the autoregressive model, the performance advantage of the correlated error

model is greatly reduced (or eliminated) for the descent trajectory case.

In summary, the autoregressive and correlated error models demonstrated bet-
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Table 5.5: Table of WSRT p-values and percent reduction in errors for the autore-
gressive estimator with automatic scale estimation compared to all instances of the
standard estimator.

Angle Position
Est. p eST−eAR

eST
×100% p eST−eAR

eST
×100%

Long-Orbit
ST-0.01-H 0.000 66.340 % 0.000 34.932 %
ST-0.01-C 0.000 66.037 % 0.000 28.174 %
ST-0.05-H 0.000 67.673 % 0.000 37.159 %
ST-0.05-C 0.000 65.373 % 0.000 33.058 %
ST-0.1-H 0.000 67.822 % 0.000 38.170 %
ST-0.1-C 0.000 66.185 % 0.000 35.692 %
ST-0.5-H 0.000 68.517 % 0.000 41.622 %
ST-0.5-C 0.000 69.436 % 0.000 39.093 %

Descent
ST-0.01-H 0.260 6.004 % 0.316 6.487 %
ST-0.01-C 0.118 5.247 % 0.164 5.135 %
ST-0.05-H 0.072 7.176 % 0.107 8.462 %
ST-0.05-C 0.306 9.915 % 0.254 12.375 %
ST-0.1-H 0.012 9.684 % 0.023 8.552 %
ST-0.1-C 0.513 11.462 % 0.425 9.226 %
ST-0.5-H 0.000 16.157 % 0.000 23.380 %
ST-0.5-C 0.202 6.746 % 0.227 0.861 %

ter performance than the landmark-walk model and pixel-walk model. Furthermore,

the autoregressive model and correlated error model gave a major reduction in error

over the standard model for the long-orbit cases. The performance in the descent

cases shows similar performance between all three models. The tables and figures of

this section validate the use of measurement models to capture α = 1.0 correlated

errors. The development of estimators using models that capture this correlation

and the demonstrated performance gains are a key contribution of this dissertation.
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Table 5.6: Table of WSRT p-values and percent reduction in errors for the correlated
error estimator with σ = 0.1 Cauchy cost compared to all instances of the standard
estimator.

Angle Position
Est. p eST−eCE

eST
×100% p eST−eCE

eST
×100%

Long-Orbit
ST-0.01-H 0.000 61.590 % 0.000 38.962 %
ST-0.01-C 0.000 64.135 % 0.000 36.029 %
ST-0.05-H 0.000 62.179 % 0.000 39.811 %
ST-0.05-C 0.000 63.199 % 0.000 33.903 %
ST-0.1-H 0.000 62.869 % 0.000 40.648 %
ST-0.1-C 0.000 62.890 % 0.000 40.029 %
ST-0.5-H 0.000 63.816 % 0.000 41.234 %
ST-0.5-C 0.000 63.834 % 0.000 40.642 %

Descent
ST-0.01-H 0.552 1.304 % 0.687 0.243 %
ST-0.01-C 0.280 5.486 % 0.289 11.402 %
ST-0.05-H 0.384 3.789 % 0.490 -2.404 %
ST-0.05-C 0.567 9.008 % 0.663 0.845 %
ST-0.1-H 0.289 -0.134 % 0.362 -0.869 %
ST-0.1-C 0.761 -5.329 % 0.811 -12.517 %
ST-0.5-H 0.050 13.761 % 0.059 11.425 %
ST-0.5-C 0.645 0.970 % 0.733 -2.289 %

5.11.6 Discrepancy Between Trajectory Types: Linear Covariance Anal-

ysis

One important trend that was found is that the α-parameterized estimators

performed much better than the standard estimator on the long-orbit and short-

orbit trajectories but not on the descent trajectories. This was a surprising result

as the analysis and empirical evidence of Section 5.2.1 suggested that the descent

trajectory had errors similar to the other trajectory classes, namely an autoregressive

error process with α = 1.0. It is important to find a plausible explanation for this as
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it is a very significant trend.

To determine whether or not the geometry of the different trajectories is the

cause of the discrepancy, a linear covariance analysis can be performed. Consider

the stacked measurement vector ỸYY , the stacked landmark parameters θθθ `, the stacked

pose parameters θθθ p, the stacked noise ν̄νν , and the stacked measurement function

ỸYY = hhh(θθθ p,θθθ `)+ ν̄νν (5.88)

A weighted least squares algorithm (including the robust versions), converges when

(HTWH)−1HTW (ỸYY − ŶYY (θ̂θθ p, θ̂θθ `)) = 000 (5.89)

where H is the Jacobian with respect to the parameters and W is the weight matrix

at the final iteration. The error in the parameters can be approximated by linearizing

the termination condition about the estimate:

(HTWH)−1HTW (ν̄νν−Hδθθθ) = 000 (5.90)

Solving for the error in the joint parameter error δθθθ yields

δθθθ = (HTWH)−1HTW ν̄νν (5.91)

If the estimator was designed around the IID error assumption, then the W matrix

should be isotropic diagonal. If on the other hand, correlated or autoregressive error

of the form

ν̄νν = Awww (5.92)

for IID www was assumed, then W = (AAT )−1, where A is defined in Equation (5.58).

We can consider the parameter error covariance for each estimator when the error is
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truly either IID or correlated. The four cases are

1. IID estimator with IID errors:

PI,I = σ
2(HT H)−1 (5.93)

2. IID estimator with autoregressive errors:

PI,A = σ
2(HT H)−1(HT (AAT )−1H)−1(HT H)−1 (5.94)

3. Autoregressive estimator with IID errors:

PA,I = σ
2(HT (AAT )−1H)−1HT H(HT (AAT )−1H)−1 (5.95)

4. Autoregressive estimator with autoregressive errors:

PA,A = σ
2(HT (AAT )−1H)−1 (5.96)

Up to the nonlinearity of the measurement equations, these covariance expres-

sions are exact when the errors are exactly Gaussian (either IID or correlated as

stated above). Furthermore, the estimators associated with PA,A and PI,I are unbi-

ased minimum variance estimators if the assumptions are met. However, PA,A can be

compared to PA,I for various instances of H (i.e. instances of landmark configuration

and trajectory) to see what is gained by accounting for the correlated errors. This can

be done as follows. The pose trajectories and landmark configurations in the eval-

uation datasets for the long-orbit and descent trajectory classes are used. For each

dataset, the true parameters and feature tracking results (to determine landmark

visibility only) are used to evaluate the Jacobian H. Note that the first camera pose

is treated as a constant and the distance between the first camera and last camera is
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treated as a very accurate measurement. This resolves any singularity issues (caused

by a lack of observability). The Jacobian is then used to compute the four covari-

ance expressions above with σ = 1. The diagonal elements of the covariance matrices

corresponding to camera position and angle are summed up separately which gives

an expected value for the sum of squared position and angle errors respectively.

The results make sense to treat as paired samples: for each dataset, indepen-

dently compare PA,A to PA,I to reduce confounding factors particular to the dataset

in question. To further make the difference clear, the percent change is reported:
tr?(PA,A)− tr?(PA,I)

tr?(PA,A)
(5.97)

where tr?() indicates the trace of the matrix of a particular subset of elements (either

camera position or angle parameters). The results are presented in Figure (5.25).

Note that for the results in this figure, σ2 = 1 was used to evaluate the covariance

expressions.

Figure (5.25) demonstrates a very important result. Given that the errors

are truly autoregressive rather than IID, the advantage of using an autoregressive

estimator over an IID (standard) estimator is greatly diminished. For position errors

in the long-orbit case, a reduction of 15 % to 30% on the mean-squared error is

expected compared to only 5 % to 10 % in the descent case. Similarly for angle

errors, a reduction of 40 % on the meas-squared error is expected compared to only

10 % in the descent case. This is consistent with the results of Section 5.11.5: see

Table (5.5) and Table (5.6) . This linear covariance analysis applied to the particular
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Figure 5.25: Percent change in expected sum of squared angle and position errors
between the autogressive and standard estimator when the errors are autoregressive
(α = 1).

trajectories of interest provides rigorous evidence as to why little-to-advantage was

seen for the autoregressive estimator over the standard estimator in the descent

trajectories even though a large advantage was seen in the long-orbit motion. An

intuitive reason for this can be seen as follows.

The accuracy of the pose estimates is inherently linked to the accuracy of the

landmark estimates. The larger the baseline between multiple views of a landmark,

the better the estimate will be. In the long-orbit case, the motion is mostly orthog-

onal to the landmark viewing directions. For IID errors in the long-orbit case, each

subsequent view provides more and more information to better localize the land-

mark. However, if the errors are autoregressive then a tradeoff is implicitly made
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between a larger baseline and essentially increasing feature localization errors. On

the other hand, in the descent motion case, neglecting the fact that the errors are

autoregressive is not as detrimental because the extra baseline in later images is

more essential to providing observability. Figure (5.26) illustrates this graphically.

The frustums originating from each camera represent a region of uncertainty for the

feature measurement (i.e. the blue star). As the motion proceeds, these frustums

become wider indicating an increase in error. The left side of the figure shows mo-

tion representative of the descent trajectory. The region of overlap for the first two

frustums (green and orange) is very large implying that the landmark position has

weak observability. Even though the red frustum is much wider, because of the large

baseline, it gives significantly more information about the landmark position. This

is in contrast to the right-hand side of the figure which represents the long-orbit mo-

tion. Even though the last frustum (red) has a large baseline to the first, the large

error (frustum width) prevents it from reducing the total overlap region. To summa-

rize, if we had neglected to take into account the autoregressive and hence increasing

nature of errors in the descent case, it would not have mattered as much because

all measurements would still need high weight. On the other hand, in the long-orbit

case, by accounting for the more accurate error model, more weight can be placed

on measurements with a low baseline. Again, this explains why the α-parameterized

models performed well in the long-orbit case with α = 1 but only similarly to the

standard model in the descent case.
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Figure 5.26: Geometry of different motion cases for autoregressive errors.

The above analysis explains why the α = 1 estimators had a reduced advantage.

A second factor may be due to the underlying mechanism for the error correlations.

Recall that the Lucas-Kanade tracker assumes that the image deformation between

image I2 and I1 is planar plus zero-mean additive noise (of pixel intensities):

I2(xxx) = I1(xxx+ddd)+ννν(xxx) (5.98)
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The tracker solves for the displacement ddd that minimizes the least squares cost

function

d̂dd = argminddd ∑
xxx∈W

(I2(xxx)− I1(xxx+ddd))2 (5.99)

which yields the necessary condition

000 = ∑
xxx∈W

(
I2(xxx)− I1(xxx+ d̂dd)

)
∇I1(xxx+ d̂dd) (5.100)

If instead of the assumed deformation model, the true deformation model is

I2(xxx) = I1(xxx+ddd + f(xxx))+ννν(xxx) (5.101)

for an arbitrary function f(xxx), then this will introduce a systemic error. Let ddd =

d̂dd−δδδ be the true displacement where δδδ is the localization error. If both the added

deformation and localization error are small then,

I2(xxx)≈ I1(xxx+ d̂dd)+∇I1(xxx+ddd)(f(xxx)−δδδ ) (5.102)

Substituting the preceding two expressions into the necessary condition yields

δδδ = ∑
xxx∈W

(
∇I1(xxx+ddd)∇I1(xxx+ddd)T)−1

∑
xxx∈W

(
∇I1(xxx+ddd)∇I1(xxx+ddd)T f(xxx)

+ ∇I1(xxx+ddd)ννν(xxx)
)

(5.103)

If f(xxx) = 000 and the pixel intensity error is zero-mean, then the localization bias (found

by taking the expectation of the above expression) is zero. A non-zero deformation

function will introduce a non-zero bias. The deformation will be driven by the scene-

relative motion which will vary between the different features. During a descent like

motion, it is possible that the deformations in one part of the field-of-view will be

equal and opposite to the deformations in the opposite part of the field-of-view (by
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symmetry). Therefore the biases in localization error during descent may cancel each

other out. This is less likely to occur during the orbit-like motion where all features

move in the same direction which could also explain the difference in behavior. The

next section addresses this.

5.11.7 Discrepancy Between Trajectory Types: Mixed-Simulation Anal-

ysis

A clear trend emerged in Section 5.11.5. The proposed models that capture er-

ror correlation in time had a clear advantage in accuracy over the standard model for

the long-orbit trajectory class but not the descent trajectory class. A logical hypoth-

esis is the standard model assumptions more accurately describe the measurements

for the descent like motion than the autoregressive or correlated error model. This

hypothesis is contradicted by the system identification performed in Section 5.2.1

(see Figure (5.4) in particular). In addition, the previous section demonstrated via a

linear covariance analysis that the geometry of the motion can reduce the advantage

of the α = 1 models. This section presents further evidence that the geometry is a

key factor.

As discussed above, it may be that the relative geometry of the motion and

landmarks reduces the advantage of the more complicated autoregressive and cor-

related error models. However, it was concluded that more analysis was needed to

confirm or reject this conjecture. Such an analysis was performed as follows using

the same trajectories and feature tracking results used in the previous sections (i.e.
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the evaluation dataset). The steps are as follows for each dataset:

1. Use the detected feature locations for the first image and the corresponding

range measurements to define a set of landmarks (which are treated as scene-

fixed).

2. Simulate an autoregressive noise process with α = 1 and an IID noise process

for all landmarks and images. Both are driven by Gaussian noise: σ = 0.1 for

the autoregressive and σ = 0.5 for the IID.

3. Simulate perfect measurements of the landmarks using the same trajectory and

camera parameters.

4. Create two simulated measurement sets: one by adding the autoregressive er-

rors and one by adding the IID errors.

5. Use the feature tracking results associated with each landmark to determine

visibility. Write all visible measurements (from each of the two sets) to their

own file.

This was done for 100 datasets of both the long-orbit and descent trajectory. This

represents a very controlled simulated dataset which mixes two different simulation

methods: high-quality rendered images that give accurate landmark distributions

and occlusion results, with a perfect error model (autoregressive and IID). Therefore

it exactly captures the relative geometry of motion and landmarks and has a precise

probabilistic model.

For each of the four groups of simulated datasets (each pair of one of two
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trajectories and one of two simulated models), both the autoregressive estimator

(Huber σ = 0.1, α = 1) and the standard estimator (Huber σ = 0.5) were applied. If

the only factor governing estimator accuracy were the underlying noise model, then

one would expect the autoregressive estimator to always outperform the standard

estimator when the errors are in fact autoregressive and vice versa. As it turns out,

this was not the case!

To compare the estimation results, the RMS angle and position errors for each

dataset within each of the four groups was computed. Comparisons were performed

on each of the four groups using a WSRT. With each group, there are 100 batches

of measurements. The same batch of measurements is passed to two different esti-

mators, the output of which is treated as a paired sample.

Note that even within a particular class of trajectories, the exact motion, con-

figuration of detected landmarks, and simulated random noise makes each dataset

inherently different. By using the WSRT which is a paired-difference test, these

confounding factors can be largely mitigated. The different groups are kept separate

as a form of statistical blocking because we expect each group to behave differently

(which is precisely why this analysis was performed).

The results are summarized in Table (5.7) . The large number of paired sam-

ples for each group (one hundred), led to a high level of confidence in certain results.

In particular, the standard estimator outperforms the autoregressive estimator when

the errors are IID at an essentially 100% confidence level for both motion types.
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Dataset Position Angle
Long-Orbit IID 9.8×10−17 9.8×10−17

Long-Orbit AR 1−3.6×10−4 1−5.3×10−17

Descent IID 3.9×10−18 3.9×10−18

Descent AR 1−0.28 1−0.31

Table 5.7: Test results of a two-sided WSRT: A number near zero suggests that the
standard estimator performed better than the autoregressive estimator and a number
near one suggests the autoregressive estimator performed better than the standard
estimator on the given block of datasets.

For autoregressive errors in the long-orbit case, the autoregressive estimator outper-

formed the standard estimator at a confidence level above 99.95% for both position

and attitude errors. The big surprise comes from the descent trajectory with autore-

gressive errors where the test was inconclusive! While this was a surprising result, it

is consistent with both the system modeling results of Section 5.2.1, which suggested

strongly correlated errors, and the estimation results of Section 5.11.5 which showed

similar performance for both estimators on the descent trajectory. Furthermore,

testing in Section 5.10 showed that the fitted distributions were zero-mean which

suggests there is no inter-landmark error correlation. This analysis compliments

the linear covariance analysis in Figure (5.25) and gives strong evidence that even

though the errors may be autoregressive for the descent trajectory, the addition of

an autoregressive estimator does not provide a statistically significant advantage. It

seems the only remaining possibility for the discrepancy is the geometry. An intuitive

argument for this was given in Section 5.11.6 (see Figure (5.26)).
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5.12 Summary

This section first presented evidence contradicting the IID assumption that is

nearly universally assumed in vision-aided navigation systems. System identification

results showed strong positive serial correlations in feature measurement errors. Four

structural models were proposed to capture this. One of the models did so by allowing

the landmarks to evolve according to a random walk process. The other three models

did so by explicitly modeling the correlation. Under the assumption of each of the

three model types, namely standard IID, landmark-walk, and correlated error, a

technique was proposed to obtain samples from the error distribution using a high-

quality rendering tool. The application of these techniques to several trajectory

classes was used to obtain probabilistic models for the unknown error distribution.

The resulting models were then tested.

Testing results for the long-orbit motion case demonstrated a significant per-

formance advantage for the autoregressive model and correlated error model over the

standard model: approximately 60 % reduction in angle errors and 30 % reduction

in position errors. The improvement for the descent motion case was much smaller:

approximately 10% for angle and position errors. A linear covariance analysis and

a mixed-simulation demonstrated that the discrepancy was not because the autore-

gressive model or correlated error are less applicable to the descent motion case.

Instead, the analysis and an intuitive argument suggested the geometry of the mo-

tion relative to the landmarks simply reduced the advantage of the more accurate
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error models.

The developed models and their demonstrated advantages are a key contribu-

tion of this dissertation. Note that in developing a vision-aided navigation system,

these models can be used regardless of what other sensors and information sources are

available. This is an important advantage of the MLE and M-estimation framework

which enable the models developed here to have broad impact.
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6 DATA-DRIVEN ESTIMATION

This section discusses techniques for data-driven estimation. Estimators with

a probabilistic optimality criterion require a probabilistic model relating the ob-

servations to the parameters of interest. For M-estimation, the model is used to

design the cost function. As discussed previously in this dissertation, there is an in-

evitable lack of precision in models for real systems. This motivated the discussion of

M-estimation as an extension of the MLE. The theory of M-estimation gives a foun-

dation on which to design a cost function given a nominal model and a neighborhood

around the model in which the true system is known to exist in. Unfortunately, the

theory does not give a rigorous method to select either the nominal model or the

neighborhood. This section presents one solution to that problem.

The class of measurement models considered in this section is the same class

analyzed in Section 2. In particular, each observation is assumed to be the sum of

a known deterministic function of the parameters and an additive zero-mean error.

Furthermore, it is assumed that the distribution of the additive error is unknown

a priori. This section seeks to design M-estimator cost functions for a given mea-

surement model when a large number of samples from the unknown distribution are

available. Such samples can be obtained through either experimentation or high-

fidelity simulation of the system of interest. A method to accomplish such a goal is

the subject of the first section of this section which includes sample problems as a
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proof-of-concept.

An extension of the first section is to design estimators with the aid of auxil-

iary measurements. The term auxiliary measurements is used here to indicate any

data that is paired with the primary observation (i.e. the one typically used in the

estimator) that can provide information about the underlying distribution that the

observation came from. Auxiliary measurements occur in a variety of applications

including computer vision. In particular, in addition to measuring feature locations,

feature tracking methods also output various values related to matching metrics and

detection scores. It is hypothesized that the underlying distribution of errors depends

of such metrics (ex: large matching error implies larger localization error). If this is

in fact the case, that then such metrics and scores would meet the definition of an

auxiliary measurement. Evidence to support this hypothesis is given in the second

section.

The third section of this section then presents a method to design estimator

cost functions that depend on the auxiliary measurements. In the context of MLE,

this can be viewed as a Maximum Conditional Likelihood Estimate (MCLE) where

the likelihood is further conditioned on the auxiliary measurement (in addition to

the usual parameters of interest). The term MCLE will also be used to describe

estimators related to the true MCLE in the same way that M-estimators are related

to the true MLE. Examples problems demonstrate the feasibility of such methods.

The section concludes by applying the methods developed in this section to
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the vision-aided navigation problem. The auxiliary measurements identified in the

second section, are used to train an estimator which is then applied to the vision-

aided navigation problem.

6.1 Minimum Variance Estimators

At first, developing a single method to design estimators given only the error

samples seems intractable. However, there is a critical insight that greatly simplifies

the problem. In particular, Equation (2.118) shows that the covariance of parame-

ter errors in the nonlinear regression problem is asymptotically proportional to the

location problem variance:

v≡
E
{

ψ2}
E{ψ ′}2 (6.1)

Therefore for a given set of measurement samples, an estimator can be designed to

be minimum variance on the location problem. The same estimator will then be

minimum variance for the general nonlinear regression problems.

The analytical results for M-estimate covariance in nonlinear regression sug-

gests the following method. First parameterize an arbitrary cost function: ρ(x;βββ )

where βββ parameterize the function. Second, optimize the cost function parameters

so that

β̂ββ = argmin
E
{
(ρ ′(x;βββ ))2}

E{ρ ′′(x;βββ )}2 (6.2)

where the expectation is approximated using a set of error samples {xi}N
i=1 for N

samples. Third and finally, evaluate the designed cost function ρ(x; β̂ββ ) on the problem
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of interest.

The first step requires picking a parametric equation to serve as a cost function.

Such a function should be

1. Flexible enough to provide good performance on a variety of distributions.

2. Small enough number of parameters to be well-defined for the amount of data

available.

3. Be well-suited for the numerical solution of estimates (ex: convex).

The first two items are competing interests. The theoretical results of Huber and

Hampel can provide guidance in selecting the function. In particular the Huber

function with quadratic inlier-region and L1 outlier-region clearly has outstand-

ing theoretical properties. However, redescending cost functions (those with a non-

monotonically increasing derivative) can provide added insensitivity to gross outliers.

This motivates the following cost function:

α1 ≡ β1 (6.3)

α2 ≡ β1 +β2 (6.4)

α3 ≡ β1 +β2 +β3 (6.5)

ρ(x;βββ ) =



1
2x2/α0 |x| ≤ α1

|x|α1/α0− 1
2α2

1/α0 α1 < |x| ≤ α2

a(x−α2)
2 +b(x−α2)+ c α2 < |x| ≤ α3

a(α3−α2)
2 +b(α3−α2)+ c |x|> α3

(6.6)
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where the constants a, b, and c are functions of βββ , chosen such that the cost is

continuous, the derivative of the cost is continuous, and the cost obtains a zero

slope at x = β3. The definition of α1, α2, and α3 in terms of βββ ensures that the

transition regions are correctly ordered, α1 < α2 < α3, whenever βββ > 000 which is

easier to enforce in the optimization routine as a lower bound on the parameters

instead of an inequality constraint between parameters.

The selected cost is similar to the Huber cost except that it gradually rolls

off spatially to a constant cost. Furthermore, the parameters were selected such

that boundaries of the different cost regions are independent of the scale β0. If the

same cost function is used for all observations in an estimator, then the estimate

of independent of β0 which will have important implications in later sections. In

addition, the β1 term can be set arbitrarily close to zero with β2 and β3 arbitrarily

large which emulates an L1 cost without causing any singularities. Although this

cost is non-convex, the size of the convex region can be made as large as desired.

The second high-level step of the method is to optimize the cost function param-

eters to minimize the asymptotic variance. Given N samples, {xi}N
i=1, this requires

minimizing

∑
N
i=1 ρ ′(xi;βββ )2(

∑
N
i=1 ρ ′′(xi;βββ )

)2 (6.7)

The finite number of samples can lead to a number of difficulties with this optimiza-

tion criteria.

To see this difficulty, consider the case when β2 and β3 are infinite so that the
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proposed cost is equal to the Huber cost. Assume the true samples come from a

distribution with CDF Fx(x). For a given β1, the probability of a sample occurring

such that |x| < β1 is pβ1 = Fx(β1)− Fx(−β1). For N total samples, the number of

samples satisfying this condition, say n, is distributed as a binomial distribution:

Pr(n) =

N

n

 pn
β1
(1− pβ1)

N−n. The empirical variance in this case is

v =
N
n2

(
(N−n)β 2

1 +∑
?

x2
i

)
(6.8)

where the starred summation is over the samples falling in the [−β1,β1] interval.

Clearly, if n = 0 this equation is singular. By the binomial distribution, this occurs

with probability equal to (1− pβ1)
N . In words, if N is small and the inlier region

is small for the given distribution, there will be a large chance of a singularity.

Furthermore, even when n > 0, at small n the variance of v is high. The variability

of n for small n will dominate the variability of v via the N
n2 since N � n A plot of

the cumulative mass function (CMF) of N
n2 at select values of pβ1 is shown in Figure

(6.1) for N = 1000. From this plot, it is clear that N
n2 has increasing variability for

decreasing pβ1 . This can cause the variance to be both over-estimated and under-

estimated. As a result, the value of β1 should be restricted so that a sufficient

number of samples fall into the central region of the cost function. By requiring at

least 20 % of samples to fall into the central region, the variability of N
n2 is reduced

to [0.018,0.035] for the 99% confidence interval. This in contrast to a case such as

when pβ1 = 0.01 which has a 99% confidence interval of approximately [2.6,100]: a

250



Figure 6.1: CMF of N
n2 plotted for multiple values of pβ1 . When n is small (n/N < 0.1),

this term dominates the variability in the empirical variance.

much wider range. Note that these numbers were obtained from the plotted lines in

Figure (6.1).

A second and numerical example of this issue is given in Figure (6.2) and Figure

(6.2). In these figures, 10 trials were performed where N = 1000 and N = 10000

samples were obtained from a Gaussian distribution (zero mean and unit variance)

and used to compute the variance over a range of β1 values (on each trial). The

lines in the figure each represent a trial. In theory, the minimum variance value

of β1 is infinity (to obtain a least squares cost function). Of course, any β1 larger

than the largest sample will give the same empirical variance. Note that in the

figures, especially for the case of a smaller N, there is a lot of variability when β1
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Figure 6.2: Several trials of empirical variance computed on 1000 Gaussian samples
as a function of β1 when βββ = [β1,∞,∞].

is small. This leads to many local minima and can even lead to an empirically

variance-optimal solution that is nowhere near the truly variance-optimal solution:

zero instead of infinity! Again, this can simply be avoided (or at least made very

improbable) by requiring at least 20% of samples to be in the central region.

The numerical issues with optimization are only partially remedied by pro-

viding a lower bound on β1. There is still the fact that there will be many local

minima and that gradient computations are unreliable due to the finite number of

samples. One optimization method to find a solution is known as particle swarm

optimization (PSO) [106]. PSO is a heuristic optimization method that searches for

a global minima by heuristically proposing and modifying a large number of can-
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Figure 6.3: Several trials of empirical variance computed on 10,000 Gaussian samples
as a function of β1 when βββ = [β1,∞,∞].

didate solutions known as particles. The particles are initialized randomly in the

search space and are iteratively adjusted pseudo-randomly based on the historical

best solution of each particle individually and the best solution among all particles.

The Python PYSWARM package implementation of PSO was used in all numerical

examples below. Note that the particular parameterization used here guarantees

that the transition-values between the four regions of the cost function are properly

ordered by setting a lower-bound of zero on each element of βββ without having to add

any constraints. This greatly simplifies the optimization procedure.

This concludes the section discussing the overall methodology for minimum

variance estimators. The following subsection presents the results of several numer-
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ical examples that use this concept.

6.1.1 A Numerical Example

This subsection provides numerical examples which are structured as follows.

In each example, a particular true underlying distribution is used. Ten trials of

generating samples, training an estimator on the samples, and evaluating the trained

estimator are performed. For each trial N = 10000 samples are used to train the

estimator. To evaluate the estimator in each trial, 400 sub-trials are performed.

In each sub-trial, n = 40 measurements of the form yi = mxi + b+ νi are simulated

where m and b are parameters to be estimated, the xi are uniformly distributed

between −50 and 50, and the νi are samples obtained from the same distribution

used to train the estimator. In all cases, the true parameters are m = 0 and b = 0.

Additionally in each sub-trial, the estimate is obtained under the trained estimator

and a number of other estimators. The other estimators are the Huber estimator with

scale determined by the MADN (see Equation (2.137)) and several instances of the

cutoff parameter (k in Equation (2.65). The values of k are set to be minimax optimal

for an ε-contaminated neighborhood about a normal distribution with ε being equal

to 0.001, 0.01, 0.1, 0.2, 0.5, and 0.8. Within any sub-trial, the difference in error

between the trained-estimator and all six other estimators (each corresponding to

an ε) are computed to form paired-differences which are then used in a WSRT. The

RMS value for each estimator in each trial is then used to compute a number of

statistics which are compared among the estimators. The chosen true distributions
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Figure 6.4: WSRT p-values from 10 trials (on four different distributions) comparing
a trained-estimator to various minimax optimal Huber estimators.

in the examples are the Gaussian, Laplace, and Cauchy for the first three. In the

fourth example, the samples are generated from the dataset presented in Section

5.10.

The resulting p-values of the WSRT are plotted in Figure (6.4). In addition,

the normalized difference in the median error between the trained-estimator and all

others for each trial, (Med(etrained)−Med(eother))/Med(etrained), is shown in Figure

(6.5).

Several trends should be discussed with respect to to these two figures. For the

visual-error samples, the trained-estimator performed much better than the Huber
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Figure 6.5: Normalized median difference in error, (Med(etrained)−Med(eother))
Med(etrained)

, between the
trained estimator and all others for each of 10 trials on four different distributions.

estimators with small ε which is indicative of heavy contamination. For ε = 0.001,

the p-values ranged from between 1.06× 10−6 to 0.200 with the second highest p-

value being 0.036. On the other hand, for ε = 0.8, the p-values ranged from between

7.42×10−10 to 0.157 with the second highest p-value being 6.64×10−5. In the middle

were cases like ε = 0.1 which was the best-tuned Huber estimator for this problem:

the p-values ranged from between 0.132 to 0.987. The mixed results suggest that

the two estimators are nearly equivalent. This is unsurprising as β1 was estimated

between 0.08 and 0.10 with a large β2 and β3 whereas the Huber cutoff for ε = 0.1

was 0.092 (since the MADN scale was 0.081 and k = 1.14 for ε = 0.1): they are
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essentially the same cost.

For the Gaussian errors, the Huber cost at ε = 0.001 and ε = 0.01 gave nearly

identical performance to the trained-estimator as the costs were nearly the same in

this case. In addition, for ε > 0.01 cases, there was a clear advantage for the trained

estimator. The reason for this is the efficiency loss caused by truncated the quadratic

inlier region. In all trials, the trained-estimator had β1 > 2.28 which captures 97.7%

of standard normal errors in the quadratic region.

For Laplace-distributed errors, the truly optimal solution is the Huber cost with

k = 0 (i.e. an L1-norm). This is closely approximated by the Huber costs at ε = 0.8

and ε = 0.5. The trained estimator selected β1 ≈ 0.21, which was very close to the

lower bound, and β2 > 4.1 in each case. This means that for the unit-scale Laplace,

at least 98.6% of the distribution was captured in the quadratic or L1 region of

the cost function. As a result, the performance between the trained estimators and

the Huber costs at ε = 0.8 and ε = 0.5 was nearly identical. However, the trained

estimator had a clear advantage for lower ε Huber costs.

Finally, for Cauchy-distributed errors, the optimal solution is not in the fam-

ily of parameterized estimators. A plot of the trained cost and derivative functions

alongside a scaled-version of the Cauchy MLE cost is given in Figure (6.6). Qualita-

tively, the costs appear similar.

Quantitatively, the WSRT p-values show that the trained-estimator outper-

forms the Huber cost for all values of ε . For ε < 0.5, there is not a single case where
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Figure 6.6: Trained cost and derivative from 10 trials of 10000 Cauchy-distributed
errors plotted with the true Cauchy MLE cost and derivative.

the p-value exceeds 0.01. For ε = 0.5 and ε = 0.8, there are two and four trials

respectively that had moderate p-values: between 0.05 and 0.35. A simple way to

aggregate the p-values over the 10 trials is as follows. Under the null hypothesis of

the WSRT, namely that the two error sources have the same distribution, we reject

the null hypothesis, with α-confidence, in favor of the alternative hypothesis that

the distributions have different means if the test statistic is less than α . The false re-

jection rate should be 1−α . The number of false rejections should follow a binomial

distribution with parameters N = 10, p=α . For α = 0.05, under the null-hypothesis,

there are three rejections out of ten trials for both values of ε (where the p-value is
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less than α/2 = 0.025 for a one-sided test). The binomial CMF at n = 3 for N = 10,

p = 0.05 is 0.9990. Therefore at the 0.1% confidence level, the null hypothesis can

be rejected for the aggregate test for both values of ε in question.

6.2 Auxiliary Measurements for Visual Features

This section discusses auxiliary measurements in the context of vision-aided

navigation. At the start of the section, auxiliary measurements were defined as

observed values that are paired with each primary measurement (i.e. feature location)

and provide information about the distribution of the primary measurement. It is

hypothesized that the scale of image-space feature localization errors will depend

on various scores related to how well an image of a landmark matches its previous

image. Several candidates for matching scores were considered. Before discussing

the particular candidates, the characteristics of a good candidate are described.

A good candidate matching score should have a clear relationship to error scale.

In particular, the conditional distribution p(νi|zi) should be have a strong dependence

on the auxiliary measurement zi. To evaluate the matching score candidates, each

score is computed along with a corresponding sample of visual errors under the

assumption of an autoregressive error model with α = 1 (see Section 5.10). The

paired samples {νi,zi}N
i=1 are then binned into sets of equal probability mass: each

bin contains 1/30-th of the samples giving > 10000 samples per bin. In each bin,

the median of the L1 norm of feature localization error is computed for each bin
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and plotted against the bin center. A bad candidate score would show little-to-no

dependence of the localization error scale versus the bin center: no information of

error scale is provided. The goal is to find a matching score where the relationship

with the error scale is clear.

A number of proposed candidates were based on the sum of squared differences

(SSD) correlation image. This is defined as

J(u,v)≡∑
u′

∑
v′

(
I2(u′,u′)− I1(u+u′,v+ v′)

)2 (6.9)

where I2 is a 31×31 pixel-patch centered on the localized feature in the current image

and I1 is a 36×36 pixel-patch centered on the localized feature in the previous image.

The resulting image J is centered on 0,0 and defined on the domain {−2,1,0,1,2}×

{−2,1,0,1,2}. The two candidates of interest that use the 5×5 pixel image J are:

1. SSD at feature location measurement: J(0,0)

2. L1-norm of centroid of SSD image:
∣∣∣∑u,v uJ(u,v)

∑u,v J(u,v)

∣∣∣+ ∣∣∣∑u,v vJ(u,v)
∑u,v J(u,v)

∣∣∣
It is expected that a low SSD at the feature location measurement and an SSD

image with a centroid at (0,0) corresponds to a good feature match and hence small

localization errors.

A third candidate is based on the Lucas-Kanade tracker equations and the

sandwich covariance estimator []. The sandwich covariance estimates the variability

in an M-estimate. It can be computed directly on the data without needed to assume

a particular error distribution. In this case, the sandwich variance is

S≡ A−1VA−1 (6.10)
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A≡∑
u,v

∇
T I2(u,v)∇I2(u,v)+(I2(u,v)− I1(u,v))∇2I2(u,v) (6.11)

V ≡∑
u,v

∇
T I2(u,v)(I2(u,v)− I1(u,v))2 (6.12)

where ∇I2(u,v) is the 1×2 image gradient and ∇2I2(u,v) is the 2×2 image Hessian.

The trace of the sandwich covariance S gives the sandwich-variance of the computed

feature location and is tested as a candidate auxiliary measurement.

The plots for the three candidates discussed above are evaluated on 100 sets

of 20 images for the evaluation datasets of the three trajectory classes discussed in

Section 5.1. The resulting plots for the median L1 norm of localization error versus

the auxiliary measurement is shown in Figure (6.7), Figure (6.8), and Figure (6.9).

A scatter plot of the individual samples is overlaid.

Figure (6.7) shows the results for the SSD error at the feature location mea-

surement. The variation for the long-orbit and short-orbit trajectory classes is very

clear. In the short-orbit case, the error scale varies from 0.05 to 0.17 pixels. In the

long-orbit case, the error scale varies from 0.07 to 0.24 pixels. On the other hand,

the trend is not very clear for the descent case.

Figure (6.8) shows the results for the SSD error at the feature location mea-

surement. The variation for the long-orbit and short-orbit trajectory classes is very

clear. In the short-orbit case, the error scale varies from 0.08 to 0.16 pixels. In the

long-orbit case, the error scale varies from 0.10 to 0.22 pixels. In the descent case,

the error scale varies from 0.09 to 0.22 pixels.

Figure (6.9) shows the results for the trace of the sandwich covariance. The
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Figure 6.7: The median L1 norm of localization error versus the SSD evaluated at
the feature location measurement.

Figure 6.8: The median L1 norm of localization error versus the L1 norm of SSD
centroid.
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Figure 6.9: The median L1 norm of localization error versus the trace of the sandwich
covariance.

variation for the long-orbit and short-orbit trajectory classes is very clear. In the

short-orbit case, the error scale varies from 0.06 to 0.17 pixels. In the long-orbit

case, the error scale varies from 0.08 to 0.24 pixels. On the other hand, the trend is

not very clear for the descent case.

In summary of the above results, the SSD centroid is the best candidate across

all three motion cases. It is therefore chosen for testing in the examples below.

This section has presented evidence to suggest the existence of auxiliary mea-

surements in vision-aided navigation. This evidence motivates the next section which

discusses the theoretical background for MCLE and provides simple numerical algo-

rithms.
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6.3 Maximum Conditional Likelihood Estimation

This section introduces MCLE with auxiliary measurements. The theoretical

basis for this is simple. The MLE finds the estimate maximizing the likelihood

defined as

L ≡
N

∏
i=1

pνi(yi−hi(θθθ)) (6.13)

for the measurement model

yi = hi(θθθ)+νi (6.14)

νi ∼ pνi(νi) (6.15)

If the distribution of the error νi depends on a known (or observed) random variable

zi, then the conditional likelihood

C ≡
N

∏
i=1

pνi|zi(yi−hi(θθθ)|zi) (6.16)

should me maximized.

Note that the log-conditional-likelihood is simply

logC ≡
N

∑
i=1

logpνi|zi(yi−hi(θθθ)|zi) (6.17)

=
N

∑
i=1

log(pνi,zi(yi−hi(θθθ),zi)/pzi(zi)) (6.18)

=
N

∑
i=1

logpνi,zi(yi−hi(θθθ),zi)− logpzi(zi) (6.19)

∼
N

∑
i=1

logpνi,zi(yi−hi(θθθ),zi) (6.20)

where the relationship between conditional and joint distributions p(x|y) =

p(x,y)/p(y) is used. The last expression, although not strictly equal to the log-
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conditional-likelihood, is an equivalent cost function: it is minimized by the same

argument. This result has an important implication: either the joint or conditional

distribution can be used to design the MCLE.

In the problems of interest to this dissertation, the analytical form for both

the joint and conditional distributions are assumed to be unknown. Rather than

estimating either of the distributions and then designing a cost function around the

distribution, the cost function is designed directly. To do so, the method presented

in Section 6.1 must be extended. In particular, the cost function parameters βββ must

become a function of the auxiliary measurements zi. Several options were considered

to accomplish this.

Similar to the discussion in Section 6.1, the estimator parameters should be of

low enough dimension that they can be amenable to practical optimization method

and that they can be trained on the available data without over-fitting. In addition,

the mapping from the auxiliary measurements to the cost function parameters should

have low computational cost. One simple method to address both these needs is as

follows.

First, given N samples of error and the auxiliary measurement, {(νi,zi)}N
i=1,

select nt tie-points at the 100%[ 1
2nt

, 3
2nt

, 5
2nt

, . . . , 2nt−1
2nt

] percentiles of the {zi}N
i=1 sam-

ples. Let the j’th tie-points be represented by z?j . For any value zi, in training or

evaluation, the index j such that |zi− z?j | is minimized, is the index of the tie-point

associated with zi. Then, each tie-point can have its own parameter set βββ j associated
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with it. This is analogous to estimating a conditional distribution (or cost function)

by binning the auxiliary measurements and computing a PDF (or cost function)

for each bin separately. Such a method has two immediate benefits. First, we can

guarantee a constant number of samples, N/nt , per bin during training. Second, the

association of each measurement with a tie-point, and hence a set of cost function pa-

rameters, is computationally efficient. A third and more important benefit warrants

further discussion.

First note that the binning scheme can be viewed as treating the measurements

as coming from nt different sources: each with their own distribution. The MCLE

cost can then be expressed as

logC ∼
nt

∑
j=1

C j (6.21)

C j =
N/nt

∑
i=1

logpν ji ,z
?
j
(y ji−h ji(θθθ),z

?
j) (6.22)

where the summation in the top equation sums over the different tie-points and the

summation in the bottom equation sums up the measurements associated with the

j’th tie-point. Note that C j defines the MLE cost if only measurements associated

with the j’th tie-point are used in the estimator. This shows that if the estimator was

designed by first estimating the conditional PDFs, then each one could be estimated

independently. This would reduce the problem into nt smaller problems. However,

the goal here is to design the cost directly. Nevertheless, a similar reduction in

complexity can be made.

First, the β1, β2, β3 parameters are designed to be minimum-variance for each
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tie-point individually. Then the scale β0, which was neglected in Section 6.1 because

it did not alter the estimator output when one cost function is used for all input

measurements, is estimated jointly for all tie-points. With this approach, nt three-

dimensional and one nt−1-dimensional optimization problems must be solved instead

of a single 4nt−1-dimensional optimization problem (the nt β0 parameters are unique

to a common scale so β0 can be set to an arbitrary value for one tie-point).

The single nt−1-dimensional optimization problem is still expensive. A simple

heuristic, which must be validated, can eliminate the need for this optimization

problem without significantly increasing the estimator variance over the optimum. In

particular, consider the nt trained cost functions with optimal variances v?j . If a batch

of measurements were available, then one could come up with nt separate estimates

of location, each with variance v?j
n j

where n j is the number of measurements associated

with the j-th tie point. Since the nt estimates are asymptotically Gaussian, then a

single location estimate can be obtained by computing a weighted average of the nt

estimates, each with weight v?j
n j
. This is equivalent to solving for a single M-estimate

with β0 = v?j for each tie-point. Therefore, instead of solving the nt −1-dimensional

optimization, the optimal variance resulting for each of the nt three-dimensional

optimization problems can be used to set the β0 parameters.

This concludes the background section on the MCLE. To summarize, the

method in Section 6.1 was extended by binning the auxiliary measurements into

nt bins. By design of the binning locations, each bin has approximately equal prob-
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ability mass. For each bin, a three-parameter cost function is designed for minimum

asymptotic variance, independent of all other bins. Two different methods of setting

the scale of each cost function, necessary to tie the nt cost functions together, are

proposed. The next section gives numerical examples to evaluate these two methods

and the overall concept.

6.3.1 Numerical Examples

This section presents numerical examples of the data-driven MCLE. The first

numerical example is used to compare the two methods for optimizing scale which

were discussed at the end of the previous section. In this example, N = 106 auxiliary

measurements, zi are generated as uniform random variables on the interval [1,10].

Then error samples νi are generated by scaling a standard normal random variable

by zi. The theoretically optimal estimator in this case is a weighted least-squares

estimator with weights 1/z2
i . The binning of the auxiliary measurements into nt bins

centered on z?j suggests that the trained weights for the j-th tie-point should be be-

tween (1/z?j+1)
2 and (1/z?j−1)

2. Both methods discussed in the previous section are

used to estimate the cost function parameters. In both methods, the β1, β2, and

β3 parameters for each cost are found first. In the first method, the variance from

the first step for each cost is used for β0. In the second method, the β0 parameters

are explicitly optimized. Note that nt = 10 in this example and the same Python

PYSWARM PSO optimization is used for all optimizations. The results are summa-

rized in the left-hand columns of Table (6.1) . Note that the β0 values are unique up
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Table 6.1: Resulting variance and β0 value for ten training trials under Gaussian,
Laplace, and Cauchy distributions.

Gauss Laplace Cauchy
j v β0 v β0 v β0
1 2.11 2.01 2.11 1.98 3.97 2.94
2 5.70 5.70 5.79 5.43 10.47 10.68
3 10.43 10.39 10.91 10.80 21.22 20.79
4 17.44 17.46 18.94 22.32 37.19 29.16
5 24.90 24.81 28.01 32.34 48.05 47.88
6 35.91 35.44 38.56 36.92 67.95 44.84
7 46.11 46.21 46.89 47.16 95.58 84.77
8 60.61 60.66 63.41 64.92 115.45 98.32
9 75.75 75.89 81.56 92.23 146.59 111.29

10 93.59 93.59 105.11 105.11 177.09 177.09

to scale and are therefore scaled to make the last element The same test is repeated

for the Laplace and Cauchy distribution (using the same distribution for zi). The

results are also give in Table (6.1) .

From Table (6.1) , there is an excellent agreement between the variance and

trained β0 values for the Gaussian case. All values agree to within 5%. The agree-

ment is good to within 20% for the Laplace case. The Cauchy has some moderate

disagreement: up to about 30%.

To further test the trained parameters for the three distributions above, a sec-

ond simple test was performed. A total of N = 106 samples were generated on each

of 100 trials from each of the three distributions. The parameters trained from the

two methods were used to compute the empirical asymptotic variance on the samples

for each trial. This test helps validate whether the higher-dimensional optimization
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problem overfit the data. The inter-quartile range for the Gaussian samples was

[10.77,10.92] and [10.77,10.92] for the first and second method respectively (where

the first method uses the variance for β0. The inter-quartile range for the Laplace

samples was [10.98,11.31] and [10.92,11.26] for the first and second method respec-

tively. And finally, the inter-quartile range for the Cauchy samples was [21.02,21.59]

and [20.48,21.10] for the first and second method respectively. Again, the Gaus-

sian samples give nearly equivalent results for the two methods, the Laplace has

very close agreement, less than a 1% efficiency loss, while the Cauchy samples show

approximately a 2% to 3% efficiency loss.

These results show that the method which avoids the high-dimensional opti-

mization is sub-optimal but only slightly. Depending on the application of interest,

the extra computation may justify the increased accuracy. Furthermore, it is possible

that the increase in accuracy is greater than a few percent in some problems.

The next set of numerical examples evaluates the estimator performance on the

same problem used in Section 6.1.1: estimating the parameters of a line given m = 40

measurements using 400 trials. The same line parameters and alternative estimators

used in that section are used here for comparison to the trained estimators. In

these examples, the Gaussian, Laplace, and Cauchy errors are considered with the

trained-parameters determined above are used. In addition, an estimator trained

on the empirical visual error distribution (also used in Section 6.1.1) are used in

this example as well. The SSD centroid is, discussed in Section 6.2, is used as the
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Figure 6.10: Difference in estimate error squared between the trained estimators and
Huber estimators (various ε) for four distributions.

auxiliary measurement. The results are given in Figure (6.10).

Figure (6.10) gives the difference in estimate error squared between the trained

and Huber estimators. A negative difference implies that the trained-estimator had

lower error and hence better performance than the corresponding Huber estimator.

For the Gaussian, Laplace, and Cauchy samples, the advantage is clear. For these

three distributions, a WSRT applied to the trained estimator and each Huber esti-

mator (i.e. given ε) gave p-values less than 0.0001 in each case! On the other hand,

for the visual-error samples, the results are not as convincing. The WSRT p-values
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were 6.74e−4, 0.00271, 0.0107, 0.00391, 8.22e−4, and 3.56e−5 for ε equal to 0.001,

0.01, 0.1, 0.2, 0.5, and 0.8 respectively. While this is suggestive of a performance

advantage, it is by no means definitive evidence.

For the visual-error samples, the test was repeated but with m = 1000 measure-

ments on each of the 400 trials. In this case the p-values comparing the trained esti-

mator to each ε-contaminated Huber cost were 3.05e−7, 1.31e−6, 6.61e−6, 9.13e−5,

1.25e−6, and 1.28e−9. This is much stronger evidence of the advantage of the trained

estimator. The corresponding histogram is shown in Figure (6.11) The reason for

the improved performance at larger m may be due to the fact the the asymptotic

properties of the estimator, which is what has been trained for, did not dominate the

performance at a lower value of m. This raises an interesting question with broader

implications discussed in the next paragraphs. In addition, this may not have been

an issue for the other distributions because of the stronger dependence of error νi on

the auxiliary measurement zi.

The reduced performance of the estimator trained for minimum asymptotic

variance on visual errors on the m = 40 case as compared to the m = 1000 case

suggests that estimators may need to be trained specifically for small sample results

(as opposed to asymptotic results).
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Figure 6.11: Difference in estimate error squared between the trained estimators and
Huber estimators (various ε) for four distributions.

6.4 An Approach for Small Samples

The above numerical examples demonstrated the potential of the approach de-

veloped in Section 6.1. In particular, it was shown that estimators for general regres-

sion problems can be designed by optimizing parameters of a generic cost function

for minimum asymptotic variance at the unknown distribution of interest. However,

there was evidence that in some cases, the resulting estimator did not give superior

performance when the number of measurements was small. This is unsurprising as

the estimator was designed for minimum asymptotic variance. A heuristic approach

was developed to deal with this problem.
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For the first method, training samples from the unknown distribution were

used to empirically evaluate the estimator variance for the location problem. A

logical extension for applications with small samples is to use the training samples

to compute an empirical variance. Let the typical number of measurements in the

problem of interest be m and assume there are N training samples {νi,zi}. Define

bN/mc batches of m training samples: the i’th set is simply the i’th batch of size m

from {νi,zi}. Now define the empirical estimator variance at the location problem as

v(βββ ) =
1

bN/mc

bN/mc

∑
i=1

[
argmin∑

ji

ρ(ν ji,z j|βββ )

]2

(6.23)

where the index ji sums over the m samples in the i’th batch. The empirical variance

in Equation (6.23) can be viewed as a function of the estimator parameters condi-

tioned on the training samples. Therefore it can be optimized for the problem of

interest. Note that this can be done with or without auxiliary measurements.

The downside to the above method is a higher computational cost in training

due to the large number of required location problem solutions that must be found

for each guess of βββ . This is especially exaggerated for the MCLE framework which

inevitably has a high-dimensional βββ . In addition to the approach taken in Section

6.3, one way to reduce the dimensionality of βββ is to use a cost function with fewer

parameters. One possibility is the so-called pseudo-Huber cost function given by

Hartley and Zisserman [3]. For the purposes of this dissertation, the pseudo-Huber

cost has been modified slightly to the form

ρ(x)≡ 2a2
(√

1+ x2/b2−1
)

(6.24)
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The version given by Hartley and Zisserman has a = b which approximates the Hu-

ber cost with cutoff parameter equal to one and scale parameter equal to b. Here

an additional parameter is added so that the size of the inlier region can be set in-

dependent of the scale. This gives a two-parameter cost instead of a four-parameter

cost (per auxiliary measurement bin in the MCLE case). Despite the added training

cost, this is a more flexible technique as the number of measurements m can be ad-

justed for the problem of interest. In addition, there is no added cost to the resulting

estimator.

A numerical example of this is method is given below.

6.4.1 A Numerical Example

To demonstrate the small sample method of the previous section, a numerical

example is performed. The paired samples {νi,zi} from the empirical visual error

distribution used in the last example of Section 6.3.1 (Figure (6.10) and Figure (6.11))

are used to train an estimator for minimum variance at m = 20 measurements. The

two-parameter pseudo-Huber cost function defined in Equation (6.24) is used with

30 tie-points for the auxiliary measurements.

The resulting sixty-dimensional cost function defined in Equation (6.23) is opti-

mized with the SciPy implementation of Powell’s method [22, 107]. Powell’s method

is a derivative-free optimization method that attempts to find and proceed along

conjugate directions with respect to a quadratic approximation to the cost func-

tion. This method was chosen because it does not requires derivatives and because
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Figure 6.12: MCLE cost function resulting from small-sample training with thirty
bins for the auxiliary measurement (only ten bins shown for clarity).

it was found to obtain an acceptable solution with a fewer number of cost function

evaluations (which are more expensive than the asymptotic variance evaluation).

The resulting cost function is shown in Figure (6.12). Note that only ten of

the thirty auxiliary measurement bins are shown. The trend is as expected. As

the auxiliary measurement increases, the scale of the error increases (i.e. see Figure

(6.8)). This is captured in training: as the auxiliary measurement increases, the cost

is scaled down.

The trained MCLE cost is used on the same regression problem discussed in

Section 6.3.1. The results on each trail are compared to the same set of Huber

estimators used in Section 6.3.1 (i.e. of varying ε). The resulting histogram of the

difference in error between the trained and Huber estimators is shown in Figure
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Figure 6.13: Difference in estimate error squared between the small sample trained
estimator and Huber estimators (various ε).

(6.13). A WSRT was used to compare the results of the trained estimator to each

Huber estimator. In all cases, the p-value was essentially-zero (10−36). This shows a

clear advantage of the small sample MCLE over each instance of the Huber estimator.

6.5 Application to Vision-Aided Navigation

This section presents the results of applying the methods developed above to

the vision-aided navigation problem. The test cases used in this section involve a

trajectory class which was not used in Section 5. Each dataset of the trajectory

class contains 40 images, each equally spaced along a circular path with a diameter

of one distance unit and an altitude of 10 distance units above the surface. The

additional images (40 as compared to 20) and the motion give good observability of
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the landmark parameters. The strong observability of this dataset encourages the

dominance of the asymptotic error terms.

In the first test, a learning dataset was used to train a single Huber-Rolloff

cost function. A total of 50 datasets of 40 images, each containing 200 landmarks

was used to generate the samples. In total, 250,000 samples were used to train

the estimator. The resulting parameters were α1 = 0.0743, α2 = 0.153, α3 = 0.718.

Table (6.2) shows the empirical variance evaluated at both the trained estimator and

several instances of Huber and Cauchy estimators. From the table, it is clear that the

trained estimator has the smallest asymptotic empirical variance. Two interesting

notes can be made. First, the Cauchy estimator has a theoretical asymptotic variance

that is much more sensitive to scale than the Huber estimator. Second, the trained

estimator has only a slight advantage as compared to the best Cauchy and Huber

costs. As compared to least-squares, any of the robust cost functions provide an

enormous advantage. Nevertheless, the training method gives an objective means to

choose the best cost function.

Figure (6.14) shows the results for the first test case in two violin plots. The

top plot contains RMS position error and the bottom plot contains RMS attitude

error for each estimator as indicated on the horizontal axis. The vertical axis shows:

(1) the RMS error for each dataset (horizontal lines), (2) a kernel density estimate for

the RMS errors (solid contour line), (3) the inter-quartile range (solid vertical bar)

and (4) the median (white dot). There are several important conclusions that can
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Table 6.2: Empirical variance of several estimators for a training sample.

Estimator N
N
∑

i=1
ψ(νi)

2/

(
N
∑

i=1
ψ ′(νi)

)2

Huber-σ = 0.01 0.0255
Huber-σ = 0.05 0.0237
Huber-σ = 0.1 0.0250
Huber-σ = 0.2 0.0339

Cauchy-σ = 0.01 0.0791
Cauchy-σ = 0.05 0.0250
Cauchy-σ = 0.1 0.0203
Cauchy-σ = 0.2 0.0213
Least Squares 1.982

Trained 0.0202

be drawn from this figure. The most obvious observation is the failure of the Huber

estimators which have very large error. The Cauchy estimators all have similar error,

regardless of scale. The trained estimator has slightly better performance than all of

the Cauchy estimators.

The advantage of the trained estimator over the other estimators is shown to

be statistically significant in Table (6.3) . This table contains WSRT p-values for

the comparison of the trained estimator to the others. Even though the advantage

is small over the Cauchy estimators, 5-10%, the reduction is consistent across the

datasets which is why the WSRT p-value is nearly zero. Despite this important

and convincing result, there are some unexplained trends. The results in Table

(6.3) and Figure (6.14) are inconsistent with the theoretical variances in Table (6.2)

. The theoretical variance of the Huber estimators is only 25% greater than the

trained estimator but the resulting RMS errors are nearly double which is a 400%
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Figure 6.14: Violin plot of RMS position error (top) and attitude error (bottom) for
several autoregressive estimators including the trained Huber-Rolloff.

increase in error squared (which should be proportional to variance). Furthermore,

the σ = 0.01 Cauchy estimator has similar errors to the other Cauchy estimators

and to the trained estimator despite having a variance in Table (6.2) that is three

to four times higher. These paradoxes are troubling and are addressed in the next

test case.

The discrepancy between the theoretical scalar variances and the the RMS

error of the estimators can be due to a number of reasons. One issue could be

that the samples used to train the estimator are not exactly drawn for the true

distribution. This is of course true. The pseudo-error samples are related to the

true errors via Equation (5.69) which required a linear approximation. A second
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Table 6.3: Table of WSRT p-values and percent reduction in errors for the trained
estimator compared to Cauchy and Huber estimators of various scale.

Angle Position
Est. p eST−eAR

eST
×100% p eST−eAR

eST
×100%

AR-0.01-H 0.000 50.581 % 0.000 55.794 %
AR-0.05-H 0.000 58.172 % 0.000 62.651 %
AR-0.1-H 0.000 64.179 % 0.000 69.612 %
AR-0.01-C 0.000 11.235 % 0.008 10.808 %
AR-0.05-C 0.000 8.886 % 0.000 7.448 %
AR-0.1-C 0.000 9.830 % 0.000 9.256 %

possible explanation is an unmodeled correlation structure. The autoregressive model

assumes positive serial correlations for each individual landmark. It is possible that

inter-landmark correlations exist for the case considered. For example, this could be

due to a large number of landmarks being tracked on the limb of the comet model.

The second test case addresses both of these explanations simultaneously.

The second test case was set up as follows. The evaluation dataset was used to

obtain pseudo-error error samples in the same manner as the training dataset used

to train the estimators. As both datasets were generated in the same manner, both

sets of samples come from the same underlying distribution. However, the two prob-

lems are that this is not the exact distribution and there may be hidden correlation

structures in the data. To test the estimators with these problems removed, a mixed

simulation approach similar to that used in Section 5.11.7 was used here. In particu-

lar, 50 datasets were derived from the evaluation dataset using the same trajectories,

landmark positions, and occlusion conditions. The difference is that the errors were

simulated with a perfect α = 1 autoregressive error process. The errors driving the
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process were selected uniformly randomly from the evaluation datasets pseudo-error

samples. By selecting the samples in a random manner, any correlation structure

that existed in the true measurements is destroyed. In addition, the resulting dataset

is described by a measurement model that is consistent with the measurements used

to train the estimator. Finally, because the samples were obtained from the eval-

uation set, they are independent of the samples used to train the estimator which

avoids any over-fitting issues.

The results for the second test case are shown in Figure (6.15) which is analo-

gous to Figure (6.14). In addition, Table (6.4) gives the WSRT p-values and percent

reduction in errors for the trained estimator compared to the other estimators. These

results are consistent with the theoretical variances in Table (6.2) ! In particular, the

performance of the Huber estimator is consistent regardless of scale. Compared to

the train estimator, the errors in the Huber estimator are 10-20% larger which is con-

sistent with the theoretical variance of the Huber estimator (which is 25% larger than

that of the trained estimator). In addition, the Cauchy estimators are more scale

sensitive with the estimator error decreasing as the scale increases from σ = 0.01 to

σ = 0.1. The σ = 0.1 scale makes the Cauchy estimator most competitive with the

trained estimator. Nevertheless, the trained estimator has a statistically significant

improvement as the WSRT p-value < 0.0001 suggests.

The fact that the theoretical and numerical results are consistent in the mixed-

simulation test but not on the true measurements is a key observation with several
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Figure 6.15: Mixed-simulation test. Violin plot of RMS position error (top) and
attitude error (bottom) for several autoregressive estimators including the trained
Huber-Rolloff.

Table 6.4: Mixed-simulation test. Table of WSRT p-values and percent reduction in
errors for the trained estimator compared to Cauchy and Huber estimators of various
scale.

Angle Position
Est. p eST−eAR

eST
×100% p eST−eAR

eST
×100%

AR-0.01-H 0.003 12.075 % 0.001 12.694 %
AR-0.05-H 0.006 13.601 % 0.002 11.683 %
AR-0.1-H 0.001 20.097 % 0.000 17.180 %
AR-0.01-C 0.000 44.040 % 0.000 42.809 %
AR-0.05-C 0.000 30.900 % 0.000 29.325 %
AR-0.1-C 0.000 17.503 % 0.000 17.731 %

implications. Most importantly, it validates the data-driven estimator design for

general nonlinear regression problems when samples from the true distribution can
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be obtained and all correlations are modeled. In addition, it suggests several con-

cerning issues about vision-aided navigation problems. Despite the demonstrated

improvements to visual measurement models presented in this dissertation, it is pos-

sible that further improvements are possible. The strongest evidence for this is the

large error in the Huber estimator in the first test case. One possible reason for

this is an unmodeled correlation structure. Such correlations can cause a coalition

of outliers that can corrupt the estimate. In the test case presented above, such a

coalition can be created by a subset of landmarks which sit on the limb of the comet

model and have a bulk motion that appears inconsistent with the true comet-camera

relative motion. The convex nature of the Huber estimator can cause the estimate to

be corrupted even when the initial guess is simultaneously close to the truth and far

from any false-solution suggested by the coalition. The issue is a strong motivation

for further research which is discussed in the conclusion of this section.

6.6 Summary

This section presented a data-driven approach to M-estimation which was mo-

tivated by a theoretical result derived in Section 2. The advantage of the resulting

M-estimators over the state-of-the-art Huber estimator was demonstrated on a set

of canonical problems. An extension of this concept to leverage so-called auxiliary

measurements was presented and termed the MCLE. Evidence of such auxiliary

measurements in vision-aided navigation was presented and the advantage of the
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algorithm was demonstrated on canonical problems.

The data-driven approach was applied to the vision-aided navigation problem

and a statistically significant improvement was demonstrated. However, several sur-

prising paradoxes were observed. Inconsistency between the true measurement model

and the assumed measurement model used to train the estimator was identified as

a likely explanation for the paradoxes. A mixed-simulation analysis that removed

this inconsistency was performed. The paradoxes were not present in the results

which was both an important success for the data-driven approach and convincing

evidence that the explanation was correct. This gives strong motivation for two

paths for further research. One possible path is to further improve the measurement

models to capture inter-landmark correlations. Unfortunately, this is likely to be

highly problem dependent which would limit the applicability of the results.

A second, and possibly far more lucrative, path is to investigate the use of

high breakdown point estimators for the vision-aided navigation problem. One com-

mon estimator in the robust statistics literature is known as least trimmed squares

(LTS). Given N measurements and a tuning parameter k, this algorithms computes

an estimate that minimizes the k smallest square residuals [108]. For k = N/2, the

breakdown point is 50%. This is an excellent candidate for problems that contain

outlier coalitions. The downside is that computation of the estimate is more expen-

sive, especially for problems with a large number of parameters and measurements.

Approximations to the true solution lead to more computationally tractable algo-
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rithms [108]. Tailoring such estimators to the vision-aided navigation problem and

modifying them to handle alternative trimmed costs is a promising area for further

research.

286



7 CONCLUSION

The primary goal of this dissertation was to develop methods to improve the

accuracy and robustness of vision-aided navigation systems. Visual feature mea-

surements are the distinguishing information source of such systems and MLE-like

estimators are the foundation for estimation algorithms that use them. These esti-

mators require an accurate model of visual feature measurements. This dissertation

presented analysis to systematically assess the validity of the ubiquitous assumptions

used in such models. Evidence against the independence assumption, the identically

distributed assumption, and the Gaussian assumption, was presented. This evidence,

by itself, is an important contribution of this dissertation. In addition, the evidence

and associated analysis that contradicted the standard assumptions motivated the

other contributions of this dissertation.

In summary, the primary contributions of this dissertation are

1. Evidence of strong positive serial error correlations in visual feature measure-

ments (see Section 5.2.1).

2. A method to approximate the distribution of visual measurement errors under

a number of structural models using a high-fidelity rendering tool (see Section

5.10.

3. Evidence to suggest that visual measurement errors are better approximated

by a Cauchy distribution than a normal distribution (see Section 5.10.
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4. Evidence to suggest large reductions in error when using a Cauchy distribution

to derive MLEs as compared to the state-of-the-art Huber cost function (see

Section 5.11.2 and Section 5.11.5).

5. The development and implementation of a set of structural models for visual

feature measurements that captures serial error correlations (see Section 5.3,

Section 5.7, Section 5.4, and Section 5.6).

6. Demonstration of significant performance advantages for estimators derived

under models that capture serial error correlations in visual feature measure-

ments. In tested cases, for certain motion types, a reduction in RMS angle and

position error was typically 60% and 30% respectively (see Section 5.11.2 and

Section 5.11.5).

7. The development, implementation and demonstration (on canonical problems)

of a data-driven method to optimize a generic M-estimator for asymptotic

variance using samples of an unknown distribution (see Section 6.1).

8. Evidence to suggest that visual measurement errors are not identically dis-

tributed and the identification of observable quantities that provide information

about the distribution of such errors (see Section 6.2).

9. The development, implementation and demonstration (on canonical problems)

of a data-driven MCLE method to optimize a generic M-estimator for asymp-

totic variance using samples and auxiliary measurements from an unknown

joint distribution (see Section 6.3).
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10. Demonstration of the data-driven approach to the vision-aided navigation prob-

lem in a controlled test case that removed possibly unknown correlation struc-

tures and insured consistency between the true and assumed measurement

models.

The impact of these contributions are broad. The MLE-like estimators have

been recognized as the estimator-of-choice for vision-aided navigation systems from

an accuracy and robustness perspective and have been historically used in the bundle

adjustment community. Early research on visual measurements for real-time use in

robotics focused on sequential filtering applications due to the computational com-

plexity of the MLE and M-estimators. As the price, size, and power consumption

of computational platforms has shrunk, these estimators have become increasingly

practical for real-time feedback control and motion planning. In fact, much of the

recent SLAM research has focused on applying the MLE in real-time systems. Such

estimators can easily incorporate the proposed models, both structural and prob-

abilistic, with little change to the system architecture. Furthermore, the choice of

additional sensors and source of information is made irrelevant by the MLE and M-

estimation framework. This further broadens the applicability of the results of this

dissertation. Based on these facts and the evidence contained in this dissertation,

the use of the developed models is recommended for future vision-aided navigation

systems.

An addition to the development and demonstration of improved measurement
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models, this dissertation also presented a data-driven approach to minimum asymp-

totic variance M-estimator design. This method had a clear advantage in canonical

problems. The flexibility of the method suggests that it can be applied to a broad

range of applications. When applied to the vision-aided navigation problem, a sta-

tistically significant improvement was demonstrated. However, the results contained

a number of troubling paradoxes and evidence was found to suggest that modeling

errors were the cause of the paradox. In particular, in certain problems, coalitions

of outliers may act together to suggest an incorrect solution. This is an entirely

different issue than outliers which act independently with no shared consensus. Such

problems may be addressed with a class of least-trimmed estimators which minimize

a cost function on the best subset of measurements. Applying and modifying these

estimators to the vision-aided navigation problem is expected to be a productive

path for future research.

In summary, this dissertation has presented a set of improved measurement

models for visual feature measurements and a data-driven approach to M-estimator

design. The improved measurement models can be used in MLE-like estimators

which are increasingly being used as the estimation framework-of-choice for vision-

aided navigation systems. In addition, the data-driven M-estimator design methods

resolve common issues in designing M-estimator cost functions and are applicable

to a wide-range of applications. Taken together, both the improved measurement

models and data-driven methods can accomplish the goal of improving the accuracy
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and robustness of vision-aided navigation systems.
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