
MODIFIED CHEBYSHEV PICARD ITERATION: INTEGRATION OF

PERTURBED MOTION USING MODIFIED EQUINOCTIAL ELEMENTS

A Dissertation

by

JULIE LOUISE READ

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, John L. Junkins
Co-Chair of Committee, Ahmad Bani Younes
Committee Members, Gregory Chamitoff

Shankar P. Bhattacharyya

Head of Department, Rodney Bowersox

December 2016

Major Subject: Aerospace Engineering

Copyright 2016 Julie Louise Read

ABSTRACT

The topic of this dissertation is the fusion of a novel integration method, Modified

Chebyshev Picard Iteration (MCPI), with Gauss’ Variational Equations using a set

of Modified Equinoctial Orbital Elements. This combination leads to a dramatically

increased domain of Picard iteration convergence and an efficiency increase for MCPI

solutions of the Initial Value Problem of Celestial Mechanics, thereby reducing the

number of full gravity function calls. The set of Modified Equinoctial Orbital Ele-

ments (MEEs) are nonsingular over a large orbit variation domain, in contrast with

the Classical Orbital Elements (COEs), which are singular at zero inclination and

zero eccentricity, and propagation of MEEs with MCPI leads to much greater conver-

gence time intervals for the IVP than is possible using Cartesian coordinates. This

set of elements is also used to formulate the Two-Point Boundary Value Problem

(TPBVP) associated with orbit transfer using a low-thrust, minimum-time control

formulation and solves iteratively via a shooting method known as the Method of

Particular Solutions.

ii

DEDICATION

For my family and friends who have supported me throughout my education and

encouraged me to pursue my dreams.

I am forever thankful for your kind words and patience.

I appreciate you all more than you know.

iii

ACKNOWLEDGEMENTS

To my husband Tim for supporting me throughout my PhD- you were my biggest

supporter when I said I wanted to go back to graduate school. You have spent

countless hours giving me advice, encouraging me, and helping me to destress when

I need to just slow down and take time to relax. You have never complained about

me working nights and weekends and have been so supportive throughout my degree.

I could not have gotten through my degree without you! Commuting from Houston

for a PhD was only feasible with your amazing support. I am lucky to have you as

my husband and my biggest fan, and I look forward to the next stage of our lives

together.

To my parents Terry and Joanne for teaching me to work hard and to never give

up- you can take the woman out of the farm, but you can never take the farm out

of the woman! All those hours of helping out (and not to mention miles and miles

of clipping rye!) taught me that luck follows those who work hard and live with

integrity. You spent many years pushing me to do my best and to excel in school,

and that the only true failure is to not try. As a result I now have the tenacity and

resilience to tackle any challenge. Thank you for always inspiring me to be the best

I can be.

To my sister- we have had many years of memories, and I look forward to many

more. We share so many interests and are alike in so many ways, and I am grateful

for the time we have together. Thank you for helping me get started with my PhD

and giving me a place to stay in College Station my first year. I was sad to see you

leave, but I am so happy you moved back to Texas! Even if I have been called Lori

instead of you being called Julie, for a change.

iv

To Dr. Junkins and Dr. Ahmad Bani Younes- thank you for helping me navigate

through my studies and research and for always believing in me. I will remember

your advice for years to come. I am very fortunate to have you both as my co-

advisors, and the the past four years have been well-spent with your infinite wisdom

guiding me.

To Dr. Bani Younes- thank you for helping me debug my code when I am

stuck and for your patience in communicating from halfway across the world. Your

willingness to Skype with me at all hours of the day is much appreciated! You are

already on your way to becoming a well-known professor.

Dr. Junkins- thank you for all your advice regarding school, career, and life in

general. I am thankful you push your students to be well-rounded individuals and

that you truly care about our success. When I saw you during my Master’s at A&M,

I wondered if you would be willing to talk to me; I have now learned that not only

would you talk to me, but that you will talk to me for as long as I will listen! You

truly are a walking legend, and I hope I can soak up every bit of knowledge I can

from you. I am convinced you live in a higher dimension than the rest of the world.

To Dr. Chamitoff- thank you for pushing me to pursue my PhD, even though

it meant commuting from Houston. You are right, it has been a long road. As

you said, “it took someone crazy to tell you do to something crazy!” to convince

me to follow this path. I can see now that this was the best choice, and I value

your encouragement, insight, and modesty. Thank you so much for stepping in and

serving on my committee.

To Dr. Bhattacharyya- thank you for being an outstanding teacher and com-

mittee member. I learned a lot in your class, and I am grateful to have you on my

committee. If I could pursue a second PhD, I would see if you were taking any new

students.

v

Thanks to additional members of the Texas A&M MCPI research team: Robyn

Woollands, Brent Macomber, Austin Probe, Abhay Masher, Nathan Budd, Chris

Shelton, Xiaoli Bai, Tarek Elgohary, and Donghoon Kim. I am proud to be a part

of our team, and I look forward to seeing you all succeed in your careers.

Robyn- thank you for working with me the past four years. We have made it

through this program together and have overcome many hurdles. We have grown in

so many ways, and I am glad we have each other to lean on.

Kevin - Thank you for all your coding advice and discussions. I appreciate you

taking the time to help me become a more efficient programmer.

To Dr. Mortari- thank you for all the coffee breaks and teaching me the proper

way to drink an espresso. I am very glad that I had the opportunity to take a few

classes from you and attend conferences with you. You always brighten my day when

I see you.

Thanks to Dr. Bob Gottlieb (Odyssey Space Research) and Dr. Terry Feagin

(UHCL) for their discussions of numerical propagators, normalized gravity, and STM

calculations. You can finally call me “Dr.” even though you’ve been doing that for

a few years- thanks for your confidence!

To Dr. Turner- thank you for forcing me to learn Maxima (symbolic toolbox).

It has served me well during my dissertation research. Thank you also for giving

me feedback on my presentations at conferences, as well as sharing knowledge from

some of your industry experience with me.

Thank you to JSC (EG-5) for agreeing to a new partnership with Texas A&M and

welcoming me into your group during my last semester. I have met many intelligent,

dedicated employees who share my passion for space exploration, and it is an honor

to join you for a few months.

vi

Last, but not least, thank you to the sponsors for this work: AFOSR (Julie Moses

and Stacie Williams), AFRL (Alok Das), and ADS (Matt Wilkins).

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES . xvii

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Dissertation Outline . 6

2. MODIFIED CHEBYSHEV PICARD ITERATION 9

2.1 MCPI Overview . 10
2.2 Picard Iteration . 12
2.3 Chebyshev Polynomials . 13
2.4 Chebyshev-Gauss-Lobatto Nodes . 16
2.5 Initial Value Problem . 17

2.5.1 Standardized Algorithm for Cascade Solution of First and Sec-
ond Order Differential Equations 21

2.5.2 Original Picard Iteration Expansion for IVP 27
2.5.3 Examples: Standardized Algorithm vs. Original MCPI 32

2.6 Boundary Value Problem . 39
2.6.1 First Order BVP MCPI . 40
2.6.2 Second Order BVP MCPI . 41

2.7 Chapter Summary . 42

3. MODIFIED EQUINOCTIAL ORBITAL ELEMENTS 43

3.1 Introduction . 43
3.2 Gauss’ Equations . 49

viii

3.3 Simulation: Increased Domain of Convergence 50
3.3.1 Comparison: MEE vs. Cartesian MCPI Orbit Propagations . 51
3.3.2 Segmentation . 56

3.4 Chapter Summary . 66

4. STATE TRANSITION MATRIX FOR SPHERICAL HARMONIC GRAV-
ITY . 67

4.1 Dynamic Model . 70
4.2 State Transition Matrix Using Spherical Harmonic Gravity 71
4.3 Computation of Associated Legendre Functions 74
4.4 Earth-Centered-Interial Jacobian . 76
4.5 Earth-Centered-Earth-Fixed Jacobian: Transformation to Inertial . . 79
4.6 MCPI STM Results . 83
4.7 Optimized State Transition Matrix Calculations 86

4.7.1 Cascade Method . 86
4.7.2 State Transition Matrix in Canonical Units 93

4.8 Chapter Summary . 100

5. MONTE CARLO ANALYSIS USING MODIFIED EQUINOCTIAL OR-
BITAL ELEMENTS . 101

5.1 Taylor Series Gravity Expansion . 101
5.2 Monte Carlo Simulation Results . 103

5.2.1 Matlab R2013a . 103
5.2.2 Compute Cluster . 105

5.3 Chapter Summary . 113

6. METHOD OF PARTICULAR SOLUTIONS 114

6.1 p-Iteration . 114
6.2 Method of Particular Solutions . 121
6.3 Chapter Summary . 124

7. SUBOPTIMAL CONTROL USING STEERING ANGLES 125

7.1 Problem Statement . 126
7.2 Suboptimal Control Simulation Results 127
7.3 Simulation Results . 129

7.3.1 Example 1 . 129
7.3.2 Example 2 . 130

7.4 Chapter Summary . 135

8. LOW-THRUST OPTIMAL CONTROL 136

ix

8.1 Problem Statement . 137

9. CONCLUSION . 144

REFERENCES . 147

APPENDIX A. CHEBYSHEV POLYNOMIALS 156

A.1 Orthogonality . 156
A.2 Method of Approximation . 158

APPENDIX B. SUPPLEMENT TO STATE TRANSITION MATRIX 159

B.1 Jacobian Matrix G for Spherical Harmonic Gravity in ECEF Frame . 159
B.1.1 Partial Derivatives for Jacobian Matrix G in ECEF Frame Us-

ing Spherical Harmonic Gravity 164
B.2 Jacobian Matrix G for Spherical Harmonic Gravity in ECI Frame . . 167
B.3 Components of Jacobian Matrix G for Zonal Gravity 175
B.4 Jacobian Matrix G for Two-Body Gravity 184
B.5 Partials of Associated Legendre Functions 184

APPENDIX C. ENERGY JACOBI INTEGRAL 187

C.1 Jacobi Integral for Zonal Harmonic Gravity 187
C.2 Jacobi Integral for Spherical Harmonic Gravity 189

APPENDIX D. CANONICAL UNITS FOR CARTESIAN COORDINATES . 190

D.1 Earth-Centered Motion . 191
D.2 Heliocentric Motion . 192
D.3 Conversion Script . 193

APPENDIX E. COMPUTE CLUSTER AT THE LAND, AIR, AND SPACE
ROBOTICS LABORATORY (LASR) FOR SPACE SITUATIONAL AWARE-
NESS (SSA) . 195

x

LIST OF FIGURES

FIGURE Page

1.1 Orbital Debris Categorized by Type. These data are for the publicly
available space object catalog. 2

2.1 Position approximation at incremental Picard iterations with no a
priori knowledge of the initial trajectory guess. It is remarkable that
even a very poor starting path approximation can lead, in a few Picard
iterations, to a machine precision solution for an entire orbit. Each
subfigure is the current state approximation at the ith Picard iteration. 10

2.2 First six Chebyshev Polynomials T0 − T5 14

2.3 Comparison of Sampling Schemes Over One Orbit (60 Sample Points
LEO). Note the Clustering of Cosine Sampling at Perigee and Sparsity
of Sampling at Apogee. 18

2.4 Example for mitigation of Runge effect using 11 cosine sampled nodes
vs. 11 uniformly sampled nodes [57]. 19

2.5 Flowchart for Standardized MCPI Algorithm (Initial Value Problem) 25

2.6 Flowchart for Vector Form of Standardized MCPI Algorithm (Initial
Value Problem) . 26

2.7 Flowchart of MCPI Algorithm for Initial Value Problem 31

2.8 First Order Example State Comparison for Three Integrators 38

xi

2.9 First Order Example Error Comparison for Three Integrators 39

3.1 Equinoctial Reference Frame . 46

3.2 Verification of Classical Orbital Elements Solution vs. Cartesian for
One Orbit Using Zonal Harmonics Gravity [48] 53

3.3 Verification of Modified Equinoctial Orbital Elements Solution vs.
Cartesian for One Orbit Using Zonal Harmonics Gravity [48] 54

3.4 Verification of Modified Equinoctial Orbital Elements Solution vs.
Cartesian for One Orbit Using Spherical Harmonic Gravity Degree
and Order 40 [48] . 55

3.5 Osculating Modified Equinoctial Orbital Elements Degree and Order
40, LEO (e = 0.1) . 56

3.6 Osculating Modified Equinoctial Orbital Elements, Converted to Clas-
sical Orbital Elements, Degree and Order 40, LEO (e = 0.1) 57

3.7 Cartesian Position Components, Degree and Order 40, LEO (e = 0.1) 58

3.8 Cartesian Velocity Components, Degree and Order 40, LEO (e = 0.1) 59

3.9 Energy Check for Classical Orbital Elements Solution for 13 Orbits
(LEO) Using a Single MCPI Solution Segment [48] 60

3.10 Energy Check for Modified Equinoctial Orbital Elements Solution for
53 Orbits (LEO) Using a Single MCPI Solution Segment [48, 49] . . . 60

3.11 40th Degree and Order Spherical Harmonic Energy Check for Modified
Equinoctial Orbital Elements Solution (LEO) for 17 Orbits Using a
Single MCPI Solution Segment [48, 49] 61

xii

3.12 Maximum Number of Orbits Over Which MCPI Will Converge as a
Function of Varying Degree and Order Spherical Harmonic Gravity [48] 61

3.13 Number of MCPI Iterations Per Orbit as a Function of Varying Degree
and Order Spherical Harmonic Gravity, for Moderate (e = 0.1) and
Intermediate (e = 0.3) Eccentricity [48] 62

3.14 Number of Acceleration Sample Points (Nodes) Per Orbit as a Func-
tion of Varying Degree and Order Spherical Harmonic Gravity, for
Moderate (e = 0.1) and Intermediate (e = 0.3) Eccentricity [48] . . . 62

3.15 Comparison of MCPI Iterations Per Orbit for MEE versus Cartesian as
a Function of Varying Degree and Order Spherical Harmonic Gravity
[48] . 63

3.16 Comparison of MCPI Time Per Orbit for MEE versus Cartesian as a
Function of Varying Degree and Order Spherical Harmonic Gravity [48] 63

3.17 Comparison of MCPI Gravity Function Calls Per Orbit for MEE ver-
sus Cartesian as a Function of Varying Degree and Order Spherical
Harmonic Gravity [48] . 64

3.18 Segmented Increase in Number of MCPI Iterations Per Orbit as a
Function of Varying Degree and Order Spherical Harmonic Gravity [48] 64

3.19 Segmented Decrease in Number of MCPI Nodes Per Orbit as a Func-
tion of Varying Degree and Order Spherical Harmonic Gravity [48] . . 65

3.20 Segmented Decrease in Number of Gravity Function Calls Per Orbit as
a Function of Varying Degree and Order Spherical Harmonic Gravity
[48] . 65

4.1 Finite Difference Check for First and Second Partials of ALFs (Degree
and Order Gravity = 10) [50, 52] . 85

xiii

4.2 Relative Error Check for Second Partial of Gravity Potential with
Respect to Latitude (Degree and Order Gravity = 10, Earth Rota-
tion Included); Note This Figure Gives Absolute Value, Compared to
Conference and Journal Figures in [50, 52] 86

4.3 Symplectic Check of State Transition Matrix (Degree and Order Grav-
ity = 10) [50, 52] . 87

4.4 Finite Difference Check for First Column of STM Over One Orbit
(Degree and Order Gravity = 10) [50, 52] 88

4.5 Rel Err for G: (ECEF → ECI) vs. ECI (Degree and Order Gravity =
10) . 89

4.6 Timing Comparison for G: (ECEF→ ECI) vs. ECI (Degree and Order
Gravity = 10) . 90

4.7 Timing Comparison of Trajectory and STM: Propagated Both Simul-
taneously and Separately Over One Orbit [52] 91

4.8 Timing Comparison of Baseline vs. Cascade Method for Computing
Trajectory and Subsequently STM From Converged Position [52] . . . 93

4.9 Timing Comparison of Cascade Method for Trajectory and Subse-
quently STM From Converged Position vs. Computing Trajectory
and STM Together [52] . 94

4.10 Timing Comparison for Computing Trajectory and STM of RK12(10)
with MCPI Cascade Method (Traj and STM Integrated Together) [52] 95

5.1 Flowchart for Taylor Series Gravity Monte Carlo 104

xiv

5.2 Initial Position Point Cloud for Monte Carlo Simulation (LEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points
[51] . 105

5.3 Initial Velocity Point Cloud for Monte Carlo Simulation (LEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points
[51] . 106

5.4 Final Position Point Cloud for Monte Carlo Simulation (LEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points
[51] . 107

5.5 Final Velocity Point Cloud for Monte Carlo Simulation (LEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points
[51] . 108

5.6 Initial Position Point Cloud for Monte Carlo Simulation (MEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points
[51] . 109

5.7 Initial Velocity Point Cloud for Monte Carlo Simulation (MEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points
[51] . 110

5.8 Final Position Point Cloud for Monte Carlo Simulation (MEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points
[51] . 110

5.9 Final Velocity Point Cloud for Monte Carlo Simulation (MEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points
[51] . 111

5.10 Timing Comparison Over 1 LEO Orbit Using Taylor Series Gravity
vs. Spherical Harmonic Gravity [51] 111

xv

5.11 Monte Carlo Using One Million Trajectories in a MEO Orbit [51] . . 112

6.1 Overview of the Method of Particular Solutions Method 122

7.1 Trajectory Solution Using Suboptimal Control Formulation with MEEs
and MCPI for Example 1 . 130

7.2 MPS Convergence as a Function of MCPI Iterations Using Suboptimal
Control Formulation with MEEs and MCPI for Example 1 131

7.3 Control Vector Using Suboptimal Control Formulation with MEEs
and MCPI for Example 1 . 131

7.4 Steering Angles Using Suboptimal Control Formulation with MEEs
and MCPI for Example 1 . 132

7.5 2-D Projection of Trajectory Solution Using Suboptimal Control For-
mulation with MEEs and MCPI for Example 2 133

7.6 Trajectory Solution Using Suboptimal Control Formulation with MEEs
and MCPI for Example 2 . 133

7.7 MPS Convergence as a Function of MCPI Iterations Using Suboptimal
Control Formulation with MEEs and MCPI for Example 2 134

7.8 Control Vector Using Suboptimal Control Formulation with MEEs
and MCPI for Example 2 . 134

7.9 Steering Angles Using Suboptimal Control Formulation with MEEs
and MCPI for Example 2 . 135

8.1 Thrust Vector for Low-Thrust Optimal Control 138

xvi

LIST OF TABLES

TABLE Page

3.1 LEO (e = 0.1) Trajectory Initial Conditions 51

3.2 MEO (e = 0.3) Trajectory Initial Conditions 51

7.1 Example 1 LEO Trajectory Initial Conditions 129

7.2 Example 1 LEO Trajectory Target State 129

7.3 Example 2 LEO Trajectory Initial Conditions 132

7.4 Example 2 LEO Trajectory Target State 132

xvii

1. INTRODUCTION

1.1 Motivation

This dissertation is motivated mainly by two major contemporary challenges in

astrodynamics: orbital debris mitigation and low-thrust orbital transfers. In both

problems, a need exists for improved computational efficiency and robustness of the

algorithms, that decreases reliance on prior empirical knowledge.

Since the beginning of the space age, orbital debris has increasingly accumulated

in Earth orbit. This mostly linear trend of ∼ 200 new objects per year tracked by the

Department of Defense, National Aeronautics and Space Administration (NASA),

and European Space Agency (ESA) [1] is shown in Figure 1.1. Most notable depar-

tures from the linear trend are two recent collision and breakup events (the colli-

sion of Iridiuim and Cosmos in 2009 and the deliberate destruction of the Fengyun

satellite in 2007), where a large increase is seen in the resulting number of trackable

orbital debris. Following these events, a deceptive trend shows the number of objects

decreasing; however, this is due to many now-smaller and high area-to-mass-ratio ob-

jects burning up in the Earth’s atmosphere. The overall trend of orbital debris will

likely continue upward (especially if there are more major collisions) until measures

are taken to remove objects that are most likely to collide and minimize creation of

new debris.

Of the ∼ 22, 000 trackable objects presently in Earth orbit, about 2000 are op-

erational spacecraft. An estimated 500,000 non-trackable, but lethal debris objects

exist. It is evident that taking down large debris objects, such as spent boosters,

before they collide is a key strategy to mitigating debris growth due to future colli-

sions.

1

F
ig
u
re

1.
1:

O
rb
it
al

D
eb
ri
s
C
at
eg
or
iz
ed

b
y
T
y
p
e.

T
h
es
e
d
at
a
ar
e
fo
r
th
e
p
u
b
li
cl
y
av
ai
la
b
le

sp
ac
e
ob

je
ct

ca
ta
lo
g.

2

There is a strong need to refine forecasting of the most threatening pairs of orbital

objects so they can be prioritized for mitigation prior to likely future collisions. The

studies presented in this dissertation demonstrate significantly enhanced numerical

methods that may be used to efficiently propagate large catalogs, find future conjunc-

tions and thereby enable the analysis to avoid future collisions. The advent of the

planned new Air Force radar fence is anticipated to increase the number of trackable

objects from ∼ 22, 000 to ∼ 100, 000. Solving the inverse problem (associating multi-

ple observation sets with the same physical object, determining accurate orbits, and

updating space object catalogs) will then be many orders of magnitude more com-

putationally taxing than is presently the case. As real-time tracking of orbital debris

becomes more demanding and critical, the tradeoff beween accuracy and speed must

be considered. Efforts must be re-doubled to establish the most efficient computa-

tional methods for all aspects of space situational awareness (SSA). One approach is

to emphasize parallel computation through adoption of sofware/hardware architec-

ture such as using graphics processing units (GPUs) or compute clusters [2, 38, 47].

A main advantage of the propagation method used throughout this dissertation,

Modified Chebyshev Picard Iteration, is that it is inherently massively paralleliz-

able, in constrast with many traditional step-by-step integrators. This algorithm

and its derivatives promise to also find its way into enhanced orbit determination,

SSA hypotheses testing, and orbit transfer computations.

Efficiently optimizing orbit transfer maneuvers to reach and/or de-orbit space-

craft to help avoid potential space collisions will assume greater importance [31].

The orbit may be represented in a number of ways, with Cartesian coordinates a

popular choice. However, as shown in this dissertation, using instead a set of slowly

varying orbital elements has several advantages over Cartesian coordinates for the

chosen integration method. Therefore, a change in velocity (for maneuvers and orbit

3

transfers) may be modeled through a nonlinear transformation (coupled with the

position vector) in terms of changes in osculating orbital elements.

Another motivating factor is that the Cartesian implementation of the Picard

iteration integration method (MCPI) is limited to approximately three orbits (initial

value problem) and one-third of an orbit (boundary value problem) before reaching

a limit on the convergence domain [5]. A regularizing formulation using the KS

transform increases this domain of convergence to about 90% of an orbit [62, 64].

The convergence domain is greatly enhanced ∼ 1 order of magnitude by using orbital

elements with a variant of MCPI [48, 49].

In addition, a controls formulation is considered where low-thrust is a feasible

option. Many deep-space mssions typically require large velocity increments, and

low-thrust propulsion systems allow for larger velocity increments than high-thrust

propulsion systems because they utilize propellant more efficiently [30]. The most

important advantage is the great reduction in the mass of propulsion hardware and

propellant. Low thrust systems typically have a specific impulse of more than one

order of magnitude more compared to chemical propulsion, and the low thrust rocket

engines are typically two orders of magnitude lighter than the chemical propulsion

engines. The disadvantage, of course, is that the “time of flight” of low-thrust engines

is frequently much larger than for chemical propulsion.

The field of spacecraft trajectory optimization is inherently complicated, due to

several reasons [13], including nonlinearity of the dynamic system, time-dependent

forces, discontinuities in the state variables (i.e., instantaneous velocity changes),

terminal conditions that are not known explicitly (for instance, the position of the

departure and arrival for an interplanetary trajectory depend upon the terminal

times, which are often optimization variables), and difficulty determining whether a

local or global solution has been found.

4

Though low-thrust propulsion has been an attractive method for many years,

spacecraft have only recently incorporated it [13]. This method of propulsion pro-

duces a very small thrust, of the order of magnitude 10−3N to 10−5N , and is used

continuously or nearly continuously. The continuous thrust optimal control prob-

lem must take into account continuous time histories for the thrust magnitude and

direction.

Where the ratio of thrust to mass T
m

is relatively small, a minimum time problem

is approximately the same as the minimum fuel problem. If a spacecraft with con-

tinuous thrust but no throttling is considered, the minimum-fuel transfer will be the

same as the minimum-time transfer since the mass flow rate of the propellant will

be constant [56]. Though a low-thrust system may necessitate several orbits in order

to achieve the desired final state, it is one approach to achieve a real-world solution

and has significant advantages over chemical propulsion with regard to the launch

costs of lower propellant mass. The set of orbital elements that are used to increase

the domain of convergence for the integration method are also nonsingular for most

practical applications.

Striving toward practical applications during this research, wherever possible

throughout this dissertation, orbit perturbations due to Earth’s gravity using a spher-

ical harmonic gravity model (EGM2008) have been used to provide a precise model

[24]. More specifically, selected examples using high fidelity gravity models make it

abundantly clear that the methods are not merely aimed at simplified problems of

interest mainly to academics. While the full spherical harmonic gravity is included,

not everything is modeled. Even higher fidelity models will require additional per-

turbations, such as solar radiation pressure, drag, or third-body effects.

5

1.2 Dissertation Outline

Chapter 1 serves as an introduction and presents the motivation behind this

research.

Chapter 2 gives an overview of MCPI, including the Initial Value Problem (IVP),

Boundary Value Problem (BVP), and a standardized algorithm for solving IVPs as

well as a cascade solution process for second-order differential equations. Additional

information is provided in Appendix A about the Chebyshev Polynomials, which

serve as the set of orthogonal basis functions for the MCPI method.

Chapter 3 summarizes the Modified Equinoctial Orbital Elements (MEEs) and

gives Gauss’ Variational Equations, which are used for orbit propagation. Simu-

lation results are provided that demonstrate the increased domain of convergence

and reduction in MCPI iterations, as well as the advantages of orbit segmentation.

Appendix C gives the derivation for the Jacobi energy integral, which is also the

Hamiltonian for a particular choice of coordinates, and which may be used to verify

orbit solutions for both zonal and high degree and order spherical harmonic gravity

perturbed orbits.

Chapter 4 discusses a novel development of the State Transition Matrix (STM)

that includes perturbations of arbitrary degree spherical harmonic gravity, including

the necessary computation of Associated Legendre Functions’ gradients. The corre-

sponding Jacobian matrix derivation is given in this chapter, and additional details

are provided in Appendix B. Both the zonal gravity and spherical harmonic gravity

cases are considered here, and they are also both used as the basis for a local Taylor

Series gravity described in Ch. 5. This local Taylor series gravity approximation is

useful to model gravity in the terminal convergence of MCPI. A cascade method is

also presented and shown to reduce computation time, analogous to the Cartesian

6

coordinate two-body problem. A new canonical form for the STM is also derived,

that promises to lead to computational efficiency in some applications. Appendix D

gives supplemental details about using canonical units for a formulation originally in

Cartesian coordinates.

Chapter 5 provides results from a Monte Carlo study using Modified Equinoctial

Orbital Elements (MEEs) and a local Taylor Series gravity expansion, where the

Taylor series is a representation of the force field neighboring nodes at specific times

along the nominal trajectory. The Taylor Series gravity model, given in detail in

this chapter, significantly reduces the number of full gravity computations by us-

ing a Taylor Series approximation for the gravity model during intermediate Picard

(MCPI) iterations. Results are given for both Matlab (serial processor) and for a

compute cluster that uses parallel processing. Appendix E lists the specifications of

the compute cluster used for the parallel computation aspects of this study, which is

located in the Land, Air, and Space Robotics Lab (LASR) at Texas A&M University.

Chapter 6 outlines a shooting method approach to solving BVPs using MCPI

known as the Method of Particular Solutions (MPS). This method is advantageous

in that it avoids the computation of state transition matrices and also the inverse of

matrix partials commonly used in shooting methods. An analytical solution called

p-Iteration may be used to provide a starting estimate for initial velocity for this

method, if Lambert’s problem is considered. MPS is, however, a general BVP solver

that can be used for many problems, including solving state/costate differential equa-

tions, to find a suboptimal orbit transfer control with low-thrust steering angles

(Chapter 7).

Chapter 7 solves the suboptimal control problem using MEEs (which specifies an

initial and a target state) by first propagating the IVP solution of Gauss’ Variational

Equations until the minimum semilatus rectum, p, exceeds the desired value of p.

7

The transfer time that is found here is then used as a conservative final time guess

for the orbital transfer. Next, the suboptimal control is found using the Method of

Particular Solutions (MPS) to iteratively update the steering angles. Once a solution

is found, the transfer time may be decreased until convergence is no longer achieved.

This solution is needed to establish an initial guess for the indirect minimum-time

optimal control solution, i.e., the solution of the Pontryagin optimal control necessary

condtions (Chapter 8).

Chapter 8 provides details about a minimum-time, low-thrust, optimal control

problem using a state/costate formulation and Pontryagin’s minimum principle, us-

ing the MEE state variables.

8

2. MODIFIED CHEBYSHEV PICARD ITERATION

A recently refined numerical integration technique known as Modified Cheby-

shev Picard Iteration (MCPI) is the focus of this dissertation. It is a fusion of two

concepts: Picard iteration and Chebyshev polynomials. The acceleration is approxi-

mated along the previous orbit approximation, then the acceleration approximation

is integrated term-by-term, and boundary conditions are applied to obtain the new

orbit approximation. During every Picard iteration, the coefficients for a Chebyshev

polynomial series for the orbit coordinates are updated to give the new state estimate

that satisfies all boundary conditions. This process is repeated until convergence is

achieved. At every iteration, the entire trajectory (for example, an entire orbit) is

approximated at sample nodes by computing the forcing function from the current

state estimate.

See Figure 2.1 to see how a “cold” start with no apriori knowledge of the tra-

jectory iteratively converges to an orbit. This figure shows how the entire orbit is

approximated at every iteration (note that not every Picard iteration step is shown

in this figure). Here, the notation (′′) follows the traditional literature (e.g., Fox[21]),

and indicates that the first and last term in the summation have a scale factor of 1
2
.

The notation (′) indicates that only the first term in the summation is multiplied by

a scale factor of 1
2
. This method is inherently parallelizable since the forcing function

and the coefficients may be computed independently. This approach to numerical

integration differs from traditional step-by-step methods and has several advantages

over these methods.

9

First Iteration

Last Iteration

Increasing Iterations

Increasing Iterations

Figure 2.1: Position approximation at incremental Picard iterations with no a priori
knowledge of the initial trajectory guess. It is remarkable that even a very poor
starting path approximation can lead, in a few Picard iterations, to a machine pre-
cision solution for an entire orbit. Each subfigure is the current state approximation
at the ith Picard iteration.

2.1 MCPI Overview

MCPI is an iterative, path approximation method for solving smoothly nonlin-

ear systems of ordinary differential equations. Clenshaw and Norton first proposed

combining the orthogonal Chebyshev polynomials with Picard iteration [12]. Later

authors including Shaver, Feagin and Nacozy, and Fukushima further refined the

Chebyshev-Picard framework and also pointed out the parallel computing implica-

10

tions of the method [15, 20, 22, 55]. Additional work by Feagin and Mikkilineni

applied the method to orbit determination, as well as batch and sequential estima-

tion [17, 19, 43]. More recent developments in parallelizing MCPI give an expected

increase in efficiency [4, 32, 38, 47].

MCPI generates a sequence of long-arc path approximations that can solve both

linear and nonlinear, high precision, long-term orbit propagation problems. This

approach iteratively refines an orthogonal function approximation for the state tra-

jectory. At each iteration, MCPI finds a path integral solution over a large time

interval, as opposed to the conventional, incremental step-by-step solution process

of more familiar numerical integration strategies, such as those based on explicit nu-

merical methods. The method introduces orthogonal function approximations of the

forcing function along a previous path approximation, which can be analytically inte-

grated term-by-term, along with exact boundary conditions enforced to produce the

next path approximation. Significantly, unlike conventional integration approaches,

this algorithm is ideally suited for massive parallel implementations that provides a

way to further boost computational performance in comparison to most traditional

numerical methods for solving differential equations. This is because the accelera-

tion at all nodes along the current known orbit approximation can be simultaneously

computed rather than sequentially as in step-by-step integration.

Enhancements to the MCPI algorithm allow for a decrease in the number of

Picard iterations, which leads to a decrease in computation time. For Cartesian

coordinates, typically 3 or 5 segments are used per orbit, while for the Modified

Equinoctial Element case, typically one segment is used per orbit (as will be discussed

in Chapter 3). For more information about MCPI segmentation, as well as a radial

adaptive gravity formulation and other enhancements, see references [28, 36, 39, 46,

68].

11

Next, the two concepts that underlie MCPI will be discussed: Picard Iteration

and Chebyshev Polynomials. After that, the initial value problem and boundary

value problem formulations for MCPI will be given.

2.2 Picard Iteration

Picard showed that for a state vector x(t), given an initial condition x0 at the

initial time t0, a typical nonlinear system represented by an Ordinary Differential

Equation (ODE) given as [44]

ẋ =
dx

dt
= f(t,x(t)), x(t0) = x0 (2.1)

(with a smooth, single-valued, once differentiable right hand side) may be rearranged

without approximation to obtain an integral equation:

x(t) = x(t0) +

∫ t

t0

f(s,x(s))ds (2.2)

For a given suitable starting approximation x0(t), a unique solution to the initial

value problem may be found using an iterative sequence of path approximations

through Picard iteration as

xi(t) = x(t0) +

∫ t

t0

f(τ,xi−1(τ))dτ, i = 1, 2, ... (2.3)

Picard proved that this sequence converges to the unique solution of Eq. (2.1)

over a finite interval |t − t0| < δ with a starting estimate |x0(t) − x(t)| < ∆ if f is

smooth and at least once differentiable [44]. The bounds δ and ∆ can be conserva-

tively estimated [27]; however, much larger bounds can typically be demonstrated

numerically. The maximum time interval δ for convergence in orbital mechanics has

been found to typically be hours for geocentric orbits and years for solar orbits.

12

Here, the integrand for each Picard iteration is approximated anew on each itera-

tion using a Chebyshev polynomial series, and this approximation is integrated term-

by-term to update the trajectory approximation. The Runge effect (large oscillatory

approximation errors that are often seen near the boundaries of the approximation

domain) is greatly reduced due to a cosine sampling scheme with nodes more densely

clustered near the boundaries. For a comparison of linear vs. cosine sampling, see

Figures 2.3a and 2.3b. For an example of how cosine sampling reduces the Runge

effect, see Figures 2.4a and 2.4b.

2.3 Chebyshev Polynomials

These polynomials were established by a Russian mathematician named Pafnuty

Lvovich Chebyshev in 1857 [11]. This set is useful in MCPI propagation because it

is orthogonal, which results in a trivial matrix inverse in the MCPI formulation. As

discussed below and in Appendix A, a discretely sampled version of the orthogonality

conditions is used. There are several kinds of Chebyshev polynomials; the first

kind is most useful for MCPI propagation, and the second kind may be used for

taking derivatives to aid in certain MCPI boundary value problem formulations.

Unless specifically noted, throughout the dissertation any reference to the Chebyshev

polynomials of the first kind are simply the Chebyshev polynomials.

Chebyshev polynomials of the first kind are defined as polynomials in x of degree

n, defined by the relation

Tn(x) = cos(nθ) when x = cosθ (2.4)

where x exists on the interval [−1, 1], and the range of θ is [0, π]. Here, x = −1

corresponds to θ = π, while x = 1 corresponds to θ = 0. The Chebyshev polyno-

mials are generated using initial conditions T0(x) = 1, T1(x) = x and the recursive

13

relationship

Tn(x) = 2xTn−1(x)− Tn−2(x) n = 2, 3, ... (2.5)

or through the trigonometric identity

Tn(x) = cos(n arccos(x)) (2.6)

The first six Chebyshev polynomials are plotted in Figure 2.2. It is interesting

to note that Tn(x) is either an even or odd function, involving either all even or all

odd powers of x.

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
k

Chebyshev Polynomials of the First Kind

k=0
k=1
k=2
k=3
k=4
k=5

Figure 2.2: First six Chebyshev Polynomials T0 − T5

14

The first few Chebyshev polynomials of the first kind are written as

T0(x) = 1 (2.7)

T1(x) = x (2.8)

T2(x) = 2x2 − 1 (2.9)

T3(x) = 4x3 − 3x (2.10)

T4(x) = 8x4 − 8x2 + 1 (2.11)

T5(x) = 16x5 − 20x3 + 5x (2.12)

T6(x) = 32x6 − 48x4 + 18x2 − 1 (2.13)

T7(x) = 64x7 − 112x5 + 56x3 − 7x (2.14)

T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1 (2.15)

T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x (2.16)

T10(x) = 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1 (2.17)

The Chebyshev polynomials have the following integration property, which is

used to derive the MCPI formulations given throughout this dissertation [40]:

∫
Tn(x)dx =

1

2

[
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

]
+ c1 n ̸= 0, 1 (2.18)

Note that this is an indefinite integral, and when evaluated at integration limits,

the constant of integration cancels. The only exceptions to this property are

∫
T0(x)dx = T1 (2.19)

15

∫
T1(x)dx =

1

4
T2 + c2 (2.20)

The constant c1 depends upon the specific Chebyshev polynomial being inte-

grated, while c2 = 1
4
. However, when the integral is performed and the result eval-

uated at the limits, this constant will cancel out, so for definite integrals, c1 = 0 in

Eqn. (2.18).

2.4 Chebyshev-Gauss-Lobatto Nodes

The discrete nodes used to approximate the states are called the Chebyshev-

Gauss-Lobatto (CGL) nodes. In constrast with uniform sampling, a cosine sampling

scheme is advantagous in reducing the Runge effect, which is commonly observed in

function approximation at the boundaries of curves. Cosine sampling, at either the

zeros of TN(x) or the extrema of TN(x), is consistent with the discrete orthogonality

condition of the Chebyshev polynomials. In addition, by judicious segmentation of

approximation intervals, the more dense portion of the cosine sampled nodes can

be strategically placed near perigee, where the gravity calculations require higher fi-

delity; fewer nodes are required at apogee where slower motion and smoother gravity

are encountered. Figures 2.3a and 2.3b compare uniform sampling and cosine sam-

pling for a Low Earth Orbit, while Figures 2.4a and 2.4b demonstrate that cosine

sampling reduces the Runge effect.

Critically, approximation with high accuracy can be achieved if nodes are se-

lected to ensure discrete orthgonality conditions are satisfied (see Appendix A). For

Chebyshev polynomials, the CGL nodes are one of two choices consistent with the or-

thogonality conditions. The CGL (cosine) nodes locate the Chebyshev Polynomials’

(M − 1) extrema and may be calculated simply as

16

τj = −cos
(
jπ

M

)
, j = 0, 1, ..., N (2.21)

The matrix of Chebyshev polynomials is represented as

[T] =



T0(τ0) T0(τ1) T0(τ2) · · · T0(τM−1) T0(τM)

T1(τ0) T1(τ1) T1(τ2) · · · T1(τM−1) T1(τM)

T2(τ0) T2(τ1) T2(τ2) · · · T2(τM−1) T2(τM)

T3(τ0) T3(τ1) T3(τ2) · · · T3(τM−1) T3(τM)

...
...

...
. . .

...
...

TN−1(τ0) TN−1(τ1) TN−1(τ2) · · · TN−1(τM−1) TN−1(τM)


(2.22)

The alternate cosine sampling scheme

τj = − cos
π(j + 1

2
)

M
(2.23)

locates the zeros of the Chebyshev polynomials. It is possible to develop orthogo-

nality conditions for either set of nodes (2.21) or (2.23). The CGL cosine nodes of

Eq. (2.21) is preferred for prescribing exact terminal boundary conditions, since the

zeros of Eq. (2.21) include the end points of the domain and this helps to reduce the

Runge effect. The minus signs in Eqs. (2.21) and (2.23) are not universally adopted,

but using this minus sign makes τ = −1 correspond to τ0, the left end of the time

interval (this choice makes t and τ both increase as seen from “left to right”).

2.5 Initial Value Problem

This section describes the MCPI algorithm for the initial value problem (IVP)

and also gives a flow chart for an overview of the process. For more details on the

17

(a) Uniform Sampling

(b) Cosine Sampling

Figure 2.3: Comparison of Sampling Schemes Over One Orbit (60 Sample Points
LEO). Note the Clustering of Cosine Sampling at Perigee and Sparsity of Sampling
at Apogee.

18

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

2
Interpolation with Linearly Spaced Nodes

(a) Runge effect for uniform sampled function approx-
imation

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Interpolation with Cosine Nodes

(b) Reduction of Runge effect for cosine sampled func-
tion approximation

Figure 2.4: Example for mitigation of Runge effect using 11 cosine sampled nodes
vs. 11 uniformly sampled nodes [57].

19

derivation for this method, see Bai [5], Bani Younes [68], Macomber [36, 39], and

Woollands [62].
∗

Consider an ordinary differential equation

dx

dt
= f(t,x), t ∈ [t0, tf] (2.24)

where the initial condition is specified to be x(t = t0) = x0, t0 is the initial time,

and tf is the final time.

Since the Chebyshev polynomials are defined on the range from −1 to 1, the

time variable in Eq. (2.24) must be transformed to lie on this range. A new linearly

transformed time variable is introduced, which is specifed as −1 ≤ τ ≤ 1.

The forward transformation from the time (t) domain to the τ domain is

t(τ) = tmin + (τ + 1)
(tmax − tmin)

2
(2.25)

It can be easily verifed that when τ = 1, this transformation gives t(1) = tmax;

for τ = −1, t(−1) = tmin. The MCPI iterations are computed for this t(τ). Once

the MCPI algorithm converges on a solution, the data can be mapped back into the

original time domain using the inverse time transformation

τ(t) =
2(t− tmin)

(tmax − tmin)
− 1 (2.26)

The inverse transformation may be verified by checking from Eq. (2.26) the t

which gives τ(t) = 1 (which results in tmax = t) and τ(t) = −1 (which results in

tmin = t).

The transformation of Eq. (2.25) can be alternatively written to transform the

∗
Thank you also to Woollands for going into great detail in an internal MCPI tutorial document

and set of codes [60].

20

time variable t to the new variable τ through the alternate slope/intercept form of

the time transformation

t =
tf − t0

2
τ +

tf + t0
2

(2.27)

where obviously t0 = tmin and tf = tmax. This equation may be substituted into Eq.

(2.24) to obtain

dx

dτ
=
dx

dt

dt

dτ
(2.28)

and then Eq. (2.24) is replaced by the transformed differential equation

dx

dτ
= g(τ,x) =

tf − t0
2

f

(
tf − t0

2
τ +

tf + t0
2

,x

)
(2.29)

2.5.1 Standardized Algorithm for Cascade Solution of First and Second Order

Differential Equations

This section provides a standardized approach to implementing MCPI. Bani

Younes pointed out [6, 68] a more straightforward method was possible compared

with the MCPI algorithm previously developed (see, for instance, PhD dissertations

[5, 36, 68]); the present standardized method is a modest revision of Bani Younes’

developments. In essence, these developments simply provide a more systematic

approach to carry out the integrations of the cascade MCPI algorithm using vector-

matrix operations.

To integrate the Chebyshev polynomials efficiently, an integration operator is

introduced. For instance, the integration in the following expression (previously

defined as the Picard equation)

21

xi(τ) = x(−1) +

∫ τ

−1

g(s,xi−1(s))ds = x(−1) +

∫ τ

−1

k=N−1∑
k=0

FkTk(s)ds (2.30)

may be written in terms of matrices, given the number of cosine sample points M ,

as

xi(τ) = x(−1) +

∫ τ

−1

[F]T [TM1]ds = x(−1) + [F]T
∫ τ

−1

[TM1]ds (2.31)

The Fk Chebyshev polynomial coefficients are computed using a discrete orthogo-

nality condition (see Appendix A) and may be moved outside of the integral because

they are constants. The matrix of Chebyshev polynomials before and after the inte-

gration is related using

∫
TM1(τ)ds = [IM]TM2

∣∣∣τ
x0

(2.32)

where the matrix of Chebyshev polynomials TM2 now contains one additional row

than TM1 since integration increases the order. Acting on the suggestion of Professor

Junkins, the integration operator matrix is introduced:

22

IM =



0 1 0 0 0 0 0 · · · 0 0

1
4

0 1
4

0 0 0 0 · · · 0 0

0 −1
2

0 1
6

0 0 0 · · · 0 0

0 0 −1
4

0 1
8

0 0 · · · 0 0

0 0 0 −1
6

0 1
10

0 · · · 0 0

0 0 0 0 −1
8

0 1
12

· · · 0 0

...
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 − 1
2(M−2)

0 1
2M

0

0 0 0 0 0 0 0 − 1
2(M−1)

0 1
2(M+1)



(2.33)

This operator makes use of the well-known integration property of Chebyshev

polynomials:

∫ τ

−1

Tn(x)dx =
1

2

[
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

]
n ̸= 0, 1 (2.34)

Note that integration of the first two Chebyshev polynomials does not follow this

pattern, and it is easily verified that

∫ τ

−1

T0(x)dx = T1 (2.35)

∫ τ

−1

T1(x)dx =
1

4
T2 +

1

4
T0 (2.36)

The use of this integration operator greatly simplifies the MCPI integration pro-

cess notationally compared with the previous derivations. For each integration, sim-

ply apply the integration operator matrix to perform the integration of the forcing

23

function. In order to account for evaluation of the integral at the limits in Equation

(2.32), the MCPI integration from Equation (2.31) becomes

xi(τ) = x(−1) + [F]T [IM]

(
[TM2(τ)]− [K]

)
(2.37)

Here, [TM2] is evaluated at the upper limit of τ and denoted simply as [TM2(τ)];

[K] = [TM2(−1)] denotes the lower limit (the initial condition) at τ = 1. [TMi]

evaluated at the lower limit becomes a matrix of constants, with values of either 1 or

-1. In addition, for given nodes, the matrix [TM2] and therefore [IM]

(
[TM2(τ)]−[K]

)
may be computed a priori and in this manner does not impact the MCPI integration

time. So, looking at Eq. (2.37), F T at each node can simply be multiplied by a once-

computed matrix and added to the initial condition to obtain each Picard iteration

update of the nodal states. Thus, the vector matrix form is directly derived in a

form suitable for programming. Figure 2.6 shows a flow chart of this vector form

for the standardized version of MCPI. Figures 2.5, 2.6, and 2.7 are equivalent, with

the exception that the standardized version (Figures 2.5 and 2.6) does not directly

provide the βk coefficients needed for interpolation.

24

Specify Dynamics and ICs

Variable Change

Initialize Trajectory Guess and Iteration Count

Picard Iteration: Discrete Approximation

Iterate

Figure 2.5: Flowchart for Standardized MCPI Algorithm (Initial Value Problem)

25

Specify Dynamics and ICs

Variable Change

Initialize Trajectory Guess and Iteration Count

Picard Iteration: Discrete Approximation

Iterate

Figure 2.6: Flowchart for Vector Form of Standardized MCPI Algorithm (Initial
Value Problem)

26

More generally, Eq. (2.37) can be used to interpolate x(τ) at any time, which

is especially useful because linear, constant interval ephemeris data is typically pre-

ferred in the current state of practice over the cosine sampled time nodes that MCPI

utilizes to ensure orthogonality. The coefficients of the Chebyshev polynomials that

represent the forcing function in Picard’s equation of the form in Eq. (2.37) are

updated according to the new approximated forcing function vector g, since it is the

only non-constant piece of the coefficient matrix (see Appendix A):

[F] = [T][W]g (2.38)

Once the current values of Eq. (2.38) have been computed, the current (updated)

approximation of the trajectory using Eq. (2.37) is found, and an efficient interpo-

lation scheme provides linear sample points by first finding a βk coefficient vector.

These βk coefficients give the coefficient of the Chebyshev polynomials needed to

interpolate the state using the same method as described in Section 2.5.2.

The following sections present the MCPI formulation that has been traditionally

used, for the reason that it more easily allows for connecting the results to the

traditional developments in the existing literature.

2.5.2 Original Picard Iteration Expansion for IVP

For the IVP, a trajectory approximation is obtained by expanding the formula

for Picard iteration in Eq. (2.3), repeated here for convenience, first on the left hand

side (LHS) and then for the integrand on the right hand side (RHS) of the equation.

xi(t) = x(t0) +

∫ t

t0

f(τ,xi−1(τ))dτ, i = 1, 2, ... (2.39)

The LHS uses an N th order sequence of Chebyshev polynomials to approximate the

27

ith Picard estimate of the system states in terms of the kth Chebyshev polynomial

evaluated at the scaled time τ , or Tk(τ), and also the ith approximation of the kth

state coefficient vector, or βi
k. Here, n is the number of states in the state vector

x(t), and there are (N + 1) βi
k vectors of dimension (n × 1). The expanded state

trajectory approximation on the LHS of Picard’s equation is then:

xi(τ) ≈
N∑
k=0

′′βi
kTk(τ)

≈ 1

2
βi
0T0(τ) + βi

1T1(τ) + βi
2T2(τ) + · · ·+ 1

2
βi
NTN(τ)

(2.40)

Similarly, another Chebyshev polynomial sequence is used to approximate the

(i− 1)th Picard estimate of the integrand of the RHS of Eq. (2.3). In this case, the

(i− 1)th approximation of the kth integrand (“force”) coefficient vector is denoted as

Fi−1
k , which is of dimension (n× 1). It is important to note that an (N − 1)th-order

Chebyshev sequence is used to approximate the RHS integral, while an N th-order

Chebyshev sequence is used to approximate the system states on the LHS. This is

because integrating increases the order of the polynomial, thereby resulting in an

N th-order sequence on the RHS following the integration and allowing for kinematic

consistency between the LHS and the RHS. For more details on the kinematically

consistent derivation for MCPI IVP, please see [60, 62] and also Section 2.5.3.

The integrand on the RHS of Picard’s equation is expanded as

g(s,xi−1(s)) ≈
N−1∑
k=0

′Fi−1
k Tk(s)

≈ 1

2
Fi−1

0 T0(s) + Fi−1
1 T1(s) + Fi−1

2 T2(s) + · · ·+ Fi−1
N TN(s)

(2.41)

28

Now that Eq. (2.39) has been expanded in terms of the Chebyshev polynomials

on both sides of the equation, this expression takes the form

N∑
k=0

′′βi
kTk(τ) = x(−1) +

N−1∑
k=0

∫ τ

−1

[
Fi−1

k Tk(s)

]
ds (2.42)

where xi(τ) =
N∑
k=0

′′βi
kTk(τ) is the current state estimate. Because the integrand

coefficients are constants, this equation may be rewritten as

N∑
k=0

′′βi
kTk(τ) = x(−1) +

N−1∑
k=0

Fi−1
k

∫ τ

−1

[
Tk(s)

]
ds (2.43)

The integrand coefficient vectors Fi−1
k may be solved using a least squares Cheby-

shev approximation formulation through evaluation of the integrand function of Eq.

(2.41), where the forcing function approximation g is assumed to be known (for the

current approximation) at the current Picard iteration:

Fi−1
k =

2

M

M∑
j=0

′′g(sj,x
i−1(sj))Tk(sj) (2.44)

These coefficients essentially minimize the residual error for the least squares

formulation. Note that this equation is an inner product of the acceleration (from the

equations of motion) with the kth orthogonal Chebyshev basis function and effecively

projects the true system dynamics, to a high degree of approximation, onto a finite

dimensional basis set that is valid along the (i− 1)th Picard iteration trajectory.

2.5.2.1 MCPI Flow Chart

Now that the original MCPI algorithm has been discussed, a summary of the

MCPI algorithm is given in Figure 2.7. First, the dynamics and initial conditions

are specified. Next, a variable change is performed so that the integration takes place

29

in the τ domain, where the Chebyshev polynomials are defined. Then the iteration

count is initialized and the initial trajectory guess is specified (if no knowledge of the

trajectory is applied, this can be a matrix of ones or zeros; instead a “warm start”

such as the unperturbed two-body solution may be applied to decrease the computa-

tion time of the perturbed solution). Next, the forcing function is computed from the

current approximation of the state. This allows for a solution of the Chebyshev poly-

nomial coefficients that represent the forcing function term on the RHS of Picard’s

equation. The coefficients on the LHS of Picard’s equation may then be found from

the RHS coefficients; note that this step is necessary in order to obtain the linearly

interpolated result. If linear interpolation is not required, the flow chart in Figure

2.5 may be used instead for a more straightforward implementation. Once the LHS

coefficients have been found, this gives an update for the state approximation. The

iteration count is increased and Picard’s equation is applied again, and this process

is repeated until convergence is achieved.

Note that, for the standardized MCPI algorithm as presented in Section 2.5.1, the

βk coefficients do not need to be computed unless interpolation is required, because

the updated Fk coefficients allow for an immediate update of the state estimate

using the RHS of the Picard equation. The flow charts in Figures 2.5 and 2.7 may be

compared to see how the standardized version of MCPI simplifies MCPI conceptually

but does not include computation of the βk coefficients.

30

Specify Dynamics and ICs

Variable Change

Variable Change

Initialize Trajectory Guess and Iteration Count

Compute RHS Coefficients from Forcing Function

Compute LHS Coefficients from RHS Coefficients

Picard Iteration Using Chebyshev Polynomials

Update State Estimate

Iterate

Figure 2.7: Flowchart of MCPI Algorithm for Initial Value Problem

31

2.5.3 Examples: Standardized Algorithm vs. Original MCPI

To show that the standardized MCPI algorithm is effectively the same as the

original MCPI formulation, two examples are given. The first example shows sym-

bolically and the second example shows numerically that the same result is obtained

using both methods.

2.5.3.1 Symbolic Example of Integration Operator vs. Original MCPI

Let’s consider an IVP problem that has already been formulated using MCPI and

rederive it using the newly-developed method; see Section D.1 of Brent Macomber’s

dissertation [36] for a simple first-order MCPI example with 5th order (N = 5)

Chebyshev polynomials. Recall the Picard iteration formula in Eq. (2.3) for this

scalar case:

xi(τ) = x0 +

∫ τ

−1

g(s, xi−1(s))ds , i = 1, 2, ... (2.45)

As described in Section 2.5.2, the LHS of this equation is approximated using

Chebyshev polynomials as

xi(τj) ≈
N∑
k=0

′′βi
kTk(j)

=
1

2
βi
0T0(τj) + βi

1T1(τj) + βi
2T2(τj) + · · ·+ 1

2
βi
NTN(τj)

(2.46)

Similarly, the integrand of the RHS of the Picard iteration equation may be

approximated by

32

g(sj, x
i−1(sj)) ≈

N−1∑
k=0

′F i−1
k Tk(sj)

=
1

2
F i−1
0 T0(sj) + F i−1

1 T1(sj) + F i−1
2 T2(sj) + · · ·+ F i−1

N−1TN−1(sj)

(2.47)

Note that in this equation, the summation’s upper limit is (N − 1) because inte-

gration of the integrand g(sj, x
i−1(sj)) will increase the order by one to the maximum

of N . This leaves the LHS and the RHS with the same polynomial degree (upper

limit of N) for algebraic and kinematic consistency. The same number of CGL sam-

ple points M is used for both approximations, which is set equal to the order of the

Chebyshev fit of the states (M = N). Therefore, the force approximation of the

RHS uses a least squares fit, and upon integration it has degree N , which is ap-

propriate for interpolation. Also, the integrand is a function of the previous MCPI

iteration’s state xi−1 and Chebyshev coefficients F i−1
k , while in contrast the LHS

of the Picard equation is a function of the current MCPI iteration’s state xi and

Chebyshev coefficients βi
k. During each ith Picard iteration, the coefficients of the

integrand approximation may be calculated directly using a least squares Chebyshev

approximation following the evaluation of the integrand g(sj, x
i−1(sj)) at the current

best estimate of the system state xi−1:

F i−1
k =

2

M

M∑
j=0

′′g(sj, x
i−1(sj))Tk(sj) (2.48)

Substituting Eqs. (2.46) and (2.47) into (2.45) gives a new form of the Picard

iteration formula, where the initial condition is x0 = x(−1) because the time span is

scaled to [−1, 1], the domain in which the Chebyshev polynomials exist:

33

xi(τ) =
N∑
k=0

′′βi
kTk(τ) = x(−1) +

∫ τ

−1

[
N−1∑
k=1

′F i−1
k Tk(s)

]
ds (2.49)

After integrating the RHS of the Picard iteration formula, historically the coef-

ficients have been equated of like index basis functions, which gives the unknown

Chebyshev coefficients βi
k in terms of the known integrand coefficients F i−1

k . Both

sides of the equation would be expanded, the Chebyshev polynomials would be sub-

situted in, and then the terms would be grouped according to the kth Chebyshev

basis functions (i.e., each power of τ). This method is given by Macomber [36].

Alternatively, using the integration operator method allows for the more straight-

forward solution that is summarized below with few mystical steps of unusual-looking

inner products as seen in the traditional developments. The updated estimate of the

state trajectory is obtained by first integrating the integrand, then adding the initial

condition as follows.

∫ τ

−1

g(s, x(s))ds = [F]T [IM][TM2(τ)]− [F]T [IM][TM2(−1)] (2.50)

where the two separate expressions on the RHS are evaluated at the limits of the

integral, τ and −1, and as previously denoted in Section 2.5.1, [TM2(−1)] = [K]. To

verify the equivalence, this equation can be expanded by explicitly writing out the

matrices (recall N =M = 5 for this example).

34

∫ τ

−1

g(s, x(s))ds =

[
1

2
F0 F1 F2 F3 F4

]


0 1 0 0 0 0

1
4

0 1
4

0 0 0

0 −1
2

0 1
6

0 0

0 0 −1
4

0 1
8

0

0 0 0 −1
6

0 1
10





T0(τ)

T1(τ)

T2(τ)

T3(τ)

T4(τ)

T5(τ)



−

[
1

2
F0 F1 F2 F3 F4

]


0 1 0 0 0 0

1
4

0 1
4

0 0 0

0 −1
2

0 1
6

0 0

0 0 −1
4

0 1
8

0

0 0 0 −1
6

0 1
10





T0(−1)

T1(−1)

T2(−1)

T3(−1)

T4(−1)

T5(−1)


(2.51)

Multiplying out the integration operator matrix and the Chebyshev terms results

in

35

∫ τ

−1

g(s, x(s))ds =

[
1

2
F0 F1 F2 F3 F4

]


T1(τ)

1
4
T0(τ) +

1
4
T2(τ)

−1
2
T1(τ) +

1
6
T3(τ)

−1
4
T2(τ) +

1
8
T4(τ)

−1
6
T3(τ) +

1
10
T5(τ)



−

[
1

2
F0 F1 F2 F3 F4

]


T1(−1)

1
4
T0(−1) + 1

4
T2(−1)

−1
2
T1(−1) + 1

6
T3(−1)

−1
4
T2(−1) + 1

8
T4(−1)

−1
6
T3(−1) + 1

10
T5(−1)



(2.52)

Now, including the initial condition x(−1) and mutliplying the remaining terms

gives an expression for the RHS of the Picard iteration formula.

After these steps, the expression gives the current approximation of the state

at cosine sample nodes, and no further calculations are required. The results are

identical to those obtained using the historial approach to MCPI. However, typically

linear time spacing is desired, rather than cosine sampling. For the appropriate

conversion, an expression relating the RHS coefficients with the LHS coefficients

is required as shown in previous publications. To complete this step, the above

expression is equated to the LHS, which is expanded simply to be

LHS =
1

2
β0T0 + β1T1 + β2T2 + β3T3 +

1

2
β4T4 (2.53)

Equating this to Eq. (2.52) and collecting terms onto Tk(τ) immediately gives the

β′
ks as a function of the F ′

is:

36

βN =
1

N
FN−1 (2.54)

βN−1 =
1

2(N − 1)
FN−2 (2.55)

βk =
1

2k
(Fk−1 − Fk+1) (2.56)

β0 = 2x(−1) + 2(β1 − β2 + β3 − β4) + β5 (2.57)

Using these expressions for the βi coefficients gives general expressions for the ith

state trajectory, which is in turn used in the integrand for the next Picard iteration.

Each (i − 1)th approximation of the integrand coefficients Fk is found by utilizing

an (N − 1)th order least squares Chebyshev approximation of the integrand, which

is evaluated from the current best estimate of the state. In summary, the Picard

iteration method calculates the ith approximation of the state coefficients using the

general expressions for βk given above. This algorithm may be written in a vector-

matrix form for coding simplicity, as given in detail in [5, 36, 62, 68].

2.5.3.2 Numerical Example of Integration Operator vs. Original MCPI

The following example was developed by Texas A&M PhD student Robyn Wool-

lands [60, 62] to verify the traditional MCPI method, using the equation (for scaling

parameter ϵ = 0.01)

ẋ = ϵx (2.58)

This code is used to simply confirm that the standardized algorithm and the nu-

37

merical simulation give the same result for a first-order system, as given in Figures

(2.8) and (2.9). In this case, ”MCPI Old” specifies the original MCPI formulation

that was given in Section 2.5.2, while ”MCPI New” specifies the standardized MCPI

algorithm presented in Section 2.5.1. For an additional example comparing these

two methods symbolically, please see Subsection 2.5.3.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized Time, =

0

0.5

1

so
lu

tio
n,

 x
(t

) xdot + 0 x = 0

MCPI Old
True

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized Time, =

0

0.5

1

so
lu

tio
n,

 x
(t

) xdot + 0 x = 0

MCPI New
True

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized Time, =

0

0.5

1

so
lu

tio
n,

 x
(t

)

ODE45
True

Figure 2.8: First Order Example State Comparison for Three Integrators

Figure 2.8 gives the state solution as a function of time vs. the known analytical

solution for each of the two MCPI implementations. Figure 2.9 provides the norm

of the error vs. time for each of the two MCPI implementations. For reference,

provided in the last subplot of the first figure is the solution for, and in the second

figure is the residual for, an optimized RK45 algorithm that is a Matlab built-in

function called ode45.

As is evident, the new formulation and the resulting algorithm is graphically

38

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized Time, =

10-17

10-16

10-15
xdot + 0 x = 0 MCPI Old

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized Time, =

10-17

10-16

10-15

S
ol

ut
io

n
E

rr
or

 =
 |

x ex
ac

t -
 x

ap
pr

ox
 |

xdot + 0 x = 0 MCPI New

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized Time, =

10-18

10-16

10-14
ODE45

Figure 2.9: First Order Example Error Comparison for Three Integrators

validated, and the numerical precision is found to agree to better than 14 digits

of accuracy. This 15-digit accuracy obviously exceeds “engineering” accuracy and

also exceeds the typical accuracy achievable (with 64 bit arithmetic using a familiar

explicit integrator). Also, the runtime changes negligibly between the two MCPI

algorithms. This first order derivation and algorithm, however, are more efficiently

extended to the cascade algorithms appropriate for second and higher order differen-

tial equations for the initial value problem. The key point is that the developments

in this section, using the integration operator of Eq. (2.33), is more compact and

algebraically much easier to extend to the case of second and higher order differential

equations.

2.6 Boundary Value Problem

The MCPI BVP formulation is limited to about 1
3
of an orbit in Cartesian coor-

dinates, and through a KS regularization the convergence domain may be extended

39

to nearly a full orbit [62, 63]. This algorithm is not a shooting method in that it

enforces the boundary conditions at every Picard iteration, then updates the differ-

ential equations accordingly on the next iteration. In contrast, a traditional shooting

method propagates the differential equations, computes the miss distance, then up-

dates the initial conditions on the following iteration to better achieve the target

state.

Due to the nature of the nonlinear relationship between Cartesian coordinates

and the Modified Equinoctial Orbital Elements (MEEs, which are the focus of this

dissertation), it is shown that it is beneficial to incorporate a low-thrust controls

problem for the MEEs using a shooting method rather than solving Lambert’s prob-

lem using this element set. The low-thrust developments using the MEE variation

of parameters formulation is shown to be an excellent setting for both direct and in-

direct approaches to optimal low-thrust orbit transfers. Though a shooting method

is used for this work, for completeness the first and second order BVP formulation

for MCPI will be discussed. For more complete details of the latest formulation of

the kinematically consistent BVP for MCPI, please refer to Woollands’ dissertation

[62].
∗

2.6.1 First Order BVP MCPI

For the BVP, user-specified boundary conditions must be enforced. The initial

and final states may be represented using Chebyshev polynomials as

x(−1) =
N∑
k=1

′′βkTk(−1) (2.59)

∗
This development comes from Woollands’ internal tutorial for the MCPI BVP [61]

40

x(1) =
N∑
k=0

′′βkTk(1) (2.60)

These equations may be expanded to solve for the first two βk coefficients, β0 and

β1, which enforce the boundary conditions in the trajectory approximation on the

LHS of Picard’s equation, as a function of β2, β3, · · · βN . The β2, · · · βN coefficients

are determined from the Picard integral.

2.6.2 Second Order BVP MCPI

Similar to the first order BVP MCPI formulation, the first and second coeffi-

cients must be found; because it is now a second order system, expressions for the

αk coefficients are found because the βk coefficients now denote the velocity-level

coefficients:

x(−1) =
N∑
k=1

′′αkTk(−1) (2.61)

x(1) =
N∑
k=0

′′αkTk(1) (2.62)

Expanding these expressions gives α0 and α1 in terms of the boundary conditions

and other αk coefficients. The velocity approximation may then be represented as

a function of velocity-level βk coefficients (and forcing function Fk coefficients) - see

Eqs. (2.30) and (2.38). A relationship may be built between these three sets of

coefficients and formed into a vector-matrix formulation that is more conducive to

numerical computations.

As previously stated, the control problem presented in this dissertation does not

use this MCPI BVP formulation because the MCPI BVP is limited to about 1
3
of an

orbit for Cartesian coordinates. Please see Chapters 6 and 7 for information about

41

solving the BVP using a shooting-like method known as the Method of Particular

Solutions, which allows for multi-rev transfers.

2.7 Chapter Summary

This chapter describes the Modified Chebyshev Picard Iteration (MCPI) algo-

rithm. First, a description of Picard iteration and Chebyshev polynomials is given; a

combination of these two concepts forms the MCPI integration method. Combining

cosine sampling with the Chebyshev-Guass-Lobatto Nodes reduces the Runge effect

often seen in function approximation. Formulations for the initial value problem and

the boundary value problem are presented; the boundary value problem solved in

Chapter 7 uses a shooting method, but the MCPI formulation for the BVP is pre-

sented here for completeness. A standardized algorithm is presented for MCPI that

allows for a cascade solution of first- and second-order differential equations that can

easily be extended to higher-order systems. The MCPI integration method described

in this chapter is used throughout this dissertation.

Many of the developments are agnostic with regard to the method used to solve

the differential equations. However, the MCPI methods fuse naturally with these

developments and lead to excellent accuracy and efficiency.

42

3. MODIFIED EQUINOCTIAL ORBITAL ELEMENTS
∗

3.1 Introduction

While previous studies show that MCPI is a powerful tool used to propagate the

position and velocity of orbital motion, the results given in this chapter show that

using orbital elements (Gauss’ Variation of Parameters approach) to propagate the

perturbed two-body state vector reduces the number of MCPI iterations and nodes

required, which is especially useful for reducing the computation time when includ-

ing computationally-intensive calculations such as a high degree spherical harmonic

gravity model. Also, Picard iteration (MCPI) converges for 5 to 10 times as many

revolutions (using a single segment) when compared with Cartesian propagation. Re-

sults for the Classical Orbital Elements (COE) and the Modified Equinoctial Orbital

Elements (MEE) show that state propagation using the osculating MEEs as the ba-

sis for the Variation of Parameters equations is inherently well-suited to MCPI orbit

propagation. Additional benefits are achieved using a patched time segmentation

scheme [48, 49], allowing an arbitrarily long propagation.

A set similar to the Modified Equinoctial Orbital Elements (MEE) was used

more than a century ago by Lagrange to approximate secular perturbation effects

due to planetary gravitational perturbations while considering orbits with small ec-

centricities and inclinations. Lagrange used approximate analytical integration of

the Variation of Parameters equations, in contrast with the high precision numerical

methods for the present work. Broucke and Cefola [8] showed the original Lagrangian

∗
Part of the data reported in this chapter is reprinted with premission of ICCES/CMES from “Ef-

ficient Orbit Propagation of Orbital Elements Using Modified Chebyshev Picard Iteration Method,”
which was published both as a conference proceeding (Proceedings of ICCES 2015 Conference, Reno,
NV, July 2015) and a journal article (Journal of Computer Modeling in Engineering & Sciences
(CMES): Special Issue on Computational Methods in Celestial Mechanics, Vol. 111, No. 1, January
2016) [48, 49]

43

Equinoctial Elements set to be relatively free of singularities for zero eccentrici-

ties and both zero and ninety degree inclinations (the equations become singular

as i → 180◦ for the standard MEE formulation), and they also developed a large

number of properties and equations for the set (for elliptical and hyperbolic flight).

For the case of retrograde orbits (approaching 180◦ inclinations), a modified version

of the MEE equations are given by Brouke and Cefola but are still singularity-free

and well-behaved for (180◦ − i) ≤ 90◦.

Brouwer and Clemence [9] discussed the Variation of Parameters differential equa-

tions with several orbital element sets. The Equinoctial Orbital Elements as defined

by Broucke and Cefola are similar to the Set III elements (which are represented by

non-integrable differential relations) discussed by Brouwer and Clemence, and they

utilize the h and k elements introduced below.

Shaver integrated orbital motion using Cartesian coordinates as well as Equinoc-

tial Orbital Elements [55]. He noted that the smooth nature of the element rates

makes this set of elements easy to approximate with low-order Chebyshev polynomial

series, and that using the Variation of Parameters formulation leads to convergence

in significantly fewer iterations. A drag model and low order gravity model were

included in these results. Another previous study using only the J2 gravity term

concluded that using MEEs gives a more accurate solution than Classical Orbital

Elements [25]. This chapter expands Shaver’s results on modern processors and in-

corporates a high order gravity model to gain insight into the convergence domain

and accuracy of using orbital elements.

The MEEs use a variation of the original Equinoctial Orbital Elements that allows

them to be nonsingular for perturbed elliptical orbits and approach the parabolic

case except near 180◦ and are defined in terms of the Classical Orbital Elements in

Equations (3.1) - (3.6) [58, 59].

44

p = a(1− e2) (3.1)

f = ecos(ω + Ω) (3.2)

g = esin(ω + Ω) (3.3)

h = tan

(
i

2

)
cos(Ω) (3.4)

k = tan

(
i

2

)
sin(Ω) (3.5)

L = Ω+ ω + ν (3.6)

where p is the semilatus rectum, a is the semimajor axis, e is the eccentricity, ω

is the argument of perigee, Ω is the right ascension of the ascending node, i is the

inclination, ν is the true anomaly, and L is the true longitude. Note that h and k are

singular for i→ 180◦. For the most common orbits, 0 < i < 120◦, these coordinates

are well behaved. The Equinoctial reference frame is shown in Figure (3.1). This

reference frame is an inertial orbit frame for zero perturbations and is slowly varying

for small perturbations. Elements f and g are the f̂ and ĝ unit vector components,

respectively, of the eccentricity vector in the equinoctial reference frame. Similarly,

elements h and k are the f̂ and ĝ components, respectively, of the ascending node

unit vector in the equinoctial reference frame [14]. The inverse relationship is

Ω = tan−1
(k
h

)
, at k = 0, h = 0 : Ω = 0 (3.7)

ω̄ ≡ ω + Ω = tan−1
(g
f

)
, at g = 0, f = 0 : ω̄ = 0 (3.8)

45

x

y

z

f

w

g

i

 Unit
Sphere

k

h

Figure 3.1: Equinoctial Reference Frame

ω = ω̄ − Ω (3.9)

i = 2tan−1(
√
h2 + k2) (3.10)

e =
√
f 2 + g2 (3.11)

a =
p

(1− e2)
(3.12)

ν = L− ω̄ (3.13)

Some singularities may be encountered for ω and Ω when i→ 0, 180◦ and e→ 0.

Specifically, when i → 0, Ω = 0
0
and when e → 0, ω = 0

0
. Also, when e → 1,

p→ 0, then a becomes singular. The i→ 0 singularities in Eq. (3.7), (3.8) are easily

eliminated as shown.

46

Inclination is very weakly perturbed by the dominant natural perturbations (grav-

ity and drag), so it is easy to avoid the inclination singularity, and Eqs. (3.1) - (3.6)

and their inverse (3.7) - (3.13) are for most practical purposes singularity-free. How-

ever, if man-made (i.e., thrust) perturbations move the osculating orbit through

i = 180◦ (equatorial, counter-clockwise retrograde orbit), the Variation of Parame-

ters formulation based upon these coordinates will be poorly behaved and alternate

coordinates may be needed. The simplest fix is to rotate about 180◦ to a new inertial

frame with the z -axis toward the south pole. With this variation, the actual 180◦

inclination effectively has zero inclination within the altered inertial frame. Refer-

ence orbits near 180◦ inclination are exceedingly rare, so this case is not considered

in this dissertation.

In contrast with the original Equinoctial Orbital Elements set, the MEE set

utilizes p, the semilatus rectum instead of a, the semimajor axis and also L, the

true longitude instead of λ, the mean longitude. One benefit of this element set is

that p is defined when approaching parabolic orbits, whereas a → ∞ for the near

parabolic case. This nearly singularity-free equinoctial formulation utilizes the lon-

gitudes λ, F, L instead of the classical anomalies Mean Anomaly, Eccentric Anomaly,

and True Anomaly, M,E, ν respectively [14]:

λ =M + ω + Ω (3.14)

F = E + ω + Ω (3.15)

L = ν + ω + Ω (3.16)

In this formulation, it is advantageous to write Kepler’s equation in terms of the

47

eccentric longitude F , rather than the eccentric anomaly E, to compute the position

vector. This equation and the corresponding radius vector may then be written as

λ = F + gcos(F)− fsin(F) (3.17)

r = a[1− gsin(F)− fcos(F)] (3.18)

These quantities remain well-defined for the cases of circular or equatorial orbits,

eliminating such singular cases that exist for the Classical Orbital elements. The

radius may alternatively be written as

r =
p

1 + fcos(L) + gsin(L)
(3.19)

The transformation from Classical Orbital Elements and Modified Equinoctial

Elements is given in Equations (3.1) - (3.6), and the inverse transformation is easily

derived [25]. The integration of perturbed orbits requires the transformation between

orbital elements and ECI Cartesian coordinates in order to compute the perturbing

acceleration, and this transformation between equinoctial frame and ECI frame (and

vice versa) is given in detail by Cefola and Broucke in [10]. Analogously to the

Classical Orbital Elements case, the three cartesian coordinates (x, y, z) may be

obtained by premultiplying the coordinates relative to the equinoctial frame by the

direction cosine matrix [8]

[NE] =
1

1 + k2 + h2


1− k2 + h2 2kh 2k

2kh 1 + k2 − h2 −2h

−2k 2h 1− k2 − h2

 (3.20)

48

Note that this matrix is a function of two variables, rather than three variables as

in the most general rotation direction cosine matrix. Note that Eq. (3.20) is a special

case of the Euler-Rodriguez parameterization of an orthogonal matrix [54]. This

observation does not appear in the literature and suggests that related coordinates

such as the Modified Rodriquez parameters (which are nonsingular over ±360◦ range,

not just ±180◦ as are the Classical Rodriguez Parameters) be explored as alternatives

[54]. The even larger non-singular range and other advantages may result in yet

another and more attractive set of Equinoctial Elements.

3.2 Gauss’ Equations

For this study, Gauss’ equations for the variation of the Modified Equinoctial El-

ements are preferred since they are more general than Lagrange’s original Variation

of Parameters, which hold for the classical elements subject to conservative pertur-

bations [53]. The fusion of the MEEs with the MCPI propagation method leads

to an enlarged domain of convergence and greater efficiency. As shown in previous

publications by the author [48, 49], these elements increase the domain of MCPI con-

vergence over using either Cartesian coordinates or the Classical Orbital Elements,

and also reduces the number of sample nodes, MCPI iterations, and gravity func-

tion calls compared with the Cartesian case. The chosen Variation of Parameters

equations are [58, 59]

dp

dt
=

2paθ
w

√
p

µ
(3.21)

df

dt
=

√
p

µ

{
arSsin(L) +

[
(w + 1)cos(L) + f

]
aθ

w
−
g
[
hsin(L)− kcos(L)

]
ah

w

}
(3.22)

49

dg

dt
=

√
p

µ

{
−arcos(L) +

[
(w + 1)sin(L) + g

]
aθ

w
+
f
[
hsin(L)− kcos(L)

]
ah

w

}
(3.23)

dh

dt
=

√
p

µ

s2ah
2w

cos(L) (3.24)

dk

dt
=

√
p

µ

s2ah
2w

sin(L) (3.25)

dL

dt
=

√
µp

(
w

p

)2

+

√
p

µ

[
hsin(L)− kcos(L)

]
ah

w
(3.26)

where s2 = 1 + h2 + k2, w = p
r
= 1 + fcos(L) + gsin(L) and ar, aθ, ah are the

components of the perturbing acceleration in the directions along the radius vector

outward, perpendicular to the radius vector in the direction of motion, and normal

to the orbital plane in the direction of the angular momentum vector, respectively.

The acceleration is computed using Cartesian coordinates, so during every Picard

iteration, the MEEs must be transformed to position and velocity. This also allows

for direct computation of the STM for Cartesian coordinates, as given in Chapter 4,

since no additional transformations are needed.

3.3 Simulation: Increased Domain of Convergence

Simulation results are obtained on a Windows 8 machine using 64-bit arithmetic,

Matlab R2013a, where all MCPI results are tuned such that the near-optimum perfor-

mance is achieved while still maintaining a conserved energy (constant Hamiltonian)

approaching machine precision. The initial conditions used for Low-Earth Orbit

(LEO) and Medium-Earth Orbit (MEO) are given in Tables 3.1 and 3.2; both orbits

start at perigee in this case.

50

Table 3.1: LEO (e = 0.1) Trajectory Initial Conditions

Position (km) [2,865.408457; 5,191.131097; 2,848.416876]
Velocity (km/s) [-5.386247766; -0.3867151905; 6.123151881]

Table 3.2: MEO (e = 0.3) Trajectory Initial Conditions

Position (km) [2,865.408457; 5,191.131097; 2,848.416876]
Velocity (km/s) [-5.855468656; -0.4204037347; 6.656567888]

3.3.1 Comparison: MEE vs. Cartesian MCPI Orbit Propagations

LEO results for both the Classical Orbital Elements and the Modified Equinoctial

Elements are verified by comparing with the integration of Cartesian coordinates

using MCPI, as well as spot checked with Gauss Jackson (8th Order). Figures

3.2, 3.3, and 3.4 show that the solution obtained (and then converted to Cartesian

coordinates) is the same to machine precision as the solution obtained using Cartesian

coordinates to directly integrate the ECI solution. Figure 3.2 compares the zonal

J2−J6 COE solution with the ECI solution, 3.3 compares the J2−J6 MEE solution

with the ECI solution, and 3.4 compares the spherical harmonic MEE solution with

the ECI solution. In addition, the following metric is used to compute the error

based on both the position and velocity and is found to be machine precision for all

these cases:

ϵ =
|rMEE − rCartesian|

|rCartesian|
+

|ṙMEE − ṙCartesian|
|ṙCartesian|

(3.27)

Integration of Cartesian coordinates using MCPI has been extensively compared

and validated against several currently existing methods, including Gauss Jackson

(8th), RK1210, RK78, and RK45 [16, 18, 37]. For the comparision with Cartesian

51

coordinates, position and velocity are integrated using a spherical harmonic gravity

model with no a priori knowledge of the orbit. Next, the orbital elements are in-

tegrated (also with no a priori knowledge of the orbit), and then the solutions are

converted to position and velocity for this comparison. Integration of the Cartesian

coordinates requires a different number of sample points per orbit (i.e., for J2− J6,

N = 100) than the Orbital Elements cases (i.e., for J2− J6 gravity terms, N = 130

for Classical and N = 65 for Equinoctial), so the results are interpolated for this

analysis. A smaller number of sample points is needed for convergence using the

Orbital Elements cases because the MCPI MEE differential equations are heuristi-

cally less nonlinear due to their regularized behavior and are well-suited to these

variables. These variables vary very slowly with time and, whenever required, the

MEEs can be transformed to the Cartesian coordinates. Once the MCPI coefficients

have been computed, the state may be found at any point on the trajectory by using

the Chebyshev Polynomials as the basis functions.

The major advantage of using either set of orbital elements is that the solution

is convergent for a large number of orbits. For the LEO orbit using the first 6 zonal

harmonic J2 − J6 perturbations only, the MCPI solutions computed using Gauss’

equations for the Classical Orbital Elements converges precisely for 12 orbits, as can

be seen in Figure 3.9; the Hamiltonian is conserved until the 13th orbit. The more

regular set of Modified Equinoctial Orbital elements, remarkably, converges for over

50 orbits for J2 − J6 before the Hamiltonian check starts to fail, as can be seen

in Figure 3.10. For many applications, only these zonal accelerations are needed to

give the desired accuracy; for higher-fidelity applications, a full gravity model can

be utilized.

An example of the osculating MEEs for a LEO orbit (e = 0.1) is shown in Figure

3.5. These osculating elements are converted to the COEs and plotted in Figure 3.6.

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (Orbit)

10-22

10-21

10-20

10-19

10-18

10-17

10-16

10-15

R
el

at
iv

e
E

rr
or

MCPI Error State (COE => Inertial) vs (Inertial) for J2-J6

x
y
z
x

dot

y
dot

z
dot

Figure 3.2: Verification of Classical Orbital Elements Solution vs. Cartesian for One
Orbit Using Zonal Harmonics Gravity [48]

Figures 3.7 and 3.8 show the same orbit solution as given in Figures 3.5 and 3.6,

but in Cartesian coordinates for comparison. By observation, the MEE variation as

a function of time is an order of magnitude smaller than that of the Cartesian case

(variations are in the 3rd significant figure for the MEEs and in the 1st significant

figure for Cartesian). This quality gives a relatively smaller magnitude for the time

derivatives of the MEEs as computed in Gauss’ Variational Equations, compared

with Cartesian, and allows for convergent MCPI solutions. For this reason, the

MEEs are an attractive set for the MCPI propagation method. Note that the true

longitude L in Figure 3.5 and true anomaly f in Figure 3.6 have been modulated to

53

0 0.2 0.4 0.6 0.8 1

Time (Orbits)

10-22

10-20

10-18

10-16

10-14

R
el

at
iv

e
E

rr
or

MCPI Error State (Equinoctial => Inertial) vs (Inertial) for J2-J6

x
y
z
x

dot

y
dot

z
dot

Figure 3.3: Verification of Modified Equinoctial Orbital Elements Solution vs. Carte-
sian for One Orbit Using Zonal Harmonics Gravity [48]

lie in the 0 to 2π range; otherwise, their plots would be nearly linear and continuous.

Since the MEEs are the author’s set of choice, a spherical harmonic gravity model

is included in the simulation results to provide a more precise solution. The Hamilto-

nian is conserved for 17 orbits using LEO initial conditions, as is seen in Fig. (3.11).

This number is larger than the maximum number of orbits (up to three) possible with

Cartesian coordinates using a single segment to propagate position and velocity. The

solution is verified against Gauss Jackson (8th) since the energy check over a large

number of orbits may not reveal an error in the direction of the velocity. Figures

(3.12) - (3.14) show the maximum number of orbits for which MCPI will converge, as

54

0 0.2 0.4 0.6 0.8 1

Time (One Orbit)

10-22

10-20

10-18

10-16

10-14

R
el

at
iv

e
E

rr
or

MCPI Error State (Equinoctial => Inertial) vs (Inertial) for Deg = 40

x
y
z
x

dot

y
dot

z
dot

Figure 3.4: Verification of Modified Equinoctial Orbital Elements Solution vs. Carte-
sian for One Orbit Using Spherical Harmonic Gravity Degree and Order 40 [48]

a function of degree and order gravity, as well as the number of MCPI iterations and

number of cosine nodes (sample points) per orbit for both LEO and MEO cases. The

present method increases the domain of convergence by > 5.5x compared with the

MCPI Cartesian solution. These results have been hand-tuned to provide the best

solution (i.e., satisfies Hamiltonian conservation) with the fewest number of nodes

and largest tolerance possible. However, optimizing the tuning process may provide

better results [35, 36].

Note in Figure 3.15 that MCPI using the MEE coordinates requires about 1
3
the

number of Picard iterations compared to MCPI using Cartesian coordinates. Notice

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7.22
7.23
7.24

p

#106 Osculating Modified Equinoctial Orbit Elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.024
0.026
0.028

f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.095
0.096
0.097

g

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.408
0.409

0.41

h

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.406
0.408

0.41

k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Orbits

0
5

10

L

Figure 3.5: Osculating Modified Equinoctial Orbital Elements Degree and Order 40,
LEO (e = 0.1)

that this advantage remains constant with increasing force model fidelity. Figure 3.16

shows that there is little advantage until the gravity degree is about 35. Note that

high precision gravity models for LEO are about degree and order 200, so substantial

speedup is anticipated. For a specified degree of gravity, a “transportation cost”

of transformation from MEE coordinates to Cartesian coordinates (and back), in

order to compute gravity partially degrades the advantages anticipated otherwise.

Figure 3.17 shows that MEE coordinates require fewer gravity calls than Cartesian

coordinates, and the advantage increases as the gravity field degree increases.

3.3.2 Segmentation

Previous work [28, 29, 36] has shown that segmenting the trajectory increases

efficiency; this method is implemented for the present work as well. Optimal seg-

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7.28

7.3
7.32

a

#106 Osculating Classical Orbit Elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.098

0.1
0.102

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.0465
1.047

1.0475

i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.51
0.52
0.53

!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.78

0.785
0.79

+

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Orbits

-5
0
5

f

Figure 3.6: Osculating Modified Equinoctial Orbital Elements, Converted to Classi-
cal Orbital Elements, Degree and Order 40, LEO (e = 0.1)

mentation for Cartesian coordinates utilizes a fraction of an orbit (typically 1/3 or

1/5 of an orbit per segment). However, since the orbital elements solution converges

over a larger number of orbits, a larger segment is used. For this analysis, one orbit

per segment is used; in this manner, the final state of the previous segment is used

as the initial conditions for the next segment. Analogously to Cartesian integra-

tion of Earth orbits, segmenting the MEE propagation allows for increased efficiency

and decreased number of nodes, even though more MCPI iterations are required.

This leads to a reduction in the number of full gravity computations required; since

gravity is computationally expensive, initial studies using Matlab show a decreased

computation time. Figures (3.18) - (3.20) show results using a one-orbit-per-segment

scheme versus using a single segment over the entire trajectory. For this study, the

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

x
(m

)

#107 Cartesian Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

y
(m

)

#107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Orbits

-1

0

1

z
(m

)

#107

Figure 3.7: Cartesian Position Components, Degree and Order 40, LEO (e = 0.1)

maximum number of orbits as a function of degree and order gravity is used to de-

termine the results; for instance, by looking at Figure (3.12) a 25th degree and order

gravity model will allow the method to converge for 25 orbits for the LEO case and

for 22 orbits for the MEO case. By setting this number of orbits as the final time for

each orbit respectively, the number of MCPI iterations per orbit are computed for

Figure (3.13), the number of sample points per orbit for Figure (3.14), and so on.

Notice in Figure 3.18 the difference between using one segment over many orbits

vs. using one segment per orbit; the number of MCPI iterations is approximately

a linear function of the time span. However, the number of function evaluations

per orbit increases when many orbits are covered by one segment (Figures 3.19 and

3.20). Additional studies show that using more than on orbit per segment (i.e.,

two orbits per segment) may be more computationally efficient than using one orbit

58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

v x (
m

/s
)

#104 Cartesian Velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

v y (
m

/s
)

#104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Orbits

-1

0

1

v z (
m

/s
)

#104

Figure 3.8: Cartesian Velocity Components, Degree and Order 40, LEO (e = 0.1)

per segment, but for simplicity one orbit per segment is chosen for the work in this

dissertation. One additional advantage of using one orbit per segment for the MEE

case is that the CGL nodes may be clustered always at perigee and sparse at apogee;

in contrast, using 3 or 5 segments per orbit with Cartesian coordinates results in

dense nodes not only at perigee also unnecessarily throughout factions of the orbit.

If a non-integer number of orbits is required for the integration, most of the trajectory

may be computed using the one-orbit-per-segment scheme to allow the dense cosine

nodes to be clustered at perigee. If the initial time does not start at perigee, a single

fraction-of-an-orbit segment may be used to reach perigee. Similarly, an additional

segment may be computed from the last perigee approach to the final time. This

ensures higher-fidelity gravity computations near perigee.

59

0 5 10 15
Integration Time (time/Tp)

10-16

10-15

10-14

| E
 -

 E
o
 |

/ |
 E

o
 |

Energy Jacobi Integral: (MCPI COE => ECI)

Figure 3.9: Energy Check for Classical Orbital Elements Solution for 13 Orbits (LEO)
Using a Single MCPI Solution Segment [48]

0 10 20 30 40 50 60
Integration Time (time/Tp)

10-16

10-15

10-14

| E
 -

 E
o
 |

/ |
 E

o
 |

Energy Jacobi Integral: (MCPI Equinoctial => ECI)

Figure 3.10: Energy Check for Modified Equinoctial Orbital Elements Solution for
53 Orbits (LEO) Using a Single MCPI Solution Segment [48, 49]

60

0 2 4 6 8 10 12 14 16 18
Integration Time (t/Tp)

10-16

10-15

10-14

10-13

| E
 -

 E
o
 |

/ |
 E

o
 |

Energy Jacobi Integral: MCPI Equinoctial => ECI (Spherical Harmonic)

Figure 3.11: 40th Degree and Order Spherical Harmonic Energy Check for Modified
Equinoctial Orbital Elements Solution (LEO) for 17 Orbits Using a Single MCPI
Solution Segment [48, 49]

10 15 20 25 30 35 40
0

10

20

30

40

N
um

be
r

P
os

si
bl

e

Max Orbits MEE (LEO)
Max Orbits MEE (MEO)
Max Orbits ECI

10 15 20 25 30 35 40
4

6

8

10

In
cr

ea
se

d
C

on
ve

rg
en

ce

Degree and Order Gravity

[Max MEE Orbits (LEO)] / [Max ECI Orbits]
[Max MEE Orbits (MEO)] / [Max ECI Orbits]

Figure 3.12: Maximum Number of Orbits Over Which MCPI Will Converge as a
Function of Varying Degree and Order Spherical Harmonic Gravity [48]

61

Figure 3.13: Number of MCPI Iterations Per Orbit as a Function of Varying Degree
and Order Spherical Harmonic Gravity, for Moderate (e = 0.1) and Intermediate
(e = 0.3) Eccentricity [48]

Figure 3.14: Number of Acceleration Sample Points (Nodes) Per Orbit as a Function
of Varying Degree and Order Spherical Harmonic Gravity, for Moderate (e = 0.1)
and Intermediate (e = 0.3) Eccentricity [48]

62

10 15 20 25 30 35 40 45 50
10

20

30

40

50
Number of MCPI Iterations (1 Orbit LEO, e = 0.1)

N
um

be
r

of
 It

er
at

io
ns

MEE Iterations
ECI Iterations

10 15 20 25 30 35 40 45 50
0.31

0.32

0.33

0.34

R
ed

uc
tio

n
in

 It
er

at
io

ns

Degree and Order Gravity

 (MEE Iterations) / (ECI Iterations)

Figure 3.15: Comparison of MCPI Iterations Per Orbit for MEE versus Cartesian as
a Function of Varying Degree and Order Spherical Harmonic Gravity [48]

10 15 20 25 30 35 40 45 50
0

0.5

1

1.5
Timing Comparison (1 Orbit LEO, e = 0.1)

S
ec

on
ds

MEE Time (sec)
ECI Time (sec)

10 15 20 25 30 35 40 45 50
0.5

1

1.5

T
im

e
R

ed
uc

tio
n

Degree and Order Gravity

(MEE Time) / (ECI Time)

Figure 3.16: Comparison of MCPI Time Per Orbit for MEE versus Cartesian as a
Function of Varying Degree and Order Spherical Harmonic Gravity [48]

63

10 15 20 25 30 35 40 45 50
0

5000

10000

15000
Number of Gravity Function Calls (1 Orbit LEO, e = 0.1)

N
um

be
r

F
un

ct
io

n
C

al
ls

MEE Gravity Fcn Calls
ECI Gravity Fcn Calls

10 15 20 25 30 35 40 45 50
0.2

0.25

0.3

0.35

0.4

Degree and Order GravityR
ed

uc
tio

n
in

 G
ra

vi
ty

 F
cn

 C
al

ls

(MEE Gravity Fcn Calls) / (ECI Gravity Fcn Calls)

Figure 3.17: Comparison of MCPI Gravity Function Calls Per Orbit for MEE versus
Cartesian as a Function of Varying Degree and Order Spherical Harmonic Gravity
[48]

5 10 15 20 25 30 35 40
0

5

10

15

20

Degree and Order Gravity

M
C

P
I I

te
ra

tio
ns

 P
er

 O
rb

it

Single Segment Trajectory

One Segment Per Orbit

Figure 3.18: Segmented Increase in Number of MCPI Iterations Per Orbit as a
Function of Varying Degree and Order Spherical Harmonic Gravity [48]

64

5 10 15 20 25 30 35 40
0

50

100

150

200

250

Degree and Order Gravity

N
um

be
r

of
 N

od
es

 P
er

 O
rb

it

Single Segment Trajectory

One Segment Per Orbit

Figure 3.19: Segmented Decrease in Number of MCPI Nodes Per Orbit as a Function
of Varying Degree and Order Spherical Harmonic Gravity [48]

5 10 15 20 25 30 35 40
0

5000

10000

G

ra
vi

ty
 F

cn
 C

al
ls

 Single Segment Trajectory

One Orbit Per Segment

5 10 15 20 25 30 35 40
0

0.5

R
ed

uc
tio

n

Degree and Order Gravity

(# Gravity Fcn Calls MEE Segmented) / (# Gravity Fcn Calls MEE)

Figure 3.20: Segmented Decrease in Number of Gravity Function Calls Per Orbit as
a Function of Varying Degree and Order Spherical Harmonic Gravity [48]

65

3.4 Chapter Summary

Propagation of either the Classical or the Modified Equinoctial Elements is an

attractive method to solving the perturbed two-body problem using Modified Cheby-

shev Picard Iteration. Both differential equations result in MCPI convergence for a

large number of orbits, while Cartesian coordinates used in conjunction with Modified

Chebyshev Picard Iteration only converges for a few orbits in Cartesian coordinates,

using a single segment. The Modified Equinoctial Elements avoid singularities that

are problematic for the Classical Orbital Elements and give a slightly more accurate

solution, so they are the preferred choice of variables. Higher order gravity models

(such as the spherical harmonic gravity implemented here) lead to analogously long

intervals for convergence, albeit with an increase in the number of basis functions.

The combination of the Modified Equinoctial Orbital Elements with MCPI leads

to decreased number of nodes, MCPI iterations, and gravity function calls when

compared with Cartesian coordinates, which is typically the standard method used

in orbit propagation. Optimizing the algorithm by using a segmentation scheme

decreases the number of nodes and gravity function calls, at the cost of adding a few

more MCPI iterations, to reduce the overall computation time. The computational

results in this chapter make a commanding case that the fusion of MCPI and MEE

coordinates provide very significant computational advantages that will affect many

dimensions of astrodynamics.

66

4. STATE TRANSITION MATRIX FOR SPHERICAL HARMONIC GRAVITY
∗

In this chapter the MCPI method is applied to solve the differential equations

governing the State Transition Matrix (STM), for the case of perturbed motion.

This perturbed STM has applications in many areas including celestial mechanics

and control systems. Propagation of the STM is useful in determining the sensitivity

of the IVP solution to the initial conditions; for instance, the STM predicts how de-

viations from the initial conditions will cause the trajectory of a spacecraft to deviate

from a nominal path. The STM may be used to approximate the time evolution of

variations off nominal for the state vector, even for highly nonlinear systems, such as

the two-body problem perturbed by an arbitrary degree spherical harmonic gravity.

In cases where the initial deviation is small at time t0, a linear approximation may be

used to determine the locally linear state deviation at time t. This linear approxima-

tion is generated using the STM, a matrix of partial derivatives for the instantaneous

position and velocity with respect to the initial position and velocity; this means that

the STM is initially equal to the identity matrix [7, 54]. These deviations can be

approximated, to a problem-dependent accuracy, by using the unperturbed analyti-

cal solution for the Keplerian STM; however, it is frequently desirable to be able to

include a prescribed number the spherical harmonic perturbations, and in general,

∗
Part of the data reported in this chapter is reprinted with permission of Springer from “State

Transition Matrix Propagation for Perturbed Orbital Motion Using Modified Chebyshev Picard
Iteration”, The Journal of the Astronautical Sciences, June 2015, Volume 62, Issue 2, pp. 148-167.
In addition, part of the data reported in this chapter is reprinted with permission of AAS from
“State Transition Matrix Propagation for Perturbed Orbital Motion Using Modified Chebyshev
Picard Iteration”; this paper was originally presented at the 38th Annual AAS Rocky Mountain
Section Guidance and Control Conference held January 30 February 4, 2015, Breckenridge, U.S.A.,
and was originally published in the American Astronautical Society (AAS) publication Guidance,
Navigation and Control 2015, edited by Ian J. Gravseth, American Astronautical Society (AAS)
Advances in the Astronautical Sciences, Volume 154, 2016, pp. 1015-1026 (Copyright 2015 by
American Astronautical Society Publications Office, P.O. Box 28130, San Diego, CA 92198, U.S.A.;
Web Site: http://www.univelt.com) [50, 52]

67

other perturbations.

Qualitatively, since the STM is associated with (approximate) perturbations from

an underlying nonlinear motion, it is evident that some level of approximation is

admissible when computing the STM. If 10 digits accuracy are desired for the high

fidelity state and force models, it is unlikely that more than 5 digits would ever

be required for the STM. However, the present STM algorithms account for the

high fidelity perturbations and adjusting the force model fidelity is accounted for

in the STM. The present chapter provides an efficient algorithm to include these

higher order gravitational perturbations, and allows the accuracy to be adjusted as

desired/required in the STM.

The computation of the STM for the spherical harmonic gravity model requires

second partials of the gravity potential with respect to spherical geocentric coordi-

nates: radius, latitude, and longitude. The first partials of the potential, of course,

give the three gravitational acceleration components, and the second partials give

the symmetric nine element tensors known as the gravity gradient. These required

partial derivatives include second partials of the normalized, Associated Legendre

Functions (ALFs), and these functions (used often in a wide variety of science and

engineering applications) are related to the Legendre polynomials as will be discussed

in this chapter.

The normalized version of the ALFs is preferred for the associated recursion used

to stably compute these functions. Without the normalization, the ALFs are known

to tend toward weak numerical instability as a higher degree and order gravity model

is used. Once the normalized ALFs are computed by stable recursions, the gravity

and associated derivatives are computed in part by introducing the appropriate scale

factor to generate the un-normalized version of the ALFs. Since a spherical harmonic

model is used and this gravity potential is a rigorous solution of the Laplace equation,

68

the ALFs’ second partial expression for an arbitrary order spherical harmonic series

may be verified by checking the accuracy to which the series satisfies the Laplace

equation.

Both the trajectory and the STM are computed in a rotating, Earth-centered,

Earth-fixed (ECEF) frame, which is transformed into an Earth-centered inertial

frame (ECI) for subsequent integration of the differential equations at each Picard

iteration. For the case of MCPI, this is shown to be an efficient method of inte-

gration. The rotating ECEF frame is used to avoid the explicit time dependence of

the potential and also to derive the associated Jacobi integral (which is a constant

Hamiltonian for the perturbed motion).

While very high precision of the STM is seldom required in practice, high fidelity

validation is performed for the STM differential equations and the MCPI solution

of these equations. Though enforcement of the governing differential equation is

inherent in the present study, the STM is confirmed to accurately satisfy (with

maximum relative errors of < 10−14 in a Matlab implementation and up to one

orbit, for the most precise tuning) the theoretical STM group properties as well

as the STM symplectic property (discussed in Section 4.6: MCPI STM Results)

associated with natural conservative dynamical systems [7, 54]. However, in many

practical applications, the STM precision can frequently be relaxed (to, say four or

five digit precision) even when double precision is required for propagating the orbit.

This means that the spherical harmonic expansion order for the STM solution can

frequently be truncated to, say, degree and order gravity of five even when a much

higher degree gravity model is required to compute the orbit. The results for this

algorithm are given in two publications [50, 52].

69

4.1 Dynamic Model

The gravity-perturbed acceleration r̈ = g(t, r) may be represented in state space

notation for the MCPI algorithm as

x ≡

 x1

x2

 ≡

 r

ṙ

 ,
 ẋ1

ẋ2

 = f(t,x) =

 x2

g(t,x1)

 (4.1)

The differential equation used to integrate the STM is [7]

Φ̇(t, t0) = AΦ(t, t0) (4.2)

where

A(t) =

 0n×n In×n

Gn×n 0n×n

 ,
[
∂f

∂x

]
=

 ∂x2

∂x1

∂x2

∂x2

∂g
∂x1

∂g
∂x2

 =

 0n×n In×n

∂g
∂x1

∂g
∂x2

 (4.3)

and

Gn×n =

[
∂g(t, r)

∂r

]
(4.4)

Obviously, when drag is included in the force model, ∂g
∂x2

̸= 0. For the current

developments, only the spherical harmonic gravity potential is included in the force

model. The STM is computed as partials of the linear approximation of the instan-

taneous departure X(t) from the state vector x(t) to the neighboring state x̃(t):

Φ(t, t0) =
∂X(t)

∂X(t0)
(4.5)

where x̃(t) = x(t)+X(t). Then the G matrix can be written in terms of the partials

70

of the generally perturbed gravitational acceleration case; for example, the partial

of the first component of acceleration with respect to the first component in a body-

fixed frame is written with respect to geocentric radius, latitude, and longitude as

∂ax

∂x
=
∂ax

∂r

∂r

∂x
+
∂ax

∂ϕ

∂ϕ

∂x
+
∂ax

∂λ

∂λ

∂x
(4.6)

4.2 State Transition Matrix Using Spherical Harmonic Gravity

A spherical harmonic gravity model is considered in this section. The Jacobian of

the acceleration, needed for Eq. (4.3), is most efficiently computed in the Earth-fixed

body frame but transformed into the inertial frame prior to each integration step;

this method is presented in the following section. The full gravitational potential

function is defined as [24]

U(r, ϕ, λ) =
µ

r

[
1 +

∞∑
n=2

n∑
m=0

(Re

r

)n
Pnm(sinϕ)

[
Cnm cos(mλ) + Snm sin(mλ)

]]
(4.7)

where r is the radial distance to the object, ϕ is the geocentric latitude of the object,

λ is the longitude of the object, Re is the Earth’s equatorial radius, n is the degree

of the series, m is the order of the series, and Pnm are the Associated Legendre

Functions. Defining values for n and m gives the degree and order gravity specified

by the user once the corresponding gravity acceleration terms are computed. The

Cartesian components of the Earth-fixed spherical harmonic series representation of

gravitational acceleration may be represented as the gradient of Eq. (4.7).

ag =
∂U

∂r

(
∂r

∂r

)T

+
∂U

∂ϕ

(
∂ϕ

∂r

)T

+
∂U

∂λ

(
∂λ

∂r

)T

(4.8)

Expressions for the partials of the gravity potential in Equation (4.7) with respect

71

to spherical coordinates (r, ϕ, λ) are written explicitly as

∂U

∂r
= Ur = − µ

r2

[
1+

∞∑
n=2

n∑
m=0

(
n+1

)(Re

r

)n

Pnm(sinϕ)
[
Cnm cos(mλ)+Snm sin(mλ)

]]
(4.9)

∂U

∂ϕ
= Uϕ =

µ

r

∞∑
n=2

n∑
m=0

(
Re

r

)n
∂Pnm(sinϕ)

∂ϕ

[
Cnm cos(mλ) + Snm sin(mλ)

]]
(4.10)

∂U

∂λ
= Uλ =

µ

r

∞∑
n=2

n∑
m=0

(
Re

r

)n

Pnm(sinϕ)m
[
Snm cos(mλ)− Cnm sin(mλ)

]]
(4.11)

Next, expressions are found to compute the Jacobian of the potential in Eq. (4.4),

(4.8). The Cartesian components of the gravity perturbed acceleration ag, which are

components of Eq. (4.5), are

aX =
∂U

∂r

(
∂r

∂x

)
+
∂U

∂ϕ

(
∂ϕ

∂x

)
+
∂U

∂λ

(
∂λ

∂x

)
(4.12)

aY =
∂U

∂r

(
∂r

∂y

)
+
∂U

∂ϕ

(
∂ϕ

∂y

)
+
∂U

∂λ

(
∂λ

∂y

)
(4.13)

aZ =
∂U

∂r

(
∂r

∂z

)
+
∂U

∂ϕ

(
∂ϕ

∂z

)
+
∂U

∂λ

(
∂λ

∂z

)
(4.14)

These acceleration components are taken along Earth-fixed axes; these can be pro-

jected into some arbitrary inertial frame by multiplying by an appropriate direction

cosine matrix (this process will be described in more detail later in this chapter).

72

For the derivatives with respect to β which represents any one of the Cartesian

coordinates (x, y, z), the general chain rule is used:

∂

∂β
(·) = ∂

∂r
(·)
(
∂r

∂β

)
+

∂

∂ϕ
(·)
(
∂ϕ

∂β

)
+

∂

∂λ
(·)
(
∂λ

∂β

)
; β → x, y, z (4.15)

The individual components of the Jacobian G from Eq. (4.4) then follow a pat-

tern (see Appendix B.1 for all G component expressions). The spherical coordinate

partials with respect to Cartesian coordinates are given by

∂r

∂α
=
α

r
; α → x, y, z (4.16)

and

∂ϕ

∂x
=

−xz
r2
√
x2 + y2

;
∂ϕ

∂y
=

−yz
r2
√
x2 + y2

;
∂ϕ

∂z
=

(
1− z2

r2

)√
x2 + y2

(4.17)

∂λ

∂x
=

−y
x2 + y2

;
∂λ

∂y
=

x

x2 + y2
;

∂λ

∂z
= 0 (4.18)

Then, the second partials of the gravity potential are found by direct partial

differentiation, where the partials of the ALFs are described in the following section.

The matrix of second partials is symmetric, and the six expressions for the distinct

elements are as follows:

∂2U

∂r2
=

µ

r3

[
2+

∞∑
n=2

n∑
m=0

(
n+1

)(
n+2

)(Re

r

)n

Pnm(sinϕ)
[
Cnm cos(mλ)+Snm sin(mλ)

]]]
(4.19)

73

∂2U

∂r∂ϕ
= − µ

r2

∞∑
n=2

n∑
m=0

(
n+ 1

)(Re

r

)n
∂Pnm(sinϕ)

∂ϕ

[
Cnm cos(mλ) + Snm sin(mλ)

]]
(4.20)

∂2U

∂r∂λ
= − µ

r2

∞∑
n=2

n∑
m=0

(
n+ 1

)(Re

r

)n

Pnm(sinϕ)
[
Snm cos(mλ)− Cnm sin(mλ)

]]
(4.21)

∂2U

∂ϕ2
=
µ

r

∞∑
n=2

n∑
m=0

(
Re

r

)n
∂2Pnm(sinϕ)

∂ϕ2

[
Cnm cos(mλ) + Snm sin(mλ)

]]
(4.22)

∂2U

∂ϕ∂λ
=
µ

r

∞∑
n=2

n∑
m=0

(
Re

r

)n
∂Pnm(sinϕ)

∂ϕ
m
[
Snm cos(mλ)− Cnm sin(mλ)

]]
(4.23)

∂2U

∂λ2
= −µ

r

∞∑
n=2

n∑
m=0

(
Re

r

)n

Pnm(sinϕ)m
2
[
Snm cos(mλ) + Cnm sin(mλ)

]]
(4.24)

4.3 Computation of Associated Legendre Functions

A key component of the spherical harmonic gravity calculations is the set of

Associated Legendre Functions, Pnm. These functions are related to the Lengendre

polynomials, Pn(u) [34] through

Pn0(u) = Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n (4.25)

74

Pnm(u) = (1− u2)
m
2
dm

dum
Pn(u) (4.26)

After substituting the expression for Pn(u) in Eq. (4.25) into Eq. (4.26) results in

Pnm(u) = (1− u2)
m
2

1

2nn!

dm+n

dum+n
(u2 − 1)n (4.27)

This expression is commonly seen in the literature to represent the ALFs. In many

practical applications that require numerical stability for higher degree and order

gravity, however, the potential function is represented using the so-called derived

Associated Legendre Functions. The derived ALFs are defined as follows:

Anm(u) =
1

2nn!

dm+n

dum+n
(u2 − 1)n =

dm

dum
Pn(u) (4.28)

The derived ALFs and spherical harmonic coefficients are normalized to improve

accuracy for high degree and order gravity models [24, 50, 52]. The normalized

and un-normalized, derived ALFs are related by a normalization scaling factor Nnm,

written generally for n ̸= m ̸= 0 as [34]

Ānm =

[
(n−m)!(2n+ 1)(2− δ0m)

(n+m)!

] 1
2

Anm = NnmAnm (4.29)

Here, the Kronecker delta function is defined to be

δ0m =


1 if m = 0

0 if m ̸= 0

(4.30)

The recursion formula chosen for this work is the normalized, derived ALFs from

Table 2, option I of [34] for u = sinϕ:

75

Ānm = u

[
(2n+ 1)(2n− 1)

(n−m)(n+m)

] 1
2

Ān−1,m −

[
(2n+ 1)(n−m− 1)(n+m− 1)

(2n− 3)(n+m)(n−m)

] 1
2

Ān−2,m

(4.31)

Since a normalized version of the ALFs is used, the final un-normalized result may

be obtained by applying the appropriate scale factor:

m = 0 : Sf =

√
n(n+ 1)

2
(4.32)

m = n : Sf = 0 (4.33)

m ̸= n ̸= 0 : Sf =
√

(n−m)(m+ n+ 1) (4.34)

Computation of the STM for spherical harmonic gravity requires the partial

derivative of Pnm with respect to ϕ, where Cnm and Snm are the normalized Stokes

coefficients determined from satellite motion observations, and Nnm is the scale fac-

tor given in Eq. (4.29). The derivations for the first and second partial derivatives

of Pnm with respect to ϕ is given fully in Appendix B and has been published [52].

These partials of the ALFs are incorporated in the calculations for the partials of

the gravity potential, U , through the computation of the corresponding ALFs and

the appropriate scale factors.

4.4 Earth-Centered-Interial Jacobian

Numerical integration performed in the inertial frame requires the Jacobian also

to be computed in the Earth-Centered Inertial (ECI) frame using coordinatesX, Y, Z.

These coordinates are related to the Earth-Centered-Earth-Fixed (ECEF) frame co-

76

ordinates x, y, z through a rotation matrix C with the following forward and reverse

transformations:


x

y

z

 = [C(t)]


X

Y

Z

 (4.35)


X

Y

Z

 =
[
CT (t)

]

x

y

z

 (4.36)

Also,


aX

aY

aZ

 =
[
CT (t)

]

ax

ay

az

 (4.37)

where

[C(t)] =


cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1

 (4.38)

and

θ(t) = θ0 + ωe(t− t0) (4.39)

where this last expression is a function of the Earth’s rotation and time. Each

component of C may be written as

77

C11 =
∂x

∂X
, C12 =

∂x

∂Y
, C13 =

∂x

∂Z
, etc. (4.40)

which means that

[
C(t)

]
=

[
∂(x, y, z)

∂(X, Y, Z)

]
⇐⇒

[
CT (t)

]
=

[
∂(X, Y, Z)

∂(x, y, z)

]
(4.41)

For a general function, F , a chain rule expansion may be used to find partials

with respect to body frame coordinates r, ϕ, λ, i.e.,

∂F

∂x
=
∂F

∂r

∂r

∂x
+
∂F

∂ϕ

∂ϕ

∂x
+
∂F

∂λ

∂λ

∂x
(4.42)

∂F

∂y
=
∂F

∂r

∂r

∂y
+
∂F

∂ϕ

∂ϕ

∂y
+
∂F

∂λ

∂λ

∂y
(4.43)

∂F

∂z
=
∂F

∂r

∂r

∂z
+
∂F

∂ϕ

∂ϕ

∂z
+
∂F

∂λ

∂λ

∂z
(4.44)

Written in matrix form, this gives


∂F
∂x

∂F
∂y

∂F
∂z

 =


∂r
∂x

∂ϕ
∂x

∂λ
∂x

∂r
∂y

∂ϕ
∂y

∂λ
∂y

∂r
∂z

∂ϕ
∂z

∂λ
∂z




∂F
∂r

∂F
∂ϕ

∂F
∂λ

 ≡

[
D(x, y, z)

]
∂F
∂r

∂F
∂ϕ

∂F
∂λ

 (4.45)

For the same general function F , a chain rule expansion may also be used to find

partials with respect to inertial frame coordinates:

∂F

∂X
=
∂F

∂x

∂x

∂X
+
∂F

∂y

∂y

∂X
+
∂F

∂z

∂z

∂X
(4.46)

78

∂F

∂Y
=
∂F

∂x

∂x

∂Y
+
∂F

∂y

∂y

∂Y
+
∂F

∂z

∂z

∂Y
(4.47)

∂F

∂Z
=
∂F

∂x

∂x

∂Z
+
∂F

∂y

∂y

∂Z
+
∂F

∂z

∂z

∂Z
(4.48)

Written in matrix form, this gives


∂F
∂X

∂F
∂Y

∂F
∂Z

 =


∂x
∂X

∂y
∂X

∂z
∂X

∂x
∂Y

∂y
∂Y

∂z
∂Y

∂x
∂Z

∂y
∂Z

∂z
∂Z




∂F
∂x

∂F
∂y

∂F
∂z

 ≡

[
CT (t)

]
∂F
∂x

∂F
∂y

∂F
∂z

 (4.49)

Combining Eqs. (4.45) and (4.49) gives


∂F
∂X

∂F
∂Y

∂F
∂Z

 =
[
CT (t)

][
D
]


∂F
∂r

∂F
∂ϕ

∂F
∂λ

 (4.50)

Specializing Eq. (4.50) to the case of spherical harmonic gravity, where U represents

the gravity potential, the perturbed acceleration is obtained in inertial coordinates:


aX

aY

aZ

 =


∂U
∂X

∂U
∂Y

∂U
∂Z

 =
[
CT (t)

][
D
]


∂U
∂r

∂U
∂ϕ

∂U
∂λ

 (4.51)

As shown in the next section, it is more efficient to compute the Jacobian in the

ECEF frame, then transform it into the inertial frame.

4.5 Earth-Centered-Earth-Fixed Jacobian: Transformation to Inertial

The most computationally efficient method to integrate the Jacobian matrix is to

first compute it in Earth-Centered-Earth-Fixed (ECEF) coordinates, then tranform

79

it to Earth-Centered-Inertial (ECI) coordinates. This method of computing the

Jacobian in ECEF coordinates and transforming into ECI is more computationally

efficient, as is evident by observation, because fewer mathematical operations are

required compared with computing the Jacobian directly in the ECI frame. These

two methods are otherwise identical and provide solutions that are comparatively

accurate to machine precision.

For a general rotation matrix C(t), body frame (x, y, z), and inertial frame

(X, Y, Z), the following transformations relate these two frames:


x

y

z

 = [C(t)]


X

Y

Z

 (4.52)


X

Y

Z

 =
[
CT (t)

]

x

y

z

 (4.53)

The matrix form of the velocity and acceleration kinematics follow by direct

differentiation:


ẋ

ẏ

ż

 =
d

dt


x

y

z

 =
[
Ċ
]

X

Y

Z

+
[
C
]

Ẋ

Ẏ

Ż



= −
[
ω̃
][
C
]

X

Y

Z

+
[
C
]

Ẋ

Ẏ

Ż


(4.54)

80

where
[
Ċ
]
= −

[
ω̃
][
C
]
and ω̃ is the skew symmetric matrix

ω̃ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (4.55)

Differentiating again results in


ẍ

ÿ

z̈

 = −
[
˙̃ω
][
C
]

X

Y

Z

−
[
ω̃
][
Ċ
]

X

Y

Z

−
[
ω̃
][
C
]

Ẋ

Ẏ

Ż



+
[
Ċ
]

Ẋ

Ẏ

Ż

+
[
C
]

Ẍ

Ÿ

Z̈


(4.56)

Because ˙̃ω = 0 and again using
[
Ċ
]
= −

[
ω̃
][
C
]
, this equation is rewritten as


ẍ

ÿ

z̈

 =
[
ω̃
]2[

C
]

X

Y

Z

− 2
[
ω̃
][
C
]

Ẋ

Ẏ

Ż

+
[
C
]

Ẍ

Ÿ

Z̈

 (4.57)

For the orbit problem, dx
dt

= f(t,x), or

81

d

dt



X

Y

Z

dX
dt

dY
dt

dZ
dt


=



dX
dt

dY
dt

dZ
dt

d2X
dt2

d2Y
dt2

d2Z
dt2


(4.58)

where


d2X
dt2

d2Y
dt2

d2Z
dt2

 = −


∂U(x,y,z)

∂X

∂U(x,y,z)
∂Y

∂U(x,y,z)
∂Z

 = −
[
CT
]


∂U(x,y,z)
∂x

∂U(x,y,z)
∂y

∂U(x,y,z)
∂z

 (4.59)

Recall that the state transition matrix Φ(t, t0) satisfies the differential equation

Φ̇(t, t0) = A(t,x)Φ(t, t0), Φ(t0, t0) = I (4.60)

where

A(t,x) =

 0 I

G 0

 (4.61)

This Jacobian may therefore be computed in the ECEF frame first, then transformed

into the ECI frame using the transformation

G = −


∂2U
∂X2

∂2U
∂X∂Y

∂2U
∂X∂Z

∂2U
∂Y ∂X

∂2U
∂Y 2

∂2U
∂Y ∂Z

∂2U
∂Z∂X

∂2U
∂Z∂Y

∂2U
∂Z2

 = −
[
CT
]


∂2U
∂x2

∂2U
∂x∂y

∂2U
∂x∂z

∂2U
∂y∂x

∂2U
∂y2

∂2U
∂y∂z

∂2U
∂z∂x

∂2U
∂z∂y

∂2U
∂z2


[
C
]

(4.62)

82

which may be written simply as

[
G(X,Y, Z)

]
= −

[
CT
][
G(x, y, z)

][
C
]

(4.63)

Note that the gradient of the gravity potential U:

∇U =


∂U
∂x

∂U
∂y

∂U
∂z

 (4.64)

and the Hessian (Jacobian) of U:

∇2U =


∂2U
∂x2

∂2U
∂x∂y

∂2U
∂x∂z

∂2U
∂y∂x

∂2U
∂y2

∂2U
∂y∂z

∂2U
∂z∂x

∂2U
∂z∂y

∂2U
∂z2

 (4.65)

are first- and second-order Cartesian tensors, respectively. Also, the projections of

these operators through an orthogonal transformation, evident in the rightmost of

Eqs. (4.59) and (4.62), hold for all first- and second-order Cartesian tensors.

4.6 MCPI STM Results

The STM propagation using MCPI is verified using a variety of checks. The first

and second partials of the Associated Legendre Functions (ALFs) are verified using

a finite difference method, as shown in Figure 4.1. The second partial of the gravity

potential with respect to latitude (which involves the second partial of the ALFs) is

shown in Figure (4.2); the relative error is of the order 10−14.

The STM should conform to a simple analytic matrix inverse formula, which

means that it is symplectic [54]. The symplectic check is computed using

83

[Φ]T [J][Φ] = [J] (4.66)

where

J =

 0n×n In×n

−In×n 0n×n

 (4.67)

This means that if this equation is premultiplied by [J] and postmultiplied by

[Φ]−1, then the matrix inverse of [Φ] is given by

[Φ]−1 = −[J][Φ]T [J] (4.68)

If the STM matrix is partitioned into (n× n) submatrices as

[Φ] =

 Φ11 Φ12

Φ21 Φ22

 (4.69)

then the matrix inverse of Φ may be expressed analytically through the expression

[Φ]−1 =

 ΦT
22 −ΦT

12

−ΦT
21 ΦT

11

 (4.70)

It can be shown [54] that the only condition necessary for the STM considered

here to be symplectic is that [G] = [G]T must be symmetric. Figure 4.3 gives the

error components of the symplectic check for the numerically propagated STM.

A finite difference check is used to verify that each column of the STM is correct.

Figure 4.4 shows that the first column is accurate compared with the finite difference

check to at least 8 digits; each column gives comparable accuracy but is not shown

here to avoid redundancy. Obviously, a finite difference check is not expected to ap-

84

proach machine precision; 8 digit agreement, together with the additional symplectic

check and other validations, is judged to be sufficient in the present discussion. 8

digit precision likely exceeds the “practical” accuracy required for STM applications.

The Jacobian for the STM is computed in two ways: 1) directly in ECI and 2) in

ECEF, which is then transformed into ECI. Figure 4.5 shows that these two methods

give the same result. See Appendix B for the specific equations used to compute each

Jacobian. A timing comparison between these two Jacobian calculation methods is

given in Figure 4.6, showing that method 2) is the preferred method.

This formulation permits an arbitrary degree and order gravity model to compute

the STM, but most likely degree and order ten for the STM is the maximum that

would be needed in practice. Note that Earth rotation is included in all spherical

harmonic simulation results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−

20

10
−

10

10
0

Finite Diff Check, Abs. Err. ALF Partials; Degree & Order Gravity = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−

10

10
−

5

10
0

Time (Orbit)

Figure 4.1: Finite Difference Check for First and Second Partials of ALFs (Degree
and Order Gravity = 10) [50, 52]

85

0 0.2 0.4 0.6 0.8 1
Time (Orbit)

10-17

10-16

10-15

10-14

10-13

10-12

| d
2
 U

/ d
 ?

 2
 D

ire
ct

 -
 d

2
 U

/d
 ?

 2
 La

pl
ac

e
 |

/ |
 d

2
 U

/ d
 ?

 2
 D

ire
ct

 | Rel Err Second Partial U wrt Latitude Deg = 10 ! = 7.2921e-05

Figure 4.2: Relative Error Check for Second Partial of Gravity Potential with Respect
to Latitude (Degree and Order Gravity = 10, Earth Rotation Included); Note This
Figure Gives Absolute Value, Compared to Conference and Journal Figures in [50, 52]

4.7 Optimized State Transition Matrix Calculations

The baseline STM algorithm given so far in this chapter may be optimized. Be-

cause the STM requires only as input the position vector at every sample node, the

trajectory may first be integrated. Next, the STM may be propagated using the

converged trajectory solution. This method is more efficient, as is shown by the

comparison in Figure 4.7. Additional optimization techniques will be presented in

the following two subsections.

4.7.1 Cascade Method

The MCPI method may solve either first- or second-order differential equations.

However, some numerical integrators, such as RKN12(10), require a second-order

86

Figure 4.3: Symplectic Check of State Transition Matrix (Degree and Order Gravity
= 10) [50, 52]

formulation. To increase efficiency of STM calculations, a second-order differential

equation may be used in place of

dx(t)

dt
= f(t,x(t)), t ∈ [a, b] (4.71)

This method, developed below, is called the MCPI cascade method [5, 52]. The

STM differential equation for the conservative case is rearranged to solve a pair of

second-order equations as follows. Since Φ̇ = AΦ, or

 Φ̇11 Φ̇12

Φ̇21 Φ̇22

 =

 03×3 I3×3

G3×3 03×3


 Φ11 Φ12

Φ21 Φ22

 (4.72)

the individual components using the G matrix are written from Eq. (4.4) as

87

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
x 10

−8 Finite Diff Check Col 1 φ : Deg = 10 ω = 7.2921e−05rad/s

0 0.2 0.4 0.6 0.8 1
−1

0

1

2
x 10

−11

Time (One Orbit)

∆ φ(1,1)

∆ φ(2,1)
∆ φ(3,1)

∆ φ(4,1)
∆ φ(5,1)
∆ φ(6,1)

Figure 4.4: Finite Difference Check for First Column of STM Over One Orbit (Degree
and Order Gravity = 10) [50, 52]

Φ̇11 = Φ21 (4.73)

Φ̇12 = Φ22 (4.74)

Φ̇21 = GΦ11 (4.75)

Φ̇22 = GΦ12 (4.76)

Taking the time derivative of Eqs. (4.73) and (4.74) gives

88

0 0.2 0.4 0.6 0.8 1
10

−16

10
−15

10
−14

10
−13

Normalized Error: Deg = 10 ω = 7.2921e−05 rad/s

Time (One Orbit)

| G
E

C
E

F
−

>
E

C
I

 −
 G

E
C

I |
/ |

 G
E

C
E

F
−

>
E

C
I |

Figure 4.5: Rel Err for G: (ECEF → ECI) vs. ECI (Degree and Order Gravity =
10)

Φ̈11 = Φ̇21 (4.77)

Φ̈12 = Φ̇22 (4.78)

Substituting Eq. (4.75) into Eq. (4.77) and Eq. (4.76) into Eq. (4.78) gives the

two second-order differential equations required for integration:

Φ̈11 = GΦ11, Φ11(t0, t0) = I (4.79)

Φ̈12 = GΦ12, Φ12(t0, t0) = 0 (4.80)

89

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

T
im

e
(s

ec
)

MCPI: G Matrix Timing Comparison

ECI

ECEF=>ECI

1 2 3 4 5 6 7 8 9 10
Degree for Gravity Model

2.2

2.3

2.4

2.5

S
pe

ed
up

ECI / (ECEF=>ECI)

Figure 4.6: Timing Comparison for G: (ECEF → ECI) vs. ECI (Degree and Order
Gravity = 10)

The other two sub-matrices of the STM, Φ21 and Φ22, are obtained from the

converged solution as

Φ21 = Φ̇11 (4.81)

Φ22 = Φ̇12 (4.82)

Note the cascade solution of Eqs. (4.79), (4.80) for Φ11 and Φ12 additionally

produces the first time derivatives of Φ̇11 and Φ̇12. Φ21 and Φ22 are obtained from

Eqs. (4.81), (4.82) without further computation. The initial condition for the STM

is known to be

90

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

T
im

e
(s

ec
)

MCPI: Timing Comparison 1) Integrate Traj, STM Together 2) Separately

Together

Separately

1 2 3 4 5 6 7 8 9 10
Degree for Gravity Model

1.8

2

2.2

2.4

S
pe

ed
up

Together / Separately

Figure 4.7: Timing Comparison of Trajectory and STM: Propagated Both Simulta-
neously and Separately Over One Orbit [52]

 Φ11 Φ12

Φ21 Φ22

 =

 I3×3 03×3

03×3 I3×3

 (4.83)

so for the second-order formulation, the initial conditions are

[Φ11 Φ12] = [I3×3 03×3] (4.84)

[
Φ̇11 Φ̇12

]
=

[
Φ21 Φ22

]
=

[
03×3 I3×3

]
(4.85)

The initial conditions automatically satisfied are Φ21 = 03×3 and Φ22 = I3×3. The

above results for the cascade method can be readily generalized to accommodate ve-

locity dependence in the force model (e.g., drag). In the case of velocity dependence,

91

the equation Φ̇ = AΦ generalizes as

 Φ̇11 Φ̇12

Φ̇21 Φ̇22

 =

 03×3 I3×3

G3×3 D3×3


 Φ11 Φ12

Φ21 Φ22

 (4.86)

where

D3×3 =

[
∂g(t, r)

∂ṙ

]
(4.87)

The resulting formulation is the same except for two additional terms of the form

Φ̈11 = GΦ11 +D
Φ̇11

dt
(4.88)

Φ̈12 = GΦ12 +D
Φ̇12

dt
(4.89)

Similar to the standard MCPI approach, computation time may be reduced by

first obtaining a solution for the trajectory and then propagating the STM rather

than propagating both at the same time, as shown in Figure (4.8); the advantage

grows with increasing gravity model degree, approaching 40% if degree and order 10

is used.

It is important to note the pragmatic truth that may require the state history

accurate to better than 11 digits, but it is very rare that the STM is required to

be accurate to more than 4 digits. This means that the conclusion in Figure (4.7)

would change dramatically if a (200, 200) gravity were required to obtain 11 digit

state history, but only 5 digit accurate STM. Experiments indicate that a 4 digit STM

can be obtained with degree and order gravity less than 10. Therefore, the“separate”

solution is expected to be even more dramatically advantageous for this case.

92

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

T
im

e
(s

ec
) MCPI Standard Method

MCPI Cascade Method

1 2 3 4 5 6 7 8 9 10
Degrees

1

1.2

1.4

S
pe

ed
up

MCPI
Standard

 / MCPI
Cascade

Figure 4.8: Timing Comparison of Baseline vs. Cascade Method for Computing
Trajectory and Subsequently STM From Converged Position [52]

4.7.2 State Transition Matrix in Canonical Units

Using canonical units often allows many computations in astrodynamics to be

simplified [54]. For instance, if Cartesian coordinate are used, the position values

are typically several orders of magnitude larger than the velocity values. Converting

to canonical units effectively normalizes the values so that they have relatively the

same number of significant figures. In addition, the range of exponents for canonical

values are much smaller than those given in metric units, which results in computa-

tional advantages to produce a precise numerical integration in the event that fixed

point arithmetic, for some onboard computers, is used. More information about the

Cartesian conversion to and from canonical units is given in Appendix D.

The STM may also be converted to and from canonical units. Consider the

93

0 2 4 6 8 10
0.3

0.4

0.5

0.6

T
im

e
(s

ec
) Integrated Together

Integrated Separately

1 2 3 4 5 6 7 8 9 10

Degrees

1.02

1.04

1.06

1.08

1.1

1.12

S
pe

ed
up

Time
Separately

 / Time
Together

Figure 4.9: Timing Comparison of Cascade Method for Trajectory and Subsequently
STM From Converged Position vs. Computing Trajectory and STM Together [52]

perturbed two-body problem,

d2r

dt2
= − µ

r3
r+ ad (4.90)

and manipulate this equation as follows using r⊕ = 1 Earth radius:

r⊕
d2
(

r
r⊕

)
dt2

= −
µ⊕
r3⊕(
r
r⊕

)3 r⊕(r

r⊕

)
+ ad (4.91)

Next, introduce a non-dimensional set of coordinates by defining

R⃗ ≡ r

r⊕
(4.92)

and

94

0 2 4 6 8 10
0

2

4

T
im

e
(s

ec
)

Speedup Comparison MCPI Cascade Method vs. RKN1210

RKN1210
MCPI Cascade

0 2 4 6 8 10
Degrees

0

2

4

S
pe

ed
up

Time
RKN1210

/Time
MCPI Cascade

Figure 4.10: Timing Comparison for Computing Trajectory and STM of RK12(10)
with MCPI Cascade Method (Traj and STM Integrated Together) [52]

|R⃗| = R ≡ r

r⊕
(4.93)

This means that the Cartesian coordinates may be expressed in terms of canonical

terms using

r = r⊕R (4.94)

x = r⊕X x→ y, z; X → Y ,Z (4.95)

Now the equations of motion become

95

r⊕
d2R⃗
dt2

= −
µ⊕
r2⊕

R3
R⃗+ ad (4.96)

Multiply both sides by
r2⊕
µ⊕

to get

d2R⃗(
µ⊕
r3⊕

)
dt2

= − 1

R3
R⃗+

r2⊕
µ⊕

ad (4.97)

Next, define

Ad ≡
r2⊕
µ⊕

ad (4.98)

and define the canonical time unit as

τ =

√
µ⊕

r3⊕
t (4.99)

Taking the derivative of time with respect to τ and solving for dτ 2 gives

dt

dτ
=

√
r3⊕
µ⊕

(4.100)

dτ 2 =

(
µ⊕

r3⊕

)
dt2 (4.101)

This lets Equation (4.97) be written as

d2R⃗
dτ 2

= − 1

R3
R⃗+Ad (4.102)

where the canonical acceleration may computed from its Cartesian value as

Ad =

(
r2⊕
µ

)
ad (4.103)

96

and also,

dR⃗
dτ

=

√
r3⊕
µ⊕

dr

dt
(4.104)

To find the first derivative terms for X, Y, Z, expand by using the chain rule

(X → Y, Z):

dX

dt
=

d

dt
(r⊕x) = r⊕

dx

dt
= r⊕

dx

dτ

dτ

dt
= r⊕

dx

dτ

√
µ⊕

r3⊕

=

√
µ⊕

r⊕

dx

dτ

(4.105)

Now, the state vector is rewritten as

r =



X

Y

Z

dX
dt

dY
dt

dZ
dt


=

 r⊕I 0

0
√

µ⊕
r⊕
I





x

y

z

dx
dτ

dy
dτ

dz
dτ


≡ [M]



x

y

z

dx
dτ

dy
dτ

dz
dτ


(4.106)

If

X =

 r

ṙ

 , χ =

 R⃗
⃗̇R

 (4.107)

then Eq. (4.106) becomes

X = [M]χ⃗ (4.108)

97

and for the time-varying system,

X(t) = [M]χ⃗(τ) (4.109)

For the STM in canonical units (Ψ),

Φ(t, t0) =
∂X(t)

∂X(t0)
⇐⇒ ∂χ⃗(τ)

∂χ⃗(τ0)
≡ Ψ(τ, τ0) (4.110)

These equations may be related, by using Eq. (4.109), as

[
∂X(t)

∂X(t0)

]
= [M]

[
∂χ⃗(τ)

∂X(t0)

]

= [M]

[
∂χ⃗(τ)

∂χ⃗(τ0)

][
∂χ⃗(τ0)

∂X(t0)

] (4.111)

Note that because M is a constant matrix,

∂[M]

∂X(t0)
= 0 (4.112)

From Eq. (4.109),

X(t0) = [M]χ⃗(τ0) (4.113)

which means that

∂χ⃗(τ0)

∂X(t0)
= [M]−1 (4.114)

Then Eq. (4.111) can be written as

98

[
∂X(t)

∂X(t0)

]
= [M]

[
∂χ⃗(τ)

∂χ⃗(τ0)

]
[M]−1 (4.115)

This gives the final form for the cartesian STM Φ in terms of the canonical STM

Ψ:

Φ(t, t0) = [M]Ψ(τ, τ0)[M]−1 (4.116)

This equation is then expanded into submatrices:

Φ(t, t0) =

 r⊕I 0

0
√

µ⊕
r⊕
I

Ψ(τ, τ0)

 1
r⊕
I 0

0
√

r⊕
µ⊕
I

 (4.117)

 Φ11 Φ12

Φ21 Φ22

 =

 Ψ11
r
3
2
⊕√
µ⊕

Ψ12

√
µ⊕

r
3
2
⊕

Ψ21 Ψ22

 (4.118)

To convert the cartesian STM to canonical units, from Eq. (4.116) which means

that

Ψ(t, t0) = [M]−1Φ(τ, τ0)[M] (4.119)

The STM is very efficient to numerically integrate, so using the canonical form to

propagate the STM by itself doesn’t provide noticeable improved efficiency; however,

more complicated algorithms that require the use of the STM (such as a gradient

method) that are computed using canonical units may see some improvement in

efficiency.

99

4.8 Chapter Summary

A gap exists in the literature, and especially in available software for computing

the STM, when considering a general spherical harmonic expansion. Namely, the

gap is the absence of an STM algorithm that allows user-specified spherical har-

monic gravity perturbations to be included. This chapter and the validated software

developed address this gap.

The derivations and expressions needed to compute the State Transition Matrix

(STM) for the general spherical harmonic gravity model were given, and results were

shown to verify that the propagation using MCPI is correct. The Jacobian may

be computed two ways: 1) directly in ECI, or 2) in ECEF and transformed into

ECI. Method 2) is shown to give the same result as method 1) to machine precision,

but with reduced computation time. The mathematical expressions for computing

the Jacobian are given in detail in Appendix B for the two-body case, the zonal

harmonic gravity case, and the full spherical harmonic gravity case; also included

in this Appendix is the derivation of the first and second partials of the Associated

Legendre Functions required for the STM computation.

The STM propagation formulation is verified using a finite difference check and

also a spot check of the STM group properties. Additional optimization methods

are provided in the later parts of this Chapter to further reduce computation time.

Zonal and spherical harmonic versions of the STM calculations are used in Chap-

ter 5 for a Monte Carlo analysis to compute a local Taylor Series gravity approxima-

tion, reducing the number of full gravity computations. During MEE propagation, a

conversion to Cartesian coordinates very Picard iteration is required to calculate the

gravity acceleration; therefore, the STM as expressed using Cartesian coordinates

may be directly computed without additional nonlinear transformations.

100

5. MONTE CARLO ANALYSIS USING MODIFIED EQUINOCTIAL ORBITAL

ELEMENTS
∗

This chapter gives a Monte Carlo analysis that utilizes a local Taylor Series model

to reduce the computational time for the general spherical harmonic gravity model

and provides a high-accuracy solution through propagating the Modified Equinoctial

Elements (MEEs) [51]. This set of elements has proven to be well-suited to MCPI

propagation and increases the domain of convergence compared with using Cartesian

coordinates [48, 49].

5.1 Taylor Series Gravity Expansion

A local Taylor Series method is implemented for Monte Carlo simulation; this

method has previously shown to decrease the computation time of Cartesian MCPI

iterations for Monte Carlo simulations [38]. The idea is motivated by this consider-

ation: using the fixed nodes of the nominal solution as expansion points for a low

degree, local Taylor series of the spherical harmonic gravity model, a high accuracy

neighboring gravity can be computed less expensively than using the full spherical

harmonic gravity on the neighboring orbits. A spherical harmonic gravity field of

degree and order (40,40) is used for the first MCPI iterations, to converge to the

nominal trajectory. Once MCPI converges on this solution, local states, Jacobians,

and accelerations are stored in memory at every MCPI node for computation of the

∗
Part of the data reported in this chapter is reprinted with permission of AAS from “Monte

Carlo Propagation of Orbital Elements Using Modified Chebyshev Picard Iteration”; This paper
was originally presented at the 26th AAS/AIAA Space Flight Mechanics Meeting held February
1418, 2016, Napa, California, U.S.A., and was originally published in the American Astronautical
Society (AAS) publication Spaceflight Mechanics 2016, edited by Renato Zanetti, Ryan P. Russell,
Martin T. Ozimek and Angela L. Bowes, American Astronautical Society (AAS) Advances in the
Astronautical Sciences, Volume 158, Part III, 2016, pp. 2589-2604 (Copyright 2016 by American
Astronautical Society Publications Office, P.O. Box 28130, San Diego, CA 92198, U.S.A.; Web Site:
http://www.univelt.com)’ [51]

101

local Taylor series approximation near each node; the coefficients (derivations) of a

one or two term Taylor series is also stored at each node.

The local Taylor series approximation is justified because all of the terminal it-

erations are in the close neighborhood of the final converged solution, as are the

neighboring Monte Carlo trajectories; prior simulations have established the max-

imum distance away from the expansion point to invalidate the local Taylor series

approximation to a given accuracy. Thus, the efficiently computable Taylor series

gravity approximation compares with known precision to the high-fidelity (spherical

harmonic) full gravity solution. The low-fidelity (zonal) gravity is updated using the

Taylor series in the following manner with Cartesian coordinates, where gF is the

full spherical harmonic gravity, gz is the zonal gravity, n is the position under con-

sideration (at a sample node) for the neighboring approximating trajectory, n0 is the

position (a typical Taylor expansion point) used to compute the nominal trajectory,

and ∇ is the gradient function:

[gF(n)− gz(n)] ∼= [gF(n0)− gz(n0)] +∇[gF(n0)− gz(n0)][n− n0] +H.O.T.

(5.1)

Rearranging this equation and neglecting the higher-order terms provides an approx-

imation of the full gravity that allows for more efficient computation of many Monte

Carlo simulations:

gF (n) = gz(n) + c0 + [A0][∆n] (5.2)

where a constant term, plus the gradient times the position difference, are used:

102

c0 = [gF(n0)− gz(n0)] (5.3)

A0 = ∇[gF (n)− gz(n)]

∣∣∣∣
n0

≡ ∂(gF (n)− gz(n))

∂n

∣∣∣∣
n0

(5.4)

∆n = [n− n0] (5.5)

To compute the gradient difference term A0, two Jacobians are computed as

outlined in Ch. 4 and Appendix B. The low fidelity Jacobian is computed using

the fully spherical harmonic gravity, but only with degree and order six. The high

fidelity Jacobian is computed using the spherical harmonic gravity model for the

desired degree and order. These Jacobians are computed in the ECEF frame, then

transformed to the ECI frame for integration because this was found to be slightly

more efficient than computing the Jacobian directly in the ECI frame.

An overview of the Monte Carlo computations using this Taylor Series expansion

scheme is given in Figure (5.1).

5.2 Monte Carlo Simulation Results

5.2.1 Matlab R2013a

Simulation results are obtained on a Windows 8 machine using Matlab R2013a,

where all MCPI results are tuned such that the best performance is achieved while

still maintaining an energy check (constant Hamiltonian). For this study, two cases

are considered: LEO (e = 0.1) and MEO (e = 0.3). Figures (5.6) - (5.9) show

the Monte Carlo point clouds for both the MEE solution and the ECI solution

(integration of the Cartesian acceleration form of the equations of motion using ECI

coordinates) for the LEO case. The Cartesian and MEE Solutions match to 10

103

Define ICs and # of Runs

Nominal Trajectory Computations

Neighboring Trajectory Computations

Nominal Trajectory

Neighboring Trajectory

Figure 5.1: Flowchart for Taylor Series Gravity Monte Carlo

digits of accuracy in the final state point clouds; the overlapping points showing

different colors is simply an artifact of the graphics (a 3-D rotation in Matlab shows

that they overlap very well). Implementation on a compute cluster further increases

the efficiency of this method, as described in the next section. All Monte Carlo

trajectories may be implemented in parallel on the compute cluster, decreasing the

computation time.

Figure (5.10) shows the speedup achieved when using the local Taylor Series

gravity model vs. using spherical harmonic gravity for a one-orbit LEO case (in-

tegrating ECI coordinates with a “Cowell-like” integration of Cartesian coordinates

using MCPI). A study on a compute cluster using only the constant offset term of

104

Figure 5.2: Initial Position Point Cloud for Monte Carlo Simulation (LEO) Compar-
ing MEE Solutions with Cartesian Solutions, for 1000 Data Points [51]

the Taylor Series expansion, for intermediate MCPI iterations on each neighboring

trajectory, shows some speedup as well.

Note that the MEE propagation requires a transformation to position and velocity

at every Picard iteration in order to compute the acceleration, so computing the

Jacobian using Cartesian coordinates is a straightforward extension of the IVP code.

5.2.2 Compute Cluster

The simulation results presented in this section were executed on the Texas A&M

University’s Land, Air, and Space Robotics (LASR) Laboratory Space Situational

Awareness (SSA) Cluster. The LASR SSA Cluster is a 16 node compute cluster

dedicated to astrodynamics research. Each of the compute nodes has a pair of Intel

Xeon 2.6GHz CPUs and 64GB of RAM. In total the LASR SSA Cluster has 192 cores

105

Figure 5.3: Initial Velocity Point Cloud for Monte Carlo Simulation (LEO) Compar-
ing MEE Solutions with Cartesian Solutions, for 1000 Data Points [51]

and a theoretical maximum compute capacity of approximately 1.99 TeraFlops. A

Message Passing Inteface (MPI) is used for this configuration. The full specs are

given in Appendix E

This simulation takes advantage of existing MCPI optimization schemes such as

segmenting one orbit per segment, using radial adaptive gravity, and a version of

Taylor Series gravity that incorporates only the constant offset term [35, 38, 45].

However, this study currently computes the full gravity at least once for each tra-

jectory, rather than just for the nominal trajectory, while incorporating the Taylor

Series gravity for intermediate iterations. The speedup was only 50% due to var-

ious parallel computation overhead issues and also the high level of optimization

of the serial code. Future simulations could expand such that the same method is

106

Figure 5.4: Final Position Point Cloud for Monte Carlo Simulation (LEO) Comparing
MEE Solutions with Cartesian Solutions, for 1000 Data Points [51]

used as in the Matlab studies, to include the second term of the Taylor Series ex-

pansion (which includes the Jacobian term) and to use this method for computing

trajectories neighboring the nominal. One million MEO trajectories are used for

this simulation,
∗
where for the particular case displayed, the reference orbit initial

conditions are specified to be

r0
T = [−6365.554 2087.458 878.918] km (5.6)

v0
T = [−1.635 − 6.597762 3.5058499] km/s (5.7)

∗
Credit is due to fellow PhD students Austin Probe and Abhay Masher, who helped with the

setup of this simulation

107

Figure 5.5: Final Velocity Point Cloud for Monte Carlo Simulation (LEO) Comparing
MEE Solutions with Cartesian Solutions, for 1000 Data Points [51]

In principle, the nominal Taylor series can be used rather than recalculating the

trajectories on each Monte Carlo iteration. The current process was done to ensure

Taylor series errors were negligible and for programming convenience. Given that

the Monte Carlo precision does not provide more than 7 digit accuracy to obtain

valid statistics, it is evident that the nominal trajectory Taylor series will suffice in

most cases with a speedup by a factor of two or more.

The initial and final position of the set of Monte Carlo trajectories are shown in

Figure (5.11). The total computation time for the Cartesian case is 58,478 seconds,

while the total computation time for the MEE Case is 52,969 seconds. When taking

into account that the cluster utilizes 192 cores for each simulation, this gives a compu-

ation time of about 5.1 minutes for the Cartesian case and about 4.6 minutes for the

108

Figure 5.6: Initial Position Point Cloud for Monte Carlo Simulation (MEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points [51]

MEE case (only a 10% reduction in computation time). Thus, the speedup was not

dramatic in this implementation. However, the MEE formulation has several attrac-

tive properties that make them alternative conditions for various applications, such

as multi-revolution optimal low-thrust orbit transfers. Of significance, the Cartesian

MCPI code has been the subject of several years’ optimization; it is anticipated that

the MEE propagation can be further optimized and will likely improve the speeedup

in the process.

109

Figure 5.7: Initial Velocity Point Cloud for Monte Carlo Simulation (MEO) Com-
paring MEE Solutions with Cartesian Solutions, for 1000 Data Points [51]

Figure 5.8: Final Position Point Cloud for Monte Carlo Simulation (MEO) Compar-
ing MEE Solutions with Cartesian Solutions, for 1000 Data Points [51]

110

Figure 5.9: Final Velocity Point Cloud for Monte Carlo Simulation (MEO) Compar-
ing MEE Solutions with Cartesian Solutions, for 1000 Data Points [51]

10 15 20 25 30 35 40 45 50
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

S
pe

ed
up

Degree and Order Gravity

Timing Comparison Full Gravity vs. Taylor Series Gravity Monte Carlo

(MEE TS Monte Carlo) / (MEE Full Gravity Monte Carlo)

Figure 5.10: Timing Comparison Over 1 LEO Orbit Using Taylor Series Gravity vs.
Spherical Harmonic Gravity [51]

111

Figure 5.11: Monte Carlo Using One Million Trajectories in a MEO Orbit [51]

112

5.3 Chapter Summary

This chapter gives a Monte Carlo analysis using the set of Modified Equinoctial

Orbital Elements propagated by MCPI. A local Taylor Series gravity approximation

is used to reduce the number of full gravity computations required and to thereby re-

duce the computation time. This method is justified because the terminal iterations

are in the close neighborhood of the final converged solution. A low-fidelity gravity

and associated Jacobian is used to compute the Taylor series gravity. The Jacobian

formulation for the spherical harmonic, zonal, and two-body cases are given in Chap-

ter 4 with additional details in Appendix B. Because the acceleration is computed

in Cartesian coordinates for MEE IVP propagation, a transformation from MEEs to

Cartesian is required; the corresponding Jacobian may then be easily computed for

use in the Taylor Series expansion without any additional nonlinear transformations.

Results are given for LEO and MEO orbits in serial and also for a MEO orbit on a

compute cluster. The Taylor series model is shown to be more efficient for the MEE

propagation than for the ECI propagation in a serial environment, and the cluster

simulation shows a modest reduction in computation time for the MEE propagation

vs. the ECI propagation. Further optimization to the MEE propagation in a parallel

environment, as well as the inclusion of the second Taylor Series term requiring the

Jacobian, will likely show an additional decrease in computation time.

113

6. METHOD OF PARTICULAR SOLUTIONS

This chapter describes a shooting method that avoids computation or approx-

imation of the state transition matrix, which requires the tedious task of finding

explicit partial derivatives. This Method of Particular Solutions (MPS) may be used

to solve problems such as Lambert’s Two-Point Boundary Value Problem or for

steering angles using a direct optimal control method, as described in Chapter 7.

MPS is a general solver, and perturbations such as spherical harmonic gravity may

be considered. This method was developed by Miele and Iyer [41, 42].

This method will be described using Lambert’s problem in Cartesian coordinates

(which are easier to visualize than the set of MEEs). Lambert’s problem is the two-

point boundary value problem of the two-body problem in celestial mechanics. The

initial and final positions are specified, while the initial velocity is iteratively solved

until the target error (or miss distance) is sufficiently small. Lambert’s problem is

sensitive to the guess for the intial velocity, but a good initial guess may be generated

using the p-Iteration method.

For more information about the Method of Particular Solutions for the perturbed

Lambert problem using MCPI, see [65, 66, 67]. The Cartesian results presented in

these publications are not included here since the focus of this dissertation is the

set of Modified Equinoctial Orbital Elements, but an overview will be given with

Cartesian coordinates for visualization purposes.

6.1 p-Iteration

For the two-impulse Lambert problem, a good initial guess for the ∆v may be

generated using p-Iteration for a two-body gravity field [54]. This method does not

allow perturbations to be included, but is sufficiently close to the perturbed solution

114

to allow Lambert’s problem to be solved using a shooting method or a shooting

method such as MPS as described later in this chapter. It is important to note that

p-Iteration encounters a singularity for ∆f = 180◦ scenarios.

The initial and final position vectors are specified as r1 and r2, as well as the

desired flight time ∆t. From these position vectors, the true anomaly difference

∆ν is computed, as well as the chord length c = r2 − r1. The initial velocity ṙ1

that allows the spacecraft to arrive at the target state r2 after a flight time of ∆t

must be computed. For a regular shooting method, an initial velocity guess would

be provided, the orbit would be propagated for the desired flight time ∆t, and the

target error (miss distance) would be determined. Then, the initial velocity guess

would be updated, and the numerical iteration would be repeated until convergence.

p-Iteration, however, always determines a trajectory that will reach the target state;

the flight time must also be evaluated to provide an iterative correction to the p

guess until the desired flight time is achieved. According to Lambert’s Theorem, for

specified r1, r2, and
(
t2 − t1 <

2πa
3
2√
µ

)
, the orbit is unique unless |r1 × r2| → 0, in

which case the plane is undefined.

The initial departure velocity is expressed in terms of r1, r2, r1, r2,∆f , and p using

the following expression [54]:

ṙ1 =

√
µp

r1r2 sin∆f

[
c+

r2
p
(1− cos∆f)r1

]
, c = r2 − r1 (6.1)

The only unknown in this equation is p, the semilatus rectum; thus, the problem

becomes that of a one-dimensional search across a single parameter that must be

numerically determined to yield the correct time of flight.

First, a value is guessed for the initial velocity. Not all values of p will yield real

elliptic trajectories that connect the initial and final position vectors. For instance,

115

any guess that gives less than a critical speed will not allow the spacecraft to reach

its target. To provide a realistic guess for the initial value of p, first consider the

minimum-energy orbit that connects the two points r1 and r2. These orbits are

possible only if

a > am =
r1 + r2 + c

4
, c = |r2 − r1| (6.2)

Once a value for the minimum a is determined, this value is mapped into the

corresponding value of p that leads to a feasible orbit using Eq. (6.25), which will

soon be discussed. Now that an initial guess for p is specified, the corresponding

flight time from this guess may be determined. Given the position vectors r1 and r2,

the radii ri are

ri =
√
ri · ri (6.3)

Then, solve for the true anomaly change between the departure and arrival states:

∆f = cos−1 r1 · r2
r1r2

(6.4)

Note that the above equation is for a short transfer (∆f < 180◦), and if the

transfer is longer than this the following equation is instead applied:

∆f = 2π − cos−1 r1 · r2
r1r2

(6.5)

Each (p,∆f) provides a feasible solution but with different ∆v orbit corrections.

Given this (p,∆f), the analytical F and G solution to the two-body problem may

be used to determine the required F , G, and Ḟ values to solve for the semimajor

axis. The analytical equations used are

116

F = 1− r2
p
(1− cos∆f) (6.6)

Ḟ =

√
µ

p
tan

∆f

2

(
1− cos∆f

p
− 1

r1
− 1

r2

)
(6.7)

G =
r1r2
h

sin∆f =
r1r2√
µp

sin∆f (6.8)

Ġ = 1− r1
p
(1− cos∆f) (6.9)

These expressions may be written in terms of the corresponding change in eccen-

tric anomaly ∆E:

F = 1− a

r1
(1− cos∆E) (6.10)

Ḟ = −
√
µa

r1r2
sin∆E (6.11)

G = (t− t0) +

√
a3

µ
(sin∆E −∆E) (6.12)

Ġ = 1− a

r2
(1− cos∆E) (6.13)

At this point, seven variables are being considered: r1, r2,∆f , and t are known

in the three equations 6.11 - 6.13; p, a, and ∆E are unknown. Using the orbit energy

equation, a closed-form relationship is found between a and the two orbit position

vectors (where v1 = ṙ1):

117

v21
2

− µ

r1
= − µ

2a
(6.14)

Now, set the expressions for Ḟ equal to each other, i.e., Eq. (6.7) = Eq. (6.11).

First, use the identity

tan
∆f

2
=

1− cos∆f

sin∆f
(6.15)

Then equate the two Ḟ expressions to obtain

1− cos∆f
√
p sin∆f

(
1− cos∆f

p
− 1

r1
− 1

r2

)
= −

√
a sin∆E

r1r2
(6.16)

Next, from setting the expressions for F equal to each other, i.e., Eq. (6.10) =

Eq. (6.6),

1− r2
p
(1− cos∆f) = 1− a

r1
(1− cos∆E) (6.17)

a can be solved for:

a =
r1r2
p

1− cos∆f

1− cos∆E
(6.18)

Substituting this expression for a into Eq. (6.16) yields

1− cos∆f
√
p sin∆f

(
1− cos∆f

p
− 1

r1
− 1

r2

)
= −

√
r1r2(1− cos∆f)

p(1− cos∆E)

sin∆E

r1r2
(6.19)

After cancelling common factors and solving for the semilatus rectum, an elegant

expression is derived for p:

118

p =
r1r2(1− cos∆f)

r1 + r2 − 2
√
r1r2 cos

∆f
2
cos ∆E

2

(6.20)

Next, define these three constants in terms of the known quantities (r1, r2,∆f):

k = r1r2(1− cos∆f) (6.21)

l = r1 + r2 (6.22)

m = r1r2(1 + cos∆f) (6.23)

Using these definitions, a may be written compactly as (see [54] for derivation)

a(p) =
mkp

(2m− l2)p2 + 2klp− k2
(6.24)

Notice that (k, l,m) of Eqs. (6.21) - (6.23) are all functions of known constants,

and therefore Eq. (6.24) gives a(p). Mathematically, the singularity at ∆f = 180◦

occurs when m = 1 and therefore a(p) = 0. The inverse mapping of Eq. (6.24) is

needed to initiate the p-Iteration algorithm; it is only used to determine the initial

guess of p [54]:

p(a) =
2akl − km+ k

√
m(8a2 − 4al +m)

2(al2 − 2am)
(6.25)

Now that the values for a and p are consistent, the eccentric anomaly change may

be computed that in turn gives an expression for the time of flight. Let

119

B = tan−1 r0 tan
∆f
2√

ap− σ0
√
a tan ∆f

2

(6.26)

Then, if:


0 ≤ ∆f < π then ∆E = 2B

else ∆E = 2(π −B)

(6.27)

Note that the quadrants of ∆f
2

and ∆E
2

are always the same. The time of flight

is next found that corresponds to the current guess for p. Solving the following

equation (G from the analytical two-body solution) for the flight time

G = (t− t0) +

√
a3

µ
(sin∆E −∆E) (6.28)

results in the expression

∆t = ∆t(p) = G+

√
a3

µ
(∆E − sin∆E) (6.29)

Typically, this computed time of flight, based on the current p, is not equal to

the desired time, so the value of p must be iteratively updated to find the desired

time of flight. To establish a Newton root solving algorithm for p, define a function

g(p) = ∆t(p)−∆tdesired (6.30)

When a feasible p is found, then g(p) = 0. Since no closed-form solution exists to

this problem, the updated p value is solved numerically. Newton’s method is chosen

for this iteration, which requires the derivative dg
dp

that can be approximated using

the secant method:

120

dg

dp
=
g − gold
p− pold

; (6.31)

so that the p values is udpated using

pnew = p− g
dg
dp

; (6.32)

The flight time is solved for iteratively from Eq. 6.29 to see if g(p) is sufficiently

small, and the process is repeated until convergence. For short (less than one rev-

olution) transfers, this algorithm has been found to typically converge in 3 to 5

iterations. The converged initial velocity is then used as an input guess to the MPS

method, which can accommodate perturbations and is described in the next section.

For long, multi-revolution orbit transfers, the story is complicated because mul-

tiple roots for p exist. Starting estimates for p-roots can be found by plotting Eq.

6.30 with dense p values to find all zero crossings. The approximate p value near

each zero crossing is the starting estimate.

6.2 Method of Particular Solutions

The Method of Particular Solutions (MPS) is a shooting method that is used

to solve Two-Point Boundary Value Problems. Though it is a general solver, if the

perturbed Lambert’s problem is considered, a good initial guess may be found using

the p-Iteration method as described in the previous section.

The method of particular solutions makes use of a reference trajectory, and all

neighboring solutions can be re-formulated exactly in terms of a departure motion.

Refer to Figure (6.1) for the following development. This shooting method is some-

what analogous to Newton’s method, but without requiring partial derivatives (i.e.,

from computing a state transition matrix). For a general gravity, drag, and force

121

Figure 6.1: Overview of the Method of Particular Solutions Method

model, and for a non-affine control u,

r̈ = g(t, r, ṙ,u) (6.33)

The method of particular solutions makes use of a reference trajectory rref (t),

ṙref (t), r̈ref (t), and all neighboring solutions can be reformulated exactly in terms of

a departure motion ∆r(t) as

r(t) = rref (t) + ∆r, ṙ(t) = ṙref (t) + ∆ṙ, r̈(t) = r̈ref (t) + ∆r̈ (6.34)

Using these relationships, Equation (6.33) may now be written in terms of the

exact departure motion:

122

r̈ = g
(
t, rref (t) + ∆r(t), ṙref (t) + ∆ṙ(t), r̈ref (t) + ∆r̈(t),u(t)

)
(6.35)

Consider three trajectories neighboring the reference trajectory, where the initial

velocity is varied by small linearly independent perturbations. The neighboring initial

velocities are then

ṙj(t0) = ṙref (t0) + ∆ṙj(t0); j = 1, 2, 3 (6.36)

The exact departure motions (particular solutions) are then given by

∆rj(t) = rj(t)− rref (t) (6.37)

Since independent velocity initial conditions were used, these trajectories are

assumed to span the space of interest and all neighboring trajectories of interest that

also approximately satisfy the linear departure motion dynamics.

The linear combination of particular solutions of a linear differential equation

satisfies the differential equation as well, and with appropriate choice of (α1, α2, α3),

any general solutions (for example, with initial position fixed, all three velocity com-

ponents are available for variation) can be written as a linear combination of the

three (in general n) departure motions in the form:

∆r(t) ≈
3∑

j=1

αj∆rj(t) (6.38)

and the time-dependent position may be approximated as

r(t) ≈ rref (t) +
3∑

j=1

αj∆rj(t) (6.39)

123

Evaluating Equation (6.39) at the final time and imposing the desired result that

r(tf) = rf , leads to the solution for the coefficients of linear combination


α1

α2

α3

 ≈ [∆r1(tf) ∆r2(tf) ∆r3(tf)]
−1[rf − rref (tf)] (6.40)

Taking the time derivative of Equation (6.39) and imposing the desired result

that r(tf) = rf , leads to a new estimate for the initial velocity to be calculated:

ṙnew(t0) = ṙref (t0) +
3∑

j=1

αj∆ṙj(t0) (6.41)

The values of the αj’s are improved using Eq. (6.40) iteratively, where each of

the particular solutions may be computed simultaneously using parallel processing

if desired.

6.3 Chapter Summary

This chapter describes a shooting method that may be used to solve boundary

value problems. For Lambert’s problem, the p-iteration method may be used to get

an initial guess for the ∆v required to reach a target state. Though p-iteration doesn’t

allow perturbations to be considered, the initial guess it provides is almost always

close enough to the desired value for the Method of Particular Solutions to converge.

Also, in almost all cases, the Keplerian Lambert solution for the multi-revolution

cases are found to approximate the multiple perturbed orbit transfer solutions suffi-

ciently well to start the MPS iteration and converge in 3 or 4 iterations. MPS uses

three particular solutions to update the transfer trajectory guess for this generally

perturbed boundary value problem. The MPS method described in this chapter is

expanded for the suboptimal and optimal control described in the next two sections.

124

7. SUBOPTIMAL CONTROL USING STEERING ANGLES

A minimum-time, low-thrust orbit transfer is sought that takes multiple revolu-

tions to reach a target state. Since the optimal control formulation discussed in the

next chapter is very sensitive to estimates of the initial costate variables, a nonlinear

programming problem (NLP) is first solved to provide a suboptimal solution prior to

implementing the full state/co-state equations. The NLP formulation is based on a

control parameterization and corresponding trajectory approximation that assumes

a flight control parameterization structure in advance. A minimum-correction-norm,

gradient-based search method is chosen to solve this NLP (gradient-based adjust-

ment of the control parameters to satisfy the constraints and find a feasible solution

with near optimal performance).

Although using a direct approach is not guaranteeed to give the optimal solu-

tion, it is often accurate enough for practical applications. For instance, Bahls and

Paris [3] used a direct approach with trajectory segmentation to develop the Gravity

Assisted Low Thrust Optimization Program (GALTOP). In this software tool, indi-

vidual thrust arcs are computed using Chebyshev collocation and these curves are

patched together to give the suboptimal trajectory approximation. In their work,

this direct method produced relatively accurate results with a speedup of 30% when

compared with other then-state-of-the-art direct method optimizers such as the He-

liocentric Interplanetary Low Thrust Optimization Program (HILTOP). For this

research, a NLP approach is adopted both for the possibility to be used in missions

and for those cases for which rigorous satisfaction of the Pontryagin optimal control

necessary conditions is ultimately sought (these suboptimal trajectories can be used

as a starting iterative).

125

7.1 Problem Statement

Given the equations of motion (see Chapter 8 for further details).

de

dt
= M

T

m
u+D (7.1)

Here, M = M(e) is a 6x3 matrix that represents the thrust influence coefficient

matrix given by Gao and Kluever [23], T = (gṁ)Isp is the thrust magnitude, and

m = m(t) = m0 − m(t − t0) is the spacecraft mass. The time rate of change of e

when perturbing forces are not present is D= [0 0 0 0 0
√
µp
(
w
p

)2
]T , where

w = p
r
= 1 + fcos(L) + gsin(L). If ṁ is small, the final solution can be started by

using a constant T
m

solution. Consider a suboptimal control using steering angles

pitch (α) and yaw (δ):

u = −
[
cos δ(t) cosα(t) cos δ(t) sinα(t) sin δ(t)

]T
(7.2)

Note that the pitch angle is frequently a slowly varying function, except near

switches. For many cases, it is useful computationally to assume that variations

in α(t) are locally approximated such that ∆α ≈ linear function of variations in

α(t), δ(t). However, variations in α(t), δ(t) are not generally small.

Instead, Chebyshev polynomials are chosen as the basis functions for the param-

eterization; see Chapter 2, Section 2.3 and Appendix A for more details:

α(t) = α0 + α1T1(t) + α2T2(t) + · · ·+ αnTn(t) (7.3)

δ(t) = δ0 + δ1T1(t) + δ2T2(t) + · · ·+ δnTn(t) (7.4)

126

Therefore, the steering angles can be represented compactly as series of polynomials:

α(t) =

l1∑
k=0

αkTk(τ) (7.5)

δ(t) =

l2∑
k=0

δkTk(τ) (7.6)

The αk, δk coefficients can be taken as unknowns for an open loop trajectory via

NLP. Assuming l1 = l2 = n, group the unknown parameters in a vector (this method

does not require l1 = l2):

P =
[
α0 α1 α2 . . . αn | δ0 δ1 δ2 . . . δn

]T
(7.7)

This algorithm may be solved using an extension of the Method of Particular

Solution to establish a NLP algorithm, which is a shooting method discussed in

Chapter 6, to iteratively update the parameter vector. Note that, if necessary, n

can be restricted to a small number in order to get the macroscopic shape of the

control correct and to increase dimensionality. This suboptimal control solution may

be approximated as a minimum time problem by slowly decreasing the flight time

until the shortest time over which the NLP converges, to heuristically give the best

possible minimum time solution by this NLP algorithm.

7.2 Suboptimal Control Simulation Results

In order to generate a feasible trajectory reachable with a multi-rev, low-thrust

MEE formulation, several steps are taken.

First, the IVP is used to generate a reachable trajectory over several orbits using

specified initial conditions and control vector. Next, in order to find a guess for the

flight time, the IVP is used again to propagate the ICs without using any knowledge

127

of the previously generated trajectory, to simulate a real-world application. When

the value of the semilatus rectum, p, exceeds the targeted value of p (or alternatively,

a may be used where atarget =
p

1−e2
where e is found from the prescribed MEEs), the

corresponding flight time is increased to establish a conservative flight time starting

guess (i.e., multiply this value by 1.5). This heuristic control simply reaches a target

semimajor axis without satisfying the remaining constraints. ”Gravity turn” control

may be used as the first estimate of the thrust along the velocity vector. Specifically,

if adesired > ainitial, the thrust should be ad = + T
m

ṙ
|ṙ| and if adesired < ainitial then

ad = − T
m

ṙ
|ṙ| . This is because a thrust along the velocity vector will increase the

semimajor axis, while a thrust opposite to the velocity vector will deacrease the

semimajor axis as seen in the da
dt

Gauss’ Variational Equation [54]

da

dt
=

2a2

h

(
e sin νar +

p

r
aθ

)
(7.8)

where a is the semimajor axis, h is the magnitude of the angular momentum vector,

e is the eccentricity, ν is the true anomaly, p is the semilatus rectum, r is the radius,

ar is the acceleration component in the radial direction, and aθ is the acceleration

component in the orthogonal direction.

The steering angles are represented using an arbitrary number of coefficients in

the polynomial series as given earlier in this chapter. The Method of Particular

Solutions (MPS) as described in Chapter 6 is used to compute the miss distance

of the final MEE state relative to the target state, and to accordingly update the

steering angle coefficients until convergence is achieved.

128

7.3 Simulation Results

7.3.1 Example 1

The initial conditions for a Low-Earth Orbit (LEO) case are represented in Clas-

sical Orbital Elements (COEs) and converted to MEEs, since the COEs are easier

to visualize. The BCs for the following plots are given in Tables 7.1 and 7.2 using

Cartesian coordinates, which are converted to canonical units for integration (see

Appendix D for more details).

Table 7.1: Example 1 LEO Trajectory Initial Conditions

a0 e0 i0 Ω0 ω0 M0

8000km 0.1 5◦ 0 0 0

Table 7.2: Example 1 LEO Trajectory Target State

af ef if Ωf ωf Mf

8200km 0.1 5.3◦ 0 0 0

where ν is used in this discussion to denote the true anomaly because f is used for

one of the MEE elements. Figure 7.1 shows that about 2.5 orbits are needed to reach

the desired final state. Also, a spherical harmonic gravity of degree and order 10 is

included in addition to the thrust.

Figure 7.2 shows how efficiently MPS converges. Over 10 orders of magnitude

reduction in final constraint residual norm is achieved in 5 iterations. Figure 7.3

shows the three thrust vector components (in the instantaneous radial, normal, and

129

-1.5 -1 -0.5 0 0.5 1 1.5
X (Re)

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 (

R
e)

MPS Solution: Canonical Units

Earth
Departure State
Arrival State
Transfer Traj

Figure 7.1: Trajectory Solution Using Suboptimal Control Formulation with MEEs
and MCPI for Example 1

transverse directions). Figure 7.4 shows the corresponding steering angles of Eqs.

(7.3) and (7.4) with n = 10 so that 20 total parameters are solved for. Note an α(t) of

90◦ would correspond to thrusting along the velocity vector, while δ(t) of zero would

correspond to the thrust vector lying in the osculating orbit plane. Quantitatively,

the orbit transfer increases the orbit semimajor axis from 8000km to 8200km, while

increasing the inclination by 0.3◦ and the eccentricity from 0.1 to 0.11. Takeoff occurs

at perigee. The orbit transfer is depicted in 2D Figure 7.5.

7.3.2 Example 2

The COEs are used again to prescribe a second LEO example. The departure

and target elements for this case are given in Tables 7.3 and 7.4. Again, takeoff

occurs at perigee.

130

1 2 3 4 5 6

MPS iterations

10-20

10-15

10-10

10-5

100

E
rr

or

MPS Convergence

Figure 7.2: MPS Convergence as a Function of MCPI Iterations Using Suboptimal
Control Formulation with MEEs and MCPI for Example 1

0 0.5 1 1.5 2 2.5

Time (periods)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

MPS Control u(1)
MPS Control u(2)
MPS Control u(3)

Figure 7.3: Control Vector Using Suboptimal Control Formulation with MEEs and
MCPI for Example 1

The result of this simulation is shown in Figures 7.5 - 7.9. The orbit transfer is

depicted in 2D and 3D in Figures 7.5 and 7.6. Once again, MPS converges rapidly

(Figure 7.7) and this time, the suboptimal controls oscillate more than for Example

131

0 0.5 1 1.5 2 2.5
-20

0

20

40

60

al
ph

a

0 0.5 1 1.5 2 2.5

Time (periods)

-40

-20

0

20

40

de
lta

Figure 7.4: Steering Angles Using Suboptimal Control Formulation with MEEs and
MCPI for Example 1

Table 7.3: Example 2 LEO Trajectory Initial Conditions

a0 e0 i0 Ω0 ω0 M0

8000km 0.1 0 0 0 0

Table 7.4: Example 2 LEO Trajectory Target State

af ef if Ωf ωf Mf

8500km 0.11 0.2◦ 0 0 0

1, as is evident in Figures 7.8 and 7.9, but this is somewhat deceptive. Note in Figure

7.1 that this maneuver is over 2.5 orbits, whereas Example 2 in Figure 7.5 is over

almost 5 orbits. However, the larger change in inclination of Example 2 requires a

more complicated transer orbit with more out-of-plane thrusting, as is clear in Figure

7.6.

132

-1 0 1
X (Re)

-1

-0.5

0

0.5

1

Y
 (

R
e)

MPS Solution: Canonical Units

Earth
Departure State
Arrival State
Transfer Traj

Figure 7.5: 2-D Projection of Trajectory Solution Using Suboptimal Control Formu-
lation with MEEs and MCPI for Example 2

1

Y (Re)

0

MPS Solution: Canonical Units

-1

-2

X (Re)

0

#10-3

Z
 (

R
e) 2

4

-1 -0.5 0 0.5 1

Earth
Departure State
Arrival State
Transfer Traj

Figure 7.6: Trajectory Solution Using Suboptimal Control Formulation with MEEs
and MCPI for Example 2

133

1 2 3 4 5 6 7

MPS iterations

10-20

10-15

10-10

10-5

100

E
rr

or

MPS Convergence

Figure 7.7: MPS Convergence as a Function of MCPI Iterations Using Suboptimal
Control Formulation with MEEs and MCPI for Example 2

0 1 2 3 4 5

Time (periods)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

MPS Control u(1)
MPS Control u(2)
MPS Control u(3)

Figure 7.8: Control Vector Using Suboptimal Control Formulation with MEEs and
MCPI for Example 2

134

0 1 2 3 4 5
-50

0

50

100

al
ph

a

0 1 2 3 4 5

Time (periods)

-40

-20

0

20

40

de
lta

Figure 7.9: Steering Angles Using Suboptimal Control Formulation with MEEs and
MCPI for Example 2

7.4 Chapter Summary

This chapter discusses a suboptimal control formulation that uses MCPI to prop-

agate the MEEs and reach a desired target using a low-thrust control and MPS.

By finding the desired flight time and steering angles necessary, and reducing the

flight time gradually until the solution does not converge, an approximation of the

minimum-time optimal control is found that may be used as the initial guess for the

optimal control formulation given in Chapter 8. The challenge of the optimal control

problem is finding appropriate guesses for the initial costates.

The results given above show that the minimum norm adjustment leads quickly to

feasible solutions. In both cases, the assigned final time can be reduced until MPS can

no longer isolate the final boundary conditions, indicating at least local infeasibility.

This final convergence is accepted as the suboptimal (near minimum time) continuous

transfer to indicate an indirect optimal approach with a good starting estimate.

135

8. LOW-THRUST OPTIMAL CONTROL

Low-thrust optimal control problems are often more challenging to solve than

high-thrust systems, partly because low-thrust propulsion operates over larger times

for a large portion of the mission duration rather than isolated events. Obviously,

small local control variations over short time intervals have small effects on the fi-

nal state, so there is an inherent low sensitivity that can manifest itself as a poorly

conditioned state/costate system of differential equations. Therefore, the control

variables, if modeled as continuous functions and continuous optimization leads to a

function-space optimal control problem (an indirect method, solved using variational

calculus), which is frequently difficult to solve [30]. Of course, heuristic parameteri-

zations may be introduced to discretize the unknown control to a finite dimensional

approximation (direct method), such as in Chapter 7. In fact, this is frequently the

first step in the current state of practice and is the approach pursued here.

The first step in pursuing the indirect (calculus of variations) approach is to estab-

lish the optimal control necessary conditions for the problem at hand. The present

work presents an indirect method to solve an optimal continuous thrust problem

using a set of Modified Equinoctial Orbital Elements (MEE) in place of Cartesian

coordinates, which has shown to have convergent Picard iterations over a much larger

number of orbits using MCPI. As shown in Chapter 3, the IVP MCPI convergence

domain is increased from around 3 orbits to 17 orbits, for the full spherical harmonic

(40x40) gravity model case.

Since the optimal control formulation is known to be very sensitive to the a

priori unknown initial costate conditions, first a heuristic control approximation is

introduced to solve a nonlinear programming problem (NLP) that provides a sub-

136

optimal solution prior to implementing the full state/co-state equations. As noted

by Gao and Kluever [23], using a NLP allows a solution that assumes a flight control

parameterization in advance. However, a judicious parameterization can be used

that allows adaptive refinement of the control parameter model. This formulation is

given in Chapter 7.

8.1 Problem Statement

The flight time of the maneuver is to be minimized, and the final time is specified

to be free. In this way, tf may be regarded as a control parameter to be chosen in

addition to the control functions to minimize the performance index and satisfy the

constraints. The cost function then is simply

J =

∫ tf

t0

1dt = tf − t0 (8.1)

The equations of motion under disturbing forces may be written generally as

de

dt
= B(P+G) +D (8.2)

where e = [p f g h k L]T is the MEE set introduced in Chapter 3, B = B(e) is the co-

efficient matrix acting on non-two-body accelerations for the Varation of Parameters

(for the MEE case) given above, G = G(e) is the gravitational acceleration, and P

is the thrust acceleration. These accelerations are expressed with components in the

radial, transverse, and orbit normal in the rotating frame. The time rate of change of

e when perturbing forces are not present is D= [0 0 0 0 0
√
µp
(
w
p

)2
]T , where

w = p
r
= 1 + fcos(L) + gsin(L). When considering the low-thrust only case (with

relative gravity perturbations), this equation may be written specifically as

137

de

dt
= M

T

m
u+D (8.3)

Here, M = M(e) is a 6x3 matrix that represents the thrust influence coefficient

matrix (given by Gao and Kluever [23]), T is the thrust magnitude, and m = m(t) =

m0−m(t−t0) is the spacecraft mass. For the present discussion, the mass is assumed

to be constant so its corresponding costate equation is not included. The direction

unit vector associated with the thrust may be expressed in terms of the local pitch

and yaw steering angles. The yaw angle δ is measured about the radial unit vector

from the orbit plane to the plane containing the thrust vector, as shown in Figure

(8.1).

T

ih

i

ir

r

Figure 8.1: Thrust Vector for Low-Thrust Optimal Control

T = T [cosδ cosα îr cosδ sinα îθ sinδ îh]
T (8.4)

138

The thrust magnitude is modeled as

T = 2ηP/c (8.5)

where P is the input power, η is the thruster efficiency, and c = gIsp is the engine

exhaust velocity. For the present study, constant values are used for P, Isp, η.

The Hamiltonian is then formed as

H = 1 + λT

[
M
T

m
u+D

]
(8.6)

Here, λ = [λp λf λg λh λk λL] is the costate vector associated with the MEEs.

To obtain the optimal thrust direction, thrust direction unit vector u(t) must be

obtained to minimize H according to Pontryagin’s Principle and enforce the con-

straint that the admissible set of ui’s must be a smooth vector function that satisfies

uTu = 1. An admissible u(t) is sought to make the term [λTM]u(t) as small as

possible. This term of the Hamiltonian may be rewritten as

T

m

[
λTM

]

u1

u2

u3

 =
T

m

[
m1 m2 m3

]

u1

u2

u3

 =
T

m
mTu (8.7)

where m ≡ MTλ, m̂ = m
|m| .

Based on Pontryagin’s Principle, the optimal control vector u(t) will then be

in the opposite direction of the m vector to minimize H with respect to u. Al-

though each ui component may change signs, the unit vector itself will move in

three-dimensional space with a continuous motion (MCPI is well-suited to smooth

functions). The optimal constrained thrust vector is then written as

139

u∗ = − [λTM]T

||λ̂TM||
= − [MTλ]√

λTMMTλ
= −m̂ (8.8)

As shown in [26], the λ’s do not have a unit magnitude, and the initial λ’s can

be scaled such that
[
λMMTλ

]
t0

= 1, to make the initial magnitude unique. So,

λTM is expected to be of order 1; thereafter, λTM will vary, of course. This ad

hoc scaling has consequences, however, because as noted below, the free final time

boundary condition leads to a generally inconsistent scaling. The costate equations

are obtained by taking the partial derivative of the Hamiltonian with respect to the

states:

λ̇ = −∂H
∂e

= −

(
λT
∂M

∂e

T

m
u+ λT

∂D

∂e

)
(8.9)

The partial derivatives of matrices M and D with respect to the states are given

in the Appendix of Gao and Kluever [23].

For a continuous, nonlinear optimal control problem, the transversality condition

is given as [33]

(ϕx + ψT
x − λ)T

∣∣∣
T
de(T) + (ϕt + ψT

t ν +H)
∣∣∣
T
dT = 0 (8.10)

If the final state is considered to be fixed with respect to the final (free) time,

then de(T) = 0 and only the second part of the transversality condition equation

above must be addressed:

(ϕt + ψT
t ν +H)

∣∣∣
T
dT = 0 (8.11)

Here ϕ = 0, and since the final state is fixed, the final state e(T) is required to

lie on a target set, p(T), such that the following six conditions are met:

140

ψ(T) = e(T)− p(T) = 0 (8.12)

Since ϕt = 0 and ψT = 0, from Eq. (8.11) the Hamiltonian should vanish at the

optimal final time:

H(T) = 0 (8.13)

Notice from Eq. (8.6), that the condition (??) implicitly imposed a scale factor

on λ(tf). If an initial scaling is adopted for λ(t0), the 1 in Eq. (8.6) may need to be

replaced by some other constant consistent with the λ(t0) scaling [26].

This optimal control problem cannot immediately be solved by implementing

Modified Chebyshev Picard Iteration (MCPI) because the

[
λTMMTλ

]
term causes

the boundary conditions to be a nonlinear function of the Chebyshev coefficients.

However, in the end game, following a warm start the term

[
λTMMTλ

] 1
2

can be

considered an approximately known function of time from the immediately preceed-

ing function. Thus, only the numerator of Eq. (8.8) is expanded as a Chebyshev

series on each iteration, so that costate boundary conditions can be imposed on

the costate Chebyshev coefficients. The denominator function

[
λTMMTλ

] 1
2

can be

updated after the fact and again approximately considered known on each MCPI

iteration.

The time t may be written in terms of a new time variable τ as

t =
tf − t0

2
τ +

tf + t0
2

(8.14)

Then, taking the partial derivative with respect to τ gives

141

dt

dτ
=
tf − t0

2
, −1 ≤ τ ≤ 1 (8.15)

Therefore,

d(·)
dτ

=
d(·)
dt

dt

dτ
=

(
tf − t0

2

)
d(·)
dt

(8.16)

Define ϕ as an unknown constant of final time and let

Jf = xn+1 = tf = ϕ (8.17)

then introduce the additional constraint

λn+1(tf) =
∂ϕ

∂xn+1

=
∂xn+1

∂xn+1

= 1 (8.18)

All other λi(tf) are unknown. This formulation has the effect of mapping the (tf−t0)

interval, with tf unknown, onto a fixed τ interval (−1 ≤ τ ≤ 1) while introducing

the free final time as the optimization variable; also, consider tf an nth state variable

with an associated costate final boundary condition. For the final-time free case

using MCPI, Equation (8.18) is the replacement constraint that indicates a solution

has been found corresponding to the final time.

This method requires the use of the standardized MCPI method, as described in

Section 2.5.1, to solve the equations in a cascade fashion. Trying to implement this

algorithm using the traditional MCPI method, for instance as given in several PhD

dissertations [5, 36, 68] leads to a long, tedious derivation that inevitably requires

the use of a symbolic toolbox such as Mathemtica or Maxima. In contrast, the stan-

dardized method allows for a more straightforward method of implementing MCPI

with one caveat that the nonlinear λ term is “lagged” one Picard iteration, since its

142

inclusion makes the problem have a non-standard form. A formal convergence proof

is not yet available; however, “encouraging numerical results” are expected.

143

9. CONCLUSION

The work presented in this dissertation may be used for SSA such as efficient

orbital debris propagation and planning corresponding mitigation strategies through

identification of potential conjunctions. Real-time tracking efforts continually be-

come computationally burdensome as the number of trackable objects increases,

leading to an increased need for efficient computational methods such as parallel

processing. The integration method used for this dissertation, MCPI, is inherently,

massively parallelizable, therefore addressing this need. One particular area of in-

terest within SSA is optimized orbit transfer maneuvers to reach or de-orbit orbital

debris, where long transfer time is a feasible option to reduce the propellant cost

and increase the specific impulse. To address this need, a low-thrust orbit transfer

is considered to allow for multi-revolution solutions. Both low-thrust propulsion and

parallel processing are becoming more practical as technology continues to develop

in these areas.

MCPI is a novel integration technique that has proven to be an efficient and robust

algorithm, when compared with other state-of-the-practice numerical integrators. It

is an iterative, path approximation method for solving smoothly nonlinear systems

of ordinary differential equations comprised of two concepts: Picard iteration and

Chebyshev polynomials. Picard iteration requires integration of the acceleration

along a previous orbit approximation, while Chebyshev polynomials are used to

approximate the current trajectory estimate. During every Picard iteration, the

coefficients for a Chebyshev polynomial series for the orbit coordinates are updated

to give the new state estimate that satisfies all boundary conditions. The entire

trajectory along a segment is approximated at sample nodes by computing the forcing

144

function from the current state estimate, in contrast with traditional step-by-step

methods. MCPI uses the CGL nodes to ensure discrete orthogonality conditions for

the Chebyshev polynomials’ extrema are satisfied, high accuracy is achieved, and the

Runge effect that is often seen in function approximation is reduced.

Perturbed orbit propagation of the set of slowly varying MEEs with MCPI leads

to a greatly increased domain of convergence (over the more commonly used Carte-

sian coordinate solution), a reduction in the number of MCPI iterations, and a

reduction in the number of full spherical harmonic gravity function calls. Optimiz-

ing the MEE propagation through a segmentation scheme decreases the number of

nodes and gravity function calls, at the cost of adding a few more MCPI iterations,

to reduce the overall computation time. The computational results show that MCPI

propagation using MEE coordinates provides significant computational advantages

that will affect many dimensions of astrodynamics.

A Monte Carlo analysis provides statistical information, which utilizes the MCPI

MEE propagation. The STM is also used in this algorithm to compute a local Taylor

Series gravity approximation, thereby allowing for a full spherical harmonic gravity

computation only for the nominal trajectory; all neighboring trajectories are com-

puted using this gravity approximation. Serial and parallel results show a reduction

in computation time when using the MEEs, compared with Cartesian propagation

for the same Monte Carlo algorithm. The STM derivation addresses a gap in the lit-

erature to allow for user-specified spherical harmonic gravity perturbations to be in-

cluded. Because the acceleration is computed in Cartesian coordinates for MEE IVP

propagation, a transformation from MEEs to Cartesian is required; the correspond-

ing Jacobian may then be easily computed for use in the Taylor Series expansion

without any additional nonlinear transformations.

A low-thrust formulation using steering angles gives a suboptimal control that

145

allows a spacecraft to reach a target state after a multi-revolution transfer. Although

using a direct approach is not guaranteeed to give the optimal solution, it is often

accurate enough to be used in practice. This nonlinear programming approach is

adopted both for the possibility to be used in missions and for those cases where

rigorous satisfaction of the Pontryagin optimal control necessary conditions is ul-

timately sought in future work. The suboptimal control algorithm represents the

steering angles using Chebyshev polynomials and incorporates the MPS shooting

method to achieve its solution. The result obtained from this solution is intended to

be used in future work to solve the full state/costate optimal control problem, where

the initial guess for the costates is necessary but not easily determined.

The algorithms presented in this dissertation could potentially be used in the

future for on-board trajectory computation, and the computational efficiency could

be further increased through the use of parallel processors.

146

REFERENCES

[1] National Aeronautics and Space Administration. Orbital Debris Quarterly News.

20:14, April 2016, https://orbitaldebris.jsc.nasa.gov/quarterly-news/

newsletter.html.

[2] Nitin Arora. High performance algorithms to improve the runtime computation

of spacecraft trajectories. PhD Dissertation, Georgia Institute of Technology,

2013.

[3] D. L. Bahls and S. W. Paris. A mission analysis tool for complex low thrust

interplanetary missions. AIAA Astodynamics Conference, Danvers, MA, AIAA-

80-1674, DOI: 10.2514/6.1980-1674, August 11 -13, 1980.

[4] X. Bai and J.L. Junkins. Solving initial value problems by the Picard-Chebyshev

method with nvidia GPUs. Proceedings of the 20th Spaceflight Mechanics Meet-

ing, San Diego, CA, AAS 10-197, 2010.

[5] Xiaoli Bai. Modified chebyshev-picard iteration methods for solution of initial

value and boundary value problems. PhD Dissertation, Texas A&M University,

2010.

[6] Ahmad Bani Younes and John L. Junkins. An adaptive approach for modi-

fied Chebyshev Picard iteration. Proceedings of 26th AAS/AIAA Space Flight

Mechanics Meeting, AAS 16-427, February 2016.

[7] Richard H. Battin. An Introduction to the Mathematics and Methods of Astro-

dynamics, Revised Edition. AIAA Education Series, 1999.

147

[8] R. Broucke and P. Cefola. On the equinoctial orbit elements. Celestial Mechan-

ics, 5(3):303-310, 1972.

[9] D. Brouwer and G.M. Clemence. Methods of Celestial Mechanics. Academic

Press, 1961.

[10] P. Cefola and R. Broucke. On the formulation of the gravitational potential

in terms of equinoctial variables. AIAA 13th Aerospace Sciences Meeting, DOI

10.2514/6.1975-9, 1975.

[11] Pafnuty Lvovich Chebyshev. Théorie des mécanismes connus sous le nom de

parallélogrammes. Mémoires des Savants éstrangers preèsentès à l’Académie de

Saint Pétersbourg, 7:539–586, 1857.

[12] C.W. Clenshaw and H.J. Norton. The solution of nonlinear ordinary differential

equations in chebyshev series. The Computer Journal, 6:88–92, 1963.

[13] Bruce Conway. Spacecraft Trajectory Optimization. Cambridge University Press,

2010.

[14] D. A. Danielson, C.P. Sagovac, B. Neta, and L.W. Early. Semianalytic Satel-

lite Theory, NPS-MA-95-002. Mathematics Department, Naval Postgraduate

School Report. Monterey, CA, Feb 1995.

[15] T. Feagin. The numerical solution of two point boundary value problems using

Chebyshev series. PhD Dissertation, The University of Texas at Austin, 1972.

[16] T. Feagin. High-order explicit runge-kutta methods using m-symmetry. Neural,

Parallel & Scientific Computations, 20(4):437–458, 2012.

[17] T. Feagin. The iterative solution of the problem of orbit determination using

Chebyshev series. NASA CR-141317, 31 January, 1975.

148

[18] T. Feagin. High-order m-symmetric runge-kutta methods. Proceedings of the

23rd Biennial Conference on Numerical Analysis, Strathclyde University, Glas-

gow, Scotland, June 23 - 26, 2009.

[19] T. Feagin and R.P. Mikkilineni. The use of series solutions for batch and se-

quential estimation. AAS Paper, AAS75-056, 1975.

[20] T. Feagin and P. Nacozy. Matrix formulation of the Picard method for parallel

computation. Celestial Mechanics, 29:107–115, 1983.

[21] Leslie L. Fox and I. B. Parker. Chebyshev Polynomials in Numerical Analaysis.

Oxford University Press, 1968.

[22] T. Fukushima. Vector integration of dynamical motions by the Picard-

Chebyshev method. The Astronomical Journal, 113:2325–2328, 1997.

[23] Y. Gao and C.A. Kluever. Low-thrust interplanetary orbit transfers using

hybrid trajectory optimization method with multiple shooting. Proceedings

of AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence,

Rhode Island, AIAA 2004-5088, 16-19 August 2004.

[24] R.G. Gottlieb. Fast gravity, gravity partials, normalized gravity, gravity gradient

torque and magnetic field: Derivation, code, and data. Lyndon B. Johnson Space

Center Internal Report, NASA-CR-188243, NAS 1.26:188243, February 1993.

[25] J. Hyun Jo, I. Kwan Park, N. Choe, and M. Choi. The comparison of the

classical keplerian orbit elements, non-singular orbital elements (equinoctial ele-

ments), and the Cartesian state variables in Lagrange planetary equations with

j2 perturbation: Part 1. Journal of Astronautical Space Sciences, 28(1):37–54,

2011.

149

[26] J.L. Junkins and J.D. Turner. Optimal Spacecraft Rotational Maneuvers. Else-

vier Science Ltd: Studies in Astronautics, 1986.

[27] John L. Junkins, Ahmad Bani Younes, Robyn M. Woollands, and Xiaoli Bai.

Picard iteration, Chebyshev Polynomials, and Chebyshev-Picard methods: Ap-

plication in astrodynamics. Journal of Astronautical Sciences, 60:623–653, 2013.

[28] D. Kim and J.L. Junkins. Multi-segment adaptive modified Chebyshev Picard

iteration method. Proceedings of 24th AAS/AIAA Space Flight Mechanics Con-

ference, Santa Fe, NM, DOI: 10.13140/RG.2.1.1495.9441, 2014.

[29] D. Kim, J.L. Junkins, and J. Turner. Multisegment scheme applications to

modified Chebyshev Picard iteration method for highly elliptical orbits. Mathe-

matical Problems in Engineering, 1, DOI: 10.1155/2015/290781, January 2015.

[30] Mischa Kim. Continuous low-thrust trajectory optimization: Techniques and

applications. PhD Dissertation, Virginia Polytechnic Institute and State Uni-

versity, 2001.

[31] Heiner Klinkrad. Space Debris: Models and Risk Analysis. Springer/Praxis

Publishing Ltd, Chichester, UK; Printed in Germany, 2006.

[32] D. Koblick, M. Poole, and P. Shankar. Parallel high-precision orbit propagation

using the modified picard-chebyshev method. ASME International Mechanical

Engineering Congress and Exposition, Houston, TX, 93:587–605, IMECE2012-

87878, November 9-15, 2012.

[33] Frank L. Lewis and Vassilis L. Syrmos. Optimal Control, 3rd Edition. John

Wiley & Sons, Inc. New York, NY, 1995.

150

[34] J.B. Lundberg and B. Schutz. Recursion formulas of Legendre functions for

use with nonsingular geopotential models. Journal of Guidance and Control

11(1):31-38, DOI: 10.2514/3.20266, January 1988.

[35] B. Macomber, A. Probe, R. Woollands, and J.L. Junkins. Automated tuning

parameter selection for orbit propagation with modified Chebyshev Picard itera-

tion. Proceedings of 25th AAS/AIAA Space Flight Mechanics Meeting, Williams-

burg, VA, AAS 15-417, 2015.

[36] Brent Macomber. Enhancements to Chebyshev-Picard iteration efficiency for

generally perturbed orbits and constrained dynamical systems. PhD Disserta-

tion, Texas A&M University, 2015.

[37] Brent Macomber, Donghoon Kim, Robyn Woollands, and J.L. Junkins. Ter-

minal convergence approximation modified Chebyshev Picard iteration for effi-

cient numerical integration of orbital trajectories. Proceedings of Advanced Maui

Optical and Space Surveilliance Technologies Conference, Maui, HI, page E20,

September 9-12, 2014.

[38] Brent Macomber, Austin Probe, Robyn Woollands, and John L. Junkins. Paral-

lel modified-Chebyshev Picard iteration for orbit catalog propagation and monte

carlo analysis. Proceedings of the 38th Annual AAS/AIAA Guidance and Con-

trol Conference, Breckenridge, CO, AAS 15-009, 2015.

[39] Brent Macomber, Austin Probe, Robyn Woollands, Julie Read, and J.L. Junk-

ins. Enhancements to modified Chebyshev-Picard iteration efficiency for per-

turbed orbit propagation. Journal of Computer Modeling & Sciences (CMES)

Special Issue on Computational Methods in Celestial Mechanics, 111(1), 2016.

151

[40] John C. Mason and David Handscomb. Chebyshev Polynomials. Chapman &

Hall/CRC Press LLC, Boca Raton, Florida, 2000.

[41] A. Miele and R.R. Lyer. General technique for solving nonlinear, two-point

boundary-value problems via the method of particular solutions. Journal of

Optimization Theory and Applications, 5:382–399, 1970.

[42] Angelo Miele. Method of particular solutions for linear, two-point boundary-

value problems. Journal of Optimization Theory and Applications, 2:260–273,

1968.

[43] R.P. Mikkilineni and T. Feagin. The determination of orbits using Picard iter-

ation. NASA X-582-75-273, Goddard Space Flight Center, (1-6), 1975.

[44] Émile Picard. Sur l’application des méthodes d’approximations succes-

sives à l’étude de certaines équations différentielles ordinaires. Journal de

Mathématiques Pures et Appliquées, 9:217–272, 1893.

[45] Austin Probe, Brent Macomber, Julie Read, Robyn Woollands, and John L.

Junkins. Radially adaptive evaluation of the spherical harmonic gravity series

for numerical orbital propagation. Proceedings of 25th AAS/AIAA Space Flight

Mechanics Meeting, Williamsburg, VA, AAS 15-440, 2015.

[46] Austin Probe, Brent Macomber, Julie Read, Robyn Woollands, and John L.

Junkins. Radially adaptive evaluation of the spherical harmonic gravity series

for numerical orbit propagation. Proceedings of 25th AAS/AIAA Space Flight

Mechanics Conference, Williamsburg, VA, AAS 15-440, 2015.

[47] Austin Probe, Julie Read, Brent Macomber, and John L. Junkins. Massively

parallel implementation of modified Chebyshev Picard iteration for perturbed

152

orbit propagation. Proceedings of AAS/AIAA Astrodynamics Specialist Confer-

ence, Vail, CO, pages 587–605, AAS 15-793, 2015.

[48] J. L. Read, A. Bani Younes, and J.L. Junkins. Efficient orbit propagation of

orbital elements using modified Chebyshev Picard iteration method. Journal of

Computer Modeling & Sciences (CMES) Special Issue on Computational Meth-

ods in Celestial Mechanics, 111(1), 2016.

[49] J.L. Read, A. Bani Younes, and J.L. Junkins. Efficient orbit propagation of

orbital elements using modified Chebyshev Picard iteration method. Proceedings

of the ICCES Conference, Reno, NV, 2015.

[50] Julie Read, Ahmad Bani Younes, J. Turner, and J.L. Junkins. State transi-

tion matrix propagation for perturbed orbital motion using modified Cheby-

shev Picard iteration. Proceedings of AAS 38th Annual Guidance and Control

Conference, Breckenridge, CO, AAS 15-008, 2015.

[51] Julie Read, Tarek Elgohary, Austin Probe, and J.L. Junkins. Monte carlo prop-

agation of orbital elements using modified Chebyshev Picard iteration. Proceed-

ings of 26th AAS/AIAA Space Flight Mechanics Conference, Napa Valley, CA,

AAS 16-520, 2016.

[52] Julie Read, Brent Macomber, Ahmad Bani Younes, J. Turner, and J. L. Junk-

ins. State transition matrix propagation for perturbed orbital motion using

modified Chebyshev Picard iteration. Journal of Astronautical Sciences, DOI

10.1007/s40295-015-0051-3, ISSN 0021-9142, 62:148–167, June 2015.

[53] E.A. Roth. The gaussian form of the variation-of-parameter equations formu-

lated in equinoctial elements - applications: Airdrag and radiation pressure.

Acta Astronautica, 12:719–730, 1985.

153

[54] H. Schaub and J.L. Junkins. Analytical Mechanics of Space Systems, 3rd Edition.

AIAA Education Series, 2014.

[55] J.S. Shaver. Formulation and evaluation of parallel algorithms for the orbit

determination problem. PhD Thesis, MIT, 1980.

[56] James Dana Thorne. Optimal Continuous-Thrust Orbit Transfers. PhD Dis-

sertation, Air Force Institute of Technology, 1996.

[57] Boise State Matlab Tutorials. The runge phenomenon. Viewed Online 2016,

http://math.boisestate.edu/~calhoun/teaching/matlab-tutorials/

lab_11/html/lab_11.html.

[58] M.J.H. Walker, B. Ireland, and J. Owens. Errata: A set of modified equinoctial

orbit elements. Celestial Mechanics, 36(4):409–419, 1985.

[59] M.J.H. Walker, B. Ireland, and J. Owens. A set of modified equinoctial orbit

elements. Celestial Mechanics, 36(4):409–419, 1985.

[60] RobynWoollands. Modified Chebyshev Picard iteration: Derivation and tutorial

for the initial value problem, Internal Research Team Report. 2013.

[61] RobynWoollands. Modified Chebyshev Picard iteration: Derivation and tutorial

for the boundary value problem, Internal Research Team Report. 2015.

[62] Robyn Woollands. Regularization and computational methods for precise so-

lution of perturbed orbit transfer problems. PhD Dissertation, Texas A&M

University, 2016.

[63] Robyn Woollands, Ahmad Bani Younes, and John L. Junkins. New solutions for

Lambert’s problem utilizing regularization and Picard iteration. AIAA Journal

154

of Guidance, Control, and Dynamics: Special Issue in Honor of Richard Battin,

39(9):1548–1562, 2015.

[64] Robyn Woollands, J.L. Read, Brent Macomber, Austin Probe, Ahmad

Bani Younes, and John L. Junkins. Method of particular solutions and

kustaanheimo-stiefel regularized Picard iteration for solving two-point bound-

ary value problems. Proceedings of 25th AAS/AIAA Space Flight Mechanics

Conference, Williamsburg, VA, AAS 15-373, 2015.

[65] Robyn M. Woollands, Julie L. Read, Brent Macomber, Austin B. Probe, Ahmad

Bani Younes, and John L. Junkins. Parallel generation of extremal field maps

for optimal multi-revolution continuous thrust orbit transfers. Proceedings of

AAS/AIAA Astrodynamics Specialist Conference, Vail, CO, AAS 15-791, 2015.

[66] Robyn M. Woollands, Julie L. Read, Austin B. Probe, and John L. Junkins.

Method of particular solutions and modified Chebyshev-Picard iteration for

solving multi-revolution perturbed Lambert problems. DOI: 10.1007/s40295-

016-0107-z, Journal of Astronautical Sciences, (Under Review), 2016.

[67] Robyn M. Woollands, Julie L. Read, Austin B. Probe, and John L. Junkins.

Adaptive two-point boundary value problem tool for accurate and efficient com-

putation of perturbed orbit transfers. Proceedings of 26th AAS/AIAA Space

Flight Mechanics Conference, Napa Valley, CA, AAS 16-497, 2016.

[68] Ahmad Bani Younes. Orthogonal polynomial approximation in higher dimen-

sions: Applications in astrodynamics. PhD Dissertation, Texas A&M Univer-

sity, 2013.

155

APPENDIX A

CHEBYSHEV POLYNOMIALS

Chebyshev polynomials form the orthogonal basis set used throughout this dis-

sertation to approximate both the forcing function in the integral of the right hand

side of Picard’s equation, and in the original MCPI formulation, also the current

estimate of the trajectory on the left hand side of Picard’s equation introduced in

Chapter 2. Picard’s equation is repeated here for convenience:

xi(t) = x(t0) +

∫ t

t0

f(τ,xi−1(τ))dτ, i = 1, 2, ... (A.1)

After expanding in terms of the Chebyshev polynomials Tk, this equation becomes

N∑
k=0

′′βi
kTk(τ) = x(−1) +

∫ τ

−1

[
Fi−1

k Tk(s)

]
ds (A.2)

A.1 Orthogonality

Two functions f(x) and g(x) are defined as orthogonal on the interval [a, b] with

respect to a given weight function w(x) (which must be continuous and non-negative)

if the inner product is zero:

⟨f, g⟩ ≡
∫ b

a

w(x)f(x)g(x)dx = 0 (A.3)

For the weight function w(x) = (1 − x2)−
1
2 , the Chebyshev polynomials are or-

thogonal [40]:

156

⟨Ti, Tj⟩ =
∫ 1

−1

Ti(x)Tj(x)√
1− x2

dx = 0 (i ̸= j) (A.4)

For the case where n = m = 0, Equation (A.4) is equal to π, and when n =

m ̸= 0, Equation (A.4) is equal to π
2
. An anaologous discrete orthogonality property

exists when the Chebyshev polynomials are sampled either at their extrema or at

their zeroes. The Chebyshev-Gauss-Lobatto (CGL) nodes are used for the MCPI

algorithm, where the extrema of TN are located. These nodes are the extrema of TM

and are computed through

τj = −cos

(
π

M
j

)
j = 0, 1, 2, ...,M (A.5)

When the number of CGL nodes is equal to the order of the Chebyshev approx-

imation (M = N), the discrete orthogonality condition becomes [21]

M∑
j=0

wjTn(τj)Tm(τj) =


0 if n ̸= m

M if n = m = 0

M
2

if n = m ̸= 0

In this case, orthogonality requires the discrete weight function to depend upon

the node, where the known boundary nodes are w0 = wN = 1
2
and all other interior

wj = 1. To follow the notation conventions used in previous related publications

(e.g., [21]), throughout this dissertation a (′′) symbol within the summation means

that the first and last terms have a weight of 1
2
, while the rest of the terms have a

weight of 1. Similarly, a (′) symbol means that the first term is multiplied by a 1
2
,

while the rest of the terms are multiplied by 1.

157

A.2 Method of Approximation

For the MCPI algorithm described throughout this dissertation the order of the

Chebyshev approximation, N , and the number of CGL sample points, (M ≥ N) are

user-specified. The Chebyshev polynomial basis set is used to approximate a discrete

function using either least squares (M > N) or a direct interpolation (M = N). Since

the user chooses the values ofM and N , this implies that the user also chooses to use

either the direct interpolation or least squares methods (which differes by an extra

1
2
term at the end of the series for the interpolation case). For the case of M > N

samples at the CGL nodes, the N th order discrete least squares approximation of a

forcing function g(x(τ)), for instance, two-body acceleration, is given by

g(x(τ)) =
M∑
k=0

′FkTk(x) (A.6)

where the coefficients of the Chebyshev polynomial series are

Fk =
2

M

M∑
j=0

′′g(x(τj))Tk(τj) (A.7)

When M = N CGL nodes, the interpolation formula is an exact fit at the chosen

CGL nodes. This approach yields the approximation

g(x(τ)) =
M∑
k=0

′′FkTk(x) (A.8)

Fk =
2

M

M∑
j=0

′′g(x(τj))Tk(τj) (A.9)

For more information, see Chapter 2, Section 2.5.

158

APPENDIX B

SUPPLEMENT TO STATE TRANSITION MATRIX

This appendix provides additional derivation details for the State Transition Ma-

trix (STM) as described in Ch. (4), first for spherical harmonic (in both Earth-

Centered Earth-Fixed and Earth Centered Inertial frames), then for zonal gravity,

and finally for two-body (unperturbed) gravity. The zonal gravity accelerations and

associated STM may be used either for a low-fidelity standalone model, or when

using a local Taylor Series gravity expansion as described in Chapter 5, Section 5.1.

B.1 Jacobian Matrix G for Spherical Harmonic Gravity in ECEF Frame

All of the expressions in this section are used to compute the STM for the spherical

harmonic gravity model, as described in Chapter 4. The ECEF Jacobian presented

in this section may be used instead of the ECI Jacobian presented in Chapter 4,

although computing the ECEF Jacobian and transforming it to the ECI frame for

propagation is more efficient.

The components of the ECEF Jacobian Matrix required to compute the Spherical

Harmonic gravity model are given individually here in terms of spherical coordinates

(r, ϕ, λ) as well as the partials of the gravity potential, i.e., Ur is the partial of

gravity potential U with respect to r. Following the individual terms for Gij given

here, the expressions for partial derivative terms in Earth-Centered, Earth-Fixed

(ECEF) components (x, y, z) are also given. Once the Jacobian G is computed in

the ECEF frame, it may be transformed into the ECI frame using a direction cosine

matrix for propagation (see Chapter 4).

159

[G] =


∂
∂x
(aX)

∂
∂y
(aX)

∂
∂z
(aX)

∂
∂x
(aY)

∂
∂y
(aY)

∂
∂z
(aY)

∂
∂x
(aZ)

∂
∂y
(aZ)

∂
∂z
(aZ)

 (B.1)

G11 =
∂

∂x
(aX)

=

(
∂r

∂x

)2(
∂Ur

∂r

)
+

(
∂ϕ

∂x

)2(
∂Uϕ

∂ϕ

)
+

(
∂λ

∂x

)2(
∂Uλ

∂λ

)

+ 2

(
∂r

∂x

)(
∂ϕ

∂x

)(
∂Ur

∂ϕ

)
+ 2

(
∂r

∂x

)(
∂λ

∂x

)(
∂Ur

∂λ

)

+ 2

(
∂ϕ

∂x

)(
∂λ

∂x

)(
∂Uϕ

∂λ

)
+

(
∂U

∂r

)(
∂2r

∂x2

)
+

(
∂U

∂ϕ

)(
∂2ϕ

∂x2

)

+

(
∂U

∂λ

)(
∂2λ

∂x2

)
(B.2)

G12 =
∂

∂y
(aX)

=

(
∂r

∂y

)(
∂r

∂x

)(
∂Ur

∂r

)
+

(
∂r

∂y

)(
∂ϕ

∂x

)(
∂Ur

∂ϕ

)
+

(
∂r

∂y

)(
∂λ

∂x

)(
∂Ur

∂λ

)

+

(
∂ϕ

∂y

)(
∂r

∂x

)(
∂Uϕ

∂r

)
+

(
∂ϕ

∂y

)(
∂ϕ

∂x

)(
∂Uϕ

∂ϕ

)
+

(
∂ϕ

∂y

)(
∂λ

∂x

)(
∂Uϕ

∂λ

)

+

(
∂λ

∂y

)(
∂r

∂x

)(
∂Uλ

∂r

)
+

(
∂λ

∂y

)(
∂ϕ

∂x

)(
∂Uλ

∂ϕ

)
+

(
∂λ

∂y

)(
∂λ

∂x

)(
∂Uλ

∂λ

)

+

(
∂U

∂r

)(
∂2r

∂x∂y

)
+

(
∂U

∂ϕ

)(
∂2ϕ

∂x∂y

)
+

(
∂U

∂λ

)(
∂2λ

∂x∂y

)
(B.3)

160

G13 =
∂

∂z
(aX)

=

(
∂r

∂z

)(
∂r

∂x

)(
∂Ur

∂r

)
+

(
∂r

∂z

)(
∂ϕ

∂x

)(
∂Ur

∂ϕ

)
+

(
∂r

∂z

)(
∂λ

∂x

)(
∂Ur

∂λ

)

+

(
∂ϕ

∂z

)(
∂r

∂x

)(
∂Uϕ

∂r

)
+

(
∂ϕ

∂z

)(
∂ϕ

∂x

)(
∂Uϕ

∂ϕ

)
+

(
∂ϕ

∂z

)(
∂λ

∂x

)(
∂Uϕ

∂λ

)

+

(
∂λ

∂z

)(
∂r

∂x

)(
∂Uλ

∂r

)
+

(
∂λ

∂z

)(
∂ϕ

∂x

)(
∂Uλ

∂ϕ

)
+

(
∂λ

∂z

)(
∂λ

∂x

)(
∂Uλ

∂λ

)

+

(
∂U

∂r

)(
∂2r

∂x∂z

)
+

(
∂U

∂ϕ

)(
∂2ϕ

∂x∂z

)
+

(
∂U

∂λ

)(
∂2λ

∂x∂z

)
(B.4)

G21 =
∂

∂x
(aY)

=

(
∂r

∂x

)(
∂r

∂y

)(
∂Ur

∂r

)
+

(
∂r

∂x

)(
∂ϕ

∂y

)(
∂Ur

∂ϕ

)
+

(
∂r

∂x

)(
∂λ

∂y

)(
∂Ur

∂λ

)

+

(
∂ϕ

∂x

)(
∂r

∂y

)(
∂Uϕ

∂r

)
+

(
∂ϕ

∂x

)(
∂ϕ

∂y

)(
∂Uϕ

∂ϕ

)
+

(
∂ϕ

∂x

)(
∂λ

∂y

)(
∂Uϕ

∂λ

)

+

(
∂λ

∂x

)(
∂r

∂y

)(
∂Uλ

∂r

)
+

(
∂λ

∂x

)(
∂ϕ

∂y

)(
∂Uλ

∂ϕ

)
+

(
∂λ

∂x

)(
∂λ

∂y

)(
∂Uλ

∂λ

)

+

(
∂U

∂r

)(
∂2r

∂y∂x

)
+

(
∂U

∂ϕ

)(
∂2ϕ

∂y∂x

)
+

(
∂U

∂λ

)(
∂2λ

∂y∂x

)
(B.5)

161

G22 =
∂

∂y
(aY)

=

(
∂r

∂y

)2(
∂Ur

∂r

)
+

(
∂ϕ

∂y

)2(
∂Uϕ

∂ϕ

)
+

(
∂λ

∂y

)2(
∂Uλ

∂λ

)

+ 2

(
∂r

∂y

)(
∂ϕ

∂y

)(
∂Ur

∂ϕ

)
+ 2

(
∂r

∂y

)(
∂λ

∂y

)(
∂Ur

∂λ

)

+ 2

(
∂ϕ

∂y

)(
∂λ

∂y

)(
∂Uϕ

∂λ

)
+

(
∂U

∂r

)(
∂2r

∂y2

)
+

(
∂U

∂ϕ

)(
∂2ϕ

∂y2

)

+

(
∂U

∂λ

)(
∂2λ

∂y2

)

(B.6)

G23 =
∂

∂z
(aY)

=

(
∂r

∂z

)(
∂r

∂y

)(
∂Ur

∂r

)
+

(
∂r

∂z

)(
∂ϕ

∂y

)(
∂Ur

∂ϕ

)
+

(
∂r

∂z

)(
∂λ

∂y

)(
∂Ur

∂λ

)

+

(
∂ϕ

∂z

)(
∂r

∂y

)(
∂Uϕ

∂r

)
+

(
∂ϕ

∂z

)(
∂ϕ

∂y

)(
∂Uϕ

∂ϕ

)
+

(
∂ϕ

∂z

)(
∂λ

∂y

)(
∂Uϕ

∂λ

)

+

(
∂λ

∂z

)(
∂r

∂y

)(
∂Uλ

∂r

)
+

(
∂λ

∂z

)(
∂ϕ

∂y

)(
∂Uλ

∂ϕ

)
+

(
∂λ

∂z

)(
∂λ

∂y

)(
∂Uλ

∂λ

)

+

(
∂U

∂r

)(
∂2r

∂y∂z

)
+

(
∂U

∂ϕ

)(
∂2ϕ

∂y∂z

)
+

(
∂U

∂λ

)(
∂2λ

∂y∂z

)
(B.7)

162

G31 =
∂

∂x
(aZ)

=

(
∂r

∂x

)(
∂r

∂z

)(
∂Ur

∂r

)
+

(
∂r

∂x

)(
∂ϕ

∂z

)(
∂Ur

∂ϕ

)
+

(
∂r

∂x

)(
∂λ

∂z

)(
∂Ur

∂λ

)

+

(
∂ϕ

∂x

)(
∂r

∂z

)(
∂Uϕ

∂r

)
+

(
∂ϕ

∂x

)(
∂ϕ

∂z

)(
∂Uϕ

∂ϕ

)
+

(
∂ϕ

∂x

)(
∂λ

∂z

)(
∂Uϕ

∂λ

)

+

(
∂λ

∂x

)(
∂r

∂z

)(
∂Uλ

∂r

)
+

(
∂λ

∂x

)(
∂ϕ

∂z

)(
∂Uλ

∂ϕ

)
+

(
∂λ

∂x

)(
∂λ

∂z

)(
∂Uλ

∂λ

)

+

(
∂U

∂r

)(
∂2r

∂z∂x

)
+

(
∂U

∂ϕ

)(
∂2ϕ

∂z∂x

)
+

(
∂U

∂λ

)(
∂2λ

∂z∂x

)
(B.8)

G32 =
∂

∂y
(aZ)

=

(
∂r

∂y

)(
∂r

∂z

)(
∂Ur

∂r

)
+

(
∂r

∂y

)(
∂ϕ

∂z

)(
∂Ur

∂ϕ

)
+

(
∂r

∂y

)(
∂λ

∂z

)(
∂Ur

∂λ

)

+

(
∂ϕ

∂y

)(
∂r

∂z

)(
∂Uϕ

∂r

)
+

(
∂ϕ

∂y

)(
∂ϕ

∂z

)(
∂Uϕ

∂ϕ

)
+

(
∂ϕ

∂y

)(
∂λ

∂z

)(
∂Uϕ

∂λ

)

+

(
∂λ

∂y

)(
∂r

∂z

)(
∂Uλ

∂r

)
+

(
∂λ

∂y

)(
∂ϕ

∂z

)(
∂Uλ

∂ϕ

)
+

(
∂λ

∂y

)(
∂λ

∂z

)(
∂Uλ

∂λ

)

+

(
∂U

∂r

)(
∂2r

∂z∂y

)
+

(
∂U

∂ϕ

)(
∂2ϕ

∂z∂y

)
+

(
∂U

∂λ

)(
∂2λ

∂z∂y

)
(B.9)

163

G33 =
∂

∂z
(aZ)

=

(
∂r

∂z

)2(
∂Ur

∂r

)
+

(
∂ϕ

∂z

)2(
∂Uϕ

∂ϕ

)
+

(
∂λ

∂z

)2(
∂Uλ

∂λ

)

+ 2

(
∂r

∂z

)(
∂ϕ

∂z

)(
∂Ur

∂ϕ

)
+ 2

(
∂r

∂z

)(
∂λ

∂z

)(
∂Ur

∂λ

)

+ 2

(
∂ϕ

∂z

)(
∂λ

∂z

)(
∂Uϕ

∂λ

)
+

(
∂U

∂r

)(
∂2r

∂z2

)
+

(
∂U

∂ϕ

)(
∂2ϕ

∂z2

)

+

(
∂U

∂λ

)(
∂2λ

∂z2

)
(B.10)

See the following section for the partial deriatives of spherical coordinates with

respect to (x, y, z) that are used to compute this Jacobian matrix.

B.1.1 Partial Derivatives for Jacobian Matrix G in ECEF Frame Using Spherical

Harmonic Gravity

The partial derivatives of spherical coordinates, given in this subsection, are used

to compute the Jacobian matrix G as required in the expressions in the previous

section. The partials are taken with respect to the components (x, y, z), which are in

the ECEF frame. These partials of the gravity potential U with respect to spherical

coordinates are already given in Ch. 4; all of the partial derivatives are given here

(the first partials are given in Ch. 4 and repeated here for convenience).

The first partial derivatives of spherical coordinates with respect to Cartesian

coordinates are given by

∂r

∂α
=
α

r
; α → x, y, z (B.11)

164

∂ϕ

∂x
=

−xz
r2
√
x2 + y2

;
∂ϕ

∂y
=

−yz
r2
√
x2 + y2

;
∂ϕ

∂z
=

(
1− z2

r2

)√
x2 + y2

(B.12)

∂λ

∂x
=

−y
x2 + y2

;
∂λ

∂y
=

x

x2 + y2
;

∂λ

∂z
= 0 (B.13)

The second partial derivatives of spherical coordinates with respect to Cartesian

coordinates are given by

∂2r

∂x2
=

1

r
− x2

r3
(B.14)

∂2ϕ

∂x2
= −z(y

2z2 + y4 − x2y2 − 2x4)

(y2 + x2)
3
2 (z2 + y2 + x2)2

(B.15)

∂2λ

∂x2
=

2xy

(y2 + x2)2
(B.16)

∂2r

∂x∂y
= − xy

(z2 + y2 + x2)
3
2

(B.17)

∂2ϕ

∂x∂y
=

xyz(z2 + 3y2 + 3x2)

(y2 + x2)
3
2 (z2 + y2 + x2)2

(B.18)

∂2λ

∂x∂y
=

2y2

(y2 + x2)2
− 1

y2 + x2
(B.19)

∂2r

∂x∂z
= − xz

(z2 + y2 + x2)
3
2

(B.20)

165

∂2ϕ

∂x∂z
=

x(z2 − y2 − x2)√
y2 + x2(z2 + y2 + x2)2

(B.21)

∂2λ

∂x∂z
= 0 (B.22)

∂2r

∂y2
=

1√
z2 + y2 + x2

− y2

(z2 + y2 + x2)
3
2

(B.23)

∂2ϕ

∂y2
= − z√

y2 + x2(z2 + y2 + x2)
+

y2z

(y2 + x2)
3
2 (z2 + y2 + x2)

+
2y2z√

y2 + x2(z2 + y2 + x2)2

(B.24)

∂2λ

∂y2
= − 2xy

(y2 + x2)2
(B.25)

∂2r

∂y∂z
= − yz

(z2 + y2 + x2)
3
2

(B.26)

∂2ϕ

∂y∂z
=

2yz2√
y2 + x2(z2 + y2 + x2)2

−
y

(
1− z2

z2+y2+x2

)
(y2 + x2)

3
2

(B.27)

∂2λ

∂y∂z
= 0 (B.28)

∂2r

∂z2
=

1√
z2 + y2 + x2

− z2

(z2 + y2 + x2)
3
2

(B.29)

166

∂2ϕ

∂z2
=

1√
y2 + x2

(
2z3

(z2 + y2 + x2)2
− 2z

(z2 + y2 + x2)

)
(B.30)

∂2λ

∂z2
= 0 (B.31)

B.2 Jacobian Matrix G for Spherical Harmonic Gravity in ECI Frame

The partial derivatives of spherical coordinates, given in this subsection, are used

to compute the Jacobian matrix G in the ECI frame as given in Eq. (B.50). The

partial derivatives are taken with respect to the components (X, Y, Z), which are in

the ECI frame, as opposed to partial derivatives with respect to the ECEF frame

(as given in the previous section). The ECI Jacobian presented in this section may

be used instead of the ECEF Jacobian presented in the previous section, although

computing the ECEF Jacobian and transforming it to the ECI frame for propagation

is more efficient, as described in Chapter 4.

The partials of the gravity potential U with respect to spherical coordinates are

already given in Ch. 4. All of the partial derivatives are given here (the first partials

are given in Ch. 4 and repeated here for convenience).

The first partial derivatives of spherical coordinates with respect to Cartesian

coordinates in ECEF are given by

∂r

∂α
=
α

r
; α → x, y, z (B.32)

∂ϕ

∂x
=

−xz
r2
√
x2 + y2

;
∂ϕ

∂y
=

−yz
r2
√
x2 + y2

;
∂ϕ

∂z
=

(
1− z2

r2

)√
x2 + y2

(B.33)

167

∂λ

∂x
=

−y
x2 + y2

;
∂λ

∂y
=

x

x2 + y2
;

∂λ

∂z
= 0 (B.34)

The following first partial derivatives of spherical coordinates with respect to

Cartesian coordinates in ECI are given using the rotation matrix

C(t) =

[
∂(x, y, z)

∂(X,Y, Z)

]
(B.35)

Note that this rotation matrix implies that

CT (t) =

[
∂(X,Y, Z)

∂(x, y, z)

]
(B.36)

These partial derivatives are given in terms of individual rotation matrix compo-

nents Cij as

∂r

∂X
= cosϕC21 sinλ+ cosϕC11 cosλ+ sinϕC31 (B.37)

∂ϕ

∂X
=

1

r

(
− sinϕC21 sinλ− sinϕC11 cosλ+ cosϕC31

)
(B.38)

∂λ

∂X
=

(C21 cosλ)

(r cosϕ)
− (C11 sinλ)

(r cosϕ)
(B.39)

∂r

∂Y
= cosϕC22 sinλ+ cosϕC12 cosλ+ sinϕC32 (B.40)

∂ϕ

∂Y
=

1

r

(
− sinϕC22 sinλ− sinϕC12 cosλ+ cosϕC32

)
(B.41)

168

∂λ

∂Y
=

(C22 cosλ)

(r cosϕ)
− (C12 sinλ)

(r cosϕ)
(B.42)

∂r

∂Z
= cosϕC23 sinλ+ cosϕC13 cosλ+ sinϕC33 (B.43)

∂ϕ

∂Z
=

1

r

(
− sinϕC23 sinλ− sinϕC13 cosλ+ cosϕC33

)
(B.44)

∂λ

∂Z
=

(C23 cosλ)

(r cosϕ)
− (C13 sinλ)

(r cosϕ)
(B.45)

For a general function F , a chain rule expansion may be used to find partials

with respect to body frame coordinates, i.e.,

∂F

∂α
=
∂F

∂r

∂r

∂α
+
∂F

∂ϕ

∂ϕ

∂α
+
∂F

∂λ

∂λ

∂α
α → x, y, z (B.46)

Next, define a matrix of these partial derivatives with respect to ECI coordinates as

D =


∂r
∂x

∂ϕ
∂x

∂λ
∂x

∂r
∂y

∂ϕ
∂y

∂λ
∂y

∂r
∂z

∂ϕ
∂z

∂λ
∂z

 (B.47)

Written in matrix form and using this matrix, Eqns. (B.46) give


∂F
∂x

∂F
∂y

∂F
∂z

 = [D(x, y, z)]


∂F
∂r

∂F
∂ϕ

∂F
∂λ

 (B.48)

Concatenate the spherical harmonic acceleration terms:

169

a =


∂U
∂r

∂U
∂ϕ

∂U
∂λ

 (B.49)

Then the Jacobian matrix G in the ECI frame may be computed as

G =

[
∂
∂X

(a) ∂
∂Y

(a) ∂
∂Z

(a)

]
(B.50)

where the inertial second partials of the potential (i.e., the first partials of spherical

harmonic gravity) are

∂

∂X
(a) = [C]T

[
∂D

∂X

]
a+ [C]T [D]

∂X

∂a
(B.51)

∂

∂Y
(a) = [C]T

[
∂D

∂Y

]
a+ [C]T [D]

∂Y

∂a
(B.52)

∂

∂Z
(a) = [C]T

[
∂D

∂Z

]
a+ [C]T [D]

∂Z

∂a
(B.53)

The partial derivatives in these expressions are inertial partial derivatives of the

ECEF components (x, y, z) and the spherical components (r, ϕ, λ):

[
∂D

∂X

]
=


∂
∂X

(
∂r
∂x

)
∂
∂X

(
∂ϕ
∂x

)
∂
∂X

(
∂λ
∂x

)
∂
∂X

(
∂r
∂y

)
∂
∂X

(
∂ϕ
∂y

)
∂
∂X

(
∂λ
∂y

)
∂
∂X

(
∂r
∂z

)
∂
∂X

(
∂ϕ
∂z

)
∂
∂X

(
∂λ
∂z

)

 (B.54)

170

[
∂D

∂Y

]
=


∂
∂Y

(
∂r
∂x

)
∂
∂Y

(
∂ϕ
∂x

)
∂
∂Y

(
∂λ
∂x

)
∂
∂Y

(
∂r
∂y

)
∂
∂Y

(
∂ϕ
∂y

)
∂
∂Y

(
∂λ
∂y

)
∂
∂Y

(
∂r
∂z

)
∂
∂Y

(
∂ϕ
∂z

)
∂
∂Y

(
∂λ
∂z

)

 (B.55)

[
∂D

∂Z

]
=


∂
∂Z

(
∂r
∂x

)
∂
∂Z

(
∂ϕ
∂x

)
∂
∂Z

(
∂λ
∂x

)
∂
∂Z

(
∂r
∂y

)
∂
∂Z

(
∂ϕ
∂y

)
∂
∂Z

(
∂λ
∂y

)
∂
∂Z

(
∂r
∂z

)
∂
∂Z

(
∂ϕ
∂z

)
∂
∂Z

(
∂λ
∂z

)

 (B.56)

∂X

∂a
=


∂
∂X

(
∂U
∂r

)
∂
∂X

(
∂U
∂ϕ

)
∂
∂X

(
∂U
∂λ

)

 (B.57)

∂Y

∂a
=


∂
∂Y

(
∂U
∂r

)
∂
∂Y

(
∂U
∂ϕ

)
∂
∂Y

(
∂U
∂λ

)

 (B.58)

∂Z

∂a
=


∂
∂Z

(
∂U
∂r

)
∂
∂Z

(
∂U
∂ϕ

)
∂
∂Z

(
∂U
∂λ

)

 (B.59)

The terms within these expressions are given as follows, where ϕ = sin−1 z
r
and

λ = tan−1 y
x
.

∂

∂X

(
∂U

∂r

)
=

∂

∂X

(
Ur

)
=
∂Ur

∂r

∂r

∂X
+
∂Ur

∂ϕ

∂ϕ

∂X
+
∂Ur

∂λ

∂λ

∂X
(B.60)

171

∂

∂X

(
∂U

∂ϕ

)
=

∂

∂X

(
Uϕ

)
=
∂Uϕ

∂r

∂r

∂X
+
∂Uϕ

∂ϕ

∂ϕ

∂X
+
∂Uϕ

∂λ

∂λ

∂X
(B.61)

∂

∂X

(
∂U

∂λ

)
=

∂

∂X

(
Uλ

)
=
∂Uλ

∂r

∂r

∂X
+
∂Uλ

∂ϕ

∂ϕ

∂X
+
∂Uλ

∂λ

∂λ

∂X
(B.62)

∂

∂Y

(
∂U

∂r

)
=

∂

∂Y

(
Ur

)
=
∂Ur

∂r

∂r

∂Y
+
∂Ur

∂ϕ

∂ϕ

∂Y
+
∂Ur

∂λ

∂λ

∂Y
(B.63)

∂

∂Y

(
∂U

∂ϕ

)
=

∂

∂Y

(
Uϕ

)
=
∂Uϕ

∂r

∂r

∂Y
+
∂Uϕ

∂ϕ

∂ϕ

∂Y
+
∂Uϕ

∂λ

∂λ

∂Y
(B.64)

∂

∂Y

(
∂U

∂λ

)
=

∂

∂Y

(
Uλ

)
=
∂Uλ

∂r

∂r

∂Y
+
∂Uλ

∂ϕ

∂ϕ

∂Y
+
∂Uλ

∂λ

∂λ

∂Y
(B.65)

∂

∂Z

(
∂U

∂r

)
=

∂

∂Z

(
Ur

)
=
∂Ur

∂r

∂r

∂Z
+
∂Ur

∂ϕ

∂ϕ

∂Z
+
∂Ur

∂λ

∂λ

∂Z
(B.66)

∂

∂Z

(
∂U

∂ϕ

)
=

∂

∂Z

(
Uϕ

)
=
∂Uϕ

∂r

∂r

∂Z
+
∂Uϕ

∂ϕ

∂ϕ

∂Z
+
∂Uϕ

∂λ

∂λ

∂Z
(B.67)

∂

∂Z

(
∂U

∂λ

)
=

∂

∂Z

(
Uλ

)
=
∂Uλ

∂r

∂r

∂Z
+
∂Uλ

∂ϕ

∂ϕ

∂Z
+
∂Uλ

∂λ

∂λ

∂Z
(B.68)

∂

∂X

(
∂r

∂x

)
= − cosϕ

∂λ

∂X
sinλ− sinϕ

∂ϕ

∂X
cosλ (B.69)

∂

∂X

(
∂r

∂y

)
= cosϕ

∂λ

∂X
cosλ− sinϕ

∂ϕ

∂X
sinλ (B.70)

172

∂

∂X

(
∂r

∂z

)
= cosϕ

∂ϕ

∂X
(B.71)

∂

∂X

(
∂ϕ

∂x

)
=

(sinϕ ∂λ
∂X

sinλ)

r
+

(sinϕ ∂r
∂X

cosλ)

r2
−

(cosϕ ∂ϕ
∂X

cosλ)

r
(B.72)

∂

∂X

(
∂ϕ

∂y

)
=

(sinϕ ∂r
∂X

sinλ)

r2
−

(cosϕ ∂ϕ
∂X

sinλ)

r
−

(sinϕ ∂λ
∂X

cosλ)

r
(B.73)

∂

∂X

(
∂ϕ

∂z

)
= −

(cosϕ ∂r
∂X

)

r2
−

(sinϕ ∂ϕ
∂X

)

r
(B.74)

∂

∂X

(
∂λ

∂x

)
=

(∂r
∂X

sinλ)

(r2 cosϕ)
−

(sinϕ ∂ϕ
∂X

sinλ)

(r cos2 ϕ)
−

(∂λ
∂X

cosλ)

(r cosϕ)
(B.75)

∂

∂X

(
∂λ

∂y

)
= −

(∂λ
∂X

sinλ)

(r cosϕ)
−

(∂r
∂X

cosλ)

(r2 cosϕ)
+

(sinϕ ∂ϕ
∂X

cosλ)

(r cos2 ϕ)
(B.76)

∂

∂X

(
∂λ

∂z

)
= 0 (B.77)

∂

∂Y

(
∂r

∂x

)
= − cosϕ

∂λ

∂Y
sinλ− sinϕ

∂ϕ

∂Y
cosλ (B.78)

∂

∂Y

(
∂r

∂y

)
= cosϕ

∂λ

∂Y
cosλ− sinϕ

∂ϕ

∂Y
sinλ (B.79)

173

∂

∂Y

(
∂r

∂z

)
= cosϕ

∂ϕ

∂Y
(B.80)

∂

∂Y

(
∂ϕ

∂x

)
=

(sinϕ ∂λ
∂Y

sinλ)

r
+

(sinϕ ∂r
∂Y

cosλ)

r2
−

(cosϕ ∂ϕ
∂Y

cosλ)

r
(B.81)

∂

∂Y

(
∂ϕ

∂y

)
=

(sinϕ ∂r
∂Y

sinλ)

r2
−

(cosϕ ∂ϕ
∂Y

sinλ)

r
−

(sinϕ ∂λ
∂Y

cosλ)

r
(B.82)

∂

∂Y

(
∂ϕ

∂z

)
= −

(cosϕ ∂r
∂Y

)

r2
−

(sinϕ ∂ϕ
∂Y

)

r
(B.83)

∂

∂Y

(
∂λ

∂x

)
=

(∂r
∂Y

sinλ)

(r2 cosϕ)
−

(sinϕ ∂ϕ
∂Y

sinλ)

(r cos2 ϕ)
−

(∂λ
∂Y

cosλ)

(r cosϕ)
(B.84)

∂

∂Y

(
∂λ

∂y

)
= −

(∂λ
∂Y

sinλ)

(r cosϕ)
−

(∂r
∂Y

cosλ)

(r2 cosϕ)
+

(sinϕ ∂ϕ
∂Y

cosλ)

(r cos2 ϕ)
(B.85)

∂

∂Y

(
∂λ

∂z

)
= 0 (B.86)

∂

∂Z

(
∂r

∂x

)
= − cosϕ

∂λ

∂Z
sinλ− sinϕ

∂ϕ

∂Z
cosλ (B.87)

∂

∂Z

(
∂r

∂y

)
= cosϕ

∂λ

∂Z
cosλ− sinϕ

∂ϕ

∂Z
sinλ (B.88)

174

∂

∂Z

(
∂r

∂z

)
= cosϕ

∂ϕ

∂Z
(B.89)

∂

∂Z

(
∂ϕ

∂x

)
=

(sinϕ ∂λ
∂Z

sinλ)

r
+

(sinϕ ∂r
∂Z

cosλ)

r2
−

(cosϕ ∂ϕ
∂Z

cosλ)

r
(B.90)

∂

∂Z

(
∂ϕ

∂y

)
=

(sinϕ ∂r
∂Z

sinλ)

r2
−

(cosϕ ∂ϕ
∂Z

sinλ)

r
−

(sinϕ ∂λ
∂Z

cosλ)

r
(B.91)

∂

∂Z

(
∂ϕ

∂z

)
= −

(cosϕ ∂r
∂Z

)

r2
−

(sinϕ ∂ϕ
∂Z

)

r
(B.92)

∂

∂Z

(
∂λ

∂x

)
=

(∂r
∂Z

sinλ)

(r2 cosϕ)
−

(sinϕ ∂ϕ
∂Z

sinλ)

(r cos2 ϕ)
−

(∂λ
∂Z

cosλ)

(r cosϕ)
(B.93)

∂

∂Z

(
∂λ

∂y

)
= −

(∂λ
∂Z

sinλ)

(r cosϕ)
−

(∂r
∂Z

cosλ)

(r2 cosϕ)
+

(sinϕ ∂ϕ
∂Z

cosλ)

(r cos2 ϕ)
(B.94)

∂

∂Z

(
∂λ

∂z

)
= 0 (B.95)

B.3 Components of Jacobian Matrix G for Zonal Gravity

Often a full spherical harmonic gravity STM is not required; the zonal terms

may give enough accuracy for many applications (see Chapter 5, Section 5.1 for an

example of how to reduce the number of full gravity computations using intermediate

low-fidelity gravity calculations for a local Taylor Series gravity expansion model).

While the zonal results are contained as a special case of the spherical harmonic

175

series, the zonal Jacobian is of sufficient importance that it is developed in explicit

detail here to allow well-optimized codes to more efficiently capture this special case.

In this case, the G matrix in the ECEF frame is computed analogously to that

given in Section B.1 for the spherical harmonic case with the only difference being

that the partials are computed for the zonal acceleration aJ only:

G =


∂
∂x
(aJX)

∂
∂y
(aJX)

∂
∂z
(aJX)

∂
∂x
(aJY)

∂
∂y
(aJY)

∂
∂z
(aJY)

∂
∂x
(aJZ)

∂
∂y
(aJZ)

∂
∂z
(aJZ)

 (B.96)

where each zonal accelearation J2 − J6 is used to find the acceleration, i.e.,

aJx = aJ2X + aJ3X + aJ4X + aJ5X + aJ6X , x→ y, z (B.97)

and only the first five zonal terms are considered [54]:

J2 = 1082.63× 10−6 (B.98)

J3 = −2.52× 10−6 (B.99)

J4 = −1.61× 10−6 (B.100)

J5 = −0.15× 10−6 (B.101)

J6 = 0.57× 10−6 (B.102)

176

The zonal accelerations in terms of inertial coordinates are [54]

aJ2 = −3

2
J2

(
µ

r2

)(
Re

r

)2



(
1− 5

(
z
r

)2)x
r(

1− 5
(
z
r

)2)y
r(

3− 5
(
z
r

)2) z
r

 (B.103)

aJ3 =
1

2
J3

(
µ

r2

)(
Re

r

)3


5
(
7
(
z
r

)3 − 3
(
z
r

))
x
r

5
(
7
(
z
r

)3 − 3
(
z
r

))
y
r

3
(
1− 10

(
z
r

)2
+ 35

3

(
z
r

)4)
 (B.104)

aJ4 =
5

8
J4

(
µ

r2

)(
Re

r

)4



(
3− 42

(
z
r

)2
+ 63

(
z
r

)4)x
r(

3− 42
(
z
r

)2
+ 63

(
z
r

)4)y
r(

15− 70
(
z
r

)2
+ 63

(
z
r

)4) z
r

 (B.105)

aJ5 =
1

8
J5

(
µ

r2

)(
Re

r

)5


3
(
35
(
z
r

)
− 210

(
z
r

)3
+ 231

(
z
r

)5)x
r

3
(
35
(
z
r

)
− 210

(
z
r

)3
+ 231

(
z
r

)5)y
r(

693
(
z
r

)6 − 945
(
z
r

)4
+ 315

(
z
r

)2 − 15
)
 (B.106)

aJ6 = − 1

16
J6

(
µ

r2

)(
Re

r

)6



(
35− 945

(
z
r

)2
+ 3465

(
z
r

)4 − 3003
(
z
r

)6)x
r(

35− 945
(
z
r

)2
+ 3465

(
z
r

)4 − 3003
(
z
r

)6)y
r(

245− 2205
(
z
r

)2
+ 4851

(
z
r

)4 − 3003
(
z
r

)6) z
r


(B.107)

The individual Jacobian G components for the zonal harmonics case, where ϕ =

sin−1
(
z
r

)
, and the comments (on each line following the %) indicate which portion

of the expression corresponds to which zonal term are

177

G
1
1
=

∂ ∂
x
(a

J
X
)
=

5x
2
(7
z
2
+
2
si
n
2
ϕ
r2

−
r2
)(
−

3 2
J
2
µ
R

e
2
)

r9
%
J
2

−
15
x
2
(2
1z

3
−
7r

2
z
+
7
si
n
3
ϕ
r3

−
si
n
ϕ
r3
)(
−

1 2
J
3
µ
R

e
3
)

r1
1

%
J
3

−
21
x
2
(3
3z

4
−
18
r2
z2

+
12

si
n
4
ϕ
r4

−
4
si
n
2
ϕ
r4

+
r4
)(
−

5 8
J
4
µ
R

e
4
)

r1
3

%
J
4

−
21
x
2
(4
29
z5

−
33
0r

2
z3

+
45
r4
z
+
16
5
si
n
5
ϕ
r5

−
90

si
n
3
ϕ
r5

+
5
si
n
ϕ
r5
)(
−

J
5 8
µ
R

e
5
)

r1
5

%
J
5

+
63
x
2
(7
15
z6

−
71
5r

2
z4

+
16
5r

4
z2

+
28
6
si
n
6
ϕ
r6

−
22
0
si
n
4
ϕ
r6

+
30

si
n
2
ϕ
r6

−
5r

6
)(

J
6

1
6
µ
R

e
6
)

r1
7

%
J
6

(B
.1
08
)

G
1
2
=

∂ ∂
y
(a

J
X
)
=

5x
y
(7
z2

+
2
si
n
2
ϕ
r2

−
r2
)(
−

3 2
J
2
µ
R

e
2
)

r9
%
J
2

−
15
x
y
(2
1z

3
−
7r

2
z
+
7
si
n
3
ϕ
r3

−
si
n
ϕ
r3
)(
−

1 2
J
3
µ
R

e
3
)

r1
1

%
J
3

−
21
x
y
(3
3z

4
−
18
r2
z2

+
12

si
n
4
ϕ
r4

−
4
si
n
2
ϕ
r4

+
r4
)(
−

5 8
J
4
µ
R

e
4
)

r1
3

%
J
4

−
21
x
y
(4
29
z5

−
33
0r

2
z3

+
45
r4
z
+
16
5
si
n
5
ϕ
r5

−
90

si
n
3
ϕ
r5

+
5
si
n
ϕ
r5
)(
−

J
5 8
µ
R

e
5
)

r1
5

%
J
5

+
63
x
y
(7
15
z6

−
71
5r

2
z4

+
16
5r

4
z2

+
28
6
si
n
6
ϕ
r6

−
22
0
si
n
4
ϕ
r6

+
30

si
n
2
ϕ
r6

−
5r

6
)(

J
6

1
6
µ
R

e
6
)

r1
7

%
J
6

(B
.1
09
)

178

G
1
3
=

∂ ∂
z
(a

J
X
)
=

5x
(7
√ y2

+
x
2
z3

+
2
co
s
ϕ
si
n
ϕ
r2
z2

−
r2
√ y2

+
x
2
z
−

2
co
s
ϕ
si
n
ϕ
r4
)(
−

3 2
J
2
µ
R

e
2
)

r9
√ y2

+
x
2

%
J
2

−
15
x
z(
21
z3

−
7r

2
z
+
7
si
n
3
ϕ
r3

−
si
n
ϕ
r3
)(
−

1 2
J
3
µ
R

e
3
)

r1
1

%
J
3

z r

(x(
(8
4
z
2
)

r
3

−
(2
5
2
z
4
)

r
5

) (−
5 8
J
4
µ
R

e
4
)

r7
−

7x
((6

3
z
4
)

r
4

−
(4
2
z
2
)

r
2

+
3) (−

5 8
J
4
µ
R

e
4
)

r8

)

−
si
n
ϕ
(2
52

co
s
ϕ
si
n
3
ϕ
−
84

co
s
ϕ
si
n
ϕ
)x
z
(−

5 8
J
4
µ
R

e
4
)

co
s
ϕ
r9

%
J
4

z r

(3x
((−

1
1
5
5
z
5
)

r
6

+
(6
3
0
z
3
)

r
4

−
(3
5
z
)

r
2

) (−
J
5 8
µ
R

e
5
)

r8
−

24
x
((2

3
1
z
5
)

r
5

−
(2
1
0
z
3
)

r
3

+
(3
5
z
)

r

) (−
J
5

8
µ
R

e
5
)

r9

)

−
3
si
n
ϕ
(1
15
5
co
s
ϕ
si
n
4
ϕ
−
63
0
co
s
ϕ
si
n
2
ϕ
+
35

co
s
ϕ
)x
z(
−

J
5 8
µ
R

e
5
)

co
s
ϕ
r1

0
%
J
5

z r

(x(
(1
8
0
1
8
z
6
)

r
7

−
(1
3
8
6
0
z
4
)

r
5

+
(1
8
9
0
z
2
)

r
3

) (J
6

1
6
µ
R

e
6
)

r9

−
9x
((−

3
0
0
3
z
6
)

r
6

+
(3
4
6
5
z
4
)

r
4

−
(9
4
5
z
2
)

r
2

+
35
) (J

6

1
6
µ
R

e
6
)

r1
0

)

−
si
n
ϕ
(−

18
01
8
co
s
ϕ
si
n
5
ϕ
+
13
86
0
co
s
ϕ
si
n
3
ϕ
−

18
90

co
s
ϕ
si
n
ϕ
)x
z(

J
6

1
6
µ
R

e
6
)

co
s
ϕ
r1

1
%
J
6

(B
.1
10
)

179

G
2
1
=

∂ ∂
x
(a

J
Y
)
=

5x
y
(7
z2

+
2
si
n
ϕ
2
r2

−
r2
)(

−
3 2
J
2
µ
R

e
2
)

r9
%
J
2

−
15
x
y
(2
1z

3
−
7r

2
z
+
7
si
n
ϕ
3
r3

−
si
n
ϕ
r3
)(

−
1 2
J
3
µ
R

e
3
)

r1
1

%
J
3

−
21
x
y
(3
3z

4
−
18
r2
z2

+
12

si
n
ϕ
4
r4

−
4
si
n
ϕ
2
r4

+
r4
)(

−
5 8
J
4
µ
R

e
4
)

r1
3

%
J
4

−
21
x
y
(4
29
z5

−
33
0r

2
z3

+
45
r4
z
+
16
5
si
n
ϕ
5
r5

−
90

si
n
ϕ
3
r5

+
5
si
n
ϕ
r5
)(

−
J
5

8
µ
R

e
5
)

r1
5

%
J
5

+
63
x
(7
15
y
z
6
−

71
5r

2
y
z4

+
16
5r

4
y
z
2
−
5r

6
y
+
28
6
si
n
ϕ
6
r6
x
−

22
0
si
n
ϕ
4
r6
x
+
30

si
n
ϕ
2
r6
x
)(

J
6

1
6
µ
R

e
6
)

r1
7

%
J
6

(B
.1
11
)

G
2
2
=

∂ ∂
y
(a

J
Y
)
=

5y
2
(7
z2

+
2
si
n
ϕ
2
r2

−
r2
)(

−
3 2
J
2
µ
R

e
2
)

r9
%
J
2

−
15
y
2
(2
1z

3
−

7r
2
z
+
7
si
n
ϕ
3
r3

−
si
n
ϕ
r3
)(

−
1 2
J
3
µ
R

e
3
)

r1
1

%
J
3

−
21
y
2
(3
3z

4
−

18
r2
z2

+
12

si
n
ϕ
4
r4

−
4
si
n
ϕ
2
r4

+
r4
)(

−
5 8
J
4
µ
R

e
4
)

r1
3

%
J
4

−
21
y
2
(4
29
z5

−
33
0r

2
z3

+
45
r4
z
+
16
5
si
n
ϕ
5
r5

−
90

si
n
ϕ
3
r5

+
5
si
n
ϕ
r5
)(

−
J
5

8
µ
R

e
5
)

r1
5

%
J
5

(4
50
45
y
2
z6
)(

J
6

1
6
µ
R

e
6
)

r1
7

−
(4
50
45
y
2
z4
)(

J
6

1
6
µ
R

e
6
)

r1
5

+
(1
03
95
y
2
z2
)(

J
6

1
6
µ
R

e
6
)

r1
3

−
(3
15
y
2
)(

J
6

1
6
µ
R

e
6
)

r1
1

+
(1
80
18

si
n
ϕ
6
x
y
)(

J
6

1
6
µ
R

e
6
)

r1
1

−
(1
38
60

si
n
ϕ
4
x
y
)(

J
6

1
6
µ
R

e
6
)

r1
1

+
(1
89
0
si
n
ϕ
2
x
y
)(

J
6

1
6
µ
R

e
6
)

r1
1

%
J
6

(B
.1
12
)

180

G
2
3
=

∂ ∂
z
(a

J
Y
)
=

5y
(7
√ y2

+
x
2
z3

+
2
co
s
ϕ
si
n
ϕ
r2
z2

−
r2
√ y2

+
x
2
z
−

2
co
s
ϕ
si
n
ϕ
r4
)(

−
3 2
J
2
µ
R

e
2
)

r9
√ y2

+
x
2

%
J
2

−
15
y
z(
21
z3

−
7r

2
z
+
7
si
n
3
ϕ
r3

−
si
n
ϕ
r3
)(

−
1 2
J
3
µ
R

e
3
)

r1
1

%
J
3

z r

(y(
(8
4
z
2
)

r
3

−
(2
5
2
z
4
)

r
5

) (−
5 8
J
4
µ
R

e
4
)

r7
−

7y
((6

3
z
4
)

r
4

−
(4
2
z
2
)

r
2

+
3) (−

5 8
J
4
µ
R

e
4
)

r8

)

−
si
n
ϕ
(2
52

co
s
ϕ
si
n
3
ϕ
−

84
co
s
ϕ
si
n
ϕ
)y
z(

−
5 8
J
4
µ
R

e
4
)

co
sϕ
r9

%
J
4

−
21
y
z(
42
9z

5
−

33
0r

2
z3

+
45
r4
z
+
16
5
si
n
5
ϕ
r5

−
90

si
n
3
ϕ
r5

+
5
si
n
ϕ
r5
)(

−
J
5

8
µ
R

e
5
)

r1
5

%
J
5

z r

(y(
(1
8
0
1
8
z
6
)

r
7

−
(1
3
8
6
0
z
4
)

r
5

+
(1
8
9
0
z
2
)

r
3

) (J
6

1
6
µ
R

e
6
)

r9
−

9y
(−

(3
0
0
3
z
6
)

r
6

+
(3
4
6
5
z
4
)

r
4

−
(9
4
5
z
2
)

r
2

+
35
) (J

6

1
6
µ
R

e
6
)

r1
0

)

−
si
n
ϕ
(−

18
01
8
co
s
ϕ
si
n
5
ϕ
+
13
86
0
co
s
ϕ
si
n
3
ϕ
−

18
90

co
s
ϕ
si
n
ϕ
)x
z
(J

6

1
6
µ
R

e
6
)

co
s
ϕ
r1

1
%
J
6

(B
.1
13
)

181

G
3
1
=

∂ ∂
x
(a

J
Z
)
=

5x
z(
7z

2
+
2
si
n
2
ϕ
r2

−
3r

2
)(

−
3 2
J
2
µ
R

e
2
)

r9
%
J
2

+
5x

(6
3z

4
−
42
r2
z2

+
28

si
n
4
ϕ
r4

−
12

si
n
2
ϕ
r4

+
3r

4
)(

−
1 2
J
3
µ
R

e
3
)

r1
1

%
J
3

+
7x
z(
99
z4

−
90
r2
z2

+
36

si
n
4
ϕ
r4

−
20

si
n
2
ϕ
r4

+
15
r4
)(

−
5 8
J
4
µ
R

e
4
)

r1
3

%
J
4

+
21
x
(4
29
z
6
−

49
5r

2
z4

+
13
5r

4
z2

+
19
8
si
n
6
ϕ
r6

−
18
0
si
n
4
ϕ
r6

+
30

si
n
2
ϕ
r6

−
5r

6
)(

−
J
5

8
µ
R

e
5
)

r1
5

%
J
5

−
63
x
z(
71
5z

6
−
10
01
r2
z4

+
38
5r

4
z2

+
28
6
si
n
6
ϕ
r6

−
30
8
si
n
4
ϕ
r6

+
70

si
n
2
ϕ
r6

−
45
r6
)(

J
6

1
6
µ
R

e
6
)

r1
7

%
J
6

(B
.1
14
)

G
3
2
=

∂ ∂
y
(a

J
Z
)
=

5y
z
(7
z2

+
2
si
n
2
ϕ
r2

−
3r

2
)(

−
3 2
J
2
µ
R

e
2
)

r9
%
J
2

+
(3
15
y
z4
)(

−
1 2
J
3
µ
R

e
3
)

r1
1

−
(2
10
y
z
2
)(

−
1 2
J
3
µ
R

e
3
)

r9
+

(1
40

si
n
4
ϕ
y
)(

−
1 2
J
3
µ
R

e
3
)

r7
−

(6
0
si
n
2
ϕ
y
)(

−
1 2
J
3
µ
R

e
3
)

r7

+
(1
5y

)(
−
1 2
J
3
µ
R

e
3
)

r7
%
J
3
+

7y
z(
99
z4

−
90
r2
z2

+
36

si
n
4
ϕ
r4

−
20

si
n
2
ϕ
r4

+
15
r4
)(

−
5 8
J
4
µ
R

e
4
)

r1
3

%
J
4

+
21
y
(4
29
z6

−
49
5r

2
z4

+
13
5r

4
z2

+
19
8
si
n
6
ϕ
r6

−
18
0
si
n
4
ϕ
r6

+
30

si
n
2
ϕ
r6

−
5r

6
)(

−
J
5

8
µ
R

e
5
)

r1
5

%
J
5

−
63
y
z(
71
5z

6
−

10
01
r2
z4

+
38
5r

4
z2

+
28
6
si
n
6
ϕ
r6

−
30
8
si
n
4
ϕ
r6

+
70

si
n
2
ϕ
r6

−
45
r6
)(

J
6

1
6
µ
R

e
6
)

r1
7

%
J
6

(B
.1
15
)

182

G
3
3
=

∂ ∂
z
(a

J
Z
)
=

5z
(7
√ y2

+
x
2
z3

+
2
co
s
ϕ
si
n
ϕ
r2
z2

−
3r

2
√ y2

+
x
2
z
−
2
co
s
ϕ
si
n
ϕ
r4
)(

−
3 2
µ
R

2 e
J
2
)

r9
√ y2

+
x
2

%
J
2

z r

(3(
(1
4
0
z
4
)

(3
r
5
)
−

(2
0
z
2
)

r
3

) (−
1 2
µ
R

3 e
J
3
)

r5
−

15
((−

3
5
z
4
)

(3
r
4
)

+
(1
0
z
2
)

r
2

−
1) (−

1 2
µ
R

3 e
J
3
)

r6

)

−
3
si
n
ϕ
(20

co
s
ϕ
si
n
ϕ
−

1 3
(1
40

co
s
ϕ
si
n
3
ϕ
)) z(

−
1 2
µ
R

3 e
J
3
)

co
s
ϕ
r7

%
J
3

z r

(z(
(2
5
2
z
4
)

r
5

−
(1
4
0
z
2
)

r
3

) (−
5 8
µ
R

4 e
J
4
)

r7
−

7z
((−

6
3
z
4
)

r
4

+
(7
0
z
2
)

r
2

−
15
) (−

5 8
µ
R

4 e
J
4
)

r8
))

−
si
n
ϕ
(1
40

co
s
ϕ
si
n
ϕ
−

25
2
co
s
ϕ
si
n
3
ϕ
)z

2
(−

5 8
µ
R

4 e
J
4
)

co
s
ϕ
r9

%
J
4

z r

(((4
1
5
8
z
6
)

r
7

−
(3
7
8
0
z
4
)

r
5

+
(6
3
0
z
2
)

r
3

) (−
1 8
µ
R

5 e
J
5
)

r7
−

7(−
(6
9
3
z
6
)

r
6

+
(9
4
5
z
4
)

r
4

−
(3
1
5
z
2
)

r
2

+
15
) (−

1 8
µ
R

5 e
J
5
)

r8

)

−
si
n
ϕ
(−

41
58

co
s
ϕ
si
n
5
ϕ
+
37
80

co
s
ϕ
si
n
3
ϕ
−

63
0
co
s
ϕ
si
n
ϕ
)z
(−

1 8
µ
R

5 e
J
5
)

co
s
ϕ
r9

%
J
5

z r

(z(
(−

1
8
0
1
8
z
6
)

r
7

+
(1
9
4
0
4
z
4
)

r
5

−
(4
4
1
0
z
2
)

r
3

) (
1 1
6
µ
R

6 e
J
6
)

r9
−

9z
((3

0
0
3
z
6
)

r
6

−
(4
8
5
1
z
4
)

r
4

+
(2
2
0
5
z
2
)

r
2

−
31
5) (

1 1
6
µ
R

6 e
J
6
)

r1
0

)

−
si
n
ϕ
(1
80
18

co
s
ϕ
si
n
5
ϕ
−

19
40
4
co
s
ϕ
si
n
3
ϕ
+
44
10

co
s
ϕ
si
n
ϕ
)z

2
(
1 1
6
µ
R

6 e
J
6
)

co
s
ϕ
r1

1
%
J
6

(B
.1
16
)

183

B.4 Jacobian Matrix G for Two-Body Gravity

This Jacobian may be used for low-fidelity models (for example, the two-body

STM may be used in a shooting method [66]). The two-body gravity model provides

a simple expression for the G matrix:

G =
µ

r5


3x2 − r2 3xy 3xz

3xy 3y2 − r2 3yz

3xz 3yz 3z2 − r2

 (B.117)

B.5 Partials of Associated Legendre Functions

Computation of the STM for the spherical harmonic gravity case (see Chapter

4, Section 4.3 and also Sections B.1 and B.2 of this appendix) requires the partial

derivative of Pnm with respect to ϕ, where Cnm and Snm are the normalized Stokes

coefficients determined from satellite motion observations, and Nnm is a scale factor.

The first and second partials of the ALFs are incorporated in the calculations for the

partials of the gravity potential, U , through the computation of the corresponding

ALFs and the appropriate scale factors [52]. The following known relationships are

used for these derivations [34]:

∂

∂u
Anm(u) = An,m+1(u) (B.118)

∂2

∂u2
Anm(u) = An,m+2(u) (B.119)

∂

∂ϕ
Anm(sinϕ) =

∂Anm(sinϕ)

∂ sinϕ

∂ sinϕ

∂ϕ
=
∂Anm(sinϕ)

∂ sinϕ
cosϕ (B.120)

184

The derived ALFs are related to the conventional Legendre functions in terms of

latitute ϕ through [34]:

Pnm(sinϕ) = cosm ϕAnm(sinϕ) (B.121)

Starting with the above equation and using the product rule,

∂Pnm(sinϕ)

∂ϕ
= cosm ϕ

∂Anm(sinϕ)

∂ϕ
−m sinϕ cosm−1 ϕAnm(sinϕ) (B.122)

This equation is rewritten using Eq. (B.121) as

∂Pnm(sinϕ)

∂ϕ
= cosm ϕ

∂Anm(sinϕ)

∂ϕ
−m tanϕ cosm ϕAnm(sinϕ)

= cosm ϕ
∂Anm(sinϕ)

∂ϕ
−m tanϕPnm(sinϕ)

(B.123)

Using Equations (B.118) and (B.121), the final equation becomes

∂Pnm(sinϕ)

∂ϕ
= Pn,m+1(sinϕ)−m tanϕPnm(sinϕ) (B.124)

Similarly, an expression for ∂2Pnm

∂ϕ2 is derived.

∂2Pnm(sinϕ)

∂ϕ2
=
∂Pn,m+1(sinϕ)

∂ϕ
−m sec2 ϕPnm(sinϕ)−m tanϕ

∂Pnm(sinϕ)

∂ϕ
(B.125)

Substituting Eq. (B.124) into this expression gives

185

∂2Pnm(sinϕ)

∂ϕ2
=
∂Pn,m+1(sinϕ)

∂ϕ

−m sec2 ϕPnm(sinϕ)−m tanϕ
[
Pn,m+1(sinϕ)−m tanϕPnm(sinϕ)

]
(B.126)

Eq. (B.124) is used to write

∂Pn,m+1(sinϕ)

∂ϕ
= Pn,m+2(sinϕ)− (m+ 1) tanϕPn,m+1(sinϕ) (B.127)

Therefore, the final expression for the second partial is

∂2Pnm(sinϕ)

∂ϕ2
= Pn,m+2(sinϕ)− (2m+ 1) tanϕPn,m+1(sinϕ)

+m(m tan2 ϕ− sec2 ϕ)Pnm(sinϕ)

(B.128)

In the code, the term Pn,m+1(sinϕ) is multiplied by the scale factor Fnm, and

the term Pn,m+2(sinϕ) is multiplied by the scale factor Fn,m+1 to compensate for

the original normalization of the ALFs (see Chapter 4, Section 4.3). The final,

normalized equations are then

∂Pnm(sinϕ)

∂ϕ
= Pn,m+1(sinϕ)Fnm −m tanϕPnm(sinϕ) (B.129)

∂2Pnm(sinϕ)

∂ϕ2
= Pn,m+2(sinϕ)Fn,m+1 − (2m+ 1) tanϕPn,m+1(sinϕ)Fnm

+m(m tan2 ϕ− sec2 ϕ)Pnm(sinϕ)

(B.130)

186

APPENDIX C

ENERGY JACOBI INTEGRAL

Jacobi’s integral is simply the classical energy integral, expressed in rotating co-

ordinates and may be used to indicate the accuracy level of a numerical solution [54].

For conservative forces (i.e., gravity), it should remain constant over time. However,

for nonconservative forces (i.e., drag or solar radiation pressure), this integral does

not remain constant and a different method must be used to verify a trajectory’s so-

lution such as round-trip closure. The Jacobi integral is given here for the different

cases used to verify problem solutions throughout this dissertation; for the two-body

case it is known as the Hamiltonian and may be developed analogously to the Jacobi

integral for the restricted three-body problem as given in [68].

C.1 Jacobi Integral for Zonal Harmonic Gravity

In this case, Jacobi’s integral is

T + V = const (C.1)

For Earth, the zonal harmonics are given by

J2 = 1082.63× 10−6 (C.2)

J3 = −2.52× 10−6 (C.3)

J4 = −1.61× 10−6 (C.4)

187

J5 = −0.15× 10−6 (C.5)

J6 = −0.57× 10−6 (C.6)

The kinetic energy for two-body motion perturbed with zonal harmonics J2 − J6

is simply a function of the velocity:

T =
1

2
v2 (C.7)

The Potential energy is derived from the gravity potential for the two-body ex-

pression plus the first six harmonics [54]:

V = −µ
r
+
J2
2

µ

r

(
Re

r

)2(
3 sin2 ϕ− 1

)
(C.8)

+
J3
2

µ

r

(
Re

r

)3(
5 sin3 ϕ− 3 sinϕ

)
(C.9)

+
J4
8

µ

r

(
Re

r

)4(
35 sin4 ϕ− 30 sin2 ϕ+ 3

)
(C.10)

+
J5
8

µ

r

(
Re

r

)5(
63 sin5 ϕ− 70 sin3 ϕ+ 15 sinϕ

)
(C.11)

+
J6
16

µ

r

(
Re

r

)6(
231 sin6 ϕ− 315 sin4 ϕ+ 105 sin2 ϕ− 5

)
(C.12)

where µ is the gravitational constant, Re is the Earth’s radius, r is the radius

of the spacecraft, and ϕ is the third angle expressing spherical coordinates (r, θ, ϕ)

using the right-hand rule. Notice that the longitude λ appears because this potential

corresponds to a body of revolution about the z-axis. Thus, the difference between

188

the between the ECI and the ECEF frames do not need to be distinguished when

taking the gradient of the “zonal only” potential function.

C.2 Jacobi Integral for Spherical Harmonic Gravity

For spherical harmonic gravity, Jacobi’s integral is

T + V + A = const (C.13)

The kinetic energy for two-body motion perturbed with an arbitrary order and

degree spherical harmonic gravity is simply a function of the velocity:

T =
1

2
v2 (C.14)

The spherical harmonic gravity potential is expressed in Earth-fixed coordinates

as (see Chapter 4 for more details):

V = U(r, ϕ, λ) =
µ

r

[
1 +

∞∑
n=2

n∑
m=0

(Re

r

)n
Pnm(sinϕ)

[
Cnm cos(mλ) + Snm sin(mλ)

]]
(C.15)

The additional term, A, is computed as a function of the Earth’s rotation ω =

7.2921× 10−5 rad/s, and the Earth-fixed x and y components of the position vector.

A = −1

2
ω2(r2x + r2y) (C.16)

189

APPENDIX D

CANONICAL UNITS FOR CARTESIAN COORDINATES

Canonical units are used for the p-iteration and MPS shooting methods as de-

scribed in Chapter 6, as well as for a suboptimal control formulation as described

in Chapter 7, though they could be used in practically any simulation given in this

dissertation. Additionally, the conversion to/from canonical units for the State Tran-

sition Matrix (STM) corresponding with Cartesian coordinates is given in Chapter

4, Section 4.7.2.

Using canonical (non-dimensional) coordinates normalizes values associated with

a reference orbit so that the number of significant figures is relatively the same. In

many cases, for instance, using metric units leads to position terms that are several

orders of magnitude larger than velocity terms. These non-dimensional units are

mainly used to “bring order” to the equations and make both position and velocity

coordinates be of order 1 in the vicinity of the reference orbit. In addition, using

canonical units means that the values are much smaller than when using physical

units, which allows for more significant figures to the right of the decimal point such

that a digital computer (with a finite amount of storage space) can give a more

precise solution than is possible using larger metric units.

To convert to canonical units, distances and time are scaled with respect to ref-

erence distances and time scales that are more appropirate for celestial motion. The

choice of these scaling factors depends upon traditions associated with the central

celestial body as the “primary” in the particular discussion, as described in the next

few sections [54].

Consider the perturbed two-body problem,

190

d2r

dt2
= − µ

r3
r+ ad (D.1)

As shown in Chapter 4, Section 4.7.2, if a non-dimensional set of coordinates are

introduced by defining

R⃗ ≡ r

r⊕
(D.2)

and

|R⃗| = R ≡ r

r⊕
(D.3)

then the non-dimensional two-body equations of motion can be written as

d2R⃗
dτ 2

= − 1

R3
R⃗+Ad (D.4)

with

τ =

√
µ⊕

r3⊕
t (D.5)

dτ =

√
µ⊕

r3⊕
dt (D.6)

D.1 Earth-Centered Motion

When a spacecraft is orbiting the Earth, or any solar body other than the Sun, a

distance unit DU is used to normalize motion variables. This DU is typically equal

to the planet’s equatorial distance req. For the Earth,

191

1DU⊕ = 6378.14km (D.7)

The reference velocity is the circular orbit speed at 1 DU, and is the planet’s

critical speed, again for Earth:

vref = 1
DU⊕

TU⊕
= 7.9054km/s (D.8)

The Earth’s TU measurement in metric units is

TU =
1DU⊕

vref
≈ 806.8117s (D.9)

The gravitational constant for the Earth is then set to unity:

µ⊕ = 1
DU3

⊕

TU2
⊕

(D.10)

D.2 Heliocentric Motion

For heliocentric motion, the reference distance used is an astronautical unit, or

AU. This distance is approximately the semimajor axis of the Earth’s approximately

circular orbit about the Sun.

1AU = 149, 597, 870.691 km (D.11)

Normalizing all distances by 1 AU relates all distances to the Earth/sun distance,

allowing for more intuitive planetary motion simulations.

Next, the canonical time unit TU is chosen such that the velocity in a circular

orbit with a radius equal to 1 AU assumes a value of 1. In other words, during 1 TU

an object moves through one radian along a circular orbit with a radius of 1 AU.

192

This means that

vref = 1
AU

TU⊙
≈ 29.785km/s (D.12)

or

TU⊙ =
1AU

vref
= 5.02264× 106s (D.13)

For the heliocentric case, the gravitational constant of the sun is unity as well:

µ⊙ = 1
AU3

TU2
⊙

(D.14)

D.3 Conversion Script

To convert from cartesian to canonical units, the following computations are

performed, where the user inputs the values for µ and DU for the given position r,

velocity v, acceleration a, and vector of time steps t.

TU =

√
DU3

µ
(D.15)

pos =
r

DU
(D.16)

vel =
v

DU
TU (D.17)

accel =
a

DU
TU2 (D.18)

193

T =
t

TU
(D.19)

Similarly, to convert from canonical to cartesian units, the following computations

are performed.

TU =

√
DU3

µ
(D.20)

r = posDU (D.21)

v = vel
DU

TU
(D.22)

a = accel
DU

TU2
(D.23)

T = tTU (D.24)

194

APPENDIX E

COMPUTE CLUSTER AT THE LAND, AIR, AND SPACE ROBOTICS

LABORATORY (LASR) FOR SPACE SITUATIONAL AWARENESS (SSA)

The studies performed during this dissertation are or may be implemented on a

compute cluster using parallel computation. This compute cluster has one front-end

machine with 15 compute nodes. Each node has 64 GB RAM and 24 processor

cores. The front-end node provides the user a connection to the cluster and also

starts/monitors jobs. The jobs are run on the compute nodes and are managed by

Sun Grid Engine (SGE), which is a resource management software that allows cluster

resources to be used effectively.

The full specifications for the compute cluster are as follows [36]. The ideal

computational capability of the LASR SSA Compute Cluster is 2 TFLOPS.

Head Node:

� 2x Intel Xeon® Processor E5-2630 v2

– 6 Cores

– 2.6 GHz

– 3.1 GHz Turbo Boost

� 64 GB DDR3 1600 Memory

� 500 GB Raid 5 Hard Drive

� 6x Gigabit Ethernet

195

� Redundant Power Supply with 3000VA UPS

� PCI Express 2.0 expansion slots for accelerator processors (GPUs)

Compute Nodes (x15):

� 2x Intel Xeon® Processor E5-2630 v2

– 6 Cores

– 2.6 GHz

– 3.1 GHz Turbo Boost

� 64 GB DDR3 1600 Memory

� 500 GB Hard Drive

� 6x Gigabit Ethernet

� PCI Express 2.0 expansion slots for accelerator processors (GPUs)

Software:

� Centos 6.5 Operating System

� MPICH 3 Message Passing Interface

� Slurm (Simple Linux Utility for Resource Management)

� GNU C/C++/Fortran compilers

� Locally hosted yum package manager repository

196

