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ABSTRACT

Many applications such as production optimization and reservoir management are

computationally demanding due to a large number of forward simulations. Typically, each

forward simulation involves multiple scales and is computationally expensive. The main

objective of this dissertation is to develop and apply both local and global model-order

reduction techniques to facilitate subsurface flow modeling.

We develop a POD-DEIM global model reduction method for multi-phase flow simula-

tion. The approach entails the use of Proper Orthogonal Decomposition (POD)- Galerkin

projection, and Discrete Empirical Interpolation Method (DEIM). POD technique con-

structs a small POD subspace spanned by a set of global basis that can approximate the

solution space. The reduced system is set up by projecting the full-order system onto the

POD subspace. Discrete Empirical Interpolation Method (DEIM) is used to reduce the

nonlinear terms in the system. DEIM overcomes the shortcomings of POD in the case of

nonlinear PDEs by retaining nonlinearities in a lower dimensional space. The POD-DEIM

global reduction method enjoys the merit of significant complexity reduction.

We also propose an online adaptive global-local POD-DEIM model reduction method.

This unique global-local online combination allows (1) developing local indicators that are

used for both local and global updates; (2) computing global online modes via local mul-

tiscale basis functions. The multiscale basis functions consist of offline and some online

local basis functions. The main contribution of the method is that the criteria for adap-

tivity and the construction of the global online modes are based on local error indicators

and local multiscale basis functions which can be cheaply computed. The approach is par-

ticularly useful for situations where one needs to solve the reduced system for inputs or
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controls that result in a solution outside the span of the snapshots generated in the offline

stage.

Another aspect of my dissertation is the development of a local model reduction method

for multiscale problems. We use global coupling in the coarse grid level via the mor-

tar framework to link the sub-grid variations of neighboring coarse regions. The mortar

framework offers some advantages, such as the flexibility in the constructions of the coarse

grid and sub-grid capturing tools. By following the framework of the Generalized Multi-

scale Finite Element Method (GMsFEM), we design an enriched multiscale mortar space.

Using the proposed multiscale mortar space, we (1) construct a multiscale finite element

method to solve the flow problem on a coarse grid; (2) design two-level preconditioners as

exact solver for the flow problem.
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1. INTRODUCTION

1.1 Motivation and background

1.1.1 Global model reduction

Optimization and uncertainty quantification are essential components of reservoir man-

agement. The computation for such problems is usually prohibitively time-consuming due

to the the large number of forward flow simulations that need to be performed and the

typically large dimension of the simulation models. Reduced order modeling techniques

(ROMs) are powerful tools for such time-critical applications. ROMs seek to replace large-

scale computational models with smaller approximations of these models that are capable

of faithfully reproducing their essential features at reduced computational cost.

Many local, global, and global-local model reduction techniques have been developed.

Next we give a brief review of these techniques. Most of the global reduction methods

are based on the technique of projecting the full-order states onto a low dimension rep-

resentations of global basis functions. The approaches to construct these basis functions

include the Krylov subspace projection methods [63], the truncated-balance reduction (T-

BR) method [64], and the proper orthogonal decomposition (POD) method [85]. The first

two are equation driven strategies, which are primarily used for linear time invariant mod-

els (LTI). POD is empirical data driven, and is widely used for both linear and nonlinear

models. Next, we give more detailed description of these methods.

Krylov subspace based techniques have emerged as one of the most powerful tools for

reduced-order modeling of large-scale LTI systems. The reduced bases are generated by

approximating eigenvectors corresponding to the largest eigenvalues. For Krylov subspace

based techniques, they have the advantages of low computational cost, and the ease of

generating the projection basis. However, lack of provable error bounds, and inability to
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preserve the original system’s stability and passivity are their limitations.

TBR constructs the basis matrix by exploiting the structure of the system of equations.

This method has global error bounds on the accuracy of the resulting reduced model.

However, its computational cost is O(N3), N is the number of unknowns of the full-order

system. In the context of fluid flow simulation, TBR has been applied to single-phase flow

by Zandvliet [118], and two-phase flow by Heijn et al. [70]. In [102], Rowley applied

TBR to fluid dynamics problems.

POD was first introduced by Pearson [93] in 1901 as an approach to deal with coherent

structure in dynamic systems. POD was successfully applied to a number of areas [66, 80,

103, 21, 18, 88, 100, 111, 110, 70, 23, 59]. For ROM procedures based on POD projection,

the process typically consists of an offline stage and an online stage. In the offline stage,

snapshots are collected from experimental data or from forward simulations, then POD

constructs basis functions, known as spatial modes, from the snapshots by a singular value

decomposition (SVD). By projection onto the subspace spanned by the basis functions, the

reduced model for the problem of interest is constructed. In the online stage, the reduced

model is solved. Computational complexity is reduced since only relatively few basis

functions must be retained.

However, for nonlinear problems, POD projection alone is not sufficient. The reason

is that the cost to evaluate the projected nonlinear function is as expensive as evaluat-

ing the original system. To lower the computational cost of dealing with nonlinearities,

Astrid et al. [15] proposed Missing Point Estimation (MPE), Cardoso et al. [22] proposed

Trajectory Piecewise Linearization (TPWL) to linearize the nonlinear functions around

several known states; Chaturantabut et al. [25] proposed the Discrete Empirical Interpo-

lation Method (DEIM) to approximate a nonlinear function by combining projection with

interpolation. Next we briefly discuss these three approaches.

To improve the computational efficiency of POD, Astrid et al. [15] proposed MPE for
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large scale linear time-varying (LTV) and nonlinear models. In principle, MPE constructs

POD basis from a subset of the spatial domain instead of the whole spatial domain. A

restricted POD basis is obtained by extracting some rows of the standard POD basis vectors

corresponding to the selected grid blocks. The reduced order system is constructed by

projecting the corresponding subset of the governing equations onto the subspace spanned

by the restricted POD basis. Astrid et al. [15] introduced two algorithms to select the

subset of the grid blocks. Both algorithms seek to limit the growth of the condition number

of the matrix formed by the restricted POD basis. It is shown in [15], by applying MPE

with POD to a problem of temperature distribution in a glass melt feeder, a speed-up of

5.3 has been achieved compared with the POD reduced order model. Cardoso et al. [23]

applied MPE to multiphase flow problems.

TPWL was introduced by Rewieński [101]. The main idea of TPWL is to represent

the nonlinear model as a weighted combination of the piecewise linear models at selected

points along its trajectory. It has been implemented in conjunction with other reduced

order modeling methods such as Krylov subspace [61, 23], and POD [69]. TPWL works

well for problems with weak nonlinearity. However, for problems with strong nonlinearity,

it is difficult to accurately approximate nonlinear terms by representation of a relatively

small number of linearized models. Another limitation of TPWL is that the selection of

the training trajectories and linearization points are an ad-hoc process [61].

Another alternative to approximate the nonlinear terms is by representation of their

basis vectors at a set of interpolation points. Methods such as Empirical Interpolation

Method (EIM) [87] and Best Point Interpolation Method (BPIM) [90] fall into this catego-

ry. In these methods, basis vectors for the nonlinear terms are constructed from snapshots

of nonlinear terms generated during the training simulations. A small number of interpo-

lation points are used, such that the nonlinear terms are evaluated only over a subset of

the spatial grid blocks instead of the entire spatial domain. EIM selects the interpolation

3



points in a "greedy" way that the n− th interpolation point is placed at the spatial location

where the difference between the n− th basis vector and its approximation using a linear

combination of the first n − 1 basis vectors at the n − 1 interpolation points is greatest.

BPIM chooses the set of interpolation points by solving an n dimensional optimization

problem to minimize the least square error between each snapshot and its approximation

using n interpolation points. The cost of solving the constrained optimization problem

for the optimal set of interpolation points is expensive in comparison with the sub-optimal

interpolation points selected by EIM. Both methods have been used in several application

such as simulation of second order wave propagation [82], inverse parameter estimation

[54], convection-diffusion reaction problem [74], and nonaffine parametrized problems

[62].

Chaturantabut et al. [25] developed a discrete variant of EIM, the Discrete Empirical

Interpolation Method (DEIM), that can be easily implemented on semi-discrete systems.

DEIM focuses on approximating each nonlinear function such that a certain coefficient

matrix can be precomputed. Therefore, the complexity in evaluating the nonlinear term

becomes proportional to the small number of selected interpolation points. DEIM has been

applied to neuron modeling [75], shallow water model [108, 16] and multiphase flow in

porous media [107, 4].

Adaptivity in the context of model reduction has attracted much attention. Offline

adaptive methods [65, 26] seeks to provide a better reduce solution space while the re-

duced system is constructed in the offline stage. However, once the reduced system is

derived, it stays fixed and is kept unchanged in the online stage. Therefore, the online so-

lution relies only on the precomputed information from the offline stage. Online adaptive

methods modify the reduced system during the computations in the online stage. Most of

the existing online adaptive methods [94, 86, 6, 7], however, rely only on precomputed

quantities from the offline stage. These methods work fine when the offline data contains
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representative information of the solution to the problem of interest. However, in many

applications, such as inverse problem and optimization, the final solution path may be d-

ifficult to predict before the problem is solved. Accurate reduction methods for inputs or

controls that result in a solution outside the span of the snapshots generated in the offline

stage are desired. We are motivated to consider online adaptive method by incorporating

new data that becomes available online. Therefore, our method can deal with cases that

the solution of the problem at hand lies out of the span of the snapshots generated in the

offline stage.

1.1.2 Local model reduction

Thanks to the development of reservoir characterization methods and geostatistical

modeling techniques, the description of the reservoir properties can be detailed at multiple

scales. In cases where we care about the details of the fluid flow, such as the presence

of fracture, resolving all the scales with direct simulations are prohibitively expensive.

Moreover, in the context of the aforementioned global reduction method, forward flow

problems with multiple scale and high contrast need to be solved repeatedly. In this re-

spect, efficient methods have been proposed to reduce the dimension of the models while

preserving a certain prescribed accuracy. These methods include numerical upscaling

[115, 41, 1], variational multiscale methods [71, 72], multiscale finite element methods

[47, 49, 10, 29, 53], mixed multiscale finite element methods [31, 27], the multiscale finite

volume method [73], mortar multiscale finite element methods [114, 113, 12, 13], multi-

scale hybrid-mixed finite element methods [9, 68], generalized multiscale finite element

methods [44, 30, 37, 58, 34], and weak Galerkin generalized multiscale finite element

method [89].

Generally speaking, multiscale methods [44, 31, 45] construct an approximation of the

solution on a coarse grid for arbitrary coarse-level inputs. Multiscale techniques provide
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substantial computational savings when forward problems are solved many times because

the same multiscale basis functions (or coarse spaces) can be utilized for all forward simu-

lations. The proposed approaches solve these forward problems on a coarse grid multiple

times and thus can provide a substantial speed-up.

The aforementioned local methods typically use some type of global couplings on

the coarse-grid level to link the sub-grid variations of neighboring coarse regions. In

my dissertation, we will also study a local model reduction technique using the mortar

framework. The mortar framework offers some advantages, such as the flexibility in the

constructions of the coarse grid and sub-grid capturing tools. The framework also gives

a smaller dimensional global system since the degrees of freedom are reduced to coarse

region boundaries.

By following the framework of the GMsFEM, we design an enriched multiscale mor-

tar space. Using the proposed multiscale mortar space, we (1) construct a multiscale finite

element method to solve the flow problem on a coarse grid. The method shares some

common elements with hybridized multiscale methods [50, 51]; (2) design two-level pre-

conditioners as exact solver for the flow problem. It is well known that for high contrast

heterogeneous media, if the coarse problem is not suitably chosen, the performance of

the preconditioner may deteriorate. To deal with this problem, many researchers designed

different types of robust two-level preconditioners with nonstandard coarse problems in

the past several decades. For example, in [105] the authors proposed a nonstandard coarse

space for the elliptic problems with discontinuous coefficients. The idea of using single

multiscale basis to form the coarse space is reported in [60, 91], this method is robust if

the high conductivity does not cross the coarse grid. Using spectral functions to enrich the

coarse space turns out to be very efficient and robust for problems with almost any types

of media [55, 56, 46, 39, 77, 106, 78, 76, 79, 92]. We use the multiscale mortar space as

coarse space for the preconditioners.
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1.2 Dissertation outline

We start in Section 2 to present preliminary background materials. We first introduce

the subsurface flow and transport equations in porous media that will be studied throughout

the dissertation. We will consider these equations for both single- and two-phase flows. We

then briefly review the framework of POD-DEIM global model reduction method. Coarse

and fine grids concept is introduced and basic coarse-grid solution techniques based on

GMsFEM to solve porous media flow equations are also briefly revisited.

In Section 3, we present a global-local POD-DEIM model reduction for fast multi-scale

reservoir simulations in highly heterogeneous porous media. Our approach identifies a low

dimensional structure in the solution space via POD. We introduce an auxiliary variable

(the velocity field) in our model reduction that achieves a high compression of the model.

This compression is achieved because the velocity field is conservative for any low-order

reduced model in our framework, while a typical global model reduction based on POD

Galerkin projection can not guarantee local mass conservation. The lack of mass conser-

vation can be observed in numerical simulations that use finite volume based approaches.

DEIM approximates fine-grid nonlinear functions in Newton iterations. This approach de-

livers an online computational cost that is independent of the fine grid dimension. POD

snapshots are inexpensively computed using local model reduction techniques based on

the GMsFEM which provides (1) a hierarchical approximation of the snapshot vectors, (2)

adaptive computations by using coarse grids, (3) inexpensive global POD operations in

small dimensional spaces on a coarse grid. By balancing the errors of the global and local

reduced-order models, our new methodology provides an error bound in simulations. Our

numerical results, utilizing a two-phase immiscible flow, show a substantial speed-up and

we compare our results with the standard POD-DEIM in a finite volume setup.

In Section 4, we develop an online adaptive global-local POD-DEIM model reduction
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method. The main idea of the proposed method is to use local online indicators to decide

on the global update, which is performed via reduced cost local multiscale basis functions.

This unique global-local online combination allows (1) developing local indicators that are

used for both local and global updates (2) computing global online modes via local mul-

tiscale basis functions. The multiscale basis functions consist of offline and some online

local basis functions. The online adaption is performed by incorporating new data, which

become available at the online stage. Once the criterion for updates is satisfied, we adapt

the reduced system online by changing the POD subspace and the DEIM approximation of

the nonlinear functions. The main contribution of the method is that the criterion for adap-

tion and the construction of the global online modes are based on local error indicators

and local multiscale basis function which can be cheaply computed. Since the adaption

is performed infrequently, the new methodology does not add significant computational

overhead associated with when and how to adapt the global basis. The approach is par-

ticularly useful for situations where it is desired to solve the reduced system for inputs or

controls that result in a solution outside the span of the snapshots generated in the offline

stage. Our method also offers an alternative of constructing a robust reduced system even

if a potential initial poor choice of snapshots is used. Applications to single-phase and

two-phase flow problems demonstrate the efficiency of our method.

In Section 5, we propose a local model reduction method for multicale problems. We

use a global coupling on the coarse-grid level via the mortar framework to link the sub-grid

variations of neighboring coarse regions. The mortar framework offers some advantages,

such as the flexibility in the constructions of the coarse grid and sub-grid capturing tools.

By following the framework of the Generalized Multiscale Finite Element Method (GMs-

FEM), we design an enriched multiscale mortar space. In particular, we first construct

a local snapshot space. Then we select the dominated modes within the snapshot space

using the POD technique. Using the proposed multiscale mortar space, we will construct
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a multiscale finite element method to solve the flow problem on a coarse grid and a pre-

conditioning technique for the fine scale discretization of the flow problem. In particular,

we develop a multiscale mortar mixed finite element method using the mortar space. In

addition, we design a two-level additive preconditioner and a two-level hybrid precondi-

tioner based on the proposed mortar space for the iterative method applied to the fine scale

discretization of the flow problem. We present several numerical examples to demonstrate

the efficiency and robustness of our proposed mortar space with respect to both the coarse

multiscale solver and the preconditioners.

In Section 6, we summarize the contributions made throughout this dissertation.

9



2. PRELIMINARIES

In this section, we introduce preliminary background materials for the rest of the sec-

tions, including the description of the flow-transport model problem, the global POD-

DEIM model reduction framework, coarse and fine grids, and coarse-grid local model

order reduction techniques. We start with the description of the mathematical model prob-

lem.

2.1 Model problem

In the dissertation, we consider a coupled system of flow and transport equations in

heterogeneous porous media. In particular, we study both single- and two-phase flows,

where single-phase flow can be considered as a special case of the two-phase flow systems.

First, we briefly describe the two-phase flow equations. We consider nonlinear immiscible,

incompressible, two-phase (water-oil) flow in heterogeneous porous media in a subsurface

formation (denoted by Ω). The continuity equation, also known as the mass conservation

law for each phase, designated α (where α = w for water, and α = o for oil), is given by

φ
∂sα
∂t

+∇ · uα = qα α = w, o, (2.1)

where φ is the porosity of the medium, which is considered to be constant in this disser-

tation, uα is the phase Darcy velocity, sα is the saturation, and qα is the source term. The

phase velocity is related with pressure through the Darcy’s law:

uα = −κkrα(sα)

µα
(∇pα + ραg∇z), (2.2)
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where κ is the absolute permeability tensor, krα is the relative permeability for phase α,

ρα is the density, g is the magnitude of the gravitational force, z is the depth, pα is the

pressure, and µα is the viscosity. We define the phase relative mobility as λα = krα(sα)
µα

.

Substituting the phase velocities (2.2) into (2.1), we derive two mass-balance equations

with four unknowns: sw, so, pw, po. To close the system, we add the saturation constraint,

and the capillary-pressure relation, which are respectively expressed as:

sw + so = 1, (2.3)

po − pw = pc, (2.4)

where the capillary pressure pc = pc(sw) is a nonlinear function of the water saturation.

We derive the flow-transport system for immiscible, incompressible two-phase flow:

∇ · u = qt in Ω, (2.5)

φ
∂sw
∂t

+∇ · uw = qw in Ω, (2.6)

where u is the total velocity, uw is the water phase Darcy velocity expressed in terms of

the total velocity u, which are respectively written as:

u = −κλt(sw)∇pw − κg
(
λw(sw)ρw + λo(1− sw)ρo

)
∇z − κλo(1− sw)∇pc, (2.7)

uw = fw

(
u− κgλo(ρw − ρo)∇z + κλo∇pc

)
.

Here λt(s) = λw(s) + λo(s) is the total mobility, qt = qw + qo is the total flow rate and

fw(s) =
λw(s)

λt(s)
=

krw(s)

krw(s) + µw
µo
kro(s)

(2.8)
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is the water fractional flow. The term fwu represents viscous forces, the term fwκgλo(ρw−

ρo)∇z represents gravitational forces, and the term fwκλo∇pc represents the capillary

forces.

If we ignore the capillary pressure, then pw = po. Denote p = pw, and there are two

unknowns (p, sw). Once these primary unknowns are computed, so can be determined by

the saturation constraint sw + so = 1. We denote s = sw for the sake of brevity. Without

capillary effects, the total velocity becomes

u = −κλt∇p− κg(λwρw + λoρo)∇z. (2.9)

Put (2.9) into (2.5), we obtain the pressure equation as:

∇ ·
(
− κλt∇p− κg(λwρw + λoρo)∇z

)
= qt. (2.10)

The coupled flow-transport system (with u, p, s as primary variables) is:

∇ ·
(
− κλt(s)∇p− κg(λw(s)ρw + λo(s)ρo)∇z

)
= qt in Ω, (2.11)

u + κλt∇p+ κg(λwρw + λoρo)∇z = 0 in Ω, (2.12)

φ
∂s

∂t
+∇ ·

(
fw(s)(u− κgλo(s)(ρw − ρo)∇z)

)
= qw in Ω, (2.13)

which can be solved with proper initial and boundary conditions.

The system (2.11)-(2.13) is a coupled nonlinear system with an elliptic equation and a

parabolic equation. We solve the system following a sequential method. Saturation from

previous step (or initial condition) is used to compute the saturation-dependent terms in

(2.11), e.g. λt, and then solve (2.11), (2.9) for the total velocity. Then, total velocity

stays constant while saturation is solved from (2.13) and advance in time. Next, with the
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new saturation states, we update the saturation dependent terms in (2.11) and solve for the

velocity states. The process keeps going in this way until the end of the simulation time.

2.2 Global model reduction method using POD-DEIM

In this section, we review the concept of POD-DEIM based global model reduction

method, which can reduce the dimension of large-scale ODE systems regardless of their

origin. A large source of such systems is the semidiscretization of time dependent PDEs.

After spatial discretization for a nonlinear PDE, we get a system of nonlinear ODEs of the

form

d

dt
y(t) = By(t) + f(y(t)), (2.14)

where y(t) ∈ Rn,B ∈ Rn×n is a constant matrix, and f(y(t)) is a nonlinear function.

We start our exposition by reviewing the global model reduction framework. Suppose

k (k � n) number of POD basis {φ1, · · · ,φk} are given. We describe POD basis con-

struction in Section 2.2.1. The solution of (2.14) is approximated as a linear combination

of the POD bases {φ1, · · · ,φk}, i.e., y(t) ≈
∑k

i=1 ỹiφi, which can be written as a matrix

form y(t) = Vkỹ(t)(ỹ ∈ Rk). Here Vk ∈ Rn×k is an orthonormal matrix consisting

of the POD bases {φ1, · · · ,φk}. Substituting y(t) = Vkỹ(t) in (2.14), and by Galerkin

projection of the system (2.14) onto Vk, we get the reduced system of (2.14) (the super

index T means the transpose of a matrix):

d

dt
ỹ(t) = VT

k BVkỹ(t) + VT
k f(Vkỹ(t)). (2.15)

The quality of the above POD Galerkin approximation depends on the choice of the

global POD bases. The POD technique constructs a set of global basis functions from a

singular value decomposition (SVD) of snapshots, which are discrete samples of trajec-
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tories associated with a particular set of boundary conditions and inputs. Therefore, the

empirically generated global bases depend on the sampling method. It is expected that

the samples (snapshots) will be representative of the solution manifold of the problem of

interest. Among the various techniques for obtaining global bases, POD constructs a re-

duced basis that is optimal in the sense that a certain approximation error concerning the

snapshots is minimized. The details of POD are presented in Section 2.2.1.

To evaluate the nonlinear term VT
k f(Vkỹ(t)) in (2.15), we first need to project the

solution from the reduced space to the fine solution space, then evaluate the nonlinear

function f at all the n fine components, finally project the n fine components back onto

Vk. The process results in a cost as expensive as solving the original system. To handle

this in a computational efficient way, we use DEIM [25] to reduce the nonlinear term,

which is reviewed in Section 2.2.2. The DEIM interpolant of f is defined by (U,P). The

DEIM approximation of f is derived, based on (U,P), as

f(y(t)) ≈ U(PTU)−1PT f(y(t)). (2.16)

Put (2.16) back into (2.15), we obtain

d

dt
ỹ(t) = VT

k BVkỹ(t) + VT
k U(PTU)−1PT f(Vkỹ(t)). (2.17)

If the function f evaluates componentwise at its input vector, we can get

d

dt
ỹ(t) = VT

k BVkỹ(t) + VT
k U(PTU)−1︸ ︷︷ ︸

precomputed:k ×m

f(PTVkỹ(t))︸ ︷︷ ︸
m× 1

. (2.18)

Note that the term VT
k U(PTU)−1 in (2.18) does not depend on t, and therefore it can

be precomputed before solving the system of ODEs. Note also that PTVkỹ(t) ∈ Rn
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in (2.18) can be obtained by extracting the rows p1, · · · ,pm of Vk and then multiply-

ing against ỹ, which requires 2mk operations. Therefore, if α(m) denotes the cost of

evaluating m components of f , the complexity for computing this approximation of the

nonlinear term becomes roughly O(α(m) + 4km), which is independent of dimension n

of the full-order system (2.14).

The POD-DEIM model reduction method consists of two stages. In the offline stage,

snapshots for the solution states and nonlinear functions are generated using experimen-

tal data or by running the full-order model several times using different given inputs, for

example, boundary conditions. The boundary conditions that generate representative so-

lution space may not be known a priori. Then, we perform POD on the snapshots to get

the reduced subspaces for the states, and interpolants for the nonlinear functions. The of-

fline stage possibly has a high numerical cost, but it is performed only once. In the online

stage, the approximate solution of the problem is obtained by writing the solution as a

linear combination of the reduced basis, which was fixed at the offline phase. The reduced

model can be used in the online stage many times to yields rapidly the outputs of interest.

Next, we describe in more details the aforementioned process.

2.2.1 Proper Orthogonal Decomposition (POD)

The POD bases in Euclidean space are specified formally in this section. We refer to

[81] for more details on the POD bases in general Hilbert space.

Given a set of snapshots {y1,y2, · · · ,yns} ∈ Rn, let Y = span{y1,y2, · · · ,

yns} and r = dim(Y). A POD bases of dimension k < r consists of a set of orthonormal

vectors {φi}ki=1 ∈ Rn whose linear span best approximates the space Y. The basis set

{φi}ki=1 ∈ Rn is derived by solving the minimization problem

min
{φi}ki=1

ns∑
j

∥∥∥∥∥yj −
k∑
i=1

(yTj φi)φi

∥∥∥∥∥
2

2

(2.19)
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with φTi φj = δij, where δij is the Kronecker delta.

It is easy to get that the solution to (2.19) is given by the set of the left singular vectors

of the snapshot matrix Sy = [y1,y2, · · · ,yns ] ∈ Rn×ns . Applying SVD to Sy, we get

Sy = V Λ WT , (2.20)

where V = [v1, · · · ,vr] ∈ Rn×r, W = [w1, . . . ,wr] ∈ Rns×r are the left and right

projection matrices, and Λ = diag(σ1, · · · , σr) ∈ Rr×r with σ1 ≥ σ2 ≥ · · ·σr > 0. The

rank of Sy is r ≤ min(n, ns). Then the POD bases are {vi}ki=1. The minimum 2-norm

error from approximating the snapshots using the POD bases is then given by

ns∑
j

∥∥∥∥∥yj −
k∑
i=1

(yTj vi)vi

∥∥∥∥∥
2

2

=
r∑

i=k+1

σ2
i . (2.21)

The appropriate number of POD bases (sayNp) to be retained for a prescribed accuracy

can be determined, for example, by means of the fractional energy

E =

√∑Np
i=1 σ

2
i√∑ns

i=1 σ
2
i

. (2.22)

(see discussions in [112] for selecting modes). A small number of POD basis is retained if

the singular values decay fast. This decay depends on the intrinsic dynamics of the system

and the selection of the snapshots. In the next section, we review DEIM, which is applied

to reduce the nonlinear terms.

2.2.2 Discrete Empirical Interpolation Method (DEIM)

In the presence of nonlinearity, the standard POD-Galerkin projection method reduces

dimension in a way that far fewer degrees of freedom are calculated, but the complexity of

evaluating the nonlinear terms remains that of the fine problem. DEIM combines both in-
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terpolation and projection to improve the dimension reduction efficiency of POD-Galerkin

projection method. Specifically, DEIM works in the following way.

In the offline stage, we collect the snapshots of the nonlinear function f(y(t)) as:

{f(y(t1)), · · · , f(y(tM))} ∈ Rn.

To obtain the DEIM basis U ∈ Rn×m, we perform POD to the snapshot matrix (with the

above snapshots as column vectors) and select the first m eigen-vectors corresponding to

the dominant eigen-values. We approximate f as

f = Uc.

Then interpolation is used to compute the coefficients c. The interpolation points are

obtained by the DEIM Algorithm 1 [25]. With U as input, DEIM selects inductively m

distinct interpolation points

{p1, · · · , pm} ∈ {1, · · · , n}

and assemble the DEIM interpolation points matrix P = [ep1 , · · · , epm ] ∈ Rn×m, where

ei ∈ {0, 1}n is the i-th canonical unit vector. In Algorithm 1, the process starts from choos-

ing the first interpolation index j1 ∈ {1, · · · , n} with respect to the entry of the first POD

basis with largest magnitude. The remaining interpolation indices, ji for i = 2, · · · ,m are

selected so that each of them corresponds to the entry with the largest magnitude of the

residual r = U(:, i) − Vc from line 7 of Algorithm 1. The term r is the error between

the input U(:, i) and its approximation Vc from interpolating the bases {U(:, 1), · · · ,U(:

, i− 1)} at the indices {j1, · · · , ji−1}.
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The DEIM interpolant of f is defined by (U,P) as

f(y(t)) ≈ U(PTU)−1PT f(y(t)),

where PT f(y(t)) samples f at m components only.

The error bound for the DEIM approximation is given in LEMMA 2.2.1, see [25].

Lemma 2.2.1. Let f ∈ Rn be an arbitrary vector. (U,P) are as defined in Algorithm 1,

The DEIM approximation for f of order m ≤ n is

f̂ = U(PTU)−1PT f .

An error bound for f̂ is given by

‖f − f̂‖2 ≤ Cε(f),

where C = ‖(PTU)−1‖2, and ε(f) = ‖(I − UUT )f‖2 is the error of the best 2-norm

approximation for f from the space Range(U). The constant C is bounded by

C ≤ (1 +
√

2n)m−1

|eTp1U(:, 1)|
= (1 +

√
2n)m−1‖U(:, 1)‖−1

∞ .

We give an example of reducing a 2-Dimensional nonlinear parametrized function

(modified from the one given in [62]) by using DEIM. Consider a function f : Ω×D→ R

defined as:

f(x, y;µ) =
1√

(x− µ1)2 + (y − µ2)2 + µ2
1

, (2.23)

where (x, y) ∈ Ω = [0.01, 0.99] × [0.01, 0.99] and µ = (µ1, µ2) ∈ [−1, 0] × [−1, 0].

We uniformly discretize the domain Ω into rectangles, with 20 sub-intervals in both x and
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Algorithm 1 Interpolation points for DEIM
Notation: es,k is a standard coordinate vector of length s and with 1 at position k.
Brackets [ ] denote concatenation of two or more matrices. U(:, i) denotes the ith
column of matrix U.

1: Input : Global POD basis matrix U
2: (n,m)← size(U)
3: j1← the position of U(:, 1) with largest absolute entry
4: V = [U(:, 1)],P = [en,j1 ]
5: for i = 2 : n do
6: c← PTVc = PTU(:, i)
7: r←U(:, i)−Vc
8: ji← the position of r with largest absolute entry
9: V← [V,U(:, i)], P← [P, en,ji ]

10: end for
11: Output : P

y directions. Therefore, the full dimension is 441. To generate the snapshots, we select

parameters µ snap = (µsnap
1 , µsnap

2 ) uniformly from the parameter domain D. A set of 256

pairs of parameters are used for the snapshots. In this case, each snapshot corresponds to

a column vector of function values for a given pair of parameter at the 441 grid points. To

capture 99.9% of energy, 11 out of 256 basis must be retained. The first 30 singular values

of these snapshots are shown in Figure 2.1a. Figure 2.1b presents the locations of the first

20 spatial points chosen by the DEIM algorithm using the POD basis as input. Since the

function increase fast near the origin, most of the selected points distribute close to the

origin. In Figure 2.2, we pick any pair parameter µ = (−0.02,−0.5), and compare the

approximation from POD, DEIM with the nonlinear function of dimension 441. We use

11 basis for these approximations, and achieve a good accuracy.

2.3 Coarse and fine grids

Local model reduction techniques such as MsFEM requires the use of coarse and fine

grids. We introduce the notion of coarse and fine grids here. First we divide the compu-
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Figure 2.1: First 30 singular values and first 20 DEIM points.

0

0.5

1

0

0.5

1
0.5

1

1.5

2

Full dim=441, [µ
1
,µ

2
]=[−0.02,−0.5]

0

0.5

1

0

0.5

1
0.5

1

1.5

2

POD: dim=11, relative L2 error:4.4491e−04

0

0.5

1

0

0.5

1
0.5

1

1.5

2

DEIM: dim=11, relative L2 error:1.1−02

Figure 2.2: Comparison of the nonlinear function of dimension 441 with the POD and
DEIM approximation of dimension 11 at µ = (−0.02,−0.5).

20



A fine element T
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Figure 2.3: Illustration of coarse and fine grids.

tational domain Ω into non-overlapping polygonal coarse blocks Ki with diameter O(Hi)

so that Ω = ∪Ni=1Ki. We allow nonconforming decomposition for these blocks. We call

EH a coarse face (edge) of the coarse block Ki if EH = ∂Ki ∩ ∂Kj or EH = ∂Ki ∩ ∂Ω.

Let EH(Ki) be the set of all coarse edges of a coarse block Ki and EH = ∪Ni=1EH(Ki).

In each coarse block Ki, we introduce a shape regular discretization Th(Ki) with rect-

angle elements (denoted as Tj, j = 1, · · · , in) of size hi. We denote the faces (edges) of Tj

by eh. Let Th = ∪Ni=1Th(Ki), Eh(Ki) be the set of all faces of the discretization Th(Ki) and

E0
h(Ki) be the set of all interior edges of the dicretization Th(Ki) and set Eh = ∪Ni=1Eh(Ki).

Figure 2.3 gives an illustration of the design of the two grids, including neighborhoods and

elements subordinated to the coarse discretization.. The black lines represent the coarse

grid, and the gray lines represent the fine grid. For each coarse edge Ei, we define a

coarse neighborhood ωi as the union of all coarse blocks containing the edge Ei, which is

the orange area in the figure. In the following, we introduce briefly the GMsFEM that is

developed based on these two-level grids.
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2.4 Local model reduction method via GMsFEM

Subsurface fluid flow problems usually exhibit multiscales and high contrast. The re-

cently developed GMsFEM is one of the most popular methods to deal with such multicale

problems. The main idea of GMsFEM is to construct a small dimensional solution space

that can be used to approximate the multiscale solution with certain accuracy in an effi-

cient manner. In contrast to the bases in the global reduction framework, the bases from

GMsFEM are constructed locally on the coarse grid.

For the flow-transport system (2.11)-(2.13), the simulation of the flow problem ac-

counts for most of the simulation time, mainly due to the high variability and the strong

heterogeneity exhibited in the permeability field. In this respect, multiscale methods to

simulate the flow problem in the forward simulations can save offline computational time.

Moreover, since an accurate velocity field with conservative property from the flow equa-

tion is important for the simulation of the transport problem, we will consider numerical

methods based on the mixed form of the flow problem.

For the sake of simplicity, we consider the following second order elliptic differential

equation in mixed form:

u+ κ∇p = 0 in Ω, (2.24a)

∇ · u = f in Ω, (2.24b)

with Neumann boundary condition u · n = 0, where Ω ⊂ Rd (d = 2, 3) is a bounded

polyhedral domain with outward unit normal vector n on the boundary, f ∈ L2(Ω), κ

represents the permeability field that varies over multiple spacial scales.

Here, we take the recently developed mixed GMsFEM [31] for illustration, where

fine-scale features are incorporated into a set of coarse-grid basis functions for the flow
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velocities. By using the multiscale basis functions, we can retain efficiency of solving the

flow equation on a coarse grid, while at the same time yield a conservative velocity field on

the underlying fine grid. The main idea of the mixed GMsFEM is to divide the computation

into offline and online stages. During the offline stage, we construct a snapshot space and

then the offline space via spectral decomposition of the snapshot space. At the online stage,

for each input space element, a low-dimensional space in each coarse block is generated

by solving local problems in the offline space. The snapshot space should be large enough

so that the snapshot vectors preserve the essential properties of the solution and provide

a good approximation space. The main feature of the offline space is that it gives a good

solution approximation with fewer basis functions.

As defined in the last section, the coarse neighborhood of the coarse face Ei is ωi =⋃
{Kj ∈ T H;Ei ∈ ∂Kj}. LetNe be the number of coarse faces. Like in [31], we construct

multiscale basis functions for each face Ei, 1 ≤ i ≤ Ne, denoted by Ψi,off
k , 1 ≤ k ≤ li,

where li is the number of basis chosen for face i. The support of these basis functions is

ωi. The offline space is then constructed as:

Voff = span{Ψi,off
k : 1 ≤ k ≤ li, 1 ≤ i ≤ Ne}. (2.25)

Using single-index notation:

Voff = span{Ψoff
k : 1 ≤ k ≤ loff}, (2.26)

where loff is the number of velocity basis from the offline stage. Furthermore, we define

Roff = [ψoff
1 , . . . ,ψ

off
loff

], (2.27)

which maps from the offline space to the fine space, where ψoff
i is a vector containing the
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coefficients in the expansion of Ψoff
i in the fine-grid basis functions.

Let VH = Voff and WH be the space of piecewise constant functions with respect to

the coarse grid, and define V0
H = VH

⋂
{u ∈ VH : u · n = 0 on ∂Ω} as a subspace of

VH consisting of elements with zero normal component on ∂Ω.

The online stage is to find (pH ,uH) ∈ QH ×V0
H such that

∫
Ω

κ−1vH · uH −
∫

Ω

pH∇ · vH = 0 ∀ vH ∈ V0
H , (2.28)∫

Ω

∇ · uHzH =

∫
Ω

fzH ∀ zH ∈ QH . (2.29)

Let Qh × Vh be the piecewise constant polynomials and the standard lowest-order

Raviart-Thomas space for (2.24a)-(2.24b) on the fine grid Th. Then the fine grid solution

(ph,uh) ∈ Qh ×V0
h satisfies:

∫
Ω

κ−1vh · uh −
∫

Ω

ph∇ · vh = 0 ∀ vh ∈ V0
h, (2.30)∫

Ω

∇ · uhzh =

∫
Ω

fzh ∀ zh ∈ Qh, (2.31)

with V0
h = Vh

⋂
{u ∈ Vh : u · n = 0 on ∂Ω}. Its matrix representation is:

 B −CT

C 0


 ~uh

~ph

 =

 0

Fh

 , (2.32)

where ~uh, ~ph are vectors of coefficients in the expansions of the solutions uh ∈ Vh, ph ∈

Qh respectively.

The corresponding matrix form for (2.28)-(2.29) is

 RT
offBRoff −RT

offC
TGH

GT
HCRoff 0


 ~uH

~pH

 =

 0

GT
HFh

 , (2.33)
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where GH is the restriction operator from QH into Qh, and ~uH , ~pH are vectors of coeffi-

cients in the expansions of the solutions uH , pH in the spaces VH and QH .
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3. POD-DEIM MODEL REDUCTION FOR MULTI-PHASE FLOWS ?

3.1 Introduction

In this section, we discuss the construction of reduced-order models based on POD-

DEIM for multiphase flows in heterogeneous porous media, see [117]. The two-phase

incompressible flow problem we consider here can be formulated as a coupled (flow-

transport) system of a pressure equation and a nonlinear saturation (near hyperbolic) equa-

tion. We discretize the pressure equation by mixed finite element method, which solves for

pressure and the Darcy velocity (flux) simultaneously. The velocity field obtained through

mixed finite element method is local mass conservative. In the offline stage, the process

of running training simulations to produce snapshots for velocity can be carried out via

Mixed Generalized Multiscale Finite Element Method (MGMsFEM), which compares to

the fine solver, can save computational cost. Since the velocity snapshots are local mass

conservative, the POD bases obtained through POD are also mass conservative. This char-

acteristic entails that only a few number of velocity POD bases should be retained. The

reduced-order models developed this way have significant model-order reduction as will

be shown in the numerical examples.

The rest of the section is organized as follows. In Section 3.2, we give the space

and time discretization for the two-phase flow system, and briefly discuss the upstream

upwinding scheme for the phase fluxes. In Section 3.3, we describe the construction of

reduced model for the two-phase flow system by using POD-DEIM. In Section 3.4, we

present several numerical examples to demonstrate the efficiency of our method.

?Reprinted with permission from "Fast Multiscale Reservoir Simulations With POD-DEIM Model Re-
duction" by Y. Yang, M. Ghasemi, E. Gildin, Y. Efendiev and V. Calo, SPE Journal, doi:10.2118/173271-PA,
2016. Copyright 2016 by SPE.
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3.2 Discretization

We solve the pressure equation (2.10) with a mixed finite element method [52] which

solves for pressure and velocity simultaneously. The velocity field obtained in this way is

local mass conservative. We will explain the details as follows.

From (2.5) and (2.9), we get the following first-order system

(λt(s)κ)−1u +∇p = fz,

∇ · u = qt,
(3.1)

where fz = (λt(s)κ)−1
(
− κg(λwρw + λoρo)∇z

)
.

Let Qh,VH ,V
0
H be as defined in Section 2.4. Then the fine grid solution (ph,uh) ∈

Qh ×V0
h satisfies:

∫
Ω

(λt(s)κ)−1vh · uh −
∫

Ω

ph∇ · vh =

∫
Ω

fz · vh ∀ vh ∈ V0
h, (3.2)∫

Ω

∇ · uhzh =

∫
Ω

fzh ∀ zh ∈ Qh. (3.3)

Written in matrix form, we get:

 B(s) −CT

C 0


 ~uh

~ph

 =

 F1

F2

 , (3.4)

where B(s) = {bij}, C = {cik}, F1 = {f1k} and F2 = {f2k} are defined as,

bij =

∫
Ti

(
λt(s)κ

)−1
ψi ·ψj , cik =

∫
Ti

φk∇ ·ψi, (3.5)

f1k =

∫
Tk

ψk · fz, f2k =

∫
Tk

φkqt. (3.6)
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Here {ψi} are basis in V0
H , and {φk} are basis in Qh.

Next we describe the discretization for the transport equation:

φ
∂s

∂t
+∇ · uw = qw in Ω, (3.7)

where

uw = fw(u− κgλo(ρw − ρo)∇z) = fwu− f2Cg, (3.8)

with Cg = κg(ρw − ρo)∇z, f2 = fwλo. We use the fully-implicit backward Euler method

for the temporal discretization, and finite volume method for the spatial discretization.

Consider a control-volume T̃i with edges ẽij and associated normal vectors nij pointing

out of T̃i. The discrete conservation equation of the water phase (3.7), for T̃i can be written

as

sn+1
i = sni +

∆t

|T̃i|φ

(
q+
t −

∑
j

Fij(si, sj)uij · nij +
∑
j

Gij(si, sj)Cg · nij + fw(sn+1
i )q−t

)
,

(3.9)

where the superscript n represents time step, sni is the cell-average of the water saturation

at time t = tn, q+ = max(qti, 0), q− = min(qti, 0), uij is the total viscous flux over the

edge ẽij between the two adjacent cells, and Fij, Gij are numerical approximation of the

viscous fraction flow function and gravitational fraction flow over the edge ẽij respectively.

Written in vector form, we get

Sn+1 = Sn +
∆t

|T̃i|φ
(
Fn+1 + Gn+1 + Qw

)
, (3.10)

where Fn+1 = F(Sn+1),Gn+1 = G(Sn+1) represent the numerical approximation of the

fluxes from viscous and gravitational forces across all grid block interfaces respectively,

and Qw denotes the vector for wells. In contrast to the linear pressure equation, the dis-
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cretized saturation equation (3.10) is a system of nonlinear algebraic equations as the flux

terms are nonlinearly dependent on the saturation. We use the iterative solver Newton-

Raphon’s method to solve this nonlinear system. The residual is defined as:

R(S) = S− Sn − ∆t

|T̃i|φ

(
F(S) + G(S) + Qw

)
, (3.11)

and the Jacobian matrix is expressed as:

J(S) = I− ∆t

|T̃i|φ

(
∂F

∂S
+
∂G

∂S

)
, (3.12)

where I is the identity matrix with dimension equals to the number of grid blocks, and

∂F
∂S

, ∂G
∂S

are matrices. For ∂F
∂S

, its row has the form: { ∂F
∂s1
, ∂F
∂s2
, · · · , ∂F

∂sn
}. As can be seen in

(3.9), for each row, F,G only depend on a few saturations, therefore most of the elements

in these matrices are zero.

We note that F,G in Equation (3.9) depend on the two saturations on either side of

the interface ẽij: si and sj. Some upstream upwinding should be applied to determine the

dependency. Otherwise, the numerical solution may encounter oscillations, overshoots,

undershoots (e.g. saturation less than zero or greater than 1), or converge to an incorrect

solution.

We employ the implicit Hybrid Upwinding scheme as proposed in [84, 83, 67] for the

numerical fluxes, such that the upstream for the numerical viscous flux is determined by

the direction of the total velocity across the interface, and the upstream for the numerical

buoyancy flux is fixed in the way that oil flows upward while water flows downward. Be-

sides being locally conservative, and being able to yields monotone physically consistent

numerical solutions, this approach is particularly beneficial in the POD-DEIM model re-

duction context, since the upwinding directions are fixed, making it possible to train the
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snapshots for the nonlinear functions. The Hybrid Upwinding scheme is mathematically

translated as the following:

The viscous F , and buoyancy G, fractional-flow functions at the interface between

control-volumes i and j are expressed respectively as:

F (si, sj) = F (sij), G(si, sj) = G(sij).

We define upwinding with respect to the direction of the total velocity as:

sij =


si if uij · nij ≥ 0;

sj if uij · nij < 0

(3.13)

and the upwinding scheme for the numerical buoyancy flux G as:

sw,ij = sj and so,ij = 1− si if (yi − yj)g ≥ 0,

sw,ij = si and so,ij = 1− sj if (yi − yj)g < 0.

In the next section, we will discuss the construction of reduced model for the coupled

flow-transport system via POD-DEIM.

3.3 POD-DEIM model reduction

In this section, we describe the model reduction procedure iva POD-DEIM. We start

with reducing the pressure equation using POD-projection. Projection based approaches

construct reduced order models of order r � n that can approximate the original system

of order n from a subspace spanned by reduced bases (POD bases).

From the training simulations, we save the snapshots for the states (pressure, velocity

and saturation), denoted as Sp, Su and Ss respectively. Take pressure for example. Each
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snapshot is a vector of pressure values at each grid element at some time step generated

with some boundary condition. Then we perform SVD to these snapshot matrices to obtain

the POD basis matrices Φu ∈ Rnu×ru , Φp ∈ Rnc×rp and Φs ∈ Rnc×rs with ru � nu,

rp � nc and rs � nc, where nu is the total number of faces in the mesh. Replacing u by

Φuur, and p by Φppr in equation (3.2), and projecting (3.2) onto the subspaces spanned by

the POD basis, one gets the reduced system for the pressure equation as,

 ΦT
uB(s)Φu −ΦT

uCTΦp

ΦT
p CΦu 0


 ~ur

~pr

 =

 ΦT
uF1

ΦT
p F2

 , (3.14)

where ~ur, ~pr are coefficients for the POD bases of velocity and pressure respectively.

Next we describe the reduction for the saturation equation (3.7). Replacing S in (3.11)

and (3.12) by ΦsSr, and premultiplying by ΦT
s , we get the reduced forms of the residual

and Jacobian:

Rr(S) = Sr − Snr −
∆t

|T̃i|φ
ΦT
s

(
F(ΦsSr) + G(ΦsSr) + Qw

)
, (3.15)

Jr(S) = Ir −
∆t

|T̃i|φ
ΦT
s

(
∂F(ΦsSr)

∂S
+
∂G(ΦsSr)

∂S

)
, (3.16)

where Ir is the identity matrix with dimension rs.

To avoid full evaluation of the nonlinear terms, we use DEIM to approximate the non-

linear functions on a set of inpterpolation points. These interpolation points are selected

by the DEIM Algorithm 1 or 2 which are grid blocks that are essential in reconstructing

the nonlinear terms with certain accuracy.
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3.4 Numerical examples

In this section, several numerical examples are given. Relative saturation error and

water cut are used to evaluate the accuracy of approximation solutions. Fine grid solution

will be considered as reference solution. The relative saturation error at time step i is

defined as

eis :=
‖sired − siref‖L2

‖siref‖L2

. (3.17)

Water cut represents the fraction of water produced in relation to the total production.

Saturation are computed at different pore volume injected (PVI). PVI is defined as

PVI =

∫
Q

Pvolume
,

where Pvolume is the total pore volume of the system, Q =
∫
∂Ωout v · n is the total flow rate,

and ∂Ωout is the outflow boundary.

3.4.1 Mass conservation in POD with finite volume method

POD Galerkin projection method does not necessarily honor mass conservation. A

simple example in this section will be shown about the violation of mass conservation by

POD projection based on finite volume method. One way to achieve mass conservation is

by introducing an auxiliary variable, in our case, a mass-conservative velocity field. By

constructing POD basis functions for the velocity field, we can guarantee that the velocity

field is conservative because it consists of a linear combination of velocity basis functions

which are mass conservative. This allows us to achieve higher degree of reduction.

In our simulations, there are no sources or sinks except in the well locations, where

we enforce the exact mass conservation. In the non-well blocks, we need to conserve the

mass by guaranteeing the sum of fluxes is zero. Because each basis function for the flux

satisfies this property, thus, any of their linear combination will be mass conservative.
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In the next example, we demonstrate how mass conservation can be violated. The

reservoir model is a two-phase flow (oil-water) model under the water flooding recovery

process with the structure of a 5-spot (four producers on the corners and one injector in

the middle of the domain). The reservoir model is discretized using Cartesian grid of size

10ft× 10ft× 10ft. Overall the reservoir model has 45× 45× 1 = 2025 active cells. The

permeability field of the reservoir is 10 (md) homogeneous and the porosity is 0.2. The

relative permeability curves are quadratic.

All the producers are controlled by a constant bottom hole pressure at 2500 (psia). For

the training input, the injector bottom hole pressure is 3750 (psia). The reservoir model

was simulated for 1000 days by using finite volume method and the snapshots of the

nonlinear fractional function were saved every 10 days. Therefore, all the states (pressure

and saturation) have 100 snapshots. After applying SVD on the snapshot matrices, the

pressure and saturation bases are obtained. We selected 13 pressure bases to preserve

0.9999 energy and 13 bases to preserve 0.99 saturation energy. These bases are used

to construct the projection matrices to project fine scale states to the reduced subspaces.

For the reduced model with the same exact input and boundary conditions as the training

problem, the errors are small and the results are close to the fine scale solution. However,

the reduced models are expected to be used in frameworks with different inputs from the

training one. We perturbed the bottom hole pressure of the injector by ±5%, as shown

in Figure 3.1. Although, this is a small perturbation and it is only in one of the input

variables, the results of the reduced model is far from the high fidelity solution as it is

shown in Figure 3.2. Figure 3.2(b) presents the relative saturation error with respect to

time step. We see that this error is more than 10% for most of the time steps. All the

producers have the same water cut (red line) from the high fidelity simulation as shown

in Figure 3.2(a), due to the symmetry in the problem. Note that the water cut from the

reduced model(green) is very different towards end of simulation from the one(red) of the
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fine model, because the mass conservation is violated in most of the gridblocks, as shown

in Figure 3.3.

We also implemented POD in the context of a mixed finite element formulation of this

example. After running the same training simulation and saving the snapshots, we selected

8 velocity basis to preserve 0.99 of its energy, 2 pressure basis to preserve 0.995 energy

and 13 basis to preserve 0.99 saturation energy. The reduced model on mixed formulation

not only results in small error for exact input, but also replicates a very similar results to

the high fidelity model for test input as shown in Figure 3.4. The saturation error is smaller

than 2% for most of simulation time.

These examples demonstrate that reduced order models that only use pressure field

to construct reduced model, are sensitive to changes in boundary conditions. Thus, one

need to have many basis to keep the error small or to reformulate the problem (as in the

mixed finite volume) and solve for the velocity at the same time. This way we make sure

the results are mass conservative and one does not need a lot of basis to obtain accurate

results.

The next two examples are 2D, dimensionless. The computational domain considered

is Ω = (0, 1)2; the coarse grid T H and the fine grid T h are 22× 22 and 220× 220 uniform

meshes respectively; the permeability field is shown in Figure 3.5; an injector is placed on

the top-left and a producer is placed on the bottom-right; the rate is fixed as 2 for training

and 4 for test simulation respectively; end of simulation time is 1000.

3.4.2 POD-DEIM model reduction

This example presents the results of using POD-DEIM model reduction to simulate the

system (2.11)-(2.13). Note that the training simulation is carried out on the fine grid. In

Table 3.1, the relative saturation errors at end of simulation time of using different number

of basis for states and nonlinear functions, and the total number of Newton iterations
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Figure 3.1: Training and test (perturbed) bottom hole pressure of the injector.
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(b) Water saturation error in reduced model.

Figure 3.2: POD model reduction on finite volume formulation.
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(a) Gridblocks where mass conservation does not
hold.
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Figure 3.3: Evaluation of mass conservation at final time.
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(b) Water saturation error in reduced model.

Figure 3.4: POD model reduction on mixed finite element formulation.
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Table 3.1: Relative saturation error, Global (POD-DEIM).

u-p-s-fλ-fw basis error w.r.t fine Newton iter
1-1-6-6-20 0.0306 279
1-1-8-6-20 0.0273 286
1-2-8-6-20 0.0272 286
2-2-8-2-20 0.0230 285
2-2-8-4-8 0.9577 313

2-2-8-4-10 0.0223 293
2-2-8-4-15 0.0227 288
2-2-8-4-20 0.0227 287
2-2-8-6-8 0.9417 313

2-2-8-6-20 0.0226 287

are given. The fine solution is used as reference solution. The total number of Newton

iterations for the fine solution is 1299. In Table 3.1, if we fixed the number of POD basis

for velocity, pressure and saturation as 2, 2, 8 respectively, from the cases 2− 2− 8− 4−

8, 2− 2− 8− 6− 8 with error greater than 90% and 2− 2− 8− 4− 10 with error about

2%, we can see that the number of basis for the flux fw should be greater than 8. The error

here consists of the following two parts:

‖sPOD-DEIM − sPOD‖+ ‖sPOD − sref‖︸ ︷︷ ︸
irreducible error

.

With fixed number of POD bases for velocity, pressure and saturation, the irreducible er-

ror is fixed. Therefore, when the error touches a point (here about 2.2% which is small

enough), adding more basis for the nonlinear functions won’t help. But we can reduce the

irreducible error by using more POD basis for velocity, pressure and saturation and there-

fore improve the whole error. But since 2.2% is sufficiently small for reservoir simulations,

we consider that this is not necessary.
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Table 3.2: Relative saturation error as defined in (3.17), Global-Local.

u-p-s-fλ-fw basis error w.r.t fine error w.r.t MS Newton iter
1-1-6-6-20 0.038728 0.029552 273
1-1-8-6-20 0.036653 0.026391 278
1-2-8-6-20 0.034247 0.022856 278
2-2-8-2-20 0.032796 0.021027 278
2-2-8-4-8 0.53262 0.52982 308

2-2-8-4-10 0.11633 0.11379 315
2-2-8-4-11 0.041929 0.033591 309
2-2-8-4-15 0.032849 0.020842 285
2-2-8-6-8 0.58091 0.57806 308

2-2-8-6-20 0.033017 0.021201 279

3.4.3 Global-Local model reduction

As mentioned earlier, to save computational time for the offline stage, we can use mod-

el reduction techniques to simulate the training models. In this example, for the training

simulation, the mixed GMsFEM is employed to solve the pressure equation. On every

inner coarse edge, 5 multiscale velocity bases are selected. The dimension for velocity

space is approximately 5% of the fine scale velocity space size. The relative L2 error

of saturation between the MGMsFEM solution and the fine solution at end of simulation

time is about 2%. In Table 3.2, the relative L2 errors of saturation at end of simulation

time for different number of basis and total number of Newton iterations are given. The

MGMsFEM solution is used as reference solution. The total number of Newton iterations

for the reference solution is 1319. In this table, we see that with 2 basis for velocity, 2 for

pressure and 8 for saturation, 4 DEIM points for fλ and at least 11 DEIM points for the

flux function, we can get less than 5% relative saturation error. The computational time

of the local model reduction decreased by a factor of O(102) compared to that of the fine

solution.
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Figure 3.5: Logarithm of permeability field.

3.4.4 Case study with viscous only

In this section we apply the model reduction methodologies for a two-phase flow (oil-

water) reservoir model under the water flooding recovery process with the structure of a

5-spot. Here we have an injector in the center of the reservoir and four producers in the

corners, see Figure 3.6a, and it is assumed that all of them are perforated only at the bottom

layer. The reservoir is SPE10 comparative model [28] (five layers of 10th-14th). This

model is synthetic but can be representative of a real reservoir with large heterogeneity.

This reservoir is discretized using Cartesian grid of size 20ft × 10ft × 2ft. Overall

the reservoir model has 60 × 220 × 5 = 66000 active cells. The fluid viscosity ratio

is µw/µo = 0.1. The absolute heterogeneous permeability and the relative permeability

curves are depicted in Figure 3.6a and Figure 3.6b, respectively. We assume a constant

porosity of 0.2 for the entire model.
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Figure 3.6: SPE10 - 5 layers
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Figure 3.7: Training schedule.

For the training schedule, the producers are controlled by bottom hole pressure and

the injector by injection rate, as shown in Figure 3.7. Note that this amount of injection is

selected to ensure at least one pore volume is injected throughout simulation time (1000

days). The initial water saturation and pressure are assumed to be 0.0 and 2500 psia

respectively.

In the offline stage, we simulate the reservoir for 1000 days and save the snapshots of

pressures, velocity, water saturations and the nonlinear fractional function every 10 days.

Thus, we have 100 snapshots for each variables. Each snapshot is reshaped to a column

vector and is stacked in a snapshot matrix. After applying SVD to each matrix, one can

find the basis as explained in previous sections (see Table 3.3 for the CPU time to obtain

the basis). The singular values of the snapshot matrices are shown in Figure 3.8a and

Figure 3.8b. As can be seen, there is a faster decay in the singular values for the pressure

and velocity compared to saturation and fractional function. Thus, we need more basis

for saturation and nonlinear functions to capture the most of the energy and to have small

error.
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Figure 3.8: Singular values of snapshot matrix.
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Figure 3.9: Test schedule (±20% random variation in training)
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Table 3.3: Overhead time for calculating the basis.

Overhead time (sec)
pressure basis 1.9
velocity basis 0.6

saturation basis 0.7
fractional flow basis 0.9

Table 3.4: Compare fine and reduced scale model.

Fine Scale POD-DEIM Final Relative Error
number of pressure unknowns 66000 2 –
number of velocity unknowns 183400 12 –

number of saturation unknowns 66000 20 –
number of fractional flow unknowns 66000 25 –

pressure Eq. elapsed time (sec) 8309 91.8 0.01
saturation Eq. elapsed time (sec) 315 17.5 0.05

total simulation elapsed time (sec) 8627 112 –
speed-up – 77 –

The selection criteria here was to capture at least 99% of the energy of snapshots. The

number of basis is compared for reduced model to the original fine scale one in Table 3.4.

For example, we reduce the dimension of velocity from 183400 to 2. It is obvious that

several orders of magnitude in model order reduction is obtained in this example. The

pressure equation runtime reduced more than 90 times and the saturation equation around

18 times. Overall the reduced model can be run 77 times faster than the original fine scale

one.

This error is computed by Equation (3.17) with fine scale solution as the reference

solution. The average error is less than 5% for most of the simulation time as shown in

Figure 3.10b, indicating that the reduced model is a good approximation. The final water

saturation at the bottom layer and water cut for all the producers after 1000 days of sim-
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ulation are shown in Figure 3.10a and compared with fine scale model. Figure3.11b and

Figure 3.11a show the spatial relative error at the final time in the pressure and saturation,

respectively. The error in pressure is O(10−3), and in saturation O(10−1). Note that the

error is usually larger in the cells around injector due to high dynamical fluid flow.

We run the reduced model with a new test schedule as shown in Figure 3.9, to make

sure that the POD-DEIM model reduction is robust to input variation. This schedule is

obtained by ±20% random perturbation of the training schedule. Note that the bases of

the reduced model are not updated and we used the same bases obtained from training

snapshots.

The final water saturation at the bottom layer and water cut for all the producers after

1000 days of simulation with the Test schedule is shown in Figure 3.12a and compared

with fine scale model. Figure 3.13b and Figure 3.13a show the spatial relative error at

the final time in the pressure and saturation, respectively. The error in pressure is still

O(10−3), and in saturation O(10−1). Note that even though the error is around 0.2 in

some of the cells around injector due to high dynamical fluid flow, the average saturation

error is smaller than 5% for most of the simulation time as shown in Figure 3.12b.

3.4.5 Case study with gravity

The numerical example here is the five-spot 85th layer of the SPE10 comparative mod-

el with gravity in the y direction. Other settings of the wells are the same as in the case

with viscous only.

The challenging part of the method for gravity is that the same number of DEIM in-

terpolation locations as the POD modes does not seem to be sufficient to give a good

approximation of the nonlinear functions. We propose a modified DEIM algorithm, which

allows more DEIM interpolation points. The details of the algorithm is given in Algorithm

2 (following [8]).
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Figure 3.10: Results for training schedule.

(a) Relative saturation error. (b) Relative pressure error.

Figure 3.11: Final relative error with the training schedule.
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(a) Relative saturation error. (b) Relative pressure error.

Figure 3.13: Final relative error with the test schedule.
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In Algorithm 1 (original DEIM algorithm), the process starts from selecting the first

interpolation index j1 ∈ {1, · · · , n} corresponding to the entry of the first POD basis

matrix with largest magnitude. The remaining interpolation indices, ji for i = 2, · · · ,m

are selected so that each of them corresponds to the entry with the largest magnitude of

the residual r = U(:, i)−Vc from line 7 of Algorithm 1. The term r is the error between

the input U(:, i) and its approximation Vc from interpolating the basis {U(:, 1), · · · ,U(:

, i− 1)} at the indices {j1, · · · , ji−1} . The difference between DEIM in Algorithm 1 and

the modified DEIM in Algorithm 2 is that, in modified DEIM, we choose Ngp > 1 number

of interpolation points instead of 1 for each empirical mode in each step (without repeating

the previously selected points), and solve a least square problem to get the coefficients c.

Algorithm 2 Interpolation points for modified DEIM
Notation: es,k is a standard coordinate vector of length s and with 1 at position k.
Brackets [ ] denote concatenation of two or more matrices. U(:, i) denotes the ith
column of matrix U.
Input : Global POD basis matirx U, number of points Ngp for each column
(n,m)← size(U)
J ← the first Ngp positions of U(:, 1) with largest absolute entries
U = [U(:, 1)],P = [en,J1 , · · · , en,js1 ]
for i = 2 : m do

c← argminq‖PTU(:, i)−PTVq‖
r←U(:, i)−Vc
Ji← the first Ngp positions of r with largest absolute entries
J ← J

⋃
(Ji/J) = {j1, · · · , jsi}

V← [V,U(:, i)], P← [P, en,J1 , · · · , en,jsi ]
end for
Output : P

The number of POD basis for velocity, pressure, saturation and number of DEIM basis

for the nonlinear functions are given in Table 3.5, where Ngp is as defined in Algorithm

2. Each row represents the number of DEIM points for one of the nonlinear functions.
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Table 3.5: Number of DEIM points corresponding to different nonlinear functionals de-
fined in 3.8 using Algorithm 2. d refers to the derivative. Number of basis for states:
Nv = 20, Np = 5, Ns = 25

Ngp = 2 Ngp = 4 Ngp = 8 Ngp = 10 Ngp = 15 Ngp = 20
Nfw = 50 90 127 187 220 284 371
Ndfw = 65 125 199 306 346 468 559
Nf2 = 50 84 126 189 205 264 327
Ndf2w = 65 125 193 312 363 472 592
Ndf2o = 55 101 138 195 222 287 355

For example, Nfw refers to the number of emprical modes used in approximating fw.

Nfw = 50 refers to the number of DEIM points in the original algorithm. The other

elements of this row correspond to the number of DEIM points for the choice of Ngp.

dfw, f2, df2w, df2o refer to the functional defined in the total flux and their derivatives.

In Figure 3.14, relative saturation errors with respect to the time with different number of

DEIM points are given. For the comparison, the results of the projection errors for the

nonlinear functions are also given. We note that for Ngp ≥ 8, we observe a reasonable

error. Our numerical results show that for Ngp values 1 and 4, the errors can reach 100 %,

which we do not present here.
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4. ONLINE ADAPTIVE GLOBAL-LOCAL MODEL REDUCTION FOR

MULTI-PHASE FLOWS IN HETEROGENEOUS MEDIA ?

4.1 Introduction

POD projection type model reduction typically consists of an offline stage followed by

an online stage. In the offline stage, the low dimension solution space, also called as the

POD subspace, is generated. In the online stage, a reduced system for the problem at hand

is constructed by projecting onto the POD subspace. The online solution relies only on the

pre-computed quantities from the offline stage. Therefore, a good approximation from the

reduced model can be expected only if the offline information is a good representation of

the problem of interest.

Adaptivity in the context of model reduction has received much attention. Offline

adaptive methods [65] seek to provide a better reduced solution space while the reduced

system is constructed in the offline stage. However, once the reduced system is derived, it

stays fixed and is kept unchanged in the online stage. Therefore, the online solution relies

only on the pre-computed information from the offline stage which is not incorporated at

the online phase. Unlike the offline adaptation, online adaptive methods modify the re-

duced system during the computations in the integration stage. Most of the existing global

online adaptive methods [94, 86, 7] rely only on precomputed quantities from the offline

stage. These methods work fine when the offline data contains representative information

for the solution to the problem of interest. Accurate reduction methods for inputs or con-

trols that result in a solution outside the span of the snapshots generated in the offline stage

are desired. We are motivated to consider online adaptive method by incorporating new

data that becomes available online, see [48]. Therefore, our method can deal with cases
?Reprinted with permission from "Online Adaptive Local-Global Model Reduction for Flows in 

Heterogeneous Porous Media" by Y. Efendiev, E. Gildin, and Y. Yang, Computation, 4(2), 2016. © 2016 
by the authors
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that the solution of the problem at hand lies out of the span of the snapshots generated in

the offline stage.

In the online stage, we propose a criterion to determine when adaptions are required.

Once the criterion is satisfied, we adapt the POD subspaces, the DEIM space and the

DEIM interpolation points for the nonlinear functions by incorporating new data that be-

comes available online. For the adaption of the POD subspace, we propose a global-local

strategy. First, instead of global error indicators based on the residual which are expen-

sive to compute, we use local error indicators to monitor when global POD basis adap-

tion is needed. By using local error indicators, the computational time can be reduced

as one avoids computing global error indicators. Secondly, we employ a local model or-

der reduction method, i.e., the generalized multiscale finite element method (GMsFEM)

[49, 30, 47], to solve the global residual problem to get the new global POD basis function.

Based on local error indicators [33, 32, 36, 24], some local multiscale basis functions are

updated and used to compute the online global modes inexpensively. For the adaption of

DEIM, we employ a modified low rank updates method investigated in [95], which intro-

duces computational costs that scale linearly in the number of unknowns of the full-order

system. We remark that the offline global-local approaches have been studied in the litera-

ture [5, 43, 40, 97]. In the proposed method, we develop online multiscale basis functions

for both local and global updates.

The rest of this section is organized as follows. Section 4.2 devotes to developing

the adaptive POD reduction method by adopting data obtained from the online stage. In

Section 4.3, we introduce an online low-rank adaptive DEIM method to improve accura-

cy for the reduction of nonlinear functions. Section 4.4 presents numerical examples to

demonstrate the efficiency of our method.
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4.2 Online adaptive global-local POD-projection

We adapt the POD subspaces at some particular instants as time proceeds. Two issues

are addressed here: at which instants to adapt, and how to adapt the POD subspaces. The

updates are performed online, therefore the goal is to keep the computational cost as low

as possible.

The main idea of adaptive global-local POD model order reduction method is summa-

rized in Algorithm 3. The superindex G stands for global, superindex L stands for local,

and superindex T means transpose of a matrix. ΦG
k−1 is the initial global POD matrix for

time step k − 1. Similarly, ΦL
k−1 is the initial local multiscale basis matrix for time step

k − 1. In Figure 4.1, a flowchart corresponding to Algorithm 3 is given. In Figure 4.2,

we present an schematic description of the adaptive POD reduction method. We note that

there is no global fine problem computation in the method.

Algorithm 3 Adaptive Global-Local POD Model Order Reduction Method
OFFLINE STAGE:

1: Construction of snapshots for states, local off-line space (consists of local multiscale
basis) by GMsFEM

2: Construction of POD subspaces (POD projection matrices)

ONLINE STAGE : for step k adaption
3: INPUT : Global POD basis matrix ΦG

k−1, local off-line space ΦL
k−1

4: Solve the reduced system: (ΦG
k−1)TAΦG

k−1X
k−1
r = (ΦG

k−1)TFk (Global reduced-order
model)

5: Compute local error indicators, and decide if adaption is needed. If yes, go to 6.
Otherwise, go to next time step k + 1

6: Solve the global residual problem Aφk,online = Fk − AΦG
k−1X

k−1
r for φk,online by

adaptive local method with initial local off-line space ΦL
k−1

7: Update the POD subspace by Adaptive-POD-1 or Adaptive-POD-2

8: OUTPUT : Global POD basis matrix ΦG
k , local offline space ΦL

k
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Figure 4.1: Flowchart of the online adaptive global-local POD method.
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Figure 4.2: Schematic description of the online adaptive global-local POD method.

In the offline stage, a training simulation is run by the GMsFEM. Local multiscale

bases are constructed, and snapshots for states at some time steps are saved. Next, POD is

performed on the snapshots to construct the POD projection matrices. In the online stage,

at every time step we solve a global reduced system, which is usually very small, for

example, in Section 4.4.1, the largest dimension is 8. Next we use our criterion to decide

if global basis adaption is necessary. The criterion is specified in the next paragraph. If

adaption is needed, a new global basis is obtained by solving a residual problem with

GMsFEM. Again, in Section 4.4.1, a residual problem is of size about 104; in Table 4.1,

the size of the reduced problem of the residual problem by GMsFEM is about 600.
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It is important to monitor when the approximation from the reduced system is no longer

sufficiently accurate according to a particular criterion, leading to adaptation of the POD

subspaces. This adaption must be performed when the system dynamics has deviated from

the current POD subspace as reflected by the residual evaluation. In [17], some residual

based POD modes were added to the old POD subspace for Navier-Stokes equations. In

[99], a second error estimate based on a second Galerkin system to account for situations in

which qualitative changes in the dynamics occur was introduced. In this case, two reduced

systems must be solved at a time, thus incurring higher computational cost. In [98], a

residual based indicator was used in nonlinear dissipative systems. Here, we propose to

use local error indicators based on the multiscale basis, which is cheaper to be computed.

The main idea is as follows:

• For coarse blocks ω1, ω2, · · · , ωN , compute their corresponding H−1 norm of the

residual, and denote as r1, r2, · · · , rNc .

• Count the total number N(ω) of coarse blocks with ri > a certain error tolerance.

Here a large error means the current POD modes cannot give a good representation

of the solution features in that coarse block.

• If N(ω) > θNc, then adaption is needed, θ is a fraction of the total number of coarse

blocks.

In general, one can use a threshold for the sum of the local indicators. The choice of the

threshold is typically based on experimental results and analysis. The larger the threshold

is, more updates are performed. Next, we describe how to update the POD subspace.

For the POD subspace adaption at step k, suppose Nk−1 number of initial POD modes

{φG1 , · · · ,φGNk−1
} are given. ΦG is the POD matrix with {φG1 , · · · ,φGNk−1

} as column

vectors. We obtain the online snapshot vector φk,online by solving a residual problem (for

55



linear system), or the high fidelity system (for nonlinear system). We illustrate how to get

the new online global basis for the linear case. Suppose we are solving Equation (2.14).

At every time step, we need to solve a linear system of the form

AX = Fk. (4.1)

The POD reduced order system for the equation (4.1) is

(ΦG)TAΦGXr = (ΦG)TFk. (4.2)

The residual is res = Fk −AΦGXr. If update is needed, then we solve the residual

problem

Aφk,online = res (4.3)

to obtain the online basis φk,online.

Note that equation (4.3) is expensive to solve because it is a fine-grid problem. We

propose to use the local model reduction method as described in Section 2.4 to solve it.

In the following, we introduce two methods to adapt the POD subspace after φk,online is

obtained. One way is to add φk,online directly to {φG1 , · · · ,φGNk−1
}, therefore the new POD

subspace is the span of {φG1 , · · · ,φGNk−1
,φk,online}. In this way, the number of POD modes

increases by one after every adaption. We denote this method as Adaptive-POD-1.

It is possible that as time proceeds, some modes in the POD subspace become negli-

gible (redundant) in representing the near future dynamics, therefore they can be removed

from the POD subspace. This removal can be achieved in various ways. In our simulations,

we follow the following procedure [98]. Apply POD to the set of vectors

{w1φ
G
1 , · · · , wNk−1

φGNk−1
,φk,online}

56



, where the weights wi are defined as

wi = min

{
σi√∑Nk−1

j=1 σ2
j

,
〈|Ci|〉√∑Nk−1

j=1 〈|Cj|〉
2

}

where σi are singular values associated with φi, Ci is the amplitude of φGi , i.e., the coeffi-

cient of mode φGi , and 〈|Ci|〉 is the temporal mean value of |Ci| obtained from the reduced

system starting from the first instant since the last update until k − 1. In this way, the

weights wi eliminate those modes whose average energy decreased considerably since the

last update. Therefore only a small number of POD modes is retained through the whole

simulation. We denote this method as Adaptive-POD-2. We compare the performance of

these two methods in the numerical experiment for two-phase flow in Section 4.4. The

next section we discuss the adaption for the reduction of nonlinear terms.

4.3 Online adaptive DEIM

In this section, we summarize the idea of online adaptive DEIM as in [95]. First, we

adapt the DEIM space by rank one updates. Secondly, we adapt the DEIM interpolation

points. The main steps for this DEIM adaption are given in Algorithm 4. It is shown in

[95] that the run time cost of the adaption scales linearly with the number of degrees of

freedom of the full-order system.

For the basis adaption for the nonlinear function f(y(t)) at step k, suppose an initial

DEIM interpolant (Uk−1,Pk−1) (with m DEIM points) is given. We extend the interpola-

tion points matrix Pk−1 as

Sk = [ep1 , · · · , epm , epm+1 , · · · , epm+ms
].

The extra ms points are chosen from {1, · · · , n}\{p1, · · · , pm} randomly. Therefore,

we get a new DEIM interpolant (Uk−1,Sk). We note that Uk−1 is still the same. Next

57



Algorithm 4 Online Adaptive DEIM [95]

1: INPUT : (Uk−1,Pk−1), number of sampling points ms, window size w

2: Select ms points from {1, 2, · · · , n} that do not repeat the interpolation points at step
K − 1 .

3: Assemble sampling points matrix Sk by combining Pk−1 and the selected points.

4: Compute the coefficient matrix Ck for [ŷ(tk), ŷ(tk−1), · · · , ŷ(tk−w+1)] with inter-
polant (Uk−1,Sk)

5: Solve the minimization problem (4.5) for αk,βk
6: Update POD subspace Uk = Uk−1 +αkβ

T
k

7: Compute diag(UT
kUk−1)

8: Find the index i of the pair of basis vectors which are nearest to orthogonal

9: Let uk be the i− th column of the adapted basis Uk

10: Store all other m− 1 columns of Uk in Ûk ∈ Rn×(m−1)

11: Store all other m− 1 columns of Pk−1 in P̂k ∈ Rn×(m−1)

12: Approximate uk with the DEIM interpolant (Ûk, P̂k) as ûk = Ûk(P̂
T
k Ûk)

−1P̂T
kuk

13: Find the index pik that corresponds to largest residual of |ûk − uk|
14: Update interpolation matrix Pk: if epik is not a column of Pk−1, then for the i− th

column of Pk−1, replace interpolation point epik−1
with epik

15: OUTPUT : (Uk,Pk)
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we define a window of size w that contains the vectors of ŷ(tk), ŷ(tk−1), · · · , ŷ(tk−w+1)

obtained in the previous online computations; an alternative is to also include intermediate

states from the Newton-Raphson iterations of the previous online computations. We then

construct DEIM approximations of the nonlinear function f at the vectors

ŷ(tk), ŷ(tk−1), · · · , ŷ(tk−w+1)

with the DEIM interpolant (Uk−1,Sk). For each ŷ(tki), the coefficient is derived as

ck(y(tki)) = (STkUk−1)+STk f(ŷ(tki))

which are put as columns in the coefficient matrix Ck ∈ Rm×w. Here (STkUk−1)+ ∈

Rm×(m+ms) is the Moore-Penrose pseudo-inverse.

We then derive two vectors αk ∈ Rn and βk ∈ Rm such that the adapted DEIM basis

Uk = Uk−1 +αkβ
T
k minimizes the Frobenius norm of the residual at the sampling points

given by Sk

‖STk (UkCk − Fk)‖2
F (4.4)

where Fk = [f(ŷ(tk)), · · · , f(ŷ(tk−w+1))].

Define the residual matrix Rk = Uk−1Ck − Fk and transform (4.4) into

‖STkRk + STkαkβ
T
k Ck‖2

F .

Thus the vectorsαk and βk of the updateαkβTk ∈ Rn×m are a solution of the minimization

problem

arg min
αk∈Rn,βk∈Rm

‖STkRk + STkαkβ
T
k Ck‖2

F . (4.5)

The vectors αk,βk are obtained by solving a generalized eigenvalue problem as stated
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in Theorem 4.3.1, we refer to [95] for details.

Theorem 4.3.1. If ‖STkRkC
T
k ‖F > 0, and after the transformation of Lemma 4.3.2, an

optimal updateαkβTk with respect to (4.5) is given by settingαk = Skα
′

k and βk = Qkβ
′

k,

where α
′

k and β
′

k are defined as in Lemma 4.3.3, and Qk ∈ Rm×r is given as in Lemma

4.3.2. If ‖STkRkC
T
k ‖F = 0, an optimal update with respect to (4.5) is αk = 0 and βk = 0.

Lemma 4.3.2. Let Ck ∈ Rm×w has rank r < m, i.e., Ck does not have full row rank.

There exists a matrix Zk ∈ Rr×w, with rank r, and a matrix Qk ∈ Rm×r with orthonormal

columns such that

‖STkRk + abTCk‖2
F = ‖STkRk + azTZk‖2

F ,

for all a ∈ Rm+ms and b ∈ Rm, where zT = bTQk ∈ Rr.

Lemma 4.3.3. Let Ck ∈ Rm×w has rankm, i.e., full row rank, and assume ‖STkRkC
T
k ‖F >

0. Let β
′

k ∈ Rm be an eigenvector corresponding to the largest eigenvalue λ ∈ R of the

generalized eigenvalue problem

Ck(S
T
kRk)

T (STkRk)C
T
kβ

′

k = λCkC
T
kβ

′

k,

and set α
′

k = (−1/‖CT
kβ

′

k‖2
2)STkRkC

T
kβ

′

k. The vectors α
′

k and β
′

k are a solution of the

minimization problem

arg min
a∈Rm+ms ,b∈Rm

‖STkRk + abTCk‖2
F . (4.6)

We note that the sampling points are only used for the DEIM basis adaptation. Ul-

timately the DEIM interpolation points are used for the DEIM approximation. With the

adapted DEIM basis Uk at step k, we also adapt the DEIM interpolation points. The s-
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tandard DEIM greedy algorithm is computationally expensive to implement in the online

stage, since it recomputes all m interpolation points. It is unnecessary to change all inter-

polation points after a rank-one update to the DEIM basis. Therefore, we adapt the DEIM

interpolation points as follows. First, we compute the dot product between the old and the

adapted DEIM basis

diag(UT
kUk−1). (4.7)

If the dot product of two normalized vectors is one, then they are colinear and the

adapted basis vector has not been rotated with respect to the previous vector at step k− 1.

If it is zero, they are orthogonal. We select the basis vector uk of Uk that corresponds to

the component of (4.7) with the lowest absolute value. The new interpolation point pik is

derived from uk following the standard DEIM algorithm. It then replaces the interpolation

point pik−1. Other interpolation points are unchanged.

4.4 Numerical examples

4.4.1 Single-phase flow

In this section, we consider the following single-phase flow problem:

∂p

∂t
+∇ · (κ∇p) = q in Ω, (4.8)

p = 0 on ∂Ω (boundary condition), (4.9)

p(t = 0) = p0 in Ω (initial condition). (4.10)

Discretizing in a finite element space, for example Q1 which consists of piecewise

linear functions on Ω, for space and using backward Euler method for time discretization,
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we obtain the following algebraic system:

(M + ∆tS)p̃n = Mp̃n−1 + ∆tQn in Ω, (4.11)

(4.12)

where Mij =
∫

Ω
ψiψj is the mass matrix, Sij =

∫
Ω
κ∇ψi · ∇ψj is the stiffness matrix,

ψi, ψj ∈ Q1, ∆t is the time step size.

The computational domain is Ω = (0, 1)2, a uniform fine mesh with n = 100 is used.

Our proposed approach can also be used for solving problems on unstructured grids. The

size of the full-order system at every time step is 10, 000. For the coarse mesh, we use

the mesh size 1/10. The final simulation time is 10, time-stepping size is ∆t = 0.1,

therefore there are 100 snapshots in total. The logarithm of the permeability field is shown

in Figure 3.5. In the offline stage, the right-side hand function q for the training simulation

is only nonzero on the five blue regions in Figure 4.3. The values of q with respect to

time is given in the left figure of Figure 4.4. In the test simulation, q is given in the right

figure of Figure 4.4, two nonzero regions are added, one is nonzero through 60–80, the

other is nonzero through 90–100, which are the red ones in Figure 4.3. There is a large

decrease in the value q1 at time instant 35. In Table 4.2, the average L2, H1 errors with

different number of POD basis are presented. We can see that even if we use all the 100

POD basis, the average L2 error is still about 18%. In Table 4.1, we start with 5 initial

global POD basis. The column Goff means the number of initial global POD basis for

each time instants, while the column Loff means the number of initial local basis functions,

and the column Ladd means the number of local basis added to solve the residual problem

(4.3). For instance, for the third row, the first column shows that we need to update at

time instant 2; the second column means for time instant 2, the number of initial global

POD basis is 6; the third column means for time instant 2, the number of initial local basis
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functions is 484; the forth column means we add 126 local basis to the multiscale solution

space, from which the global basis is obtained. For the whole test simulation, we add basis

at time instants 1, 2 and 35, then we get about 1% average L2 error. The relative L2, H1

errors with respect to time are shown in Figure 4.5, which show a good agreement of our

numerical solution with the reference solution. The reference solution is computed on the

fine grid. Here, since the number of POD basis is already very small, we only use the

Adaptive-POD-1 method.
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Table 4.1: Adaptive-POD-1 with 5 initial global POD basis.

Time instant to add Goff Loff Ladd

1 5 484 119

2 6 484 116

35 7 484 126

Average error L2 H1

0.0135 0.0027

Table 4.2: Average POD errors.

Number of POD basis L2 H1

2 0.6114 0.3254

5 0.3470 0.1676

8 0.2956 0.1378

100 0.1830 0.0796

4.4.2 An incompressible two-phase flow model

In this section, we consider two-phase flow in a reservoir domain (denoted by Ω) under

the assumption that the displacement is dominated by viscous effects; i.e., we neglect the

effects of gravity, compressibility, and capillary pressure.

We apply the online adaptive model reduction method to an oil-water flow model with

the structure of a 5-spot. A 5-spot pattern is a well configuration that involves 1 producing
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well (or 1 injector well) in the center and 4 injecting wells (or 4 producers) in the corners

of a Cartesian grid. It can be seen as a five wells (point source) in the whole domain. It

is designed to maximize the reservoir sweep as water is being injected into the reservoir.

Here, we set four injection wells in the corners and one production well in the middle of

the domain. All the wells are rate controlled. The computational domain is Ω = (0, 1)2, a

uniform fine mesh with h = 1/220 is used. The fluid viscosity ratio is µw/µo = 0.2. To

get the snapshots, we simulate the flow with end of simulation time 800, time stepping size

∆t = 4, with well rates as shown in the left in Figure 4.6. From this forward (training)

simulation, we save the snapshots of the states and the nonlinear functions at every 2 units

in time. Therefore, 100 snapshots are saved for the states and nonlinear functions. Each

snapshot is reshaped to a column vector and is stacked in a snapshot matrix. After applying

POD to each matrix, we get the POD subspace. For the test simulation, total simulation

time is 400,∆t = 4, and the well rates are given in the right of Figure 4.6.
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From Figure 4.6, we see that the rates are constant for the training simulation, and

well 2 is shut off all the time; while for the test simulation, well 2 is open at the time

instant 31 and well 3 is closed from 80 to the end of simulation time. Large deviations

in the rates of the training and test simulation start at three points: time instant 1, time

instant 31, and time instant 80. These deviations are expected to result in requirement

of online adaption. We use the L2 norm of the residual as indicators for adaption. To

better understand the impact of injection rates on the whole system, we will investigate the

method for the pressure and saturation equations separately first. For the adaptive DEIM

application, the number of sampling points is ms = 800, and the window size is w = 25.

In Case 1, we apply POD reduction to the pressure equation only, and solve the satura-

tion equation on the fine grid. Note that only POD reduction is used, no DEIM is involved

since the pressure equation is linearly dependent on the pressure (we assume incompress-
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ible condition). The selection criterion (2.22) for choosing the number of initial POD

bases is to capture 99.99% of the energy of the snapshots. In Figure 4.7, relative saturation

errors for 3 scenarios with 5 initial POD basis for flux are given. The red line is for static

POD without updating, the errors are greater than 10% during the simulation time, and

there are jumps at time instants {31,80}. The blue line is for adaptive POD with adaption

at time instants {1,31}. With these two adaptions, the error before time instant 80 is under

10%, and increases drastically at time instant 80. The dot purple line is for adaptive POD

with adaption at time instants {1,31,80}, which gives a good accuracy. Figure 4.8 presents

the comparison of water-cut (water flux fractional function fw(s)) corresponding to these

3 scenarios with the fine water-cut. Both figures show that adaption is necessary in order

to obtain a good accuracy.
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Figure 4.7: Relative saturation errors advancing in time: POD for the pressure equation.
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In Case 2, we apply model reduction to the saturation equation only while solving the

pressure equation on the fine grid. First, we consider POD without DEIM. As pointed

out in Section 2.2, due to the nonlinearity of the saturation equation, no improvement in

efficiency will be achieved if no DEIM is used. We only consider this case to compare

with the case for POD-DEIM in the next example. We will see that the POD-DEIM needs

more updates than POD. The selection criterion (2.22) for choosing the number of initial

saturation POD basis is to capture 99% of the energy of the snapshots. 20 initial satura-

tion POD basis is selected. Updates are needed at {1, 4, 31, 32, 33, 35, 36, 38, 40, 42, 43}.

In Table 4.3, the numbers of saturation POD basis after updating for Adaptive-POD-1,

Adaptive-POD-2 are presented. For example, the number of basis for Adaptive-POD-1

after updating at time instant 33 is 25, the number of basis for Adaptive-POD-2 after 4

is 16. The relative saturation errors for both Adaptive-POD-1 and Adaptive-POD-2 are
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given in Figure 4.9, we can see that Adaptive-POD-2 delivers almost the same accuracy

while using much less number of basis compared with Adaptive-POD-1. The compari-

son of water-cut between the solutions of Adaptive-POD-1, Adaptive-POD-2 and the fine

solution is shown in Figure 4.10, which shows a good agreement. Second, we apply

POD-DEIM to the saturation equation. We use the adaptive DEIM technique as described

in Section 4.3 to approximate fw. 15 initial DEIM basis functions are selected for fw.

The comparison of water-cut between the solution of Adaptive-POD-2-DEIM, Adaptive-

POD-2-DEIM and the fine solution is shown in Figure 4.11, they are in good agreement

in general. The saturation errors for both Adaptive-POD-1-DEIM and Adaptive-POD-2-

DEIM are given in Figure 4.12. We can see that the error of Adaptive-POD-2-DEIM is

less than Adaptive-POD-1-DEIM, while the number of basis for Adaptive-POD-2 is less

than Adaptive-POD-1.

Table 4.3: Number of POD basis for saturation after each update of POD subspace for
Equation (2.6).

Method

Time instant
1 4 31 32 33 35 36 38 40 42 43

Adaptive-POD-1 21 22 23 24 25 26 27 28 29 30 31

Adaptive-POD-2 22 16 8 8 7 7 7 7 7 7 7
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Figure 4.10: Water-cut of online adptive POD for the saturation equation.
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Figure 4.11: Water-cut of online adaptive POD-DEIM for the saturation equation.
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Figure 4.12: Relative saturation errors advancing in time: POD-DEIM for the saturation
equation.

In Case 3, apply our model reduction method to the coupled system, i.e., POD for

the pressure equation and POD-DEIM for the saturation equation. Velocity needs up-

dates at {1, 31, 36, 48, 80}, and saturation needs 13 updates at instants as listed in the

Table 4.4. The numbers of saturation POD basis after updating for Adaptive-POD-1,

Adaptive-POD-2 are shown in Table 4.4. The saturation error is given in Figure 4.13, from

there we see that Adaptive-POD-2 has better performance than Adaptive-POD-1. The

comparison of water-cut between the solution of Adaptive-POD-1, Adaptive-POD-2 and

the fine solution is shown in Figure 4.14. We observe good agreement.
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Table 4.4: Number of POD basis for saturation after each update of POD subspace for the
coupled system.

Method

Time
instant

1 4 31 32 34 35 36 38 39 47 53 54 60

Adaptive-POD-1 21 22 23 24 25 26 27 28 29 30 31 32 33

Adaptive-POD-2 21 16 8 8 7 7 7 7 7 7 7 7 7
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Figure 4.13: Relative saturation errors advancing in time: POD-DEIM for the coupled
system.
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Figure 4.14: Water-cut of online adaptive POD-DEIM for the coupled system.
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5. AN ENRICHED MULTISCALE MORTAR SPACE FOR HIGH CONTRAST

FLOW PROBLEMS

5.1 Introduction

In previous sections, we have developed global-local approaches using known local

GMsFEM techniques, such as mixed GMsFEM. In this section, I present some of my

work on the development of a local GMsFEM using mortar finite element framework.

This approach develops multiscale basis functions for the interfaces. The mortar GMsFEM

approach can be used for multi-phase flow [35].

In the mortar framework, the connectivity of the sub-grid variations is typically en-

forced by using a Lagrange multiplier. For multiscale problems, the choice of the mortar

space for the Lagrange multiplier requires a very careful construction, in order to obtain an

efficient and robust method. To construct an accurate mortar space with a small dimension,

we will apply the recently developed GMsFEM, which offers a systematic approach for

model reduction. In particular, we first create a local snapshot space for every coarse edge.

We obtain this space by first solving some local problems on a small region containing an

edge, and then restricting the solutions to the edge. Next, we select the dominated modes

within the snapshot space using an appropriate POD technique. These dominated modes

form the basis for the mortar space. We will apply our mortar space in two related for-

mulations. The first one is a mixed GMsFEM using the mortar formulation. This method

gives a coarse-grid solver for the problem (2.24a)-(2.24b). The second one is a coarse

space for some preconditioners applied to the fine scale discretization of (2.24a)-(2.24b).

We also study the effects of using oversampling techniques, randomized snapshots

and different sizes of local problem domain on the robustness and accuracy of both the

multiscale solver and preconditioners. Our work share some similarities with multiscale
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hybridizable discontinuous Galerkin method [51, 50]. However, our basis construction is

different. The mortar mixed finite element has the feature of global mass conservation,

which is important in industrial reservoir simulations.

On the other hand, based on our proposed mortar space, we will construct effective

and robust two-level preconditioners to solve the algebraic system arising from fine s-

cale discretization by some iterative methods. Our approach uses the solutions of s-

mall local problems and a coarse problem in constructing the preconditioners for the

fine-scale system. There are many different types of robust two-level preconditioners

[105, 105, 60, 91, 55, 56, 46, 39, 77, 106, 78, 76, 79, 92] developed as mentioned in

Section 1.1.2. We use the multiscale mortar space as coarse space for the preconditioners.

This section is arranged as follows. In Section 5.2 we introduce preliminary informa-

tion, including the mortar variational form of the flow problem, its finite element approxi-

mation, and an interface problem. Section 5.3 focuses on the description of the construc-

tion of the multi-scale mortar space. In Section 5.4, we discuss the design of two-level

preconditioners by using the multi-scale mortar space as coarse space. Numerical results

are given in 5.5, which show that the proposed coarse space gives promising ability to deal

with problems in media with complicated inclusions and long channels that may across

coarse edges.

5.2 Preliminaries

In this section, we give some basic definitions. We also present the formulations of a

fine-scale discretization for (2.24a)-(2.24a) (with boundary condition u ·n = 0 on ∂Ω) and

its domain decomposition formulation, as well as the formulation for a mixed multiscale

method for (2.24a)-(2.24a).
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5.2.1 Variational form

With the notion of coarse and fine grids defined in Section 2.3, we introduce the fol-

lowing spaces

L2(Ki) =

{
p :

∫
Ki

p2 <∞
}
,

H(div;Ki) =
{
v ∈ L2(Ki)

d : div(v) ∈ L2(Ki)
}
.

Denote (·, ·)Ki for the L2(Ki) or L2(Ki)
d inner product, and 〈·, ·〉∂Ki for the duality pairing

on boundaries and interfaces. For each subdomain i, define

Vi = {v ∈ H(div;Ki) : v · n|∂Ω∩∂Ki = 0} and V = ⊕Ni=1Vi,

Wi = L2(Ki) and W =

{
w ∈ L2(Ω) :

∫
Ω

w = 0

}
,

Mi = H1/2(Ei), and M = ⊕Ni=1Mi.

The variational form for the system (2.24a)-(2.24a) (with boundary condition u ·n = 0

on ∂Ω) using domain decomposition is formulated as: find u ∈ V, p ∈ W and λ ∈ M

such that for each 1 ≤ i ≤ N ,

(κ−1u,v)Ki − (p,∇ · v)Ki + 〈λ,v · ni〉Ei = 0 ∀ v ∈ Vi, (5.1a)

(∇ · u, w)Ki = (f, w)Ki ∀ w ∈ Wi, (5.1b)
N∑
i=1

〈u · ni, µ〉Ei = 0 ∀ µ ∈M. (5.1c)

5.2.2 The finite element approximation

Let Vh,i ×Wh,i ⊂ Vi ×Wi be any of the mixed finite element spaces satisfying the

inf-sup condition for which ∇ · Vh,i = Wh,i, e.g., the Raviart-Thomas spaces. Define
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Vh = ⊕Ni=1Vh,i and Wh = ⊕Ni=1Wh,i/R for the global discrete flux and pressure. Let

MH,i,Mh,i ⊂ L2(Ei) be the local coarse and fine mortar finite space respectively, and

MH = ⊕1≤i≤NMH,i,Mh = ⊕1≤i≤NMh,i be the entire coarse and fine mortar finite element

spaces.

We formulate the finite element approximation as: find uh ∈ Vh, ph ∈ Wh and

λH ∈MH such that for each 1 ≤ i ≤ N ,

(κ−1uh,vh)Ki − (ph,∇ · vh)Ki + 〈λH ,vh · ni〉Ei = 0 ∀ vh ∈ Vh,i, (5.2a)

(∇ · uh, wh)Ki = (f, wh)Ki ∀ wh ∈ Wh,i, (5.2b)
N∑
i=1

〈uh · ni, µH〉Ei = 0 ∀ µH ∈MH . (5.2c)

We note that the coarse mortar space is used in this system. Similar system holds using

fine mortar space λh ∈ Mh. Local conservation is enforced by (5.2b), and (5.2c) enforces

weak continuity of flux across the interfaces with respect to the mortar space MH .

Some examples of the mortar space MH include the span of piecewise constants or

linear (or higher order polynomial) functions or trigonometric functions.

The linear system for (5.2a)-(5.2c) is:


B −C D

−CT 0 0

DT 0 0




~u

~p

~λ

 =


0

−f

0

 , (5.3)

where Bi,j = (κ−1vi,vj),Ci,j = (wj,∇ · vi), and Di,j = 〈µj,vi · n〉 . Here ~u, ~p, ~λ are

vectors of coefficients in the expansions of the solutions uh, ph, λH in their corresponding

spaces respectively.

By Schur complement, we end up solving the following system by eliminating ~u and
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~p:

S~λ = b, (5.4)

where

S = DT
(
B−1 −B−1C(CTB−1C)−1CTB−1

)
D,

b = DTB−1C(CTB−1C)−1f .

The Schur complement system (5.4) can be solved by a Krylov method, such as the

Preconditional Conjugate Gradient (PCG) [38, 96], or the Generalized Minimal Residual

(GMRES) [42, 104].

5.2.3 Interface problem

The mortar multiscale method and the preconditioners developed in this section are

based on a domain decomposition formulation of (2.24a)-(2.24a). We will present the

mortar multiscale method in this section, and derive the preconditioner in Section 5.4. The

main feature of the mortar mixed finite element method is that it could be implemented by

just solving a global system on the coarse mesh together with the solutions of some local

problems.

Define bilinear forms aH,i : MH,i ×MH,i → R, i = 1, · · · , N by

aH,i(λ, µ) = −〈u∗h(λ) · ni, µ〉 |Ei ,

and aH : MH ×MH → R by

aH =
N∑
i=1

aH,i(λ, µ),
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where
(
u∗h(λ), p∗h(λ)

)
∈ Vh ×Wh solves (λ given, f = 0)

(
κ−1u∗h(λ),vh

)
Ki
−
(
p∗h(λ),∇ · vh

)
Ki

= −〈λ,vh · ni〉Ei ∀ vh ∈ Vh,i, (5.5a)(
∇ · u∗h(λ), wh

)
Ki

= 0 ∀ wh ∈ Wh,i, (5.5b)

for each 1 ≤ i ≤ N.

Define linear functionals gH,i : MH,i → R by

gH,i(µ) = 〈ūh · ni, µ〉 |Ei ,

and gH : MH → R by

gH(µ) =
N∑
i=1

gH,i(µ),

where (ūh, p̄h) ∈ Vh ×Wh solves (λ = 0, f given) for 1 ≤ i ≤ N

(
κ−1ūh,vh

)
Ki
−
(
p̄h,∇ · vh

)
Ki

= 0 ∀ vh ∈ Vh,i, (5.6a)(
∇ · ūh, wh

)
Ki

= (f, wh)Ki ∀ wh ∈ Wh,i. (5.6b)

Define the coarse variational interface problem about the mortar pressure as: find λH ∈

MH such that

aH(λH , µ) = gH(µ) ∀ µ ∈MH . (5.7)

It is proven in [11] that the interfacpe problem (5.7) produces the solution of (5.2a)-(5.2c)

via

uh = u∗h(λ) + ūh, ph = p̃h −
1

|Ω|

∫
Ω

p̃h,

where p̃h = p∗h(λ) + p̄h.

The solution of the interface problem (5.7), interpreted from the point view of multi-
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scale method, is to construct multiscale basis functions over the coarse blocks. First we

design a basis for MH . For each interface Ei, from the set of mortar basis λH associated

with this interface, we can obtain the multiscale basis u∗h(λH) over the coarse domainsKi1

and Ki2 . From these, we get a system of equations from (5.7) directly, and solve it in any

appropriate way.

The interface bilinear form aH(·, ·) is symmetric and positive semi-definite onMH and

this system can be solved by preconditioned conjugate gradient method [12, 38, 96]. We

will construct a preconditioner in Section 5.4. On the other hand, the mortar space MH for

problems with high contrast heterogeneous media needs to be carefully designed. Thus, in

the next section, we will introduce a multiscale mortar space. In particular, we will replace

the space MH by our multiscale mortar space.

5.3 Multiscale mortar space

In this section, we present the construction of our multiscale mortar space. The space

can be used as an approximation space for a multiscale mortar method for the equation

(5.7), and as a coarse solver for a class of preconditioners, which will be presented in

Section 5.4. Our multiscale mortar space consists of a set of multiscale basis functions,

which are defined only on the coarse skeleton EH . To construct these basis functions, we

will first define a set of snapshot functions for each coarse edge. The snapshots represent

various modes of the solutions, and are typically of large size. To find the snapshots, we

will solve some local problems in a small subdomain covering an edge, and then restrict

the solutions to the edge. We will next define some PODs and use them to extract domi-

nant modes within the snapshot space. These dominant modes form the multiscale basis

functions. Notice that these basis functions capture some information of the permeability

field within neighboring coarse blocks of an edge.
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5.3.1 Construction of local snapshot space

Let Ei ∈ E0
H be an interior edge and let ωi be the corresponding coarse neighborhood

covering Ei (see Figure 2.3). We will first construct a set of local snapshots {ψEij }
Nωi
j=1

defined on ωi, and the local snapshot space for Ei is defined as:

V Ei
snap(ωi) = span{ψEij }

Nωi
j=1.

The snapshots can be given explicitly or computed via solutions of local boundary value

or local spectral problems in ωi. We use the following approach. For each coarse edge Ei,

we define

Wi(∂ωi) = {wij | wij = 1 on eij; wij = 0 on ∂ωi − eij, 1 ≤ j ≤ Nωi},

whereNωi is the number of fine edges on ∂ωi, and eij is the j-th fine edge on ∂ωi. In Figure

5.1, we give an illustration of a fine edge eij on Ei. To construct the snapshots, we solve

the following problems (j = 1, · · ·Nωi):

uij + κ∇pij = 0 in ωi,

∇ · uij = 0 in ωi,

pij = wij on ∂ωi.

Using the solutions of the above local problems, we obtain the basis for the snapshot space:

{ψEj = pij|Ei , j = 1, · · ·Nωi} associated with Ei. Finally, we construct the snapshot space

as V Ei
snap(ωi) = span{ψEj , j = 1, · · ·Nωi}.
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ωi = Ki1

⋃
Ki2

Ei

eij

Ki1
Ki2

Figure 5.1: Illustration of a fine edge on a coarse edge.

5.3.2 Construction of multiscale mortar space

To construct our multiscale mortar space, we will apply a space reduction technique to

the snapshot space V Ei
snap(ωi) to obtain a smaller dimensional space. In particular, we will

perform POD to V Ei
snap(ωi) and then select the first li dominant modes Ψi

j . In this way, we

obtain the offline space corresponding to the coarse face Ei, which is

Voff(Ei) = span{Ψi
j, 1 ≤ j ≤ li}. (5.8)

The global offline space is

Voff = span{Ψi
j, 1 ≤ j ≤ li, 1 ≤ i ≤ Ne}. (5.9)

To simplify the notations, we use the single-index notation:

Voff = span{Ψoff
i : 1 ≤ i ≤ Noff},
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where Noff =
∑Ne

i=1 Ji. We define

Roff = [ψoff
1 , . . . ,ψ

off
Noff

],

which maps from the offline space to the fine space, and ψoff
i is a vector containing the

coefficients in the expansion of Ψoff
i in the fine-grid basis functions. We use this multiscale

offline basis to enrich the constant mortar space MH .

5.3.3 Oversampling and randomized snapshot

One can use an oversampling technique to improve the accuracy of the method. The

main idea of the oversampling approach is to use larger domains ω+
i instead of ωi to com-

pute snapshot, see Figure 5.3 for examples of oversampling domain of a coarse edge. On

the other hand, a typical choice of V E
snap(ωi) is local flow solutions as we explained earlier,

which are constructed by solving local problems with all possible boundary conditions.

This can be expensive and for this reason, one can use randomized boundary condition-

s [20], and construct only a few more snapshots than the number of desired local basis

functions. We will test the performance of these techniques in the numerical examples in

Section 5.5.

5.4 Two-level domain decomposition preconditioners

Previous sections are devoted to the design of a good coarse multiscale mortar space

to achieve a desired accuracy. In this section, we will apply our multiscale mortar space

in an iterative method aiming to solve the fine scale system. We propose a two-level it-

erative method to solve the fine scale problem with the previously introduced multiscale

mortar space as the coarse space, see [14, 116] for the case of polynomial and homoge-

nized multiscale basis. The two-level preconditioner M−1 includes two parts, a local fine

scale preconditioner M−1
loc to smooth out fine-scale error, and a global coarse-scale precon-
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ditioner M−1
0 for exchanging global information. We begin with the construction of global

coarse preconditioners.

5.4.1 Global coarse preconditioners

We denote the coarse basis functions as {Ψi}Noff
i=1, where Noff is the total number of

coarse basis functions, which is usually larger than the total number of coarse edges due

to the use of enriched basis. Then we can define the coarse space as

MH = span{Ψi}Noff
i=1

and the coarse matrix A0 = R0SRT
0 , where RT

0 = [Ψ1,Ψ2, ...,ΨNoff ], and S is the matrix

corresponding to bilinear form aH(ξi, ξj) : MH × MH → R defined in equation (5.7).

Then, the coarse preconditioner is defined as

M−1
0 = RT

0 A−1
0 R0.

The selection of coarse space MH is quite important to the performance of the precondi-

tioner. We will use the multiscale basis (5.9) constructed in the previous section to form

the mortar space MH .

5.4.2 Local preconditioners

The local preconditioner is M−1
loc defined neighborhood wise, to compute contributions

from each block. Specifically, let Ri : MH → MH |Ei be the restriction operator from EH

to Ei and let Ri be the corresponding matrix representation. For each coarse edge Ei, we

consider a domain ω+
i ⊃ Ei (see Figure 5.3 for the illustration of ω+

i ) to design the local

preconditioner. Similarly, we define the restriction operator from EH to E+
i = EH ∩ ω+

i as

Pi : MH →MH |E+
i

and its corresponding matrix as Pi. We note that ω+
i can be the same
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as ωi. Then we define the local preconditioner as

M−1
loc =

∑
i

RT
i (PiSPT

i )−1Pi. (5.10)

The implementation of A−1
i = (PiSPT

i )−1 is equivalent to solving a homogeneous Dirich-

let boundary condition problem on ω+
i with local residual as source. We note that the local

preconditioner defined here is about each edge, not each coarse block.

If ω+
i = ωi, then we have Ri = Pi, which implies that M−1

loc is symmetric and we can

use PCG as outside accelerator. In this case, the local computational domain is twice the

size of Ki, therefore the cost (although it is offline) of applying local preconditioners may

be expensive especially in 3D case. To reduce the computational cost, we can consider

the case ω+
i 6= ωi, which is called the restrictive local preconditioner [19]. This will

not only reduce the computation of applying local preconditioner, but also decrease the

number of iterations since it includes the distant information. In this case M−1
loc is no

longer symmetric, and we can choose algorithm such as GMRES as the outer accelerator.

Remark 5.4.1. Restrictive local preconditioner is quite similar to the idea of oversam-

pling, both utilize a larger domain than standard domain to perform computation and

then take restriction. Both method shows better performance than standard method.

5.4.3 Two-level preconditioners

We combine the local preconditioner and coarse preconditioner in two ways to form

the two-level preconditioners. The first approach is the additive preconditioner

M−1
add = M−1

0 + M−1
loc . (5.11)
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The second is the hybrid preconditioner

M−1
hyb = M−1

0 + (I −P0)M−1
loc (I −PT

0 ). (5.12)

where P0 = M0S is the Schwarz projection operator, see [109] for details. For more de-

tails about the two-level preconditioners we adopt here, we refer to [14, 116] and reference

therein. We remark again that the main ingredient in the above preconditioners is the use

of our mortar multiscale space constructed in Section 5.3.

5.5 Numerical examples

In this section, we present some representative examples to show the performance of

our method. We consider two models with permeability κ depicted in Figure 5.2. We note

that κ = 1 in the blue region and κ = η(� 1) in the red region. We will consider two

high contrast cases: η = 104, η = 106 in the following examples. As it is shown, these

two models contains high contrast, short and long channels, and isolated inclusions. We

will first demonstrate the performance of the multiscale solver by showing the error of

multiscale solution against the fine scale (reference) solution. Next we report the results

of two-level preconditioners with the coarse space formed by using our multiscale mortar

space. We consider different snapshot spaces computed on different domains, and also

consider the two preconditioners.

We divide the domain Ω = (0, 1)2 into NH × NH square coarse elements. In each

coarse element, we generate a uniform Nh×Nh fine scale square elements. Therefore, the

domain was divided into Nf ×Nf fine elements, where Nf = NH ×Nh. The number of

degrees of freedom for the fine solver is 5×N2
f + 2×Nf × (Nf − 1), while the number

of degree of freedom for the multiscale solver is Nb × 2 × NH × (NH − 1), where Nb is

the number of multiscale basis on each coarse edge.

Constant sources and homogeneous Dirichlet boundary condition are considered. We
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Figure 5.2: Permeability fields.

use

 d11 d12

d21 d22

 to define local computational domain of the snapshot and the local pre-

conditioner. See Figure 5.3 for the illustration of dij . In total, 4 computational domains to

generate the multiscale space are considered:

Domain 1: No oversampling:

 Nh 0

0 Nh


Domain 2: oversampling case a:

 Nh 1

1 Nh


Domain 3: oversampling case b:

 [Nh/2] 1

1 [Nh/2]


Domain 4: oversampling case c:

 2 1

1 2
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d12
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ω+i
d21 H d21

d22

d22

Figure 5.3: Illustration of an oversampled neighborhood.

5.5.1 Coarse grid multiscale solution

In this subsection, we study the error decay of multiscale solution by adding more

multiscale basis. We consider using 4 types of multiscale basis as well as polynomial

basis for comparison. We demonstrate the influence of snapshot, mesh size and contrast

of the permeability on the multiscale solution. We define the following error to quantify

the accuracy of coarse grid multiscale solution.

ep :=
‖pms − pf‖L2,Ω

‖pf‖L2,Ω

, eu :=
‖ums − uf‖κ,Ω
‖uf‖κ,Ω

where ‖u‖2
κ,Ω =

∫
Ω
κ−1u2.

The 4 types of multiscale basis based on the way of generating the snapshot are:

Case 1: full snapshot on domain 1

Case 2: full snapshot on domain 2

Case 3: full snapshot on domain 3

Case 4: (Nh + 2) randomized snapshot on domain 2.

Table 5.1 and Table 5.2 present the numerical results for model 1 with mesh setting

NH = 5, Nh = 20 and NH = 10, Nh = 10 respectively. The first column is the number of
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multiscale basis for each coarse edge. The rest of the columns present both errors ep, eu for

using polynomial basis, and 4 types of multiscale basis as described before. As it is shown,

by adding basis, both types of errors decrease for all types of basis considered. Moreover,

the error decay of all multiscale basis cases are faster than the polynomial basis case. For

example, in Table 5.1, the relative weighted velocity error eu decreases from 78.6% to

6.2% in case 2 when NH = 5; however, the corresponding error decreases from 78.2% to

26.7% for polynomial basis. We remark that 6% error is tolerable in industry flow simula-

tion. By using 5 basis on each coarse edge, the error ep for the polynomial case is 10.3%,

while this error for the multiscale basis cases are below ten percent. Note that, by using 5

basis on each coarse edge, the number of degree of freedom of multiscale solver is about

0.3% of that of the fine solver. By comparing case 1 and case 2(oversampling case), we

can observe obvious improvement by applying oversampling although only 1 fine scale

element is added to the snapshot domain. We remark that adding more fine scale elements

to the domain of computing snapshot will further improve the solution. From the results of

case 2 and case 4, we can see that the performance of randomized snapshot is also compa-

rable with full snapshot, and it is better than case 3 and case 1. In Figure 5.4, for model 1,

the reference solution and the corresponding multiscale solutions with different number of

basis on each coarse edge are presented. The upper left is the reference solution. The upper

right is the multiscale solution with 1 basis on each coarse edge. This solution has obvious

discontinuity across the coarse edges. The bottom left shows the multiscale solution with

3 basis on each coarse edge, which is closer to the reference solution. However, we can

see slight difference between this solution and reference solution. The bottom right is the

multiscale solution with 5 basis on each coarse edge, this solution is almost identical with

the reference solution. This figure shows that the additional multiscale basis functions are

important to capture all the features of the solution.

By comparing the errors in Table 5.1 and Table 5.2, we notice that smaller coarse grid
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size can improve the accuracy of the solution. For example, the second column in Table

5.1, eu for polynomial basis drops from 63.0% to 10.3%, while the same error in Table 5.2

drops from 60.9% to 5.0%; the third column in Table 5.1, eu for Case 1 drops from 78.6%

to 8.8%, while the same error in Table 5.2 drops from 77.8% to 2.7%.

Table 5.3 and Table 5.4 show corresponding results for model 2. We observe similar

results as model 1. Both types of errors decrease for all types of basis considered by adding

more basis. The error decay of all multiscale basis cases are faster than the polynomial

basis case. For example, if NH = 10 by adding to 5 basis on each coarse edge, the error

ep for polynomial case decreases to 1.9%; while the errors for multiscale cases decrease

to 0.6%, 0.04%, 1.1%, 0.08% respectively. By comparing case 1 and case 2, we can

again observe obvious improvement by applying oversampling although only 1 fine scale

element is added to the snapshot domain. From the results of case 2 and case 4, we can see

that the performance of randomized snapshot is also comparable with full snapshot, and it

is better than case 3 and case 1.

In Figure 5.5, for model 2, the reference solution and the corresponding multiscale

solutions with different numbers of basis on each coarse edge are presented. The upper

left is the reference solution. The upper right is the multiscale solution with 1 basis on

each coarse edge. Apparently the solution is discontinuous across the coarse edges. The

bottom left is the multiscale solution with 3 basis on each coarse edge, which shows better

agreement with the reference solution. However, there are still some detailed features

missing in the multiscale solution . The bottom right is the multiscale solution with 5

basis on each coarse edge, which has good agreement with the reference solution. This

figure shows that the additional multiscale basis functions are important to capture all the

features of the solution. These results for model 2 demonstrate that our multiscale solver

can handle permeability field with long channel effects.

We also test the robustness of our method by varying the order of high contrast. The
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results are presented in Figure 5.7 and Figure 5.6. In Figure 5.7, the errors ep(left), eu

(right) for model 1 with high contrast order η = 104, 106 with coarse NH = 5, Nh = 10

are plotted. The black dashed line is for the case 104, NH = 5, the blue dashed line is for

the case 106, NH = 5. The two lines are identical. The green dashed line is for the case

104, NH = 10, the red dashed line is for the case 106, NH = 10. The two lines are also

identical.

Figure 5.6 displays the corresponding results for model 2. Though the lines do not

overlap, the difference is very small. We note that the snapshot we used for both cases

comes from case 2. From these examples, we see that our method produces robust results

independent of the order of high contrast. Robustness will further be confirmed by our

preconditioner results in following parts.

Table 5.1: Relative error between multiscale solution and fine scale solution with different
types of basis for model 1, NH = 5, η = 104. "Nb" represent the number of basis per
coarse edge.

Nb
Polynomial Case 1 Case 2 Case 3 Case 4

ep eu ep eu ep eu ep eu ep eu

1 0.630 0.786 0.630 0.786 0.630 0.786 0.630 0.786 0.630 0.786

2 0.432 0.647 0.438 0.649 0.357 0.581 0.351 0.581 0.427 0.640

3 0.288 0.519 0.157 0.374 0.139 0.354 0.143 0.357 0.129 0.341

4 0.120 0.291 0.060 0.232 0.014 0.104 0.050 0.207 0.038 0.171

5 0.103 0.267 0.012 0.088 0.006 0.062 0.028 0.157 0.008 0.073
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Table 5.2: Relative error between multiscale solution and fine scale solution with different
types of basis for model 1, NH = 10, η = 104. "Nb" represent the number of basis per
coarse edge.

Nb
Polynomial Case 1 Case 2 Case 3 Case 4

ep eu ep eu ep eu ep eu ep eu

1 0.609 0.778 0.609 0.778 0.609 0.778 0.609 0.778 0.609 0.778

2 0.133 0.322 0.140 0.329 0.130 0.316 0.133 0.320 0.106 0.287

3 0.103 0.278 0.026 0.128 0.019 0.114 0.039 0.167 0.026 0.135

4 0.069 0.232 0.012 0.092 0.010 0.083 0.029 0.142 0.004 0.050

5 0.050 0.197 0.001 0.027 3.9e-04 0.013 0.002 0.035 6.7e-04 0.020

Table 5.3: Relative error between multiscale solution and fine scale solution with different
types of basis for model 2, NH = 5, η = 104. "Nb" represent the number of basis per
coarse edge.

Nb
Polynomial Case 1 Case 2 Case 3 Case 4

ep eu ep eu ep eu ep eu ep eu

1 0.668 0.806 0.668 0.806 0.668 0.806 0.668 0.806 0.668 0.806

2 0.508 0.699 0.549 0.728 0.410 0.627 0.447 0.655 0.466 0.651

3 0.332 0.560 0.265 0.494 0.151 0.370 0.151 0.370 0.142 0.358

4 0.118 0.316 0.136 0.348 0.038 0.178 0.039 0.181 0.041 0.187

5 0.077 0.244 0.061 0.211 0.012 0.089 0.009 0.075 0.026 0.153
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Table 5.4: Relative error between multiscale solution and fine scale solution with different
types of basis for model 2, NH = 10, η = 104. "Nb" represent the number of basis per
coarse edge.

Nb
Polynomial Case 1 Case 2 Case 3 Case 4

ep eu ep eu ep eu ep eu ep eu

1 0.593 0.769 0.593 0.769 0.593 0.769 0.593 0.769 0.593 0.769

2 0.055 0.205 0.118 0.304 0.090 0.266 0.090 0.267 0.074 0.245

3 0.044 0.175 0.031 0.146 0.011 0.082 0.017 0.109 0.014 0.098

4 0.029 0.142 0.015 0.101 0.002 0.035 0.007 0.065 0.004 0.049

5 0.019 0.115 0.006 0.055 4.4e-04 0.011 0.001 0.023 7.6e-04 0.017

5.5.2 Preconditioner

In this subsection, we present the numerical results of using multiscale basis to form

the coarse space for the two level additive Schwarz domain decomposition preconditioner.

We use PCG as outer accelerator if the two-level preconditioner is symmetric, otherwise

GMRES with restarted number of 2 (GMRES(2)) is applied. We adopt the techniques

in [57] to implement the local preconditioner M−1
loc . Then the dominant computation can

be done offline and it can be parallelized with coloring techniques. The dimension of

each local preconditioner is equal to the number of fine scale edges in the adjacent coarse

elements, which is quite small and thus can be precomputed and saved. Direct solver is

used to implement M−1
0 . We consider both additive and hybrid preconditioners. We are

particularly interested in the robustness (robust is defined as that the iteration number is

independent of contrast) of the method, and in each simulation we consider three types of
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(b) Coarse-scale solution(1 basis).
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(d) Coarse-scale solution(5 basis).

Figure 5.4: Comparison of the coarse-scale solutions with the reference (fine-scale) solu-
tion, NH = 10, η = 104, model 1.
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Figure 5.5: Comparison of the coarse-scale solutions with the reference (fine-scale) solu-
tion, NH = 10, η = 104, model 2.
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Figure 5.6: Relative error for p (left), u (right) with contrast order η = 104 and η = 106

for model 2, basis generation case 2.
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Figure 5.7: Relative error for p (left), u (right) with contrast order η = 104 and η = 106

for model 1, basis generation case 2.
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contrast to test the robustness. The initial guess is zero, and the stopping criterion is that

the residual is reduced by a factor of 107 in L2 norm.

The first test involves comparing the PCG iteration number of using multiscale basis

and polynomial basis to form coarse space of the coarse preconditioner, which is shown

in Table 5.5. The first column gives the order of high contrast. The second column is the

number of PCG iterations of using polynomial to form the coarse space. The rest of the

columns give the number of PCG iterations of using multiscale basis from Case 3 and Case

4 to form the coarse space. We can see clearly that for each case, the iteration number of

multiscale basis is generally much smaller than that of polynomial basis. If polynomial

basis is used, the preconditioner is not robust with respect to the contrast of the media.

For example, for the hybrid method in the second column, PCG iteration number is 13

for contrast 102, and increases to 39 for contrast 106. While for the multiscale basis,

iteration number is almost independent of contrast. Hybrid preconditioner performs better

than additive preconditioner in terms of iteration number, however, hybrid preconditioner

requires to apply the coarse preconditioner twice in each iteration.

Next, we focus our study on the influence of the domain size on local preconditioner.

In Table 5.6, the GMRES(2) iteration numbers of using multiscale basis from case 3 with

four types of computational domain are presented. Two multiscale basis on each coarse

edge is used to form the coarse space. The first column gives the order of high contrast.

The rest of the columns give the number of GMRES(2) outer iterations for the four types of

computational domain. As it is shown, a restrictive local preconditioner (cases of Domain

2, 3, 4) can reduce the iteration number approximately by half by comparing the results of

Domain 1 and the rest of the 3 domain cases. For example, the number of iteration for the

additive case from Domain 1 for contrast of order 102, 104, 106 is 20, 18, 18 respectively,

while from Domain 2 the number of iteration for the additive case is 10, 11, 11. Moreover,

iteration number is almost independent of contrast for all types of domains. In Table 5.7,
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the GMRES(2) iteration numbers of using multiscale basis from case 4 with four types of

computational domain are presented. We observed similar results as in Table 5.6. Since

multiscale basis from case 4 uses randomized technique for snapshot, it is acceptable that

the number of iterations are slightly larger than the number of iterations of corresponding

cases in in Table 5.6.

Table 5.5: PCG iteration number with different types of coarse space, 2 basis is used for
coarse space, NH = 5.

Contrast
Polynomial Case 3 Case 4

additive hybrid additive hybrid additive hybrid

102 23 13 25 16 26 16

104 > 40 28 27 16 29 17

106 > 40 39 27 16 28 16

Table 5.6: GMRES(2) iteration number with different types of preconditioners and dif-
ferent local preconditioner, 2 basis is used for coarse space with multiscale basis case 3,
NH = 5.

Contrast
Domain 1 Domain 2 Doamin 3 Domain 4

additive hybrid additive hybrid additive hybrid additive hybrid
102 20 10 10 5 10 5 11 6
104 18 10 11 5 12 5 13 7
106 18 10 11 5 12 5 11 6
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Table 5.7: GMRES(2) iteration number with different types of preconditioners and dif-
ferent local preconditioner, 2 basis is used for coarse space with multiscale basis case 4,
NH = 5.

Contrast
Domain 1 Domain 2 Doamin 3 Domain 4

additive hybrid additive hybrid additive hybrid additive hybrid

102 17 10 15 7 12 8 16 9

104 20 8 18 5 18 10 18 7

106 18 10 14 6 12 7 16 9
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6. CONCLUSIONS

In this dissertation, we mainly focus on the development and application of global,

local model reduction methods for subsurface flow simulation. We now summarize each

component.

We present a reduced-order modeling approach for simulations of two-phase flow and

transport. The approach incorporates the use of POD and DEIM to construct a reduced

model that is less computational expensive while reproduce the full-order input/output be-

havior with certain accuracy. Our approach uses POD Galerkin projection to setup the

whole system on a reduced dimensional subspace. In addition, DEIM is used to approx-

imate nonlinear terms so that the resulting system is solved at the online stage with a

much less computational cost compared to the fine-grid solver. However, because POD

based techniques use Galerkin (or Petrov-Galerkin) projections, the resulting system may

not have mass conservation property. We use reduced dimensional basis for velocity field

within mixed finite element framework [2, 3]. We show a combination of multiscale meth-

ods with reduced-order modeling in an approach called global-local model reduction. In

this approach, the global snapshots are computed using local multiscale methods based on

Generalized Multiscale Finite Element Method where a few multiscale basis functions are

computed for each coarse region and re-used for all input data. One can control accuracy

of local as well as global approaches by adding additional basis functions in each coarse

region or adding global basis functions.

We also propose an online adaptive global-local POD-DEIM model reduction method

for nonlinear systems where both POD subspaces and DEIM interpolants are adapted dur-

ing the online stage by incorporating online information locally. In the global adaptive

framework, we employ local techniques to realize adaption leading to computational sav-
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ings in evaluating the residual. Our approach is particularly useful for situations where

it is desired to solve the reduced system for inputs or controls that result in a solution

outside the span of the snapshots generated in the offline stage. This happens in many

applications, such as inverse problem and optimization, where the final solution path may

be difficult to predict before the problem is solved. Our method also offers an alternative

to constructing a robust reduced system even if a potential initial poor choice of snapshots

is used, since it can absorb representative information into the POD solution space along

the online simulation process.

We have also worked on developing a local multiscale approach. The method is based

on a mixed formulation of the problem, the concepts of domain decomposition, and mortar

techniques. The multiscale basis functions that fully resolve the problem within the subdo-

mains are constructed from local problems by following the framework of the Generalized

Multiscale Finite Element Method (GMsFEM). Using the proposed multiscale mortar s-

pace, we construct a multiscale finite element coarse grid solver for the flows. Further, we

design both two-level additive, hybrid preconditioners which can be used within a Krylov

accelerator such as PCG or GMRES as an exact solver. These two-level preconditioners

consist of a local smoothing preconditioner based on block Jacobi(BJ), blocked by sub-

domain interfaces, and a coarse preconditioner based on subdomain interfaces using the

enriched multiscale mortar space. Finally, we present some numerical examples to show

that the proposed coarse space gives promising ability to deal with problems in media with

complicated inclusions and long channels that may across coarse edges.
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