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ABSTRACT 

 

The semi-arid Texas High Plains (THP) is one of the intensively managed 

agricultural regions in the United States (US) where cotton (Gossypium hirsutum L.) is a 

major crop. The THP region produces about a quarter of the US cotton. About 97% of 

the groundwater from the underlying Ogallala Aquifer is used for irrigating row crops 

including cotton in this semi-arid region. However, groundwater levels/quality in this 

region are experiencing a continuous decline/deterioration. This region also experiences 

recurring droughts and climate change studies predict warmer and drier summers in the 

future. These challenges may induce change in land use in the THP from high-water-

demanding crops such as cotton to high water- and nitrogen-use-efficient cellulosic 

bioenergy crops such as perennial grasses and biomass sorghum [Sorghum bicolor (L.) 

Moench]. The region also holds enormous potential for the biofuel production according 

to the United States Department of Agriculture (USDA). The overall goal of this study is 

to assess the impacts of biofuel-induced land use change and climate change on 

hydrology, water quality and biomass production in the Double Mountain Fork Brazos 

watershed in the THP using the Soil and Water Assessment Tool (SWAT), Agricultural 

Policy/Environmental eXtender (APEX) and an integrated APEX-SWAT models. 

Switchgrass (Panicum virgatum L.) and Miscanthus × giganteus were found to 

be ideal bioenergy crops to replace cotton under the irrigated and dryland conditions, 

respectively. About 18 and 19 Mg ha-1 yr-1 of biomass could potentially be produced 

under the irrigated switchgrass and dryland Miscanthus scenarios. The land use change 
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from cotton to perennial grasses decreased average annual (1994-2009) surface runoff, 

total nitrogen (TN) load through surface runoff and NO3-N leaching to groundwater by 

88%, 86% and 100%, respectively and increased percolation by 28%. The climate 

change analysis indicated that the simulated annual irrigation water use and TN load 

under the future perennial grass land uses reduced by 60% and 30%, respectively, when 

compared to future cotton land use. However, under future climate scenarios, irrigated 

switchgrass yields were projected to reduce by 16-28% and dryland Miscanthus yields 

were simulated to increase by 32-38% when compared to the historic yields. 
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1. INTRODUCTION 

 

The semi-arid Texas High Plains (THP) in the United States is one of the most 

intensive agricultural regions in the world. Irrigated agriculture in the THP depends 

primarily on groundwater availability in the vast underlying Ogallala Aquifer. About 

97% of water drawn from the Ogallala Aquifer is used for crop irrigation in the region 

(Maupin and Barber, 2005). However, groundwater levels in this region are experiencing 

a continuous decline and groundwater quality has been deteriorating due to the intensive 

agricultural activities (Chaudhuri and Ale, 2014a; Rajan et al., 2015). A majority of 

producers in this region are facing water shortages due to lower groundwater availability 

and higher pumping costs (Nair et al., 2013). Many climate change studies for this 

region predict warmer and drier summers in the future (Modala et al., 2016), which 

necessitate larger groundwater withdrawals. In order to extend the life of the Ogallala 

Aquifer and to insure that at least a certain percentage (varies with the water district) of 

currently available groundwater will still be available in 2060, Groundwater 

Conservation Districts (GCDs), which are the primary regulatory agencies in the region 

imposed new rules to limit the allowable annual groundwater pumping for irrigation.  

Cotton (Gossypium hirsutum L.) is a major crop grown in the THP region, which 

produced approximately 25% of U.S. cotton in 2013 (NASS, 2014). The new restrictions 

on groundwater pumping in the THP are expected to result in a change in land use from 

high-water-demanding crops, such as cotton and corn (Zea mays L.), to relatively less 

water-demanding crops in the near future (Rajan et al., 2014). The agricultural land in 
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the THP region has the potential to grow cellulosic bioenergy crops such as perennial 

grasses and biomass sorghum [Sorghum bicolor (L.) Moench] (United States 

Department of Agriculture; USDA, 2010), which have higher water and nitrogen use 

efficiencies compared to cotton, and they can provide many water quality and economic 

benefits (Rooney et al., 2007; Sarkar et al., 2011; Kiniry et al., 2013; Sarkar and Miller, 

2014). The USDA has also estimated that about 11.4% of existing croplands and 

pastures in the Southeastern U.S. region, which includes the THP, will be required for 

fuel use to meet the 2022 U.S. cellulosic biofuel target (USDA, 2010). 

A potential land use change from croplands to cellulosic bioenergy crops may 

significantly affect the regional hydrologic cycle and water quality. Evaluation of the 

detailed hydrologic and water quality impacts of biofuel-induced land use change from 

cotton to cellulosic bioenergy crops in the semi-arid THP is therefore necessary to assess 

the feasibility of proposed land use change. In this study, Miscanthus ×  giganteus, 

Alamo switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii) and 

biomass sorghum were selected to hypothetically replace the existing cotton land use 

(considered as the “baseline” scenario). 

Several models are available for simulating the hydrological and water quality 

impacts of land use change, such as the Soil and Water Assessment Tool (SWAT; 

Arnold et al., 1998) model, Agricultural Policy/Environmental Extender (APEX) model 

(Williams, 1995), European Hydrological System Model MIKE SHE (Refsgaard and 

Storm, 1995), DRAINMOD (Youssef et al., 2005; Skaggs et al., 2012) and the 

Agricultural Drainage and Pesticide Transport (ADAPT) model (Gowda et al., 2012). 
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Among these, the SWAT and APEX models have been used widely across the world, 

and they demonstrated the potential to satisfactorily predict long-term impacts of land 

use change on hydrologic processes and water quality in complex watersheds (Williams 

1995; Ko et al., 2009; Ghaffari et al., 2010; Gassman et al., 2010; Srinivasan et al., 2010; 

Tuppad et al., 2010; Powers et al., 2011; Wu and Liu, 2012; Zatta et al., 2014). The 

SWAT and APEX models were therefore used in this study. An integrated version of the 

SWAT and APEX models was also developed as a part of this study in order to utilize 

the relative advantages of these models in simulating certain crops/processes. More 

details about the rationale behind this study and the research approach are discussed in 

detail in the following sections.  

 

1.1 Background 

1.1.1 Texas High Plains and the Study Watershed 

The THP, which encompasses 41 counties in the northwest Texas (Figure 1.1), is 

a treeless, windswept and semi-arid region within the Great Plains (Webb, 1931). The 

region has a flat terrain with the elevation ranging from 900 to 1300 m. The THP region 

is characterized by slow to moderate drainage conditions with the presence of many 

small shallow lakes called as playas. The long-term average (1981-2010) annual 

precipitation in this region was about 508 mm (NOAA-NCDC, 2014). The annual frost-

free period during the above period varied from 180 to 220 days, and the long-term daily 

average maximum and minimum temperatures were 24°C and 9°C, respectively. The 

major soil types are Acuff sandy clay loam (fine-loamy, mixed, superactive, thermic 
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Aridic Paleustolls), Amarillo sandy loam (fine-loamy, mixed, superactive, thermic Aridic 

Paleustalfs) and Pullman clay loam (fine, mixed, superactive, thermic Torrertic 

Paleustoll) (Soil Survey Staff, 2010). The natural vegetation of the THP consists 

primarily of short grasses, and the northern portion of the region is one of the most 

distinctive short grass regions of the US. The predominant agriculture land use is cotton 

in the THP, which accounted for about 37% of entire U.S. cotton harvest acres in 2015 

(NASS, 2016). The THP has been under cotton production for more than 100 years 

(Bruton et al., 2007). 

Availability of a good quality measured data over a longer period of time for 

calibrating and validating hydrologic and water quality models is a key for successful 

application of these models. Only a limited number of United States Geological Survey 

(USGS) gauges are available in the THP region and they recorded very low streamflow 

in most parts of the year, which posed some challenges for the SWAT model calibration 

in this study. The Double Mountain Fork Brazos watershed, located in the southern part 

of the THP, was selected for this study because of the existence of cotton land use in 

about 30% of the watershed and availability of sufficient streamflow and water quality 

data for evaluation of the SWAT model (Figure 1.1). Two USGS gauges exist in this 

watershed, and one of them is located at the watershed outlet. While daily streamflow 

data has been recorded at both the USGS gauges, limited data on total nitrogen (TN) 

concentration is available at the downstream USGS gauge (watershed outlet). The 

delineated watershed area is about 6000 km2, and the topography is flat. The major land 

uses are cotton (30%), range grass (21%) and range brush (31%). The major soil types 
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are Acuff sandy clay loam (fine-loamy, mixed, superactive, thermic Aridic Paleustolls), 

Amarillo sandy loam (fine-loamy, mixed, superactive, thermic Aridic Paleustalfs) and 

Olton clay loam (fine, mixed, superactive, thermic Aridic Paleustolls) (Soil Survey Staff, 

2010). 

 

Figure 1.1 Location of the study watershed in the Texas High Plains 

 

1.1.2 Groundwater Depletion and Deterioration in the Texas High Plains 

The discovery of the vast underground Ogallala Aquifer in the early 20th century 

made the Ogallala groundwater available for irrigated agriculture in the THP (Hornbeck 

and Keskin, 2012). Development of improved center pivot irrigation technology further 

contributed to rapid expansion of irrigated agriculture in this region. About 97% of water 

drawn from the Ogallala Aquifer is used for intensive agricultural production in the THP 
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(Maupin and Barber, 2005). However, due to extensive groundwater pumping that far 

exceeds the recharge over the last eight decades, many producers in this region are 

facing water shortages due to lower groundwater availability (Nair et al., 2013). 

Chaudhuri and Ale (2014a), for example, reported that the mean groundwater level in the 

THP region has declined significantly (p < 0.05) from about 19 m in the 1930s to 52 m 

in the 2000s due to extensive pumping for meeting agricultural irrigation demand. 

Projected future changes in climate in this region are expected to further contribute to 

this problem. Recently, Modala et al. (2016) predicted an apparent increase in daily 

temperature (1.9 to 3.2 ºC) and a decrease in precipitation (30 to 127 mm) in the future 

in the THP region, which indicate that the groundwater availability could reduce 

substantially in the future. Using the Hydrologic Unit Model for the United States 

(HUMUS), Rosenberg et al. (1999) also predicted a further reduction in the recharge to 

the Ogallala Aquifer under the future climate change scenarios because of the increase in 

evapotranspiration (ET) due to elevated temperatures, and such trends would further 

reduce groundwater availability in this region.  

In addition to groundwater depletion, groundwater quality in the THP region has 

also deteriorated over time due to both natural and anthropogenic factors (Chaudhuri and 

Ale, 2014b). Most importantly, nitrate concentrations in groundwater increased with 

time, especially in the southern part of the THP where intensive agricultural activities 

take place. For example, the percentage of groundwater quality observations from the 

shallow wells that exceeded the United States Environmental Protection Agency’s 

Maximum Contaminant Level (MCL) for nitrate (NO3) (44 mg L−1) increased from 3% 
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in the 1960s (1960-1969) to 32% in the 2000s (2000-2010) (Chaudhuri and Ale, 2014b). 

Agricultural activities, mainly application of large quantities of inorganic fertilizers on 

croplands together with shallow depth of the aquifer were some of the important reasons 

for high nitrate concentrations in groundwater. 

In order to extend the life of the Ogallala Aquifer and to insure that at least a 

certain percentage of currently available groundwater will still be available in 2060, 

Groundwater Conservation Districts (GCDs), which are the primary regulatory agencies 

in the region imposed new rules to limit the allowable annual groundwater pumping for 

irrigation. For example, the High Plains Underground Water Conservation District 

(HPUWCD) (http://www.hpwd.org/) set the annual groundwater pumping limit for 2015 

and 2016 at 18 inches (457 mm) (HPUWCD, 2016). Decline of groundwater levels and 

the restrictions on groundwater pumping may induce changes in land use and cause a 

shift from irrigated to dryland cultivation in the THP in the future. However, studies 

focusing on such land use changes on hydrology and water quality of the THP 

watersheds are lacking. 

 

1.1.3 Potential Changes in Land Use and the Associated Environmental Impacts 

A potential land use change from croplands to cellulosic bioenergy crops may 

significantly affect the regional hydrologic cycle and water quality. For example, using 

the SWAT model, Schilling et al. (2008) predicted that a land cover change from 

cropland to switchgrass in the Raccoon River watershed in west-central Iowa would 

increase ET by about 9% and decrease water yield (sum of surface runoff and subsurface 
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runoff) by about 28%. VanLoocke et al. (2010) also predicted that the land use change 

from corn to perennial bioenergy grass would increase ET within a range of 50 to 150 

mm yr-1 and decrease subsurface drainage within a range of 50 to 250 mm yr-1 in the 

Corn Belt of the Midwest U.S., and they used the Integrated Biosphere Simulator - 

agricultural version (Agro-IBIS) model in their study. Another SWAT modeling study 

by Ng et al. (2010) estimated that a 10% land use change from cropland to Miscanthus × 

giganteus would lead to a reduction in nitrate-nitrogen (NO3-N) load by about 6.4% at 

the outlet of the Salt Creek watershed in Illinois. A majority of these biofuel-induced 

land use change studies focused on the humid regions of the U.S. such as the Upper 

Mississippi River Basin of the Corn Belt region (Srinivasan et al., 2010; Demissie et al., 

2012; Zhuang et al., 2013). Such detailed assessments on hydrology and water quality 

impacts of biofuel-induced change in land use are very limited for the arid/semi-arid 

regions such as the THP. In addition, no comprehensive assessment of hydrologic 

responses and water quality impacts of land use change from major row crops such as 

cotton to cellulosic bioenergy crops under the changing climate are documented (Sarkar 

and Miller, 2014). Evaluating the environmental impacts of land use change from cotton 

to cellulosic bioenergy crops in the semi-arid THP under the historic as well as future 

climatic conditions is, therefore, necessary to assess the feasibility of proposed land use 

change. 

 

 

 



 

9 
 

 

1.2 Ideal Bioenergy Crops and Their Potential for Biofuel Production 

The potential for growing cellulosic crops such as Alamo switchgrass, 

Miscanthus × giganteus, big bluestem and biomass sorghum as bioenergy crops was 

studied by several researchers in different parts of the world through field 

experimentation (Heaton et al., 2008; Zatta et al., 2014; Yimam et al., 2014, 2015; 

Oikawa et al., 2015; Zhang et al., 2015a) and hydrologic and water quality modeling 

(Wright, 2007; Jain et al., 2010; Qin et al., 2011; Zhuang et al., 2013; Qin et al., 2015). 

Alamo switchgrass is a perennial C4 warm-season bunch grass native to North America, 

and it is found in low, moist areas and prairies of north-central Texas (Diggs et al., 

1999). Miscanthus × giganteus is also a C4 warm-season perennial grass (Heaton et al., 

2004, 2008) that is native to Southeast Asia (Ohwi, 1964) and Africa (Adati and 

Shiotani, 1962). Big bluestem is a C4 warm-season perennial native grass that comprises 

as much as 80% of the plant biomass in prairies in the Midwestern grasslands of North 

America (Gould and Shaw, 1983; Knapp et al., 1998). Biomass sorghum is an annual 

photoperiod sensitive C4 type cellulosic crop that adapts to the subtropical and 

temperate climates (Rooney et al., 2007). Several field studies that evaluate the 

feasibility of growing these bioenergy crops/grasses are in progress in the THP. 

However, evaluation of long-term effects of growing cellulosic bioenergy crops would 

be necessary before adopting them on a large-scale, and hydrologic and water quality 

models are very useful for such purposes. 

Cellulosic biomass can be converted into biofuel through various biochemical 

processes, which include pretreatment, enzymatic hydrolysis and fermentation 
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(Christakopoulos et al., 1993). Bioethanol production from cellulosic biomass is 

considered as a viable option because it does not compete with human food production. 

According to the US Department of Energy 

(http://www.afdc.energy.gov/fuels/ethanol_feedstocks.html), the estimated ethanol 

production from cotton gin trash, rice/wheat straw, hardwood sawdust, 

switchgrass/Miscanthus and biomass sorghum is about 215, 416, 382, 366 and 428 liters 

Mg-1 dry biomass, respectively (Table 1.1). 

 

Table 1.1 Theoretical ethanol yields of the selected feedstocks 

Feedstock Theoretical ethanol yield (Liter per dry Mg of feedstock) 

Corn grain 470.9 

Corn/sorghum stover 427.8 

Rice/wheat straw 416 

Cotton gin trash 215 

Forest thinnings 308.5 

Hardwood sawdust   381.6 

Bagasse 422.1 

Mixed paper 439.9 

Switchgrass 366 

*280 for switchgrass whole plant  

Source: U.S. Department of Energy Biomass Program, Theoretical Ethanol Yield 

Calculator and Biomass Feedstock Composition and Property Database 

 

1.3 Objectives and Hypotheses 

The overall goal of this study is to assess the impacts of land use change from 

cotton to cellulosic bioenergy crops on hydrology and water quality of the Double 

http://www.afdc.energy.gov/fuels/ethanol_feedstocks.html
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Mountain Fork Brazos watershed in the THP under the current and future climate 

scenarios using the SWAT, APEX and Integrated APEX-SWAT models. Specific 

objectives of the study were to:  

1. evaluate the impacts of land use change from cotton to bioenergy crops such 

as switchgrass, Miscanthus, big bluestem and biomass sorghum, on water 

balances at the field and watershed scales 

2. quantify the biomass and biofuel production potential of above cellulosic 

bioenergy crops, and identify ideal bioenergy crops for the THP region 

3. identify marginal cotton-growing areas in the watershed for potential 

replacement with switchgrass, and evaluate associated land use change 

impacts on water use efficiency and hydrologic fluxes 

4. compare and contrast the hydrologic and water quality impacts of the 

proposed land use change under irrigated and dryland agricultural systems  

5. assess the combined impacts of climate change and proposed land use change 

on hydrologic fluxes, water quality and crop yield 

 

Hypothesis 1: 

Perennial bioenergy crops such as switchgrass, Miscanthus and big bluestem are ideal 

for water conservation when compared to cotton.  

This hypothesis was tested on the Double Mountain Fork Brazos watershed in 

the THP using the calibrated SWAT model for streamflow and cotton lint yield. Results 

showed that the average annual (1994-2009) surface runoff from the entire watershed 
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under the perennial grass scenarios decreased by 6% to 8% relative to the baseline cotton 

scenario. Perennial grass land use change scenarios also suggested an increase in average 

annual percolation within a range of 3% to 22% and maintenance of higher soil water 

content during August to April compared to the baseline cotton scenario. Therefore, the 

perennial bioenergy crops were found to conserve water better when compared to cotton. 

 

Hypothesis 2: 

Switchgrass and Miscanthus are ideal cellulosic bioenergy crops for the irrigated and 

dryland conditions in the THP.  

This hypothesis was also verified using the calibrated SWAT model. Results 

showed that Miscanthus and switchgrass were found to be ideal bioenergy crops for the 

dryland and irrigated conditions, respectively, in the study watershed due to their higher 

water use efficiency, better water conservation effects, greater biomass and biofuel 

production potential, and minimum crop management requirements compared to the big 

bluestem and biomass sorghum. 

 

Hypothesis 3: 

Perennial grasses reduce nutrient loads to surface and groundwater when compared to 

cotton. 

This hypothesis was tested by using the Integrated APEX-SWAT model. The 

Integrated APEX-SWAT model was calibrated against the observed streamflow, cotton 

lint yield and TN load in streamflow. The nitrogen balances of cotton were also analyzed 
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to verify the model performance. Results showed that the NO3-N and organic-N loads in 

surface runoff and NO3-N leaching to groundwater reduced significantly by 86%, 98% 

and 100%, respectively, under the perennial grass scenarios relative to the baseline 

cotton scenario.  

 

Hypothesis 4: 

a) The biomass yields of perennial bioenergy crops will decrease under the future 

climate scenarios when compared to the historic period.  

b) Cotton is more sensitive to future climate change impacts when compared to 

bioenergy crops. 

These hypotheses were also examined on the Double Mountain Fork Brazos 

watershed in the THP using the calibrated SWAT model and projected Coupled Model 

Intercomparison Project Phase 5 (CMIP5) climate data from 19 General Circulation 

Models (GCMs). Two Representative Concentration Pathway (RCP) emission scenarios 

of RCP4.5 (moderate) and RCP8.5 (severe) for the middle of the 21st century (2040 to 

2069) and end of the 21st century (2070 to 2099) were used. Results indicated that cotton 

is more sensitive to future climate change when compared to perennial grasses. While 

irrigated and dryland cotton yields increased within the ranges of 69% to 91% and 100% 

to 129%, respectively, the irrigated switchgrass biomass yield decreased within a range 

of 16% to 28%, and the dryland Miscanthus biomass yield increased within a range of 

32% to 38% under the future climate change scenarios when compared to the historic 

period. 
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1.4 Organization of Dissertation 

This dissertation consists of seven sections. Section 1 is devoted to a general 

introduction, science questions and the objectives & hypotheses of the study. Section 2 

addresses the first and second objectives. It describes the methodology adopted for 

SWAT model setup, parameterization and calibration for the study watershed. It also 

provides a detailed analysis of the impacts of land use change from cotton to cellulosic 

bioenergy crops on hydrology and identification of ideal cellulosic bioenergy crops for 

the irrigated and dryland conditions in the THP. Section 3 addresses third objective and 

it discusses about the hydrologic impacts of replacing cotton on marginal lands in the 

study watershed with switchgrass using the APEX model. In addition to identifying 

marginal cotton growing subareas in the watershed for potential replacement with 

switchgrass, this section also discusses the spatial variability in water use efficiency and 

hydrologic fluxes under the baseline cotton and hypothetical switchgrass replacement 

scenarios. Section 4 addresses the objective 4. In this section, the APEX model was 

integrated with the SWAT model to enable assessment of water quality effects of 

proposed land use change from the watershed. This section also describes the impacts of 

land use change on NO3-N leaching to groundwater, which is a major concern in the 

THP. Section 5 addresses the objective 5. It discusses the impacts of land use change 

from cotton to perennial grasses on hydrology, water quality and crop yield under 

current and future climate change scenarios. It uses the CMIP5 climate projections from 

19 GCMs under two emission scenarios of RCP4.5 and RCP8.5 during two 30-year 

periods of middle (2040-2069) and end (2070-2099) of the 21st century. Section 6 also 
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addresses objective 1 and it describes field-scale calibration of the SWAT model using 

eddy covariance data and assessment of water balances. The one hydrologic response 

unit (HRU) method, which is a very flexible and time-saving method, was used to 

calibrate the SWAT model against the field observations of ET and aboveground 

biomass. Section 7 summarizes the study, draws some appropriate conclusions and 

makes several recommendations for the future work. 
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2. HYDROLOGICAL RESPONSES OF LAND USE CHANGE FROM COTTON 

(GOSSYPIUM HIRSUTUM L.) TO CELLULOSIC BIOENERGY CROPS IN THE 

SOUTHERN HIGH PLAINS OF TEXAS, USA 

 

2.1 Synopsis 

The Southern High Plains (SHP) region of Texas in the United States, where 

cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops 

such as perennial grasses and biomass sorghum (Sorghum bicolor). Evaluation of 

hydrological responses and biofuel production potential of hypothetical land use change 

from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops enables better 

understanding of the associated key agroecosystem processes and provides for the 

feasibility assessment of the targeted land use change in the SHP. The Soil and Water 

Assessment Tool (SWAT) was used to assess the impacts of replacing cotton with 

perennial Alamo switchgrass (Panicum virgatum L.), Miscanthus ×  giganteus 

(Miscanthus sinensis Anderss. [Poaceae]), big bluestem (Andropogon gerardii) and 

annual biomass sorghum on water balances, water use efficiency and biofuel production 

potential in the Double Mountain Fork Brazos watershed. Under perennial grass 

scenarios, the average (1994-2009) annual surface runoff from the entire watershed 

decreased by 6% to 8% relative to the baseline cotton scenario. In contrast, surface 

runoff increased by about 5% under the biomass sorghum scenario. Perennial grass land 

                                                           
 The following material in this section is used with permission from John Wiley & 

Sons, Inc. It has been published as a peer-reviewed research paper in the journal of 

Global Change Biology Bioenergy. 2016. 8: 981-999. 
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use change scenarios suggested an increase in average annual percolation within a range 

of 3% to 22% and maintenance of a higher soil water content during August to April 

compared to the baseline cotton scenario. About 19.1, 11.1, 3.2 and 8.8 Mg ha-1 of 

biomass could potentially be produced if cotton area in the watershed would 

hypothetically be replaced by Miscanthus, switchgrass, big bluestem and biomass 

sorghum, respectively. Finally, Miscanthus and switchgrass were found to be ideal 

bioenergy crops for the dryland and irrigated systems, respectively, in the study 

watershed due to their higher water use efficiency, better water conservation effects, 

greater biomass and biofuel production potential, and minimum crop management 

requirements. 

 

2.2 Introduction 

The semi-arid Southern High Plains (SHP) of Texas in the United States is one of 

the most agriculturally intensive regions in the world. Irrigated agriculture in the SHP 

depends primarily on groundwater availability in the underlying vast Ogallala Aquifer. 

About 97% of water withdrawn from the Ogallala Aquifer is used for crop irrigation in 

the SHP (Maupin and Barber, 2005). However, groundwater levels in this region are 

experiencing a continuous decline due to much higher rates of groundwater extraction 

compared to recharge (Chaudhuri and Ale, 2014a; Rajan et al., 2015b). Many producers 

in this region are facing water shortages due to lower groundwater availability and 

higher pumping costs (Nair et al., 2013). In order to extend the life of the Ogallala 

Aquifer and to insure that at least certain percentage (varies with the water district) of 
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currently available groundwater will still be available in 2060, the primary regulatory 

agencies in the region imposed new rules to limit the allowable annual groundwater 

pumping for irrigation. For example, the High Plains Underground Water Conservation 

District (http://www.hpwd.org/) set the pumping limit for 2015 at 46 cm (HPUWCD, 

2015). 

The major crop grown in the SHP region is cotton, and this region produced 

approximately 13% of U.S. cotton in 2013 (NASS, 2013). The new restrictions on 

groundwater pumping in the SHP are expected to result in a change in land use from 

high-water-demanding crops such as cotton and corn to relatively less water demanding 

crops in the near future (Rajan et al., 2015a). The agricultural land in the SHP region has 

the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass 

sorghum (Sorghum bicolor) (USDA, 2010), which have higher water use efficiency 

compared to cotton, and can provide water quality and economic benefits (Rooney et al., 

2007; Sarkar et al., 2011; Kiniry et al., 2013; Sarkar and Miller, 2014). The United 

States Department of Agriculture (USDA) has also estimated that about 11.4% of 

existing croplands and pastures in the Southeastern U.S. region, which includes the SHP, 

will be required for fuel use for meeting the 2022 national cellulosic biofuel target 

(USDA, 2010). 

A potential land use change from croplands to cellulosic bioenergy crops in the 

SHP may significantly affect regional hydrologic cycle by altering proportions of surface 

runoff, water yield (the net amount of water that generates from a landscape and 

contributes to streamflow during a given time interval), evapotranspiration (ET), soil 

http://www.hpwd.org/)
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water content and percolation (the amount of water that percolates below the root zone 

during a given time). For example, Schilling et al. (2008) found that the land use/land 

cover change from cropland to cellulosic bioenergy crop of switchgrass in the Raccoon 

River watershed in west-central Iowa would increase ET by about 9% and decrease 

water yield by about 28%. VanLoocke et al. (2010) also reported that the land use 

conversion from corn (Zea mays L.) to perennial biofuel grasses would increase ET 

within a range of 50 to 150 mm year-1 and decrease the drainage within a range of 50 to 

250 mm year-1 in the Corn Belt of Midwest U.S. Majority of these biofuel-induced land 

use change studies focused on the humid regions of the U.S. such as the Upper 

Mississippi River Basin of the Corn Belt region (Srinivasan et al., 2010; Demissie et al., 

2012; Zhuang et al., 2013). Such detailed assessments of hydrological impacts of 

biofuel-induced land use change are lacking for the arid/semi-arid regions such as the 

SHP. In addition, no comprehensive assessment of hydrological responses and biofuel 

production potential of land use change from major row crops such as cotton to various 

cellulosic bioenergy crops are documented (Sarkar and Miller, 2014). Evaluating the 

hydrologic impacts of land use change from cotton to cellulosic bioenergy crops in the 

semi-arid SHP is therefore necessary to assess the feasibility of the proposed land use 

change. 

The potential for the use of cellulosic crops such as Alamo switchgrass (Panicum 

virgatum L.), Miscanthus ×  giganteus (Miscanthus sinensis Anderss. [Poaceae]), big 

bluestem (Andropogon gerardii) and biomass sorghum as bioenergy crops was studied 

by several researchers in different parts of the world through field experimentation and 
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modeling (Wright, 2007; Heaton et al., 2008; Jain et al., 2010; Qin et al., 2011; Qin et 

al., 2015; Zhuang et al., 2013; Oikawa et al., 2014; Zatta et al., 2014; Yimam et al., 

2014, 2015; Zhang et al., 2015a). Alamo switchgrass is a perennial C4 warm-season 

bunch grass native to North America and it is found in low, moist areas and prairies of 

north-central Texas (Diggs et al., 1999). Miscanthus × giganteus is a C4 cool-season 

grass (Heaton et al., 2004, 2008) that is native to Southeast Asia (Ohwi, 1964) and 

Africa (Adati and Shiotani, 1962). Big bluestem is a C4 warm-season perennial native 

grass that comprises as much as 80% of the plant biomass in prairies in the Midwestern 

grasslands of North America (Gould and Shaw, 1983; Knapp et al., 1998). Biomass 

sorghum is a photoperiod sensitive C4 type lignocellulosic biomass crop that remains in 

a vegetative growth stage for most of the growing season in subtropical and temperate 

climates (Rooney et al., 2007). In this study, Miscanthus ×  giganteus, Alamo 

switchgrass, big bluestem and biomass sorghum were selected to hypothetically replace 

the existing cotton land use (baseline). Alamo switchgrass has higher radiation use 

efficiency and water use efficiency than Kanlow and other switchgrass varieties 

(Blackwell, Cave-in-Rock, and Shawnee) in the Southern Great Plains (Kiniry et al., 

2013), and hence Alamo switchgrass was selected in this study. 

Several hydrologic models are available for simulating the hydrological impacts 

of land use change, such as the Soil and Water Assessment Tool (SWAT; Arnold et al., 

1998), Agricultural Policy/Environmental Extender (APEX) model (Williams, 1995), 

European Hydrological System Model MIKE SHE (Refsgaard and Storm, 1995), 

DRAINMOD (Youssef et al., 2005; Skaggs et al., 2012) and the Agricultural Drainage 
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and Pesticide Transport (ADAPT) model (Gowda et al., 2012). Among these models, the 

SWAT model has been used widely across the world and it demonstrated potential to 

satisfactorily predict long-term impacts of land use change on hydrologic processes in 

complex watersheds (Ghaffari et al., 2010; Srinivasan et al., 2010; Wu and Liu, 2012; 

Zatta et al., 2014), and hence the same model was used in this study. The availability of 

good quality observed streamflow data is vital for developing a well-calibrated SWAT 

model for the study watershed. There are only a limited number of USGS gauges in the 

SHP region and they recorded very low streamflow in most parts of the year, which 

posed some challenges for the SWAT model calibration. Several recent studies used crop 

yield as an auxiliary data for model calibration, as crop yield is directly proportional to 

ET component of the water balance (Akhavan et al., 2010; Srinivasan et al., 2010; Zhang 

et al., 2013; Mittelstet et al., 2015; Zhang et al., 2015b). This additional step in model 

calibration gives more confidence on the partitioning of water between soil storage, ET 

and aquifer recharge (Faramarzi et al., 2009, 2010; Akhavan et al., 2010). Therefore, the 

SWAT model was calibrated against reported county-level cotton lint yield data in 

addition to streamflow. 

The overall goal of this study was to evaluate the hydrological responses and 

biofuel production potential of hypothetical land use change from cotton to cellulosic 

bioenergy crops including two native perennial grasses, switchgrass and big bluestem; 

one non-native perennial grass, Miscanthus; and an annual, high potential biofuel crop of 

biomass sorghum in the Double Mountain Fork Brazos watershed in the SHP using the 

SWAT model. In the SWAT crop database, big bluestem and biomass sorghum are 
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included as generic crops, and hence we modeled these two crops as generic crops 

instead of specific varieties. Specific objectives of the study were to: (1) assess the 

impacts of hypothetical land use change from cotton to bioenergy crops such as 

switchgrass, Miscanthus, big bluestem and biomass sorghum, on water balances; (2) 

quantify the potential amount of biofuel production from these cellulosic bioenergy 

crops, and identify appropriate bioenergy crops for the SHP region; and (3) compare and 

contrast the hydrologic impacts and biofuel production potential of the proposed 

hypothetical land use changes under irrigated and dryland agricultural systems. 

 

2.3 Materials and Methods 

2.3.1 Watershed Description 

The Double Mountain Fork Brazos watershed (HUC # 12050004) in the SHP has 

a total delineated area of about 6,000 km2. Larger parts of the watershed are located in 

the counties of Hockey, Lynn, Garza, Scurry, Kent and Stonewall, and some smaller 

portions in Terry, Lubbock, Dawson, Borden, Fisher and Haskell Counties (Figure 1.1). 

The long term (1981-2010) average annual precipitation across the watershed varies 

between 457 and 559 mm, and the long term average annual maximum and minimum 

temperatures are about 23°C to 25°C and 8°C to 10°C, respectively. The topography of 

the watershed is flat, and there is a long history of cotton and winter wheat (Triticum 

aestivum) cultivation in this watershed. The primary soil types in the watershed are 

Amarillo sandy loam (fine-loamy, mixed, superactive, thermic Aridic Paleustalfs), Acuff 

sandy clay loam (fine-loamy, mixed, superactive, thermic Aridic Paleustolls) and Olton 
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clay loam (fine, mixed, superactive, thermic Aridic Paleustolls) (Soil Survey Staff, 

2010). 

 

Figure 2.1 Location of the study watershed. 

 

Seven weather stations with daily precipitation, and minimum and maximum 

temperature data exist inside or within a closer distance of the watershed. Although three 

USGS gauges are located in this watershed, the streamflow data from only two gauges 

(08079600, which is denoted as Gauge I and 08080500, which is at the watershed outlet 
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and denoted as Gauge II) was used in this study (Figure 1.1). Data from the remaining 

gauge was not used to calibrate the SWAT model as only limited streamflow data 

pertaining to 1949-1951 period was available for that gauge (08080000). 

 

2.3.2 SWAT Model Description 

The SWAT model is a continuous-time, semi-distributed, process-based, river 

basin scale model (Arnold et al., 2012). Large number of input parameters are needed for 

SWAT to evaluate the effects of land use change on hydrology and water quality. SWAT 

is operated on a daily time step and is widely proven as a feasible tool to predict the 

impact of land use and management on water, sediment and agricultural chemical yields 

in many watersheds (Gassman et al., 2014). The primary model components in SWAT 

include the pesticide, hydrology and crop growth (Knisel, 1980; Leonard et al., 1987; 

Williams et al., 2008; Wang et al., 2011). Major model inputs are related to hydrography, 

terrain, land use, soil, tile, weather and management practices (Srinivasan et al., 2010). 

In this study, ArcSWAT (Version 2012.10_2.16 released on 9/9/14) for ArcGIS 

10.2.2 platform was used. The SWAT Calibration and Uncertainty Procedures (SWAT-

CUP) (Abbaspour et al., 2007), a program that has been frequently used for sensitivity 

analysis, calibration, validation and uncertainty analysis of SWAT models (Chandra et 

al., 2014; Vaghefi et al., 2014), was used in this study. Currently, SWAT-CUP 2012 can 

link Generalized Likelihood Uncertainty Estimation (GLUE; Beven and Binley, 1992), 

Parameter Solution (van Griensven and Meixner, 2006), Sequential Uncertainty Fitting 

version-2 (SUFI-2; Abbaspour et al., 2007) and Markov chain Monte Carlo procedures 
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(Marshall et al., 2004) to SWAT. In this study, SWAT-CUP 2012 SUFI-2 procedure was 

used to accomplish the model sensitivity analysis, calibration and validation, and 

estimation of various SWAT parameters related to streamflow. 

 

2.3.3 SWAT Model Setup 

2.3.3.1 Digital Elevation Model (DEM) 

The DEM of the watershed, with a horizontal resolution of 30 ×30 m was 

downloaded from the U.S. Geological Survey (http://viewer.nationalmap.gov/viewer/#) 

and input to the SWAT model. The DEM was used for estimation of watershed 

topography related parameters for the study watershed. 

2.3.3.2 Land Use, Soils and Slope 

The 2008 National Agricultural Statistics Service (NASS) Cropland Data layer 

(CDL) (http://nassgeodata.gmu.edu/CropScape/) was used as a land use input to the 

model to appropriately represent the land use condition of the simulated period from 

1994 to 2009. The dominant agricultural land uses in the watershed in 2008 were cotton 

and winter wheat, which occupied about 30% and 2% of the watershed area (Figure 2). 

About 41% and 21% of the watershed area was covered by range brush and range grass, 

respectively. The finer-scale soils data from the Soil Survey Geographic Database 

(SSURGO) (SSURGO, 2014), which was compatible to ArcSWAT 2012, was used. The 

watershed was classified into four groups according to soil slope: ≤ 1%, 1%-3%, 3%-5% 

and > 5%. 

http://viewer.nationalmap.gov/viewer/
http://nassgeodata.gmu.edu/CropScape/
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Figure 2.2 Major land uses in the study watershed. 

 

2.3.3.3 Hydrologic Response Units (HRUs) 

The Hydrologic Response Units (HRUs) are the basic building blocks of the 

SWAT model, from which all landscape processes are computed. The HRUs consist of 

homogeneous land use, soil characteristics and soil slope. For the HRU definition, 

thresholds of 5%, 5% and 10% were used for land use, soil type and slope, respectively. 

The number of subbasins and HRUs identified for this watershed were 60 and 2160, 

respectively. 

2.3.3.4 Weather 

Daily weather data was obtained from the National Climatic Data Center 

(NCDC) for the period from 1992 to 2009 (NOAA-NCDC, 2014) and used in this study. 

Data from a total of seven weather stations, which were located either inside or within a 

closer distance of the study watershed, was used (Figure 2.1). These weather stations 

were very well distributed spatially across the watershed. The missing precipitation, 
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maximum temperature and minimum temperature data for a weather station was 

manually filled with the average value of weather parameter for two adjacent weather 

stations (Ale et al., 2009). 

2.3.3.5 Management Practices of Crops 

Crop management related parameters for two dominant row crops, cotton and 

winter wheat, were set at appropriate values observed in the study area based on 

published reports, local expertise, and web resources. The management parameters for 

other land uses were mostly kept at their default values. In this study, management 

practices in the SWAT model were scheduled by date. Generic spring plowing and 

generic fall plowing, which were widely adopted tillage practices in this watershed, were 

used in cotton and winter wheat growing areas, respectively (Table 2.1). About 300 and 

150 kg ha-1 of urea was applied to the irrigated and dryland cotton HRUs, respectively. 

About 108 kg ha-1 of urea was used for the winter wheat, which was grown under 

dryland systems. According to the published county-wise cotton acreage estimates over 

the period from 1994 to 2009 (NASS, 2014), about 39% of the cotton acreage in the 

watershed was irrigated. In this study, auto-irrigation was therefore simulated in an 

appropriate number of cotton HRUs so that about 39% of cotton acres in the watershed 

were irrigated. The auto-irrigation operation applied water whenever 10% reduction in 

plant growth occurred due to water stress (Table 2.1). Shallow aquifer was assigned as 

the source of irrigation water for the irrigated subbasins. 
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Table 2.1 Simulated management practices for cotton and winter wheat in SWAT 

No. Operations Description Input data 

Irrigated cotton 

1 Tillage Parameters (Tillage on April 1) 

 TILL_ID Tillage ID Generic Spring Plowing# 

2 Fertilizer Application Parameters (May 1) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 300.7 (kg ha-1)# 

3 Begin Growing Season Parameters ( Planting on May 15) Default 

 Heat units to maturity 2354℃-day ξ 

4* Auto-irrigation Parameters (Start date: May 15; End date: October 31) 

 WSTRS_ID Water stress identifier Plant Water Demand 

 IRR_SCA Irrigation source Shallow Aquifer 

 AUTO_WSTRS Water stress threshold 0.9 

 IRR_EFF Irrigation efficiency 0.80# 

5 Harvest and Kill Parameters (Kill on October 31) Default 

Dryland cotton 

1 Tillage Parameters (Tillage on April 1)  

 TILL_ID Tillage ID Generic Spring Plowing# 

2 Fertilizer Application Parameters (May 1) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 150 (kg ha-1)# 

3 Begin Growing Season Parameters (Planting on May 15) Default 

 Heat units to maturity 2354℃-day ξ 

4 Harvest and Kill Parameters (Kill on October 31) Default 

Winter wheat 

1 Tillage Parameters (Tillage on October 8) 

 TILL_ID Tillage ID Generic Fall Plowing#  

2 Fertilizer Application Parameters (October 8) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 108 (kg ha-1)# 

3 Begin Growing Season Parameters (Planting on October 15) Default 

 Heat units to maturity 1518℃-day ξ 

4 Harvest and Kill Parameters (Kill on July 1) Default 

*Auto-irrigation was simulated in appropriate proportion of cotton area based on County cotton irrigation 

acreage summary reports 
#The management methods and parameters were based on published reports and local expertise 

ξ Heat units to maturity for cotton and winter wheat were estimated using the SWAT-PHU program 

(http://swat.tamu.edu/software/potential-heat-unit-program/) 

 

2.3.3.6 Reservoir 

Alan Henry, a big reservoir, exists in the study watershed, and operation 

parameters for this reservoir were obtained from the Texas Water Development Board’s 

report on Volumetric Survey of Alan Henry reservoir (2005). The reservoir surface area 

when the reservoir was filled to the emergency and principal spillways was about 1215 

http://swat.tamu.edu/software/potential-heat-unit-program/
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and 1109 ha, respectively. Volume of water needed to fill the reservoir to the emergency 

and principal spillways was estimated as 12688.3 × 104 and 11694.4 × 104 m3, 

respectively. Average value of initial reservoir volume was taken as 4882.1×104 m3, 

which was calculated based on the reservoir storage level records of the USGS gauge 

08079700. Although the reservoir was operated from 1994, continuous daily reservoir 

release data was available only from 1997 to 2003. A relationship between the reservoir 

releases and annual rainfall was established based on the observed data for the 1997-

2003 period, and the developed relationship was used to fill the missing reservoir release 

data for the 1994-1996 and 2004-2009 periods. Finally, the “Measured Daily Outflow” 

method available in the SWAT model was used to estimate the reservoir discharge based 

on the reservoir storage levels recorded by the USGS gauge. 

 

2.3.4 Observed Streamflow and Cotton Lint Yield 

Observed daily streamflow data recorded at Gauges I and II over the time period 

from 1994 to 2009 was obtained from the USGS National Water Information System 

(http://waterdata.usgs.gov/nwis/sw). The observed cotton lint yield data (under both 

dryland and irrigated systems) for the period from 1994 to 2009 for the Lynn County in 

the study watershed, in which the highest cotton acreage was reported, was obtained 

from the National Agricultural Statistics Service (NASS) reports 

(http://quickstats.nass.usda.gov/). However, the SWAT model simulates whole cotton 

yield (seed cotton yield), which comprises of both cotton seed and lint. In order to 

http://waterdata.usgs.gov/nwis/sw
http://quickstats.nass.usda.gov/


 

30 
 

 

compare with the observed cotton lint yield data obtained from the NASS, the simulated 

seed cotton yield was converted to lint yield using the following equation: 

Ylint = 0.39×Ywhole                                                                                                     (1) 

where Ylint is the simulated lint yield (Mg ha-1) and Ywhole is the simulated seed cotton 

yield (Mg ha-1). The conversion factor of 0.39 was obtained from the relationship: about 

340 kg cotton seed is equivalent to 218 kg lint (Wanjura et al., 2014). 

 

2.3.5 SWAT Model Calibration 

The streamflow data was divided into two parts, and the data for the 1994-2001 

and 2002-2009 periods was used for model calibration and validation, respectively. The 

SWAT model calibration was performed in three steps. First of all, the sensitive model 

parameters were identified by performing sensitivity analysis using the SWAT-CUP 

(Abbaspour et al., 2007; Veith et al., 2010; Arnold et al., 2012). In the second step, auto-

calibration was performed using the SUFI-2 procedure available in the SWAT-CUP. 

During this step, sensitive model parameters were adjusted within ±10% range to obtain 

calibrated parameters for the study watershed. Finally, the calibrated parameters were 

slightly adjusted manually to achieve the best calibrated SWAT model for the watershed. 

The model was initially calibrated against the observed streamflow data recorded at 

Gauge I by adjusting the parameters in all subbasins that contributed flow to Gauge I. 

The model was then validated against the remaining streamflow data recorded at Gauge 

I. After achieving a satisfactory calibration of the model for Gauge I, the model was 

calibrated against the streamflow data recorded at Gauge II. To start with, the calibrated 
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parameter values that were obtained from model calibration for Gauge I were used in all 

subbasins between Gauge I and Gauge II, and later they were adjusted as needed to 

obtain a better match between the simulated and observed streamflow at Gauge II. The 

model was finally validated based on the remaining streamflow data recorded at Gauge 

II. 

The highly sensitive curve number (CN2) was decreased by 6.5% for all of the 

subbasins that discharged to Gauge I and it was decreased by 9% for other subbasins in 

order to reduce the surface runoff and thereby obtain a good match between the 

simulated and observed streamflow in the watershed (Table 2.2). The available soil 

water capacity (SOL_AWC) was increased by 10% for all subbasins in order to further 

improve the match between the simulated and observed streamflow. The soil 

evaporation compensation factor (ESCO) was decreased from a default value of 0.95 to 

0.855 in order to increase the soil evaporation and adjust crop yield prediction. A base 

flow recession constant (ALPHA_BF) of 0.0765, which was obtained from the baseflow 

filter method (Arnold et al., 1995; Arnold and Allen, 1999), was used. 
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Table 2.2 Default and calibrated values of some important hydrologic and crop parameters in 

SWAT 

No. Parameter Description Default 

value 

Calibrated 

value 

Reference 

Hydrologic parameters 

1 ESCO Soil evaporation 

compensation factor 

0.95 0.855 -- 

2 SOL_AW

C 

Available soil water 

capacity (mm H2O mm‐1 

soil) 

0.1-0.17 Increased by 

10% 

-- 

3 CN2 Curve number for moisture 

condition II 

39-84 Decreased by 

6.5% or 9%* 

-- 

4 ALPHA_B

F 

Base flow recession 

constant 

0.048 0.0765# -- 

Dryland cotton parameters 

5 BIO_E Biomass/energy ratio [(kg 

ha-1)/(MJ m-2)] 

15 16.8 (Sarkar et al., 2011) 

6 HVSTI Harvest index [(kg ha-

1)/(kg ha-1)] 

0.5 0.49 (Wanjura et al., 

2014) 

7 BLAI Max leaf area index 

(m2/m2) 

4 4.5 (Sarkar et al., 2011) 

Irrigated cotton parameters 

8 BIO_E Biomass/energy ratio [(kg 

ha-1)/(MJ m-2)] 

15 19.95 (Sarkar et al., 2011) 

9 BLAI Max leaf area index 

(m2/m2) 

4 5.98 (Sarkar et al., 2011) 

10 EXT_COE

F 

Light extinction coefficient 0.65 0.78 (Sarkar et al., 2011) 

* Curve number decreased by 6.5% all of the subbasins that discharged to Gauge I and decreased by 9% 

for other subbasins  
# Obtained from baseflow filter method 

 

After achieving a satisfactory streamflow calibration, the model was further 

calibrated for prediction of cotton lint yield under both irrigated and dryland systems in 

order to obtain a good match between the simulated and reported cotton lint yields. 

Previous SWAT modeling studies that performed crop yield calibration (Hu et al., 2007; 

Nair et al., 2011; Sarkar et al., 2011; Ávila-Carrasco et al., 2012) suggested adjusting the 

biomass/energy ratio (BIO_E) and maximum leaf area index (BLAI) to calibrate the 

SWAT model for crop yield prediction. Among these studies, Sarkar et al. (2011) 

compared observed and simulated cotton lint yields, and they suggested the parameter 
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ranges of BIO_E (10-20), BLAI (2-6), and light extinction coefficient (EXT_COEF; 0.5-

0.8) for calibrating cotton lint yield. Following the procedure of Sarkar et al. (2011), the 

parameters BIO_E, BLAI, and EXT_COEF were adjusted within their reported ranges in 

this study. For the dryland cotton, BIO_E and BLAI of the crop database were increased 

from default values of 15 and 4 to 16.8 and 4.5, respectively (Table 2.2). The harvest 

index (HVSTI) was decreased from 0.5 to 0.49 based on the reported HVSTI value for 

the dryland cotton production systems in this region (Wanjura et al., 2014). The BIO_E 

and BLAI were increased to 19.95 and 5.98, respectively, and EXT_COEF was changed 

from 0.65 to 0.78 for the irrigated cotton production systems (Table 2.2). Finally, after 

achieving a good crop yield calibration, the model performance in streamflow prediction 

was re-evaluated and necessary minor adjustments to initially calibrated streamflow 

related parameters were made.  

 

2.3.6 Evaluating the Performance of the SWAT Model 

The SWAT model performance in streamflow prediction during calibration and 

validation periods was evaluated using four different statistical measures: square of 

Pearson's product‐ moment correlation coefficient (R2) (Legates and McCabe, 1999), 

Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), index of agreement (d) 

(Willmott, 1981) and percent bias (PBIAS). The model performance in cotton lint yield 

prediction was assessed using the PBIAS only. 

The R2 represents the proportion of total variance in the observed data that can be 

explained by the model. The R2 ranges from 0 to 1 with higher values denoting better 
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model performance. The NSE indicates how well the plot of observed vs. simulated 

values fits on the 1:1 line. It ranges from -∞ to 1, and the NSE values closer to 1 indicate 

the better model performance. The d varies from 0 (no correlation) to 1 (perfect fit), and 

it overcomes the insensitivity of R2 and NSE to differences in the observed and simulated 

means and variances (Willmott, 1981). The PBIAS varies between -100 and ∞, with 

smaller absolute values closer to 0 indicating better agreement. In this study, we aimed 

to achieve NSE, R2, d and PBIAS of > 0.6, > 0.65, > 0.9 and within ±15%, respectively, 

during the model calibration and validation periods. 

 

2.3.7 Water Use Efficiency 

The Water Use Efficiency (WUE; kg ha-1 mm-1) of both dryland and irrigated 

bioenergy crops was estimated and compared over the model simulation period. The 

WUE of the dryland systems was estimated as (Musick et al., 1994; Howell, 2001): 

WUE =
Bd

ET
                                                                                                                             (2a) 

where Bd is the biomass yield (kg ha-1 year-1) under dryland systems, and ET is the 

evapotranspiration (mm year-1). 

The WUE of irrigated systems (IWUE; kg ha-1 mm-1) was estimated using the 

following relationship: 

IWUE =
Bi- Bd

I
                                                                                                                      (2b) 

where Bi is the biomass yield (kg ha-1 year-1) under irrigated systems, and I is the amount 

of irrigation water application in millimeter per year (Bos, 1980). 
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2.3.8 Scenario Analysis 

For the scenario analysis, four promising cellulosic bioenergy crops, switchgrass, 

Miscanthus, big bluestem and biomass sorghum were selected to hypothetically replace 

cotton. The impacts of these land use changes on water balances over the period from 

1994 to 2009 were evaluated. The impacts were assessed both at the watershed scale and 

only among the HRUs where cotton was grown under baseline condition (hereafter 

referred as “baseline cotton HRUs”). In addition, the land use change impacts under both 

irrigated and dryland systems were compared and contrasted. 

In the scenario analysis, perennial grasses were planted on May 15, 1992 and 

harvested on November 15th of each year in order to maximize biomass potential 

(Griffith et al., 2014; Hudiburg et al., 2015). The annual biomass sorghum was planted 

on June 1st and harvested on October 31st of each year (Hao et al., 2014) (Table 2.3). In 

the baseline cotton HRUs where irrigated cotton was simulated, cellulosic bioenergy 

crops were also assigned the same irrigation management practices as cotton. For 

switchgrass and big bluestem, about 270 and 180 kg ha-1 of urea was applied on irrigated 

and dryland systems, respectively (Yimam et al., 2014). About 320 and 214 kg ha-1 of 

urea was applied under irrigated and dryland Miscanthus scenarios, respectively 

(Lewandowski and Schmidt, 2006; Danalatos et al., 2007). Approximately 360 and 240 

kg ha-1 of urea was applied on irrigated and dryland biomass sorghum, respectively 

(Yimam et al., 2014; Hao et al., 2014) (Table 2.3).  
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Table 2.3 Simulated management practices for cellulosic bioenergy crops in SWAT 

No. Operations Description Input data 

Irrigated switchgrass and big bluestem (Yimam et al., 2014) 

1 Fertilizer Application Parameters (May 1) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 270 (kg ha-1) 

2 Begin Growing Season Parameters ( Planting on May 15) Default 

3 Auto-irrigation Parameters (Start date: May 15; End date: November 15) 

 WSTRS_ID Water stress identifier Plant Water Demand 

 IRR_SCA Irrigation source Shallow Aquifer 

 AUTO_WSTRS Water stress threshold 0.9 

4 Harvest (only) Parameters (Harvest on November 15) Default 

Dryland switchgrass and big bluestem (Yimam et al., 2014) 

1 Fertilizer Application Parameters (May 1) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 180 (kg ha-1) 

2 Begin Growing Season Parameters (Planting on May 15) Default 

3 Harvest (only) Parameters (Harvest on November 15) Default 

Irrigated Miscanthus (Lewandowski and Schmidt, 2006; Danalatos et al., 2007) 

1 Fertilizer Application Parameters (May 1) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 320 (kg ha-1) 

2 Begin Growing Season Parameters ( Planting on May 15) Default 

3 Auto-irrigation Parameters (Start date: May 15; End date: November 15) 

 WSTRS_ID Water stress identifier Plant Water Demand 

 IRR_SCA Irrigation source Shallow Aquifer 

 AUTO_WSTRS Water stress threshold 0.9 

4 Harvest (only) Parameters (Harvest on November 15) Default 

Dryland Miscanthus (Lewandowski and Schmidt, 2006; Danalatos et al., 2007) 

1 Fertilizer Application Parameters (May 1) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 214 (kg ha-1) 

2 Begin Growing Season Parameters (Planting on May 15) Default 

3 Harvest (only) Parameters (Harvest on November 15) Default 

Irrigated biomass sorghum (Yimam et al., 2014; Hao et al., 2014) 

1 Fertilizer Application Parameters (May 15) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 360 (kg ha-1) 

2 Begin Growing Season Parameters ( Planting on Jun 1) Default 

3 Auto-irrigation Parameters (Start date: Jun 1; End date: October 31) 

 WSTRS_ID Water stress identifier Plant Water Demand 

 IRR_SCA Irrigation source Shallow Aquifer 

 AUTO_WSTRS Water stress threshold 0.9 

4 Harvest and Kill Parameters (Kill on October 31) Default 

Dryland biomass sorghum (Yimam et al., 2014; Hao et al., 2014) 

1 Fertilizer Application Parameters (May 15) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 240 (kg ha-1) 

2 Begin Growing Season Parameters (Planting on Jun 1) Default 

3 Harvest and Kill Parameters (Kill on October 31) Default 

 



 

37 
 

 

In all hypothetical land use change scenarios, tillage was not simulated. Heat 

units to maturity for cotton, winter wheat, and the cellulosic bioenergy crops were 

estimated by using the SWAT Potential Heat Unit (SWAT-PHU) program 

(http://swat.tamu.edu/software/potential-heat-unit-program/). The values of heat units to 

maturity of these crops are shown in Table 2.1 and Table 2.4. 

Miscanthus is an emerging commercial bioenergy crop, and crop growth 

parameters for this crop are lacking in the SWAT crop database. We therefore adopted 

the Miscanthus growth parameters from Trybula et al. (2015) field study at the Purdue 

University Water Quality Field Station in northwestern Indiana. The harvest efficiency 

of Miscanthus was taken as 0.7 based on Trybula et al. (2015) study. The harvest 

efficiency of 0.75 reported by Trybula et al. (2015) for Shawnee switchgrass was used 

for Alamo switchgrass and big bluestem in this study. Based on the similarities in 

physiological characteristics of Miscanthus and switchgrass, Miscanthus was assigned 

the same Soil Conservation Service (SCS) runoff curve numbers as that of switchgrass 

(Love and Nejadhashemi, 2011; Trybula et al., 2015). The default curve number values 

for the selected bioenergy crops were modified by the same percentage as those for 

cotton crop (baseline) during the model calibration. The detailed crop growth parameters 

for the selected cellulosic bioenergy crops are included in Table 2.4. 

 

 

 

 

http://swat.tamu.edu/software/
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Table 2.4 Crop growth parameters for all the selected cellulosic bioenergy crops 

Parameter Acronym Unit Miscanthus × 

giganteus* 

Alamo 

switchgrass# 

Big 

bluestem# 

Biomass 

sorghum# 

Biomass/energy 

ratio 

BIO_E (kg ha-

1)/(MJ m-2) 

41 47 14 33.5 

Harvest index HVSTI (kg ha-

1)/(kg ha-1) 

1 0.9 0.9 0.9 

Harvest efficiency HE NA 0.70 0.75ξ 0.75ξ - - 

Heat units to 

maturity 

- - ℃-day 1800‡ 1800‡ 1800‡ 1295‡ 

Maximum leaf area 

index 

BLAI m2/m2 11 6 3 4 

Fraction of growing 

season coinciding 

with 

LAIMX1 

FRGRW1 NA 0.1 0.1 0.05 0.15 

First point fraction 

of 

BLAI for optimum 

growth curve 

LAIMX1 NA 0.1 0.2 0.1 0.05 

Max. canopy height CHTMX m 3.5 2.5 1 1.5 

Max root depth RDMX m 3 2.2 2 2 

Fraction of growing 

season coinciding 

with 

LAIMX2 

FRGRW2 NA 0.45 0.2 0.25 0.5 

Second point 

fraction of 

BLAI for optimum 

growth curve 

LAIMX2 NA 0.85 0.95 0.7 0.95 

Fraction of growing 

season when leaf 

area starts declining 

DLAI NA 1.1 0.7 0.35 0.64 

Optimal temperature T_OPT °C 25 25 25 30 

Min temperature T_BASE °C 8 12 12 11 

Fraction of nitrogen 

in harvested biomass 

CNYLD (Kg 

N)/(Kg 

yield) 

0.0035 0.016 0.016 0.0199 

Fraction of 

phosphorus in 

harvested biomass 

CPYLD (Kg P)/(Kg 

yield) 

0.0003 0.0022 0.0022 0.0032 

Fraction of nitrogen 

in plant at 

emergence 

BN1 (Kg 

N)/(Kg 

biomass) 

0.01 0.035 0.02 0.044 

Fraction of nitrogen 

in plant at 0.5 

maturity 

BN2 (Kg 

N)/(Kg 

biomass) 

0.0065 0.015 0.012 0.0164 

Fraction of nitrogen 

in plant at maturity 

BN3 (Kg 

N)/(Kg 

biomass) 

0.0057 0.0038 0.005 0.0128 

Fraction of 

phosphorus in plant 

at emergence 

BP1 (Kg P)/(Kg 

biomass) 

0.0016 0.0014 0.0014 0.006 
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Table 2.4 Continued 
Parameter Acronym Unit Miscanthus × 

giganteus* 

Alamo 

switchgrass# 

Big 

bluestem# 

Biomass 

sorghum# 

Fraction of 

phosphorus in plant 

at 0.5 maturity 

BP2 (Kg P)/(Kg 

biomass) 

0.0012 0.001 0.001 0.0022 

Fraction of 

phosphorus in plant 

at maturity 

BP3 (Kg P)/(Kg 

biomass) 

0.0009 0.0007 0.0007 0.0018 

Lower limit of 

harvest index 

WSYF (kg ha-

1)/(kg ha-1) 

1 0.9 0.9 0.9 

Min crop factor for 

water erosion 

USLE_C NA 0.003 0.003 0.003 0.2 

Max stomatal 

conductance 

GSI m/s 0.005 0.005 0.005 0.005 

Vapor pressure 

deficit 

VPDFR kPa 4 4 4 4 

GSI fraction 

corresponding to the 

second point on the 

stomatal 

conductance curve 

FRGMAX NA 0.75 0.75 0.75 0.75 

Rate of decline in 

RUE due to increase 

in vapor pressure 

deficit 

WAVP NA 8.5 8.5 10 8.5 

Biomass-energy 

ratio corresponding 

to the 2nd point on 

the radiation use 

efficiency curve 

BIOEHI NA 54 (existing 

Alamo 

switchgrass 

value)** 

54 39 36 

Minimum LAI for 

plant during 

dormant period 

ALAI_MI

N 

m2/m2 0 0 0 0 

Light extinction 

coefficient 

EXT_CO

EF 

NA 0.55 0.33 0.36 0.65 

Root fraction at 

emergence 

RFR1C NA 0.87 0.4 0.4 0.4 

Root fraction at 

maturity 

RFR2C NA 0.18 0.2 0.2 0.2 

SCS runoff curve 

numbers 

A, B, C, D NA 31, 59, 72, 79 

(existing 

Alamo 

switchgrass 

value)** 

31, 59, 72, 

79 

31, 59, 

72, 79 

67, 77, 

83, 87 

* Crop parameters obtained from Trybula et al. (2015) field study 
# The default values in the SWAT 2012 crop database or management files 

**We used the existing Alamo switchgrass parameters for Miscanthus × giganteus 

ξ We used the harvest efficiency value of Shawnee switchgrass obtained from Trybula et al. (2015) field 

study for the Alamo switchgrass and big bluestem 

‡ Heat units to maturity for Miscanthus × giganteus, Alamo switchgrass, big bluestem, and biomass 

sorghum were estimated using the SWAT-PHU program (http://swat.tamu.edu/software/potential-heat-

unit-program/) 
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2.4 Results 

2.4.1 SWAT Calibration and Validation 

The simulated monthly streamflow at two USGS gauges during the calibration 

(1994-2001) and validation (2002-2009) periods closely matched with the observed 

streamflow (Figures 2.3 and 2.4). The NSE, R2, d and PBIAS values for monthly 

predictions of streamflow at Gauge I were 0.78, 0.87, 0.95 and -6.3%, respectively and 

those at Gauge II were 0.66, 0.66, 0.88, and -4.1%, respectively during the model 

calibration period, demonstrating a “very good” to “good” agreement between the 

simulated and observed streamflow according to Moriasi et al. (2007) criteria (Table 

2.5). The model performance in predicting streamflow during the validation period was 

also in the range of “good” (based on the NSE and PBIAS of 0.66 and 10.8% for Gauge 

II) to “satisfactory” (based on the NSE and PBIAS of 0.59 and -6.4% for Gauge I) 

according to Moriasi et al. (2007) criteria.  

 

Figure 2.3 Comparison of observed and simulated monthly streamflow at Gauge I 

during the model a) calibration and b) validation periods. 
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Figure 2.4 Comparison of observed and simulated monthly streamflow at Gauge II 

during the model a) calibration and b) validation periods. 

 

Table 2.5 Monthly statistical parameters for the model streamflow calibration and 

validation on two USGS gauges 

Time scale 

Gauge I  Gauge II 

Calibration  

(1994-2001) 

Validation  

(2002-2009) 

 Calibration  

(1994-2001) 

Validation  

(2002-2009) 

Nash-Sutcliffe efficiency 0.78 (Very good*) 0.59 

(Satisfactory) 

 0.66 (Good) 0.66 (Good) 

R2 0.87 0.69  0.66 0.72 

Index of agreement 0.95 0.90  0.88 0.92 

Percent bias (%) -6.3 (Very good) -6.4 (Very good)  -4.1 (Very good) 10.8 (Good) 

* General model performance ratings suggested by Moriasi et al. (2007) for monthly predictions of 

streamflow 

 

Lower NSE value for the Gauge I during the validation period was mainly due to 

an over-prediction of streamflow in November 2004 and an under-prediction in October 

2006 (Figure 2.3b). Accurate prediction of streamflow by the SWAT model during wet 
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(high rainfall) periods such as those in November 2004 in this study was particularly 

challenging due to the use of the SCS runoff curve number method, and this limitation of 

the model (Garen and Moore, 2005; White et al., 2009; Rathjens et al., 2014) might have 

caused the poor predictions in that month at Gauge I. The under prediction of streamflow 

in October 2006 at Gauge I was most probably due to differences in precipitation data 

input to the model and the actual precipitation that occurred within the catchment of 

Gauge I (Figure 2.3b). Although the precipitation recorded at three rain gauges within 

the area of influence of the Gauge I on October 15 and 16, 2006 was less than 30 mm, 

the observed streamflow on the above dates was 76 and 50 mm, respectively, indicating 

potential errors in precipitation input. 

 

2.4.2 Cotton Lint Yield Comparison 

After calibrating for streamflow prediction, the SWAT model was calibrated for 

cotton lint yield prediction in the Lynn County. Results showed that the average PBIAS 

in predicting dryland cotton lint yield over the calibration and validation periods was -

2.6% and 2.4%, respectively, and the PBIAS over the entire time period (1994-2009) was 

0.4%, indicating a good match between the simulated and observed cotton lint yields 

(Table 2.6). In case of irrigated cotton, the average PBIAS in yield prediction was 12.7% 

and -14.5% during the calibration and validation periods, respectively, representing a 

satisfactory agreement between the simulated and observed cotton lint yields. However, 

the model hugely over-predicted cotton lint yield under irrigated systems in 1998, which 

was an extremely dry year (annual rainfall about 300 mm). The auto-irrigation option 
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used in this study, which did not consider actual availability of irrigation water in a dry 

year, led to this over-prediction of cotton lint yield under irrigated systems. 

Table 2.6 Comparison of cotton lint yield for Lynn County (Mg ha-1) 
Years Simulated lint yield Observed lint yield PBIAS (%) 

Dryland cotton 

1994 0.27 0.25 8 

1995 0.09 0.18 -51 

1996 0.32 0.39 -20 

1997 0.22 0.32 -33 

1998 0.37 0.37 1 

1999 0.45 0.38 20 

2000 0.36 0.23 58 

2001 0.19 0.20 -8 

Average for calibration period 0.28 0.29 -2.6 

2002 0.28 0.27 5 

2003 0.27 0.26 2 

2004 0.47 0.58 -18 

2005 0.71 0.70 1 

2006 0.57 0.33 75 

2007 0.61 0.65 -6 

2008 0.24 0.31 -22 

2009 0.43 0.40 6 

Average for validation period 0.45 0.44 2.4 

Overall (1994-2009) 0.37 0.36 0.4 

Irrigated cotton 

1994 0.72 0.71 2 

1995 0.32 0.53 -39 

1996 0.56 0.62 -9 

1997 0.33 0.55 -41 

1998 1.37 0.64 115 

1999 0.66 0.55 18 

2000 0.69 0.50 40 

2001 0.63 0.60 6 

Average for calibration period 0.66 0.59 12.7 

2002 0.77 0.74 3 

2003 0.67 0.67 1 

2004 0.80 0.88 -8 

2005 1.11 1.05 6 

2006 1.30 0.92 42 

2007 0.34 0.96 -64 

2008 0.52 0.88 -41 

2009 0.48 0.92 -47 

Average for validation period 0.75 0.88 -14.5 

Overall (1994-2009) 0.71 0.73 -3.6 
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2.4.3 Simulated Water Balances under Baseline and Hypothetical Land Use Change 

Scenarios 

At the watershed scale, on an average (1994-2009), results showed that about 

94% of the input water (precipitation + irrigation) was lost due to ET (Table 2.7a). The 

changes in ET with reference to the baseline cotton scenario were within ±3% under all 

hypothetical land use change scenarios. Under perennial grass scenarios, the average 

annual surface runoff and water yield decreased by about 6% to 8% and 3% to 4%, 

respectively, when compared to the baseline cotton scenario (Table 2.7a). However, 

when cotton was replaced by biomass sorghum, the average annual surface runoff and 

water yield increased by about 5% and 3%, respectively. Under the hypothetical 

perennial grass land use change scenarios, average annual percolation increased within a 

range of 3% to 22%, as compared to the baseline cotton scenario. 

The monthly water balance analysis showed that the peak ET occurred in June or 

July under all land use change scenarios (Figure 2.5). The monthly surface runoff 

apparently decreased under perennial grass scenarios during high rainfall months (June, 

August and September) when compared to the baseline cotton and biomass sorghum 

scenarios (Figure 2.6). The reduction in surface runoff under perennial grass scenarios 

and the decrease in ET during August to October under cellulosic bioenergy crop 

scenarios as compared to the baseline cotton scenario resulted in a higher soil water 

content under cellulosic bioenergy crop scenarios from August to April (Figure 2.7). 
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Table 2.7 Comparison of the average (1994-2009) annual water balance parameters 

under baseline and hypothetical land use change scenarios in the entire watershed 

and baseline cotton HRUs 
Unit (mm) Cotton Switchgrass Miscanthus Big bluestem Biomass sorghum 

a) Entire watershed 

Precipitation 520.1 520.1 520.1 520.1 520.1 

Irrigation 25.7 26.5 (3.0*) 34.0 (17.5) 16.7 (-35.3) 11.9 (-53.8) 

Evapotranspiration 515.7 516.4 (0.1) 518.3 (0.5) 507.1 (-1.7) 501.0 (-2.9) 

Surface runoff 11.2 10.4 (-7.3) 10.5 (-6.3) 10.4 (-7.8) 11.8 (4.9) 

Percolation 10.5 11.4 (8.7) 12.8 (22.2) 10.8 (2.8) 10.6 (0.9) 

Water yield 21.1 20.3 (-3.6) 20.5 (-2.6) 20.2 (-4.0) 21.6 (2.6) 

b) Baseline cotton HRUs (irrigated and dryland combined) 

Precipitation 497.2 497.2 497.2 497.2 497.2 

Irrigation 82.9 85.4 (3.0) 97.4 (17.5) 53.6 (-35.3) 38.2 (-53.8) 

Evapotranspiration 575.3  577.5 (0.4) 583.7 (1.5) 547.7 (-4.8) 528.0 (-8.2) 

Surface runoff 3.0  0.4 (-88) 0.7 (-77) 0.20 (-93) 4.8 (59) 

Percolation 0.003  2.9  7.5   1.0  0.30   

Water yield 3.7  1.3 (-65) 1.9 (-47) 0.9 (-75) 5.4 (48) 

c) Baseline irrigated cotton HRUs 

Precipitation 483.7 483.7 483.7 483.7 483.7 

Irrigation 276.0  284.3 (3.0) 324.3 (17.5) 178.5 (-35.3) 127.1 (-53.8) 

Evapotranspiration 754.0  759.9 (0.8) 790.6 (4.9) 658.2 (-12.7) 602.2 (-20.1) 

Surface runoff 3.4  0.55 (-84) 0.9 (-74) 0.2 (-94) 5.8 (70) 

Percolation 0.001  6.7 14.6  2.1   0.59   

Water yield 4.6 2.2 (-52) 3.1 (-32) 1.4 (-70) 6.8 (47) 

d) Baseline dryland cotton HRUs 

Precipitation 502.9 502.9 502.9 502.9 502.9 

Evapotranspiration 498.5  499.1 (0.1) 494.9 (-0.7) 500.2 (0.3) 496.1 (-0.5) 

Surface runoff 2.81  0.27 (-90) 0.62 (-78) 0.20 (-93) 4.3 (54) 

Percolation 0.004 1.3  4.5  0.5 0.17  

Water yield 3.3  0.9 (-74) 1.4 (-57) 0.7 (-78) 4.8 (48) 

*The number in the parentheses is the percent change with each cellulosic bioenergy 

crop scenario relative to baseline cotton scenario 
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Figure 2.5 Average (1994-2009) monthly variability of evapotranspiration under 

entire watershed and irrigated and dryland baseline cotton Hydrologic Response 

Units (HRUs). 
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Figure 2.6 Average (1994-2009) monthly variability of surface runoff under entire 

watershed and irrigated and dryland baseline cotton Hydrologic Response Units 

(HRUs). 
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Figure 2.7 Average (1994-2009) monthly variability of soil water content under 

entire watershed and irrigated and dryland baseline cotton Hydrologic Response 

Units (HRUs). 
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Among the baseline cotton HRUs, the percent changes in all water balance 

parameters, except ET, under hypothetical land use change scenarios increased 

substantially (Table 2.7b). For example, average (1994-2009) annual surface runoff 

under perennial grass scenarios decreased within a range of 77% to 93% compared to the 

baseline cotton scenario. In the irrigated baseline cotton HRUs, auto-irrigation was used 

to optimally meet the crop water needs, which highlighted the differences in water 

requirements of the studied crops. Results showed that Miscanthus required the highest 

amount of irrigation water among all crops (Table 2.7c). However, the percent changes 

in water balances for the irrigated baseline cotton HRUs could be somewhat misleading 

as the amount of irrigation water applied for the simulated crops was not the same as that 

applied to cotton under the baseline scenario due to implementation of auto-irrigation 

(Table 2.7b, c).  

The water balance assessments within the dryland baseline cotton HRUs (Table 

2.7d) represented appropriate comparison of scenarios as precipitation, which was the 

same for all scenarios, was the only source of input water. The average (1994-2009) 

annual ET within the dryland baseline cotton HRUs was nearly the same under all 

scenarios (Table 2.7d). The average annual surface runoff was almost negligible under 

perennial grass scenarios, but it increased from 2.8 mm under the baseline cotton 

scenario to 4.3 mm under the biomass sorghum scenario (a 54% increase). When 

compared to the baseline cotton scenario, there is a considerable increase in average 

annual percolation and average monthly soil water content during August to April under 

different cellulosic bioenergy crop scenarios (Table 2.7d; Figure 2.7c). This is a very 
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important finding from this study in view of depleting groundwater levels in the Ogallala 

Aquifer. It is expected that most of the currently irrigated lands in the SHP could 

eventually be converted into drylands in the future, and replacing cotton with bioenergy 

crops under those circumstances could therefore not only improve soil water content, but 

also contribute to groundwater recharge.  

The simulated emergence of perennial grasses in the study watershed began 

around April. This is in consistence with Yimam et al. (2015), who reported that the 

emergence of switchgrass occurred between mid-March and mid-April in a field 

experiment at Stillwater in Oklahoma. Vanloocke et al. (2010) also reported that 

perennial crops emergence in mid- to late April in the Midwest U.S., about a month 

earlier than most annual crops. Monthly water balance analysis in the dryland baseline 

cotton HRUs indicated that the peak ET occurred one month early under the perennial 

grass scenarios when compared to the baseline cotton and biomass sorghum scenarios 

(Figure 2.5c). The ET in irrigated baseline cotton HRUs during June to August was 

almost twice of that in the dryland baseline cotton HRUs (Figure 2.5b and c). There was 

a negligible generation of surface runoff under perennial grass scenarios (Figure 2.6b 

and c). The lowest soil water content under perennial grass scenarios was simulated one 

month earlier when compared to the baseline cotton scenario (Figure 2.7b and c). This 

was associated with the early occurrence of peak ET under perennial grass scenarios by 

one month relative to the baseline cotton scenario. Clearly, higher soil water storage was 

simulated in the irrigated baseline cotton HRUs during the whole year when compared to 

the dryland baseline cotton HRUs due to the application of irrigation water (Figure 2.7). 
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2.4.4 Biomass and Biofuel Production Potential and Water Use Efficiency 

The simulated average (1994-2009) annual harvestable biomass under 

Miscanthus, switchgrass, big bluestem and biomass sorghum scenarios was 19.1, 11.1, 

3.2, and 8.8 Mg ha-1, respectively, when both irrigated and dryland baseline cotton 

HRUs were combined (Table 2.8). It is worth noting that the simulated biomass 

production under the irrigated systems was higher by about 50% to 111% when 

compared to the dryland systems (Table 2.8). Based on current biofuel conversion 

efficiency of 282 liter ethanol Mg-1 biomass (Lynd et al., 2008; Fargione et al., 2010), 

Miscanthus and switchgrass exhibited superior ethanol production potential compared to 

biomass sorghum and big bluestem under both irrigated and dryland systems (Table 2.8). 

The estimated average annual quantity of ethanol that could be produced with the 

simulated biomass of Miscanthus, switchgrass, big bluestem and biomass sorghum was 

7,548, 4,931, 1,170 and 3,271 liter ha-1, respectively, under the irrigated systems, and 

4,398, 2,347, 778 and 2,143 liter ha-1, respectively, under the dryland systems (Table 

2.8). The simulated WUEs under the dryland Miscanthus, switchgrass, big bluestem, and 

biomass sorghum scenarios were 32, 17, 6, and 15 kg ha-1 mm-1, respectively (Table 

2.8). The simulated IWUEs ranged from 8 to 36 kg ha-1 mm-1 with the highest IWUE 

simulated under Miscanthus scenario (36 kg ha-1 mm-1), followed by switchgrass 

scenario (32 kg ha-1 mm-1). 
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Table 2.8 Average (1994-2009) annual biomass and biofuel production, and water 

use efficiency of switchgrass, Miscanthus, big bluestem and biomass sorghum under 

hypothetical land use change scenarios 

Average value Switchgrass Miscanthus 
Big 

bluestem 

Biomass 

sorghum 

Baseline cotton HRUs (irrigated and dryland combined) 

Biomass production (Mg ha-1) 11.1 19.1 3.2 8.8 

Biofuel production* (liter ethanol ha-1) 3,123 5,374 896 2,482 

Baseline irrigated cotton HRUs 

Biomass production (Mg ha-1) 17.5 27.1 4.2 11.6 

Biofuel production (liter ethanol ha-1) 4,931 7,548 1,170 3,271 

Irrigated water use efficiency (kg ha-1 mm-1) 32.2 35.5 7.8 31.5 

Baseline dryland cotton HRUs 

Biomass production (Mg ha-1) 8.3 15.6 2.8 7.6 

Biofuel production (liter ethanol ha-1) 2,347 4,398 778 2,143 

Water use efficiency (kg ha-1 mm-1) 16.7 31.5 5.5 15.3 

*Based on current biofuel conversion efficiency of 282 liter ethanol Mg-1 biomass (Lynd 

et al., 2008; Fargione et al., 2010) 

 

2.5 Discussion 

2.5.1 Evaluation of SWAT Model Performance 

For the hydrologic model evaluations performed on a monthly time step, Moriasi 

et al. (2007) proposed that NSE values should exceed 0.5, 0.65 and 0.75, and PBIAS 

should be within ±25%, ±15% and ±10% in order for model performance to be judged as 

“satisfactory”, “good” and “very good”, respectively. According to this criteria, the 

model performance in this study was between “very good” and “good” during the 

calibration period and was between “satisfactory” and “good” during the validation 

period (Table 2.5). Harmel et al. (2014) recommended considering the model’s intended 

use while evaluating the model performance. Since this study mainly focused on 
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assessing the influence of land use change on watershed hydrology on a monthly or 

annual basis, achieving good model performance on a monthly time step was considered 

as acceptable to use the calibrated SWAT model for scenario analysis. Comparison of 

the predicted cotton lint yields with the NASS-reported county-wise yields within the 

study watershed under both dryland and irrigated systems indicated that they both 

matched well (Table 2.6), and this additional evaluation further enhanced confidence in 

the calibrated model.  

In this study, high inter-annual variability in PBIAS in cotton lint yield prediction 

existed in some years (Table 2.6). The long-term observed cotton lint yields used in this 

study were available at the county level (NASS). However, the SWAT model simulated 

cotton lint yields at the subbasin/HRU level, and hence simulated yields might not have 

spatially represented the observed county-wise yields very well. Also, the SWAT model 

was setup with 2008 NASS-CDL land use in this study and it was assumed that the 

cotton planting area was the same during the whole simulation period. The crop growth 

algorithm of the SWAT model is also not capable of taking into account the genetic 

improvements of crops in the long-term predictions. In addition, the use of auto-

irrigation option provided more timely and adequate water for cotton growth, but in 

reality, water limiting conditions might have existed for cotton production in the study 

watershed. For example, the year 1998 was a very dry year with an annual precipitation 

of 300 mm, and hence observed cotton lint yield was about 0.64 Mg ha-1. However, 

because of auto-irrigation and non-water-limiting conditions, more irrigation water was 

applied in that year, which has resulted in a very high simulated yield of 1.37 Mg ha-1, 
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and a huge PBIAS of 115%. Several of the aforementioned reasons might have led to 

high inter-annual variability in PBIAS in this study. 

 

2.5.2 Hydrological Responses of Hypothetical Land Use Change Scenarios 

An important factor for environmental evaluation of land use change is the 

assessment of associated hydrological responses. In this study, changes in hydrological 

fluxes of ET, surface runoff, soil water content, percolation and water yield under 

various hypothetical land use change scenarios were studied. The dominant component 

of the water balance in the study watershed is the water lost through ET, which 

accounted for about 94% of the input water (precipitation + irrigation). This is 

comparable with the ET losses from biomass sorghum production systems in the Texas 

High Plains reported in Hao et al. (2014), which stated that more than 90% of the 

growing season precipitation was lost as growing season ET. The crop available water in 

this semi-arid study watershed is very limited because of low annual precipitation (520 

mm). In general, crop ET under the irrigated systems was higher than that under the 

dryland systems because of the much higher annual potential ET of 1700 mm (as 

estimated by the SWAT model) than the highest total input water in this region (e.g. 808 

mm under irrigated Miscanthus scenario). For example, the ET of Miscanthus under the 

irrigated systems was higher by about 60% when compared to Miscanthus under the 

dryland systems (Table 2.7c, d). Miscanthus requires more irrigation water than cotton 

(16-year average irrigation amount of 324 mm (Miscanthus) vs. 276 mm (cotton)). 

Higher water requirement and larger biomass production potential of Miscanthus 
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(Heaton et al., 2004) explained the apparent increase in ET under the irrigated 

Miscanthus scenario when compared to the irrigated baseline cotton scenario (Table 

2.7c). However, the irrigation water requirement of switchgrass, big bluestem and 

biomass sorghum were similar to or less than that of cotton (baseline scenario) (Table 

2.7c). Therefore, there is a potential for maintaining or reducing groundwater 

withdrawals from the Ogallala Aquifer when irrigated cotton is replaced by switchgrass, 

big bluestem and biomass sorghum. 

Assessment of water balances among the dryland baseline cotton HRUs 

represents a more appropriate comparison of scenarios as it eliminates differential 

amounts of irrigation water simulated for the studied crops due to implementation of 

auto-irrigation. Within the dryland baseline cotton HRUs, crop ET values of all 

simulated bioenergy crops were almost the same as that of cotton, and it accounted for 

about 98% of annual rainfall (Table 2.7; Figure 2.5c). The surface runoff and water yield 

were apparently reduced within a range of 78% to 93% and 57% to 78%, respectively, 

under perennial grass scenarios compared to the baseline cotton scenario (Table 2.7d). 

More importantly, the peak surface runoff in high rainfall months of May, June, August 

and September decreased by a huge proportion under the perennial grasses scenarios 

(Figure 2.6). In contrast, the surface runoff and water yield increased by about 54% and 

48%, respectively, under the biomass sorghum scenario when compared to the baseline 

cotton scenario (Table 2.7d). The higher biomass density and lower surface runoff 

potential (average calibrated curve number of 54.4) of the perennial grasses as compared 

to cotton (average calibrated curve number of 71.0) contributed to the reduction in 
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surface runoff and water yield. Le et al. (2011) also found that land use change from 

maize to Miscanthus and switchgrass decreased the surface runoff by 24 and 6 mm, 

respectively, in the Midwestern United States. In the case of biomass sorghum scenario, 

shorter growing period and lesser ground cover after harvest compared to cotton 

contributed to higher surface runoff (16-year average surface runoff of 4.3 mm (biomass 

sorghum) vs. 2.8 mm (cotton), a 54% increase) and water yield (16-year average water 

yield of 4.8 mm (biomass sorghum) vs. 3.3 mm (cotton), a 48% increase). 

Results have also showed that the average annual percolation increased 

considerably under the perennial grass land use change scenarios relative to the baseline 

cotton scenario (Table 2.7d). The monthly soil water content was higher under perennial 

grass scenarios compared to the baseline cotton scenario during August to April (Figure 

2.7c). Reduction in surface runoff was the dominant factor responsible for the increase in 

soil water content and percolation under perennial grass scenarios. However, the 

simulated monthly soil water content under the dryland Miscanthus scenarios was lesser 

than that under the dryland baseline cotton scenario during the period from May to July 

(Figure 2.7c). Some published studies from the Midwest U.S. have also reported 

reductions in soil water content under Miscanthus due to the higher simulated ET when 

compared to corn (VanLoocke et al., 2010; Le et al., 2011). 

 

2.5.3 Biomass Production Potential of Selected Cellulosic Bioenergy Crops 

The simulated average (1994-2009) annual biomass yield was the highest (27.1 

Mg ha-1) under the irrigated Miscanthus scenario, followed by the irrigated switchgrass 
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scenario (17.5 Mg ha-1) (Figure 2.8; Table 2.8). The simulated Miscanthus biomass 

yields from this study (27.1 and 15.6 Mg ha-1 under the irrigated and dryland systems, 

respectively; Table 2.8) were within the range of reported yields in the literature (5 to 44 

Mg ha-1) (Lewandowski et al., 2000; Powelson et al., 2005; Kindred et al., 2008). More 

specifically, the predicted average annual Miscanthus biomass yield under the dryland 

systems in this study was also within the range of reported Miscanthus biomass yield 

(9.8 to 17.8 Mg ha-1) in the dryland production systems in United Kingdom (U.K.) 

(Christian, 2008). In addition, the simulated Miscanthus biomass yield under the 

irrigated systems was consistent with the irrigated Miscanthus biomass yield reported 

from the field experiments conducted in Portugal (26.9 Mg ha-1; Clifton-Brown et al., 

2001) and Italy (27.1 Mg ha-1; Cosentino et al., 2007).  
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Figure 2.8 Simulated average (1994-2009) annual biomass production from 

switchgrass, Miscanthus, big bluestem and biomass sorghum in combined, irrigated, 

and dryland baseline cotton Hydrologic Response Units (HRUs). 

 

The predicted switchgrass biomass yields in this study were 17.5 and 8.3 Mg ha-1 

under the irrigated and dryland systems, respectively. The simulated dryland switchgrass 

biomass yield in this study was within the range of measured biomass yields of 8.1 to 

16.5 Mg ha-1 reported by McLaughlin and Adams (2005) for Dallas, College Station, 

and Stephenville in Texas during the period from 1995 to 2000. The differences in 

dryland switchgrass biomass yield between this study and that of McLaughlin and 

Adams (2005) were most probably be due to the differences in average annual 
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precipitation. The study watershed receives much smaller annual precipitation compared 

to Dallas, College Station, and Stephenville. Ocumpaugh et al. (1998) reported that a 

single mid-season irrigation event may double switchgrass yields in dry years in Texas. 

The results from the McLaughlin and Adams (2005) study also suggested that 

switchgrass yields could increase substantially in arid areas by low frequency irrigation. 

Among the simulated bioenergy crops, biomass sorghum generated more surface 

runoff than others (Table 2.7). In addition, biomass sorghum requires more management 

efforts for replanting it every year, and for meeting additional transportation and 

harvesting requirements (Turhollow et al., 2010). On the other hand, biomass production 

potential of big bluestem was much lower compared to that of Miscanthus and 

switchgrass (Figure 2.8; Table 2.8). It was interesting to note that the simulated biomass 

yield under dryland Miscanthus was nearly the same as that of irrigated switchgrass. In 

addition, Miscanthus showed the highest WUE among all rainfed land use change 

scenarios. This indicated that Miscanthus is a good bioenergy crop choice for large areas 

of dryland crop production systems in the study region. On the other hand, switchgrass 

recorded the second highest IWUE under the irrigated land use change scenarios. 

Furthermore, irrigated switchgrass demonstrated greater potential for effective water 

conservation when compared to the irrigated Miscanthus. Due to higher WUE/IWUE, 

better potential for water conservation, greater biomass and biofuel production potential, 

and minimum crop management, Miscanthus and switchgrass were therefore found to be 

ideal bioenergy crops for the dryland and irrigated systems in the study watershed, 

respectively. 



 

60 
 

 

3. SPATIAL VARIABILITY OF BIOFUEL PRODUCTION POTENTIAL AND 

HYDROLOGIC FLUXES OF LAND USE CHANGE FROM COTTON 

(GOSSYPIUM HIRSUTUM L.) TO ALAMO SWITCHGRASS (PANICUM 

VIRGATUM L.) IN THE TEXAS HIGH PLAINS 

 

3.1 Synopsis 

Bioenergy crop production has the potential to protect marginal crop lands that 

generate high surface runoff and produce poor crop yields. Long term evaluation of the 

impacts of such land use change on hydrologic fluxes and biofuel production potential is 

necessary before adopting such strategies on a large-scale. In this study, the hydrologic 

impacts of replacing cotton (Gossypium hirsutum L.) on marginal lands in an intensive 

agricultural watershed in the Texas High Plains with Alamo switchgrass (Panicum 

virgatum L.) as a bioenergy crop were evaluated using the Agricultural 

Policy/Environmental eXtender (APEX) model. The surface runoff to cotton yield ratio 

was used as a criterion to identify marginal cotton subareas (homogenous spatial units 

delineated by APEX) in the study watershed, and three replacement scenarios (low (9%), 

medium (33%) and high (57%) extents of cotton acreage replaced by switchgrass) were 

implemented in the scenario analysis. The average (1994-2009) annual surface runoff 

decreased by about 84% and 66%, and the percolation increased by 106% and 57% in 

the irrigated and dryland subareas, respectively, when cotton was replaced by 

                                                           
 The following material in this section is used with permission from Springer. It has 

been published as a peer-reviewed research paper in the journal of BioEnergy Research. 

2016, doi: 10.1007/s12155-016-9758-7 
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switchgrass under the high replacement scenario. Spatial analysis showed that 

switchgrass was a feasible bioenergy crop for replacing cotton, especially in the western 

part of the study watershed, due to its higher water use efficiency and better water 

conservation effects compared to cotton. It is estimated that 193 and 381 million liters of 

ethanol could be produced from the dryland and irrigated subareas of the study 

watershed, respectively under the high replacement scenario. 

 

3.2 Introduction 

Concerns about the projections of reduced fossil fuel availability, energy security, 

and global warming have led to an increased interest in expanding renewable bioenergy 

production. In the United States, bioenergy crops have been promoted to fulfill the 

mandated 2022 national biofuel target of 79 million m3 (Energy Independence and 

Security Act; EISA, 2007). However, there are growing concerns for food security if the 

first generation bioenergy crops (grain-based crops) such as corn (Zea mays L.), wheat 

(Triticum aestivum L.) and grain sorghum (Sorghum bicolor L.) are used for bioenergy 

production (Ayre, 2007; Tenenbaum, 2008). In addition, the existing limited arable land 

and water resources present another constraint for grain-based bioenergy crop 

production. More attention, therefore, has been given to using marginal lands for the 

production of second generation cellulosic bioenergy crops such as Alamo switchgrass 

(Panicum virgatum L.) (Hill et al., 2006; Campbell et al., 2008; Searchinger et al., 2008; 

Qin et al., 2011; Qin et al., 2015). A number of studies have used a variety of definitions 

for identifying marginal lands. For example, Cai et al. (2011) defined marginal lands as 
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lands that are susceptible to degradation and have low crop productivity. The lands 

having severe to very severe limitations for production of crops were considered as 

marginal lands by Graham (1994). In this study, we considered lands with low crop yield 

potential and high surface runoff risk as marginal lands. 

Historically, cotton (Gossypium hirsutum L.) has been produced in large acreage 

in the Texas High Plains (THP). In this region, groundwater from the Ogallala Aquifer is 

the major source of irrigation water. However, groundwater levels in this region have 

been experiencing a continuous decline due to intensive agricultural activities, and much 

less recharge compared to groundwater withdrawals (Chaudhuri and Ale, 2014a; Rajan 

et al., 2015b). Using the Hydrologic Unit Model for the United States (HUMUS), 

Rosenberg et al. (1999) predicted a further reduction in the recharge to the Ogallala 

Aquifer under future climate change scenarios because of the increase in 

evapotranspiration (ET) due to elevated temperatures. Such trends will further reduce 

groundwater availability in this region. Recently, Modala et al. (2016) also predicted an 

apparent increase in daily temperature (1.9 to 3.2 ºC) and decrease in precipitation (30 to 

127 mm) in the future in the Texas High Plains and Rolling Plains regions, indicating 

that the groundwater availability could be reduced substantially.  

Reductions in groundwater availability for irrigation and the demand for 

bioenergy production from this region (USDA, 2010) are expected to result in a shift in 

land use from high-water-demanding cotton to high water use efficient perennial 

bioenergy crops such as Alamo switchgrass (Kiniry et al., 2008; Kiniry et al., 2013; 

Chen et al., 2016a). Alamo switchgrass was originally collected from the north bank of 
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the Frio River in Live Oak County in Texas (Behrman et al., 2014). Alamo switchgrass 

(lowland cultivar) exhibited higher radiation and water use efficiency than Kanlow 

(lowland cultivar) and other upland switchgrass varieties such as Blackwell, Cave-in-

Rock and Shawnee in the Southern Great Plains (Kiniry et al., 2012; Kiniry et al., 2013). 

Measured Alamo switchgrass yields in Texas were much higher than those in Arkansas, 

Oklahoma and Missouri (Behrman et al., 2014). Based on an economic and greenhouse 

gas efficiency analysis, Wang et al. (2014b) also concluded that dryland switchgrass is 

superior to other feedstocks such as irrigated or dryland sweet sorghum and mesquite 

(Prosopis glandulosa). Using the SWAT model, Chen et al. (2016a) simulated that the 

surface runoff was higher by 7% and percolation was less by 9% under current cotton 

land use when compared to the switchgrass scenario in the Double Mountain Fork 

Brazos watershed in the Texas High Plains. The ET was almost the same under both 

cotton and switchgrass scenarios, however. Alamo switchgrass was therefore selected to 

replace cotton in this study. An assessment of potential impacts of such hypothetical land 

use change from cotton to switchgrass on hydrologic fluxes and biofuel production 

potential would enable better understanding of relative advantages and disadvantages of 

proposed land use change in the THP. 

A majority of the studies that evaluated switchgrass biomass production potential 

and corresponding hydrological responses in the U.S. focused on corn producing regions 

of the Midwest (Sarkar and Miller, 2014). For example, using the Soil and Water 

Assessment Tool (SWAT), Schilling et al. (2008) predicted that a land cover change from 

cropland to switchgrass in the Raccoon River watershed in west-central Iowa would 
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increase ET by about 9% and decrease water yield by about 28%. Using the APEX 

model, Feng et al. (2015) found a significant (p<0.05) decrease in water yield (27%) 

when corn/soybean was replaced by switchgrass from the marginal lands of the St. 

Joseph River watershed in Indiana. In another APEX simulation study, Powers et al. 

(2011) predicted that a land use change from corn to switchgrass reduced total nitrogen 

load by about 65% in eastern Iowa. Wu and Liu (2012) concluded from a SWAT 

modeling study in the Iowa River Basin that switchgrass was a more promising 

bioenergy crop in dry areas than corn and Miscanthus based on its less water 

requirement, fertilizer use, and nitrate nitrogen (NO3-N) load. Recently, Chen et al. 

(2016a) also used the SWAT model in a biofuel-induced land use change study, and 

assessed the impacts of replacing the entire cotton acreage in the Double Mountain Fork 

Brazos watershed of the THP (about 30% of the watershed area) with switchgrass and 

three other cellulosic bioenergy crops on hydrologic processes. However, to our 

knowledge, none of the previous studies focused on assessing biofuel production 

potential and the associated hydrologic impacts of replacing cotton in marginal lands 

with switchgrass. 

The Agricultural Policy Environmental eXtender (APEX), which includes 

detailed cotton growth parameters, was used in this study. The APEX model has a 

separate crop database for cotton. It provides cotton seed and lint yields separately. The 

APEX model also allows the users to adjust plant population, and specify disease/pest 

infestation severity, wind erosion of plant residue, etc. In addition, APEX satisfactorily 

simulates the impacts of land use change and best management practices (BMPs) on 
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watershed hydrology and crop yields in intensively managed agricultural watersheds 

with large extents of irrigated areas (Saleh and Gallego, 2007; Ko et al., 2009; Gassman 

et al., 2010; Tuppad et al., 2010; Powers et al., 2011; Wang et al., 2011; Jung et al., 2014; 

Wang et al., 2014a). For example, Powers et al. (2011) used APEX in a watershed study 

in eastern Iowa and found that the land use change from continuous corn to switchgrass 

would yield much higher biomass and provide water quality benefits such as reduced 

total nitrogen and total phosphorus loads. Ko et al. (2009) achieved a good agreement 

between the simulated and measured irrigated cotton and maize yields in South Texas by 

using EPIC, a field-scale version of APEX.  

The overall goal of this study was to evaluate effects of biofuel-induced land use 

change from cotton to switchgrass on water balances in the upstream subwatershed of 

the Double Mountain Fork Brazos watershed in the THP under three replacement 

scenarios: low, medium and high extents of cotton acreage replaced by switchgrass. 

Specific objectives were to: (1) identify marginal cotton growing subareas in the 

watershed for potential replacement with switchgrass; (2) estimate the biofuel 

production potential, and land and irrigation water requirement for biomass production 

under the proposed switchgrass replacement scenarios; and (3) compare spatial 

variability in water use efficiency and hydrologic fluxes of ET, surface runoff, 

percolation and soil water content in both irrigated and dryland subareas under the 

baseline cotton and hypothetical switchgrass replacement scenarios. 
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3.3 Materials and Methods 

3.3.1 Study Watershed 

The upstream subwatershed of the Double Mountain Fork Brazos watershed, 

which spans over the Cochran, Hockley, Lynn, Garza and Borden counties in the THP, 

was selected for this study (Figure 3.1). The delineated watershed area is about 3297 

km2. The surface elevation of the watershed ranges from 679 to 1152 m. Cotton is the 

major crop in this watershed, grown on 52% of the land area. The predominant soil types 

in the watershed are Amarillo sandy loam and Acuff sandy clay loam (Soil Survey Staff, 

2010). The long term (1981-2010) daily average air temperature in the region ranged 

from 9°C in the winter to 24°C in the summer, with an average annual precipitation of 

508 mm (NOAA-NCDC, 2014). 

 
Figure 3.1 Locations of weather stations and the USGS gauge station in the Double 

Mountain Fork Brazos watershed in the Texas High Plains. 



 

67 
 

 

3.3.2 APEX Model 

The APEX model is a flexible and dynamic tool that is capable of simulating 

land management and land use change impacts on hydrology and water quality of whole 

farms and small watersheds (Williams 1995; Williams et al., 2008). The model consists 

of 12 major components: climate, hydrology, crop growth, pesticide fate, nutrient 

cycling, erosion-sedimentation, carbon cycling, management practices, soil temperature, 

plant environment control, economic budgets, and subarea/routing (Golmohammadi et 

al., 2014). More details about the APEX model components can be found in Williams 

(1995), Tuppad et al. (2009) and Wang et al. (2012). The ArcAPEX model (Version 

0806.10_2.1 Beta4 released on 12/19/14), which is interfaced with the ArcGIS 10.2.2 

platform, was used in this study. 

APEX delineates a watershed into a number of subareas, which are the basic 

building blocks of the model. Three options are available for defining a subarea in 

APEX: (1) the dominant land use, dominant soil and dominant slope for each of the 

three landscape characteristics; (2) the dominant land use/soil/slope combination, which 

represents the most dominant unique combination of the three landscape characteristics; 

and (3) user defined, which allows the users to define each subarea separately by using 

either option (1) or option (2). The option (1) was used in this study. A threshold area of 

5000 ha, which was calculated from the digital elevation model (DEM) of the watershed, 

was used for defining flow direction and accumulation. This criterion has resulted in 25 

subareas. 
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In APEX, surface runoff can be computed by using the modified USDA Natural 

Resources Conservation Service (NRCS) runoff curve number (RCN) technique 

(Williams, 1995; USDA-NRCS, 2004) or the Green and Ampt infiltration equation 

(Green and Ampt, 1911). The former method was used in this study. The peak runoff 

rate is estimated in the APEX model for each storm event, and it is used for calculating 

erosion loss. The peak runoff rate can be estimated by either using the modified Rational 

Formula (Williams, 1995) or the USDA-NRCS Technical Release 55 (TR-55) method 

(USDA-NRCS, 1986). The latter method was used in this study. Five methods are 

provided in APEX for estimating potential ET. They are Hargreaves (Hargreaves and 

Samani, 1985), Penman (Penman, 1948), Priestley-Taylor (Priestley and Taylor, 1972), 

Penman-Monteith (Monteith, 1965) and Baier-Robertson (Baier and Robertson, 1965) 

methods. The “Penman-Monteith” method was used in this study. 

The crop growth module in the APEX model is based on the EPIC model 

(Williams et al., 1989). About 100 crop growth related parameters have been included 

the APEX model. The APEX model is capable of simulating growth of both annual (e.g. 

cotton) and perennial (e.g. Alamo switchgrass) crops. Annual crops grow from planting 

to harvest or until the accumulated heat units of the crops equal their potential heat units. 

Perennial crops maintain their root systems during the entire year, even though they 

become dormant after frost. They start to regrow when the mean daily air temperature 

exceeds their minimum needed temperature. More detailed descriptions of the APEX 

model concepts and methodology are given in Williams and Izaurralde (2006) and 

Gassman et al. (2010).  
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3.3.3 APEX Model Setup 

3.3.3.1 Topography, Land Use, Soil, and Slope 

The DEM of the watershed, with a horizontal resolution of 30 m, was 

downloaded from the USGS (http://viewer.nationalmap.gov/viewer/#) and input to the 

APEX model. The 2008 National Agricultural Statistics Service (NASS) Cropland Data 

layer (CDL) was used as a land use input to the model to appropriately represent the land 

use conditions in the watershed over the simulated period from 1994 to 2009. The 

dominant agricultural land use in the study watershed in 2008 was cotton, which 

occupied 52% of the watershed area (Figure 3.2). Thirty nine percent of the watershed 

area was covered by range brush and range grass. The finer-scale soils data from the Soil 

Survey Geographic Database (SSURGO) was used in this study (Soil Survey Staff, 

2015). Based on studies by Mednick (2010) and Zhang et al. (2014), the higher 

resolution soil data provides greater accuracy in predicting hydrologic fluxes. In order to 

accurately simulate runoff potential, four slope classes were considered in this study: ≤ 

1%, 1%-3%, 3%-5%, and > 5%. 

 
Figure 3.2 Major land uses of the study watershed in 2008 (Source: National 

Agricultural Statistics Service (NASS) Cropland Data layer). 

http://viewer.nationalmap.gov/viewer/


 

70 
 

 

3.3.3.2 Weather Data Input 

Weather data from three National Climatic Data Center (NCDC) weather stations 

that are situated inside or within a close distance to the study watershed were used in this 

study (Figure 3.1). Daily weather data including rainfall, and minimum and maximum 

temperature for the period from 1992 to 2009 (NOAA-NCDC, 2014) was used. Missing 

rainfall and temperature data for a weather station was filled with the average value of 

weather parameter from two adjacent weather stations (Ale et al., 2009). 

3.3.3.3 Operation Schedules of Cotton 

Cotton operation schedules were set as practiced in the study area. The operation 

schedules for range brush and grass were kept at their default values. Chisel plow, which 

is widely used for tillage operation in this watershed, was used in all cotton growing 

subareas (Table 3.1). About 300 and 150 kg ha-1 of urea was applied to the irrigated and 

dryland cotton, respectively. The commonly used center pivot irrigation method was 

selected to apply irrigation water to cotton. According to the published county-wise 

cotton acreage estimates over the period of 1994 to 2009, 39% of the cotton growing 

areas in the watershed were under irrigation. In this study, automatic irrigation was 

therefore implemented in 5 out of 25 subareas in such a way that a total of 39% of 

simulated cotton growing areas were irrigated. 
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Table 3.1 Simulated management practices for dryland and irrigated cotton in APEX 

No. Operations Description Input data 

Irrigated cotton 

1 Plow, cultivate, other (Tillage on April 1) 

 JX4 Tillage ID Chisel plow# 

2 Fertilize (May 1) 

 JX7 Fertilizer ID Urea (46-00-00) 

 OPV1 Fertilizer application rate 300.7 (kg ha-1)# 

3 Plant in rows ( Planting on May 15) Default 

4* Irrigate (automatic irrigation) (Start date: May 15; End date: October 31) 

 IRR Irrigation Code Sprinkler irrigation 

 BIR Plant water stress factor to trigger automatic irrigation 0.9 

5 Harvest without kill (Harvest on October 31) Default 

6 Kill crop (Kill on October 31) Default 

Dryland cotton 

1 Plow, cultivate, other (Tillage on April 1)  

 JX4 Tillage ID Chisel plow # 

2 Fertilizer Application Parameters (May 1) 

 JX7 Fertilizer ID Urea(46-00-00) 

 OPV1 Fertilizer application rate 150 (kg ha-1)# 

3 Plant in rows (Planting on May 15) Default 

4 Harvest without kill (Harvest on October 31) Default 

5 Kill crop (Kill on October 31) Default 

*Auto-irrigation was simulated in 39% of cotton acreage based on County cotton irrigated acreage 

summary reports 
#The parameter values related to management practices were based on local expertise 

 

3.3.4 Observed Streamflow and Cotton Lint Yield Data 

The observed daily streamflow data recorded at the USGS gauge 08079600, 

which was delineated as the watershed outlet, over the time period from 1994 to 2009 

were obtained from the USGS National Water Information System 

(http://waterdata.usgs.gov/nwis/sw). The observed cotton lint yield data for the period 

from 1994 to 2009 from dryland and irrigated areas in the Lynn County, in which the 

highest cotton planting acreage was documented in the study watershed, was obtained 

from the NASS reports (http://www.nass.usda.gov/Quick_Stats/). The simulated data 

was compared with this observed data during the APEX model calibration for the study 

watershed. 

http://waterdata.usgs.gov/nwis/sw
http://www.nass.usda.gov/Quick_Stats/
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3.3.5 APEX Calibration and Validation 

APEX was run for 1992 to 2009. The first two years were considered as the 

model warm-up period (Daggupati et al., 2015). The periods from 1994 to 2001 and 

2002 to 2009 were considered as the model calibration and validation periods, 

respectively. Four sensitive hydrologic parameters including “CN retention parameter 

coefficient”, “runoff CN initial abstraction”, “soil evaporation coefficient”, and 

“evaporation plant cover factor” were adjusted during the APEX hydrology calibration 

(Table 3.2). Several recent studies emphasized using crop yield as auxiliary data for 

further improving model calibration as crop yield has a direct relationship with ET 

(Faramarzi et al., 2009; Akhavan et al., 2010; Faramarzi et al., 2010; Zhang et al., 2013; 

Chen et al., 2016a; Mittelstet et al., 2015; Zhang et al., 2015b). After achieving a 

satisfactory streamflow prediction, the model was calibrated for cotton lint yield 

prediction under irrigated and dryland conditions. Based on the literature values (Sarkar 

et al., 2011; Wanjura et al., 2014), crop parameters such as the harvest index (HI), 

maximum potential leaf area index (DMLA), and biomass-energy ratio (WA) of the crop 

database were adjusted while calibrating the model for cotton lint yield prediction (Table 

3.2). Finally, after obtaining a satisfactory cotton lint yield calibration, the model 

performance was re-evaluated for streamflow prediction, and necessary finer 

adjustments to calibrated hydrologic parameters were made. 
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Table 3.2 Initial and calibrated values of some major hydrologic and crop parameters in the APEX 

model 

No. Parameter Description Initial value Calibrated value Source 

Hydrology calibration 

1 Parm92 Curve number retention parameter 

coefficient 

1.0 1.31 -- 

2 Parm20 Runoff curve number initial abstraction 0.2 0.336 -- 

3 Parm12 Soil evaporation coefficient 2.5 2.44 -- 

4 Parm17 Evaporation plant cover factor 1.0 0.921 -- 

Cotton yield calibration 

5 WA Biomass Energy Ratio (CO2=330 ppm) 25 
15.48 (Dryland) 

16.0 (Irrigated) 

Sarkar et 

al. (2011) 

6 HI Harvest index 0.6 
0.49 (Dryland) 

0.48 (Irrigated) 

Wanjura et 

al. (2014) 

7 DMLA Maximum potential leaf area index 6.0 4.0 
Sarkar et 

al. (2011) 

 

3.3.6 Model Performance Assessment 

APEX performance during the calibration and validation periods was evaluated 

using three statistical measures: i) square of Pearson’s product‐ moment correlation 

coefficient (R2) (Legates and McCabe Jr, 1999), ii) Nash-Sutcliffe efficiency (NSE) 

(Nash and Sutcliffe, 1970), and iii) percent bias (PBIAS). The R2 indicates the proportion 

of total variance of the observed data that can be explained by the simulation result. The 

R2 ranges from 0 to 1 with higher values representing better model performance. The 

NSE denotes how well the plot of observed versus simulated results matches with the 1:1 

line. The NSE ranges from -∞ to 1, and the value of NSE closer to 1 indicates the better 

model performance. The PBIAS varies between -100 and ∞, with smaller absolute values 

closer to 0 demonstrating better agreement.  
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3.3.7 Water Use Efficiency 

Average annual (1994-2009) water use efficiency of switchgrass/cotton under the 

dryland conditions (DWUE; kg ha-1 mm-1) was determined as the ratio of dryland 

switchgrass/cotton biomass yield per unit area (kg ha-1) to its ET (mm) (Musick et al., 

1994; Howell, 2001). The average annual irrigated water use efficiency (IWUE; kg ha-1 

mm-1) of switchgrass/cotton was calculated as the ratio of difference in irrigated and 

dryland switchgrass/cotton biomass (kg ha-1) to the amount of irrigation water applied 

(mm) (Bos, 1980; Chen et al., 2016a). In this study, 90% of aboveground switchgrass 

biomass was considered as the biomass yield to calculate the DWUE and IWUE based 

on the suggested HI value of 0.90 by Kiniry et al. (1996). In order to maintain 

consistency, the same percentage of aboveground biomass was considered as biomass 

yield in estimation of cotton DWUE and IWUE. 

 

3.3.8 Scenario Development and Analysis 

Scenarios simulated in this study focused on evaluating the hydrologic impacts of 

land use change from cotton to switchgrass in marginal lands of the watershed. Cotton 

lint yield production and surface runoff generation potential were considered as two 

major factors in identifying marginal croplands where switchgrass replacement scenarios 

could be implemented. The ratio of surface runoff to cotton lint yield was estimated for 

each of the cotton subareas of the watershed and then marginal subareas were identified. 

Interestingly, the runoff/yield ratio increased abruptly between two intervals, once 

between 11 and 88 m3 Mg-1 yr-1, and then between 121 and 439 m3 Mg-1 yr-1 (Figure 
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3.3). The cotton subareas with the runoff/yield ratios ≥ 88 m3 Mg-1 yr-1 were considered 

as the marginal lands (subareas). 

 

Figure 3.3 a) Spatial distribution of surface runoff to cotton lint yield ratio in the 

study watershed, and (b-d) the switchgrass replacement scenarios simulated. 

 

After sorting the subareas according to runoff/yield ratio (from the highest to the 

lowest), three scenarios were considered to hypothetically replace cotton (baseline) with 

switchgrass. In the first scenario, which is denoted as the “low replacement scenario”, 

three subareas with high runoff/yield ratio (10, 14, and 21), which constituted about 9% 

of cotton acreage in the watershed were considered for replacement by switchgrass 

(Figure 3.3). Interestingly, all these subareas are located in the eastern part of the 

watershed. In the second scenario, in addition to the above three subareas, two subareas 

(25 and 3) with next highest runoff/yield ratio were considered. The second scenario was 
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designated as the “medium replacement scenario” and the cotton acreage considered for 

replacement under this scenario represented 33% of the total cotton area in the 

watershed. In the third scenario, which was denoted as the “high replacement scenario”, 

57% of cotton acreage was considered for replacement by switchgrass by including four 

additional subareas 1, 2, 16 and 24. This classification was made in such a way that at 

least one additional irrigated and one dryland subarea were added to each higher 

replacement scenario.  

Switchgrass was planted on May 15 of 1992 and harvested (without kill) on 

November 15 of each subsequent year (Chen et al., 2016a). If cotton in the irrigated 

subareas was replaced by switchgrass, switchgrass was assigned the same irrigation 

management practices as cotton. About 270 and 180 kg ha-1 of urea (N-P-K: 46-00-00) 

was applied on irrigated and dryland switchgrass, respectively (Yimam et al., 2014). “No 

tillage” practice was implemented under the hypothetical switchgrass replacement 

scenarios. 

 

3.4 Results and Discussion 

3.4.1 APEX Model Performance during Calibration and Validation 

3.4.1.1 Prediction of Streamflow 

The simulated monthly streamflow at the watershed outlet during the calibration 

and validation periods matched well with the observed streamflow (Figure 3.4). The 

NSE, R2, and PBIAS for monthly predictions of streamflow during the model calibration 

and validation periods were 0.65 and 0.59, 0.76 and 0.69, and -1.8% and -14.4%, 
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respectively, representing a satisfactory agreement between the simulated and observed 

streamflow according to Wang et al. (2012) and Moriasi et al. (2007) criteria (Table 3.3). 

Harmel et al. (2014) emphasized that the project goal and the intended use of the 

calibrated model should be taken into account while deciding the time-step for 

evaluating the model performance. This study focused on assessing the impacts of 

proposed land use change on the seasonal and annual water balances. Hence obtaining a 

satisfactory model performance on a monthly time step was considered as making APEX 

acceptable to use for scenario analysis. 

 

 
 

Figure 3.4 Comparison of observed and simulated monthly streamflow at the 

watershed outlet during the model a) calibration and b) validation periods. 
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Table 3.3 Monthly statistical parameters for the model streamflow calibration and 

validation 

Statistical parameters Calibration (1994-2001) Validation (2002-2009) 

Nash-Sutcliffe efficiency (NSE) 0.65 (Good*) 0.59 (Satisfactory) 

R2 0.76 0.69 

Percent bias (PBIAS) (%) -1.8 (Very good) -14.4 (Good) 

* General model performance ratings suggested by Wang et al. (2012) and Moriasi et al. 

(2007) for predictions of streamflow 

 

3.4.1.2 Prediction of Cotton Lint Yield 

After obtaining a satisfactory model calibration for streamflow prediction, APEX 

was calibrated for cotton lint yield prediction under both irrigated and dryland subareas. 

This additional step enhanced our confidence on the partitioning of water between ET, 

soil water content and percolation (Faramarzi et al., 2009; Akhavan et al., 2010; 

Faramarzi et al., 2010). Results showed that the R2 and average PBIAS in predicting 

cotton lint yield in the dryland cotton subareas over the entire simulation period (1994-

2009) were 0.36 and 0.1%, respectively (Figure 3.5). For the irrigated cotton subareas, 

the R2 and average PBIAS in cotton lint yield prediction were 0.14 and 0.7%, 

respectively.  
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Figure 3.5 Comparison of simulated and observed cotton lint yield in Lynn County 

under dryland and irrigated conditions. 

High bias between the simulated and observed cotton lint yield was found in 

some years (Figure 3.5). For example, the simulated cotton lint yield in the irrigated 

subareas in 1998, which was an extremely dry year (annual rainfall of 300 mm), was 

clearly overestimated (60%). The automatic irrigation option, which did not consider the 

actual water availability for crop irrigation under severe dry conditions, was used in this 

study. It led to an optimistic over-prediction of cotton lint yield in 1998. Another 

potential reason for this mismatch could be due to differences in the procedure used for 

estimation of simulated and observed yields. While the long-term measured cotton lint 

yields from NASS were available at the county level, the APEX model simulated cotton 

lint yields at the subarea level. The simulated yields might, therefore, have not 

adequately represented the measured county-level yields well. Using EPIC, Ko et al. 

(2009) also found that the simulated cotton lint yield matched well with the measured 
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yield from small field experiments (R2=0.74 and PBIAS=-7.6%) in South Texas, but the 

agreement weakened when simulated cotton lint yield was compared with the NASS 

county-wide observed yield (R2=0.05 and PBIAS=-2.0%). Overall, model predictions of 

cotton lint yield were better under dryland conditions than under irrigated conditions 

(Figure 3.5). Using SWAT, Mittelstet et al. (2015) similarly reported that the prediction 

accuracies of cotton lint yield under the dryland conditions were better than those under 

the irrigated conditions in the North Fork River Basin of the Southwestern Oklahoma 

and the Texas Panhandle. 

 

3.4.2 Land Replacement, Biomass Production, Irrigation Water Use and Biofuel 

Production Potential under Three Switchgrass Replacement Scenarios 

Marginal cotton lands in the dryland subareas that were replaced by switchgrass 

under the low, medium and high replacement scenarios were 14800, 18100 and 64100 

ha, respectively (Figure 3.6). Corresponding marginal cotton lands in the irrigated 

subareas that were replaced by switchgrass under the low, medium and high replacement 

scenarios were 4500, 55400 and 63100 ha, respectively. Among all switchgrass 

replacement scenarios studied, the highest average (1994-2009) annual total biomass 

production of 1042 million kg was simulated from the irrigated subareas of the 

watershed under the high replacement scenario, followed by the irrigated subareas under 

the medium replacement scenario (927 million kg) (Figure 3.6). Simulated average 

annual total switchgrass biomass yield in the dryland subareas varied within a range of 

111 to 526 million kg among the three replacement scenarios (Figure 3.6).  
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Figure 3.6 Biomass production potential, land replaced and water use under three 

replacement scenarios. Units are million kg for biomass, million m3 for irrigation 

water consumption and 1000 ha for land requirements. 

About 21, 290 and 327 million m3 of irrigation water was used under the low, 

medium and high replacement scenarios, respectively (Figure 3.6). The estimated 

switchgrass biomass yield per unit area under irrigated medium and high replacement 

scenarios (17 and 16.5 Mg ha-1, respectively) was slightly higher than that under the low 

replacement scenario (15 Mg ha-1). A similar trend was found in case of dryland 

subareas (8.2, 7.7 and 7.7 Mg ha-1 under the high, medium and low replacement 

scenarios, respectively). The estimated biomass yield per unit of water used was the 

highest (2013 Mg mm-1) under the high replacement scenario and the lowest under the 

low replacement scenario (144 Mg mm-1). Based on the theoretical ethanol yield of 

switchgrass biomass of 366 liters Mg-1, the average annual volume of ethanol that could 

be produced from the irrigated subareas in the study watershed was estimated as 25, 339 

and 381 million liters under the low, medium and high replacement scenarios, 

respectively. The estimated ethanol production from the dryland subareas of the 
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watershed was 41, 50 and 193 million liters under the low, medium and high 

replacement scenarios, respectively. 

Spatial variability in cotton lint yield under baseline scenario, and switchgrass 

biomass yield and biofuel production potential under high replacement scenario are 

depicted in Figure 3.7. The predicted cotton lint yield under baseline scenario ranged 

from 0.31 to 0.44 Mg ha-1 and from 0.77 to 1.02 Mg ha-1 in the dryland and irrigated 

high replacement subareas, respectively (Figure 3.7a). The simulated switchgrass 

biomass yield under the high replacement scenario ranged from 7.1 to 9.1 Mg ha-1 and 

from 14.7 to 16.9 Mg ha-1 in the dryland and irrigated subareas, respectively (Figure 

3.7b). APEX-predicted switchgrass biomass yields in this study were similar to those 

simulated by SWAT (17.5 and 8.3 Mg ha-1 under the irrigated and dryland systems, 

respectively) for this watershed (Chen et al., 2016a). In addition, the predicted 

switchgrass biomass yields from dryland subareas in this study were comparable to 

measured switchgrass biomass yields reported in McLaughlin and Adams (2005) for 

Dallas, Stephenville and College Station in Texas, which ranged from 8.1 to 16.5 Mg ha-

1. Relatively lower dryland switchgrass biomass yields simulated in this study as 

compared to those reported in McLaughlin and Adams (2005) were most probably due 

to the lower average annual precipitation received in the study watershed when 

compared to Dallas, Stephenville and College Station. The estimated biofuel that could 

be produced with the simulated switchgrass biomass under the high replacement 

scenario ranged from 2602 to 3313 liters ha-1 and from 5385 to 6194 liters ha-1 in 

dryland and irrigated subareas, respectively (Figure 3.7c). 
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Figure 3.7 The spatial distribution of cotton lint yield under baseline scenario, and 

switchgrass biomass yield and biofuel production potential in the study watershed 

under high replacement scenario. 
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3.4.3 Hydrologic Fluxes under the Switchgrass Replacement Scenarios 

3.4.3.1 Average Annual Hydrologic Fluxes 

Changes in fluxes of ET, surface runoff, percolation, and soil water content were 

evaluated under the three hypothetical switchgrass replacement scenarios considered in 

this study. The dominant component of water balances in the study watershed is the 

water lost through ET. Scenario analysis results showed that for 1994-2009, 84% and 

91% of the input water (precipitation + irrigation) was lost due to ET in the irrigated and 

dryland subareas, respectively, under the baseline scenario (Table 3.4). When compared 

to the baseline scenario, average annual ET decreased within ranges of 2%-3% and 1%-

4% in the irrigated and dryland subareas, respectively, under the hypothetical 

replacement scenarios. The irrigation water requirement under the low replacement 

scenario was 2% lower than that under the baseline scenario (Table 3.4). In contrast, the 

irrigation water requirement under the medium and high replacement scenarios was 4% 

and 5% higher, respectively, when compared to the baseline scenario (Table 3.4). 
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Table 3.4 Comparison of the average (1994-2009) annual water balance parameters 

under baseline and hypothetical land use change scenarios in the irrigated and 

dryland subareas 

Scenario/Parameter 
All cotton 

subareas (mm) 

Irrigated cotton 

subareas (mm) 

Dryland cotton 

subareas (mm) 

Baseline scenario    

Rainfall 490.4 481.2 496.3 

Irrigation 185.9 479.5 0.0 

Evapotranspiration 620.3 856.5 470.7 

Soil water content 1163.7 1854.9 726.0 

Percolation 49.1 95.0 20.0 

Surface runoff 6.0 7.9 4.8 

Low replacement scenario 

[9%]# 
10, 14, 21ξ 14  10, 21 

Irrigation 182.8 (-1.7)* 471.4 (-1.7) 0.0 

Evapotranspiration 612.9 (-1.2) 843.4 (-1.5) 467.0 (-0.8) 

Soil water content 1208.6 (3.9) 1897.7 (2.3) 772.2 (6.4) 

Percolation 55.0 (12.0) 101.9 (7.2) 25.3 (26.4) 

Surface runoff 4.5 (-25.5) 6.8 (-14.3) 3.0 (-37.2) 

Medium replacement 

scenario [33%] 
3, 10, 14, 21, 25 3, 14  10, 21, 25  

Irrigation 192.7 (3.6) 497.0 (3.6) 0.0 

Evapotranspiration 606.4 (-2.2) 828.2 (-3.3) 466.0 (-1.0) 

Soil water content 1317.3 (13.2) 2156.6 (16.3) 785.8 (8.2) 

Percolation 73.1 (49.0) 146.7 (54.5) 26.5 (32.5) 

Surface runoff 2.5 (-59.3) 2.0 (-74.9) 2.7 (-43.0) 

High replacement scenario 

[57%] 

1, 2, 3, 10, 14, 16, 

21, 24, 25 
3, 14, 16  1, 2, 10, 21, 24, 25 

Irrigation 195.8 (5.3) 504.8 (5.3) 0.0 

Evapotranspiration 601.0 (-3.1) 834.4 (-2.6) 453.1 (-3.7) 

Soil water content 1393.5 (20.2) 2134.0 (15.0) 932.7 (28.5) 

Percolation 83.0 (69.1) 149.1 (56.9) 41.2 (105.9) 

Surface runoff 1.5 (-75.6) 1.2 (-84.4) 1.6 (-66.3) 

*Numbers in parentheses indicate the percent change under each scenario relative to baseline 

scenario 
#Numbers in square bracket indicate the percent cotton area replaced by switchgrass 

ξ These numbers represent the subarea identification numbers 

 

Average annual surface runoff under the replacement scenarios decreased within 

the ranges of 14% to 84% and 37% to 66% in the irrigated and dryland subareas, 

respectively, when compared to the baseline scenarios (Table 3.4). Average annual 
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percolation in the irrigated subareas increased by 7%, 55% and 57% under the low, 

medium and high replacement scenarios, respectively, as compared to the baseline 

scenario. In the dryland subareas, average annual percolation increased by 26%, 33% 

and 106% under the low, medium and high replacement scenarios, respectively, relative 

to the baseline scenario (Table 3.4). The reduction in ET and surface runoff were key 

factors for the increased percolation under the switchgrass replacement scenarios. The 

higher percolation under switchgrass replacement scenarios when compared to cotton 

indicates the potential for higher groundwater recharge to the underlying Ogallala 

Aquifer, which is desirable under the current situation of rapidly declining groundwater 

levels in the THP (Chaudhuri and Ale, 2014a and 2014b). Soil water storage apparently 

increased under all switchgrass replacement scenarios. For example, under the high 

replacement scenario, average annual soil water content in irrigated and dryland 

subareas increased by 15% and 29%, respectively, when compared to the baseline 

scenario (Table 3.4). This simulated trend is different from other biofuel-induced land 

use change studies in the Midwest U.S. in which maize was replaced by switchgrass. 

They predicted reductions in soil water storage under switchgrass scenarios due to the 

higher simulated ET of switchgrass compared to maize (VanLoocke et al., 2010; Le et 

al., 2011). When compared to maize, cotton needs longer to mature (Agricultural 

Resources and Environmental Indicators, 1996-97) as it is a perennial shrub that is 

cultivated as an annual economic crop (Ton, 2004). Cotton, therefore, has a higher ET 

requirement compared to that of maize. 
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3.4.3.2 Average Monthly and Seasonal Hydrological Fluxes 

In general, hydrological fluxes did not change much on a monthly basis under the 

low replacement scenario when compared to the baseline scenario because only 9% of 

cotton area was replaced with switchgrass. Under the medium and high replacement 

scenarios, the peak ET in the irrigated subareas occurred about a month early when 

compared to the baseline scenario (Figure 3.8a). A similar trend was found under the 

high replacement scenario in the dryland subareas (Figure 3.8b). The main reason for 

this trend is because the simulated emergence of switchgrass began in late March/early 

April while cotton was planted in mid-May. Using the Integrated Biosphere Simulator - 

agricultural version (Agro-IBIS) model, Vanloocke et al. (2010) also predicted that the 

emergence of perennial crops occurred in mid- to late April in the Midwest U.S., about a 

month earlier than most annual crops. Yimam et al. (2015) also observed that the 

switchgrass emergence occurred between mid-March and mid-April in a field 

experiment at Stillwater in Oklahoma. About 85% and 94% of the average annual ET 

was simulated during the cotton (baseline) growing season from May to October in the 

dryland and irrigated subareas, respectively. During the same period, a slightly higher 

percent of the average annual ET (88% and 97% in the dryland and irrigated subareas, 

respectively) was simulated under the high replacement scenario.  
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Figure 3.8 Average (1994-2009) monthly water fluxes in irrigated and dryland 

subareas under the baseline, and the medium and high switchgrass replacement 

scenarios. 
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Simulated average monthly surface runoff decreased throughout the year under 

the medium and high replacement scenarios relative to the baseline scenario (Figure 3.8c 

and d). The higher biomass density/ground cover and longer growing period of 

switchgrass compared to cotton resulted in this substantial reduction in the surface 

runoff. The effect of replacement of cotton by switchgrass on reduction in surface runoff 

was much higher in the irrigated subareas when compared to the dryland subareas 

(Figure 3.8d). The reduction in surface runoff was higher under the high replacement 

scenario when compared to the low and medium scenarios. More than 73% and 78% of 

annual surface runoff was generated during May to October in the dryland and irrigated 

subareas, respectively, under both baseline and hypothetical replacement scenarios. 

Simulated average monthly percolation in the irrigated subareas was substantially 

higher under the medium and high replacement scenarios relative to the baseline 

scenario during September to May (Figure 3.8e). A similar trend was predicted in case 

of the dryland subareas (Figure 3.8f). A lower simulated monthly percolation in July and 

August in both dryland and irrigated subareas among all scenarios was because of the 

higher ET demand in these months. Simulated average monthly percolation under the 

baseline scenario during November to April (cotton non-growing season) was about 37% 

and 43% of the annual percolation in the dryland and irrigated subareas, respectively. In 

contrast, during the same period, the simulated average monthly percolation under the 

high replacement scenario was 49% and 52% of the total percolation in the dryland and 

irrigated subareas, respectively. These results indicated that providing appropriate 
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ground cover during the cotton non-growing season could increase percolation and 

thereby enhance groundwater recharge. 

Simulated soil water content during August to April in irrigated subareas was 

substantially higher under the medium and high replacement scenarios when compared 

to the baseline scenario (Figure 3.8g). During the same period, simulated soil water 

content in the dryland subareas was higher under the high replacement scenario than the 

medium replacement and baseline scenarios (Figure 3.8h). Higher soil water content 

during August to April under the high replacement scenario when compared to the 

baseline scenario in both dryland and irrigated subareas can be attributed to higher 

reduction in ET and surface runoff under the high replacement scenario. 

 

3.4.4 Spatial Variability in Irrigation Water Use, Water Use Efficiency and Hydrologic 

Fluxes under the Baseline and Switchgrass Replacement Scenarios 

Based on the average (1994-2009) annual precipitation, subareas in the study 

watershed can be categorized into three groups (Figure 3.9a). Subareas which received 

low precipitation (average annual precipitation of 464 mm) are located in the western 

part of the study watershed. Subareas with medium and high precipitation (average 

annual precipitation of 503 and 528 mm, respectively) are situated in the southcentral 

and northeastern parts of the watershed, respectively (Figure 3.9a). Simulated average 

annual irrigation water requirement for cotton (baseline) of 480 mm (18.9 inches) mm 

was close to the annual allowable groundwater pumping limit for irrigation of 457 mm 

(18 inches) set up by the High Plains Water District in order to prolong the usable 
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lifetime of the underlying Ogallala Aquifer in the Southern High Plains region 

(HPUWCD, 2015). Simulated irrigation water use of switchgrass under the high 

replacement scenario was higher by 9% and 4% relative to that of cotton (baseline) in 

the western subareas (with low precipitation) and southcentral subareas (with medium 

precipitation), respectively. In contrast, simulated irrigation water use of switchgrass 

decreased by 5% when compared to the baseline scenario in the northeastern subareas 

that received high precipitation (Figure 3.9b). 
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Figure 3.9 Spatial distribution of average (1994-2009) annual precipitation across 

the watershed and comparison of average annual irrigation water use under the 

baseline and proposed high replacement switchgrass scenarios. 
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Simulated DWUE of switchgrass (range between 16.4 and 21.5 kg ha-1 mm-1) 

was higher than that of cotton (6.2 to 7.7 kg ha-1 mm-1) in all dryland subareas across the 

study watershed (Figure 3.10a). Simulated DWUE of switchgrass was 242% higher than 

that of cotton in the western subareas of the study watershed, which received lower 

average annual precipitation. In the eastern subareas which received higher precipitation, 

the simulated DWUE of switchgrass was higher within a range of 117% to 139% when 

compared to baseline (cotton) scenario. Simulated IWUE of switchgrass (14.0 to 16.5 kg 

ha-1 mm-1) was also higher than that of cotton (8.0 to 9.5 kg ha-1 mm-1) in all irrigated 

subareas, especially in the westernmost subarea 3 (107% higher) (Figure 3.10b). These 

are important results in view of the projected reductions in irrigation water availability 

for agriculture in the THP. Limited groundwater resources in the future can therefore be 

used more efficiently for switchgrass production than for cotton. Interestingly, the IWUE 

of cotton was higher than its DWUE while this trend was reversed in the case of 

switchgrass (DWUE > IWUE) (Figure 3.10a and b). 
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Figure 3.10 Comparison of average (1994-2009) annual water use efficiency and 

irrigation water use efficiency under the baseline and proposed high replacement 

switchgrass scenarios. 

 



 

95 
 

 

Average (1994-2009) annual ET decreased 3% to 11% under the high 

replacement scenario relative to the baseline scenario across the watershed (Figure 

3.11a). Average annual surface runoff was also reduced by about 59% to 98% under the 

high replacement scenario relative to the baseline scenario (Figure 3.11b). Percent 

reduction in surface runoff was higher in subareas 1, 2 and 3 in the western part of the 

study watershed, which received lower annual rainfall and have sandy soil 

characteristics (Hydrologic soil group B; Figure 3.12). Nelson et al. (2006) predicted a 

99% reduction in the SWAT-simulated surface runoff in the Delaware basin in northeast 

Kansas when land use was changed from the traditional corn-soybean cropping rotation 

to switchgrass. 
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Figure 3.11 Comparison of average (1994-2009) annual evapotranspiration loss and 

surface runoff generation under the baseline and proposed high replacement 

switchgrass scenarios. 
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Figure 3.12 The spatial distribution of hydrologic soil groups in the study 

watershed. 

Simulated average annual percolation across the watershed was higher (increased 

by 44% (from 135.6 to 195 mm in subarea 16) to 3595% (from 1.2 to 42.9 mm in 

subarea 1)) under the high replacement scenario relative to the baseline scenario (Figure 

3.13a). The trend was more obvious in the dryland subareas in the western part of the 

study watershed where simulated percolation was negligible under cotton. The percent 

increase in percolation was substantially higher under the dryland subareas when 

compared to the irrigated subareas. Using the SWAT model, Cibin et al. (2016) also 

reported that the land use change from corn/soybean to switchgrass in Wildcat Creek and 

St. Joseph River watersheds in Indiana would increase percolation due to the presence of 

surface cover of switchgrass for a longer period when compared to corn/soybean. 

Presence of larger amounts of switchgrass residue as compared to that of cotton could 

also have contributed to higher percolation under switchgrass scenario in our study. The 
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soil water content increased 3% to 74% under the high replacement scenario when 

compared to the baseline scenario across the study watershed (Figure 3.13b). 

 

Figure 3.13 Comparison of average (1994-2009) annual soil water content and 

percolation under the baseline and proposed high replacement switchgrass 

scenarios 
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Overall, results from water balance analysis of baseline and switchgrass 

scenarios demonstrated potential advantages of proposed land use change from cotton to 

switchgrass such as higher DWUE/IWUE, and increased percolation and soil water 

content. These findings are useful to producers and land/water managers in this region 

and will enable them to better plan agricultural activities in the future in view of 

decreasing groundwater levels in the Ogallala Aquifer. It is expected that a majority of 

the current irrigated lands in the THP could gradually be converted into drylands in the 

future. Under those circumstances, replacing cotton with switchgrass will not only 

improve the water use efficiency, but also increase the soil water content and 

groundwater recharge. 

 

3.5 Conclusions 

The impact of potential land use change from cotton to switchgrass in the 

marginal cotton growing areas in an intensively managed agricultural watershed in the 

Texas High Plains on water balances and biofuel production potential was evaluated 

using APEX. Three scenarios with low (9%), medium (33%) and high (57%) extents of 

cotton growing areas replaced by switchgrass, were studied. When compared to the 

baseline scenario, the average (1994-2009) annual irrigation water use under the 

switchgrass replacement scenarios was 4% to 9% higher in the western subareas that 

received lower annual precipitation, and 5% lower in the eastern subareas with higher 

annual precipitation. The average annual surface runoff reduced by 84% and 66% under 

the irrigated and dryland high replacement scenarios, respectively when compared to the 
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baseline scenario. The simulations also showed a higher average monthly soil water 

content during August to April and larger percolation during September to May under 

the high replacement scenario relative to the baseline scenario. The spatial analysis 

indicated greater soil water storage, and higher percolation and DWUE/IWUE under 

switchgrass scenarios in the western subareas when compared to the eastern subareas. 

Based on the simulated total biomass, 381 and 193 million liters of biofuel can be 

produced from the irrigated and dryland subareas of the study watershed under the high 

replacement scenario. Switchgrass was, therefore, found to be a feasible bioenergy crop 

for replacing cotton in the Texas High Plains. 
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4. ASSESSING THE HYDROLOGIC AND WATER QUALITY IMPACTS OF 

BIOFUEL-INDUCED CHANGES IN LAND USE AND MANAGEMENT 

 

4.1 Synopsis 

The Southern High Plains (SHP) of Texas, where cotton (Gossypium hirsutum 

L.) is grown in vast acreage, and the Texas Rolling Plains (TRP), which is dominated by 

an invasive brush, honey mesquite (Prosopis glandulosa) have the potential for biofuel 

production for meeting the U.S. bioenergy target of 2022. However, a shift in land use 

from cotton to perennial grasses and a change in land management such as the 

harvesting of mesquite for biofuel production can significantly affect regional hydrology 

and water quality. In this study, APEX and SWAT models were integrated to assess the 

impacts of replacing cotton with Alamo switchgrass (Panicum virgatum L.) and 

Miscanthus × giganteus in the upstream subwatershed, and harvesting mesquite in the 

downstream subwatershed on water and nitrogen balances in the Double Mountain Fork 

Brazos watershed in the SHP and TRP regions. The simulated average (1994-2009) 

annual surface runoff decreased significantly (p<0.05) by 88%, and percolation 

increased by 28% under the perennial grasses scenario compared to the baseline cotton 

scenario. The soil water content enhanced significantly under the irrigated switchgrass 

scenario compared to the baseline irrigated cotton scenario from January to April and 

August to October. However, the soil water content was depleted significantly under the 

dryland Miscanthus scenario from April to July relative to the baseline dryland cotton 

scenario. The nitrate-nitrogen (NO3-N) and organic-N loads in surface runoff and NO3-N 

                                                           
 This section is under review in the journal of Global Change Biology Bioenergy. 2016. 
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leaching to groundwater reduced significantly by 86%, 98% and 100%, respectively, 

under the perennial grasses scenario relative to the baseline cotton scenario. Perennial 

grasses exhibited superior ethanol production potential compared to mesquite. However, 

mesquite is an appropriate supplementary bioenergy source in the TRP region because of 

its standing biomass and rapid regrowth characteristics. 

 

4.2 Introduction 

The U.S. agriculture is facing an unprecedented challenge in securing the 

nation’s energy future in addition to meeting the traditional goal of food security. 

According to the current Renewable Fuels Standard Program (RFS2), the volume of 

renewable fuel required to be blended into transportation fuel will be 136 million m3 by 

2022 (U.S. Department of Agriculture; USDA, 2010). As one of the world’s largest food 

producer, exporter and donor, the U.S. plays a vital role in addressing these challenges. 

Further increase of crop production or change in land use will be needed for meeting 

these challenges in the coming years. Since the industrial revolution, human actions 

(including agriculture) have become a major driving factor for global environmental 

change, land and water degradation, and biodiversity loss (Foley et al., 2011; Rockström 

et al., 2009). As a result, agriculture must address its environmental consequences as it 

seeks to meet the aforementioned food security and renewable fuels challenges. 

There are two general types of renewable biofuels. First generation biofuels are 

usually produced through intensive agricultural activities, which are similar to those 

used in growing primary food crops such as maize (Zea mays L.) and grain sorghum 
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(Sorghum bicolor). Production of first generation biofuels potentially competes with the 

production of food. Thus, if the production of first generation biofuels rises to certain 

levels, there can be detrimental social consequences in the form of reduced food supplies 

and associated increases in commodity prices that can be passed on to consumers. Since 

intensive agricultural activities typically utilize more resources (prime farmland, 

irrigation water, fertilizers and pesticides, and fuel for farming operations), there can be 

increased negative environmental effects associated with the production of first 

generation biofuels. To address these concerns, the USDA recommended that, out of the 

targeted production of 136 million m3 of biofuels by 2022, 76 million m3 should be 

produced from cellulosic and other advanced biofuel feedstocks (USDA, 2010). 

Cellulosic biofuels, which are also called second generation biofuels, are primarily made 

from the byproducts of intensive agricultural activities or from less-intensive agricultural 

activities performed on non-food croplands using substantially reduced resource inputs. 

The Southern High Plains (SHP) of Texas in the U.S. is one of the most 

intensively managed cotton growing regions in the world. The cotton planting area in the 

SHP accounted for approximately 31% of the entire U.S. cotton acreage in 2015 

(National Agricultural Statistics Service; NASS, 2015). The Ogallala Aquifer is the 

primary source of irrigation water for this region. Intensive agricultural production in the 

SHP since 1950s has resulted in a continuous decline of groundwater levels and 

deterioration of groundwater quality, mainly due to high concentrations of nitrate-

nitrogen (NO3-N) (Chaudhuri and Ale, 2014a and b; Rajan et al., 2015b). The land use 

change from high water and N consuming crops such as cotton to more water- and 
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nitrogen-use-efficient perennial grasses such as Alamo switchgrass (Panicum virgatum 

L.) and Miscanthus × giganteus, may benefit this region by prolonging the availability 

of groundwater and improving groundwater quality. Using the Soil and Water 

Assessment Tool (SWAT), Cibin et al. (2016) simulated a reduction in annual surface 

runoff by about 12% and 15% under the Miscanthus and switchgrass land use scenarios, 

respectively, compared to the baseline corn/soybean land use in the Wildcat Creek 

watershed in Indiana. In another SWAT simulation study, Ng et al. (2010) showed that a 

10% change in land use from cropland to Miscanthus would decrease the NO3-N load in 

streamflow by about 6.4% at the outlet of the Salt Creek watershed in Illinois. Sarkar 

and Miller (2014) also predicted from a SWAT modeling study that the loss of N to 

surface runoff from switchgrass systems was approximately 73% lower than that from 

cotton systems in the Black Creek watershed in South Carolina. Through a GIS-based 

approach, Rao and Yang (2010) predicted that the increase in the extent of grassland 

could significantly increase groundwater recharge and thereby decrease the groundwater 

level decline rates, especially in the environmentally sensitive Texas High Plains (THP) 

region. 

Honey mesquite (Prosopis glandulosa) is a polymorphic woody legume that 

invaded grasslands and rangelands in the Southwestern U.S., and it is spread over 21 

million ha in Texas alone (SCS, 1988; Asner et al., 2003). It has been recognized as a 

bioenergy feedstock (Padron and Navarro, 2004; Singh et al., 2007; Ansley et al., 2010; 

Wang et al., 2014b) and it is grown under a vast acreage in the Texas Rolling Plains 

(TRP), which is adjacent to the SHP. The invasion of honey mesquite on grasslands of 
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the TRP caused several negative impacts such as increasing the extent of bare ground 

and thereby increasing erosion potential, and reducing herbaceous production, which is 

harmful to the livestock industry and grassland ecosystems (Teague and Dowhower, 

2003; Ansley et al., 2010; Wang et al., 2014b). Mesquite harvest may not only supply 

feedstock for biofuel production, but also help in the recovery of grassland functions. 

Park et al. (2012) also reported that honey mesquite has the potential for use as 

bioenergy feedstock given its high density and presence in large extent of area in the 

TRP. 

The SWAT model (Arnold et al., 1998) and the Agricultural 

Policy/Environmental Extender (APEX) model (Williams, 1995), which are widely used 

across the world, have demonstrated potential to satisfactorily predict long-term impacts 

of land use change and land management practices on hydrologic processes and water 

quality in complex watersheds (Ko et al., 2009; Ghaffari et al., 2010; Gassman et al., 

2010; Srinivasan et al., 2010; Tuppad et al., 2010; Powers et al., 2011; Wu and Liu, 

2012). Specifically, the APEX model has the capability to accurately predict hydrology 

and water quality in intensively managed agricultural watersheds with large extents of 

irrigated areas (Saleh and Gallego, 2007; Wang et al., 2011; Jung et al., 2014). The auto-

irrigation function included in the APEX model simulates irrigation water as the 

precipitation, which results in a realistic simulation of percolation during the irrigation 

process. In contrast, auto-irrigation feature in the SWAT model applies irrigation water 

until the soil moisture content reaches the field capacity level and hence the model, in 

general, simulates negligible percolation during irrigation events. In addition, the APEX 
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model includes detailed cotton growth parameters, which are very useful for accurate 

prediction of cotton growth. Furthermore, APEX outputs both cotton lint and seed yields, 

and it permits specifying disease severity and plant population. As for the SWAT model, 

it provides reasonable crop management functions for satisfactorily simulating range 

grass and honey mesquite land uses. For example, the SWAT model allows users to 

input initial biomass for honey mesquite (tree crop in the crop database), which 

eliminates the need to grow honey mesquite from seed at the beginning of the 

simulation. The SWAT model also includes four methods for accurately simulating the 

reservoir releases. Therefore, the APEX and SWAT models were integrated in this study 

(hereafter referred as “Integrated APEX-SWAT model”) to make use of the strengths of 

both models. 

A majority of the published biofuel-induced water quantity and quality studies 

were conducted in the watersheds located in the humid regions of the U.S. such as the 

Upper Mississippi River Basin (Daloğlu et al., 2012; Demissie et al., 2012; Scherer et 

al., 2015). However, such assessments are limited in the semi-arid SHP and TRP 

regions. The objectives of this study were to: (1) assess the impacts of biofuel-induced 

land use change from cotton to perennial bioenergy crops such as switchgrass and 

Miscanthus, and the harvest of mesquite for biofuel use on hydrology and water quality 

in the semi-arid Double Mountain Fork Brazos watershed that spans across the SHP and 

TRP regions using the Integrated APEX-SWAT model; (2) estimate the biomass and 

biofuel production potential of three bioenergy crops considered in this study; and (3) 
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compare and contrast the effects of the proposed changes in land use on water and N 

balances under irrigated and dryland conditions. 

 

4.3 Materials and Methods 

4.3.1 Study Watershed 

The delineated area of the Double Mountain Fork Brazos watershed is about 

6,000 km2 (Figure 4.1). The areas of the upstream subwatershed (upstream of Gauge I) 

and the downstream subwatershed (downstream of Gauge I and upstream of Gauge II) 

are about 3,297 and 2,703 km2, respectively. The upstream subwatershed is located in 

the Hockley, Lynn and Garza Counties (Figure 4.1), where cotton is the dominant land 

use (Figure 4.2). The downstream subwatershed, which is primarily composed of 

rangelands (Figure 4.2), is situated in Scurry, Kent and Stonewall Counties. The long-

term (1981-2010) average annual rainfall across the watershed varies between 457 and 

559 mm, and the long-term average annual maximum and minimum temperatures are 

about 24°C and 9°C, respectively. The topography of the watershed is relatively flat. The 

major soil types in the watershed are classified as Amarillo sandy loam, Acuff sandy clay 

loam and Olton clay loam (Soil Survey Staff, 2010).  
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Figure 4.1 Location of the study watershed, weather stations and USGS gauging 

stations. 

 

 

Figure 4.2 Major land uses in the study watershed according to the 2008 National 

Agricultural Statistics Service (NASS) Cropland Data Layer (CDL). 
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4.3.2 SWAT and APEX Models’ Setup and Integration 

The DEM (30×30 m) of the study watershed was downloaded from the U.S. 

Geological Survey (http://viewer.nationalmap.gov/viewer/#) and input to the Integrated 

APEX-SWAT model. The 2008 NASS Cropland Data layer (CDL) 

(http://nassgeodata.gmu.edu/CropScape/) was used to represent the prevalent land use 

conditions during the period of model simulations (1994 to 2009). The dominant 

agricultural land use in the watershed in 2008 was cotton, which occupied about 30% of 

the entire watershed area, and about 52% of the upstream subwatershed (Figure 4.2). 

About 41% and 21% of the entire watershed area was covered by range brush and range 

grass, respectively. The soil data was obtained from the Soil Survey Geographic 

Database (SSURGO) (Soil Survey Staff, 2014), which was compatible with the 

Integrated APEX-SWAT model. Four soil slopes were considered: ≤ 1%, 1%-3%, 3%-

5% and > 5%. Daily weather data from a total of seven weather stations for the period 

from 1992 to 2009 was obtained from the National Climatic Data Center (NCDC) and 

used in this study (Fig. S1) (NOAA-NCDC, 2014). The missing weather data for a 

weather station was filled with the average value of weather parameter for two adjacent 

weather stations (Ale et al., 2009). More detailed information for the model setup can be 

found in Chen et al. (2016a and b). For the HRU and subarea definitions, thresholds of 

5%, 5% and 10% were used for land use, soil type and slope, respectively. A total of 25 

APEX subareas were delineated in the upstream subwatershed, and 35 SWAT subbasins 

and 1,417 HRUs were identified in the downstream subwatershed. 

http://viewer.nationalmap.gov/viewer/
http://nassgeodata.gmu.edu/CropScape/
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The Alan Henry Reservoir (storage capacity: 4882 × 104 m3) exists in the 

downstream subwatershed. The SWAT parameters related to the operation of this 

reservoir were obtained from the Texas Water Development Board’s report on 

“Volumetric Survey of Alan Henry Reservoir” (Texas Water Development Board, 

2005). The “Measured Daily Outflow” method available in the SWAT model was used 

to estimate the reservoir discharge based on the reservoir storage levels recorded by the 

USGS gauge. More details about the parameters used for reservoir simulation are 

provided in Chen et al. (2016a). 

The APEX model is capable of simulating croplands better when compared to 

the SWAT model, and on the other hand, SWAT performs better in simulating 

noncroplands and transport of flow, sediment and nutrients through detailed in-stream 

channel and reservoir processes (Santhi et al., 2014). In order to take advantage of the 

strengths of APEX and SWAT models, the APEX model was integrated with SWAT 

model in this study. Initially, the APEX model was set up for the upstream subwatershed 

(Figure 4.3), where cotton was the dominant land use. The SWAT model was then setup 

for the entire watershed, and the upstream subwatershed was simulated as one subbasin 

in the SWAT model. The APEX-simulated net flows, and sediment and nutrient loads 

were then input as a point source to the SWAT model at Gauge I (outlet of the upstream 

subwatershed). The downstream subwatershed, which is dominated by the range land 

use and contains the Alan Henry Reservoir, was therefore essentially modeled using the 

SWAT model. Also, this coupling of two models enabled assessment of water quality 

effects of proposed land use change and mesquite harvest from the entire 6000 km2 
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watershed as the measured surface water N concentration data was available at Gauge II 

only. 

 

Figure 4.3 Illustration showing the APEX model integration with the SWAT model. 

 

The management related parameters for cotton were specified based on the 

locally followed practices. Spring tillage was implemented for cotton (Table 4.1). About 

138 and 69 kg N ha-1 was applied to the irrigated and dryland cotton, respectively. 

According to the NASS county-wise cotton acreage estimates over the period from 1994 

to 2009 (NASS, 2014), about 39% of the cotton acreage in the watershed was irrigated. 

Auto-irrigation was therefore simulated in about 39% of cotton planting area in the 

watershed based on plant water stress. 

The land uses of range grass and range brush were simulated as Southwestern 

U.S. range and honey mesquite, respectively. The most commonly adopted heavy 

continuous grazing management practice was simulated on the range grassland (Park et 

al., 2016). The detailed management related parameters for the range grass were set up 

according to Park et al. (2016) (Table 4.1). Biomass of honey mesquite at the beginning 
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of the simulation was assumed as 19.4 Mg ha-1 (Whisenant and Burzlaff, 1978) (Table 

4.1). 

 

Table 4.1 Simulated management practices of cotton, winter wheat, Southwestern 

U.S. range and honey mesquite in APEX and SWAT models 

No. Management operations Input data 

Irrigated cotton 

1 Tillage (Tillage on April 1) 

 Tillage ID Chisel plow# 

2 Fertilization (May 1) 

 Fertilizer ID Urea (46-00-00) 

 Fertilizer application rate 300.7 (kg ha-1)# 

3 Planting ( Planting on May 15) Default 

 Heat units to maturity 2354℃-day ξ 

4* Irrigation (automatic irrigation) (Start date: May 15; End date: October 31) 

 Water stress identifier Plant water demand 

 Water stress threshold 0.9 

5 Harvest and kill (Kill on October 31) Default 

Dryland cotton 

1 Tillage (Tillage on April 1)  

 Tillage ID Chisel plow # 

2 Fertilization (May 1) 

 Fertilizer ID Urea(46-00-00) 

 Fertilizer application rate 150 (kg ha-1)# 

3 Planting (Planting on May 15) Default 

 Heat units to maturity 2354℃-day ξ 

4 Harvest and kill (Kill on October 31) Default 

Winter wheat 

1 Tillage (Tillage on October 8) 

 Tillage ID Generic Fall Plowing#  

2 Fertilization (October 8) 

 Fertilizer ID Urea 

 Amount of fertilizer applied to HRU 108 (kg ha-1)# 

3 Planting (Planting on October 15) Default 

 Heat units to maturity 1518℃-day ξ 

4 Harvest and Kill (Kill on July 1) Default 
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Table 4.1 Continued 

No. Management operations Input data 

Southwestern U.S. range** 

1 Planting (Planting on March 20)  

 Heat units to maturity 1800℃-day ξ 

2 Grazing operation (start on January 1)  

 Manure ID Sheep fresh manure 

 Grazing days 365 

 Biomass consumed 0.33 (kg ha-1 day-1) 

 Biomass trampled 0.03 (kg ha-1 day-1) 

 Manure deposited 0.012 (kg ha-1 day-1) 

3 Grazing operation (start on January 1)  

 Manure ID Beef fresh manure 

 Grazing days 365 

 Biomass consumed 3.14 (kg ha-1 day-1) 

 Biomass trampled 3.14 (kg ha-1 day-1) 

 Manure deposited 1.03 (kg ha-1 day-1) 

4 Grazing operation (start on January 1)  

 Manure ID Goat fresh manure 

 Grazing days 365 

 Biomass consumed 0.06 (kg ha-1 day-1) 

 Biomass trampled 0.06 (kg ha-1 day-1) 

 Manure deposited 0.0019 (kg ha-1 day-1) 

5 Grazing operation (start on January 1)  

 Manure ID Horse fresh manure 

 Grazing days 365 

 Biomass consumed 0.86 (kg ha-1 day-1) 

 Biomass trampled 0.86 (kg ha-1 day-1) 

 Manure deposited 0.64 (kg ha-1 day-1) 

Honey mesquite 

1 Initial land cover Honey mesquite 

 Initial biomass  19400 (kg ha-1) *** 

2 Planting (Planting on January 1)  

 Heat units to maturity 1800℃-day ξ 

3 Harvest only without kill (Harvest on December 31) Default 

* Auto-irrigation was simulated in 39% of cotton acreage based on NASS County-level cotton irrigated 

acreage summary reports 
# The parameters related to management methods were based on published reports, local expertise, and 

web resources 

ξ Heat units to maturity for cotton, winter wheat, Southwestern U.S. range and honey mesquite were 

estimated using the SWAT-PHU program (http://swat.tamu.edu/software/potential-heat-unit-program/) 

** Data were obtained from NASS and analyzed based on Park et al. (2016) grazing management study 

*** Data were obtained from Whisenant and Burzlaff (1978) honey mesquite field study 

 

4.3.3 Observed Streamflow, Cotton Lint Yield and Water Quality Data Used for Model 

Calibration 

Observed daily streamflow recorded at Gauges I and II during the period from 

1994 to 2009 was obtained from the USGS National Water Information System 

http://swat.tamu.edu/software/potential-heat-unit-program/
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(http://waterdata.usgs.gov/nwis/sw). The observed dryland and irrigated cotton lint yield 

data over the period from 1994 to 2009 for Lynn County, the county with the highest 

cotton acreage in the study area, was obtained from the NASS reports 

(http://quickstats.nass.usda.gov/). The daily total nitrogen (TN) concentration data (39 

samples) measured at the watershed outlet at Gauge II (Figure 4.4) were used for model 

water quality calibration. These concentrations were used to estimate continuous daily 

TN loads by using the USGS Load Estimator (LOADEST) regression model (Runkel et 

al., 2004). A detailed description of LOADEST can be found in Jha et al. (2007). The 

estimated daily TN load data were distributed over 1995-2000 period. 

 

Figure 4.4 Illustration showing the patterns of water quality sampling under 

various flow conditions. 

 

4.3.4 Integrated APEX-SWAT Model Calibration 

The APEX model was initially calibrated against observed streamflow and cotton 

lint yield data for the upstream subwatershed (Chen et al., 2016b). Since the observed N 

load data was not available for this upstream subwatershed, the APEX model was 

integrated with the SWAT model and the net flow, and sediment and nutrient loads from 

the upstream subwatershed were input as a point source to the downstream subwatershed 

http://waterdata.usgs.gov/nwis/sw
http://quickstats.nass.usda.gov/
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at Gauge I (Figure 4.3). The Integrated APEX-SWAT model was then calibrated against 

the observed streamflow data at Gauge II by solely adjusting SWAT model parameters 

in the downstream subwatershed. The calibration and validation periods considered for 

streamflow prediction were 1994-2001 and 2002-2009, respectively. After achieving a 

satisfactory streamflow calibration, the Integrated APEX-SWAT model was calibrated 

for the TN load prediction by changing the water quality parameters of both APEX (in 

the upstream subwatershed) and the SWAT (in the downstream subwatershed) models. 

Based on the available data, 1995-1997 and 1998-2000 periods were considered as the 

calibration and validation periods for TN, respectively. The calibrated Integrated APEX-

SWAT model was then used to simulate the impacts of land use change from cotton to 

perennial grasses, and mesquite harvest on water and N balances. The values of 

calibrated parameters related to hydrology, crop growth and water quality are shown in 

Table 4.2. 

The performance of the Integrated APEX-SWAT model in predicting streamflow 

and water quality during the calibration and validation periods was evaluated using three 

different statistical measures: square of Pearson's product‐moment correlation coefficient 

(R2) (Legates and McCabe Jr, 1999), Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe, 1970) and percent bias (PBIAS). The goal of calibration for monthly 

streamflow and water quality predictions was to achieve all three objective functions: 

minimize PBIAS, maximize NSE and maximize R2. We aimed to achieve NSE ≥ 0.60, R2 

≥ 0.65 and PBIAS within ±15% in monthly streamflow, and NSE ≥ 0.60, R2 ≥ 0.65 and 

PBIAS within ±40% in monthly TN load. 
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Table 4.2 Default and calibrated values of some major hydrology, crop growth and water quality 

related parameters in APEX and SWAT models 

No. Parameter Description Default value Calibrated value Reference 

APEX hydrology parameters (for upstream subwatershed above Gauge I) 

1 Parm92 Curve number retention 

parameter coefficient 

1.0 1.31 -- 

2 Parm20 Runoff curve number initial 

abstraction 

0.2 0.336 -- 

3 Parm12 Soil evaporation coefficient 2.5 2.44 -- 

4 Parm17 Evaporation plant cover 

factor 

1.0 0.921 -- 

APEX cotton parameters 

5 WA Biomass Energy Ratio 

(CO2=330 ppm) 

25 15.48 (Dryland) 16.0 

(Irrigated) 

Sarkar et al. 

(2011)  

6 HI Harvest index 0.60 0.49 (Dryland) 0.48 

(Irrigated) 

Wanjura et 

al. (2014)  

7 DMLA Maximum potential leaf 

area index 

6.0 4.0 Sarkar et al. 

(2011)  

SWAT hydrology parameters (for downstream subwatershed (between Gauges I and II) 

8 ESCO Soil evaporation 

compensation factor 

0.95 0.75 -- 

9 SOL_AW

C 

Available soil water 

capacity (mm H2O mm‐1 

soil) 

0.1-0.17 Increased by 10% -- 

10 CN2 Curve number for moisture 

condition II 

39-84 Decreased by 1% to 

12% 

-- 

11 ALPHA_

BF 

Base flow recession 

constant 

0.048 0.0765 -- 

12 GW_REV

AP 

Groundwater “revap” 

coefficient 

0.02 0.2  

SWAT honey mesquite parameters 

13 PLTNFR(

1) 

Nitrogen uptake parameter 

#1: normal fraction of 

nitrogen in plant biomass 

at emergence 

0.02 0.01 0.006-0.02* 

14 PLTNFR(

2) 

Nitrogen uptake parameter 

#2: normal fraction of 

nitrogen in plant biomass 

at 50% maturity 

0.01 0.005 0.002-0.012* 

15 PLTNFR(

3) 

Nitrogen uptake parameter 

#3: normal fraction of 

nitrogen in plant biomass 

at maturity 

0.008 0.005 0.0015-

0.005* 

16# BIO_LEA

F 

Fraction of tree biomass 

accumulated each year that 

is converted to residue 

during dormancy 

0.3 0.05 Ansley et al. 

(2010); 

Wang et al. 

(2014b) 

17 MAT_YR

S 

Number of years required 

for tree species to reach full 

development (years) 

10 14 Ansley et al. 

(2010) 

18 BMX_TR

EES 

Maximum biomass for a 

forest (ton/ha) 

50 70 Ansley et al. 

(2010) 
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Table 4.2 Continued 

No. Parameter Description Default value Calibrated value Reference 

APEX water quality parameters for upstream watershed (before Gauge I) 

19 Parm29 Biological mixing efficiency 0.4 0.5 -- 

20 Parm72 Volatilization/nitrification 

partitioning coefficient 

0.3 0.05 -- 

21 Parm47 RUSLE c factor coefficient 

in exponential crop height 

function in biomass factor 

0.1 3 -- 

SWAT water quality parameters for downstream watershed (between Gauge I and Gauge II) 

22 CDN Denitrification exponential 

rate coefficient 

1.4 0.5 -- 

23 SDNCO Denitrification threshold 

water content 

1.1 0.0 Akhavan et 

al. (2010) 

24 NPERCO Nitrogen percolation 

coefficient 

0.2 0.55 -- 

25 ERORGN Organic N enrichment ratio 0 4.9 -- 

26 RS4 Rate coefficient for organic 

N settling in the reach at 

20 ℃ (day-1) 

0.05 0.01 -- 

27 N_UPDIS Nitrogen uptake distribution 

parameter 

20 15 -- 

28 BC1 Rate constant for biological 

oxidation of NH4 to NO2 in 

the reach at 20 ℃ in the 

well-aerated conditions 

(day-1) 

0.55 1 -- 

29 BC2 Rate constant for biological 

oxidation of NO2 to NO3 in 

the reach at 20 ℃ in the 

well-aerated conditions 

(day-1) 

1.1 2 -- 

30 BC3 Rate constant for hydrolysis 

of organic N to NH4 in the 

reach at 20 ℃ (day-1) 

0.21 0.4 -- 

31 SOL_NO3 Initial NO3 concentration in 

the soil layer (mg/kg) 

0 13 -- 

* The range of the parameters were plant types between tree and range brush (perennial) 
# The parameter was adjusted based on the annual regrowth rate reported by Ansley et al. (2010) and 

Wang et al. (2014b) 

 

The model performance in cotton lint yield prediction was assessed using R2 and 

PBIAS only and we aimed to achieve a PBIAS within ±10% in average annual cotton lint 

yield under both irrigated and dryland conditions. Statistical analyses of the scenario 

analysis results were carried out using the Statistical Package for Social Science (SPSS 
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19.0). Analysis of variance (ANOVA) was used to test the difference with significance 

levels set at p<0.05 or p<0.1. Microsoft Excel 2013 was used for other data analysis. 

 

4.3.5 Scenario Analysis 

In this study, switchgrass and Miscanthus, which were identified as ideal 

bioenergy grasses for this study region (Chen et al., 2016a), were selected to 

hypothetically replace irrigated and dryland cotton areas, respectively. Honey mesquite, 

which was dominant in the range brush areas, was also considered as the bioenergy crop. 

Although honey mesquite harvest was recommended at a ten-year interval (Wang et al., 

2014b), a nine-year harvest interval was assumed in this study so that it could be 

harvested twice (in 2000 and 2009) over the total simulation period of 18 years. In 

addition, standing honey mesquite biomass of 19.4 Mg ha-1 was harvested in 1992, at the 

beginning of the simulation period. 

The Integrated APEX-SWAT model simulations were run from 1992 to 2009, 

and the 1992-1993 period was considered as the model warm-up period. The impacts of 

hypothetical biofuel-induced land use change and mesquite harvest on hydrology and 

water quality under simulated scenarios were evaluated over the remaining simulation 

period from 1994 to 2009. The land use change effects under both irrigated and dryland 

conditions were compared and contrasted.  

Perennial grasses were planted on May 15th, 1992 and harvested once every year 

on November 15th (Table 4.3). Irrigated switchgrass was assigned the same irrigation 

management practices as irrigated cotton. A recommended fertilization application rate 
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of about 124 kg N ha-1 was applied for irrigated switchgrass (Yimam et al., 2014). About 

98 kg N ha-1 was applied to dryland Miscanthus (Lewandowski and Schmidt, 2006; 

Danalatos et al., 2007) (Table 4.3). No fertilizer was applied to honey mesquite. Tillage 

was not simulated under any of these hypothetical scenarios. Heat units to maturity of all 

simulated crops were estimated by using the SWAT Potential Heat Unit (SWAT-PHU) 

program (http://swat.tamu.edu/software/potential-heat-unit-program/) (Tables 4.1 and 

4.3). Since crop growth parameter values for Miscanthus were not available in the 

models’ crop database, the values from Trybula et al. (2015) field study were adopted. 

 

Table 4.3 Simulated management practices for irrigated switchgrass and dryland Miscanthus in the 

APEX model 

No. Management operations Input data 

Irrigated switchgrass 

1 Fertilizer Application Parameters (May 1) 

 Fertilizer ID Urea 

 Fertilizer application rate 270 (kg ha-1) (Yimam et al., 2014) 

2 Planting ( Planting on May 15 in 1992) Default 

 Heat units to maturity 1800℃-day ξ 

3 Irrigation (automatic irrigation) (Start date: May 15; End date: November 15) 

 Water stress identifier Plant Water Demand 

 Water stress threshold 0.9 

4 Harvest only without kill (Harvest on 

November 15) 

Default 

Dryland Miscanthus 

1 Fertilizer Application Parameters (May 1) 

 Fertilizer ID Urea 

 Fertilizer application rate 214 (kg ha-1) (Lewandowski and Schmidt, 2006; 

Danalatos et al. 2007) 

2 Planting (Planting on May 15 in 1992) Default 

 Heat units to maturity 1800℃-day ξ 

3 Harvest only without kill (Harvest on 

November 15) 

Default 

ξ Heat units to maturity for cotton and winter wheat were estimated using the SWAT-PHU program 

(http://swat.tamu.edu/software/potential-heat-unit-program/) 

 
 
 

http://swat.tamu.edu/software/potential-heat-unit-program/
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4.4 Results 

4.4.1 Integrated APEX-SWAT Model Calibration and Validation Results 

The simulated monthly streamflow at the watershed outlet (Gauge II) during the 

calibration (1994-2001) and validation (2002-2009) periods closely matched with the 

observed streamflow (Figure 4.5). The NSE, R2 and PBIAS values for monthly 

predictions of streamflow were 0.64, 0.67 and 10.7%, respectively, during the calibration 

period and they were 0.60, 0.65 and -9.3%, respectively, during the validation period. 

These values demonstrate a “satisfactory” agreement between the simulated and 

observed streamflow according to the Moriasi et al. (2007) criteria. 

 
Figure 4.5 Comparison of observed and simulated monthly streamflow at 

watershed outlet during the model a) calibration (1994-2001) and b) validation 

(2002-2009) periods. 

 

The simulated monthly TN load and the LOADEST estimated load during the 

calibration (1995-1997) and validation (1998-2000) periods also matched well as shown 
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in Figure 4.6. The NSE for monthly TN load prediction was 0.70 and 0.65 during the 

calibration and validation periods, respectively. The PBIAS in predicting TN load was -

20.4% and 34.8% for the calibration and validation periods, respectively. The model 

performance ratings for the monthly TN load predictions were considered as 

“satisfactory” for both the calibration and validation periods based on the NSE and 

PBIAS values, according to Moriasi et al. (2007) and Wang et al. (2012) criteria. 

 
Figure 4.6 Comparison of observed and simulated monthly total nitrogen load in 

streamflow at watershed outlet during the model a) calibration (1995-1997) and b) 

validation (1998-2000) periods. 
 

4.4.2 Simulated Water and N Mass Balances in the Upstream Subwatershed under the 

Baseline Cotton Scenario 

The primary component of water balance in the upstream subwatershed, which is 

dominated by cropland, is the evapotranspiration (ET). Results showed that 

approximately 89% and 95% of the average annual (1994-2009) input water 
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(precipitation + irrigation) was lost due to ET in the irrigated and dryland conditions, 

respectively, under the baseline cotton scenario (Table 4.4).  

Table 4.4 Hydrologic and water quality impacts of land use change from irrigated 

cotton to irrigated switchgrass, and dryland cotton to dryland Miscanthus in the 

upstream subwatershed 

Irrigated and dryland 

combined 

Cotton 

(baseline) 
Perennial grasses 

Change percentage 

(%) 

Precipitation (mm) 490.4 490.4 -- 

ET (mm) 624.1 626.0 0.3 

Surface runoff (mm) 6.1 0.7 -88.1* 

Percolation (mm) 47.0 60.3 28.1 

NO3-N load in surface 

runoff (kg ha-1) 
0.11 0.01 -86.3* 

Organic-N load in surface 

runoff (kg ha-1) 
0.21 0.003 -98.4* 

NO3-N leaching (kg ha-1) 9.43 0.05 -99.5* 

Irrigated conditions 
Irrigated 

cotton 
Irrigated switchgrass Change percentage (%) 

Precipitation (mm) 481.2 481.2 -- 

Irrigation (mm) 484.5 509.9 5.2 

ET (mm) 863.7 841.3 -2.6 

Surface runoff (mm) 8.2 1.0 -87.3* 

Percolation (mm) 92.3 147.6 59.9** 

NO3-N load in surface 

runoff (kg ha-1) 
0.16 0.04 -77.5* 

Organic-N load in surface 

runoff (kg ha-1) 
0.26 0.001 -99.5* 

NO3-N leaching (kg ha-1) 21.03 0.12 -99.4* 

Dryland conditions 
Dryland 

cotton 
Dryland Miscanthus Change percentage (%) 

Precipitation (mm) 496.3 496.3 -- 

ET (mm) 472.5 489.6 3.6 

Surface runoff (mm) 4.7 0.5 -88.9* 

Percolation (mm) 18.4 4.9 -73.1 

NO3-N load in surface 

runoff (kg ha-1) 
0.08 0.002 -97.7* 

Organic-N load in surface 

runoff (kg ha-1) 
0.18 0.005 -97.4* 

NO3-N leaching (kg ha-1) 2.08 0.01 -99.7** 

* indicates a significant difference at p<0.05; ** indicates a significant difference at 

p<0.1 



 

123 
 

 

Less than 1% of the input water yielded as surface runoff under the baseline 

cotton scenario in both the irrigated and dryland conditions (Table 4.4). Average annual 

percolation accounted for approximately 10% and 4% of the total water input under the 

baseline cotton scenario in the irrigated and dryland conditions, respectively (Table 4.4). 

The simulated N mass balance under the baseline cotton scenario is shown in 

Table 4.5. On average, approximately 48% of the N inputs remained in soil under the 

baseline irrigated cotton scenario with 27% of N inputs taken up by the harvested 

portion of cotton and 13% leached to groundwater. Bronson et al. (2004) reported that 

the total nitrogen content of surface soil (0 to 10 cm) in some fields within our study 

watershed in 2001 was about 479 kg ha-1 under the long-term irrigated cotton land use. 

At the same sampling locations, Zobeck et al. (2007) further documented that the soil 

total nitrogen content in 0 to 10 cm soil profile in 2003 was about 590 kg ha-1 under the 

long-term irrigated cotton land use. They found that about 56 kg ha-1 total nitrogen was 

accumulated in the soil each year under the irrigated cotton production. The simulated 

annual soil total nitrogen accumulation under the baseline irrigated cotton scenario in 

our study (about 68 kg ha-1; Table 4.5) was comparable to the value reported in the 

above studies. The simulated average annual total N uptake by the irrigated cotton in our 

study (about 189 kg ha-1; Table 4.5) was also comparable to the measured N uptake of 

168 kg ha-1 by cotton, which was irrigated at 75% ET replacement in a field study by Li 

and Lascano (2011) in the SHP. Under the baseline dryland cotton scenario, 

approximately 64%, 25% and 3% of N inputs were accumulated in soil, taken up by the 

harvested portion of cotton and leached to groundwater, respectively (Table 4.5). The 
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simulated total N uptake during the period of simulation (1994-2009) ranged from 56 to 

152 kg ha-1 under the baseline dryland cotton scenario. Mullins and Burmester (1990) 

also documented that the total N uptake by dryland cotton ranged from 127 to 155 kg ha-

1 in their field experiments conducted in Alabama in 1986 and 1987. 
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Table 4.5 Simulated average (1994-2009) annual nitrogen mass balances (kg N ha-1) of the upstream subwatershed under cotton 

and perennial grasses land uses 

Land use 

Nitrogen (N) inputs  Nitrogen outputs 

Change in 

soil N Fertilizer Rainfall 

 

Runoff 
Return 

flow 
Sediment Leaching Denitrification Volatilization 

Uptake 

by harvested 

portion 

Irrigated 

cotton 

138 4.0  0.15 

(0.11)* 

6.2 

(4.4) 

0.25 

(0.2) 

18.8 

(13.2) 

0.49 (0.3) 9.36 (6.6) 38.3 (27.0) 68.3 (48.1) 

Dryland 

cotton 

69 4.0  0.08 

(0.11) 

0.62 

(0.8) 

0.18 

(0.2) 

1.9 (2.6) 0.09 (0.1) 5.32 (7.3) 18.2 (24.9) 46.4 (63.5) 

Irrigated 

switchgrass 

124 4.0  0.03 

(0.02) 

0.09 

(0.1) 

0.001 

(0.001) 

0.28 

(0.2) 

2.50 (2.0) 5.98 (4.7) 122.1 (95.4) -3.0    (-2.4) 

Dryland 

Miscanthus 98 4.0 

 0.002 

(0.002) 

0.009 

(0.004) 

0.004 

(0.004) 

0.026 

(0.03) 0.74 (0.7) 4.57 (4.5) 58.5 (57.4) 38.1 (37.4) 

*The numbers in the parentheses indicate the percentages of total nitrogen inputs that were either lost in different pathways or accumulated in soil 
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4.4.3 Biomass and Biofuel Availability from the Changes in Watershed Land Use and 

Management 

The simulated average annual harvestable biomass under the irrigated 

switchgrass, dryland Miscanthus and honey mesquite scenarios was 17.3, 15.7 and 4.0 

Mg ha-1, respectively (Table 4.6). The APEX-simulated annual irrigated switchgrass and 

dryland Miscanthus biomass yields in this study were similar to those simulated by the 

SWAT model (17.5 and 15.6 Mg ha-1 biomass of irrigated switchgrass and dryland 

Miscanthus, respectively) in this watershed (Chen et al., 2016a). The predicted annual 

Miscanthus biomass yield under the dryland conditions in this study was also within the 

range of reported Miscanthus biomass yield (9.8 to 17.8 Mg ha-1) in the dryland 

production conditions in the U.K. (Christian, 2008). 

The crop database of honey mesquite was adjusted based on the studies of Kiniry 

(1998) and Ansley et al. (2010) in Texas to match the simulated biomass with the 

observed biomass in the TRP region (Table 4.2). The simulated total tree biomass of a 

30-year old honey mesquite plant in this study was about 40 Mg ha-1, which was 

comparable to the measured biomass of 43 Mg ha-1 in a field study in the TRP (Ansley et 

al., 2010). In addition, the predicted total tree biomass of a nine-year old regrown honey 

mesquite was the same (28 Mg ha-1) as that reported in Ansley et al. (2010). The 

simulated annual regrowth rate was about 2.4 Mg ha-1 for honey mesquite in this study. 

Ansley et al. (2010) and Wang et al. (2014b) also documented a similar annual 

production rate of honey mesquite of 2.2 Mg ha-1. According to the suggested theoretical 

ethanol yield (http://www.afdc.energy.gov/fuels/ ethanolfeedstocks.html), the estimated 

http://www.afdc.energy.gov/fuels/%20ethanolfeedstocks.html
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average annual ethanol that could be produced with the simulated biomass of irrigated 

switchgrass, dryland Miscanthus and honey mesquite was 6,332; 5,746 and 1,246 liters 

ha-1, respectively (Table 4.6).  

 

Table 4.6 Average (1994-2009) annual biomass and biofuel production of irrigated 

switchgrass, dryland Miscanthus and honey mesquite  

Annual 

production 

Harvestable 

biomass (Mg ha-1) 

Biofuel conversion 

efficiency (liters ethanol 

Mg-1 biomass)* 

Biofuel production 

(liters ethanol ha-1) 

Dryland 

Miscanthus 
15.7 366 5,746 

Irrigated 

switchgrass 
17.3 366 6,332 

Honey 

mesquite 
4.0 309 1,246 

*The theoretical ethanol yield is available from 

http://www.afdc.energy.gov/fuels/ethanol_feedstocks.html 

 

4.4.4 Impacts of Biofuel-Induced Land Use Change and Mesquite Harvest on Hydrology 

The average (1994-2009) annual surface runoff from the upstream subwatershed 

decreased significantly (p<0.05) by 88% under the perennial grasses scenario (i.e. 

irrigated cotton replaced by switchgrass and dryland cotton replaced by Miscanthus) 

compared to the baseline cotton scenario (Table 4.4). The annual percolation increased 

significantly (p<0.1) by approximately 60% under the irrigated switchgrass scenario, and 

it decreased by approximately 73% under the dryland Miscanthus scenario relative to the 

baseline cotton scenario (Table 4.4). Overall, under the perennial grasses scenario, the 

average annual percolation in the upstream subwatershed increased by 28% relative to 

the baseline cotton scenario. However, this trend was not statistically significant at the 

http://www.afdc.energy.gov/fuels/ethanol_feedstocks.html
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p<0.1 level. The average annual ET of irrigated switchgrass decreased by approximately 

2.6% (not significant at the p<0.1 level) when compared to the irrigated cotton. In 

contrast, the annual ET increased by about 3.6% under the dryland Miscanthus scenario 

compared to that under the baseline dryland cotton scenario. Overall, there was a 

statistically insignificant small increase in annual ET (0.3%) under the perennial grasses 

scenario relative to the baseline cotton scenario. 

In the case of downstream subwatershed, the simulated average annual ET 

increased by 8.4% under the post-mesquite-harvest scenario relative to the baseline 

mesquite scenario (Table 4.7). However, this difference was not statistically significant. 

Also, a considerable inter-annual variability was found in this trend. For example, under 

the post-mesquite-harvest scenario, the average annual ET increased by 11% during the 

normal and wet years (rainfall > 500 mm) and reduced by about 1% during the dry years 

when compared to the baseline mesquite scenario. The increase in ET in wet years might 

have been caused by a much higher increase in evaporation when compared to reduction 

in transpiration after the mesquite harvest. The increase in average annual ET caused a 

significant (p<0.05) decrease in surface runoff by about 98.9% and an insignificant (at 

p<0.1 level) 37.7% reduction in percolation under the post-mesquite-harvest scenario 

when compared to the baseline mesquite scenario (Table 4.7). 
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Table 4.7 The changes in hydrologic and water quality variables due to the harvest 

of honey mesquite from the downstream watershed for bioenergy purposes 

Variable Mesquite (baseline) Post-mesquite-harvest 

Hydrologic variables   

ET (mm) 458.0 496.3 (8.4)* 

Surface runoff (mm) 20.8 0.23 (-98.9#) 

Percolation (mm) 43.4 27.0 (-37.7) 

Water quality variables   

NO3-N load in surface runoff (kg ha-1) 0.009 0.000007 (-99.9#) 

Organic-N in surface runoff load (kg ha-1) 0.06 0.0009 (-99.5#) 

NO3-N leaching (kg ha-1) 0.12 0.18 (56.1) 

* The numbers in the parentheses indicate the percent changes between the post-

mesquite-harvest and baseline mesquite scenarios; # indicates significant differences 

between the post-mesquite-harvest and baseline mesquite scenarios at p<0.05 

 

A hypothetical change in land use from cotton to perennial grasses altered 

average (1994-2009) monthly ET and soil water content significantly (p<0.05) under the 

irrigated switchgrass and dryland Miscanthus scenarios (Figure 4.7a, b, g and h). 

Monthly ET under the irrigated switchgrass scenario was significantly (p<0.05) higher 

than that under the baseline irrigated cotton scenario in the months of May to July and 

November (Figure 4.7a). However, it was significantly (p<0.05) lower relative to the 

baseline irrigated cotton scenario in other months. Under the dryland Miscanthus 

scenario, monthly ET increased significantly (p<0.05) in April, May and November, but 

it decreased significantly (p<0.05) in months of January, February, July and December 

compared to the baseline dryland cotton scenario. 
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Figure 4.7 Simulated average (1994-2009) monthly water fluxes in the irrigated and 

dryland areas under the baseline cotton and hypothetical perennial grass scenarios 

(* indicates a significant difference at p<0.05). 
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The simulated soil water content enhanced significantly (p<0.05) under the 

irrigated switchgrass scenario from January to April and from August to October 

compared to the baseline irrigated cotton scenario. A significant (p<0.05) decrease in 

soil water content was found under the irrigated switchgrass scenario in May and June 

when the simulated ET was significantly (p<0.05) higher under the irrigated switchgrass 

scenario than the baseline irrigated cotton scenario (Figure 4.7a and g). The soil water 

content depleted significantly (p<0.05) under the dryland Miscanthus scenario from 

April to July relative to the baseline dryland cotton scenario due to the increase in 

simulated ET during those months. In general, soil water content was enhanced under 

the irrigated switchgrass scenario relative to the baseline irrigated cotton scenario, while 

it was reduced under the dryland Miscanthus scenario when compared to the dryland 

cotton scenario. 

Negligible surface runoff was generated under the perennial grass scenarios 

relative to the baseline cotton scenario (Figure 4.7c and d). The surface runoff under the 

irrigated switchgrass scenario decreased significantly (p<0.05) in March and August 

compared to the baseline irrigated cotton scenario. The percolation under the irrigated 

switchgrass scenario increased from February to May and from July to November 

relative to the baseline irrigated cotton scenario (Figure 4.7e). However, this trend was 

not statistically significant (at the p<0.05 level). The percolation was negligible under 

the dryland Miscanthus scenario, and it also corresponded well with the depletion of soil 

water content under this scenario (Figure 4.7f and h). Even under the baseline dryland 
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cotton scenario, notable percolation was simulated only in May and June when the 

precipitation was relatively high and the simulated ET was relatively low. 

4.4.5 Effects of Biofuel-Induced Land Use Change and Mesquite Harvest on N Losses 

The average (1994-2009) annual NO3-N and organic-N loads in the surface 

runoff and the NO3-N leaching to the groundwater decreased significantly (p<0.05) by 

about 86%, 98% and 100%, respectively, under the perennial grasses scenario compared 

to the baseline cotton scenario (Table 4.4). The N lost through leaching was much higher 

compared to that lost through surface runoff (Table 4.4). For example, the NO3-N 

leaching was about 20 times higher than the N lost through surface runoff under the 

baseline cotton land use. However, in the case of perennial grasses, NO3-N leaching was 

only about four times higher than the N lost through surface runoff because of the higher 

N use efficiency of perennial grasses (Table 4.4).  

A close look at the average annual N balances in irrigated conditions indicated 

that the NO3-N and organic-N losses in surface runoff and NO3-N leaching to 

groundwater were also significantly (p<0.05) lower by about 78%, 100% and 99%, 

respectively, under the irrigated switchgrass scenario than those under the baseline 

irrigated cotton scenario (Table 4.4). Although the average annual percolation increased 

by about 60% under the irrigated switchgrass scenario relative to the baseline irrigated 

cotton scenario (Table 4.4), the average annual NO3-N leaching reduced by 

approximately 99% under the irrigated switchgrass scenario due to higher N uptake by 

harvested switchgrass (95% N uptake for irrigated switchgrass vs. 27% for irrigated 

cotton) (Table 4.5) and lower amount of N fertilizer application (124 kg N ha-1 for 
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irrigated switchgrass vs. 138 kg N ha-1 for irrigated cotton) (Table 4.3). Similar results 

were found in case of dryland Miscanthus scenario. The annual NO3-N load and organic-

N load reduced significantly (p<0.05) by about 98% and 97%, respectively, under the 

dryland Miscanthus scenario relative to the baseline dryland cotton scenario (Table 4.4). 

Ng et al. (2010) also predicted that a 50% change in land use from cropland to 

Miscanthus would result in a decrease in NO3-N load in streamflow by about 30% at the 

watershed outlet in the Salt Creek watershed in Illinois. The average annual NO3-N 

leaching also decreased significantly (p<0.1) by about 100% under the dryland 

Miscanthus scenario compared to the baseline dryland cotton scenario. The N uptake by 

the dryland Miscanthus (167 kg N ha-1) was also clearly higher than that of dryland 

cotton (92 kg N ha-1) (Table 4.5).  

The average annual NO3-N leaching increased from 0.12 to 0.18 kg ha-1 under 

the post-mesquite-harvest scenario compared to the baseline mesquite scenario (Table 

4.7), but these differences were not significant. The NO3-N load and organic-N load 

through surface runoff were significantly reduced by about 99.9% and 99.5% under the 

post-mesquite-harvest scenario compared to the baseline mesquite scenario (at p<0.05 

level). The significant decrease in surface runoff was the key reason for the associated 

significant reduction in N losses in surface runoff.  

The monthly NO3-N and organic-N loads in surface runoff and NO3-N leaching 

to groundwater were negligible under the perennial grass scenarios when compared to 

the baseline cotton scenario (Figure 4.8). The NO3-N load in the surface runoff 

decreased significantly (p<0.05) under the irrigated switchgrass scenario in March 
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(100%), August (89%), September (93%), November (99%) and December (99%) 

relative to the baseline irrigated cotton scenario. Under the dryland Miscanthus scenario, 

NO3-N load in surface runoff decreased significantly (p<0.05) in July (93%) and August 

(97%) compared to the baseline dryland cotton scenario. Using the APEX model, Feng 

et al. (2015) also found a significant (p<0.05) reduction in N transported by surface 

water (91%) under the Miscanthus production scenario compared to the initial 

corn/soybean land use in the St. Joseph River watershed in Indiana. Generally, the 

organic-N load in surface runoff under the perennial grass scenarios was also much 

lower than that under the baseline cotton scenario (Figure 4.8c and d). However, the 

differences in organic-N load between the dryland Miscanthus and baseline dryland 

cotton scenarios were not statistically significant (at p<0.1 level). In contrast, the 

organic-N load in surface runoff under the irrigated switchgrass scenario reduced 

significantly (p<0.05) in March (99.5%), August (99%) and December (100%) when 

compared to the baseline irrigated cotton scenario. The NO3-N leaching to groundwater 

also decreased significantly (p<0.05) under the irrigated switchgrass scenario in January 

(99.6%), March (99.2%), May (98.9%), June (100%), August (99.8%) and December 

(99.9%) when compared to the baseline irrigated cotton scenario. When the irrigated 

cotton land use was changed to irrigated switchgrass, the NO3-N leaching decreased 

significantly (p<0.05) during the high precipitation months such as May, June and 

August. In this study, when compared to the baseline dryland cotton scenario, NO3-N 

leaching under the dryland Miscanthus scenario decreased significantly (p<0.05) by 

about 100% in June. The highest percolation under the baseline dryland cotton scenario 
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and the lowest percolation under the dryland Miscanthus scenario were both predicted in 

June (Figure 4.7h) and this might have contributed for the significant (p<0.05) reduction 

in NO3-N leaching under the dryland Miscanthus scenario in June compared to the 

baseline dryland cotton scenario. 

 

Figure 4.8 Simulated average (1994-2009) monthly nitrogen loss through surface 

runoff and leaching under the irrigated and dryland areas under the baseline 

cotton and hypothetical perennial grass scenarios (* indicates a significant 

difference at p<0.05).  
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4.5 Discussion 

4.5.1 Impacts of Biofuel-Induced Changes in Land Use and Management on Water and 

Nitrogen Balances 

The average (1994-2009) annual surface runoff decreased significantly (p<0.05) 

by 87% under the irrigated switchgrass scenario relative to the baseline irrigated cotton 

scenario in this study (Table 4.4). Using the SWAT model, Nelson et al. (2006) 

predicted a 55% decrease in surface runoff in the Delaware basin in northeast Kansas 

due to the change in land use from the traditional corn-soybean cropping rotation to 

switchgrass. However, the average annual irrigation water requirement increased by 

approximately 5% (not significant at the p<0.1 level) under the irrigated switchgrass 

scenario when compared to the baseline irrigated cotton scenario (Table 4.4). It is 

interesting to find that the net groundwater use (irrigation water minus percolation) 

decreased by approximately 7.6% under the irrigated switchgrass scenario relative to the 

baseline irrigated cotton scenario. Monthly ET under the irrigated switchgrass scenario 

was significantly (p<0.05) lower than that under the baseline irrigated cotton scenario in 

the months of January to April, August to October and December, while it was 

significantly higher in other months (Figure 4.7a). This was primarily due to the 

simulated early initiation of regrowth of switchgrass in the study watershed in late April, 

and its late harvest in mid-November when compared to cotton. Cotton was planted in 

mid-May and harvested at the end of October. Yimam et al. (2015) also observed that 

the regrowth of switchgrass occurred around mid-April in a field experiment at 

Stillwater, Oklahoma. Also, the simulated peak ET occurred earlier in case of irrigated 
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switchgrass when compared to irrigated cotton (Figure 4.7a). As shown in Figure 4.7a 

and b, the monthly ET pattern under the perennial grass scenarios shifted two to three 

months early relative to the baseline cotton scenario. This finding would be helpful in 

planning appropriate management strategies for growing perennial grasses in the SHP 

region. 

A well-developed root system and better ground cover under the switchgrass 

scenario enhanced the soil water content significantly (p<0.05) from January to April 

and from August to October compared to the baseline irrigated cotton scenario. 

However, the soil water content was reduced significantly from April to July under the 

dryland Miscanthus scenario when compared to the dryland cotton scenario. Several 

studies from the Midwestern U.S. have also reported reductions in soil water content 

under the Miscanthus land use when compared to that of maize (McIsaac et al., 2010; 

VanLoocke et al., 2010; Le et al., 2011). The large leaf area index of Miscanthus 

(Miscanthus vs. switchgrass: 11 vs. 6) resulted in a very high ET which depleted the soil 

water content. 

The average annual N loads though surface runoff decreased significantly 

(p<0.05) by more than 86% under the perennial grasses scenario compared to the 

baseline cotton scenario (Table 4.4). Using the SWAT model, Sarkar and Miller (2014) 

also predicted that the N losses through surface runoff under switchgrass were 

approximately 73% lower than that under cotton in the Black Creek watershed in South 

Carolina. In another SWAT modeling study in the Arkansas-White-Red River basin, 

Jager et al. (2015) predicted an 84% reduction in average annual NO3-N load through 
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surface runoff under the projected future (2022) switchgrass landscape compared to 

baseline no-cellulosic bioenergy grass scenario. Although the percent reductions in NO3-

N losses in above studies were lower, absolute losses in their study were comparable to 

our results. The reduction in surface runoff and high N use efficiency were the main 

reasons for substantial reduction in N loads in surface runoff under the perennial grasses 

scenario when compared to baseline cotton scenario. 

The NO3-N leaching to groundwater was reduced by 99.5% under the perennial 

grasses scenario relative to the baseline cotton scenario (Table 4.4). From a four-year 

field experiment in central Illinois, McIsaac et al. (2010) also concluded that the average 

annual NO3-N leaching under maize-soybean land use was much higher (about 40 kg N 

ha-1) when compared to switchgrass (1.4 kg N ha-1; 97% reduction) and Miscanthus (3 

kg N ha-1; 93% reduction) land uses. Approximately 95% and 57% of total N inputs (N 

in fertilizer and rainfall) were taken up by harvested portion of the irrigated switchgrass 

and dryland Miscanthus, respectively, whereas harvested portion of cotton used 

approximately 27% to 25% of total N inputs (Table 4.5). Powers et al. (2011) also 

reported that about 87% of the applied N was taken up by the harvested portion of the 

switchgrass in an APEX modelling study in eastern Iowa. Groundwater contamination 

by NO3-N is a major concern in the THP region (Chaudhuri and Ale, 2014b), where 

groundwater is the major source of drinking water for > 95% of rural population (Texas 

Water Development Board, 2007). Results from this study indicated that the land use 

change from cotton to perennial grasses could potentially reduce NO3-N leaching to 

groundwater, and thereby improve groundwater quality in this region in a long run. 
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It is also interesting to notice that the surface runoff, NO3-N load and organic-N 

load through surface runoff decreased significantly (p<0.05) by about 98.9%, 99.9% and 

99.5% under the post-mesquite-harvest scenario compared to the baseline mesquite 

scenario (Table 4.7). The fast regrowth of the harvested mesquite showed higher 

simulated ET than the undisturbed mesquite, especially under the wet years. This was a 

major reason for the reduction in surface runoff and associated N losses. The harvest of 

honey mesquite could therefore not only benefit the water quality in the study watershed, 

but also supply biomass for biofuel production. 

 

4.5.2 Biomass and Biofuel Production Potential of Irrigated Switchgrass, Dryland 

Miscanthus and Honey Mesquite 

The land use change from cotton to irrigated switchgrass and dryland Miscanthus 

exhibited superior biomass and ethanol production potential per ha compared to the 

honey mesquite harvest (Table 4.6). However, the vast extent of honey mesquite acreage 

in the Southern Great Plains (21 million ha in Texas alone) has the potential to supply 

abundant quantities of honey mesquite biomass for bioenergy purposes (Ansley et al., 

2010; Park et al., 2012). For example, based on an estimated average standing biomass 

of honey mesquite of 19.4 Mg ha-1 reported in Whisenant and Burzlaff (1978) a single 

harvest of honey mesquite from the entire rangelands of Texas can provide the biomass 

required for producing 126 million m3 of biofuels, which is approximately equal to 1.6 

times the mandated 2022 U.S. biofuel target of 76 million m3 of second generation 

biofuel. In addition, honey mesquite has a high regrowth potential and it does not require 
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planting, irrigation and fertilization costs (Park et al., 2012; Wang et al., 2014b). These 

advantages make honey mesquite an appropriate supplementary bioenergy crop in the 

downstream subwatershed of this study and other similar areas in the TRP region. 
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5. MODELING THE EFFECTS OF LAND USE CHANGE FROM COTTON 

(GOSSYPIUM HIRSUTUM L.) TO PERENNIAL BIOENERGY GRASSES ON 

WATERSHED HYDROLOGY AND WATER QUALITY UNDER CHANGING 

CLIMATE 

 

5.1 Synopsis 

Assessing the impacts of climate change on current and potential future biofuel-

induced land uses on hydrology, water quality and crop yield is critical for making 

appropriate decisions on land use change and crop management practices. This study 

aimed at addressing this research gap by assessing the impacts of climate change on 

cotton (Gossypium hirsutum L.) (current land use) and potential perennial grass land 

uses in the Double Mountain Fork Brazos watershed in the Texas High Plains (THP) 

using the Soil and Water Assessment Tool (SWAT) model. While switchgrass (Panicum 

virgatum L.) was assumed to replace cotton in irrigated areas, dryland cotton was 

replaced by Miscanthus × giganteus under the hypothetical land use change scenarios. 

The climate change impacts were simulated based on the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) climate projections of 19 General Circulation 

Models (GCMs). Two emission scenarios of Representative Concentration Pathway 

(RCP) of RCP4.5 and RCP8.5 during two 30-year periods of middle (2040-2069) and 

end (2070-2099) of the 21st century were considered. Results showed that the simulated 

median evapotranspiration (ET) and irrigation water use of cotton decreased 

                                                           
 This section is under review in the journal of BioEnergy Research. 2016. 
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substantially within the ranges of 12% to 20% and 41% to 61%, respectively, under all 

four future climate change scenarios compared to historic period (1994 to 2009). The 

simulated median annual irrigation water use under the future perennial grass land use 

scenarios of 2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 and 2070-2099 

RCP8.5 was reduced by 62%, 69%, 66% and 89%, respectively, than that under 

respective future cotton land use scenarios according to the 19 GCM projections. In 

addition, the simulated future median total nitrogen load under perennial grasses land 

use decreased by approximately 30% when compared to cotton under all four future 

climate change scenarios. The median yields of irrigated and dryland cotton increased 

within the ranges of 69% to 91% and 100% to 129%, respectively, under the climate 

change scenarios compared to the historic period. The median irrigated switchgrass 

(Panicum virgatum L.) biomass yield decreased within a range of 16% to 28%, but the 

median dryland Miscanthus × giganteus biomass yield increased within a range of 32% 

to 38% under the future climate change scenarios. 

 

5.2 Introduction 

Human population expansion and increased dependence on fossil fuels have 

considerably raised atmospheric concentrations of greenhouse gases (carbon dioxide-

CO2, methane-CH4, nitrous oxide-N2O, etc.), which trap heat and warm the earth system 

(USEPA, 2015). According to a series of emission scenarios of the Intergovernmental 

Panel on Climate Change (IPCC), CO2 concentrations are expected to increase from 

their current level of about 330 parts per million (ppm) to between 530 and 800 ppm by 
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the end of the 21st century (van Vuuren, 2011). The IPCC emission scenarios also 

predicted increases in air temperatures and associated changes in the amount, intensity 

and duration of precipitation due to the increase of greenhouse gas concentrations in the 

atmosphere (IPCC, 2007). The effects of climate change on water resources and crop 

production are global concerns (Arnell, 1999; Ye and Grimm, 2013; Williams et al., 

2015). Climate change is expected to affect both hydrology (evapotranspiration (ET), 

surface runoff, etc.) and water quality (sediment and nutrient discharge) at various 

spatial scales (Zhang et al., 2005; Zierl and Bugmann, 2005; Zhang et al., 2007; 

Marshall and Randhir, 2008; Ye and Grimm, 2013), and crop yield (Williams et al., 

2015).  

The effects of climate change vary from a region to region. Most General 

Circulation Models (GCMs) projected that the Southwest region of the United States, 

including the Texas High Plains (THP), would become hotter and drier than usual 

(IPCC, 2007), which could significantly reduce water resources availability in this 

region (Seager and Vecchi, 2010). Recently, Modala et al. (2016) also predicted an 

apparent increase in daily temperature by 1.9ºC to 3.2ºC and decrease in precipitation by 

30 to 127 mm in the THP in the future (2041-2070). Using Modala et al. (2016) future 

climate data, Adhikari et al. (2016) simulated a 14%-29% increase in irrigated seed 

cotton (Gossypium hirsutum L.) yield across the THP region under future (2041-2070) 

climate scenarios relative to the historic period (1971-2000), when atmospheric CO2 

concentration was assumed to vary from 493 ppm (in year 2041) to 635 ppm (2070). 

However, these simulated increases in cotton yield were possible only with increased 
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irrigation water use in this already groundwater-depleted THP region. Therefore, 

projected climate change may pose some serious challenges to efficient utilization of 

water resources and crop production in the semi-arid THP (Barnett et al., 2008; Gober 

and Kirkwood, 2010), and more studies that investigate climate change effects are 

needed in this predominantly cotton growing region.  

The environmental policies and management strategies aimed at 

mitigation/adaptation of climate change effects need to be implemented at the 

watershed/regional scales. Therefore, watershed/regional scale climate change impact 

assessments are critical for devising and implementing relevant policies and strategies to 

mitigate negative impacts of climate change (IPCC, 2001; Brekke et al., 2004; Zhang et 

al., 2007). Some of the watershed-scale climate change mitigation policies and strategies 

are related to land use change, which has the potential to increase resiliency of the 

watershed to climate change (IPCC, 2001). Change in land use from conventional row 

crops, such as cotton, to perennial bioenergy crops could therefore play a significant role 

in mitigating the effects of climate change (Rose et al., 2012). The effects of biofuel-

induced land use change on hydrology and water quality over the historic period were 

evaluated in several studies (Schilling et al., 2008; Srinivasan et al., 2010; VanLoocke et 

al., 2010; Zhuang et al., 2013; Chen et al., 2016a and b). However, such evaluations 

under future climate change scenarios are lacking, especially for the THP, which is one 

of the important agricultural regions of the United States.  

A high variability exists in the future climate projections by different GCMs, and 

hence their effects on water balances, nutrient discharge and crop yield in the THP 
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region also would vary considerably from one GCM to the other. In order to better 

capture these large uncertainties, projected climate data from 19 GCMs were used in this 

study. The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) model, which 

has been widely used for evaluating the climate change and land use change effects on 

water quantity and quality at the watershed scale (Ficklin et al., 2009; Jha et al., 2006; 

Wu et al., 2012), was used in this study.  

The overall goal of this study was to evaluate the impacts of land use change 

from cotton to the perennial bioenergy grasses of switchgrass (Panicum virgatum L.) and 

Miscanthus × giganteus on the water cycle and nitrogen load under the changing climate 

in the Double Mountain Fork Brazos watershed in the THP. Specific objectives of the 

study were to: (1) assess the climate sensitivity of the study watershed with regards to 

water balances, water quality and crop yield under cotton and perennial grass land uses 

during the historic period (1994-2009); (2) quantify the effects of future climate change 

on hydrologic fluxes, total nitrogen (TN) load and crop yield under the current cotton 

land use (baseline scenario) based on 19 GCM projections under two Representative 

Concentration Pathway (RCP) emission scenarios of RCP4.5 and RCP8.5 during two 30-

year periods of middle (2040 to 2069) and end (2070 to 2099) of the 21st century; and (3) 

assess the impacts of land use change from cotton to perennial grasses on water 

partitioning, TN load and biomass production potential under the four projected future 

climate change scenarios (2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 

and 2070-2099 RCP8.5) compared to respective future cotton land use scenarios. 
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5.3 Materials and Methods 

5.3.1 Study Watershed 

The Double Mountain Fork Brazos watershed in the THP was selected for this 

study (Figure 5.1). The average (1994-2009) annual precipitation in the watershed was 

about 517 mm, and the mean air temperature during the cotton growing season (May to 

October) was around 24℃. The delineated watershed area is about 6000 km2, and the 

topography of the watershed is flat. Major land uses in the watershed are cotton (30%), 

range grass (21%) and range brush (31%). Major soil types are Acuff sandy clay loam 

(fine-loamy, mixed, superactive, thermic Aridic Paleustolls), Amarillo sandy loam (fine-

loamy, mixed, superactive, thermic Aridic Paleustalfs) and Olton clay loam (fine, mixed, 

superactive, thermic Aridic Paleustolls) (Soil Survey Staff, 2010).  
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Figure 5.1 Locations of weather stations, USGS gauge stations and General 

Circulation Model (GCM) grids in the Double Mountain Fork Brazos watershed in 

the Texas High Plains. 

 

5.3.2 SWAT Model Inputs and Calibration 

In this study, surface runoff was simulated using the Curve Number method (CN; 

USDA, 1972) available in the SWAT model, and the potential evapotranspiration (PET) 

was simulated using the Penman-Monteith method (Penman, 1956; Monteith, 1965). The 

crop management practices in the model were scheduled by specific dates. More details 

about the SWAT model inputs and setup for the study watershed are available in Chen et 
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al. (2016a and c). In this study, the SWAT model (Version 2012.10_2.16 released on 

9/9/14) compatible with ArcGIS 10.2.2 platform was used. The Sequential Uncertainty 

Fitting version-2 (SUFI-2) procedure of SWAT Calibration and Uncertainty Procedures 

(SWAT-CUP 2012) (Abbaspour et al., 2007) was used for the model sensitivity analysis 

and calibration of hydrology and water quality related parameters. 

The hydrologic and crop yield components of the SWAT model of the study 

watershed were initially calibrated as a part of our previous study (Chen et al., 2016a). In 

Chen et al. (2016a) SWAT model, default parameter values were used for range brush, 

which occupied about 41% of the watershed area. In this study, hydrology and crop yield 

calibration of the Chen et al. (2016a) SWAT model was further improved by simulating 

honey mesquite, which is predominant in the range brush land use of the study 

watershed, in all range brush Hydrologic Response Units (HRUs). The improved SWAT 

model was then calibrated for water quality predictions using the observed daily TN 

concentration data (39 samples) at the watershed outlet, which were converted into 

continuous daily TN load data using the USGS regression model, Load Estimator 

(LOADEST) (Runkel et al., 2004). A detailed description of the LOADEST model can 

be found in Jha et al. (2007). The estimated continuous daily TN load data was 

distributed from 1995 to 2000. The data from 1995 to 1997 and 1998 to 2000 was used 

for the model calibration and validation, respectively. A five-year warm up period from 

1990 to 1994 was adopted for the TN load simulation (Daggupati et al., 2015). The 

calibrated values of major hydrologic and nutrient related parameters are shown in Table 

5.1. The SWAT model performance in prediction of TN load was evaluated on a 
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monthly basis using three statistical measures: the Nash-Sutcliffe efficiency (NSE) (Nash 

and Sutcliffe, 1970), square of Pearson's product‐moment correlation coefficient (R2) 

(Legates and McCabe, 1999) and percent bias (PBIAS). 

 

Table 5.1 Default and calibrated values of some major hydrology, water quality and crop growth 

parameters in SWAT 

No. Parameter Description 
Default 

value 

Calibrated 

value 
Reference 

Hydrological parameters 

1 ESCO Soil evaporation compensation factor 0.95 
0.75 (Gauge I)* 

0.80 (Gauge II)# 
-- 

2 
SOL_AW

C 

Available soil water capacity (mm H2O 

mm‐1 soil) 

0.1-

0.17 

Increased by 

10% 
-- 

3 CN2 Curve number for moisture condition II 39-84 
Decreased by 

8% 
-- 

4 
ALPHA_

BF 
Base flow recession constant 0.048 0.0765 -- 

5 
GW_REV

AP 
Groundwater "revap" coefficient 0.02 

0.08 (Gauge I) 

0.06 (Gauge II)# 
 

Water quality parameters 

1 CDN 
Denitrification exponential rate 

coefficient 
1.4 0.5 -- 

2 SDNCO Denitrification threshold water content 1.1 0.0 
Akhavan et 

al., 2010 

3 NPERCO Nitrogen percolation coefficient 0.2 0.55 -- 

4 ERORGN Organic N enrichment ratio 0 5.0 -- 

5 RS4 
Rate coefficient for organic N settling in 

the reach at 20 ℃ (day-1) 
0.05 0.01 -- 

6 N_UPDIS Nitrogen uptake distribution parameter 20 15 -- 

7 BC1 

Rate constant for biological oxidation of 

NH4 to NO2 in the reach at 20 ℃ in the 

well-aerated conditions (day-1) 

0.55 0.1 -- 

8 BC2 

Rate constant for biological oxidation of 

NO2 to NO3 in the reach at 20 ℃ in the 

well-aerated conditions (day-1) 

1.1 0.2 -- 

9 BC3 
Rate constant for hydrolysis of organic 

N to NH4 in the reach at 20 ℃ (day-1) 
0.21 0.2 -- 

10 SOL_NO3 
Initial NO3 concentration in the soil 

layer (mg/kg) 
0 28 -- 
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Table 5.1 Continued 

No. Parameter Description 
Default 

value 

Calibrated 

value 
Reference 

Dryand cotton parameters 

1 BIO_E Biomass/energy ratio [(kg ha-1)/(MJ m-2)] 15 13.6 
Sarkar et 

al., 2011 

2 HVSTI Harvest index [(kg ha-1)/(kg ha-1)] 0.5 0.49 

Wanjura 

et al., 

2014 

3 BLAI Max leaf area index (m2/m2) 4.0 4.7 
Sarkar et 

al., 2011 

4 WSYF 
Lower limit of harvest index [(kg ha-1)/(kg 

ha-1)] 
0.3 0.35  

5 T_OPT Optimal temp for plant growth (℃) 30 27.5 

Williams 

et al., 

2015 

6 T_BASE Min temp for plant growth (℃) 15 12.5 

Williams 

et al., 

2015 

Irrigated cotton parameters 

1 BIO_E Biomass/energy ratio [(kg ha-1)/(MJ m-2)] 15 13 
Sarkar et 

al., 2011 

2 HVSTI Harvest index [(kg ha-1)/(kg ha-1)] 0.50 0.48 

Wanjura 

et al., 

2014 

3 BLAI Max leaf area index (m2/m2) 4.0 4.5 
Sarkar et 

al., 2011 

4 T_OPT Optimal temp for plant growth (℃) 30 27.5 

Williams 

et al., 

2015 

5 T_BASE Min temp for plant growth (℃) 15 12.5 

Williams 

et al., 

2015 

* Parameter changed for all of the subbasins that discharged to Gauge I 
# Parameter changed for the subbasins between Gauge I and Gauge II 

 

5.3.3 Scenario Development and Analysis 

5.3.3.1 Climate Sensitivity Analysis  

The climate sensitivity analysis was carried out separately for each of three 

climate variables considered in this study: atmospheric CO2 concentration, precipitation 

and air temperature. This analysis was conducted over the historic period of 1994 to 

2009 and such analysis is useful for better understanding of the impacts of climate 

change on water balances, water quality and crop yield under different land uses, and 
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hence vulnerability of the watershed to climate change. The current cotton land use in 

the watershed was defined as the baseline scenario, during which an average 

atmospheric CO2 concentration of 330 ppm was assumed (Wu et al., 2012).  

 

Table 5.2 Scenarios considered in the climate sensitivity and climate change 

analyses 

Scenario 
CO2 concentration 

(ppm) 

 Precipitation 

change (%) 
 Temperature increase (ᵒC) 

Climate sensitivity scenarios 

Baseline 330 0 0 

Run I 495 0 0 

Run II 660 0 0 

Run III 330 -40% 0 

Run IV 330 -30% 0 

Run V 330 -20% 0 

Run VI 330 -10% 0 

Run VII 330 +10% 0 

Run VIII 330 +20% 0 

Run IX 330 +30% 0 

Run X 330 +40% 0 

Run XI 330 0 +2ᵒC 

Run XII 330 0 +4ᵒC 

Run XIII 330 0 +6ᵒC 

Time period Land use RCP* 
Assumed average CO2 

concentration (ppm) 

Future Climate change scenarios 

2040-2069 Cotton RCP4.5 500 

2040-2069 Cotton RCP8.5 570 

2040-2069 Perennial grasses RCP4.5 500 

2040-2069 Perennial grasses RCP8.5 570 

2070-2099 Cotton RCP4.5 530 

2070-2099 Cotton RCP8.5 800 

2070-2099 Perennial grasses RCP4.5 530 

2070-2099 Perennial grasses RCP8.5 800 

* RCP, Representative Concentration Pathway 

 

Thirteen climate sensitivity scenarios were developed by varying one variable at 

a time (Table 5.2). Specifically, the atmospheric CO2 concentration during the historic 
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period was increased by 1.5 (495 ppm) and 2 times (660 ppm) relative to the baseline 

concentration. The measured historic daily precipitation was changed by ±10%, ±20%, 

±30% and ±40%, and the daily minimum and maximum temperatures were increased by 

2℃, 4℃ and 6℃. 

5.3.3.2 The GCM Climate Projections 

Bias-Corrected Statistically Downscaled (BCSD) daily future climate data 

projected by 19 GCMs were obtained from the Downscaled Coupled Model 

Intercomparison Project Phase 5 (CMIP5) Climate and Hydrology Projections 

(http://gdo-dcp.ucllnl.org/), and used in the future climate change simulations. Future 

climate data were obtained for a total of 168 GCM grids that span over the study 

watershed, and input to the SWAT model for future climate change simulations (Figure 

5.1). The GCMs considered in this study include: access1-0, bcc-csm1-1, canesm2, 

ccsm4, cesm1-bgc, cnrm-cm5, csiro-mk3-6-0, gfdl-esm2g, gfdl-esm2m, inmcm4, ipsl-

cm5a-lr, ipsl-cm5a-mr, miroc5, miroc-esm, miroc-esm-chem, mpi-esm-lr, mpi-esm-mr, 

mri-cgcm3 and noresm1-m. The GCM projections of daily precipitation, maximum 

temperature and minimum temperature were available for the period from 1950 to 2099. 

The spatial resolution of the GCM projections is 0.125 degree (~12.5 km×12.5 km).  

In this study, GCM climate projections from two RCP emission scenarios of 

RCP4.5 (moderate) and RCP8.5 (severe) were used. Future climate change projections 

from these 19 GCMs were obtained for two 30-year periods: 2040 to 2069 (middle of the 

21st century) and 2070 to 2099 (end of the 21st century). The four future climate change 

scenarios simulated in this study are hereafter denoted as 2040-2069 RCP4.5, 2040-2069 

http://gdo-dcp.ucllnl.org/
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RCP8.5, 2070-2099 RCP4.5 and 2070-2099 RCP8.5. The representative CO2 

concentrations for 2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 and 

2070-2099 RCP8.5 scenarios were estimated as 500, 570, 530 and 800 ppm, respectively 

(Table 5.2) according to Van Vuuren et al. (2011). An R code was used to convert the 

downloaded future climate data of the study watershed into the format required by the 

SWAT model. 

 

5.3.4 Biofuel-Induced Land Use Change Scenarios under Changing Climate 

For the land use change scenario analysis, two promising perennial bioenergy 

crops, switchgrass and Miscanthus (Kiniry et al., 2008; Kiniry et al., 2012; Kiniry et al., 

2013; Wang et al., 2014b; Chen et al., 2016a and b) were selected to replace cotton 

under both historic and future climate scenarios. Specifically, irrigated cotton was 

replaced by irrigated switchgrass and dryland cotton was replaced by dryland 

Miscanthus in view of their large biomass production potential and high water use 

efficiency under different irrigation management practices based on Chen et al. (2016a) 

study for this study watershed. The management practices implemented for switchgrass 

and Miscanthus simulations were described in detail in Chen et al. (2016a) study.  

The simulated annual results for cotton and perennial grass land uses based on 

each GCM-projected future climate data were averaged for the middle and the end of the 

21st century scenarios and compared with the average (1994-2009) annual historic results 

for cotton land use. Box plots showing the percent changes in simulated 

variables/parameters/indices under the four future climate change scenarios (2040-2069 
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RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 and 2070-2099 RCP8.5) in comparison 

to the historic scenario were prepared based on the simulation driven by 19 GCMs. 

Temperature and water stress days were estimated for each scenario and used to assess 

the effects of climate change on crop yield/biomass. A day was considered as a 

temperature/water stress day, if the average air temperature/soil water on that day was 

different from the specified optimum temperature/soil water (Neitsch et al., 2011). 

5.4 Results and Discussion 

5.4.1 Evaluation of the SWAT Model Performance in Predicting Streamflow, Cotton Lint 

Yield and Total Nitrogen Load 

The predicted monthly streamflow during the calibration (1994-2001) and 

validation (2002-2009) periods at two USGS gauges closely matched with the observed 

monthly streamflow (Figures 5.2 and 5.3). The NSE, R2 and PBIAS values for monthly 

simulations of streamflow at Gauge I were 0.86, 0.88 and 12.1%, respectively, during 

the model calibration period, and 0.59, 0.71 and -7.5%, respectively, during the model 

validation period (Figure 5.2). At Gauge II, the NSE, R2 and PBIAS for monthly 

streamflow predictions were 0.62, 0.66 and 14.2%, respectively, during the model 

calibration period, and 0.61, 0.75 and -12.8%, respectively, during the model validation 

period (Figure 5.3). The model performance statistics for streamflow prediction were 

well above satisfactory range according to Moriasi et al. (2007) criteria. The average 

PBIAS in predicting irrigated cotton lint yield over the entire simulation period (1994-

2009) was 3.2% (Figure 5.4). In the case of dryland cotton, the average PBIAS in cotton 

lint yield prediction was 2.3%. 
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Figure 5.2 Comparison of observed and simulated monthly streamflow at Gauge I 

during the model a) calibration and b) validation periods. 

 

 
Figure 5.3 Comparison of observed and simulated monthly streamflow at Gauge II 

during the model a) calibration and b) validation periods. 
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Figure 5.4 Comparison of simulated and observed cotton lint yield in Lynn County 

under dryland and irrigated conditions. 

 

A graphical comparison of monthly simulated TN load with the LOADEST 

estimated data during the calibration (1995-1997) and validation (1998-2000) periods 

indicated that they matched fairly well (Figure 5.5). The NSE for monthly TN load 

predictions was 0.75 and 0.71 for the calibration and validation periods, respectively 

(Table 5.3). The PBIAS in predicting TN load was within ±25% during the calibration (-

17%) and validation (16.8%) periods. The model performance ratings (NSE and PBIAS) 

achieved in this study for monthly TN load predictions during the calibration and 

validation periods were considered good according to Moriasi et al. (2007) criteria. 
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Table 5.3 Model performance statistics during the model calibration and validation 

for monthly total nitrogen loads 

Time scale Calibration (1995-1997) Validation (1998-2000) 

Total nitrogen loads 

Nash-Sutcliffe efficiency 0.75 (Very good*) 0.71 (Good) 

R2 0.81 0.86 

PBIAS (%) -17.0 (Very good) 16.8 (Very good) 

* General model performance ratings suggested by Moriasi et al. (2007) for monthly 

predictions of nitrogen 

Observed number of data used in the LOADEST estimation for total nitrogen loads was 

39 

 

 

 
Figure 5.5 Comparison of the LOADEST estimation and SWAT simulation total 

nitrogen loads on a monthly basis during a) calibration (1995-1997) and b) 

validation (1998-2000) periods. 
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5.4.2 The Sensitivity of Watershed Hydrology, Water Quality and Crop Yield to the 

Changes in Historic Climate (1994-2009) 

5.4.2.1 Increase in Atmospheric CO2 Concentration 

The results showed that the increases in atmospheric CO2 concentration by 50% 

(run C I) and 100% (run C II) decreased the average (1994-2009) monthly ET of cotton 

with in the ranges of 2% to 6% and 5% to 12%, respectively, when compared to the 

baseline CO2 concentration, especially during May to August (Figure 5.6a). The average 

annual (1994-2009) irrigation water use by cotton reduced by 11% and 26%, 

respectively, when the CO2 concentration increased by 50% and 100% (Table 5.4). 

However, the elevated CO2 concentration clearly increased the average monthly surface 

runoff, soil water content and TN load (Figure 5.6b-d). The average annual cotton lint 

yield also increased under both the irrigated (31% and 54% increase in yield with 50% 

and 100% increase in CO2 concentration, respectively) and dryland (39% and 80%) 

conditions (Table 5.4). The effect of increase in ambient CO2 concentration on the 

increase of cotton yield was also documented in previous Free Air CO2 Enrichment 

(FACE: Mauney et al., 1994) and chamber experiments (Reddy et al., 1995 and 1996). 

The higher concentrations of CO2 resulted in the higher photosynthesis rates and greater 

water and radiation use efficiencies (Pinter et al., 1994), which led to the yield increase.  
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Figure 5.6 Simulated mean (1994-2009) monthly evapotranspiration, surface runoff, 

soil water content, and total nitrogen load under different CO2 concentration (a-d), 

precipitation (e-h), and air temperature (i-l) climate sensitivity analysis scenarios. 

 

The average annual ET of cotton decreased by 4% and 9%, and the surface 

runoff increased by 33% and 74% when CO2 concentration was increased by 50% and 

100%, respectively (Table 5.4). The stomatal apertures on plant leaves tend to close 

partially under the increased CO2 concentration (Morison, 1987; Field et al., 1995; Saxe 

et al., 1998; Wand et al., 1999; Medlyn et al., 2001), and hence inhibit transpiration and 

thereby reduce ET. The simulated reduction in ET eventually caused an increase in 

surface runoff (Gedney et al., 2006). It was interesting to note an almost linear increase 
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in average monthly soil water content under cotton land use in response to the increase 

in CO2 concentration (Figure 5.6c). The TN load under cotton land use increased 

approximately by 19% and 45% due to the increase in CO2 concentration by 1.5 and 2 

times, respectively, which was mainly due to a corresponding increase in the surface 

runoff. 

 

Table 5.4 Simulated average annual changes in water balance and water quality 

parameters and crop yield under various climate sensitivity analysis scenarios over 

historic period (1994-2009) 

ξ Scenario Climate parameters Irrigation ET 
Surface 

runoff 
TN load 

Irrigated 

yield 

Dryland 

yield 

Baseline 
Baseline 

(cotton) 

324.5 

mm 

507 

mm 

14.0 

mm 

0.175 

kg ha-1 

0.72 

Mg ha-1 

0.37 

Mg ha-1 

Run C I 1.5 × CO2 (-10.5)* (-4.0) (32.6) (19.4) (31.3) (39.1) 

Run C II 2 × CO2 (-25.9) (-9.4) (74.0) (44.6) (53.6) (79.7) 

Run C III -40% precipitation (38.1) (-31.5) (-94.1) (-94.9) (-1.5) (-49.3) 

Run C IV -30% precipitation (29.2) (-22.5) (-85.2) (-85.7) (-1.1) (-37.7) 

Run C V -20% precipitation (19.1) (-14.2) (-68.1) (-67.4) (-0.8) (-26.1) 

Run C VI -10% precipitation (10.1) (-6.6) (-40.2) (-41.7) (-0.4) (-13.8) 

Run C VII +10% precipitation (-9.1) (5.9) (53.2) (60.6) (0.8) (13.8) 

Run C VIII +20% precipitation (-18.9) (11.0) (119.1) (144.6) (1.1) (28.3) 

Run C IX +30% precipitation (-27.1) (15.7) (199.5) (279.4) (1.9) (42.0) 

Run C X +40% precipitation (-34.4) (19.8) (294.7) (488.6) (1.9) (54.3) 

Run C XI +2ᵒC temp (17.1) (2.3) (-12.9) (-6.9) (44.5) (17.4) 

Run C XII +4ᵒC temp (25.4) (3.9) (-24.6) (-10.9) (47.5) (4.3) 

Run C XIII +6ᵒC temp (29.6) (4.9) (-34.0) (-18.9) (17.4) (-21.0) 

Run PG I 1.5 × CO2 (-15.1) (-1.2) (-3.0) (-44.5) [6.9] # [27.9] 

Run PG II 2 × CO2 (-25.2) (-1.9) (-2.2) (-40.7) [11.7] [43.5] 

Run PG III -40% precipitation (3.4) (0.4) (-3.7) (-44.4) [1.1] [-49.3] 

Run PG IV -30% precipitation (0.1) (0.1) (-4.3) (-48.0) [0.3] [-38.2] 

Run PG V -20% precipitation (-1.7) (-0.1) (-4.5) (-49.1) [0.1] [-25.4] 

Run PG VI -10% precipitation (-4.9) (-0.3) (-4.5) (-48.0) [-0.1] [-12.2] 

Run PG VII +10% precipitation (-8.3) (-0.9) (-4.1) (-54.8) [0.2] [10.8] 

Run PG VIII +20% precipitation (-9.1) (-1.2) (-3.9) (-58.6) [0.5] [19.3] 

Run PG IX +30% precipitation (-9.7) (-1.6) (-4.4) (-64.5) [0.9] [25.6] 

Run PG X +40% precipitation (-13.2) (-1.9) (-5.7) (-71.4) [1.2] [30.1] 

Run PG XI +2ᵒC temp (-29.1) (-2.2) (-4.4) (-55.2) [-18.2] [-10.3] 

Run PG XII +4ᵒC temp (-33.0) (-2.6) (-5.2) (-60.3) [-27.4] [-20.8] 

Run PG XIII +6ᵒC temp (-21.1) (-1.7) (-5.8) (-59.2) [-30.6] [-30.4] 

*The number in the parentheses is the percent change of each analysis relative to the baseline 
#The number in the brackets is the percent change of each climate sensitivity analysis relative to the land 

use of switchgrass or Miscanthus during the historic period (1994-2009) 

ξ Letter C indicates cotton; Letters PG indicate perennial grasses 
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In comparison to baseline cotton scenario, under perennial grass land use, the 

elevated atmospheric CO2 concentration reduced average annual irrigation water use (by 

15% under PG I and 25% under PG II), ET (1% and 2%), surface runoff (3% and 2%) 

and TN load (45% and 41%). The increase in CO2 concentration by 1.5 and 2 times 

increased biomass yield of irrigated switchgrass by 7% and 12%, respectively, and that 

of dryland Miscanthus by 28% and 44%, respectively (Table 5.4). The reduction in 

water stress days under the dryland conditions due to the increase in CO2 concentration 

is the major reason for the much higher percent increase in dryland Miscanthus biomass 

yield compared to irrigated switchgrass. However, the simulated increases in irrigated 

switchgrass and dryland Miscanthus biomass yields due to increased CO2 concentration 

were lower than the increases in cotton lint yields. This was because switchgrass and 

Miscanthus, which are C4 crops, are less sensitive to changes in atmospheric CO2 

concentration than cotton, which is a C3 crop (Ghannoum et al., 2000). 

5.4.2.2 Changes in Precipitation 

The increases/decreases in precipitation caused changes in monthly ET, surface 

runoff, soil water content and TN load under cotton land use in the respective directions 

(Figure 5.6e-h). For example, the -40%, -30%, -20%, -10%, +10%, +20%, +30% and 

+40% changes in precipitation (runs C III to C X) caused about -33%, -24%, -15%, -7%, 

7%, 12%, 17% and 22% changes in average annual ET (Table 5.4). The simulated 

changes in cotton ET were substantial during May to September in this study watershed 

(Figure 5.6e). Surface runoff, soil water content and TN load under cotton land use were 

also very sensitive to changes in precipitation (Figure 5.6f-h, Table 5.4). For example, 
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the average annual surface runoff changed by 53% and -40% when annual precipitation 

was increased and decreased by 10%, respectively (Table 5.4). Similarly, TN load 

changed within a range of 61% to -42% due to ±10% changes in precipitation (Table 

5.4). The simulated percent increase in surface runoff due to increase in precipitation 

(runs C VII to C X) was much larger than the percent reduction in surface runoff due to 

reduction in precipitation (runs C III to C VI) (Table 5.4). This result highlighted the 

high flooding potential of the study watershed during the wet years. Once again, the 

changes in precipitation caused an almost linear change in average monthly soil water 

content under cotton land use (Figure 5.6g).  

As expected, the average annual irrigation water use by cotton increased within a 

range of 10% to 38% when precipitation was decreased (runs C III to C VI) and it 

decreased within a range of 9% to 34% when precipitation increased (runs C VII to C X) 

(Table 5.4). The requirement for a large amount of irrigation water due to the reduction 

in precipitation highlighted the risk of drought on cotton yields in this semi-arid 

watershed. By using BIOME-BGC ecosystem model, Jackson et al. (2001) also 

predicted an increased occurrence of drought in the northwest Texas of the United States 

under a future (2061-2090) climate scenario due to reduction in precipitation. The 

dryland cotton lint yields were also very sensitive to the changes in the precipitation. For 

example, cotton lint yield decreased by 26% with a 20% reduction in precipitation 

(Table 5.4). 

The changes in precipitation under the perennial grasses land use will primarily 

decrease the average annual irrigation water use, ET, surface runoff and TN load when 
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compared to the respective changes in precipitation under the cotton land use (runs PG V 

to PG X). However, a slightly higher irrigation water use and ET were simulated under 

perennial grass land uses compared to the cotton land use under the extreme dry 

conditions (runs PG III and PG IV). The changes in precipitation had much smaller 

effect (within ±2%) on the simulated irrigated switchgrass biomass yield when compared 

to dryland Miscanthus biomass yield (Table 5.4). The simulated dryland Miscanthus 

biomass yield increased within a range of 11% to 30% when precipitation was increased 

between 10% and 40%, and decreased within a range of 12% to 39% when precipitation 

was decreased by 10% to 40% (Table 5.4). 

5.4.2.3 Increase in Air Temperature 

Both the minimum and maximum temperatures were increased by 2℃, 4℃ and 6℃ 

in the climate sensitivity analysis. An apparent decrease in the average monthly surface 

runoff and soil water content under cotton land use were simulated when the air 

temperature was increased (Figure 5.6j and k). The results also suggested a slight 

increase in average monthly ET of cotton with the increase in temperature (Figure 5.6i 

and l). The annual analysis showed that the average ET of cotton increased by 2% to 5% 

when the air temperature was increased by 2℃ to 6℃ (runs C XI to C XIII) (Table 5.4). 

The average annual surface runoff decreased within a range of 13% to 34% with the 

increase in air temperature, mainly due to an increase in ET. The TN load under cotton 

land use was also reduced by 7%, 11% and 19% when the air temperature was increased 

by 2℃, 4℃ and 6℃, respectively (Table 5.4). Rind et al. (1990) and Schaake (1990) also 

reported that the higher temperatures would lead to higher ET, lower surface runoff, and 
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more frequent occurrence of drought events in the United States. A 30% increase in 

irrigation water use by cotton was simulated when the air temperature was increased by 

6℃ (Table 5.4). The aforementioned results indicated that global warming might cause a 

serious water shortage in the semi-arid/arid regions.  

The simulated cotton lint yield increased under both the irrigated and dryland 

conditions when the air temperature was increased by 2℃ and 4℃ (Table 5.4). The 

increase in cotton lint yield was much higher (45% to 48%) under the irrigated 

conditions when compared to the dryland conditions (4% to 17%). This was due to 

unlimited supply of irrigation water with the use of “auto-irrigation” option in the 

SWAT model. However, under practical conditions, application of higher amounts of 

irrigation water under warmer climatic conditions might not be possible due to reduced 

irrigation capacities. Interestingly, further increase in temperature by 6℃ reduced 

average cotton lint yield by 21% under the dryland conditions and caused relatively 

smaller increase (17%) in yield (compared to 2℃ and 4℃ increase in temperature) under 

the irrigated conditions. The optimal temperature for cotton growth is 27.5℃ (Hake and 

Silvertooth, 1990). Under the baseline condition, the mean air temperature of the cotton 

growing season for the study watershed was about 24℃. The simulated increase in 

average air temperature by 2℃ and 4℃ therefore provided better growth conditions for 

cotton than under the baseline conditions. However, a 6℃ increase in average air 

temperature resulted in non-optimum growing condition, and hence reduced cotton lint 

yields under the dryland conditions. Previous studies also reported that the optimum 

growth and yield of cotton occurred when the mean air temperature was about 28℃ 
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(Reddy et al., 2000), and the cotton yield decreased substantially when the daily 

maximum temperature exceeded 32℃ (Schlenker and Roberts, 2009). 

Similar to the effects of increase in CO2 concentration, the increase in 

temperature decreased the average annual irrigation water use (by 29%, 33% and 21%), 

ET (2%, 3% and 2%), surface runoff (4%, 5% and 6%) and TN load (55%, 60% and 

59%) under perennial grasses land use when compared to cotton land use (runs PG XI 

and PG XIII). A considerable reduction in the irrigated switchgrass biomass yield of 

18%, 27% and 31% was simulated with the increase in the air temperature by 2℃, 4℃ 

and 6℃, respectively. Similarly, about 10% to 30% reduction in the dryland Miscanthus 

biomass yield was predicted due to the increase in air temperature by 2℃ to 6℃ (Table 

5.4). 

 

5.4.3 The Impacts of Climate and Land Use Changes on Hydrology, Water Quality and 

Crop Yield 

5.4.3.1 Projected Changes in Future Climate of the Double Mountain Fork Brazos 

Watershed 

According to the future climate data projected by 19 GCMs, the median annual 

precipitation would decrease by about 5% under the four future climate change scenarios 

(2040-2069 RCP4.5, 2040-2069 RCP8.5 and 2070-2099 RCP4.5) when compared to the 

historic period (Figure 5.7a). However, a slight increase in the precipitation during 

cotton growing period (May to October) was projected under the future climate change 

scenarios compared to the historic period. A high variation in annual precipitation was 
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projected among different GCMs, especially under the 2070-2099 RCP8.5 scenario with 

the changes ranging from -35% to 28% when compared to the historic period (Figure 

5.7a). The median annual maximum air temperature increased by 2.8℃, 3.8℃, 3.5℃ and 

5.8℃ under the 2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 and 2070-

2099 RCP8.5 scenarios, respectively, relative to the historic period (Figure 5.7b). The 

median annual minimum air temperature also increased by 1.3℃, 2.1℃, 1.7℃ and 3.7℃ 

under the 2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 and 2070-2099 

RCP8.5 scenarios, respectively (Figure 5.7c). The projected temperatures during the 

cotton growing period also showed similar increasing trends. The projected changes in 

precipitation, and maximum and minimum temperature for the study watershed over the 

mid-century were comparable to those projected by Modala et al. (2016) for the THP 

using the CMIP3 data. They predicted an increase in average daily minimum 

temperature by about 1.9 ºC to 2.9 ºC, increase in average daily maximum temperature 

by 2.0 ºC to 3.2 ºC, and decrease in precipitation by 30 to 127 mm in the future (2041 to 

2070). The projected increase in temperature was the highest under the 2070-2099 

RCP8.5 scenario, which had the highest projected CO2 concentration (800 ppm) (Figure 

5.7b-c). The projected increase in CO2 concentration in the future is expected to trap 

heat, and hence warm the earth system (USEPA, 2015). 
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Figure 5.7 Box plots showing changes in average annual (a) precipitation, (b) 

maximum air temperature, and (c) minimum air temperature based on 19 GCM 

projections under RCP4.5 and RCP8.5 scenarios during the 2040 to 2069 and 2070 

to2099 time periods with reference to the historic period (1994-2009). 
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5.4.3.2 Climate Change Effects on Hydrology, Water Quality and Crop Yield under 

the Current (Cotton) Land Use   

The simulated median annual ET under future cotton land use decreased by 

12.1%, 13.9%, 14.2% and 20.2% under the 2040-2069 RCP4.5, 2040-2069 RCP8.5, 

2070-2099 RCP4.5 and 2070-2099 RCP8.5 scenarios, respectively, relative to the 

historic period based on the 19 GCM projections (Figure 5.8a). The increase in CO2 

concentration from 330 to 800 ppm under different future climate scenarios was the 

major reason for this reduction in the simulated future ET under cotton land use. The 

stomatal apertures close partially under the elevated CO2 concentration (Wand et al., 

1999; Medlyn et al., 2001), and hence inhibit transpiration. The reduction in the future 

median annual ET caused reductions in the annual irrigation water use by cotton. The 

median annual irrigation water use for future cotton land use reduced by about 41% 

(ranged from 21% to 65% among different GCM projections), 45% (range: 20% to 76%), 

46% (range: 23% to 67%) and 61% (range: 26% to 95%) under the 2040-2069 RCP4.5, 

2040-2069 RCP8.5, 2070-2099 RCP4.5 and 2070-2099 RCP8.5 scenarios, respectively, 

compared to the historic period (Figure 5.8c). The decline in the future irrigation water 

use by cotton was much higher under the 2070-2099 RCP8.5 scenario when compared to 

other three future scenarios.  
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Figure 5.8 Box plots showing average annual percent changes in 

evapotranspiration, surface runoff and total nitrogen load (for the entire 

watershed) based on 19 GCM projections under RCP4.5 and RCP8.5 scenarios 

during the 2040 to 2069 and 2070 to 2099 time periods compared to the base line 

cotton scenario over the historic period (1994-2009). 
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Interestingly, the median annual surface runoff under cotton land use increased 

slightly under the four climate change scenarios although the simulated future ET and 

irrigation water use decreased. However, a large uncertainty existed. For example, under 

the 2040-2069 RCP4.5 scenario, 11 GCM projections simulated an increase in the 

surface runoff within a range of 4% to 113% relative to the historic period, while 8 

GCMs projected a decrease in the surface runoff by about 1% to 39%. The climate 

sensitivity analysis also revealed that the surface runoff was very sensitive to the 

variations of the precipitation (Table 5.4). The large uncertainty in the simulated future 

surface runoff also emphasized that there was a high variation in the precipitation 

intensity projected by GCMs. Overall, the simulated future surface runoff under cotton 

land use ranged from -39% to 113%, -69% to 111%, -41% to 92% and -65% to 141% 

under the 2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 and 2070-2099 

RCP8.5 scenarios, respectively, relative to the historic period (Figure 5.8b). The 

simulated median annual TN loads under cotton land use reduced by about 34%, 28%, 

31% and 27% under the four climate change scenarios compared to the historic period. 

Similar to surface runoff, a large variation in TN load was simulated among different 

GCMs (Figure 5.8c). 

The simulated future cotton lint yields increased under both irrigated (Figure 5.9a) 

and dryland (Figure 5.10a) conditions based on all 19 GCM projections under the four 

climate change scenarios. The median irrigated cotton lint yield increased by 69%, 82%, 

78% and 91% under the 2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 

and 2070-2099 RCP8.5 scenarios, respectively, relative to the historic period (Figure 
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5.9a). Corresponding increases in dryland cotton lint yields under the four climate 

change scenarios were 100%, 114%, 104% and 129% (Figure 5.10a). The increase in 

projected future irrigated cotton lint yield was primarily because of the reduction in 

temperature stress days during May to October (cotton growing period) (Figure 5.9b). 

However, in case of dryland conditions, both temperature and water stress days reduced 

during the cotton growing period (Figure 5.10b and c), which resulted in a much higher 

percent increase in the dryland cotton lint yield as compared to the increases in irrigated 

cotton lint yield (Figure 5.9a and Figure 5.10a). The optimal temperature for cotton 

growth is about 27℃ to 28℃ (Reddy et al., 2000). The projected increase in average air 

temperature by about 3℃ to 5℃ during the cotton growing period would provide better 

conditions for cotton growth compared to the average air temperature of 24℃ during the 

historic period. The projected increase in cotton lint yield would lead to an increase in 

plant nitrogen uptake, which could eventually result in the reduction in TN load through 

surface runoff. 
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Figure 5.9 Box plots showing changes in average annual irrigated crop yields, 

irrigation water use and number of temperature stress days based on 19 GCMs 

under RCP4.5 and RCP8.5 scenarios during the 2040 to 2069 and 2070 to 2099 time 

periods compared to the historic period (1994-2009). Irrigation water use under 

future switchgrass land use was compared to that under the baseline cotton 

scenario. 
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Figure 5.10 Box plots showing changes in average annual dryland crop yields, and 

number of temperature and water stress days based on 19 GCM projections under 

RCP4.5 and RCP8.5 scenarios during the 2040 to 2069 and 2070 to 2099 time 

periods compared to the historic period (1994-2009). 
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5.4.3.3 Combined Effects of Land Use and Climate Changes on Hydrology, Water 

Quality and Crop Yield 

The simulated median annual ET under the future perennial grass land use 

scenarios of 2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 and 2070-2099 

RCP8.5 was smaller than that under respective future cotton land use scenarios 

according to the 19 GCM projections (Figure 5.8d). In addition, the simulated future 

median irrigation water use of switchgrass was less by 62%, 69%, 66% and 89% than 

that of cotton under the 2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 and 

2070-2099 RCP8.5 scenarios, respectively (Figure 5.9f). The decrease in the irrigation 

water use under the future perennial grass land uses relative to the future cotton land use 

was simulated in case of all GCM projections.  

The simulated future changes in median annual surface runoff under four climate 

change scenarios were negligible under the perennial grass land uses compared to those 

under the future cotton land use scenarios (please note the differences in Y-axis scales) 

(Figure 5.8e). However, the simulated future median annual TN load under the perennial 

grasses reduced by about 33%, 40%, 25% and 30% under the 2040-2069 RCP4.5, 2040-

2069 RCP8.5, 2070-2099 RCP4.5 and 2070-2099 RCP8.5 scenarios, respectively 

relative to those under the future cotton land use scenarios (Figure 5.8f). Sarkar and 

Miller (2014) also reported that the SWAT-simulated long-term (15 years) nitrogen 

losses under the switchgrass land use were approximately 73% lower than those under 

the cotton land use in the Black Creek watershed in South Carolina. In contrast to 

surface runoff, large variations in the simulated future TN load were noticed between the 
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future perennial grass and cotton scenarios. The perennial grasses uptake much higher 

amounts of nitrogen from the soil compared to cotton (Chen et al., 2016c) and hence 

lesser quantities of nitrogen are available for the loss via surface runoff. 

A decline in the irrigated switchgrass biomass yield, and an increase in the 

dryland Miscanthus biomass yield was simulated under the GCM projections of the four 

climate change scenarios when compared to respective land use scenarios under the 

historic period (Figure 5.9d and Figure 5.10d). The primary reason for the decline of 

irrigated switchgrass biomass yield based on the 19 GCM projections under the four 

climate change scenarios in this study was the global warming effect (Figure 5.9e). The 

irrigated switchgrass underwent larger number of temperature stress days during its 

major growing period (June to September) due to the increase in air temperature under 

the four climate change scenarios than the historic period (Figure 5.9e). The increase in 

dryland Miscanthus biomass yield was due to the decrease in water stress days during its 

major growing period (June to September) under the four climate change scenarios 

(Figure 5.10f). In addition, Miscanthus can adapt to wider crop growth temperatures 

(optimal: 25℃; minimum: 8℃) compared to switchgrass (optimal: 25℃; minimum: 

12℃), which resulted in a lower number of temperature stress days in case of 

Miscanthus when compared to switchgrass under climate change scenarios (Figure 5.9e 

and Figure 5.10e). 
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5.5 Conclusions 

The SWAT model was used to investigate the influences of elevated CO2 

concentration, increasing temperatures and variations in precipitation on hydrology, 

water quality and crop yield based on 19 GCM projections under four climate change 

scenarios in the Double Mountain Fork Brazos watershed of the THP. The climate 

sensitivity analysis suggested that the water cycle, TN load and crop yield of the study 

watershed were very sensitive to the changes in climate. For example, a 10% decrease in 

precipitation is expected to result in a 40% reduction in average (1994-2009) annual 

surface runoff and a corresponding 42% decrease in TN load. The water balances, TN 

load and crop yield were also simulated to alter substantially according to the projected 

climate of 19 GCMs under four climate change scenarios. The simulated median annual 

TN loads reduced by about 34%, 28%, 31% and 27% under the 2040-2069 RCP4.5, 

2040-2069 RCP8.5, 2070-2099 RCP4.5 and 2070-2099 RCP8.5 scenarios, respectively, 

when compared to the historic cotton land use. The potential land use change from 

irrigated cotton to irrigated switchgrass in the future was projected to enhance water 

conservation due to reduction in ET losses and hence groundwater use for irrigation 

under future climate scenarios. In addition, biofuel-induced land use change from cotton 

to perennial grasses was found to improve water quality by reducing discharge of the TN 

load by approximately 30% at the watershed outlet. A considerable increase in median 

biomass yields within a range of 32% to 38% was also predicted under the dryland 

Miscanthus land use under the four climate change scenarios. The results from this study 

indicated that the irrigated switchgrass land use would be more suitable for the study 
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watershed under the current climatic conditions when compared to the irrigated cotton 

land use. However, under future climate scenarios, irrigated switchgrass yields were 

projected to reduce within a range of 16% to 28% when compared to historic yields. 

Under dryland conditions, Miscanthus land use was found to be more appropriate under 

the future climate situations. The elevated CO2 concentrations and reduced water stress 

days were the major factors for the increase in Miscanthus biomass. While the 

occurrence of future climatic conditions remain indefinite, this study provided an 

overview of the impacts of climate change and land use change on the orientation and 

magnitude of water balances, water quality and crop production. This type of studies can 

provide valuable information regarding the selection of appropriate land uses and the 

associated best management practices for the study watershed under the changing 

climate.
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6. USING EDDY COVARIANCE DATA FOR CALIBRATING HYDROLOGY 

MODELS FOR ASSESSING LAND USE CHANGE IMPLICATIONS 

 

6.1 Synopsis 

The semi-arid Texas High Plains (THP) is one of the most important cotton 

(Gossypium hirsutum L.) production regions in the US. This region also holds enormous 

potential for growing cellulosic bioenergy crops, such as the native grass of Old World 

bluestem [Bothriochloa bladhii (Retz) S.T. Blake] and biomass sorghum [Sorghum 

bicolor (L.) Moench]. A comparison of hydrological responses of potential land use 

changes from cotton to cellulosic bioenergy crops enables assessment of feasibility for 

the proposed land use change. The One Hydrologic Response Unit (HRU) method 

available in the Soil and Water Assessment Tool (SWAT) model was used in this study 

for assessing the land use change impacts at the field-scale. The model was calibrated 

and validated using three-years (2013 to 2015) eddy covariance data on daily 

evapotranspiration (ET) and bi-weekly crop biomass from four field sites in the THP. 

These fields were planted to dryland cotton, irrigated cotton, biomass sorghum and Old 

World bluestem (simulated as big bluestem in SWAT). Good match between the 

simulated and observed daily ET was achieved during the model evaluation for all four 

land uses with the Nash-Sutcliffe efficiency (NSE) of > 0.5 and percent bias (PBIAS) 

within ±25%. Model was also evaluated reasonably well for aboveground biomass 

prediction at the four sites as indicated by the model performance statistics: NSE > 0.5, 

R2 > 0.6 and PBIAS within ±10%. Land use change scenario analysis showed that the 
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average annual (1994-2015) surface runoff decreased by 86% and 52% under the 

dryland big bluestem and dryland biomass sorghum scenarios, respectively, relative to 

the dryland cotton land use. Under the irrigated conditions, the average annual surface 

runoff reduced by 64% and 19%, respectively, under the big bluestem and biomass 

sorghum scenarios compared to the irrigated cotton land use. The net groundwater use 

(irrigation water use minus percolation) was reduced by 11% and 48% under the 

irrigated biomass sorghum and irrigated big bluestem scenarios, respectively, relative to 

the irrigated cotton land use. About 2.5, 3.1, 10.7 and 15.8 Mg ha-1 of biomass could 

potentially be produced if cotton was replaced by dryland big bluestem, irrigated big 

bluestem, dryland biomass sorghum and irrigated biomass sorghum, respectively. 

Finally, biomass sorghum was found to be an ideal bioenergy crop for the study area due 

to lower groundwater water use, greater biomass and biofuel production potential and 

lower surface runoff potential compared to cotton or big bluestem. 

 

6.2 Introduction 

Hydrologic and water quality (H&WQ) models are widely used for assessing the 

impacts of land use and climate changes at various spatial scales. These models need to 

be thoroughly calibrated and validated against the observed data before using them for 

any application/decision making. In most of the watershed-scale studies, H&WQ models 

are calibrated using the measured data on streamflow and nitrogen loads at the watershed 

outlet (Wellen et al., 2015). A very limited number of studies have used field data at 

multiple locations in the watershed for calibrating the H&WQ models. Based on an 
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assessment of a sample of 257 process-based watershed modeling papers published 

between 1992 and 2010, Wellen et al. (2015) found that the models were calibrated for 

more than one location spatially in only 19% of the studies. They also reported that in 

about 96% of studies, models were calibrated based on streamflow, and in the remaining 

4% of studies, models were calibrated using surface runoff. They have therefore found 

that none of the studies evaluated the ability of their models to predict any other 

hydrological parameters. Researchers have cautioned that the watershed-scale model 

calibration based on measured data on a single hydrologic parameter from only one 

spatial location in a watershed could lead to incorrect conclusions as errors in the 

prediction of one hydrologic parameter can be compensated by errors in prediction of 

another hydrological parameter in the opposite sign (Beven, 2006; Kirchner, 2006). 

Modelers are therefore emphasizing the need for using other observed hydrological data 

from multiple sites in the watershed in addition to streamflow for calibrating hydrologic 

models at the watershed scale. In addition, it is worth noting that the USGS gauges do 

not exist in a lot of watersheds, especially in the semi-arid THP region, and calibrating 

H&WQ models for such ungauged watershed watersheds becomes a challenge. 

Recently, the eddy covariance method has been widely used around the world for 

studying the hydrologic cycles of different ecosystems (Yamamoto et al., 2001; 

Baldocchi, 2003; Dolman et al., 2006; Yu et al., 2006). In the US, the network of 

AmeriFlux (fluxnetweb.ornl.gov) maintains the flux data from approximately 200 sites 

and this data is made available to researchers on a collaborative basis. Use of such 

detailed field-scale data for calibrating the H&WQ models could greatly improve the 
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model predictions. The eddy covariance method is used to directly measure the exchange 

of water between the vegetation surface and atmosphere. In the eddy covariance method, 

latent heat flux or evapotranspiration (ET) is determined as the covariance between 

vertical wind velocity and water vapor concentration (Goulden et al., 1996; Ham and 

Heilman, 2003; Rajan et al., 2010). Measurements of wind velocity and water vapor 

concentration are made using fast-response instruments.  

Very few studies have reported the use of eddy covariance flux data from 

multiple sites in the calibration of the Soil and Water Assessment Tool (SWAT) model 

(Zhang et al., 2013). The SWAT model divides a watershed into a number of Hydrologic 

Response Units (HRUs) and aggregates them into subbasins. An HRU is a basic 

computational unit in the SWAT model and it is assumed to be homogeneous in 

hydrologic response to changes in land use and management since it contains the same 

land use, soil type and soil slope. An HRU in the SWAT model therefore makes it a good 

representation of the field conditions. This modeling structure in the SWAT model 

enables simulation of hydrologic and water quality responses for a single HRU, and 

hence making the model useful for field-scale assessments. This emerging One-HRU 

method in the SWAT model is a very flexible and time-saving method. In this study, the 

data collected from four eddy covariance flux towers set up in dryland cotton, irrigated 

cotton, irrigated biomass sorghum [Sorghum bicolor (L.) Moench] and dryland Old 

World bluestem [Bothriochloa bladhii (Retz) S.T. Blake] (simulated as big bluestem in 

SWAT) fields in the study watershed was used for calibrating the SWAT One-HRU 
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model at the field-scale. The flux data used in this study include the continuous 

measurements of daily ET and bi-weekly crop biomass from 2013 to 2015.  

The overall goal of this study was to calibrate the SWAT One-HRU model using 

the eddy covariance data and then use it for evaluating the field-scale hydrologic impacts 

of land use change from cotton to cellulosic bioenergy crops. Specifically, the objectives 

of this study were to: (1) calibrate the SWAT model against the daily eddy covariance 

ET and bi-weekly crop biomass data from multiple sites using the One-HRU method, (2) 

assess the field-scale hydrological responses of land use change from cotton to the 

perennial crop of big bluestem and annual crop of biomass sorghum, and (3) estimate the 

biofuel production by replacing cotton with big bluestem and biomass sorghum. 

 

6.3 Materials and Methods 

6.3.1 Study Sites 

Four study sites - dryland cotton, irrigated cotton, irrigated biomass sorghum and 

dryland Old World bluestem (simulated as big bluestem in the SWAT model) - were used 

in this study. These sites are located near Plainview, Texas. The long-term (1990-2015) 

average annual precipitation for this region is about 514 mm, and the long-term average 

annual maximum and minimum temperatures are 23°C and 8°C, respectively. The 

topography of the four fields are very flat with slope < 1%. The primary soil type in the 

study sites is Pullman clay loam (fine, mixed, superactive, thermic Torrertic Paleustoll) 

(Soil Survey Staff, 2010). The specific planting and harvesting dates of the fields from 

2013 to 2015 are listed in Table 6.1. Conventional tillage was used for irrigated cotton, 
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dryland cotton and biomass sorghum fields before planting. About 137 kg ha-1 of 

anhydrous ammonia and 33.6 kg ha-1 phosphorus were applied to the irrigated cotton 

each year around May 7 (Table 6.2). No fertilizer was applied to dryland cotton and 

dryland big bluestem. About 384 kg ha-1 of urea and 33.6 kg ha-1 phosphorus were 

applied to the biomass sorghum around May 15 (Table 6.2). The center-pivot irrigation 

system was used to apply water to irrigated cotton and biomass sorghum fields. 

 

Table 6.1 Planting and harvesting dates of irrigated cotton, dryland cotton, biomass 

sorghum and big bluestem 

2013 Irrigated 

cotton 

Dryland cotton Biomass 

sorghum 

Big bluestem 

Planting date May 31 Crop failure May 20 2007 

Harvesting 

date 

November 7 Crop failure October 8 November 

15 

2014     

Planting date June 9 June 1 May 20  

Harvesting 

date 

November 10 October 15 October 14 November 

15 

2015     

Planting date June 1 June 1 June 4  

Harvesting 

date 

November 9 Without 

harvesting 

October 1 November 

15 
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Table 6.2 Simulated management practices for cotton, biomass sorghum and big bluestem in SWAT 

No. Operations Description Input data 

Irrigated cotton 

1 Tillage Parameters (Tillage on May 10) 

 TILL_ID Tillage ID Generic Fall Plowing#  

2 Fertilizer Application Parameters (May 15)* 

 FERT_ID Fertilizer ID Anhydrous Ammonia 

 FRT_KG Amount of fertilizer applied to HRU 137 (kg ha-1) 

3 Fertilizer Application Parameters (May 15) 

 FERT_ID Fertilizer ID Elemental Phosphorus 

 FRT_KG Amount of fertilizer applied to HRU 33.6 (kg ha-1) 

4 Begin Growing Season Parameters ( Planting on June 3) Default 

 Heat units to maturity 2354℃-day ξ 

5 Auto-irrigation Parameters (Start date: June 3; End date: November 9) 

 WSTRS_ID Water stress identifier Plant Water Demand 

 IRR_SCA Irrigation source Shallow Aquifer 

 AUTO_WSTRS Water stress threshold 0.9 

 IRR_EFF Irrigation efficiency 0.80# 

6 Harvest and Kill Parameters (Kill on November 9) Default 

Dryland cotton 

1 Tillage Parameters (Tillage on May 10) 

 TILL_ID Tillage ID Generic Fall Plowing#  

2 Begin Growing Season Parameters (Planting on June 1) Default 

 Heat units to maturity 2354℃-day ξ 

3 Harvest and Kill Parameters (Kill on October 15) Default 

Irrigated biomass sorghum 

1 Tillage Parameters (Tillage on May 10) 

 TILL_ID Tillage ID Generic Fall Plowing#  

2 Fertilizer Application Parameters (May 18) 

 FERT_ID Fertilizer ID Urea 

 FRT_KG Amount of fertilizer applied to HRU 384 (kg ha-1) 

3 Fertilizer Application Parameters (May 18) 

 FERT_ID Fertilizer ID Elemental Phosphorus 

 FRT_KG Amount of fertilizer applied to HRU 33.6 (kg ha-1) 

4 Begin Growing Season Parameters (Planting on May 25) Default 

 Heat units to maturity 1295℃-day ξ 

5 Auto-irrigation Parameters (Start date: May 25; End date: October 8)  

 WSTRS_ID Water stress identifier Plant water demand 

 IRR_SCA Irrigation source Shallow aquifer 

 AUTO_WSTRS Water stress threshold 0.9 

 IRR_EFF Irrigation efficiency 0.80 

6 Harvest and Kill Parameters (Kill on October 8) Default 

Dryland big bluestem 

1 Begin Growing Season Parameters (Planting on May 15) Default 

 Heat units to maturity 1800℃-day ξ 

2 Harvest (only) Parameters (Harvest on November 15) Default 

*The specific dates of the management practices were assigned based on the average value of the date 

from 2013 to 2015 in the fields  

ξ Heat units to maturity for cotton and winter wheat were estimated using the SWAT-PHU program 

(http://swat.tamu.edu/software/potential-heat-unit-program/) 

 

http://swat.tamu.edu/software/potential-heat-unit-program/
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6.3.2 ET Data Collection and Analysis 

Four eddy covariance flux towers were established in the center of the study 

fields at the beginning of planting in 2013. The flux tower instruments included a three-

dimensional sonic anemometer (CSAT-3D, Campbell Scientific, Logan, UT) for 

measuring wind and an open-path infrared gas analyzer (IRGA Model LI-7500, LI-COR, 

Lincoln, NE) for measuring water vapor concentrations in the ambient atmosphere. 

These instruments were placed on the tower facing into the prevailing wind direction 

(south-west) at a height of 1.5 m above the top of the canopy.  Other meteorological 

measurements made at the flux tower site included net radiation (Kipp & Zonen NR-Lite 

net radiometer), global irradiance (LI-190SB pyranometer, LI-COR, Lincoln, NE), air 

temperature and relative humidity (HMP50, Campbell Scientific, Logan,UT), and 

precipitation (TE525 rain gauge, Campbell Scientific, Logan, UT).  Soil volumetric 

water content at 4 cm below the surface was measured using time domain reflectometry 

sensors (CS-616, Campbell Scientific, Logan, UT). Data from the IRGA and sonic 

anemometer were measured at 10Hz sampling rate and stored in a memory card on a 

CR3000 data logger for further analysis. Data from the meteorological sensors were 

measured at 5-sec intervals using the same CR3000 data logger and data were stored as 

30-min average values. More detail about the flux tower instruments can be found in 

Rajan et al. (2013). 

The high frequency water vapor and wind velocity data were analyzed using 

EddyPro 4.0 software (LI-COR Biosciences, Lincoln, NE) to output 30-min average 
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values of latent heat flux (LE).  The 30-min LE data was converted to ET using the 

following equation: 

𝐴 =
𝐿𝐸

𝜌𝜆
 

where LE is latent heat flux in J s-1, ρ is the density of water (1000 kg m-3) and λ is the 

latent heat of vaporization (2.5 x 106 J kg-1). 

 

6.3.3 Plant Data 

The aboveground crop biomass data were collected at biweekly intervals during 

the crop growing season from 2013 to 2015. Plant samples were dried at 65°C, and the 

dry weight of plants were obtained in the laboratory.  

 

6.3.4 SWAT Model Setup 

6.3.4.1 Topography, Soil and Slope 

The 30 m horizontal resolution Digital Elevation Model (DEM) of Hale and 

Floyd Counties, which contains all four flux tower sites, was downloaded from the U.S. 

Geological Survey (http://viewer.nationalmap.gov/viewer/#) and input to the SWAT 

model. The DEM was useful for estimation of watershed topography related parameters 

for the study sites. The finer-scale soils data from the Soil Survey Geographic Database 

(SSURGO) (Soil Survey Staff, 2015) was used in this study. Three slope classes were 

used to classify the study sites according to soil slope: < 0.5%, 0.5%-1% and > 1%. For 

the HRU definition, thresholds of 0% were used for land use, soil type and slope. 

 

http://viewer.nationalmap.gov/viewer/
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6.3.4.2 Climate Data 

Daily climate data (wind velocity, solar radiation, precipitation, maximum 

temperature and minimum temperature) for each site from 2013 to 2015 was obtained 

from the onsite gauges on flux towers. The missing climate data for this period was 

filled with climate data obtained from the National Climatic Data Center (NCDC) 

(NOAA-NCDC, 2016). Weather data from 1992 to 2012 period were also obtained from 

the NCDC weather stations that are closest to the study sites, and used in long-term 

simulations. 

 

6.3.5 SWAT Model Calibration 

In this study, ArcSWAT (Version 2012_2.18 released on 9/9/15) for the ArcGIS 

10.2.2 platform was used. The model simulation period was from 1992 to 2015. The 

model warmup period was from 1992 to 1993. The calibration and validation periods 

were from 01/01/2013 to 12/31/2014 and 01/01/2015 to 12/31/2015, respectively. Before 

using a model, key parameters and initial state variables need to be determined. One 

calibration strategy that has been adopted in multiple model assessment and 

intercomparison projects consists of parameterizing variables based on prior information 

(e.g. from literature or field experiments) without attempting to extensively calibrate 

parameters to match observed variables of interest (Schwalm et al., 2010; Srinivasan et 

al., 2010; Zhang et al., 2015b), and the same strategy was adopted in this study. In this 

case, model performance is highly dependent on the quality of input data. Therefore, 

more focus was placed on deriving data-based agroecosystem parameters to characterize 
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cropping systems across the study sites and using state-of-the-art geospatial data to drive 

the SWAT model.  

 

Table 6.3 Literature and calibrated values of some important hydrologic and crop parameters in 

SWAT 

No. Parameter Description 
Literature 

value* 

Calibrated 

value 
Reference 

Hydrologic parameters 

1 ESCO Soil evaporation compensation factor 0.855 0.90 -- 

2 EPCO Plant uptake compensation factor 1.0 (Default) 0.8 -- 

3 
SOL_AW

C 

Available soil water capacity (mm H2O 

mm‐1 soil) 
0.18 (Default) 0.16 -- 

4 CN2 Curve number for moisture condition II 
Decreased by 

9% 

Decreased 

by 10% 
-- 

Dryland cotton parameters 

1 BIO_E 
Biomass/energy ratio [(kg ha-1)/(MJ m-

2)] 
25 (Default) 30 -- 

2 BLAI Max leaf area index (m2/m2) 4  2.5 
Sarkar et 

al., 2011 

3 
EXT_CO

EF 
Light extinction coefficient 0.65 (Default) 0.8 

Sarkar et 

al., 2011 

Irrigated cotton parameters 

1 BIO_E 
Biomass/energy ratio [(kg ha-1)/(MJ m-

2)] 
25 (Default) 30 -- 

2 BLAI Max leaf area index (m2/m2) 5.98 8.0 -- 

3 
EXT_CO

EF 
Light extinction coefficient 0.78 0.8 

Sarkar et 

al., 2011 

Irrigated biomass sorghum parameters 

1 BIO_E 
Biomass/energy ratio [(kg ha-1)/(MJ m-

2)] 
35 (Default) 45 -- 

2 BLAI Max leaf area index (m2/m2) 5.0 (Default) 8.0 -- 

Dryland big bluestem parameters 

1 BIO_E 
Biomass/energy ratio [(kg ha-1)/(MJ m-

2)] 
14 (Default) 10.3 -- 

2 BLAI Max leaf area index (m2/m2) 2.5 (Default) 2.3 -- 

* Chen, Y., Ale, S., Rajan, N., Morgan, C.L.S., Park, J.Y. 2016. Hydrological responses of land use 

change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High 

Plains of Texas, USA. Global Change Biology Bioenergy. 8:981-999. 

 

When available, the data collected at the study sites (e.g. climate data for 2013-

2015) were used. The finer-scale SSURGO soils data was also used to accurately 

parameterize the model. In addition, important parameters and initial state variables were 

taken from the SWAT model calibrated for the adjacent Double Mountain Fork Brazos 
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watershed in the THP (Section 2; Chen et al., 2016a). Finally, these parameters and 

some additional parameters were manually adjusted to get a good fit between the 

simulated and observed data. The calibrated values of some important hydrologic and 

crop parameters are listed in Table 6.3. 

 

6.3.6 Model Performance Assessment 

The SWAT model performance in predicting daily ET during calibration and 

validation periods was evaluated using three different statistical measures: percent bias 

(PBIAS), Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and square of 

Pearson's product‐moment correlation coefficient (R2) (Legates and McCabe, 1999). In 

this study, we aimed to achieve NSE, R2 and PBIAS of > 0.5, > 0.6 and within ±15%, 

respectively, during the model calibration and validation periods. The model’s 

performance in simulations of aboveground crop biomass was also assessed using NSE, 

R2 and PBIAS and our goal was to achieve NSE, R2 and PBIAS of > 0.5, > 0.6 and within 

±10%, respectively, during the entire simulation period. 

 

6.3.7 Land Use Change Scenario Analysis 

After achieving a satisfactory calibration of the SWAT One-HRU model, 

hypothetical land use change scenario analysis was conducted. Big bluestem and 

biomass sorghum were hypothetically selected to replace cotton. The annual impacts of 

land use change on water balances were evaluated over the period from 1994 to 2015. 

The impacts were assessed under both dryland and irrigated conditions. 
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The management practices for big bluestem and biomass sorghum were set up in 

the SWAT model according to the actual practices followed at the field sites. Big 

bluestem was planted on May 15 of 1992 and harvested without killing on November 

15th of each year for biomass (Table 6.2). Biomass sorghum was planted on May 25 and 

harvested on October 8 in each year. In the scenarios where big bluestem and biomass 

sorghum replaced irrigated cotton, they were also assigned the same irrigation 

management practices as the irrigated cotton. For management of big bluestem as a 

bioenergy crop, about 270 and 180 kg ha-1 of urea was applied to irrigated and dryland 

big bluestem, respectively (Yimam et al., 2014). About 384 and 192 kg ha-1 of urea was 

applied to irrigated and dryland biomass sorghum, respectively, based on the field 

observations in this study (Table 6.2). Conventional tillage was used for both irrigated 

and dryland biomass sorghum. No tillage was simulated for big bluestem. 

 

6.4 Results and Discussion 

6.4.1 Evaluation of the SWAT One-HRU Model for ET Prediction 

6.4.1.1 Cotton 

The NSE, R2 and PBIAS values obtained during the model calibration (2014) and 

validation (2015) periods for the prediction of daily ET from the dryland cotton field 

were 0.61 and 0.52, 0.65 and 0.56, 1.0% and -8.6%, respectively (Figure 6.1). Although 

considered as satisfactory, lower NSE value obtained for the dryland cotton field during 

the validation period was probably due to differences in precipitation data input into the 

model and the actual precipitation that occurred in the field in April and May of 2015 
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(Figure 6.1b). The onsite rain gauge was broken during this time, and hence the adjacent 

rain gauge from the big bluestem field was used for the dryland cotton field. 

 
Figure 6.1 Comparison of observed and simulated daily evapotranspiration at the 

dryland cotton field during the model a) calibration and b) validation periods. 
 

For the irrigated cotton field, the model performance statistics fell under 

satisfactory range during calibration (NSE, R2 and PBIAS: 0.55. 0.63 and -24.8%) and 

validation (NSE, R2 and PBIAS: 0.54. 0.58 and 1.4%) periods (Figure 6.2). The high 

PBIAS during the calibration period was mainly due to under-prediction of ET from June 

to August of 2014. In the SWAT model, auto-irrigation option was used, which resulted 

in application of irrigation water until soil moisture reached field capacity. However, 

producers tend to apply larger amounts of irrigation water in the real situation, which 

might have causes this discrepancy between the predicted and the observed ET during 

the major cotton growing period from June to August of 2014. 
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Figure 6.2 Comparison of observed and simulated daily evapotranspiration at the 

irrigated cotton field during the model a) calibration and b) validation periods. 

 

6.4.1.2 Irrigated Biomass Sorghum 

As shown in Figure 6.3, the predicted daily ET from the irrigated biomass 

sorghum field fit well with the observed ET during the model calibration period. The 

NSE, R2 and PBIAS were 0.67, 0.71, -3.3%, respectively, which represented a good 

agreement. The NSE, R2 and PBIAS during the model validation period were 0.54, 0.61 

and 4.8%, which also denoted a satisfactory match between the simulated and observed 

ET.  
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Figure 6.3 Comparison of observed and simulated daily evapotranspiration at the 

irrigated biomass sorghum field during the model a) calibration and b) validation 

periods. 

 

6.4.1.3 Dryland Big Bluestem 

The simulated daily ET from the dryland big bluestem field closely matched with 

the observed ET during both calibration (2013-2014) and validation (2015) periods 

(Figure 6.4). The NSE, R2 and PBIAS for daily predictions of ET during the model 

calibration period were 0.61, 0.63 and -9.7%, respectively, and they were 0.68, 0.69 and 

-6.1% during the model validation period. The model performance statistics during the 

calibration and validation periods demonstrated “good” agreement between the 

simulated and observed ET according to Moriasi et al. (2007) criteria (Figure 6.4).  

Overall, good to satisfactory match between the predicted and the observed ET 

was achieved during the model calibration and validation periods at all four fields. The 

SWAT One-HRU method was therefore found to be a reasonably good tool for 

simulating hydrologic parameters under various land uses and management practices. 



 

194 
 

 

 
Figure 6.4 Comparison of observed and simulated daily evapotranspiration at the 

dryland big bluestem field during the model a) calibration and b) validation 

periods. 

 

6.4.2 Comparison of SWAT Simulated Crop Biomass with the Field Observations 

6.4.2.1 Cotton 

After calibrating the model for ET simulation, SWAT One-HRU model was 

further calibrated for crop biomass prediction. The NSE, R2 and PBIAS values achieved 

for the prediction of aboveground biomass of dryland cotton from 2014 to 2015, were 

0.88, 0.91 and 0.9%, respectively, which represented a very good agreement between the 

predicted and observed dryland cotton biomasses (Figure 6.5). The simulated 

aboveground biomass of the irrigated cotton also matched very well with the observed 

data with the NSE, R2 and PBIAS values of 0.91, 0.92 and 2.4%, respectively (Figure 

6.6). 
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Figure 6.5 Comparison of observed and simulated crop biomass at the dryland 

cotton field. 
 

 
Figure 6.6 Comparison of observed and simulated crop biomass at the irrigated 

cotton field. 

 

6.4.2.2 Irrigated Biomass Sorghum and Dryland Big Bluestem 

An excellent match was found between the simulated and measured biomass of 

irrigated biomass sorghum, as indicated by the NSE, R2 and PBIAS values of 0.94, 0.96 

and -6.6%, respectively (Figure 6.7). The NSE, R2 and PBIAS values in predicting the 

aboveground biomass of dryland big bluestem over the entire simulation period (2013-

2015) were 0.55, 0.71 and 0.2%, respectively, indicating a reasonable match between the 

simulated and observed big bluestem biomasses under dryland conditions (Figure 6.8). 

The predictions of crop biomass are also well above satisfactory ranges at four fields. 
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The evaluation of the SWAT One-HRU model for crop biomass prediction enhanced our 

confidence to use the calibrated model for predictions of ET and biomass production 

potential. 

 
Figure 6.7 Comparison of observed and simulated crop biomass at the irrigated 

biomass sorghum field. 
 

 
Figure 6.8 Comparison of observed and simulated crop biomass at the dryland big 

bluestem field. 
 

6.4.3 Biomass and Biofuel Production Potential from Replacing Cotton with Big 

Bluestem and Biomass Sorghum 

The highest average annual (1994-2015) biomass was simulated under the 

irrigated biomass sorghum scenario (15.8 Mg ha-1) followed by the dryland biomass 

sorghum scenario (10.7 Mg ha-1) (Table 6.4). The observed average annual (2013-2015) 
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production of biomass in the irrigated biomass sorghum field in this study was about 

16.3 Mg ha-1, which was close to the simulated biomass yield under the irrigated 

biomass sorghum scenario. The simulated biomass under the dryland biomass sorghum 

scenario (10.7 Mg ha-1) was higher than that obtained in the Chen et al. (2016a) SWAT 

modeling study (7.6 Mg ha-1) in the adjacent Double Mountain Fork Brazos watershed. 

This might have been due to application of higher amount of nitrogen fertilizer 

application in the study sites. Limited biomasses (2.6 and 3.1 Mg ha-1: dryland and 

irrigated big bluestem) were simulated from irrigated and dryland big bluestem scenarios 

(Table 6.4). The observed aboveground biomass of the dryland big bluestem at the field 

site in this study, in which fertilizer was not applied, was about 2.1 Mg ha-1. Chen et al. 

(2016a) SWAT simulations also reported a 2.8 Mg ha-1 biomass yield under the dryland 

big bluestem scenario in the adjacent Double Mountain Fork Brazos watershed in the 

THP. 

 

Table 6.4 Average (1994-2015) annual simulated biomass and biofuel production of 

big bluestem and biomass sorghum under the hypothetical land use change 

scenarios 

Big bluestem 
Dryland 

conditions 

Irrigated 

conditions 

Biomass production (Mg ha-1) 2.6 3.1 

Biofuel production* (liter ethanol ha-1) 933 1,131 

Biomass sorghum 
Dryland 

conditions 

Irrigated 

conditions 

Biomass production (Mg ha-1 yr-1) 10.7 15.8 

Biofuel production* (liter ethanol ha-1) 4,556 6,776 

*The theoretical ethanol yield is available from 

http://www.afdc.energy.gov/fuels/ethanol_feedstocks.html 
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Based on the estimated theoretical ethanol yield by the US Department of Energy 

(http://www.afdc.energy.gov/fuels/ethanol_feedstocks.html), the average annual ethanol 

that could be produced with the simulated biomasses of irrigated and dryland biomass 

sorghum were 6,776 and 4,556 liters ha-1, respectively (Table 6.4). The estimated ethanol 

production from the biomasses of irrigated and dryland big bluestem were 1,131 and 933 

liters ha-1, respectively. The biomass sorghum was therefore found to be a promising 

bioenergy crop for the THP.  

 

6.4.4 Simulated Hydrological Fluxes under the Baseline and Hypothetical Land Use 

Change Scenarios 

A comparison of the simulated water balances at the four field sites from 1994 to 

2015 (Table 6.5a) indicated that under the dryland fields of cotton and big bluestem, 

more than 95% of precipitation was lost by ET. About 80% and 83% of total input water 

(precipitation + irrigation) was lost due to ET under the irrigated biomass sorghum and 

irrigated cotton fields (Table 6.5a). Hao et al. (2014) also reported that about 90% of the 

growing season precipitation was lost as the growing season ET under the biomass 

sorghum production systems in the THP. The simulated irrigation water use was 8% 

lower under the irrigated biomass sorghum field compared to the irrigated cotton field. 

In addition, the net groundwater use (irrigation minus percolation) by the irrigated 

biomass sorghum was 13% lower relative to the irrigated cotton land use. The surface 

runoff was 79% lower under the dryland big bluestem field compared to the dryland 

cotton field (Table 6.5a).  
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The rainfall amounts received at the field sites were different. Therefore, in order 

to appropriately compare water dynamics under different land uses, the land use changes 

from cotton to big bluestem and biomass sorghum were evaluated (Table 6.5b). Results 

showed that the average (1994-2015) annual surface runoff under the dryland and 

irrigated big bluestem scenarios decreased by about 86% and 64%, respectively, when 

compared to the dryland and irrigated cotton land uses (Table 6.5b). The higher plant 

populations and lower surface runoff potential (calibrated curve number of 57) of the big 

bluestem compared to cotton (calibrated curve number of 75) led to the decrease in 

surface runoff. Chen et al. (2016a) also predicted that land use change from cotton to big 

bluestem decreased the surface runoff by 94% and 93% under the irrigated and dryland 

conditions, respectively, using the SWAT model in the THP. The simulated average 

annual surface runoff also reduced by 52% and 19% under the dryland and irrigated 

biomass sorghum scenarios (Table 6.5b). However, when cotton was replaced by 

biomass sorghum, average annual percolation decreased by about 100% and 17% under 

the dryland and irrigated biomass sorghum scenarios, respectively.  

The net groundwater use declined by 48% and 11% under the irrigated big 

bluestem and irrigated biomass sorghum scenarios, respectively, relative to the irrigated 

cotton land use. Chen et al. (2016a) SWAT simulations also showed that land use change 

from irrigated cotton to irrigated biomass sorghum and irrigated big bluestem decreased 

the irrigation water use by 54% and 35%, respectively, in the adjacent Double Mountain 

Fork Brazos watershed. This is a very useful finding in the light of rapid groundwater 

depletion in the THP. The ET increased by 3% and 2% under the dryland big bluestem 
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and dryland biomass sorghum scenarios, respectively, compared to the dryland cotton 

land use (Table 6.5b). However, the ET under the irrigated big bluestem and irrigated 

biomass sorghum scenarios was reduced by 13% and 4%, respectively, relative to the 

irrigated cotton land use. 

 

Table 6.5 Comparison of the simulated average (1994-2015) annual water balances 

under the baseline and hypothetical land use change scenarios 

Unit (mm) 
Dryland 

cotton 

Irrigated 

cotton 

Irrigated 

biomass sorghum  

Dryland 

big bluestem 

a) Initial land uses 

Precipitation 480.2 477.1 518.8 479.1 

Irrigation 0 278.3 255.2 [-8.3]# 0 

Evapotranspiration 457.9 630.0 623.5 [-1.0] 469.9 [2.6] 

Surface runoff 15.1 35.6 49.7 [39.7] 3.1 [-79] 

Percolation 3.8 98.5 98.7 [0.42] 3.9 [2.1] 

b) Land use change (cotton replacement) scenarios 

Change percentage 

(%) 

Dryland 

bluestem  

Irrigated 

bluestem 
Dryland sorghum 

Irrigated 

sorghum 

Precipitation 480.2 477.1 480.2 477.1 

Irrigation 0 
234.4 

(-15.8) 
0 241.3 (-13.3) 

Evapotranspiration 
470.6 

(2.8)* 

551.5 

(-12.5) 
468.2 (2.3) 607.2 (-3.6) 

Surface runoff 2.1 (-86) 
12.7 

(-64.4) 
7.2 (-52) 28.9 (-18.7) 

Percolation 0.8 (-80) 
140.2 

(42.4) 
0 (-100) 81.7 (-17.0) 

# Numbers in square bracket indicate the percent change of irrigated biomass sorghum land use compared 

to the irrigated cotton land use and dryland big bluestem compared to the dryland cotton land use 

* Numbers in parentheses indicate the percent change under land use change scenario relative to the cotton 

land use in the irrigated and dryland conditions 

 

Among the simulated bioenergy crops, biomass sorghum yielded more biomass 

than big bluestem (Table 6.4). In addition, biomass sorghum requires less net irrigation 

water use than irrigated cotton, which is very important in view of depleting 

groundwater levels in the Ogallala Aquifer in the THP. Furthermore, the biomass 

sorghum has the potential to decrease surface runoff compared to cotton when they 
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receive the same amount of water (rainfall and/or irrigation water) (Table 6.5). Due to 

the lower net groundwater water use, greater biomass and biofuel production potential, 

and lower surface runoff potential, biomass sorghum was identified as a good bioenergy 

crop to replace cotton in the THP. Big bluestem could also serve as an alternate crop 

because of its ability to protect groundwater. 
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7. SUMMARY AND CONCLUSIONS 

 

7.1 Summary 

Texas High Plains (THP) is one of the important cotton growing regions in the 

US. Agriculture in the THP faces several challenges from declining groundwater levels 

in the underlying Ogallala Aquifer, deteriorating groundwater quality and recurring 

droughts. In addition, climate change studies for this region predict warmer and drier 

summers. Change in land use from cotton to cellulosic bioenergy crops could not only 

address the above challenges, but also assist in meeting the national biofuel target. In 

addition, the THP region holds substantial potential for growing bioenergy crops. 

Assessment of the impacts of land use change from cotton to cellulosic bioenergy crops 

on hydrology and water quality enables better understanding of the associated key 

agroecosystem processes and suggestion of best management practices for sustainable 

agriculture in the THP. The overall goal of this study is to assess the implications of 

biofuel-induced land use change (replacing cotton with cellulosic bioenergy crops) on 

hydrology, water quality and crop yield under current and future climate change 

scenarios in the Double Mountain Fork Brazos watershed in the THP using multiple 

models (SWAT, APEX and Integrated APEX-SWAT).  

As a first step, the SWAT model was calibrated for the study watershed using 

observed streamflow data at two USGS gauges. Later, it was calibrated against observed 

cotton lint yield data. The calibrated model was used to evaluate the impacts of land use 

change from cotton to cellulosic bioenergy crops on water balances in the study 
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watershed, and identification of ideal bioenergy crops for the THP region under the 

irrigated and dryland conditions.  

The APEX model was initially set up for the upstream subwatershed and 

calibrated using the observed streamflow data at Gauge I in the middle of the watershed. 

It was also calibrated against the observed cotton lint yield data. The calibrated APEX 

model was initially used to identify marginal cotton-growing lands for replacement with 

switchgrass. The spatial variability in water use efficiency and water fluxes of ET, 

percolation, surface runoff and soil water content in both irrigated and dryland subareas 

under the baseline cotton and hypothetical switchgrass replacement scenarios were then 

compared and contrasted. 

An integrated APEX-SWAT model was developed based on the above calibrated 

models to take advantage of strengths of these models in simulating certain 

crops/processes. In addition to calibrating the integrated model based on observed 

streamflow at two USGS gauges in the study watershed, it was further calibrated against 

the TN load data at the watershed outlet. The calibrated Integrated APEX-SWAT model 

was used to compare and contrast the impacts of the proposed changes in land use from 

cotton to perennial grasses on water and nitrogen balances under both irrigated and 

dryland conditions. Additionally, the biomass and biofuel production potential of the 

proposed bioenergy crops were estimated. 

Finally, the evaluated SWAT hydrology model was calibrated for water quality 

predictions at the watershed outlet, and used to assess the combined effects of land use 

change from cotton to perennial grasses and climate change on watershed hydrology and 
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water quality. The CMIP5 future climate data projected by 19 GCMs from two RCP 

emission scenarios of RCP4.5 (moderate) and RCP8.5 (severe) were obtained for two 

30-year periods: 2040 to 2069 (middle of the 21st century) and 2070 to 2099 (end of the 

21st century), and used in these simulations. The  impacts of land use change from cotton 

to perennial grasses on water balances, TN load and biomass production potential under 

the historic and projected future climate change (2040-2069 RCP4.5, 2040-2069 

RCP8.5, 2070-2099 RCP4.5 and 2070-2099 RCP8.5) scenarios were compared and 

contrasted with respective historic and future cotton land use scenarios. 

 

7.2 Conclusions 

The following conclusions were drawn from this study: 

1. When compared to the baseline cotton scenario, simulated average annual (1994-

2009) surface runoff decreased by about 88% under the perennial grass 

scenarios, and increased by about 59% under the biomass sorghum scenario. 

2. The simulated average annual percolation increased by about 28% under the 

perennial grass scenarios compared to the baseline cotton scenario. Perennial 

grass land use change scenarios also suggested an increase in soil water content 

from August to April. 

3. About 27, 17, 4 and 12 Mg ha-1 yr-1 of biomass could potentially be produced 

under the irrigated Miscanthus, switchgrass, big bluestem and biomass sorghum 

land uses, respectively. Based on the suggested theoretical ethanol yield by the 

US Department of Energy, about 4931, 7548, 1170 and 3279 liters ha-1 of biofuel 
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could potentially be produced from irrigated Miscanthus, switchgrass, big 

bluestem and biomass sorghum, respectively. 

4. Under the dryland conditions, about 16, 8, 8 and 3 Mg ha-1 yr-1 of biomass could 

potentially be produced under the land uses of Miscanthus, switchgrass, big 

bluestem and biomass sorghum, respectively. The estimated biofuel production 

potential from these land uses is 4398, 2347, 778 and 2143 liters ha-1. 

5. Miscanthus and switchgrass were found to be ideal bioenergy crops for the 

dryland and irrigated conditions in the study watershed, respectively due to their 

higher water use efficiency, better potential for water conservation, greater 

biomass and biofuel production potential, and minimum crop management.  

6. Surface runoff to cotton yield ratio was found to be a good criterion for 

identifying/mapping marginal cotton-growing areas in the watershed for potential 

replacement with switchgrass. 

7. The average annual NO3-N load in surface runoff and NO3-N leaching to 

groundwater were reduced by 86% and 100%, respectively, under the perennial 

grass scenarios relative to the baseline cotton scenario. High percentage of 

nitrogen uptake by perennial grasses was the main reason for the reduced 

nitrogen losses through surface runoff and leaching. 

8. The simulated annual irrigation water use under the future perennial grass land 

use scenarios of 2040-2069 RCP4.5, 2040-2069 RCP8.5, 2070-2099 RCP4.5 and 

2070-2099 RCP8.5 was reduced by 62%, 69%, 66% and 89%, respectively, than 
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that under respective future cotton land use scenarios according to the 19 GCM 

projections. 

9. The biofuel-induced land use change from cotton to perennial grasses showed the 

potential to improve water quality by reducing the median discharge of the TN 

load at the watershed outlet by about 30% based on 19 GCM projections under 

the future climate change scenarios. 

10. A substantial increase in dryland Miscanthus biomass yield by about 35% could 

be achieved under the future climate change scenarios based on 19 GCM 

projections. However, the simulated irrigated switchgrass biomass yield was 

projected to decline by 16% under the future climate change scenarios. The 

elevated CO2 concentrations, reduced water stress days and the changes in 

temperature stress days under the future climate change scenarios were the 

primary reasons for the differences in future biomass yields of perennial grasses. 

11. The One-HRU method in the SWAT model demonstrated potential to simulate 

the hydrologic impacts of biofuel-induced land use change at the field-scale.  

 

7.3 Future Work 

Some suggestions for future work include: i) determining the environmental 

impacts of growing perennial bioenergy crops in the “marginal lands” and “riparian 

buffers” of the study watershed only instead of replacing row crops from agricultural 

lands, and ii) studying carbon dynamics associated with the land use change from cotton 

to perennial grasses by calibrating the models using observed daily net ecosystem 
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exchange (NEE) data collected from the eddy covariance flux towers in the Texas High 

Plains. 
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