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ABSTRACT

In this dissertation, we study two network problems using matrices as our primary

analysis tools.

First, the limits of treating interference as noise are studied for the canonical two-

user symmetric Gaussian interference channel. A two-step approach is proposed for

finding approximately optimal input distributions in the high signal-to-noise ratio (SNR)

regime. First, approximately and precisely optimal input distributions are found for the

Avestimehr-Diggavi-Tse (ADT) linear deterministic model. These distributions are then

translated, systematically, into Gaussian models, which we show can achieve the sum ca-

pacity to within a finite gap.

Next, the problem of clustering for brain networks based on the resting-state fMRI

time-series data is studied. Our approach is based on the classical K-means algorithm,

using Mahalanobis distance as the distance metric. We first consider the hypothetical case

where the ground truth is available, so an optimal distance metric can be learned from

it. This naturally motivates an unsupervised clustering algorithm that alternates between

clustering and metric learning. The performance of the proposed algorithm is evaluated

via computer simulations.
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1. INTRODUCTION

1.1 Treating Interference as Noise for Interference Network
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Ŵ1

Ŵ2
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Figure 1.1: Two-user symmetric Gaussian interference channel

Interference management is one of the most critical issues in wireless communication

network. Perhaps the simplest model to study interference management is the memory-

less stationary two-user symmetric Gaussian interference channel, for which the channel

outputs Y1 and Y2 at their respective users can be written as:

Y1 =
√

SNRX1 +
√

INRX2 + Z1 (1.1)

Y2 =
√

INRX1 +
√

SNRX2 + Z2. (1.2)

Here, X1 and X2 are channel inputs that are subject to a unit power constraint, and the

noise Z1 and Z2 are standard Gaussian and are independent of the input signals. Since both

the signal and the noise power in the above model are normalized to one, the quantities

SNR and INR represent the signal-to-noise ratio and interference-to-noise ratio, respec-

tively, for both users.

For the above two-user (SNR, INR) symmetric Gaussian interference channel, the fol-
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lowing characterization on the sum capacity has been known since the early 1970s [1]:

Csum(SNR, INR) = lim
k→∞

sup
1

k
[I(Xk1;Yk1) + I(Xk2;Yk2)] (1.3)

where for i = 1, 2, Xki := (Xi(t) : t = 1, . . . , k) and Yki := (Yi(t) : t = 1, . . . , k),

and for each k ∈ N , the supreme is over all possible product distributions on (Xk1,X
k
2)

such that E[( 1
k
‖Xki ‖2)] ≤ 1 for i = 1, 2. Note that finding an explicit expression for

the sum capacity via the above limiting characterization requires solving a sequence of

optimization problems over input distributions. When INR(1 + INR)2 ≤ SNR2

4
, it has

been recently shown [2–4] that Gaussian inputs with k = 1 can achieve the sum capacity.

For the other parameter regimes, however, the problem of finding a sequence of input

distributions to achieve the sum capacity remains open.
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Figure 1.2: Han-Kobayashi scheme

Deviating from the limiting characterization, a different line of quests for an explicit

characterization of the sum capacity focuses on the so-called Han-Kobayashi scheme [5].

These quests have led to a precise characterization of the sum capacity when INR ≥

SNR(1 + SNR) [6] and an approximate characterization of the sum capacity to within

one bit for all parameter regimes [7]. The essential idea of Han-Kobayashi scheme is to

2



split the message at each transmitter into a private message and a common message and the

common message needs to be decodable at both the intended and the unintended receivers.

By comparison, the communication scheme for achieving the limiting expression (1.3) is

to simply treat the interference as adding to the noise floor at each receiver, which is very

appealing from the engineering viewpoint due to its simplicity.

In their recent work [8] [9], Dytso et al. revisited the limiting characterization (1.3) for

the two-user symmetric Gaussian interference channel and proposed mixtures of discrete

and Gaussian distributions (with k = 1) for the channel inputs. Focusing on the high-SNR

regime where INR = SNRα for some fixed α and SNR→∞, it was shown in [8] that the

proposed input distributions can achieve the sum capacity to within O(log log(SNR)) for

any α > 0.

Driven by the desire of understanding the rationale behind the proposed mixtures of

discrete and Gaussian distributions and the mathematical nature of the O(log log(SNR))

gap result [8], in this dissertation we consider a two-step approach for finding approxi-

mately optimal input distributions for the two-user symmetric Gaussian interference chan-

nel. First, we shall consider the limiting characterization for the two-user symmetric

Avestimehr-Diggavi-Tse (ADT) linear deterministic interference channel [10] and find in-

put distributions that can (approximately) achieve the sum capacity. Next, we shall trans-

late, systematically, the so-found (approximately) optimal input distributions for the linear

deterministic model to the Gaussian model and show that the translations can also achieve

the sum capacity to within O(1) for any α 6= 1. Different from the mixtures of discrete

and Gaussian distributions proposed in [8], the approximately optimal input distributions

found via the ADT linear deterministic model is purely discrete for all parameter regimes.

We mention here that there has been a lot of success recently in using the ADT linear

deterministic model [10] to find approximate characterizations of wireless network capac-

ity. Most of these success relies on a translation from the linear deterministic model to

3



the Gaussian model at a scheme level. By comparison, the proposed translation in this

dissertation is at the distribution level and is more along the line of [11] for studying the

fundamental limits of secret writing on dirty paper.

1.2 Clustering for Brain Network via Metric Learning

Brain is also a network. Some brain regions are functionally connected even they are

in different places. One popular research topic recently is to analysis the functionality

connectivity between brain regions with network analysis method [12] [13]. The basic

unit in the brain network is voxel which represents a relatively small area of brain cells.

Thanks to the Magnetic resonance imaging (MRI) technology, we can successively scan

the Blood Oxygentation Level Dependent (BOLD) signal of each voxel to form a so-

called functional-MRI(fMRI) time-series. Studies in [14] [15] [16] showed that when test

participants were asked to relaxed and not thinking particular, the correlation between

the acquired Resting-State fMRI time-series can reflect the functional connectivity among

voxels.

A clustering algorithm (K-means [17], Normalized Cut [18] [19], Spectral Cluster-

ing [20] [19]) can then be chosen to group voxels with similar function together. However,

since the time-series data is always noise-corrupted, the clustering result may not get close

enough to the ground truth. Recently, [21] [22] proposed a large-margin supervised clus-

tering approach to learn a Mahalanobis distance from the ground truth. The learned metric

lead to a relatively better clustering result. In this dissertation, we first follow [21] [22]

to discussed the performance of a supervised clustering algorithm for a synthetic fMRI

time-series dataset and then proposed an iterative unsupervised clustering algorithm for

the brain network since the ground truth is not always available.

4



1.3 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 presents our result

on the optimality of treating interference as noise for the two user symmetric Gaussian

interference channel, which was partly reported in [23]. Chapter 3 presents our discussion

on the clustering for brain network with metric learning. The performance of our proposed

unsupervised clustering algorithm is shown via computer simulations. Finally, in Chapter

4, we summarize our main contributions in this dissertation and discuss some possible

future research directions.
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2. TREATING INTERFERENCE AS NOISE FOR TWO-USER SYMMETRIC

GAUSSIAN INTERFERENCE CHANNELS*

2.1 Two-user Symmetric ADT Linear Deterministic Interference Channel

2.1.1 Channel Model

For any n,m ∈ N , let q := max(n,m) and S be a q × q down-shift matrix.

S =



0 0 0 . . . 0

1 0 0 . . . 0

0 1 0 . . . 0

... . . . ...

0 . . . 0 1 0


(2.1)

A two-user symmetric (n,m) ADT linear deterministic interference channel is given by

[10]:

Y1 = Sq−nX1 + Sq−mX2 (2.2)

Y2 = Sq−nX2 + Sq−mX1 (2.3)

where X1,X2,Y1,Y2 ∈ Fq2 and all matrix multiplications and additions are over F2. For

the above ADT linear deterministic interference channel, an explicit characterization of

©∗ c IEEE 2015. Part of the results reported in this chapter are reprinted with permission from Shuo Li, 
Yu-Chih Huang, Tie Liu, and Henry D. Pfister, On the Limits of Treating Interference as Noise for Two-
user Symmetric Gaussian Interference Channels, IEEE International Symposium on Information Theory, 
June, 2015
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the sum capacity of the channel is known [24] and is given by:

Csum(n,m) =



2(n−m), for α ∈
(
0, 1

2

]
2m, for α ∈

(
1
2
, 2
3

]
2n−m, for α ∈

(
2
3
, 1
)

m, for α ∈ (1, 2)

2n, for α ∈ [2,∞),

(2.4)

where α := m
n

.

2.1.2 Main Results

The following result is implicit in [25].

Theorem 1. For any n,m ∈ N such that α ∈
(
0, 2

3

]
∪ [2,∞), there exists a product

distribution on (X1,X2) such that

I(X1;Y1) + I(X2;Y2) = Csum(n,m). (2.5)

For any n,m ∈ N such that α ∈
(
2
3
, 1
)
∪ (1, 2), there exists a product distribution on

(X1,X2) such that

I(X1;Y1) + I(X2;Y2) ≥ Csum(n,m)− 1 (2.6)

We note here that for α ∈
(
2
3
, 1
)
∪ (1, 2), even though the input distributions that

we consider for Theorem 1 are not precisely optimal, translating them into the Gaussian

model suffices to achieve the sum capacity to within O(1).

The following result is new to the best of our knowledge.

Theorem 2. For any n,m ∈ N such that α ∈
(
2
3
, 1
)
∪ (1, 2), there exists a product

7



distribution on (X2
1,X

2
2) such that

1

2

[
I(X2

1;Y
2
1) + I(X2

2;Y
2
2)
]

= Csum(n,m). (2.7)

Whether k ≥ 2 is necessary to achieve the sum capacity for α ∈
(
2
3
, 1
)
∪(1, 2) remains

unknown.

2.1.3 Proof of Theorem 1

Fix n,m ∈ N such that α = m
n
6= 1. Let U1,U2 be two i.i.d random vectors of length

r with entries drawn independently and uniformly from F2. For i = 1, 2, let

Xi = EUi (2.8)

for some E ∈ Fq,r2 . For the above symmetric choice of (X1,X2), by defining A = Sq−n

and B = Sq−m, we have

I(X2;Y2)

= I(X1;Y1)

= H(Y1)−H(Y1|X1)

= H(Sq−nEU1 + Sq−mEU2)−H(Sq−mEU2)

= rank([Sq−nE Sq−mE])− rank(Sq−mE)

= rank([AE BE])− rank(BE) (2.9)

where both ranks are evaluated in F2.

We now present our choice of E based on the following five different regimes of α.

8



Case 1: α ∈ (0, 1
2
] (very weak interference channel). Let F1 ∈ Fm,n2 and F2 ∈

Fn−2m,n2 such that all rows from F1, F2 are linearly independent. We can choose

E =


F1

F2

0m,n

 . (2.10)

Then

rank([AE BE])

= rank(


F1 0m,n

F2 0n−2m,n

0m,n F1

)

= n, (2.11)

and

rank(BE) = rank(F1) = m, (2.12)

which leads to

(2.9) = n−m =
1

2
Csum. (2.13)

Case 2: α ∈ (1
2
, 2
3
) (weak interference regime). Let F1 ∈ Fn−m,n2 and F2 ∈ F2m−n,n

2

9



such that [F T
1 , F

T
2 ]T is full-ranked. We can choose

E =


F1

0n−m,n

F2

 . (2.14)

Then

rank([AE BE])

= rank(


F1 0n−m,n

0n−m,n F1

F2 02m−n,n

)

= n, (2.15)

and

rank(BE) = rank(F1) = n−m, (2.16)

which leads to

(2.9) = n− (n−m) = m =
1

2
Csum. (2.17)

Case 3: α ∈
(
2
3
, 1
)

(moderate interference regime). For this regime, we shall con-

sider sub-regimes α ∈
[

2l
2l+1

, 2l+2
2l+3

)
for l ∈ N . For any fixed l ∈ N , let F1, F3, . . . , F2l−1 ∈

Fb
2l+1
2
mc−ln,n

2 , F2, F4, . . . , F2l−2 ∈ F(l+1)n−b 2l+3
2
mc,n

2 , and F2l, F2l+1 ∈ Fn−m,n2 such that all

rows from F1, F2, . . . , F2l+1 are linearly independent.

10



We shall choose

E =



F1

F2

F3

...

F2l−2

F2l−1

F2l

F2l−1

F2l−2

...

F3

F2

F1

0n−m,n

F2l+1



. (2.18)

11



Then

rank([AE BE]) = rank(



F1 0b 2l+1
2
mc−ln,n

F2 0(l+1)n−b 2l+3
2
mc,n

F3 F1

...

F2l−2 F2l−4

F2l−1 F2l−3

F2l


F2l−2

F2l−1

F2l−1

F2l−2

 F2l

F2l−3 F2l−1

...
...

F3 F5

F2 F4

F1 F3

0(l+1)n−b 2l+3
2
mc,n F2

0b 2l+1
2
mc−ln,n F1

F2l+1 0n−m,n



) (2.19)

12



(2.19) = rank(



F1 0

F2 0

F3 0

...

F2l−2 0

F2l−1 0

F2l 0

0 F2l

0 F2l−1

...
...

0 F5

0 F4

0 F3

0 F2

0 F1

F2l+1 0



) =


n, m is even

n− 1,m is odd

(2.20)

Note that the solid lines here indicate that the submatrix between them have same numbers

of rows.

Remark 1. (Explanation on n − 1) Although most of the sub matrices have the floor

operation on their size, the number of rows of [F T
odd, F

T
even]T is fixed. For example, when

m is odd, F1 has b2l+1
2
mc − ln rows which will loss 1

2
, F2 has (l + 1)n − b2l+3

2
mc rows

which will gain 1
2
, so that [F T

1 , F
T
2 ]T has n−m rows together. After counting the number

of sub matrices, only [F2l−1 0] and [0 F2l−1] has "half bit loss" which combine a 1 bit loss

in total.

13



Then

rank(BE) = rank(



F1

F2

F3

...

F2l−2

F2l−1

F2l

F2l−1

F2l−2

...

F3

F2

F1



) =


1
2
m,m is even

1
2
m− 1

2
,m is odd

(2.21)

which leads to

(2.9) =


n− 1

2
m = 1

2
Csum ,m is even

n− 1
2
m− 1

2
= 1

2
Csum − 1

2
,m is odd

≥ 1

2
Csum −

1

2
(2.22)

Case 4: α ∈ (1, 2) (strong interference regime). For this regime, we shall consider

sub-regimes α ∈
(
2l+2
2l+1

, 2l
2l−1

]
for l ∈ N . For any fixed l ∈ N , let F1, F2, . . . Fl−1 ∈

Fm−n,m2 , Fl, Fl+1 ∈ Fln−d
2l−1
2
me,m

2 , and Fl+2 ∈ Fd
2l+1
2
me−(l+1)n,m

2 such that all rows from

F1, F2, . . . , Fl+2 are linearly independent.

14



We shall choose

E =



F1

F2

...

Fl

Fl+1

Fl+2

Fl

Fl−1
...

F2

F1



. (2.23)

15



Then

rank([AE BE]) = rank(



0m−n,m F1

F1 F2

...
...

Fl−2 Fl−1

Fl−1

Fl




Fl

Fl+1

Fl+2

Fl+1 Fl

Fl+2

Fl

 Fl−1

Fl−1 Fl−2
...

...

F3 F2

F2 F1

F1 0m−n,m



) (2.24)

16



(2.24) = rank(



0 F1

0 F2

...
...

0 Fl−1

0


Fl

Fl+1

Fl+2

Fl+1 0

Fl+2

Fl

 0

Fl−1 0

...
...

F3 0

F2 0

F1 0



) =


m, m is even

m− 1,m is odd

(2.25)

Note that the solid lines here indicates that the submatrix between them have same num-

bers of rows. Similar to the previous regime, this time, only [0 Fl] and [Fl+1 0] have ‘half

bit loss’ which combines to 1 in total.

17



and

rank(BE) = rank(



F1

F2

...

Fl

Fl+1

Fl+2

Fl

Fl−1
...

F2

F1



) =


1
2
m,m is even

1
2
m− 1

2
,m is odd

(2.26)

which leads to

(2.9) =


1
2
m = 1

2
Csum ,m is even

1
2
m− 1

2
= 1

2
Csum − 1

2
,m is odd

≥ 1

2
Csum −

1

2
, (2.27)

Case 5: α ∈ [2,∞) (Very strong interference regime). Let F1 ∈ Fn,n2 be full-ranked,

we can choose

E =

 F1

0m−n,n

 . (2.28)

18



Then

rank([AE BE]) = rank(


0n,m F1

0m−2n,n 0m−2n,n

F1 0n,n

)

= 2n, (2.29)

and

rank(BE) = rank(F1) = n, (2.30)

which leads to

(2.9) = 2n− n = n =
1

2
Csum. (2.31)

This complete the proof of Theorem 1.

2.1.4 Proof of Theorem 2

For notational simplicity, we shall consider the channel inputs X2
1 and X2

2 (over two

channel uses) as length-2q vectors in F2 (where the first q components correspond to the

first channel use and the last q components correspond to the second channel use which

are separated by dashed line). As before, let U1,U2 be two i.i.d random vectors of length

r with entries drawn independently and uniformly from F2. For i = 1, 2, let

Xi = EUi (2.32)

for some E ∈ F2q,r
2 .
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For α ∈
(
2
3
, 1
)
, we shall consider sub-regimes α ∈

(
l
l+1
, l+1
l+2

]
for l ∈ N − {1}. Our

choice of E depends on the parity of l. When l is even, let F1, F3, F7 ∈ F(l+1)m−ln,2n−m
2 ,

F2, F6 ∈ F(l+1)n−(l+2)m,2n−m
2 , and F4, F5, Gi, Hi ∈ Fn−m,2n−m2 where i = 1, . . . , l

2
− 1

such that all rows from G1, . . . , G l
2
−1, H1, . . . , H l

2
−1, F1, . . . , F7 are linearly independent.

We shall choose

E =



G1

0n−m,2n−m
...

G l−2
2

0n−m,2n−m

F1

F2

F3

0n−m,2n−m

F4

−−−−
H1

0n−m,2n−m
...

H l−2
2

0n−m,2n−m

F5

0n−m,2n−m

F3

F6

F7



. (2.33)

Note that the block F3 (highlighted with surrounding boxes) is used in both channel uses.

When l is odd, let F1, F3, F5, F9 ∈ F(l+1)m−ln,2n−m
2 , F2, F4, F8 ∈ F(l+1)n−(l+2)m,2n−m

2 ,

andF6, F7, Gi, Hi ∈ Fn−m,2n−m2 where i = 1, . . . , l−3
2

such that all rows fromG1, . . . , G l−3
2
,
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H1, . . . , H l−3
2
, F1, . . . , F9 are linearly independent. We shall choose

E =



G1

0n−m,2n−m
...

G l−3
2

0n−m,2n−m

F1

F2

F3

F4

F5

0n−m,2n−m

F6

−−−−
H1

0n−m,2n−m
...

H1 l−3
2

0n−m,2n−m

F7

0n−m,2n−m

F3

F4

04m−3n,2n−m

F8

F9



. (2.34)

For α ∈ (1, 2), we shall consider the sub-regimes α ∈
[
l+2
l+1
, l+1

l

)
for l ∈ N . Our choice

of E again depends on the parity of l. When l odd, let F1, F3, F4 ∈ F(l+1)n−lm,m
2 , F2, F5 ∈

F(l+1)m−(l+2)n,m
2 , and Gi, Hi ∈ Fm−n,m2 such that all rows from G1, . . . , . . . , G l−1

2
, H1, . . . ,
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H l−1
2
, F1, . . . , F5 are linearly independent. We shall choose

E =



G1

0m−n,m
...

G l−1
2

0m−n,m

F1

F2

F3

0m−n,m

−−−−

H1

0m−n,m
...

H l−1
2

0m−n,m

F4

F5

F1

0m−n,m



. (2.35)

When l is even, let F1, F4, F5, F7 ∈ F(l+1)n−lm,m
2 , F2, F3, F6 ∈ F(l+1)m−(l+2)n,m

2 , and

Gi, Hi ∈ Fm−n,m2 where i = 1, . . . , l
2
− 1 such that all rows from G1, . . . , G l

2
−1, H1, . . . ,
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H l
2
−1, F1, . . . , F7 are linearly independent. We shall choose

E =



G1

0m−n,m
...

G l
2
−1

0m−n,m

F1

F2

0(l+1)n−lm

F3

F4

0m−n,m

−−−−
H1

0m−n,m
...

H l−1
2
−1

0m−n,m

F5

F6

0(l+1)n−lm

F2

F7

0m−n,m



. (2.36)

With the above choices of E, we have

1

2

[
I(X2

1;Y
2
1) + I(X2

2;Y
2
2)
]

= Csum(n,m)

for any α ∈
(
2
3
, 1
)
∪ (1, 2). The proof is omitted for brevity.
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2.2 Two-user Symmetric Gaussian Interference Channel

2.2.1 Main Result

Theorem 3. For the two-user symmetric (SNR, INR) Gaussian interference channel with

INR = SNRα and SNR→∞, there exists a product distribution on (X1,X2) with purely

discrete marginals such that

I(X1;Y1) + I(X2;Y2)

≥ Csum(SNR, SNRα)−O(1) (2.37)

for any α > 0 such that α 6= 1.

2.2.2 Proof of Theorem 3

To translate the (approximately) optimal input distributions proposed for the ADT lin-

ear deterministic model to the Gaussian model, we shall view the inputs to the linear

deterministic model as binary representations of the inputs to the Gaussian model. More

specifically, each distinct block Fj translates into two i.i.d. random variables F1,j and F2,j

that are uniform over a PAM constellation. The size of the PAM constellation and the

power level of F1,j and F2,j are determined by the number of rows of Fj and the relative

position of Fj in E, respectively.

To make the correspondence between the linear deterministic model and the Gaussian

model more explicit, let us define

n :=
1

2
log SNR (2.38)

m :=
1

2
log INR =

1

2
log SNRα = nα. (2.39)

(We therefore have n → ∞ and hence m → ∞ for any fixed α > 0 in the limit as
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SNR → ∞.) With the above definition of m,n, we can rewrite the upper bound of the

sum capacity in [7]

Csum(SNR, INR) ≤



log( 1+22n

1+22m
), for α ∈

(
0, 1

2

]
log(1 + 22m + 22n

1+22m
), for α ∈

(
1
2
, 2
3

]
1
2

log
(

(1+22n)(1+22m+22n)
1+22m

)
, for α ∈

(
2
3
, 1
)

1
2

log (1 + 22m + 22n) , for α ∈ (1, 2)

log (1 + 22n) , for α ∈ [2,∞)

, (2.40)

where α := m
n

.

We first introduce the following proposition from [9], with the original proof from [26].

Proposition 1. Let XD be a discrete random variable with minimum distance dmin(XD) >

0. Let Z be a zero-mean unit-variance random variable independent of XD . Then

I(XD;Y ) ≥ H(XD)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

12

d2min(XD)

)
(2.41)

Proof. See Appendix A.

We now present the proof of Theorem 3 based on the following five different regimes

of α.

Case 1: α ∈ (0, 1
2
]. In this regime, F1 ∈ Fm,n2 translates into two i.i.d random variables

F1,1 and F2,1 that are uniform over PAM(2m) and F2 ∈ Fn−2m,n2 translates into two i.i.d

random variables F1,2 and F2,2 that are uniform over PAM(2n−2m).
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Then the choice

E =


F1

F2

0m,n

 . (2.42)

translates into the following input distributions for the Gaussian model

Xi = 2−n(2m+(n−2m)Fi,1 + 2mFi,2)

= 2−n(2n−mFi,1 + 2mFi,2), (2.43)

for i = 1, 2 where all four random variables F1,1,F2,1,F1,2,F2,2 are assumed to be inde-

pendent of each other. Note that the terms m and n−2m represent the numbers of rows of

the blocks 0m,n and F2 in E respectively, and the term 2−n is chosen such that E[X2
i ] ≤ 1

for i = 1, 2.

The mutual information between the channel inputs and outputs can be calculated as

follows

I(X2;Y2) = I(X1;Y1)

= I(2nX1 + 2mX2; 2nX1 + 2mX2 + Z1)− I(2mX2; 2mX2 + Z1). (2.44)

To bound from below the mutual information I(2nX1 + 2mX2; 2nX1 + 2mX2 + Z1), note

that 2nX1 + 2mX2 = 2n−mF1,1 + 2mF1,2 + F2,1 + 22m−nF2,2.
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For α ∈ (0, 1
2
], the last term 22m−nF2,2 on the righthand side satisfies

E[(22m−nF2,2)
2] → 0 in the limit as n → ∞. Thus it is below the "noise floor", and we

rewrite

2nX1 + 2mX2 = 2nXA + 22m−nF2,2, (2.45)

where

XA = 2n−mF1,1 + 2mF1,2 + F2,1. (2.46)

By the mutual independence among XA, F2,2 and Z1, we have

I(2nX1 + 2mX2; 2nX1 + 2mX2 + Z1)

= h(XA + 2m−nF2,2 + Z1)− h(Z1)

≥ h(XA + Z1)− h(Z1)

= I(XA;XA + Z1). (2.47)

To further bound from below the mutual information I(XA;XA + Z1), we shall use the

following simple fact on XA:

Fact 1. XA is uniform over a discrete constellation of size N(XA) = 2n with minimum

distance dmin(XA) = 1.
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Combine the Fact 1 and Proposition 1 we have

I(XA;XA + Z1) ≥ H(XA)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

12

d2min(XA)

)

= n log 2− 1

2
log

(
2πe

12

)
− 1

2
log 13 (2.48)

To bound from above the mutual information I(2mX2; 2mX2 + Z1), note that

2mX2 = F2,1 + 22m−nF2,2, (2.49)

where the last term 22m−nF2,2 on the right-hand side is below the noise floor as before. We

thus have

I(2mX2; 2mX2 + Z1)

= h(2mX2 + Z1)− h(Z1)

= h(2mX2 + Z1)− h(22m−nF2,2 + Z1) + [h(22m−nF2,2 + Z1)− h(Z1)]

= I(F2,1; 2mX2 + Z1) + I(22m−nF2,2; 22m−nF2,2 + Z1)

≤ H(F2,1) +
1

2
log[1 + E[(22m−nF2,2)

2]]

≤ m log 2 +
1

2
log 2. (2.50)
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Collecting results from above we have

I(X1;Y1) + I(X2;Y2) ≥ 2(n−m) log 2− log

(
2πe

12

)
− log 13− log 2

= 2(n−m)− c1, (2.51)

where c1 is a constant.

Case 2: α ∈ (1
2
, 2
3
]. In this regime, F1 ∈ Fn−m,n2 translates into two i.i.d random

variables F1,1 and F2,1 that are uniform over PAM(2n−m) and F2 ∈ F2m−n,n
2 translates into

two i.i.d random variables F1,2 and F2,2 that are uniform over PAM(22m−n) . Then the

choice

E =


F1

0n−m,n

F2

 (2.52)

translates into the following input distributions for the Gaussian model

Xi = 2−n(2(n−m)+(2m−n)Fi,1 + Fi,2)

= 2−n(2mFi,1 + Fi,2), (2.53)

for i = 1, 2 where all four random variables F1,1,F2,1,F1,2,F2,2 are assumed to be inde-

pendent of each other. Note that the terms n −m and 2m − n represent the numbers of

rows of the blocks 0n−m,n and F2 in E respectively, and the term 2−n is chosen such that

E[X2
i ] ≤ 1 for i = 1, 2.
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As (2.44) in Case 1, to bound from below the mutual information I(2nX1 + 2mX2;

2nX1 + 2mX2 + Z1) , note that

2nX1 + 2mX2 = 2mF1,1 + 22m−nF2,1 + F1,2 + 2m−nF2,2. (2.54)

For α ∈ (1
2
, 2
3
], the last term 2m−nF2,2 on the righthand side satisfies E[(2m−nF2,2)

2]

→ 0 in the limit as n→∞. Thus it is below the "noise floor", and we rewrite

2nX1 + 2mX2 = 2nXB + 2m−nF2,2, (2.55)

where

XB = 2mF1,1 + 22m−nF2,1 + F1,2. (2.56)

By the mutual independence among XB, F2,2 and Z1, as (2.47) in Case 1, we can also

claim that

I(2nX1 + 2mX2; 2nX1 + 2mX2 + Z1) ≥ I(XB;XB + Z1) (2.57)

and a simple fact on XB:

Fact 2. XB is uniform over a discrete constellation of size N(XB) = 2n with minimum

distance dmin(XB) = 1.
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Combine the Fact 2 and Proposition 1 we have

I(XB;XB + Z1) ≥ H(XB)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

12

d2min(XB)

)

= n log 2− 1

2
log

(
2πe

12

)
− 1

2
log 13 (2.58)

To bound from above the mutual information I(2mX2; 2mX2 + Z1), note that

2mX2 = 22m−nF2,1 + 2m−nF2,2, (2.59)

where the last term 2m−nF2,2 on the right-hand side is below the noise floor as before. We

thus have

I(2mX2; 2mX2 + Z1)

≤ H(22m−nF2,1) +
1

2
log[1 + E[(2m−nF2,2)

2]]

≤ (n−m) log 2 +
1

2
log 2. (2.60)

Collecting results from above we have

I(X1;Y1) + I(X2;Y2) ≥ 2m log 2− log

(
2πe

12

)
− log 13− log 2

= 2m− c2, (2.61)

where c2 is a constant.

Case 3: α ∈ (2
3
, 1). In this regime, consider sub-regimes α ∈

[
2l

2l+1
, 2l+2
2l+3

)
for
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l = 1, 2, 3, . . . , F1, F3, . . . , F2l−1 ∈ Fb
2l+1
2
mc−ln,n

2 translates into 2l i.i.d random variables

F1,1,F1,3, . . . ,F1,2l−1 and F2,1,F2,3, . . . ,F2,2l−1 that are uniform over PAM(2
2l+1
2
m−ln−1),

F2, F4, . . . , F2l−2 ∈ F(l+1)n−b 2l+3
2
mc,n

2 translates into 2(l − 1) i.i.d random variables F1,2,

F1,4, . . . ,F1,2l−2 and F2,2,F2,4, . . . ,F2,2l−2 that are uniform over PAM(2(l+1)n− 2l+3
2
m−1) and

F2l ∈ Fn−m,n2 translates into 2 i.i.d random variables F1,2l and F2,2l that are uniform over

PAM(2n−m−1) and F2l+1 ∈ Fn−m,n2 translates into 2 i.i.d random variables F1,2l+1 and

F2,2l+1 that are uniform over PAM(2n−m). The -1 is chosen to avoid the carryover be-

tween variables. Then the choice

E =



F1

F2

F3

...

F2l−2

F2l−1

F2l

F2l−1

F2l−2

...

F3

F2

F1

0n−m,n

F2l+1



. (2.62)
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translates into the following input distributions for the Gaussian model

Xi = 2−n

[
l−1∑
j=1

[
2(l−j+2)n− 2l−2j+3

2
mFi,2j−1 + 2jm−(j−1)nFi,2j

]
+ 22n− 3

2
mFi,2l−1 + 2n−

1
2
mFi,2l + 2(l+1)n−(l+1)mFi,2l−1

+
1∑

k=l−1

[
2

2l−2k−1
2

m−(l−k−1)nFi,2k + 2(k+1)n−(k+1)mFi,2k−1
]

+ Fi,2l+1

]
, (2.63)

for i = 1, 2 where all random variables are assumed to be independent of each other.

2−(n−nεn) is chosen such that E[X2
i ] ≤ 1 for i = 1, 2.
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As (2.44) in Case 1, to bound from below the mutual information I(2nX1 + 2mX2;

2nX1 + 2mX2 + Z1), note that

2nX1 + 2mX2

= 2−n

[
2(l+2)n− 2l+1

2
m+nεnF1,1 + 2m+n+nεnF1,2

+
l−1∑
j=2

[
2(l−j+3)n− 2l−2j+3

2
m(F1,2j−1 + F2,2j−3) + 2jm−(j−2)n(F1,2j + F2,2j−2)

]
+ 23n− 3

2
m(F1,2l−1 + F2,2l−3)

+ 22n− 1
2
m(F1,2l + 2

2l+1
2
m−lnF2,2l−2 + F2,2l−1)

+ 2n+
1
2
m(F2,2l + 2(l+1)n− 2l+3

2
mF1,2l−1 + F1,2l−2)

+ 2(l+1)n−lm(F2,2l−1 + F1,2l−3)

+
2∑

k=l−1

[
2

2l−2k+1
2

m−(l−k−1)n(F2,2k + F1,2k−2) + 2(k+1)n−km(F2,2k−1 + F1,2k−3)
]

+ 2
2l−1
2
m−(l−2)nF2,2 + 22n−mF2,1 + 2nF1,2l+1 + 2mF2,2l+1

]
. (2.64)

For α ∈ (2
3
, 1), the last term 2m−nF2,2l+1 on the righthand side satisfies

E[(2m−nF2,2l+1)
2] → 0 in the limit as n → ∞. Thus it is below the "noise floor", and we

rewrite

2nX1 + 2mX2 = XC + 2m−nF2,2l+1. (2.65)
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By the mutual independence among XC , F2,2 and Z1,as (2.47) in Case 1, we can also

claim that

I(2nX1 + 2mX2; 2nX1 + 2mX2 + Z1) ≥ I(XC ;XC + Z1) (2.66)

and a fact on XC :

Fact 3. XC is uniform over a discrete constellation of size N(XC) = 2n−4l with minimum

distance dmin(XC) = 1.

Proof. First, the minimum distance is determined by the last part of XC which is F1,2l+1

with dmin(F1,2l+1) = 1 . Then, we proceed to prove XC is uniform by contradiction. First,

thank to the -1 we add, the only thing could cause us trouble is when two random variables

align (say for example, F1,2j−1 + F2,2j−3). To show that the align can not happen, suppose

there are two different realizations xC with Fi,j = fi,j and x′C with Fi,j = f ′i,j where not

all fi,j = f ′i,j such that xC = x′C . By inspecting the last parts of (2.64), one observes

that for xC = x′C we must have f1,2l+1 = f ′1,2l+1, f2,1 = f ′2,1 and f2,2 = f ′2,2 since they

are corresponding to the disjoint intervals. Now, given this observation, inspecting the top

terms of (2.64) provides f1,1 = f ′1,1, and f1,2 = f ′1,2. Keeping doing this will enforce

fi,j = f ′i,j for all i, j participating in xC and x′C which contradicts to the assumption.

Simple calculation will then provide the cardinality result.
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Combine the Fact 3 and Proposition 1 we have

I(XC ;XC + Z1)

≥ H(XC)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

12

d2min(XC)

)

= (n− 4l) log 2− 1

2
log

(
2πe

12

)
− 1

2
log 13 (2.67)

To bound from above the mutual information I(2mX2; 2mX2 + Z1), note that

2mX2

= 2−n

[
l−1∑
j=1

[
2(l−j+2)n− 2l−2j+2

2
mF2,2j−1 + 2(j+1)m−(j−1)nF2,2j

]
+ 22n− 1

2
mF2,2l−1 + 2n+

1
2
mF2,2l + 2(l+1)n−lmF2,2l−1

+
1∑

k=l−1

[
2

2l−2k+1
2

m−(l−k−1)nF2,2k + 2(k+1)n−kmF2,2k−1

]
+ 2mF2,2l+1

]
, (2.68)

where the last term 2m−nF2,2l+1 on the right-hand side is below the noise floor as before.

We thus have

I(2mX2; 2mX2 + Z1)

≤ H(2mX2 − 2m−nF2,2l+1) +
1

2
log[1 + E[(2m−nF2,2l+1)

2]]

≤ (
1

2
m− 2l) log 2 +

1

2
log 2. (2.69)
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Collecting results from above we have

I(X1;Y1) + I(X2;Y2)

≥ 2(n− 1

2
m) log 2− 4l log 2− log

(
2πe

12

)
− log 13− log 2

= 2n−m− c3(l), (2.70)

where c3(l) is a function of l. Note that for a fixed α, c3(l) will become a constant.

Case 4: α ∈ (1, 2]. In this regime, consider sub-regimes α ∈
(
2l+2
2l+1

, 2l
2l−1

]
for

l = 1, 2, 3, . . . , F1, F2, . . . Fl−1 ∈ Fm−n,m2 translates into 2(l − 1) i.i.d random vari-

ables F1,1,F1,2, . . . ,F1,l−1 and F2,1,F2,2, . . . ,F2,l−1 that are uniform over PAM(2m−n−1),

Fl, Fl+1 ∈ Fln−d
2l−1
2
me,m

2 translates into 4 i.i.d random variables F1,l,F1,l+1 and F2,l,F2,l+1

that are uniform over PAM(2ln−
2l−1
2
m−1) and Fl+2 ∈ Fd

2l+1
2
me−(l+1)n,m

2 translates into 2

i.i.d random variables F1,l+2,F1,l+2 and F2,l+2,F2,l+2 that are uniform over

PAM(2
2l+1
2
m−(l+1)n−1).
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Then the choice

E =



F1

F2

...

Fl

Fl+1

Fl+2

Fl

Fl−1
...

F2

F1

0m−n,m



. (2.71)

translates into the following input distributions for the Gaussian model

Xi = 2−m

[
l−1∑
j=1

2jn−(j−1)mFi,j + 2
3
2
m−nFi,l

+ 2(l+1)m−(l+1)nFi,l+1 + 2
1
2
mFi,l+2 +

1∑
k=l

2km−knFi,k

]
, (2.72)

for i = 1, 2, where all random variables are assumed to be independent of each other. Note

that the term m− n, ln− 2l−1
2
m and 2l+1

2
m− (l + 1)n represent the numbers of rows of

the blocks {F1, . . . , Fl−1}, Fl, Fl+1 and Fl+2 in E respectively. 2−m is chosen such that

E[X2
i ] ≤ 1 for i = 1, 2.
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As (2.44) in Case 1, to bound from below the mutual information I(2nX1 + 2mX2;

2nX1 + 2mX2 + Z1), note that

2nX1 + 2mX2

= 2−m

[
2m+nF2,1 +

l−1∑
j=2

2jn−(j−2)m(F2,j + F1,j−1)

+ 2
3
2
m(F2,l+2 + 2

2l+1
2
m−(l+1)nF2,l+1 + 2m−nF2,l + 2ln−

2l−1
2
mF1,l−1 + F1,l)

+ 2(l+1)m−ln(F2,l + F1,l+1) + 2lm−(l−1)n(F2,l−1 + F1,l + 2ln−
2l−1
2
mF1,l+2)

+
1∑

k=l−2

2(k+1)m−kn(F2,k + F1,k+1) + 2mF1,1

]
. (2.73)

For α ∈ (1, 2], there is no term below the "noise floor". Also, there is a fact that

Fact 4. 2nX1 + 2mX2 is uniform over a discrete constellation of size N(2nX1 + 2mX2) =

2m−(2l+4)with minimum distance dmin(2nX1 + 2mX2) = 2.

Proof. Similar to the proof of Fact 3.

Combine the Fact 4 and Proposition 1 we have

I(2nX1 + 2mX2; 2nX1 + 2mX2 + Z1)

≥ H(2nX1 + 2mX2)−
1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

12

d2min(2nX1+2mX2)

)

= (m− (2l + 4)) log 2− 1

2
log

(
2πe

12

)
− 1

2
log 4 (2.74)
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To bound from above the mutual information I(2mX2; 2mX2 + Z1), note that

2mX2 = 2−m

[
l−1∑
j=1

2jn−(j−2)mF2,j + 2
5
2
m−nF2,l

+ 2(l+2)m−(l+1)nF2,l+1 + 2
3
2
mF2,l+2 +

1∑
k=l

2(k+1)m−knF2,k

]
(2.75)

is uniform over PAM(2
1
2
m−(l+2)) with the minimum distance dmin(2mX2) > 1, so that

I(2mX2; 2mX2 + Z1) ≤ (
1

2
m− (l + 2)) log 2.

Collecting results from above we have

I(X1;Y1) + I(X2;Y2) ≥ m log 2− (2l + 4) log 2− log

(
2πe

12

)
− log 4

= m− c4(l), (2.76)

where c4(l) is a function of l. Note that for a fixed α, c4(l) will become a constant.

Case 5: α ∈ [2,∞). In this regime, F1 ∈ Fn,n2 translates into 2 i.i.d random variables

F1,1and F2,1 that are uniform over PAM(2n). Then the choice

E =

 F1

0m−n,n

 (2.77)
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translates into the following input distributions for the Gaussian model

Xi = 2−m2m−nFi,1 = 2−nFi,1, (2.78)

for i = 1, 2 where F1,1,F2,1 are assumed to be independent of each other. Note that the

term 2−m is chosen such that E[X2
i ] ≤ 1 for i = 1, 2.

As (2.44) in Case 1, to bound from below the mutual information I(2nX1+2mX2; 2nX1+

2mX2 + Z1), note that

2nX1 + 2mX2 = F1,1 + 2m−nF2,1 (2.79)

is uniform over PAM(22n) with the minimum distance dmin(2nX1 + 2mX2) = 1. By

Proposition 1 we have

I(2nX1 + 2mX2; 2nX1 + 2mX2 + Z1) ≥ 2n log 2− 1

2
log

(
2πe

12

)
− 1

2
log 13. (2.80)

Also, note that

2mX2 = 2−m22m−nF2,1 = 2m−nF2,1 (2.81)
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is uniform over PAM(2n) with the minimum distance dmin(2mX2) > 1, so that

I(2mX2; 2mX2 + Z1) ≤ n log 2. (2.82)

Collecting results from above we have

I(X1;Y1) + I(X2;Y2) ≥ 2n log 2− log

(
2πe

12

)
− log 13

= 2n− c5, (2.83)

where c5 is a constant.

Collecting (2.51) (2.61) (2.70) (2.76) and (2.83) above we have the following bound,

I(X1;Y1) + I(X2;Y2) ≥



2(n−m)− c1, for α ∈
(
0, 1

2

]
2m− c2, for α ∈

(
1
2
, 2
3

]
2n−m− c3(l), for α ∈

(
2
3
, 1
)

m− c4(l), for α ∈ (1, 2)

2n− c5, for α ∈ [2,∞)

(2.84)
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Recall that from (2.40)

Csum(SNR, INR) ≤



log( 1+22n

1+22m
), for α ∈

(
0, 1

2

]
log(1 + 22m + 22n

1+22m
), for α ∈

(
1
2
, 2
3

]
1
2

log
(

(1+22n)(1+22m+22n)
1+22m

)
, for α ∈

(
2
3
, 1
)

1
2

log (1 + 22m + 22n) , for α ∈ (1, 2)

log (1 + 22n) , for α ∈ [2,∞)

=



2(n−m) +O(1), for α ∈
(
0, 1

2

]
2m+O(1), for α ∈

(
1
2
, 2
3

]
2n−m+O(1), for α ∈

(
2
3
, 1
)

m+O(1), for α ∈ (1, 2)

2n+O(1), for α ∈ [2,∞)

(2.85)

Combine (2.84) and (2.85) will complete the proof.
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3. CLUSTERING FOR BRAIN NETWORK VIA METRIC LEARNING

3.1 K-means Clustering Algorithm

K-means algorithm was first introduced in [17] with the main idea of finding K cen-

troids of clusters. This algorithm is shown as follows,

1. Randomly pick K nodes as the initial centroids of K clusters

2. Assign each nodes to the cluster with nearest centroid

3. When all nodes are assigned, recalculate the locations of K centroids

4. Repeat Step 2 and 3 until the centroids do not change.

Although using K-means to find a optimal solution is NP-hard even in 2 dimension

space [27] [28], it is still a widely commonly used clustering algorithm due to its simplic-

ity. In this dissertation, as in [21] [22] , we consider the matrix representation of K-means

algorithm. Let X = [x1, . . . , xN ]> ∈ RN×T be the set of fMRI time-series data of N

voxels in ∈ RT . In K-means, looking for K clusters is equivalent to looking for

• An assignment matrix Y ∈ {0, 1}N×K with the following properties,

1.

Yi,k =


1, if vi is in cluster k

0, otherwise.
(3.1)

2. rank(Y )=K: because there are K clusters.

3. Y 1K = 1N , where 1K is a all one vector with length K : because one voxel is

assigned to one and only one cluster.
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• A centroid matrix Z = [z1, z2, . . . , zK ]> ∈ RT where zk ∈ RT is the centroid of

cluster k.

Then, K-means is to minimize to following distortion function

min
Y ∈{0,1}N×K ,Y 1K=1T ,rank(Y )=K,Z∈RK×p

N∑
i=1

K∑
k=1

Yi,k||xi − ck||2 (3.2)

where ||A||2 is the Euclidean norm of A. By considering Frobenius norm ||A||2F =

Tr(AA>), we can rewrite 3.2 in matrix form

min
Y ∈{0,1}N×K ,Y 1K=1T ,rank(Y )=K,Z∈RK×p

||X − Y Z||2F (3.3)

For a given assignment matrix Y , the centroid matrix Z can be solved in closed form

as Z∗ = (Y >Y )−1Y >X = Y †X where Y † is the Moore Penrose Pseudoinverse of Y . By

defining C = Y Y † ∈ RN×N as the clustering matrix, (3.3) now becomes

min
C∈CA

tr(XX>(I − C))

CA = {Y Y † : Y ∈ {0, 1}T×K , Y 1K = 1T , rank(Y ) = K} (3.4)

As shown in [21] [22], the optimization problem above can be relaxed to the following

form

max
C∈CR

tr(XX>C)

CR = {C : C ∈ RT×T , C2 = C, tr(C) = K} (3.5)
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with the optimal solution C̃ being the orthogonal projector onto the K leading eigenvec-

tors of XX>. Since C̃ ∈ CR is not always in CA, one way to find the hard assignment C∗

heuristically is using K-means over the k leading eigenvectors of XX>. In this disserta-

tion, we use the multiclass spectral clustering method proposed by [19] and also in [13]

with a faster converge rate to a nearly global-optimal solution.

3.2 Metric Learning

We consider training a Mahalanobis distance [29] dM(x,y) which is parameterized by

a symmetric positive semidefinite(PSD) matrix M ∈ RT×T ,

dM(x,y) =
√

(x− y)>M(x− y) (3.6)

Equivalently, we can rewrite (3.5) as

max
C∈CR

tr(XMX>C)

CR = {C : C ∈ RT×T , C2 = C, tr(C) = K} (3.7)

Note that when M = I , (3.7) becomes (3.5). The solution of (3.7) is the orthogonal

projector onto the K leading eigenvectors of XMX>. Then, as in [22], this Mahalanobis

distance matrix M can be learned as the minimizer of the following formulation,

min
M�0,tr(M)=1

[max
C∈CR

(4(C, C̄) + γ(M,C))], (3.8)

where
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• γ is an indicator function

γ(M,C) =


0, if C ∈ argmaxC∈CRtr(XMX>C)

−∞, otherwise
(3.9)

• C̄ is the ground truth

• 4(C, C̄) = ||C − C̄||2 measures the difference between C and C̄.

(3.8) has a closed form solution

M = sX†C̄(X†)>, s > 0 (3.10)

3.3 Unsupervised Clustering

In practice, the ground truth information is not always available especially for the brain

network. We propose an iterative unsupervised clustering algorithm as follows,

First, (3.7) can be rewritten with (3.10) as follows,

max
C∈CR

tr((XX†)C̄(XX†)>C)

CR = {C : C ∈ RT×T , C2 = C, tr(C) = K}, (3.11)

Then, the proposed iterative algorithm is,

INPUT: Data set X:

1. Set M = I .

2. Solve (3.7) to get a clustering matrix Cp.
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3. Solve (3.11) with C̄ replaced by Cp. Calculate the accuracy.

4. Redo step 3 until improvement is less than a threshold.

3.4 Simulation Results

In this simulation, we use the same set of synthetic fMRI data as in [13]. As shown in

Fig 3.1, There are 10 simulated data set and each has N = 489 voxels that are separated

into six regions.

Figure 3.1: Synthetic data template

There are K = 6 synthetic time-series data sk(t), k ∈ [1 : K] which are generated

using real resting-state fMRI data from six regions of the brain [13]. For the voxel in the

kth cluster, the time-series is generated by adding a Gaussian noise to sk(t) as follows

xki (t) = sk(t) + αn(t), i ∈ [1 : N ], k ∈ [1 : K] (3.12)
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where

• xki (t) is the time series for voxel i which is in region k.

• n(t) is standard Gaussian noise.

• α is to control the SNR.

In order to understand the nature of the learned metric M , we consider using a special

noise pattern (α1, α2). As shown in Figure 3.2, the first half of time series is added with

noise at level α1 and the second half is with noise at level α2.

xi(1) xi(2) xi(
T

2
) xi(

T

2
+ 1) xi(T − 1) xi(T )· · · · · ·xi(t)

α1n(t) α2n(t)

+ +

Figure 3.2: Special noise pattern (α1, α2)

To evaluate the performance of the clustering results, we use the Dice’s coefficient

Dice =
2|A ∩B|
|A|+ |B| (3.13)

to measure the overlap between the clustering result C and the ground truth C̄.

We now show the clustering result of supervised clustering and unsupervised clustering

with the choice of α ∈ {0.2, 0.4, (0.1, 0.3)} as examples shown in Figure 3.3, Figure 3.4,

Figure 3.5 while the clustering accuracy is shown in Figure 3.7.
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Remark 2.

• Note that the color assignments in the clustering result are not the same as in tem-

plate, but it will not affect the clustering accuracy.

• In Figure 3.7, the abbreviations are as follows,

– NL: Without learning

– Ni, i ∈ [1, 2, 3, 4]: Learning from previous result

– GT: Learn from ground truth

3.5 Observations

By investigating the simulation results, we have the following key observations. First,

when the ground truth is available, implementing the learned Mahalanobis distance can

greatly improve the clustering results no matter how large the noise is. For example,

in Figure 3.4a, the noise is large enough to mess up the original clustering result, but

Figure 3.4c shows a almost perfect clustering result after learning. Second, when the noise

pattern is (α1, α2), the learned metric M acts as a feature selection matrix to follow the

data with better quality. For example, in Figure 3.6a, the top-left part of M has larger

coefficients (brighter) than the bottom-right part (darker). It looks like that M ‘selects’

the part with smaller noise which, as expected, leads to a good clustering result shown in

Figure 3.5c. Finally, for the unsupervised algorithm, as in Figure 3.7, there are always

improvements from NL to N1. The level of improvements varies with different noise

level. For example, in Figure 3.3b, we can see visible improvements when noise is small

(α = 0.2) and barely see any improvements when noise is large (α = 0.4) in Figure 3.4b.

However, this algorithm does not converge after iterations which can be observed from L2

to L4 in Figure 3.7.
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(a) Without learning

(b) Learning from previous result

(c) Learning from ground truth

Figure 3.3: Clustering results at noise level 0.2
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(a) Without learning

(b) Learning from previous result

(c) Learning from Ground Truth

Figure 3.4: Clustering results at noise level 0.4
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(a) Without learning

(b) Learning from previous result

(c) Learning from ground truth

Figure 3.5: Clustering results at noise level (0.1, 0.3)

53



(a) Learned M at noise level (0.1, 0.3)

(b) Learned M at noise level (0.4, 0.2)

Figure 3.6: Property of M
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Figure 3.7: Clustering accuracy
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4. CONCLUSIONS

In this dissertation, we have studied the following two network problems.

4.1 Treating Interference as Noise for Communication Network

First, we have studied the two-user Gaussian symmetric interference channel. Unlike

abundant existing research, we have tackled the problem by finding (approximately) op-

timal input distributions for the conventional scheme which uses random codebooks at

the transmitters and typical decoding with treating interference as noise at the receivers.

In order to do so, we first looked into the corresponding linear deterministic model and

obtained (approximately) optimal input distributions. This result has then been leveraged

to propose approximately optimal distributions for the original Gaussian problem. Our

result is of practical importance as it is based on purely discrete input distributions at the

transmitters and treating interference as noise at receivers, both are of practical interest.

Our result can also be extended to a more general network scenario.

4.2 Clustering for Brain Network via Metric Learning

Second, we have studied the clustering for brain network with metric learning based

on synthetic resting-state fMRI time-series. We first introduced the K-means clustering

algorithm in matrix form. Then a metric learning method has been implemented into the

clustering algorithm by learning a Mahalanobis distance matrix from ground truth. Since

the ground truth is not accessible for the brain network, we have proposed an iterative

unsupervised clustering algorithm. Property of the learned metricM has also been studied

by introducing a dataset with special noise pattern. Computer simulation results have

shown the benefit of using metric learning and also shown the nature of M as a feature

selection matrix to use the better part of data.
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In the future, the following research directions are considered. First, by deeper inves-

tigating the nature of the learned matrix M , the unsupervised clustering method could be

improved by implementing proper constraints. Then, real resting-state fMRI data can be

tested in our algorithm. Finally, group clustering method is worth investigating.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof. We first introduce a random variable U which is uniformly distributed on

[−dmin

2
, dmin

2
] and independent of XD and Z. Let Y = XD + Z and X̂ = XD + U ,

then X̂ → XD → Y form a Markov chain. From data-processing inequality we have

I(XD;Y ) ≥ I(X̂;Y ) = h(X̂)− h(X̂|Y ) (A.1)

Also,

h(X̂) = H(XD) + log(dmin) (A.2)

Then, for a given y

h(X̂|Y = y) = −
∫
p(x̂|y) log(p(x̂|y))dx̂

≤ −
∫
p(x̂|y) log(qy(x̂))dx̂ (A.3)

for any qy(x̂). Let us pick

qy(x̂) =
1√
2πs

exp

{
−(x̂− ky)2

2s2

}
(A.4)
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Then we have

h(X̂|Y = y) ≤ (log e)

{
1

2
ln 2πs2 +

1

2s2
E[(X̂ − ky)2|Y = y]

}
(A.5)

and

h(X̂|Y ) ≤ (log e)

{
1

2
ln 2πs2 +

1

2s2
E[(X̂ − kY )2]

}
(A.6)

Furthermore, since XD, U and Z are mutually independent and U,Z are zero-mean,

we have

E(X̂ − kY )2 = E((1− k)XD + U − kZ)2

= (1− k)2EX2
D + EU2 + k2EZ2

= (1− k)2EX2
D +

d2min
12

+ k2

= EX2
D +

d2min
12
− 2kEX2

D + k2(EX2
D + 1) (A.7)

This expression is minimized for k =
EX2

D

EX2
D+1

, so that

h(X̂|Y ) ≤ (log e)

{
1

2
ln 2πs2 +

1

2s2

(
d2min
12

+
EX2

D

EX2
D + 1

)}
(A.8)

and this expression is minimized for s2 =
d2min

12
+

EX2
D

EX2
D+1

, so that

h(X̂|Y ) ≤ 1

2
log

[
2πe

(
d2min
12

+
EX2

D

EX2
D + 1

)]
≤ 1

2
log

[
2πe

(
d2min
12

+ 1

)]
(A.9)
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Collecting the results above, we have the bound

I(XD;Y ) ≥ h(X̂)− h(X̂|Y )

= H(XD)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

12

d2min(XD)

)
(A.10)
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APPENDIX B

REST SIMULATION RESULTS

(a) Without learning

(b) Learning from previous result

(c) Learning from ground truth

Figure B.1: Clustering results at noise level 0.1
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(a) Without learning

(b) Learning from previous result

(c) Learning from ground truth

Figure B.2: Clustering results at noise level 0.25
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(a) Without learning

(b) Learning from previous result

(c) Learning from ground truth

Figure B.3: Clustering results at noise level 0.3
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(a) Without learning

(b) Learning from previous result

(c) Learning from ground truth

Figure B.4: Clustering results at noise level (0.4,0.2)
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