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ABSTRACT 

 

The measurement of process states is critical for process monitoring, advanced 

process control, and process optimization. For chemical processes where state 

information cannot be measured directly, techniques such as state estimation need to be 

developed. Model-based state estimation is one of the most widely applied methods for 

estimation of unmeasured states basing on a high-fidelity process model. However, 

certain disturbances or unknown inputs not considered by process models will generate 

model-plant mismatch. In this dissertation, different model-based process monitoring 

techniques are developed and applied for state estimation under uncertainty and 

disturbance.  

Case studies are performed to demonstrate the proposed methods. The first case 

study estimates leak location from a natural gas pipeline. Non-isothermal state equations 

are derived for natural gas pipeline flow processes. A dual unscented Kalman filter is 

used for parameter estimation and flow rate estimation. To deal with sudden process 

disturbance in the natural gas pipeline, an unknown input observer is designed. The 

proposed design implements a linear unknown input observer with time-delays that 

considers changes of temperature and pressure as unknown inputs and includes 

measurement noise in the process.  Simulation of a natural gas pipeline with time-variant 

consumer usage is performed. New optimization method for detection of simultaneous 

multiple leaks from a natural gas pipeline is demonstrated. Leak locations are estimated 

by solving a global optimization problem. The global optimization problem contains 
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constraints of linear and partial differential equations, integer variable, and continuous 

variable. An adaptive discretization approach is designed to search for the leak locations.  

In a following case study, a new design of a nonlinear unknown input observer is 

proposed and applied to estimate states in a bioreactor. The design of such an observer is 

provided, and sufficient and necessary conditions of the observer are discussed.  

Experimental studies of batch and fed-batch operation of a bioreactor are performed 

using Saccharomyces cerevisiae strain mutant SM14 to produce β-carotene. The state 

estimation of the process from the designed observer is demonstrated to alleviate the 

model-plant mismatch and is compared to the experimental measurements. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

This chapter briefly summarizes the research background and outlines the 

contribution and scope of the dissertation.  

Process monitoring is an important practice for all engineering systems.1  It is 

greatly associated with product quality and process safety. Production and transportation 

of petrochemical industries pay great attention to the process monitoring because the 

damage in these systems can be catastrophic.2 Early detection of abnormal behavior of 

the process can help engineer identify the root cause and prevent further damage.  

One of the key purposes of process monitoring is fault detection and diagnosis. 3–

5 Fault in an engineering process is defined as abnormal deviations from normal 

behaviors, gradually or abruptly.3,6 There are different types of faults in the system 

including additive process faults and multiplicative process faults.  

For process fault detection and diagnosis, three tasks are required which are fault 

detection, fault isolation, and fault identification.7  Fault detection is to identify abnormal 

behavior of the system. Fault isolation is to find the exact location and cause of the fault. 

Fault identification is to measure/estimate the size/magnitude of the fault.  For some 

systems, fault identification and detection can be performed together. For a complex 

system, identification and isolation of multiple faults from a limited number of sensor 
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readings can be a challenge.  Traditionally, process monitoring is performed by checking 

some key variables against their limit through the physical sensor.   

The alarming limits of the process variables are set according to operator’s 

previous experience or the machine configuration. Data-based process monitoring has 

been widely used in industry as statistical process control.8–10 Data-based process 

monitoring is based on extensive previous operation data. Comparison between previous 

operation data and current monitored data is performed to monitor the current process. 

Several data analysis technique has been applied such as Principle Component Analysis 

and Partial Least Square.11–13 Other advanced data analysis methods have been 

developed for different systems such as kernel Principle Component Analysis, time-

series analysis, and multi-way and multi scale Principle Component Analysis.11,14–18  

Another method is model-based process monitoring which is based on the development 

of a mathematical process model. Comparisons between measured process variables and 

model predictions are studied to evaluate the process performance. Model-based process 

prediction techniques have been developed such as Kalman filter, observer, and 

optimization-based state estimation method.19–25  Both data-based and model-based 

process monitoring methods have its advantage and disadvantage. The details about 

these two methods will be given at the next session. More attention will be given to the 

model-based process monitoring methods. 

Literature review 

Data-based process monitoring will be briefly introduced. Model-based process 

monitoring will be explained with more details.  
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Data-based process monitoring 

Data-based statistical process control has been successfully implemented in 

various industries for process monitoring and improvement of product quality. The word 

‘control’ in statistical process control aims to reduce process variation and to increase 

product quality.26 The development of statistical process control as a system monitoring 

tool starts from Dr.Walter Shewhart at 1920s.27  Namely, statistical process control uses 

statistical analysis method to understand and monitor a process. Commonly measured 

and calculated values of process variables include:  mean, variance, probability density 

function, and cumulative distribution function.26  For some processes with many process 

variables, process data needs to be analyzed and its dimension needs to be reduced. Data 

analysis and dimension reduction methods have been developed including single-block 

techniques including Principal Component Analysis, linear or Fisher’s discriminant 

analysis, and independent component analysis, and dual-block techniques including 

canonical correlation analysis, reduced rank regression, Partial Least Squares, and 

maximum redundancy.26,28–31 

Among the above-mentioned methods, Principle Component Analysis and Partial 

Least Square are variance/covariance-based techniques, which have been studied 

extensively. Principle Component Analysis is used to reduce the number of process 

variables to be monitored, which is a dimension reduction technique. It defines a reduced 

set of latent variables. The model construction is shown below: 

X=TP'+E                                                                                                                       (1.1) 

y=Tc+f                                                                                                                         (1.2) 



 

4 

 

tpre=xnewW(P'W)
-1

                                                                                            (1.3) 

where T is score of X. P and c are loadings corresponding to X and y, respectively. E and 

f are residuals. W is weight matrix from score calculation. tpre is the estimated score 

corresponding to batch xnew and tpre which is used to evaluate the batch-to-batch 

variation.  

In contrast to Principle Component Analysis, Partial Least Square analyzes 

process input and process output. Partial Least Square calculates linear combinations of 

process variables to determine latent variables. The latent variables have similar effect in 

Principle Component Analysis, which is to capture process variations.32 

In contrast to Principle Component Analysis, Partial Least Square analyzes 

process input and process output. Partial least square calculate linear combinations of the 

variables to determine latent variables.32 The latent variables have similar effect in 

principle component analysis, which is to capture process variations. Partial Least 

Square is developed into the two-way data matrix X and vector of maturity variable y as 

followed. 

X=TP'+E                                                                                                                       (1.4) 

y=UQ'+f                                                                                                                        (1.5) 

where T is scores of X. P and Q are loadings corresponding to X and y, respectively. E 

and f are the residuals.  

 Process monitoring charts have been developed to evaluate the performance of 

the process.9 Basing on Principle Component Analysis and Partial Least Square models, 

the T-score variables describe variation that is introduced by the source vector. The T-



 

5 

 

score variables are dimension reduced variables which can be plotted in scatter 

diagrams.  Nonnegative quadratics statistical analysis including Hotelling’s T2 statistics 

and residual-based squared prediction error statistics, referred as Q statistics, can be 

performed on the plotted T-score variables. Hotelling’s T2 chart measures variation in 

the principal component subspace: 

TA
2 = ∑

ti
2

sti
2

A
1                                                                                                                       (1.6) 

The Hotelling’s T2 chart calculates distance between new measurements and modeling 

dataset. With the assumptions of normal distribution and a known data mean value, the 

Hotelling’s T2 follows F-distribution. The limit for Hotelling’s T2 for a given significant 

level 𝛼 is calculated as below.   

Tα
2=

l(N-1)

N-l
Fl,N-l,α                                                                                                              (1.7) 

where 𝐹𝑙,𝑁−1,𝛼 is the critical point for F distribution with (l, N-l) degrees of freedom with 

a significant level 𝛼. 

Data analysis methods have been developed to analyze the plotted date including 

contribution charts, residual-based test, and variable reconstruction. Contribution charts 

reveal significance of the recorded variables. Variable reconstruction studies the 

correlation among the recorded process variables.  Data-based process modeling relays 

on large-volume recorded process data. The data-based model can be used to monitor an 

existing process with significant amount of previous operation data. For a new process 

or operation under a new condition, data-based model is not able to estimate the process 
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variables. In these scenarios, model-based process monitoring and fault detection can be 

applied.  

Model-based process monitoring 

First principle models can be developed for a well-understood process. The 

models can be used to predict the process behavior under different operating conditions 

and inputs. The prediction of the model output is certain analytical forms of the 

measurement, which can be compared to the process measurement. A residual is defined 

as a comparison between model prediction and measurement. When a fault occurs in the 

process, an increased residual will be observed. As illustrate in Figure I.1, an alarm will 

be triggered if the residual exceed a pre-set threshold.  

         

Figure I.1. Process configuration for model-based fault detection 

The applied process model can be categorized as continuous model and discrete-

event model. The continuous models are generally ordinary differential equation or 

partial differential equation, which can be further characterized as linear, nonlinear, and 
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time-variant equations.  Continuous model is the most common process models for fault 

detection.   

Continuous models for a chemical process are developed from theoretical 

analysis of the process, which is also called first principle modeling. Nature laws 

including mass balance, momentum balance, and energy balance are applied. Besides 

theoretical modeling, experimental modeling is based on the assumption of certain 

model structure. Input and output variables are measured to fit into an existing model 

structure. For both theoretical model and experimental model, model parameters are 

estimated using experimental data. The most common parameter estimation technique 

for linear system is the least square method.    

State is the key information which is used to characterize a process such as 

temperature, pressure, degree of polymerization, and reactant concentration. This key 

information is required for process monitoring, such as evaluating the reaction kinetic, 

analysis of process safety, and determination of process control strategy. Some of the 

state variables are directly measureable such as temperature and pressure. Some of the 

state information cannot be measured directly or it has significant time-delay in 

measuring. Some state information is corrupted with process noise and process fault. 

State estimation techniques were developed to estimate unmeasured states or corrupted 

states. Analytical state estimation technique includes observer/filter design and 

parameterized mapping technique such as neural network and evolutionary algorithms. 
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Neural network and evolutionary algorithms  

Neural network is a nonlinear mapping technique. The goal of neural network is 

to map between input and output space. It has been actively developed and applied in 

many engineering problems. The feed-forward artificial neural network includes multi-

layer perceptron and radial basis function network. Evolutionary algorithm was 

developed by the inspiration of biological systems which can be conceived as a class of 

stochastic optimization algorithm. Two kinds of evolutionary algorithm have been 

developed including Genetic Algorithm and Genetic Programming. The algorithm has 

the following steps: population initialization, reproduction, recombination, mutation, and 

succession processes.  

Design of observer and filter 

Various design and applications of state estimation technique including observer-

based and filter-based (stochastic method) have been extensively studied and applied. 

Luenberger observer and Kalman filter are the two most widely used state estimation 

techniques. Various new observers have been developed basing on these two methods. 

Design of observer can be categorized into linear and nonlinear observers. A linear 

observer design is demonstrated below.  

Consider a linear time invariant continuous system: 

ẋ(t)=Ax(t)+Bu(t)                                                                                                        (1.8)   

y(t)=Cx(t)                                                                                                                    (1.9) 
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where x, u, and y are the state, input, and output of the system, with x ∈ ℜn, u ∈ ℜr, y ∈

ℜp.  A, B, and C are parametric matrix with appropriate dimension. A full order feed-

back observer was designed with the following structure.  

ẋ̂(t)=(A-KC)x̂+Bu(t)+Ky(t)                                                                                      (1.10) 

ŷ(t)=Cx̂(t)                                                                                                                   (1.11) 

where K is a design parameter which needs to be determined such that the feedback 

matrix (A-KC)  is asymptotically stable. The asymptotical stability of the observer 

guarantees the estimation error decay to zero. The pair (A, C) is observable equals to the 

controllability of the pair (AT
,C

T
).   

Kalman filter 

Kalman filter is an optimal linear filter for state estimation. It propagates the 

mean and covariance of the state through time. To demonstrate the Kalman filter, a 

linear discrete-time system is given as the following equations: 

xk=Fk-1xk-1+Gk-1uk-1+wk-1                                                                                           (1.12) 

y
k
=HKxk+vk                                                                                                                 (1.13) 

{𝑤𝑘}  and {𝑣𝑘} are assumed white noise with known covariance matrix 𝑄𝑘 and 𝑅𝑘. The 

Kalman filter is initialized as follows:  

Initialization:    x̂0
+
=E(x0);   P0

+=E[(x0-x̂0
+)(x0-x̂0

+)
T
]    (1.14)                                                          

Estimation:  for each time step 𝑘 = 1,2, …:   

Pk
-
=Fk-1P

k-1

+
F

k-1

T
+Q

k-1
   

Kk=Pk
-
Hk

T(HkPk
-
Hk

T+Rk)
-1

                                           (1.15) 
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A priori state estimation:  x̂k
-
=Fk-1x̂k-1

+
+Gk-1uk-1                                              (1.16) 

A posteriori state estimation:  x̂k
+
=x̂k

-
+Kk(y

k
-Hkx̂k

-
)       

 Pk
-
=(I-KkHk)Pk

-
(I-KkHk)

T
+KkRkKk

T                     (1.17)              

Both the initial Luenberger observer and Kalman filter are designed for linear 

system. Extension of both observers to nonlinear system were also developed, which are 

called extended Luenberger observer and extended Kalman filter. Other type of 

nonlinear Kalman filter includes unscented Kalman filter. Successful application of 

Kalman filter is based on the following conditions: knowledge of mean and correlation 

of the noise at each time instant, knowledge of noise covariance, and knowledge of 

system model matrices.  

 Design of other linear observers 

Besides the basic Luenberger observer and Kalman filter, researchers have 

developed different observers for a variety of systems for process monitoring and fault 

detection. Especially for certain systems with process disturbance and model-plant 

mismatch, design of observers for state estimation remains a challenge.  Some other 

observers include: modified disturbance observer, Bode-ideal-cut-off observer, and 

sliding mode observers.33  Adaptive state observer and backstepping observers are also 

developed based on basic idea of the Luenberger observer.  

Linear observers were developed basing on linear process models, which are 

usually first principle models.  However, most of the chemical process is highly 

nonlinear. Nonlinear observers were later developed to deal with the process 
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nonlinearity. One important consideration for designing an observer is the observability 

condition.  Observability means for a system that all the initial condition is observable 

and its states can be estimated by its outputs. The first step to design an observer is to 

check the observability. There are many discussions in the literature on the observability 

and detectability of a process.34–36  

The estimated states from an observer are usually the ones that are difficult to 

measure in a real-time manner. These are important states that need to be obtained for 

process monitoring. Validation between the state estimation and measurement is 

compared to test the efficiency of the observer.  A whole design process for model-based 

observer is demonstrated in Figure I.2. Hybrid observers combine the design concept of 

different observers, which can be applied for more complex systems.  
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Figure I.2. Concept of design of model-based observer 

Some reduced-order observer, low-order observer, high-gain observer, and 

asymptotic observer have been designed for chemical process systems with ordinary 

differential equation models. Certain observers are designed to estimate the state 

information in presence of faults and disturbance including disturbance observer, 

perturbation observer, equivalent input observer, uncertainty and disturbance estimator, 

generalized proportional integral observer, and unknown input observer. Unknown input 

observer and extended state observer are the two most extensively studied and applied 

observers.  

Researchers have developed different disturbance and fault detection observers 

for estimation of disturbance and states. Wei et al. developed disturbance observer-based 
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disturbance attenuation control for a class of stochastic systems with multiple 

disturbances.37 Chen et al. applied disturbance observer-based control system for a 

process with time-varying parameters and time delays.38 Stobart et al. developed a robust 

uncertainty and disturbance estimator-based control strategy for uncertain linear time-

invariant systems with state delays.39 Zhong and Rees proposed an effective uncertainty 

and disturbance estimator for linear systems with uncertainties and disturbances.40 Li et 

al. proposed an extended state observer-based control method for non-integral-chain 

systems with mismatched uncertainties. 41 

Generally, the observers for system with disturbance and uncertainties use a 

feedback design. A brief introduction of observer design for state estimation under 

disturbance is illustrated in the following section.  

A concept of disturbance observer in frequency domain is illustrated in Figure 

I.3.33,42  𝜇 is the control input and 𝑦̅ is the measured output, Gn(s) is the nominal model 

used for control design, and Q(s) is a stable filter. dl is the lumped disturbance and 𝑑̂𝑙  is 

the estimated lumped disturbance.  

 

Figure I.3. Concept of disturbance observer in frequency domain 
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For a frequency domain disturbance observer design, the ‘lumped disturbance’ in 

the figure can be written as the following equation.  

dl(s)=[G(s)-1-Gn(s)-1]y(s)+d(s)-Gn(s)n(s)                 (1.18) 

where G(s) is the physical system and d(s) is the external disturbance. n(s) is the 

measurement noise.  dl captures all the system disturbance and uncertainty influence. 

The estimated lumped disturbance is obtained by passing a filter Q(s), which is given in 

the following equation.24,33  

d̂l(s)=Gud̂(s)u(s)+Gyd̂(s)y̅(s)                                                                (1.19) 

As one of the observes that can estimate both disturbance and states, extended 

state observer require less plant information than disturbance observer and unknown 

input observer.41,43 As an example, extended state observer design for a single input 

single output system with disturbance is shown in the following equation.  

y(n)(t)=f(y(t), ẏ(t),…,y(n-1)(t),d(t),t)+bu(t)                                  (1.20) 

where y(l) is the lth derivative of the output y. u and d denote the input and disturbance. 

Let x1=y, x2=ẏ,…, xn=y(n-1), the following equation can be obtained.  

ẋi=xi+1, i=1,…,n-1                                                                                (1.21) 

ẋn=f(x1,x2,…xn,,d,t)+bu                                                                         (1.22) 

The state can be written as:  

xn+1=f(x1,x2,…,xn,d,t)                                                                               

ẋn+1=h(t)                                                                                                     (1.23) 

with    h(t)=ḟ(x1,x2,…xn,,d,t)                                                                                    
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Extended state observer is designed to estimate all of the states and lumped 

disturbance term in the following equation.  

ẋ̂i=x̂i+1+β
i
(y-x̂i), i=1,…,n     (1.24) 

ẋ̂i+1=β
n+1

(y-x̂1)                                                                                       (1.25) 

The extended state observer estimate unmolded dynamics and uncertainty as well 

as external disturbance. The extended state observer requires minimum information 

about a dynamic system.  Different extensions of extended state observer have been 

developed. 44–46 

Unknown input observer is developed to deal with the system uncertainty and 

disturbance. There have been various developments of unknown input observer with 

different meanings.47–50 For fault diagnosis and isolation, the unknown input observer is 

to estimate the fault which does not depends on unknown inputs. A typical unknown 

input observer is demonstrated in the following equations. 

For a linear system:  

ẋ=Ax+Buu+Bdd                                                                                      (1.26) 

y=Cx                                                                                                             (1.27) 

Unknown input observer estimate both state and disturbance. The observer can 

be designed to estimate both the state and disturbance simultaneously, as shown in the 

following equation: 

ẋ̂=Ax̂+Buu+Lx(y-ŷ)+Bdd̂                                                                 (1.28) 

ŷ=Cx̂                                                                                                             (1.29) 
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where 𝑥̂ , 𝐿𝑥 , and 𝑑̂  are the estimates of the state, observer gain, and disturbance. In 

design of an observer, the observer gain is calculated so that the estimation error is 

stable.  

Uncertainty and disturbance estimator is developed to estimate state in time delay 

system such as traffic network and chemical process.51 It does not require assumptions 

about the uncertainty except its bandwidth. A basic design idea is illustrated in the 

following equation: 

ẋ=Ax+Buu+∆Ax+∆Bu+d                                                                   (1.30) 

The lumped disturbance is described as the following:  

dl=∆Ax+∆Bu+d                                                                                      (1.31) 

It can be written as   dl=ẋ- Ax-Buu. 

Due to the absence of 𝑥̇, 𝑑𝑙 can be estimated by approximation through a filter 

by d̂l=dl⊗q, where ⊗ and 𝑞 represent the convolution operator and impulse response of 

the filter.  

Besides the above mentioned observers, generalized proportional integral 

observer is an enhanced version of disturbance estimator for time-varying disturbance. 

The generalized proportional integral observer is designed as the following.  

ẋ̂i=x̂i+1+β
i
(y-x̂1), i=1,…, n-1  

ẋ̂n=bu+ξ̂
1
+β

n
(y-x̂1)  

ξ̇̂
i
=ξ̂

i+1
+λi(y-x̂1), i=1,…,q-1  

ξ̇̂
q
=λq(y-x̂1)                                                                                              (1.32) 
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where 𝑥̂𝑖 is the estimate of the state 𝑥𝑖. 𝜉𝑖 is the estimate of the lumped distribution term. 

The stability of estimation error is achieved by choosing observer gains 𝛽𝑖 and 𝜆𝑖.  

Applications of disturbance and fault detection observer for bioreactor have been 

demonstrated using simulation or experimental validation. Rocha-Cózatl and Vouwer 

applied a linear quasi-unknown input observer to estimate concentrations, flow rates, and 

light intensity in phytoplanktonic cultures in the chemostat. The authors linearize the 

nonlinear process model at chemostat to apply the linear quasi-unknown input 

observer.52 Lemesle and Gouzé developed bounded error observers for partially known 

bioreactor models. The hybrid bounded observers incorporate high gain observer and 

asymptotic observer to improve the error convergence rate depending on the knowledge 

of the model. Simulation study of a bioreactor model is provided.53 Moisan et al. 

extended the bounded error observers to further improve the convergence properties. 

The extension use parallel internal observers to determine the inner envelop of the 

process.54 Farze et al. propose an adaptive high gain observer for state and parameter 

estimation for a class of uniformly observable nonlinear systems with nonlinear 

parametrization and sampled outputs.55 Ghanmi et al. extended Farze’s work on an 

adaptive observer for state and parameter estimation of a nonlinear system basing on a 

high gain adaptive observer. Simulation study is applied to a bioreactor model.56 

Kravaris et al. proposed a systematic framework of nonlinear observer design to estimate 

process state variables and unknown process or sensor disturbances. Simulation study 

was performed using a bioreactor model.22 
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Design of nonlinear observers  

Nonlinear observers have been studied for years due to the inherent nonlinearity 

of the chemical processes.19,57,58  For the most common Kalman filter, nonlinear forms 

have been developed such as extended Kalman filter and unscented Kalman filter.  There 

are several types of nonlinearity that have been well studied. A control-affine system is 

shown in the following equation: 

f(x,u)=f0(x)+g(x)u                                                                                (1.33) 

Additive output nonlinearity is also well studied which is shown in the following 

equation:  

ẋ=Ax+φ(Cx,u)  

y=Cx                                                                                                             (1.34) 

A nonlinear observer design for the system is proposed. If (𝐴, 𝐶) is observable, 

an observer can be designed in the following format.  

ẋ̂=Ax̂+φ(y,u)-K(Cx̂-y)                                                                     (1.35) 

K is calculated so that (A-KC) is stable.  

For certain type of nonlinear systems, transformation-based design can be 

applied. Appropriate transformation can be done such as changes of states coordinates to 

estimate state information. A system described in the following equation:  

ẋ=f(x,u)=fu(x), x∈Rn, u∈Rm  

y=h(x)∈Rp                                                                                                 (1.36) 

is said to be equivalent to the system:  

ż=F(z,u)=Fu(z)  
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y=H(z)                                                                                                          (1.37) 

If there exists a diffeomorphism 𝑧 = Φ(𝑥) such that 

∀𝑢 ∈ ℝ𝑚,
∂Φ

∂x
fu(x)

|x=Φ-1(z)
=Fu(z) and h∘Φ-1=H.                          

Another development for transformation-based observer design is immersion 

transformation.  Immersion transformation for state estimation is to immerse the state 

space into a larger dimension space. The idea is demonstrated using a linear system.  

ẋ=-x+u  

y=x+v                                                                                                         (1.38) 

where 𝑣 is constant unknown measurement bias. Immersion of the system will include 

the bias term, which a second order system can be obtained.  

ẋ1=-x
1
+u  

ẋ2=0  

y=x1+x2                                                                                                      (1.39) 

Definition of ‘Immersion’ is summarized in the reference and cited here59: ‘an 

application τ:M→M'  is an immersion if its rank is n=dimM everywhere. If 𝜏  is an 

injective immersion, then it establishes a one-to-one correspondence of 𝑀 and the subset 

M''=τ(M) of M'. 

Immersion of dynamical system: Consider two 𝐶∞  system S=(M,f
u
, h)  and 

S
'
=(M',f

u

'
,h

'
) such that every input that is admissible for one of them is also admissible 

for the other. The system S is immersible into system 𝑆′ if there exists a 𝐶∞ map, 𝜏:𝑀 →

𝑀′, such that: 
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1)  for every pair  (𝑥°, 𝑥⦁) ∈ 𝑀 × 𝑀, ℎ(𝑥°) ≠ ℎ(𝑥⦁)𝑖𝑚𝑝𝑙𝑖𝑒𝑠 ℎ′(𝜏(𝑥°)) ≠ ℎ′(𝜏(𝑥⦁)) 

2) for every pair (x,u), the domain of definition of y'
τ(x),u

 include the domain of definition 

of 𝑦𝑥,𝑢 and on  the intersection of their domains, 𝑦𝑥,𝑢 and 𝑦′
𝜏(𝑥),𝑢

 coincide.’ 

For observer design of other nonlinear systems, empirical observers are 

commonly used. The empirical observers approximate the nonlinear system for 

approximation of a theoretical best estimation such as extended Kalman filter. Although 

the extended Kalman filter losses global convergence while Kalman filer does. Other 

empirical observers include neural network, fuzzy logic, and genetic algorithm. Other 

studies have used Duncan-Mortensen-ZakaΪ equation to approximate the exact solution, 

which are used for stochastic problems.  Such as a following stochastic system like the 

following:  

dX(t)=f(X(t),u)dt+Q
1/2

dW(t)  

dY(t)=h(X(t),u)dt+R1/2dV(t)                                                               (1.40) 

where (𝑡) ∈ ℝ𝑛, 𝑌(𝑡) ∈ ℝ𝑃  , nd 𝑢 ∈ ℝ𝑑 . W(t)  and V(t)  are two independent Wiener 

processes with  

E [(Q1/2
W(t)(Q

1/2
W(t)

'
] =Q.t                                                                   (1.41) 

where Q and R are the covariance matrix of the state noise and measurement noise. The 

explicit steps for applying Duncan-Mortensen-ZakaΪ equation are not demonstrated in 

this chapter. However, to briefly summarize the steps, two different methods are 

generally used. The first method is to simply the equations and linear and nonlinear 
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solutions can be applied. The second application is to use Monte-Carlo methods to solve 

the Duncan-Mortensen-ZakaΪ equation.  

Optimization-based state estimation 

Another type of nonlinear observer is nonlinear moving horizon observers.20 

Different from the analytic observers such as Kalman filter, optimization based 

observers apply the definition of observability to estimate the state.  Optimization-based 

state observer searches for a minimal objective function 𝐽(𝑡, 𝜁) which is the squared 

output prediction error over certain observation horizon to estimate state information. 

The advantages of optimization-based nonlinear observers include handling constraints 

and independence of the system model. Convergence is an important concern for 

optimization-based state estimation. There is no general algorithm to guarantee 

convergence for non-convex optimization problems. Real-time implement ability is 

another difficulty for optimization-based nonlinear observer. The time required for 

searching a minimal objective function may exceed the time available for control action.   

For a system such as the following:  

x(t)=F(t,t0,x0)  

y(t)=h(t,x(t))                                                                                             (1.42) 

where 𝐹: ℝ+ × ℝ+ × ℝ𝑛 → ℝ𝑛  is a mapping function for state 𝑥(𝑡)  based on the 

knowledge of the state x(t0)=x0.  y(t) is the output measurement at instant 𝑡. 

An optimization-based observer with observation horizon 𝑇 = 𝑁𝜏𝑠 is shown as 

follows: 

x̂(t
k
)=X(tk,tk-N,ξ̂(tk))  
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ξ̂(tk)= arg min
ξ∈Χ(t

k-N
)
[J(tk,ξ)]≔∑ ‖y(ti)-Y(ti,tk-N, ξ)‖

2

Qi(k)

k

i=k-N
      (1.43) 

𝑄𝑖(𝑘) ∈ ℝ𝑛𝑦×𝑛𝑦 is defined as a positive definite weighting matrix.  

Differential form of moving horizon observers can be designed basing on a 

process model of ordinary differential equation.  

ẋ(t)=f(t,x(t))                                                                                             (1.44) 

y(t)=h(t,x(t))                                                                                             (1.45) 

The cost function for differential form of receding-horizon estimation is given by 

the following: 

J(t,ξ)= ∫ ‖Y(τ,t-T,ξ)-y(τ)‖
2
dτ

t

t-T
                                                       (1.46) 

The differential form of the moving horizon estimation uses a gradient-based 

optimization method. However, existence of all the partial derivatives of the cost 

function needs to be guaranteed.  

Optimization-based approaches have been developed to solve the nonlinear state 

estimation problem. Specially, the optimization can solve problem with state and 

parameter constraints.  

Dual estimation of state and parameter  

In some systems, the process model parameters are subject to certain uncertainty. 

These uncertainties either come from process disturbance or model uncertainty. With 

unknown process parameters, the observer is unable to give accurate state estimation. 

The concept of adaptive observer is developed to converge the observer estimation in the 
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presence of unknown parameters. In some cases, the process parameters and process 

state are estimated together, which is called joint parameter and state estimation.  

Some research results show that adaptive state estimation is possible under 

‘passivity-like’ condition. The unknown parameter is treated as inputs in the system. The 

definition of ‘Passivity’ is given in the reference and cited here:59,60  

‘A system  ξ̇=f(ξ,u) , y=h(ξ,u)  is strictly state passive if there exists a storage 

function (positive semi-definite) V and a positive definite function 𝛾 such that 

uTy≥
∂V

∂x
f(x,u)+γ(x)                                                                                (1.47)                                                     

Adaptive state estimation with a linear unknown input parameter vector 𝜃 can be 

written as the following.’  

ẋ(t)=f(y(t),z(t),v(t))+g(y(t),z(t),v(t))θ  

y(t)=(Ip 0)x(t)                                                                                            (1.48) 

with  𝑥(t)= (
y(t)

z(t)
) ∈ ℝ𝑛, y(t) ∈ ℝ𝑛,v(t) ∈ ℝ𝑚, θ ∈ ℝ𝑞  

Available theory about design of adaptive observers is given in the reference and 

summarized below.59 ‘For a system with a state estimation have a known parameter(θ),  

a Lyapunov function 𝑉 for x̂θ-x:  if   
∂V

∂e
g(y,σ,v)=φ([Ip 0]e,y,σ,v)  for function φ with g 

globally bounded, and f and g globally Lipschitz w.r.t. z, uniformly w.r.t.(u,y,t), then 

lim
t→∞

‖x̂(t)-x(t)‖=0    when  θ̇̂=-ΛφT(ŷ-y,y,ẑ,v), Λ>0               (1.49) 

if g is persistently exciting and g ̇  is bounded then the following holds: lim
t→∞

‖θ̂(t)-θ‖=0.’ 
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For joint parameter and state estimation, a method has been proposed and 

summarized below.59,61 

‘If a system can be turned by a change of coordinates which may depends on 

time and parameters z=Φ(x,θ,t) with x=Ψ(z,θ,t) bounded w.r.t. t  

ż=Z(z,y,u,t)  

y=H(z,u,t)+D(z,u,t)θ,     𝑦 ∈ ℝ𝑝, z ∈ ℝ𝑛, u ∈ ℝ𝑚, θ ∈ ℝ𝑞                  (1.50) 

A decrescent positive definite C1 function V(t,e) exists, such that for any initial 

condition and any admissible input u, any z , 𝑒 ∈ ℝ𝑛, 𝑦 ∈ ℝ𝑝, 𝑎𝑛𝑑 𝑎𝑛𝑦 𝑡 ≥ 0, the 

following holds. 

∂V

∂t
(t,e)+

∂V

∂e
[Z(e+z,y, u(t),t)-Z(z,y,u(t),t)]≤-γ(e)                      (1.51) 

The following equation holds for any admissible input u and trajectories z(t). D 

is persistently exciting and uniformly bounded by some d, with  

‖D(e+z,u(t),t)-D(z,u(t),t)‖≤γ
D
√γ(e)             

‖H(e+z, u(t),t)-H(z,u(t),t)‖≤γ
H
√r(e)                                             (1.52) 

for any e, z, and some γD, γH >0, then an adaptive observer for estimation of both state x 

and parameter θ simultaneously can be designed in the following format:’ 

ż̂=Z(ẑ,y,u,t)  

θ̇̂=-λDT(ẑ,u,t)(D(ẑ, u,t)θ̂+H(ẑ,u,t)-y), λ>0  

x̂=Ψ(ẑ,θ̂,t)                                                                                                   (1.53) 

The proof is to build error equations and establish Lyapunov function, which is 

given in their original research paper.  
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Scope and objective of this dissertation 

To estimate the state under process disturbance for fault detection or process 

control is a challenging task for some complicated process. Data-based process 

monitoring technique can effectively monitor the process basing on a large volume of 

previous operation data. Model-based process monitoring technique can be applied into 

different operating situations. Accurate process model of a nonlinear system is required 

for model-based process monitoring. However, certain unmodeled disturbance will cause 

the model-plant mismatch and drift the model prediction from experiment 

measurements.  In this dissertation, model-based state estimation technique is studied. 

Two different case studies are performed. The first case studies the leak location 

estimation from a natural gas pipeline. State information which is flow rate in a natural 

gas flow case is estimated. This model-based state estimation is aimed to estimate leak 

location from a natural gas pipeline under different conditions. Different situations can 

make the state estimation difficult which are discussed in each chapter. These situations 

include the parameter mismatch in a model, disturbance from environment or operation, 

and multiple leaks case. For each situation, different state estimation methods need to be 

developed.  Due to the complexity of the natural gas flow model, certain simplification 

methods need to be developed.  

Besides the fault detection, advanced process control is another important 

application for state estimation. For certain biological systems, accurate process model is 

difficult to obtain due to the inherent uncertainty in the biology system. However, 

model-based advanced process control technique has great potential to increase the 
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productivity of the process. A methodology which can accurate estimate the state will be 

great beneficial for the advanced process control algorithm. An online state estimation 

technique is required to estimate the state in a bioreactor efficiently.  

The specific objectives of the dissertation are: 

1. To model the natural gas flow process in a straight pipeline, considering the 

effect of thermal properties such as natural gas inlet temperature, ground temperature, 

and heat transfer coefficient.  

2. To study the effect of thermal properties using simulation. 

3. To design an online state estimation technique for non-isothermal natural gas 

flow model in presence of parameter mismatch. 

4. To estimate the state information of a natural gas pipeline under disturbance 

from temperature change and operation pressure change.  

5. To develop leak detection and location estimation method for subsequent 

multiple leaks and simultaneous multiple leaks.  

6. To design estimation method for state estimation for a bioreactor under 

unknown disturbance. 

Contribution of this dissertation 

In this dissertation, research results have the following contributions in the area 

of process modeling, optimization, and state estimation.  

1. Developed a first principle non-isothermal natural gas process model 

considering leak event in a pipeline.  Effect of leak on temperature profile and parameter 

change is studied using simulation.  



 

27 

 

2. Applied an efficient state and parameter dual estimation techniques to estimate 

the parameter and flow rate from a natural gas pipeline.  

3. Modified a previous design of linear unknown input observer. 

4. Developed a model reduction process to simplify the non-isothermal natural 

gas flow model for the unknown input observer. 

5. Proposed a global optimization algorithm with partial differential equation and 

linear constraints and continuous and integer variables for location estimation of 

multiple leaks. 

6. Designed a nonlinear unknown input observer to estimate the state in a 

bioreactor.  

Organization of this dissertation 

The thesis is organized as the following. Chapter II demonstrates non-isothermal 

natural gas flow models and studies the effect of leak and thermal properties. Dual state 

and parameter estimation for leak detection in a natural gas pipeline is proposed and 

compared with extended Kalman filter. Chapter III shows the model reduction of the 

non-isothermal flow model and modifies an existing unknown input observer for the 

natural gas pipeline. Effect of process disturbance such as temperature change and inlet 

pressure change is studied. The effect of process disturbance on state estimation from the 

unknown input observer is also studied. Chapter IV extends the linear unknown input 

observer design to detect and locate multiple subsequent leaks. An optimization-based 

state estimation for multiple simultaneous leaks identification is also proposed which 

contain partial differential equation constrains, linear constraints, integer variables, and 
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continuous variables. Chapter V develops a nonlinear unknown input observer and 

sufficient and necessary conditions are provided. Application of the nonlinear unknown 

input observer is provided using a bioreactor. Experimental validation using both batch 

and fed-batch experiments is performed.  
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CHAPTER II  

DUAL UNSCENTED KALMANFILTER FOR NATURAL GAS PIPELINE LEAK 

DETECTION: NON-ISOTHERMAL MODELING AND EFFECT OF THERMAL 

PROPERTIES 

 

Introduction 

Pipelines are one of the most economical transportation solutions for natural gas 

and crude oil. However, leakage of the transported material from pipelines can harm the 

environment and can cause explosions. Over the last twenty years, there have been over 

two hundred million barrels of chemicals spilled from the pipelines, causing billions of 

dollars of property damage. Thus, a rapid and reliable leak detection method is urgently 

needed. Currently, the hardware leak detection method includes acoustic sensor, fiber 

optic sensor, soil monitoring, ultrasonic flow meter, and vapor monitoring 

instrumentations. Software methods include mass/volume balance, real time transient 

modeling, and statistical approaches such as Pressure Point Analysis (PPA).62 

Different from the hardware methods, which are based on measuring the physical 

property change of the fluid and/or pipeline such as acoustic noise, electrical properties, 

and temperature change, the software methods are based on the conservation of mass, 

momentum, and energy with accurate flow rate and pressure measurements at the 

inlet/outlet of the pipeline. Some software methods have been commercialized for 

pipeline leak detection such as The Real-Time Transient method, mass balance-based 

method and Pressure Point Analysis.63 However, the Real-Time Transient Method 
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requires extensive instrumentations for thermal measurements and Pressure Point 

Analysis can’t estimate the leak location accurately.62,64,65  

Model-based fault detection methods have been studied for decades.6667  Unlike 

methods based on statistical analysis of measurements, model-based methods use 

dynamic models to estimate the key information of the process, which are the states of 

the process. To monitor the process, state estimations from the model-based estimation 

techniques are compared with measurements from the system. Process faults are 

identified if the difference between the estimated states and measurements exceeds a 

preset threshold. The state information of the pipeline system is defined as the flow rate 

of the pipeline. To estimate the flow rate in a pipeline, modeling and simulation of the 

natural gas flow in pipelines have been extensively studied.68–73 A variety of simulation 

methods have been proposed considering the non-isothermal circumstance and pipeline 

networks.74–76 However, the effect of leaks on the gas flow profile has not been studied 

yet. In this study, a leak term is incorporated into the non-isothermal modeling, and its 

effect on pressure, flow rate, and temperature is studied. 

In order to apply the model-based fault detection method to detect leaks in a 

pipeline, the state information, which is the flow rate in the pipeline, is estimated at the 

nominal condition by simulation. To detect leak locations in a pipeline, a comparison 

between state (flow rate) measurement and estimation from the model-based estimation 

is performed. State estimation is based on the boundary pressure measurements. Due to 

the existence of the process noise, filtering techniques are required to obtain an accurate 

estimation of the state. Currently, there is a variety of options of filtering techniques for 
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state estimation at nominal conditions. Kalman filter is an optimal observer for the linear 

Gaussian case. For the non-linear process, filters such as extended Kalman filter, moving 

horizon estimator, unscented Kalman filter, and particle filter can be used. 

The extended Kalman filter linearizes the non-linear model and applies the 

Kalman filter. For the nonlinear process and non-Gaussian disturbances, a moving 

horizon estimator solves an optimization problem over a moving horizon of the past 

measurements. H∞ filter provides a more rigorous method for model uncertainty and 

unmodeled noise and dynamics. An unscented Kalman filter is a nonlinear state 

estimator especially for a nonlinear system with high degree of nonlinearity and where 

the Jacobian matrix is not available.77–79 A particle filter has more estimation accuracy 

for the nonlinear system than unscented Kalman filter, while requiring more 

computational effort.  

Filter-based leak detection methods for natural gas pipelines using dynamic 

models were studied by Benkherouf and Allidina, who used extended Kalman filter for 

simultaneous state and parameter estimation.80  Liu et al. improved the accuracy of the 

estimation using adaptive particle filter to estimate the leak location,81 and Emara-

Shabaik et al.  applied a modified extended Kalman filter for leak estimation.82  Hauge et 

al. designed an adaptive Luenberger observer for monitoring oil and gas pipelines for 

leak detection.83 Model-based leak detection methods for water pipeline have also been 

developed.84 

Model-based state estimation depends on a reliable model. All the models used in 

the above-mentioned research were under an isothermal assumption with fixed 
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parameters.  However, these ideal and simplified models cannot study the effect of the 

thermal properties of the environment and the transported material through the pipeline. 

The ideal-gas assumption in the reported modeling efforts neglected the change of gas 

compressibility under different pressures and temperatures in the pipeline. Reddy et al. 

proposed a state estimator for leak detection based on the transfer function.76 However, 

the effect of change of thermal properties on the flow was not studied. Of particular 

interests are the changes of the flow rate due to thermal properties, which are crucial for 

estimation of the location of the leak, as well as the temperature profile along the 

pipeline and its change when a leak occurs.  In this paper, we developed non-isothermal 

equations of the gas flow in the pipeline with leak occurrence. Various thermal 

properties such as the ground temperature, heat transfer coefficient, gas compressibility, 

and inlet gas temperature were considered.  According to the equations, the effect of 

thermal properties were simulated and studied with and without leak occurrence.  

Besides measuring all the thermal-related parameters in the models, the 

parameters corresponding to thermal properties can also be estimated using parameter 

estimation techniques.  To estimate the effect of thermal properties without measuring 

the thermal property for leak detection, a dual unscented Kalman filter (DUKF) was 

applied under process and measurement noise to estimate the state (flow rate). The dual 

unscented Kalman filter is a technique which combines parameter estimation and state 

estimation. The filter takes pressure measurements at the boundaries of the pipeline and 

estimates the flow rate. The estimation and measurement of flow rates are compared to 

determine a leak location. During the application of the dual unscented Kalman filter, the 
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parameter corresponding to the thermal properties in the isothermal model, which is 

subjected to change according to different thermal conditions was estimated and 

demonstrated in the results section. Estimation from a filter is compared with the 

measurements of the flow rate to detect a leak incident. Extended Kalman filter and 

unscented Kalman filter were applied and compared on isothermal model and non-

isothermal model to estimate the flow rate. 

Modeling of the non-isothermal natural gas flow 

Natural gas pipeline modeling 

A pipeline is the most widely applied mode of transportation for natural gas. Gas 

flow in the pipeline is driven by compression pumps. In this paper, we describe the one-

dimensional gas flow dynamic through a gas duct, which was obtained by applying the 

conservation of mass, moment, and energy to derive the equations.  The composition of 

natural gas is assumed as 95% methane, 2.5% ethane, 1.6% nitrogen, 0.7% carbon 

dioxide, and 0.2% propane. The pressure heat capacity (CP) is assumed to be constant at 

2170 (J/kg K). The pipeline is 100 km in length (L = 100 km), and 0.6 m in diameter (D 

= 0.6 m). Heat transfer coefficient along the pipeline is assumed to be uniform. The inlet 

pressure (Pin) is 50 bar, and the outlet pressure (Pout) is 40 bar.  The flow rate, pressure, 

and temperature across the pipeline cross-section were assumed to be constant as the 

flow is highly turbulent.85 The derivations of the natural gas flow model were based on 

the mass balance, momentum balance, and energy balance equations, which are shown 

in the Appendix.  The following model equations were used, in which ‘x’ stands for the 

location in a pipeline and ‘t’ refers to time. The modeling equations are: 
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The continuity balance equation:   
∂ρv

∂x
+

∂ρ

∂t
+

qL

A∆x
=0                                      (2.1)               

The momentum balance equation:   

∂(ρv)

∂t
+

∂ρv∙v

∂x
+

∂P

∂x
+

qL.v

A∆x
=-ρgsinθ-

fq2

2DA2P
ZRT                                        (2.2)   

The energy balance equation:  

ρ
∂H

∂t
+ρv

∂H

∂x
-v

∂P

∂x
-

∂P

∂t
=

ρfv3

2D
-

4U(T-Tg)

D
                                                  (2.3) 

Equation of state:    
P

ρ
=ZRT                                                                               (2.4)                     

 In the above equations, 𝑞𝐿  is the leak mass flow rate in the pipeline, f is the 

friction factor, and 𝜃 is the inclined angle between the pipeline and the ground, which is 

set as zero here. A is the cross sectional area of the pipeline, and 𝑞 = 𝜌𝑣𝐴 is the mass 

flow rate. Z is the compressibility factor which is a function of P and T.  H is the 

enthalpy of natural gas and its derivate can be written as dH=CPdT+ {
T

ρ
(

∂ρ

∂T
)
P
+1}

dP

ρ
 . U is 

the overall heat transfer coefficient between the pipeline and environment and  𝑇𝑔 is the 

ground temperature, which is assumed to be uniform along the pipeline.  

 The above equations were rearranged as follows: 
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In these equations, the compressibility of the natural gas (Z) and its derivatives 

(
∂Z

∂P
,

∂Z

∂T
) were calculated based on the equation proposed by Dranchuck and Abou-

Kassem.86  

For the purpose of comparison, the isothermal models use constant 

compressibility,  in which     
𝑃

𝜌
= 𝑐2.                                                                             (2.8)                                                                                                                                                                                                                                                       

|𝑞| is used to ensure the positive value of the flow rate in the model development.  

Equations for the isothermal models are:  

∂P

∂t
+

c2

A

∂q

∂x
+

c2

A∆x
q

L
=0                                                                                                (2.9)                                                                         

∂q

∂t
+A

∂P

∂x
+

fc2q|q|

2DAP
+

c2

A∆x
(

q

p
) q

L
=0                                                                                   (2.10) 

∂T

∂t
=0                                                                                                                             (2.11) 

In the results and discussion section, isothermal models will be used for 

parameter estimation.   

Extended Kalman filter & unscented Kalman filter 

A Kalman filter is an optimal state and parameter estimator for inaccurate and 

uncertain observations, such as the presence of process noise and measurement noise. It 

minimizes the mean square error of the estimated states (or parameters). For nonlinear 

system, an extended Kalman filter can be used by linearizing the nonlinear functions 

using Tylor series expansion. Unscented Kalman filter is another estimation method for 

nonlinear systems, which does not require linearization. The difference between 

extended Kalman filter and unscented Kalman filter was discussed in the 

reference.77,78,87  
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A continuous extended Kalman filter has the following mathematical description. 

Consider a nonlinear system:  

 xk+1=fk(xk)+w                                                                                                                     

 y
k
=Cx+v                                                                                                    (2.12) 

where 𝑤 and 𝑣 are Gaussian white noises with covariance matrices 𝑄𝑘 and 𝑅𝑘. 

The extended Kalman filter design for the linearized system around the current 

estimate of the state is the following:      

x̂k+1|k+1=fk(xk|k)+Kk+1(y
k+1

-Cx̂k+1|k);                                             (2.13)                                                         

Kk+1=Pk+1|kC
T
[CPk+1|kC

T
+Rk+1]

-1
；Pk+1|k=FkPk|kFk

T+Q
k
                               

Pk+1|k+1=[I-Kk+1C]Pk+1|k      

where 𝐹𝑘  is the Jacobian matrices of 𝑓(. ) and 𝐾 is the Kalman filter gain.  Pk+1|k is the a 

priori estimate of the error covariance matrix and Pk+1|k+1 is the a posteriori estimate of 

the error covariance matrix. 

In an unscented Kalman filter, a set of sigma points is selected deterministically 

to represent the statistical properties of a random variable/function. Assuming that the 

mean and the covariance of the Gaussian random variable (GRV) are 𝑥̅ and 𝑃𝑥, the sigma 

points, 𝜒𝑖 , are calculated as follows: 

x0=x̅                                                                                                                         (2.14)                                                                                         

χ
i
=x̅+√((L+ƛ))Px  , i=1,….L ;  χ

i
=x̅-√((L+ƛ))Px  , i=L+1,….2L 
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W0
m=

ƛ

L+ƛ
                                                                                                                      (2.15)                                  

W0
c=

ƛ

L+ƛ
+1-α2+β                                                                                                           

Wi
c=Wi

m=
1

2(L+ƛ)
, i=1,……2L                                                                             (2.16) 

 Here ƛ=α2(L+K)-L  is a scaling parameter.  α determines the spread of the sigma 

points around 𝑥̅, which is usually set as a small number (it is set as 10-3 in our case). α is 

applied to control the resulting covariance matrix from becoming non-positive semi-

definite, which can be case-dependent. 𝛽 is used to incorporate the prior knowledge of 

the distribution of X. 𝛽 = 2 is optimal for Gaussian distribution, and K is a secondary 

scaling parameter, which is usually set to 0 or 3-L for Gaussian distribution .The choice 

of K determines the fourth and higher (even) moments of the sigma point distribution, 

which will affect the prediction accuracy of the mean and covariance.  𝑊𝑖
𝑐 and 𝑊𝑖

𝑐 are 

used in the time prediction equations and measurement update equations. (Equations 

(2.20) to (2.25)). 

A dual unscented Kalman filter is a joint unscented Kalman filter estimation of 

both state and parameters, which applies for the state estimation in nonlinear systems 

with parameter uncertainty. DUKF uses two parallel estimators, which sequentially 

estimates states and parameters. In the state estimator, the parameters are treated as 

constants for estimating the states; while in the parameter estimator, the previous 

estimated states are fed to the algorithm as inputs to update the parameters. These two 

estimators update the states and parameters, recursively.  The recursion of a dual 

unscented Kalman filter is described in the following steps: 
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Given         x̂0=E(x0),   P0=E[(x0-x̂0)(x0-x̂0)
T
]                                            (2.17)                                  

Calculate the sigma points:   

 χ
k-1

=[x̂k-1  x̂k-1+√((L+ƛ))Pk-1    x̂k-1-√((L+ƛ))Pk-1 ]                                               (2.18)                             

The time prediction equations are:  χ
k|k-1

=f(χ
k-1

)                                               (2.19)                                  

x̂
k|k-1

-
= ∑ Wi

mχ
i,k|k-1

2L
i=0                                                                                           (2.20) 

P
k|k-1

-
= ∑ Wi

c(χ
i,k|k-1

-2L
i=0 x̂

k|k-1

-
)(χ

i,k|k-1
-x̂

k|k-1

-
)
T

+Q                                                     (2.21)                                  

Yk|k-1=h(χ
k|k-1

)                                                                                                      (2.22)                                                                                                      

ŷ
k|k-1

-
= ∑ Wi

m2L
i=0 Yi,k|k-1                                                                                          (2.23)                                                                           

The measurement update equations are: 

Pyk= ∑ Wi
c (Yi,k|k-1-ŷ

k|k-1

-
) (Yi,k|k-1-ŷ

k|k-1

-
)

T

+R2L
i=0                                       (2.24)                                  

Pxkyk
= ∑ Wi

c(χ
k|k-1

-2L
i=0 x̂

k|k-1

-
) (Yi,k|k-1-ŷ

k|k-1

-
)

T

                                            (2.25)                                          

Kk=Pxkyk
Pyk

-1                                                                                                          (2.26)  

x̂k|k-1=x̂
k|k-1

-
+ Kk(y

k
-ŷ

k|k-1

-
)                                                                                       (2.27)                                                           

Pk= P
k|k-1

-
-KkPykKk

T                                                                                             (2.28)                                                               

where 𝐾𝑘 is the Kalman filter gain. 𝑃𝑦𝑘 is the measurement noise covariance of 𝑦𝑘. 𝑃𝑥𝑘𝑦𝑘
 

is the noise covariance of 𝑦𝑘  and 𝑥𝑘 . 𝑄  and R are defined in Equation (2.12). The 

measurement model is an identity mapping with the inlet and outlet pressure as 

measured variables. xk represents state x at time k. yk represents the measurement at time 
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k. The spatial distribution is represented as follows, e.g, for pressure P at time k and 

length ‘0’ is P(k,0), pressure P at time ‘k’ and length ‘∆x’ is P(k, ∆x). Similarly, P at 

other spatial intervals are:  P(k, 2∆x), P(k, 3∆x) … P(k, L). Thus, flow rate and 

temperature are expressed as q(k,0), q(k, ∆x), q(k, 2∆x), … q(k, L), T(k,0), T(k, ∆x), T(k, 

2∆x), … T(k, L). The states xk at each node of the pipeline (P, q, and T) are calculated as 

a vector when applying both extended Kalman filter and an unscented Kalman filter. ‘n’ 

is the discretization number of the pipeline. xk  is a vector containing a total number of 

3n states. 

Both extended Kalman filter and unscented Kalman filter were applied on 

isothermal and non-isothermal models to compare their capability for accurate 

estimation of states. The two filters were given the same covariance of process and 

measurement noise.  

Numerical solutions 

Many numerical methods have been used to solve gas pipeline models. In our 

previous work, we have showed that the Method of Line is among the most efficient and 

accurate methods for solving the hyperbolic-type partial differential equations governing 

the gas pipeline model.88  The fixed boundary conditions are set as follows: 

∂P

∂t x=0
=0,   

∂T

∂t x=0
=0,  

∂P

∂t x=L
=0    

The leak was introduced at the location of 1/4, 1/2, and 3/4 of the pipeline length 

and with amplitudes of 2%, 5%, and 10% of the total flow rate in the pipeline.  For the 

detection of leak location, both 2% and 5% leaks were used in our simulation results. 
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Results and discussion 

Effect of thermal properties on pressure, flow rate, and temperature distribution of the 

natural gas in the pipeline 

Although most of the previous studies with model-based natural gas pipeline leak 

detection utilized isothermal models, some research has been done to understand the 

non-isothermal pipeline flow phenomena, either for steady state or transient state.89 

Osiadacz and Chaczykowski compared the isothermal and non-isothermal pipeline gas 

flow models.90 They studied both the steady state and transient state flow dynamics. 

Chaczykowski derived one-dimensional non-isothermal flow model to study transient 

behavior of the fluid flow phenomena.91  Abbaspour and Chapman studied the non-

isothermal transient flow in the natural gas pipeline considering the convective inertia 

term, friction factor changes with Reynolds number, and compressibility factor as a 

function of the temperature and pressure.92  However, the non-isothermal modeling of 

gas flow with a leak in a pipeline and influence of this leak on flow rate and pressure 

under non-isothermal condition have not been studied yet. The non-isothermal model we 

derived in this paper was based on the following assumptions: the friction factor and the 

heat capacity of the natural gas were constant. The ground temperature was constant and 

not influenced by the leak of gas. Three different inlet temperatures (Tin) of 313 K, 343 

K, and 373 K were simulated to investigate the effects of inlet temperature on the 

pipeline parameter variations. Three different ground temperatures (Tg) of 273 K, 289 K, 

and 303 K were applied. The equations were solved using the Method of Line. Three 

heat transfer coefficients (U, accounting for heat transfer between the pipeline and 
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environment), 1.84, 2.84, and 3.84 J/ (m2 K s) were used representing for fully buried, 

partially buried, and bare pipeline.92,93  

The effects of thermal properties such as ground temperature variation, inlet gas 

temperature change, and heat transfer coefficient variation were studied at steady state. 

The ground temperature contributes to the heat transfer between the environment and the 

pipeline. Three different ground temperatures were studied, which account for high, 

medium, and low environment temperature around the pipeline. Figure II.1 shows the 

effect of ground temperature on the pressure, flow rate, and temperature profile of 

natural gas along the pipeline. The inlet temperature was set at 313 K, and the heat 

transfer coefficient is set as 2.84 J/ (m2 K s). Figure II.1a shows lower temperature 

generates a more uniform pressure drop. Figure II.1b shows variations of flow rate at 

different ground temperatures along the length of the pipeline. The flow rate decreased 

3.31% from a total flow rate of 96.4 kg/s when ground temperature increases from 273 K 

to 303 K. A lower ground temperature increased the mass flow rate by increasing the gas 

density. Figure II.1b shows different flow rate at different ground temperature at steady 

state. Figure II.1c shows variations of the temperature along the length of the pipeline 

due to the different ground temperatures. A significant drop of temperature along the 

pipeline is observed at a lower ground temperature.  
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Figure II.1. Effect of ground temperature on pressure, flow rate, and temperature 

distribution of the pipeline at steady state 

Figure II.2 shows the effects of the inlet temperature change on the pressure, 

flow rate, and temperature distribution. The ground temperature was set up as 289 K, 

and the heat transfer coefficient used is 2.84 J/ (m2 K s). Higher inlet temperature does 

not significantly affect the pressure drop profile as shown in Figure II.2a.  From Figure 

II.2b, it can be seen lower inlet temperature increased the flow rate at steady state, 

generating a 3.44% difference with inlet temperature of 313 K and 375 K of inlet 

temperature. Inlet temperature fluctuation causes a temperature change over the entire 

pipeline and a higher inlet temperature increased the overall temperature in the pipeline.  
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Figure II.2. Effect of inlet temperature on pressure, flow rate, and temperature 

distribution of the pipeline at steady state 

Figure II.3 shows the effects of different heat transfer coefficients on the pressure, 

flow rate, and temperature profile. The ground temperature was set as 289 K, and the 

inlet temperature was set as 313 K. The effect of heat transfer coefficient on the pressure 

change across the pipeline is very small. The observed flow rate changes was 0.85% 

range when heat transfer coefficient was varied from 1.84 to 2.84 J/ (m2 K s). Heat 

transfer coefficient affects the overall temperature profile as can be seen in the Figure 

II.3(c). Because the ground temperature was lower than the inlet gas temperature, higher 

heat transfer coefficient would decrease the pipeline temperature and subsequently 

increase the mass flow rate. If the ground temperature is higher than the inlet gas 

temperature, the effect of heat transfer coefficient will be the opposite. 
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Figure II.3. Effect of heat transfer coefficient on pressure, flow rate, and temperature 

distribution of the pipeline at steady state; U represent heat transfer coefficient with unit of 

J/ (m2 K s) 

Figure II.3 Effect of heat transfer coefficient on pressure, flow rate, and 

temperature distribution of the pipeline at steady state; U represent heat transfer 

coefficient with unit of J/ (m2 K s) 

Many previous research efforts used non-isothermal model to study the transient 

and steady state behavior of the natural gas pipeline, but none of them considered leak 

occurrence. We incorporated a leak into the natural gas pipeline and studied the effect of 

leak on the pressure, flow rate, and temperature profile across the length of the pipeline. 

Different leak sizes (2%, 5%, and 10% of the total flow rate) and locations (L/4, L/2, and 

3L/4) were tested.  The effect of leak on the pressure and flow rate has been studied 

under an isothermal mode.  In this paper, we are demonstrating the effect of a leak under 

a non-isothermal situation.  
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Figure II.4 shows the results of pressure change due to different amplitudes of 

the leak (Figure II.4a) and leaks with the same amplitude but at different locations 

(Figure II.4b) under non-isothermal condition. Due to the boundary conditions applied 

when solving the equations, the pressures at both ends do not change when responding to 

the leak. The effect of leak on pressure is to decrease the pressure at the leak sites. From 

Figure II.4b it can be seen that when a leak happens at L/4, L/2, and 3L/4, the pressure at 

the leak location decreases, and the decrease becomes larger with increased leak 

amplitudes, as shown in Figure II.4a.  

 

Figure II.4. Effect of leak on pressure distribution with (a) different leak sizes at L/2 

location, and (b) 5% leak at different locations. L represents the total length of the pipeline 
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Figure II.5. Effect of leak on flow rate with (a) different leak magnitudes at L/2 and (b) 5% 

leak at different locations. L represents the total length of the pipeline 

Figure II.5 illustrates the flow rate change due to a leak occurrence at the steady 

state. After the leak occurrence, the flow rate changes at both ends of the pipeline, i.e. 

upstream and downstream of the leak location. From Figure II.5a, it can be seen that the 

upstream flow rate increased while the downstream flow rate decreased. The difference 

between two ends is equal to the size of the leak. When the leak occurs, the pressure 

drop across of the pipeline will decrease due to the loss of flow rate and due to the 

operating condition of the pump station, the flow rate will increase to satisfy boundary 

condition which leads to increase in the inlet flow rate. In order to maintain the fixed 
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boundary pressure, more natural gas is pumped into the pipeline, which increases the 

upstream flow rate. The downstream flow rate decreases due to the presence of leak. 

Figure II.5b demonstrates the variation of flow rate profile due to leaks with the same 

amplitude occurring at different locations.  The figure shows that the leak location will 

change the flow rate profile, which could be used for leak location identification. The 

difference between the flow rate with and without leak will change according to the leak 

location. The leak location identification equation is based on flow discrepancy, which is 

discussed by Wang et al. and showed as Equation (2.29).89  E is the average of the 

discrepancies for ten previous measurements. 

XL=
L

1-
E(qin-qs)

E(qout-qs)

                                                                                (2.29)                          

Here qin and qout represent the measured inlet, outlet flow rate after the leak and qs  is the 

flow rate at steady state without the leak. qin and qout  are measured at both ends of the 

pipeline. qs  is estimated  from the dual unscented Kalman filter using the measurement 

of boundary pressure at both ends of the pipeline. L is the total length of the pipeline.  𝑋𝐿 

is the estimated leak location. 𝑋𝐿 is calculated when the difference between qout  and qs 

exceeds a certain threshold.  

The effects of a leak on the temperature profile across the length of the pipeline 

were studied by applying three different magnitudes of leaks in the middle of the 

pipeline.  Figure II.6 shows the transient response of the temperature at different 

locations. From the figure it can be seen that when a leak occurs, the temperature at a 

location upstream of the leak point first decreases for a small amount, then increases, 
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and finally returns back to a steady state value. The decreasing temperature at the 

beginning of the leak is due to the pressure drop and Joule-Thomson effect. The 

subsequent temperature increase is due to the increased inlet flow rate at high 

temperature bringing in more energy, and the final steady state value is reached by the 

heat exchange with the environment. Figure II.7 demonstrates temperature change (at 

x=L/2) due to the leakage at different places. The leak with the same magnitude at 

different leak locations will affect the temperature change. The temperature change 

depends on the overall effect of inlet temperature, ground temperature, and pressure 

distribution.  

 

 

Figure II.6. Effect of leak (locating at L/2) on temperature change of the pipeline at 

different locations. L represents the total length of the pipeline 
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Leak detection using dual unscented Kalman filter 

The unscented Kalman filter is a powerful state estimating technique for a 

nonlinear system. Compared to an extended Kalman filter, an unscented Kalman filter 

can be applied to a highly nonlinear system with higher accuracy. In our study, the flow 

rate is the process state of a gas flow process in a pipeline. In the application of the 

unscented Kalman filter, the generated sigma points will not violate the operational 

constraints because the process variance is small and the operation constraints in our 

study is the pressure at the pump station, which can tolerate significant variations. The 

number of sigma points is proportional to the discretization number of the pipeline, 

which is fixed in our study.  

 

 

Figure II.7. Effect of leak on temperature change (at x=L/2 location) with leak occurring at 

different locations. L represents the total length of the pipeline 

The non-isothermal model and the isothermal model were compared in the 

prediction of flow rate through the parameter estimation in the dual unscented Kalman 

filter. In the isothermal model, the parameter ‘c’ is used to define the equation of state in 
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the isothermal model, which is closely related to the thermal properties such as 

temperature and compressibility factor, which is shown in Equations (2.4) and (2.8).  

 

 

Figure II.8. Parameter estimation in three different cases and the match of flow rate with 

the simulated non-isothermal data.  ‘Estimated flow rates’ are generated based on 

isothermal model and ‘measured flow rates’ are generated from non-isothermal model. 

Case 1, 2, and 3 respresent three different thermal conditions. 
 Case 1 Case 2 Case 3 

Ground temperature (K) 303 273 289 

Inlet temperature (K) 373 313 343 

Heat transfer coefficient (J/ (m2 K s)) 1.84 3.84 2.84 

To demonstrate the effect of the estimated parameter, three different thermal 

situations were studied with randomly selected ground temperature, heat transfer 

coefficient, and inlet temperature. In Figure II.8 and the other figures, the ‘measured’ 

data was simulated through the non-isothermal model with process/measurement noise 

added (white noise, 1% of the flow rate at steady state), and the ‘estimated’ data was 

obtained by the dual unscented Kalman filter. Figure II.8a shows the estimated 
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parameter (‘c’ in Equation (2.4)) in three different thermal operating cases without leak 

occurrence. In each case, the parameter converges to a steady state value, and the 

fluctuation of the value was due to the noise of the measurements. From this figure it can 

be concluded that the parameter can be updated for different thermal operating 

conditions which matches the flow rate of non-isothermal model in Figures II.8b, II.8c, 

and II.8d.  This parameter estimation technique can provide information about the 

thermal properties, such as ground temperature, gas heat capacity, material of a pipeline, 

and construction of a pipeline without having all these parameters measured.  

 

Figure II.9. Parameter estimation before and after leak occurrence: (a) match of flow rate 

due to parameter estimation, and (b) parameter estimation: parameter ‘c’ in isothermal 

model. ‘Estimated flow rates’ are generated based on isothermal model and ‘measured 

flow rates’ are generated from non-isothermal model. 
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Figure II.9 shows the estimation of the parameter in non-isothermal model with 

and without leak occurrence. As can be seen from Figure II.9a, the isothermal model can 

predict the flow rate of non-isothermal model before and after the leak happens through 

parameter estimation using dual unscented Kalman filter. The parameter estimation 

results in Figure II.9b indicate that the estimated parameter changes from 397.1 to 398.5 

due to leak occurrence. The parameter ‘c’ correlates with the thermal state of equation of 

the gas, and changes due to leak occurrence. The parameter changes accordingly when 

the leak changes the temperature profile of the gas in the pipeline.   

 

 

Figure II.10. Leak location identification using the dual unscented Kalman filter with 2% 

and 5% leakage 

 

To detect a leak from the pipeline, an alarm will be triggered when the difference 

in flow rate between estimation from the filter and measurement exceeds a certain 
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threshold value according to the process noise level. Figure II.10 shows the leak location 

estimation using the DUKF algorithm. The leak location was calculated using Equation 

(2.29). The figure indicates that using a simplified model with parameter update, the 

DUKF can be applied for estimation of the leak location.  As shown in Figure II.10, the 

estimation converges to a steady state value faster with larger leak magnitude. To 

eliminate the effect of noise, the moving window technique was applied, which averaged 

the data in a certain window time.   

Comparisons between extended Kalman filter and unscented Kalman filter 

 

 

Figure II.11. Comparison between UKF and EKF for estimation of flow rate on isothermal 

model. ‘Estimated flow rates’ are generated based on isothermal model and ‘measured 

flow rates’ are generated from non-isothermal model. 

To compare extended Kalman filter (EKF) and unscented Kalman filter (UKF), 

both isothermal and non-isothermal models were used. For the detection of a single leak 

in a pipeline, isothermal model with parameter estimation is sufficient. However, for 

detection of simultaneous multiple leaks, state and parameter estimations of non-
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isothermal model are required. To compare unscented Kalman filter and extended 

Kalman filter fairly, the initial process covariance (P in Equation (2.13) for EKF and P0 

in Equation (2.17) for UKF) are set to the same value. The other covariance such as 𝑅𝑘 

and 𝑄𝑘(in Equation (2.13) for EKF) are set equal to R and Q (in Equation (2.24) and 

(2.21) for UKF).  

 

 

Figure II.12. Comparison between UKF and EKF for estimation of flow rate using non- 

isothermal model. Estimated flow rates are generated based on isothermal model and 

measured flow rates are generated from non-isothermal model. 

Figure II.11 shows the comparison of extended Kalman filter and unscented 

Kalman filter on the isothermal model. The Jacobian matrix in the extended Kalman 

filter is calculated analytically.  Both extended Kalman filter and unscented Kalman 

filter converge to the steady state value.  ‘Measurement’ data applied in both Figure 

II.11 and Figure II.12 were generated by adding white noise term in the simulation.  To 

compare both filters numerically, a simulation of ‘measured’ flow rate without process 

and measurement noise was provided, and the root mean square error (RMS error) from 
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the two filters was calculated.  The estimation error is calculated using the following 

equation. 𝑄𝑖𝑛
𝑓𝑖𝑙𝑡𝑒𝑟

 and 𝑄𝑜𝑢𝑡
𝑓𝑖𝑙𝑡𝑒𝑟

  represent the inlet and outlet flow rate from filter 

estimation. 𝑄𝑖𝑛
𝑠𝑡𝑎𝑡𝑒  and 𝑄𝑜𝑢𝑡

𝑠𝑡𝑎𝑡𝑒  represent the inlet and outlet flow rate from simulation 

without any process noise.  

RMS 𝑒𝑟𝑟𝑜𝑟 = √∑((𝑄𝑖𝑛
𝑓𝑖𝑙𝑡𝑒𝑟

− 𝑄𝑖𝑛
𝑠𝑡𝑎𝑡𝑒)

2
+ (𝑄𝑜𝑢𝑡

𝑓𝑖𝑙𝑡𝑒𝑟
− 𝑄𝑜𝑢𝑡

𝑠𝑡𝑎𝑡𝑒)
2
)/2𝑛   

The results showing estimation error for the isothermal and non-isothermal cases 

are provided in Table II.1.  

Table II.1. RMS error from UKF and EKF estimation for isothermal and non-isothermal 

models 

 UKF Error EKF Error 

Isothermal model 2.0×10-3 6.0×10-5 

Non-isothermal model 0.265 2.68 

The isothermal case study indicates that both unscented Kalman filter and 

extended Kalman filter has negligible estimation errors, and extended Kalman filter 

performs slightly better. It is because the isothermal model doesn’t have high 

nonlinearity, and the slow dynamic of the system doesn’t introduce significant 

linearization error. The errors in both cases are much smaller than the process noise. 

The non-isothermal case study shows the superior of the unscented Kalman filter. 

In the application of extended Kalman filter on non-isothermal model, there are several 

physical parameters in the Jacobian matrix calculation that is not available. To calculate 
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the Jacobian matrix for non-isothermal model, the numerical values of high-order 

derivatives of the compressibility factor are needed, such as  
∂Z2

∂P∂T
 ,  

∂Z2

∂
2
P
 , and 

∂Z2

∂
2
T
 . The 

relationships between gas compressibility and pressure/temperature are built on 

empirical models from experimental data, and these equations for the parameters are not 

continuous. So the Jacobian matrix for extended Kalman filter has to be calculated 

numerically. For the nonlinear system like the non-isothermal model when Jacobian 

matrix is hard to obtain, the unscented Kalman filter performs better than the extended 

Kalman filter. This case shows that the unscented Kalman filter has better performance 

when analytical Jacobian matrix of extended Kalman filter is not available. As can be 

seen in the Table II.1, extended Kalman filter provides large estimation error for the 

non-isothermal case. It is due to the error introduced in the first order linearization. The 

unscented Kalman filter provides better estimation of the process in the presence of 

process noise for the non-isothermal case. 
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Figure II.13. An estimation of flow rate (a) and parameter: ‘c’ in isothermal model (b) 

using measurement data from PIPESIM 

 

A case study using PIPESIM 

To validate the dual unscented Kalman filter algorithm, a case study was 

performed using PIPESIM. PIPESIM is steady state simulation software used for the 

design and diagnostic analysis of oil and gas system including pipeline network 

developed by Schlumberger (PIPESIM software, 2015).  A steady state natural gas 

pipeline flow simulation was performed with and without leak occurrence. The 

simulated straight pipeline has a length of 10 km, a pipe diameter of 0.3 m, and a heat 

transfer coefficient of 1.13 J/ (m2 K s). The initial and ground temperature is set at 313 K 
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and 289 K, respectively.  Inlet and outlet pressures (boundary conditions) are set at 10 

bar and 8 bar. A comparison was performed between PIPESIM simulation and non-

isothermal model developed in this paper using the same parameters. The PIPESIM 

calculated a flow rate of 9.2 kg/s at steady state while our non-isothermal models 

showed 10.6 kg/s. This difference may be due to the calculation of friction factor, which 

can be updated through the same parameter and state estimation technique. However, the 

non-isothermal model in our study is used to demonstrate the effect of thermal properties 

and generate ‘measurement’ data, which is used in the parameter and state estimation 

using the isothermal model. The parameter and state estimation can also be applied to 

non-isothermal model, which is not demonstrated here. In Figure II.13, the results shows 

that the flow rate estimation can be performed using the dual unscented Kalman filter. In 

PIPESIM, to simulate a pipeline with leak, a joint and an outlet ‘sink’ were added to the 

pipeline at a certain location with gas flowing out of the pipeline. We used our dual 

unscented Kalman filter algorithm on our isothermal model to estimate the parameter ‘c’ 

in Equations (2.9) and (2.10). Figure II.13 shows the updated flow rate and parameter ‘c’ 

using the simulation data obtained from PIPESIM. Leak location estimation was 

performed. The algorithm calculated the location of the leak to be at 6.09 km at 2% leak, 

whereas the actual location of the leak was at 6.00 km. 

Summary of the chapter 

Model-based fault detection method is one of the most widely used software 

solutions for leak identification in pipelines. In most previous natural gas pipeline leak 

detection studies, the gas flow models for natural gas pipelines were based on 
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assumptions that assume isothermal operation. In this paper, non-isothermal state 

equations were derived for natural gas pipeline flow processes considering the effect of 

gas compressibility, heat transfer coefficient, ground temperature, and leak occurrence in 

the pipeline. The effects of the above-mentioned thermal properties and the leak 

occurrence on the pressure, flow rate, and temperature profile along the pipelines were 

studied using MATLAB® simulations. The results showed that the ground temperature, 

heat transfer coefficient, and leak occurrence affected the flow rate values at steady state. 

Estimation of the leak location is extremely important from the point of view of safe 

operation of pipelines. 

A dual unscented Kalman filter was used for parameter estimation and leak 

detection. To compare the isothermal and non-isothermal models, the parameter in the 

isothermal model was estimated for various thermal situations, including different inlet 

temperatures, ground temperatures, heat transfer coefficients, and leak occurrence. 

Together with the parameter update, the dual unscented Kalman filter was able to detect 

and identify the location of the leakage. A comparison study between unscented Kalman 

filter and extended Kalman filter is provided. 
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CHAPTER III  

DESIGN OF AN UNKNOWN INPUT OBSERVER FOR LEAK DETECTION 

UNDER PROCESS DISTURBANCE 

 

Introduction 

Many chemicals in the petrochemical industry are transported through pipeline 

networks. However, leakage of chemicals from pipelines is always the main safety 

concern and may cause catastrophic failure. Hardware-based methods, such as fiber 

optic sensors, acoustic sensors, and vapor monitoring sensors, require extensive 

instrumentation for implementation.62,94,95 Software-based methods are available for leak 

detection from a pipeline and generally only require measurements of flow rate and 

pressure at the boundary of the pipeline; the exception to this is Real-Time Transient 

Modeling, which needs temperature measurements.96,97 However, for software-based 

methods, their high sensitivity to process noise and disturbances prevent them from 

detecting small leaks.98 

A natural gas pipeline presents a complicated transportation problem, more so 

than a liquid phase pipeline, due to the possibility of phase change of the gas. Modeling 

and simulation of transient natural gas pipelines have been extensively studied 

considering non-isothermal conditions in single pipelines and networks.71,74,75,99–103 For 

the purpose of leak detection in a natural gas pipeline, the effect of thermal properties 

cannot be ignored. The effects of changing thermal conditions on the natural gas flow in 

a pipeline through non-isothermal modeling has been demonstrated.99  
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Model-based methods for fault detection have been successfully demonstrated by 

many researchers. In these methods, key information regarding the state of the process is 

estimated. For transportation processes in pipelines, these estimated quantities include 

both flow rate and pressure. Many studies have proposed different methods for state 

estimation for leak detection in natural gas pipelines without considering the variation of 

thermal properties.80,81,83,104,105 Methods such as optimization and neural networks have 

been developed for estimating the leak locations.106,107 Most of the previous reports are 

based on ideal–gas assumptions for the natural gas. However, variations from the inlet 

gas temperature and ground temperature can be considered as disturbances in the process 

and can cause a change in thermal conditions of the gas, including phase changes. To 

deal with the effect of changing thermal conditions, one proposed method is to perform a 

real-time transient modeling with measurements of the thermal properties.108 

Besides the variation of thermal properties, changes in boundary pressures at a 

pump station is also considered as a process disturbance. For a pipeline with a fixed 

delivering pressure at a pump station, consumer usage introduces time-variant 

oscillations in the pressure that further influence the leak detection. To compensate for 

the effect of these pressure oscillations, Reddy et al. applied a transfer function method 

on linearized partial differential equations of natural gas flow models to study the effect 

of the boundary pressure.105 The Real-Time Transient Modeling method develops first-

principle, non-isothermal models of the gas flow in pipelines and measures the 

corresponding parameters of the model, i.e. boundary pressure, inlet gas temperature, 

and ground temperature.  Real-time transient modeling is performed using the measured 
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physical properties to monitor the pipeline operation.96,97 However, this method not only 

introduces extra instrumentation but also exacerbates the effect of possible measurement 

(sensor) faults.  

Observers for fault detection have been demonstrated by different researchers. 

47,109–111 Observers and filters have also been applied for leak detection in water or natural 

gas pipelines, including extended Kalman filters, particle filters, high-gain observers, 

sliding mode observers, and Luenberger-type estimators.81,83,112–116 Reducing the effect of 

process disturbances is a challenge for these observers unless real-time modeling and 

computation is performed. An unknown input observer is an observer designed to 

estimate the states when considering certain unknown inputs.109,117–119 For a pipeline 

transportation process, disturbances such as unexpected changes in temperature and 

boundary pressure can be considered as unknown inputs and make the unknown input 

observer a better method than other filter and observers previously used. 

In this paper, a linear unknown input observer is designed for a natural gas 

pipeline to estimate state (flow rate) information and reduce the effect of process 

disturbances. The pipeline is depicted with time-variant consumer usage at a certain 

known location. We provide a methodology to construct a linear unknown input 

observer to estimate the state for a natural gas flow process, which is modified from a 

previous research by Koenig et al.47  The modified observer can be applied to the 

reduced pipeline model for leak detection under process disturbance. The modified 

observer also improved the performance of state estimation by considering the effect of 

process measurement noise.  The robustness of the observer with respect to measurement 
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noise is analyzed. The corresponding sufficient and necessary condition for the modified 

observer is provided. With our new method, only two measurements (inlet and outlet 

flow rate) are needed to detect the leak location. 

Modeling of non-isothermal natural gas flow 

Non-isothermal modeling of natural gas flow in a pipeline 

Non-isothermal modeling of natural gas flow is based on mass, momentum, and 

energy balances. Briefly, the composition of natural gas is assumed to be 95% methane, 

2.5% ethane, 1.6% nitrogen, 0.7% carbon dioxide, and 0.2% propane. The length, 

diameter, inlet pressure, and outlet pressure are set as 10 km (L = 10 km), 0.3 m (D = 0.3 

m), 10 bar (Pin), and 8 bar (Pout). A time-variant consumer usage is applied to the 

pipeline at a known location. The consumer usage is measured every 30 second, and is 

assumed constant in between measurements. The time-variant consumer usage is shown 

in Figure III.1, which is adapted from the work of Szoplik.120 The compressibility factor 

was calculated based on the work of Dranchuk.86 

 

Figure III.1. Time-variant consumer gas usage 
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The development of the non-isothermal models is shown in Chapter II and as 

follows: 
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In the above equations, P, q, and T are pressure, mass flow rate, and temperature 

in the pipe. A is the cross sectional area of the pipe. 𝑞𝐿 is the mass flow rate of the leak 

and ∆𝑥 is the corresponding discretization section of the pipe for the leak. The parameter 

Z is the compressibility factor of the gas, while U is the heat transfer coefficient of the 

pipe, 𝑇𝑔  is the ground temperature, and f is the friction factor of the pipe. The non-

isothermal model is used to generate measurement data in the following sections by 

using the Method of Line, which is shown in our previous work to be among the most 

efficient and accurate methods for solving the hyperbolic-type partial differential 

equations governing flow in natural gas pipelines. The fixed boundary conditions for 

solving the non-isothermal model are set as follows: 

∂P

∂t x=0

=0,      
∂T

∂t x=0

=0,  
∂P

∂t x=L

=0 

 The effect of temperature changes and pressure changes are also simulated using 

the non-isothermal model.  
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Model reduction 

Both the oscillation of pressure and changes of temperature are nonlinear 

disturbances.  To eliminate the effect of nonlinear disturbances in a nonlinear system, a 

nonlinear unknown input observer needs to be developed. However, to the best of our 

knowledge, there does not exist a general way to construct a nonlinear unknown input 

observer to compensate for nonlinear disturbances for nonlinear systems. Available 

methods for designing unknown input observers for nonlinear systems impose strict 

requirements on the system, such as satisfying local Lipchitz condition.121 The 

linearization of nonlinear terms will introduce estimation errors, especially for nonlinear 

non-isothermal model, where an accurate Jacobian matrix is not available due to the 

calculation of numerical values of high-order derivative of compressibility factors, such 

as  
∂Z2

∂P∂T
 , 

∂Z2

∂
2
P
 , and 

∂Z2

∂
2
T
 , not available from experimental data.   

To overcome this difficulty, a reduced linear process model is developed to 

construct a linear unknown input observer. Isothermal models are also derived using an 

ideal-gas assumption, which considers constant temperature along the pipeline and no 

change of gas phase. The isothermal model equations use constant compressibility 
P

ρ
=c2, 

as shown in the equations below: 

∂P

∂t
+

c2

A

∂q
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q
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For both the isothermal and non-isothermal models containing PDE equations, 

only boundary pressure and flow rate from the numerical solutions are used for leak 
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detection. The reduced linear model is designed to show the boundary flow rate of the 

pipeline under the influence of consumer usage. The disturbance from pressure and 

temperature changes can also be reduced to a linear disturbance. 

The model reduction process begins with Equations (3.4a) and (3.5a), which can 

predict the behavior of the non-isothermal model by changing the corresponding 

parameters. The variable 𝑞𝑢𝑠𝑎𝑔𝑒  is used to represent the consumer usage at time t. 

∂P

∂t
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=0                      (3.4a)                                                                               
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The pipeline is divided into three sections depending on the location of the consumer 

usage, which have length of l1, l2, and l3. The pressure drop in Equations (3.4a) and 

(3.5a) over each section is integrated with an assumption of a steady state flow rate. For 

a pipeline without usage, the pressure drop along the pipeline is shown in Equation 

(3.5b), which is the integral solution of Equation (3.5) over x at steady state where  

𝑞𝑢𝑠𝑎𝑔𝑒 is set to 0.    

P1
2- P0

2=l1
fc2q1

2

DA2 +l2
fc2q1

2

DA2 +l3
fc2q1

2

DA2                                         (3.5b)                                           

Here, the inlet and outlet pressure are represented by 𝑃1 and 𝑃0, and  𝑞1 and 𝑞0 are the 

flow rate before and after the leak location, respectively. For a pipeline without a leak or 

consumer usage the values of 𝑞1 and 𝑞0 are equal. For a pipeline with consumer usage, 

the flow rate at different sections will change correspondingly, and these changes are 

defined by ∆𝑞1  before the section with consumer usage, ∆𝑞0  inside the section with 
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consumer usage, and ∆𝑞0 after the section with consumer usage. For the pipeline with 

consumer usage, the pressure drop along the pipeline becomes as follows: 

P1
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2=l1
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2
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The consumer usage can be calculated from the change of the flow rate, for 

which 𝑞𝑢𝑠𝑎𝑔𝑒 = ∆𝑞1 − ∆𝑞0. The pressure drop in Equation (3.5b) and Equation (3.5c) 

will be equal since the pressure at the boundary of the pipeline is fixed, so the following 

equation can be derived: 

l1
f×c2(2q1+∆q1)∆q1
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If the consumer usage is relatively small compared to the nominal flow rate, we 

can assume (2q
1
+∆q

1
)≈2q

1
 and (2q

1
+∆q

0
)  ≈2q

1
, therefore (q

1
+∆q

0
)≈q

1
. Using these 

approximations, Equation (3.5d) can be simplified to Equation (3.5e): 
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The overall boundary flow rates of a pipeline with stable consumer usage at steady state 

are given by the following equations: 

q
in

=q
st.

+q
usage

×a;  q
out

=q
st.

+q
usage

×b;       

a/b=constant                                       (3.6) 

In Equation (3.6), the variables 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡  are the inlet and outlet flow rate and 

𝑞𝑠𝑡. is the flow rate at steady state without consumer usage. To evaluate the linear 

approximation, a simulation result is presented in Figure III.2, which shows the linear fit 
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between the consumer usage and boundary flow rate at steady state. The R2 value for 

linear fit of inlet flow rate and outlet flow rate is 0.987 and 0.999, respectively.  

 

Figure III.2. Linear fit of boundary flow rate with consumer usage at steady state 

For a pipeline with time-variant consumer usage, 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 will be subjected 

to the dynamic change of consumer usage. The response of the boundary flow rate 

corresponding to the consumer usage can be written as Equation (3.7) and Equation (3.8).  

q
in

(t)=q
st.

+ ∑ ai
n
i=0 q

usage
(t-i)                 (3.7)                                                                            

q
out

(t)=q
st.

+ ∑ biqusage
(t-i)n

i=0                           (3.8)                                                                   

The parameters 𝑎𝑖 and  𝑏𝑖 model the effect of consumer usage on the flow rate, and are 

obtained by performing a simulation study. In the simulation study, artificial measured 

flow rate at the boundary of the pipe were generated using Equation (3.1), (3.2), and (3.3) 

with known 𝑞𝑢𝑠𝑎𝑔𝑒, which is 𝑞𝐿 in these equations. q
in

 and  q
out

  from Equation (3.7) and 

(3.8) are calculated and compared to the simulation data from Equation (3.1-3.3). 𝑎𝑖 and 

𝑏𝑖 are tuned so that q
in

(t) and  q
out

(t) will fit the artificial measurement for each time step. 
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The comparison of the flow rates between the original model and the reduced model is 

shown in the results section. Different observers need to be designed for different 

process models for state estimation purpose. In the next session, design of observer for 

the process model in the format of Equation (3.7) and (3.8) is introduced.  

Design of a linear unknown input observer 

To apply the concept of model-based fault detection, a state estimation is 

obtained from filtering our observer and is then compared with the measurements. For a 

case study of a pipeline system, the state information is flow rate, pressure, and 

temperature. To detect leaks in the pipeline, a comparison between the estimated state 

and the measured state is performed to determine the leak occurrence and more 

importantly the leak location. There are several proposed state estimation methods for a 

pipeline system for leak detection, as introduced before, however these methods cannot 

efficiently estimate the state information in the presence of process disturbances. Thus, 

we propose using a new state estimation method to deal with the process disturbance. An 

unknown input observer is designed to estimate the state information as well as to 

eliminate the effect of unknown input, which is a perturbation with unknown size. The 

construction of a linear unknown input observer is demonstrated in the following steps.  

Without loss of generality, a linear process model such as Equation (3.7) and 

Equation (3.8) can be written as follows: 

x(t)= ∑ Aix(t-τi)
n
i=0 + ∑ Biu(t-τi)

n
i=0 +Ww(t)                          (3.9)                                      

 y(t)=Cx(t)+Md(t) 
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where x(t) is the state, y(t) is the measurement, u(t-τi) is the input, d(t) is measurement 

noise, here assumed to be white noise, and w(t) is the unknown input. 𝜏𝑖  is the time 

delay constant. Equation (3.9) is a general format of Equation (3.7) and Equation (3.8). 

For the application of flow rate estimation, in Equation (3.9), x(t) , y(t) , and 𝑢  are 

boundary flow rate, measured boundary flow rate, and consumer usage.  Here, W is the 

parameter matrix for the unknown input, which was determined by the simulation results 

of the unknown input to the system. To obtain the W matrix in a simulation study, 

different values of w(t) are introduced into the system, and the changes of x(t) are 

calculated. The W matrix is calculated as ∆x1(t)/∆x2(t) in presence of  w(t) at steady 

state . ∆x1(t) and  ∆x2(t) represent the change of inlet and outlet flow rate. For the leak 

detection from a pipeline, w(t) is defined as  pressure change at pump station and change 

of ground temperature. To perform the simulation study to obtain W matrix, drop of inlet 

pressure and change of ground temperature were introduced individually using Equation 

(3.1-3.3), the inlet and outlet flow rate which is x(t) in Equation (3.9) was recorded. W 

matrix is then calculated as ∆x1(t)/∆x2(t) at steady state.  

A modified design of unknown input observer from Koenig et al.24 is shown as 

follows: 

z(t)= ∑ Fiz(t-τi)+ ∑ TBiu(t-τi)+ ∑ Giy(t-τi)
n
i=0

n
i=0

n
i=0                       (3.10)                        

x̂(t)=z(t)+Ny(t) 

where 𝐹𝑖  , 𝑇, 𝑁, 𝐵𝑖, and 𝐺𝑖 are corresponding parameters for the observer and 𝑥̂(𝑡) is an 

estimation of the state x(t). 
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Proving existence, stability and robustness of the unknown input observer 

To utilize the unknown input observer described in Equation (3.10) for fault 

detection in pipelines, its existence, stability and robustness must be proven. The 

following lemma is applied for the existence of an observer for the system. The proof of 

Lemma 3.1 m is similar to Koenig et al.,  which is given in Appendix.47 

Lemma 3.1: The necessary and sufficient condition for the existence of observer 

(Equation (3.10)) for a system (Equation (3.9)) is 𝑟𝑎𝑛𝑘 𝐶𝑊 = 𝑟𝑎𝑛𝑘 𝑊 

Stability of an observer refers to the propagation of the estimation error over time, 

where a stable observer has an estimation error that decreases over time. The following 

theorem gives the stability criteria of an observer: 

Theorem 3.1:  The observer is asymptotically stable if and only if the following 

conditions hold: 

1) e(t)= ∑ Fi e(t-τi) + ∑ GiM d(t-τi)+ NM d(t) is asymptotically stable 

2) T+NC=I 

3) TW=0 

4) G̅i=Gi-FiN,  i=0,1,2,…n 

5) Fi=TAi- G̅iC, i=0,1,2,…n   

Theorem 3.1 has similar structure with Theorem 1 in the reference47 except 

condition (1). Condition (4) and (5) introduce new variables for ease of solving the 

parameters. Condition (2) and (3) are used to derive the condition (1), which is shown as 

the following. The assumption for W is that it is not an identity matrix. From the design 

of the observer and Equations (3.9) and (3.10), the error of the observer is calculated as: 
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e(t)=x̂(t)-x(t)=z(t)+(NC-I)x(t)+NMd(t) 

= ∑ Fie(t-τi) + ∑(T+NC-I)Biu(t-τi) + ∑(Fi-Gi
̅̅ ̅C-FiCN+(NC-I)Ai)x(t-τi) +

(NC-I)Ww(t)+ ∑ GiMd(t-τi)+ NMd(t)                    (3.11)                                                       

Asymptotic stability is defined as the speed of the decrease of the estimation 

error and condition (1) in Theorem 3.1 guarantees this stability. Conditions (2), (3), (4), 

and (5) in Theorem 3.1 can be used to simply Equation (3.11) to condition (1). After the 

simplification of the estimation error of Equation (3.11) into condition (1) using 

conditions (2-5) in Theorem 3.1, Theorem 3.2 is introduced to prove asymptotic 

stability criteria described by condition (1) and solve the parameter for the observer 

using a linear matrix inequality toolbox in MATLAB: 

Theorem 3.2:  The observer estimation error will be asymptotically stable if and 

only if the following conditions hold: there exist matrices   P=PT>0 and Q
i
>0 satisfying 

the following linear matrix inequality: 

Ξ =

4
t

i 0

i 1

t

1 1

t

2 2

t

3 3

t

4 4

P Q 0 0 0 0 F P

* Q 0 0 0 F P

* * Q 0 0 F P 0

* * * Q 0 F P

* * * * Q F P

* * * * * P



 
  
 

 
 

  
 
 

 
  



                  

 (3.12) 

The proof of Theorem 3.2 is introduced in Appendix. 

To solve for the parameters of the unknown input observer in Equation (3.10) 

which satisfy Theorem 3.1, the linear matrix inequality method is used and is 
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summarized in the following brief steps.24 The unknown input parameter matrix W is set 

as [
1 1
1 1

], which corresponds to the pressure oscillation and temperature change at 

steady state. More discussion about the W matrix can be found in the following section. 

Conditions (2-5) in Theorem 3.1 can be rewritten as the linear system shown in 

Equation (3.11b) based on the assumption of setting ‘n’ in Equations (3.9) and (3.10) 

equal to 4.   

[T N F0 G̅0 F1 G̅1 F2 G̅2 F3 G̅3 F4 G̅4]⋅ϕ1
=Ψ1          (3.13a)                              

ϕ
1
=

0 0 1 2 3 4

n

n

n

n

n

I W A A A A A

C 0 0 0 0 0 0

0 0 I 0 0 0 0

0 0 C 0 0 0 0

0 0 0 I 0 0 0

0 0 0 C 0 0 0

0 0 0 0 I 0 0

0 0 0 0 C 0 0

0 0 0 0 0 I 0

0 0 0 0 0 C 0

0 0 0 0 0 0 I

0 0 0 0 0 0 C

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
  

                  Ψ1=[In  0  0  0  0  0  0 ]                    

 (3.13b) 

By rearranging Equations (3.13a) and (3.13b), the parameters 𝐹𝑖  in Equation 

(3.11) can then be rewritten in as shown in Equation (3.13c). Here, 𝜙1
+ is a generalized 

inverse matrix of 𝜙1 and K is an appropriate matrix parameter to be determined.  

Fi=χ
i
-Kβ

i
,  i=0,1,2,3,4                           (3.13c)                                                                

χ
0
= Ψ1Φ1

+  [A0
T
 0  0  -C

T
   0  0  0  0  0  0  0  0]

T
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χ
1
= Ψ1Φ1

+  [A1
T
  0  0    0   0 -C

T
0  0  0  0  0  0]

T
 

χ
2
= Ψ1Φ1

+  [A2
T
  0  0    0   0    0   0 -C

T
0  0  0  0]

T
 

χ
3
= Ψ1Φ1

+  [A3
T
  0  0    0   0    0   0    0  0  -C

T
0  0]

T
 

𝜒4 = Ψ1Φ1
+  [A4

T
  0  0    0   0    0   0    0  0     0   0 -C

T
]
T
 

β
0
=(I-Φ1Φ

1

+)  [A0
T
 0  0  -C

T
   0  0  0  0  0  0  0  0]

T
 

β
1
=(I-Φ1Φ

1

+) [A1
T
  0  0    0   0 -C

T
0  0  0  0  0  0]

T
 

β
2
=(I-Φ1Φ

1

+) [A2
T
  0  0    0   0    0   0  -C

T
0  0  0  0]

T
 

β
3
=(I-Φ1Φ

1

+) [A3
T
  0  0    0   0    0   0    0  0  -C

T
0  0]

T
 

β
4
=(I-Φ1Φ

1

+) [A4
T
  0  0    0   0    0   0    0  0     0   0 -C

T
]
T
 

After the rearrangement in Equation (3.13c), the parameter of Fi  is introduced 

into Equation (3.12). Equation (3.12) is solved using the linear matrix inequality toolbox 

in MATLAB. The parameter Fi can be solved through the equation, and other parameters 

for the observer can be solved according to condition (4) and (5) in Theorem 3.1.  

Another restriction for the parameters is that 𝜆1 and 𝜆2, the eigenvalues of the 

parameters  Fi  in Equation (3.12), need to be confined in a certain range.47 The 

eigenvalues of the parameters Fi determine the speed of the convergence. It satisfies the 

following linear matrix inequality with Q
1
=Q

1

T
 and U=Q

1
K: 

Q
1
∑ χ

i
+(Q

1
∑ χ

i
)

T
-U ∑ β

i
-(U ∑ β

i
)

T
+2λ1Q

1
<0 

𝑄1 ∑𝜒𝑖 + (𝑄1 ∑𝜒𝑖)
𝑇 − 𝑈 ∑𝛽𝑖 − (U∑𝛽𝑖)

𝑇 + 2𝜆2𝑄1 > 0 
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To restrict the effect of measurement noise d(t) on the estimation error in 

condition (1) in Theorem 3.1, a robustness study is proposed using an H-infinity norm 

of the transfer function relating noise to estimation error. We introduce a combined noise 

term 𝑛(𝑡) to simplify the noise term in condition (1) in Theorem 1 to the following: 

∑ GiMd(t-τi)+ NMd(t)=(∑ GiM+ NM)⋅n(t) 

To ensure the effect of process noise on the estimation error is confined in a 

certain range, we define a  H∞  norm of the transfer function Ten, which is the transfer 

function of process noise to estimation error in condition (1) in Theorem 3.1. More 

applications of a transfer function for robust control can be found in Mahmoud’s book.122 

This transfer function can be written as follows:  

Ten=
(NM+ ∑ GiM)

(I- ∑ Fi e-τis)
 

To solve the H∞ robustness problem, which ensures‖Ten‖∞≤γ with γ>0, Theorem 

3.3 is introduced.  The proof of Theorem 3.3 is introduced in Appendix B.  

Theorem 3.3:  The norm of transfer function of 𝑇𝑒𝑛 will be smaller than γ  if there exists 

matrices, and P=PT>0; Q
i
>0, which satisfy the following linear matrix inequality. D 

equals to(NM+ ∑ GiM).  
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4
t t

i 0 0

i 1

t t

1 1 1

t t

2 2 2

t t

3 3 3

t t

4 4 4

2 t t

P Q 0 0 0 0 0 F P F P 0

* Q 0 0 0 0 F P F P 0

* * Q 0 0 0 F P F P 0

* * * Q 0 0 F P F P 0
= 0

* * * * Q 0 F P F P 0

* * * * * D P D P 0

* * * * * * P 0 0

* * * * * * * 0 P

* * * * * * * * I





 
  
 

 
 


 
 

  
 

 
 

 
 
 

  



                 (3.14) 

Theorem 3.3 is not used to solve the parameters for the observer, which is used 

to validate the effect of process noise on state estimation. In the application of Theorem 

3.3, a given value of γ is provided, and parameters from Theorem 3.2 such as Fi and D 

are introduced to validate the existence of the linear matrix inequality Equation (3.14) 

using the toolbox in MATLAB. 

Application of an unknown input observer in pipeline monitoring 

To apply the design of the unknown input observer in Equation (3.10) to a 

pipeline system, the parameters in Equations (3.9) and (3.10) are obtained from the 

reduced pipeline model, Equations (3.7) and (3.8), where the input term u(t) in Equation 

(3.9) is treated as the time variable consumer usage, qusage. The flow rate and its 

estimated measurement value are given as x(t) and y(t) respectively in Equation (3.9). A 

real-time monitoring of the pipeline system is performed using the unknown input 

observer Equation (3.10). The estimation of the flow rate from the observer is compared 

with the simulated process flow rate generated from the non-isothermal model. Process 

disturbances such as pressure oscillation and change of ground temperature are added to 
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the non-isothermal modeling. The simulated process data, including the scenario with 

process disturbances, are fed into the unknown input observer for flow rate estimation.  

Results and discussion 

Effect of pressure change 

Model-based fault detection methods involve solving dynamic models which are 

usually ordinary or partial differential equations. Boundary conditions for solving these 

equations relate to the control performance of actuators in applications. For a pipeline, 

boundary conditions such as fixed boundary pressure or flow rate relate to controlling 

the pump pressure at the pump station. However, these conditions are subject to 

disturbances such as leaks and consumer usage, which tend to reduce the boundary 

pressure. As indicated by Wang et al., both inlet and outlet pressure dropped due to a 

leak occurrence in an oil pipeline.89 The unknown input observer method proposed in 

this paper is designed to handle the oscillation of the pressure and does not require an 

online model of the process. The effects of a pressure drop and pressure increase are 

simulated and its effect on boundary flow rate is demonstrated.  
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Figure III.3. The effect of inlet pressure drop/increase on boundary flow rate 

Figure III.3 shows the effect of pressure drop or pressure increase on the flow 

rate at the boundary of the pipeline in a simulation study using the non-isothermal model. 

The pressure change is applied at the 375th minute when the consumer usage is stable so 

the change of flow rate will be solely the effect of pressure change rather than the 

variation of consumer usage.  As indicated in the figure, both the inlet and outlet flow 

rate decrease correspondingly when an inlet pressure drop is applied. An increase in 

boundary pressure will result in an increase in both the inlet and outlet flow rate (not 

shown). Pressure drops are expected to be the more prevalent event affecting the 

pressure changes because leaks or consumer usage will tend to decrease the pressure.  
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As explained before, the unknown input matrix W in Equation (3.9) is calculated 

using a simulation study. Figure III.3 indicates the changes of inlet an outlet flow rate 

are equal at steady state when the inlet pressure change. So the W matrix is  [
1
1
] for the 

disturbance pressure change. W is set as [
1 1
1 1

] for ease of solving the parameter in 

Equation (3.13a,b).  

Effect of temperature change 

The changing of thermal conditions can cause phase changes in natural gas. To 

analyze the role temperature plays on the pipeline process, the effects of changing 

ground temperature on boundary flow rate are simulated and the results are shown in 

Figure III.4. Conventional techniques use a commercial real-time modeling method to 

deal with the change of thermal properties by continuously measuring them along the 

length of the pipeline. In this paper, we develop a method to consider the effect of the 

change of thermal properties without acquiring the thermal measurement data. The effect 

of temperature change on the boundary flow rate was studied for the observer design.   

Figure III.4 shows the effects of a 10 K increase or decrease in ground 

temperature in 30 seconds. For the case of a ground temperature drop (Figure III.4b), 

both the inlet and outlet flow rates increased at steady state. However, the boundary flow 

rates go through a small range of oscillation. A ground temperature increase (Figure 

III.4a) shows an opposite effect on the flow rate. The unknown input matrix for a 

temperature change can also be calculated as [
1 1
1 1

], since the inlet and outlet flow rate 

change corresponding to a ground temperature change is also equal.  For both inlet 
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pressure change and ground temperature change, the unknown input matrix W is the 

same. The same unknown input matrix can be used for both pressure change and 

temperature change scenarios.  

 

Figure III.4. Effect of ground temperature change on the boundary flow rate 

Comparison between the reduced linear model and the non-isothermal model 

The original nonlinear flow model was reduced to a linear model under certain 

assumptions as indicated before. The parameters for the dynamic linear model in 

Equation (3.7) and Equation (3.8) were obtained from non-isothermal simulation data 

and are shown in Table III.1. 
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Figure III.5. Comparison of flow rate between the reduced linear model (inlet and outlet 

linear model estimation) and the non-isothermal model (inlet and outlet measurement) 

Table III.1. Parameters for the linear model in Equation (3.7) and Equation (3.8) 

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 

0.227703 0.026773 0.000441 0.001321 0 

𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 

-0.69458 -0.05688 0.01312 0.00766 0 

 

 

Table III.2. Parameters for the unknown input observer in Equation (3.9) 

𝐹0 𝐹1 𝐹2 

[3.012 × 10−4 0
0 3.012 × 10−4] [2.9218 × 10−4 0

0 2.9218 × 10−4] [2.9218 × 10−4 0
0 2.9218 × 10−4] 

𝐺0 𝐺1 𝐺2 

[−3.012 × 10−4 3.012 × 10−4

0 0
] [−2.9218 × 10−4 2.9218 × 10−4

0 0
] [−2.9218 × 10−4 2.9218 × 10−4

0 0
] 

𝐹3 𝐺3 𝐹4 

[2.9218 × 10−4 0
0 2.9218 × 10−4] [−2.9218 × 10−4 2.9218 × 10−4

0 0
] [5.3446 × 10−4 0

0 5.3446 × 10−4] 

T N 𝐺4 

[
1 −1
0 0

] [
0 1
0 1

] [−5.3446 × 10−4 5.3446 × 10−4

0 0
] 

Figure III.5 shows a comparison of the boundary flow rates between the reduced 

linear model and the non-isothermal nonlinear model. Boundary flow rates from both the 
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non-isothermal models and the reduced linear model are compared at steady state during 

the first 450th  minutes. As the figure shows, the steady state flow rate from the linear 

model is the same as the nonlinear model during this time. However, when the change of 

consumer usage is applied after 450th minutes, the dynamic process introduces parameter 

uncertainty and causes a flow rate mismatch at high consumer usage between the linear 

reduced model and non-isothermal nonlinear model. 

Figure III.6 shows the comparison of flow rates between estimation from the 

unknown input observer and the non-isothermal models without a leak. As the figure 

demonstrates, the observer can estimate the boundary flow rate due to its feed-back 

design. Table III.2 lists the parameters for the unknown input observer. The parameters 

obtained from Theorem 3.2 were validated using Theorem 3.3. In Equation (3.14), γ is 

set as 1 and parameters in Table III.2 were introduced into the equation to validate the 

existence of the linear matrix inequality. Using MATLAB toolbox, the existence of 

Equation (3.14) is validated, which indicated the effect of process measurement noise on 

the estimation is smaller than 1 according to Theorem 3.  This procedure is to validate a 

given γ value rather than to solve a minimal γ. If a given γ value cannot guarantee the 

existence of Equation (3.14), a higher value of γ need to be searched. 

A residual signal is defined as the difference between the estimation and the 

measurement of a boundary flow rate. In our paper, the residual is calculated as the 

difference of flow rate from the observer estimation and the non-isothermal model. Only 

the residual signal from inlet flow rate is shown in our study as the outlet residual signal 

is always zero due to the calculated parameter of the observer listed in Table III.2. 
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Figure III.7 shows the simulation results of the residual signals from nominal operation 

(3.7a), a sudden pressure drop (3.7b), and a temperature increase or decrease (3.7c and 

3.7d). The variation in the residual signal under the nominal operation is due to the 

addition of 0.5% measurement noise. As shown in Figure III.7b, a sudden change of 

operating condition can lead to a temporary drift of residual signal.  The inlet pressure 

drops when a leak occurs or consumer usage increases. This pressure drop generates a 

negative residual value and the decrease of inlet pressure will decrease both the inlet and 

outlet flow rate.   

 

Figure III.6. Comparison between the unknown input observer (inlet and outlet observer 

estimation) and the non-isothermal model (inlet and outlet measurement) 

In non-isothermal modeling, variations in ground temperature will cause a 

change in the boundary flow rate. Figure III.7c illustrates the effect of a sudden increase 

in ground temperature of 10 K over a 30 second time period, an extreme case meant to 

demonstrate the effect of temperature change. The figure shows that the increase of 

ground temperature will lead to a sharp negative residual signal, whereas a temperature 
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decrease will result in the opposite effect. The result of a case with a 2 K decrease in 

temperature in 30 second is shown in Figure III.7d, where the residual signal for this 

small temperature change cannot be distinguished from the background noise. The 

results indicate that a small change of temperature in short time will have negligible 

effect on the residual signal and leak detection in our simulation.   

 

Figure III.7. Residual signals from the observer at different situations 

Residual signals from a leak are demonstrated in Figure III.8. The residual signal 

from a leak occurrence leads to a consistent positive residual signal but the residual 

signal of pressure drop is a sharp decrease when assuming conventional control is 

applied to the pump to maintain constant pressure. Figure III.8a and III.8b show the 

simulation results of residual signals with leaks of varying sizes. In our simulation 

results, a 0.5% of measurement white noise is added to the process. The figure shows a 

0.7% (of the original steady state flow rate) leak can be identified based on the residual 
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signal. The 1.5% leak result shows that a bigger leak will lead to higher residual signal. 

Figure III.8c shows the residual signal of a leak when the inlet pressure drops at the 

same time. As can be seen in the figure, the residual signal went through a sharp 

decrease due to a pressure drop then went back to a positive value because of the leak 

occurrence. Software-based leak detection methods sometimes fail due to process 

disturbances, but as Figure III.8 shows our work can detect leaks when it is slightly 

bigger than the noise level.   

 

Figure III.8. Residual signals from observer with leaks of varying sizes: (a) 0.7% leak, (b) 

1.5% leak and (c) 1.5% leak with an additional inlet pressure drop 

Figure III.9 shows the boundary flow rates from the observer estimation and 

simulated measurement generated from the non-isothermal model. As demonstrated in 

our previous study, under the condition of fixed boundary pressure, the inlet flow rate 

will increase and the outlet flow rate will decrease due to the leak. Figure III.9a shows 
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an increase in the inlet flow rate measurement in the presence of a leak, but the flow rate 

estimate from the observer remains as if no leak had occurred. Since the inlet flow rate 

always increases when a leak occurs, the residual signal of a leak is always a positive 

constant.  Figure III.9b demonstrates the comparison of boundary flow rates between the 

observer estimation and the measurement when a leak and pressure drop happen at the 

same time. As shown in the figure, the observer can estimate the flow rate in presence of 

a sudden pressure drop.  

 

Figure III.9. Comparison of boundary flow rate between observer estimation and 

‘measurement’ data from non-isothermal model 
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Estimation of leak location 

A new leak location estimation algorithm is proposed to include the process 

disturbances of pressure drop and temperature change.  The first step is to identify a leak 

from a process disturbance based on the pattern of the residual signal. If a disturbance is 

identified, indicated by a temporary drop of the residual signal, the reduced linear model 

in Equation (3.7) and Equation (3.8) are updated by recalculating  𝑞𝑠𝑡. , adding the 

disturbance information into the model. If a leak is identified, indicated by a constant 

increase of the residual signal, the leak location is estimated using the linear model 

estimation in Equation (3.7) and Equation (3.8) and the measurement of boundary flow 

rate. 

 

Figure III.10. Estimation of leak location 

The leak location is estimated using the following equation, which is a simplified 

form of Equation (3.5d):  
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XL=
L

(1-
𝐸(qin-qest.in)

E(qout-qest.out)
)

 

where the variables q
est.in 

 and q
est.out

 represent the estimated inlet and outlet flow rate 

from the linear model in Equation (3.7) and Equation (3.8) and the variables  q
in 

 and q
out

 

represent the measured inlet and outlet flow rate from a pipeline. XL is the estimated 

leak location and L is the length of the pipeline. E is the aveage of the previous ten 

measurements. The results of our methodology are demonstrated in Figure III.10. As 

shown, the location estimation from the observer can quickly converge to the accurate 

leak location within several minutes. 

Summary of the chapter 

One of the biggest safety concerns in the chemical manufacturing industry is the 

leakage of pipelines during chemical transportation. Software-based analysis is one of 

the main methods for detecting and locating a leak from pipelines without the need for 

extensive instrumentation. However, software-based methods are generally very 

sensitive to process disturbances, which cause the method to fail. In order to deal with 

these disturbances without increasing the number of measurements, a software-based 

observer is designed for leak detection in transportation pipelines using a natural gas as a 

case study. The proposed design implements a linear unknown input observer with time-

delays that considers changes of temperature and pressure as unknown inputs and 

includes measurement noise in the process.  The unknown input observer is modified 

from an existing observer for application of leak detection and the necessary and 

sufficient condition is provided.  Non-isothermal modeling and simulation of a natural 
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gas pipeline with time-variant consumer usage is performed to test the proposed method. 

Effects of pressure drop and temperature change on observer estimation are simulated 

and compared to a simulated leak event. Finally, an algorithm is proposed to incorporate 

the disturbance information for estimating the location of a leak.  
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CHAPTER IV  

OBSERVER AND PARTIAL DEIFFERENTIAL EQUATION-CONSTRAINED 

OPTIMIZATION FOR DETECTION OF MULTIPLE LEAKS 

 

Introduction 

Algorithms for estimation of a single leak have been studied extensively and 

reviewed in Chapter II and Chapter III, basing on both isothermal and non-isothermal 

modeling of liquid/gas transportation in a pipeline.  

Detection of subsequent multiple leaks from a natural gas pipeline have not been 

studied. Multiple leaks from a pipeline can be categorized into subsequent multiple leaks 

and simultaneous multiple leaks. Detection of subsequent two leaks from a water 

pipeline has been demonstrated by using multiple observers by Verde et al.123 A major 

difference between a liquid and a gas pipeline is the change of gas phase along with 

temperature change. Hydraulic models for isothermal (liquid) and non-isothermal 

transportation have different structures due to the presence of thermal-related 

parameters.  We showed the effect of temperature change on the flow of natural gas in 

pipeline in Chapter II. In this chapter, we extended the content of Chapter III to a case 

for detection of multiple subsequent leaks.  

The above-mentioned or other methods for detection of a single leak cannot be 

applied directly to detect simultaneous leaks because they use steady-state value of the 

boundary flow rate. For a pipeline with simultaneous multiple leaks, multiple leaks can 

be mistakenly interpreted as a single leak at a different location when the steady-state 
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value of boundary flow rate was used. Thus, it is necessary to investigate the dynamic 

response of the flow rate to locate simultaneous multiple leaks. Detection of 

simultaneous multiple leaks from a water pipeline has been showed by Verde et al. 124,125 

However, this method cannot be applied directly to a non-isothermal natural gas pipeline 

due to the high complexity of the non-isothermal natural gas flow model. As we have 

examined, the isothermal model cannot reproduce the non-isothermal dynamic response 

of the flow rate, which is due to the effect of thermal properties, so the detection of 

multiple simultaneous leaks from a natural gas pipeline requires non-isothermal model. 

Detection of simultaneous multiple leaks from a natural gas pipeline can be 

solved as a partial differential equation-constrained global optimization problem with 

both continuous and integer variables. The objective function of the global optimization 

is to minimize the error between measurement and estimation of the boundary flow rate. 

The existence of the integer variable, which is the leak location, hinders the application 

of gradient-based algorithm for optimization. Partial differential equation -constrained 

optimization has been studied by many researchers.126–129 However, due to the 

specificity of the optimization problem for simultaneous multiple leaks, the current 

optimization algorithm cannot be directly applied to solve the problem. Current 

derivative-free global optimization algorithms such as genetic algorithm129, Monte Carlo 

simulation130,131, or particle swarm132 need extensive computation cycles and time. 

However, estimating leak locations is an urgent task which aims at reducing financial 

lost and potential explosion risk.  
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To solve this optimization problem in a time-efficient manner, a new global 

optimization algorithm is proposed. The algorithm first discretizes the pipeline with 

large mesh size (the integer variable) and the Newton’s method is applied to find the first 

approximate locations. Then further discretization is performed around the approximate 

location and the Newton’s method is repeated. After repeated further discretization, a 

more and more accurate location approximation can be achieved. Due to the sensitivity 

of the environment temperature on the flow rate of the natural gas in the pipeline, a prior 

knowledge of temperature, either from measurement or estimation was needed for the 

optimization algorithm to detect multiple simultaneous leaks. In the study of detecting 

simultaneous multiple leaks, no process disturbance was considered. 

Methodology for detecting multiple leaks  

Detection of subsequent multiple leaks: observer design 

Based on the non-isothermal models and isothermal model introduced in Chapter 

II and Chapter III, the same procedure can be applied for designing an observer as 

explained in Chapter III.  

The following summarize the steps for designing such observer for a pipeline 

system.  

First step is to reduce the isothermal flow model into a discrete-time linear 

model.  For a pipeline with consumer usage at known location, a reduced linear model is 

given as followed. 

q
in

(t)=q
in.st.

+ ∑ ai
n
i=0 q

usage
(t-i)                                                                                                     

q
out

(t)=q
out. st.

+ ∑ biqusage
(t-i)n

i=0                                                                                                   
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q
usage

 represents the consumer usage in the pipeline, in a case of straight pipeline 

without any consumer usage, the parameter associated with the consumer usage becomes 

zero. q
in

(t) and q
out

(t)are the time-variant inlet and outlet flow rate due to the existence 

of consumer usage. q
in.st.

 and q
out.st.

 are the inlet and outlet flow rate at steady state. The 

detailed model reduction can be found from Chapter III.  

The second step is to design an unknown input observer and solve the parameters 

of the unknown input observer through a linear matrix inequality method.  An unknown 

input observer is a state estimation method for a system with certain unexpected process 

disturbance. The detailed development of the unknown input observer and model 

reduction are explained in Chapter III. 

x(t)= ∑ Aix(t-τi)
n
i=0 + ∑ Biu(t-τi)

n
i=0 +Ww(t)                                                                          

y(t)=Cx(t)+Md(t) 

In which, x(t) is the state, y(t) is the measurement, u(t-τi) is the input (consumer usage), 

d(t) is measurement noise which is assumed white noise, and w(t) is the unknown input. 

W is the parameter matrix for the unknown input, which was determined by the 

simulation study on effect of the unknown inputs to the system.  An unknown input 

observer can be designed as shown below.   

z(t)= ∑ Fiz(t-τi)+ ∑ TBiu(t-τi)+ ∑ Giy(t-τi)
n
i=0

n
i=0

n
i=0                                                            

x̂(t)=z(t)+Ny(t) 

in which, F, T, B, and G are process parameters for the unknown input observer that 

need to be determined.  x̂(t)  is the estimation of the state and y(t) is the measurement 
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from the system. Method to solve the parameters of the observer was given in Chapter 

III, which is not shown here.  Process disturbances such as temperature change and 

pressure oscillation at pump station were treated as unknown inputs. The effects of 

process disturbance were studied in our previous study and applied for constructing the 

observer.  

Third step is to apply unknown input observer to estimate the flow rate of the 

natural gas, and compare the estimation value of flow rate with flow rate measurement. 

Detection of leaks from a pipeline is based on the analysis of a residual value. A residual 

value is defined as the difference between measurement and estimation from the 

observer of flow rate. Our previous study shows that the designed unknown input 

observer can distinguish the process disturbance such as pressure and temperature 

change from a leak event basing on the residual value as shown in Chapter III. Multiple 

leaks can be detected subsequently according to the residual value which will be shown 

in the results section.  

The fourth step involves identifying the leak from the residual signal and locating 

the leak in a pipeline. Equation (2.29) is applied to calculate the leak location.12 

XL=L/(1-
E(qin-qin.est.

)

E(qout-qout.est.)

)                                                                                                               

𝑋𝐿 is the estimated leak location and L is the total length of the pipe. q
in.

 and q
out

 

are the measured inlet and outlet flow rate. q
in.est.

 and q
out.est.

 are inlet and outlet flow rate 

estimated from the reduced model.  
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When a leak was identified basing on the residual value, the steady state values 

q
in.st.

  and q
out. st.

 are updated to so q
in

(t)  and q
out

(t)  will match the flow rate 

measurement at steady state.  The updated reduced linear model can also account for any 

temperature change and pressure change. The updated equations are used for detecting 

possible more leaks and estimating the leak location.  

Detection of simultaneous multiple leaks: development of an optimization algorithm 

A new global optimization algorithm is proposed to locate multiple leaks in a 

natural gas pipeline. The objective function of the optimization is to minimize the error 

of the dynamic response of boundary flow rate between measurement and model 

estimation. The optimization problem assumes a prior knowledge of temperature and 

does not consider oscillation of pump pressure. There are both integer variables (leak 

location) and continuous variables (leak size) in the optimization problem.  The 

optimization problem is formatted as the following.  

min
u (qL)

∑ (y
î
-y̅

i
)
T
QN

i=0  (y
î
-y̅

i
)                                                                                                 

s.t.        
∂P

∂t x=0
=0, 

∂P

∂t x=L
=0;  q

L1x
, q

L2x
 ∈ Θ;     q

L1s
∈Γ 

y
i
= [

q
1

q
0
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L1x
   q

L2x
    q
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] 
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∂T

∂t
=

(
1

ZRT
-

P

Z2RT

∂Z

∂P
)

∂P

∂t

(
P

Z2RT

∂Z

∂T
+

P

ZRT2
)

+

1

A

∂q

∂x

(
P

Z2RT

∂Z

∂T
+

P

ZRT2
)

+
qL

A∆x

1

(
P

Z2RT

∂Z

∂T
+

P

ZRT2
)
                                                           (4.1)                                                 

y
î
 is the measured boundary flow rate at time step i, and y̅

i
 is the estimated 

boundary flow rate at time step i. N refers to the total time of dynamic response. 

Boundary conditions (fixed boundary pressure) are applied to the optimization problem 

and assumed validated during the dynamic response. q
L1x

 and   q
L2x

 refer to the leak 

location, which are constrained variable.  q
L1s

 represents the first leak size. The other 

leak size can be calculated by subtracting  𝑞𝐿1𝑠 from total leak (considering a two-leak 

case). To avoid massive computational time and improve the calculation efficiency, a 

new adaptive discretization method was developed and applied in our solution. The 

optimization problem was solved using the Hessian-based Newton's method. The goal of 

the optimization problem is to locate multiple leaks and their corresponding leak sizes. 

The accuracy of location estimation depends on the mesh size of the discretization.  

The adaptive discretization method is illustrated in Figure IV.1. q
L1x

 and   q
L2x

 

are integer variables (leak location) that need to be searched as accurate as possible.  

As shown in Figure IV.1, a middle point was first calculated to locate two leaks 

in two sections along the pipe, in which q
in.st.

 and q
out.st.

 are inlet and outlet flow rate 

before leak occurrence at steady state. 

The second step is to discretize the pipeline into several large sections, and 

perform a global search of leak locations from each possible combination of discretized 

sections as shown in Figure IV.1.  In the second step, because the leak locations (the 
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integer variables) are fixed by each possible combination of discretized sections, the 

Newton’s method is only used to search for a possible leak size (continuous variable) to 

minimize the objective function. Two possible sections from both ends (divided by the 

middle point) were chosen as the first approximate locations basing on the numerical 

value of the objective function. Two pairs of possible locations with smallest objective 

function values were selected after screening all the possible combination of the 

discretized pipe sections (leak location).   

The third step is to further discretize the chosen two pair of approximate 

locations in the step two and repeat step two to calculate the second approximate 

locations. The third step is repeated until satisfied estimation accuracy of leak locations 

were achieved basing on the discretization size.  

We demonstrated two examples on the detection of simultaneous multiple leaks 

with different leak locations and leak sizes. The two leaks have close leak sizes in the 

first case and big difference in the second case. Both leaks are smaller than 5%.  

Newton’s method was applied to find the minimal objective function in all these 

combinations of possible leak locations. The Hessian matrix was calculated numerically 

in Newton’s method. 
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Figure IV.1. Illustration of the optimization algorithm 

Results and discussion 

Detection of subsequent multiple leaks 

Several research papers have proposed methods to detect subsequent leaks from a 

water pipeline including multiple observers. Due to the complicity of the natural gas 

flow model, the method proposed for water pipeline cannot been applied for detecting a 

natural gas pipeline when considering process noise in terms of temperature change or 

pressure drop. Furthermore, our observer method can be directly applied to three or more 

subsequent leaks without modifying the algorithm.  Simulation results of detecting 

subsequent leaks are shown in Figure IV.2. 
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Figure IV.2. Comparison of boundary flow rate between measurement and observer 

estimation 

Figure IV.2 shows the comparison of the flow rate estimation from the observer 

and flow rate measurement from the simulation when the consumer usage is zero. The 

observer estimation starts from 150 min. As can be seen in the figure, the estimation 

from the unknown input observer overlaps with the measurement which indicates a good 

estimation of the boundary flow rate.  

Current available method to deal with the process disturbance is to perform the 

real-time modeling/simulation when the pressure and temperature information is 

available. However, our observer method provides easier way to study the effect of 

pressure and temperature drop without the measurements of pressure and temperature, 

which reduce the requirement of extra instrumentation. 

The residual value of two leaks is shown in Figure IV.3, which shows the 

detection of subsequent second leak. As can be seen in the figure, a subsequent two 
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increase of residual value indicated two leaks at different time. Without changing any 

structure and parameter of the observer, the observer is able to identify more leaks 

basing on the residual value. To estimate the location of the second leak, q
in.st.

 and q
out.st.

 

are updated so that  q
in

(t) and q
out

(t) equal to the measured inlet and outlet flow rate. The 

estimation of leak location for the first two leaks is showed in Figure IV.4. As shown in 

the figure, the estimation of leak location can converge within 20 minutes. The 

oscillation of the location estimation is due to the process measurement noise.  

 

 

Figure IV.3. Residual value of the observer in the presence of two leaks 
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Figure IV.4. Leak location estimation for the first and second leak 

Further examples of more leaks are not demonstrated here, which can be applied 

the same principle demonstrated in the second leak. 
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Detection of simultaneous multiple leaks 

Table IV.1. Case study of two simultaneous leaks 

 Leak I  location 

  ( % of Length) 

Leak I  size Leak II location 

  (% of Length) 

Leak II  size 

Case I 0.736 4.0% 0.277 1.6% 

Case  II 0.418 3.6% 0.797 1.2% 

Table IV.1 shows the information of two-case study for detection of 

simultaneous two leaks. Two leaks with both less than 5% were introduced into a 

straight pipeline at different locations. For both cases, the pipeline is discretized into 8, 

16, 32, and 64 sections in each step. Numerical values of each optimization circle are 

demonstrated.  

The optimization problem contains an integer variable, which is a location-

related variable. Calculating the gradient of the integer variable is not possible for this 

problem. It is required to have a faster way to search for the integer variable in a time-

efficient way rather than the global derivative-free optimization. Following the 

procedure introduced in the previous section, a middle point is calculated based on the 

steady state flow rate with leaks.  For the first circle in case I, the pipeline is discretized 

into 8 sections, and 20 optimizations are performed. The first optimization involve 

optimizing the discretized section-pairs of (1,4), (1,5), (1,6), (1,7), and (1,8). Same 

principles are applied to section-pairs starting with section 2, 3, and 4. Each optimization 

uses the Newton’s method. To shorten the calculation time, the initial guess of the 

continuous variable (one of the leak size) is set as the half of the total leak size. And 



 

103 

 

eight Newton’s steps are performed. As shown in Table IV.2, section-pairs of (3, 6), (3, 

7), (4, 6), and (4, 7) were selected which has the minimal objective function value. For 

the second optimization circle, the pipeline is further divided into 16 sections, and 16 

optimizations were performed by further dividing the selected sections in circle I.  In 

circle III and circle IV, the pipeline is discretized into 32 and 64 sections, and 16 

optimizations were performed for each circle.  In our study, we perform 4 optimization 

circles, and further optimization circle with more discretization can be continued. Table 

III shows the optimization result for leak detection of case II, which followed the exact 

same procedure. 

For each circle of iteration, after the integer variable is fixed, Newton’s method is 

applied to calculate the corresponding leak size. It is worth noticing that the PDE 

constraint in Equation (4.12) is not a second-order differentiable, because the higher 

order term of the compressibility factor is not available. Both first order derivative and 

second-order derivative are both calculated numerically. The numerical error of 

calculating first and second order derivative will bring in optimization error. To account 

for these possible numerical errors, for each circle of iteration, the lowest four pairs of 

possible of leak location were further discretized instead of one possible pair of leak 

location. This operation will require more calculating circles, however, it will deliver 

more accurate results. 
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Table IV.2. Optimization results of leak detection for simultaneous leaks case I 

Circle/ 

Discretization 

number 

Number  of  

optimizations 

Pipeline discretization section number  and  

Value of objective function in Equation(4.1) 

I/8 20  Section number 6 7 

3 1.6519 0.6916 

4 1.9201 0.9056 
 

II/16 16 Section number 12 13 

5 0.3156 0.6648 

6 0.3415 0.4841 
 

III/32 16 Section number 23 24 

8 0.1806 0.1171 

9 0.1481 0.0974 
 

IV/64 16 Section number 48 

17 0.0763 

18 0.0766 
 

 

 

  

Table IV.3. Optimization results of leak detection for simultaneous leaks case II 

Circle/ 

Discretization 

number 

Number  of  

optimizations 

Pipeline discretization section number s and  

Value of objective function in Equation(4.1) 

I/8 20  Section number 6 7 

3 0.6543 0.6953 

4 1.1743 1.0227 
 

II/16 16 Section number 13 14 

7 0.2207 0.1579 

8 0.1289 0.2193 
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Table IV.3. Continued 

Circle/ 

Discretization 

number 

Number  of  

optimizations 

Pipeline discretization section number s and  

Value of objective function in Equation(4.1) 

III/32 

 

 

 

16 Section number 25 26 

13 0.1010 0.1099 

14 0.0782 0.1006 
 

IV/64 16 Section number 52 

27 0.0600 

28 0.0564 
 

 

Table IV.4 summarizes the comparison between real leak location and location 

estimation from optimization. As can been seen in the table, after 4 circles of 

optimization, the estimated leak location is very close to the real location. With the 

assumption of a pipeline between two stations is 10 km, the average estimation error is 

100 m. 

Table IV.4. Comparison of real leak and optimization result 

 Leak 1:  

real leak / optimization result 

Leak 2: 

real leak / optimization result 

Case 1 0.736 / 0.75 0.277 /  0.273 

Case 2 0.797/0.8125 0.418/0.429 
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Summary of the chapter 

Software-based methods are easy-to-implant approaches for detecting faults in 

chemical process. In this paper, new software-based methodologies were developed for 

detecting multiple leaks in a natural gas pipeline. Two different types of multiple leaks, 

subsequent and simultaneous multiple leaks, were studied and two different methods 

were proposed, separately.  For both subsequent and simultaneous leaks, case studies 

with two-leak occurrence were performed using MATLAB® and simulation results were 

demonstrated. 

For detecting subsequent multiple leaks in a natural gas pipeline, an unknown 

input observer was designed. Process disturbances from pump station and temperature 

change were addressed in the design of the observer. In the simulation study, 

disturbances from pump station and temperature change were introduced separately and 

the performance of the observer was tested. Simulation results showed that the observer 

was able to identify and locate subsequent multiple leaks in the presence of process 

disturbances.  

New optimization method for detection of simultaneous multiple leaks from a 

natural gas pipeline was demonstrated. Leak locations were estimated by solving a 

global optimization problem. The global optimization problem contains constraints of 

linear and partial differential equations, integer variable, and continuous variable.  An 

adaptive discretization approach combined with Newton’s method was designed to 

search the leak locations.  

 



 

107 

 

CHAPTER V  

A METHODOLOGY FOR ESTIMATION OF UNMEASURED STATE IN A 

BIOREACTOR UNDER DISTURBANCE 

 

Introduction  

Process states are key information to evaluate a chemical process for process 

safety and process improvement such as process monitoring, real-time optimization, and 

advanced process control.133,134 In certain chemical processes where some process state 

information cannot be measured in real-time, process state estimation techniques have 

been developed to predict the state information simultaneously.  

Model-based state estimation is a widely applied and powerful approach to 

obtain state information. The model-based method requires a high-fidelity model which 

can describe the chemical process precisely. However, for some complex process such 

as a bioprocessing, extensive knowledge and effort is required to build a reliable model 

to describe the whole system. For the scenarios disturbance or unknown input 

information is not captured by the models, significant model-plant mismatch will occur. 

In the case of bioprocessing, several situations can generate model-plant mismatch 

which can be treated as unknown input or disturbance, such as the effect of nutrient 

limitation, oxygen delivery at high cell density, and carbon dioxide stripping.135–137  

There are several different attempts to address the model-plant mismatch. One of 

the solutions is to apply parameter estimation for each run of the experiments.138,139 

However, adaptive parameter estimation requires extensive measurements of states and 
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cannot be used for state estimation for a new experiment until a new set of parameters is 

determined. Filters and observers are mathematical methods which offer an alternative 

method for state estimation in the presence of model-plant mismatch to extract state 

information from corrupted measurements.140–142 Filtering and observer based state 

estimation have been extensively studied for process optimization and advanced process 

control.133,143  Kalman filter and extended Kalman filter are the most widely used 

filtering methods to estimate the state from a noisy measurement.144  Lee et al. proposed 

using an extended Kalman filter based nonlinear model predictive control (MPC) 

method for nonlinear systems.145  Senthil et al. proposed nonlinear observer based model 

predictive control using a fuzzy Kalman filter and an augmented state Kalman filter, and 

a simulation study using a CSTR was provided.146 Qin et al. integrated white noise 

disturbance models with model predictive control for disturbances or model-plant 

mismatch. The author also applied a data-based auto-covariance technique to estimate 

the appropriate covariance and the filter gain for a Kalman filter.147  Rohani et al. 

applied extended Kalman filter for state estimation in nonlinear model predictive 

control, and a case study of crystallizer was provided.148 Other nonlinear Kalman filter 

based filters, such as unscented Kalman filters that do not require the calculation of a 

Jacobian matrix, are suitable for nonlinear systems with high nonlinearity that makes the 

calculation of the Jacobian matrix difficult. Shah et al. applied an ensemble Kalman 

filter and an unscented Kalman filter for state estimation of an autonomous hybrid 

system.149  
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Design and application of different observers have been demonstrated by 

researchers.150–152 Certain types of observers, such as high gain observer and moving 

horizon observers, are proposed for advanced control.153 Christofides et al. used a high 

gain observer to estimate the nonlinear state information and a Lyapunov-based 

approach to design an economic MPC system.134 Chehimi et al. developed an unknown 

input observer based output feedback predictive controller for induction motors. The 

design of the unknown input observer and its assumptions are discussed.154 Yan et al. 

incorporated state estimation into model predictive control by applying probabilistic 

constraints.155 Patwardhan et al. developed generalized likelihood ratio ̶ based fault 

diagnosis and identification scheme to correct the state estimation for MPC.156  

An unknown input observer was developed to estimate the state when the process 

is operating with certain types of faults and disturbance.50 Compared to other observers, 

unknown input observer can eliminate the effect of certain disturbances or faults despite 

their size. The design of a linear unknown input observer with both full and reduced 

order has been provided, and the sufficient and necessary conditions for such an 

observer have also been discussed.50,150,152,157,158 However, for most chemical processes, 

the inherent nonlinearity hinders the application of such linear observers. Some attempts 

have been made to design a nonlinear observer in a more general format.49,159 The 

drawbacks of such operation, including the bilinear work and other research efforts such 

as the state transformation to change the original nonlinear systems into canonical forms, 

has been discussed in literature.160–162 To the best of our knowledge, there is not yet a 

systematic way to design a nonlinear unknown input observer for any nonlinear system. 
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The design of a class of unknown input observers for a Lipschitz system has been 

demonstrated by Chen and Saif through a linear matrix inequality method.159 However, 

the nonlinear system proposed in this work is not developed for a general form of a 

nonlinear system, which limits its applications to certain specific systems.  

In this paper, we developed a new design for a nonlinear unknown input observer 

using a more general nonlinear format, which opens the opportunities for more possible 

applications. The sufficient and necessary conditions for such observer are discussed. 

Experimental validation of the design and application of the new unknown input 

observer is demonstrated using a bioreactor case study.  

Design of a nonlinear unknown input observer 

An unknown input observer is designed for general nonlinear systems without 

the restriction of linear state and linear input terms as in Saif’s work.159 To design a 

nonlinear unknown input observer with linear unknown inputs, a nonlinear system with 

unknown inputs is written in the following format, in which, x∈Rn, y∈Rk, and 𝑢 ∈ 𝑅𝑝 

are the state vector, the output vector, and known input vector, 𝑑 ∈ 𝑅𝑑 is the unknown 

input in the system, and 𝐸 is assumed of full rank. 

 ẋ=f(x,u)+Ed     (5.1) 

y=Cx                                                

Remark: In Equation (5.1), the nonlinear system is coupled with a linear 

disturbance 𝐸𝑑 where 𝐸 is a constant parameter matrix.  

An unknown input observer is designed in the following form:  

ż=(I-HC)f(z+Hy,u)-K(y-ŷ)                     (5.2)                   
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x̂=z+Hy 

𝐻 and 𝐾 are the parameters for the observer which need to be calculated.  𝑥̂ is the 

estimation of the state 𝑥. To design the unknown input observer, existence conditions are 

listed below.  

Existence condition: the existence of an unknown input observer needs to satisfy 

the following conditions:  

1. E=HCE               (5.3.1)                                                                                                          

2. rank (CE)=rank (E)              (5.3.2)                                                                                    

3. Local Lipschitz condition:   

|f(x,u)-f(x,̂u)|≤γ|x-x̂|, 𝛾 is a positive constant number                  (5.3.3)                                      

4. 𝐾 satisfies Theorem 5.1 

The existence of an observer is needed to verify that the estimation error is 

asymptotically stable. The Existence conditions (3.1) ̶ (3.3) and Theorem 1 are provided 

to guarantee asymptotically stable estimation error.  

Theorem 5.1:  If there exist a symmetric matrix 𝑃>0 satisfying the following 

matrix inequality, then the observer is asymptotically stable  

(KC)TP+PKC+γP(I-HC)(I-HC)
T
P+γI<0                             (5.4)                                     

To explain the Existence conditions (3.1) ̶ (3.3) and Theorem 1, the estimation 

error of the observer is introduced by writing 𝑒 = 𝑥 − 𝑥̂. The estimation error can be 

derived as shown in Equation (5.5), using Equation (5.1) and Equation (5.2). 

ė=ẋ-ẋ̂=(I-HC) (f(x,u)-f(x̂,u)) -(I-HC)Ed+KCe                              (5.5)              
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The Existence condition is used to simplify the dynamics of the estimation error. 

By applying Equation (5.3.1), the estimation error in Equation (5.5) can be reduced to 

Equation (5.6).  

ė=(I-HC) (f(x,u)-f(x̂,u))+KCe                                                            (5.6)                        

The asymptotically stable estimation error is proved using a Lyapunov function. 

Theorem 5.1 is provided to guarantee the existence of such a Lyapunov function. The 

proof of such the Lyapunov function is given in the following. 

A Lyapunov function is chosen as  V=eTPe, and the derivative of the Lyapunov 

function can be written the the following form, which is modified from Saif’s paper159 :   

V̇=eṪPe+eTPė 

=  (KCe+(I-HC)(f(x,u)-f(x̂,u)))
T

Pe+eTP (KCe+(I-HC)(f(x,u)-f(x̂,u))) 

=eT((KC)TP+PKC)e+ (f(x,u)-f(x̂,u))
T

(I-HC)
T
Pe+eTP(I-HC) (f(x,u)-f(x̂,u))              

(6a)                                                                                                                        

By applying Existence condition (3.3) in Equation (5.6a), the following 

inequality can be obtained.  

≤eT((KC)TP+PKC)e+2‖eT(I-HC)P‖γ‖e‖  

≤eT((KC)TP+PKC)e+γ(‖eT(I-HC)P‖2+‖e‖2) 

=eT((KC)TP+PKC+γP(I-HC)(I-HC)
T
P+γI)e                                        (5.7)                  
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By applying Shur complement method 122, Equation (5.4) in Theorem 1 can be 

rewritten as a linear matrix inequality in the form of Equation (5.8) 

[
-I √rP

(I-HC)
T
√rP PKC+C

T
KTP+γI

] <0                           (5.8)                                                    

To solve this nonlinear matrix problem, we introduce a new variable as Y=PKC 

and W=PH, so the previous nonlinear matrix inequality can be transformed into Equation 

(5.9). 

[
-I √rP-√rWC)

√rP-√rC
T
WT Y+YT+γI

] <0           (5.9)                                                            

To solve this linear matrix inequality equation, parameter matrix H from 

Equation (5.3.1) is solved first and then applied to W=PH in Equation (5.9). Equation 

(5.9) can be then solved using linear matrix inequality toolbox in MATLAB.  

Parameter matrix H is solved similarly to the previous publication. 47  To solve 

parameter matrix H, define the following matrix equation in Equation (5.10) using 

condition Equation (5.3.1).  

[I-HC H] [
I E

C 0
] =[I 0]                                      (5.10)                                                                

H can be solved as shown in Equation (11). 

H=[I 0] [
I E

C 0
]

+

[0 I]+θ(I- [
I E

C 0
] [

I E

C 0
]

+

)[0 I]                                  (5.11)                 

In which, [
I E

C 0
]

+

is a generalized inverse of [
I E

C 0
], and 𝜃 is a parameter matrix with 

appropriate dimension which needs to be determined when solving the Equation (5.9).  
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The matrix inequality can be readily solved using the linear matrix inequality 

toolbox in MATLAB.  

Experimental section 

A bioreactor example is shown to demonstrate the application the more general 

nonlinear unknown input observer. Briefly, the cultivation of Saccharomyces cerevisiae 

strain mutant SM14 was performed in both a batch and a fed-batch scheme to produce β-

carotene. The details of the bioprocessing system are described in our previous 

study.163,164 

Operation and modeling of a bioreactor 

A S. cerevisiae strain mutant SM14 engineered to produced β-carotene was used 

in this study. The yeast strain was stored in frozen vials at -80 ̊C and in plates at 4 ̊C 

which were sub-cultured every three weeks for maintenance. The cells were grown in 

fresh Yeast Nitrogen Base (YNB) media in all the experiments with supplemented D-

glucose.  

The inoculum for the bioreactor and shake-flask cultures in the following 

experiments were prepared from single colonies to inoculate 50 ml of YNB media (20 

g/L glucose) and incubated at 30 ̊C for 72h with constant agitation at 200 rpm. The 

bioreactor studies were carried out in a 7 L, glass, autoclavable bioreactor (Applikon®, 

Foster City, CA). The bioreactor was inoculated with the entire seed culture. The 

temperature, pH, agitation speed, and airflow were set at 30 ̊C, 4, 800 rpm, and 6 L/min. 

The experiments are performed using both batch and fed-batch modes.  
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Kinetic modeling and parameter estimation studies were performed in our 

previous work.163,164 The kinetic model involves the cell growth, glucose consumption, 

ethanol production and consumption, acetic acid production and consumption, and β-

carotene production, which is shown in Equation (5.12)  ̶  (5.17). 

dX

dt
= (μ

G
+μ

E
+μ

A
) X                                            (5.12)                                                                   

where X is the biomass concentration and 𝜇𝐺 , 𝜇𝐸  and 𝜇𝐴 represents the specific growth 

rate on glucose, ethanol and acetic acid, respectively, which are defined in Equations 

(5.13a), (5.13b) and (5.13c).  

μ =μ
G

+μ
E
+μ

A
  

μ
G

 = (
μ

max,G  
⋅χ

E
⋅χ

A
⋅G

KSG+G+age E+aga A
 ) 

(5.13a) 

μ
E
= (

μ
max,E  

E

KSE+E+aeg G+aea A
 ) 

(5.13b) 

μ
A

= (
μ

max,A  
A

KSA+A+aagG+aae E
 ) 

(5.13c) 

where aij represents the inhibition effect of the 𝑗th substrate on the utilization of the 𝑖th 

substrate by the organism. The glucose, ethanol and acetic acid concentrations are given 

by  G, E and A. The parameters μ
max,G

, μ
max,E

, and μ
max,A

 are the maximum specific 

growth rates on glucose, ethanol and acetic acid, respectively. The variables χ
E
 and χ

A
 

are polynomial functions fit to experimental data to account for ethanol and acetic acid 

inhibition on the glucose growth rate.  
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dG

dt
=-

 μGX

YX G⁄
                                          (5.14)                                                                                       

dE

dt
= k1 μ

G
X - 

μEX

YX E⁄
                                     (5.15)                                                                              

dA

dt
=(k2μ

G
+k3μ

E
)X-

μAX

YX A⁄
                                                (5.16)                                                      

dP

dt
=(α1μ

G
+α2μ

E
+α3μ

A
)X+ βX                                   (5.17)                                                       

where YX G⁄  is the biomass yield coefficient on glucose.  YX E⁄ is the biomass yield 

coefficient on ethanol.  YX A⁄  is the biomass yield coefficient on acetic acid, where 𝛼𝑖 

represents the coefficients for growth-associated product formation related to the yeast 

growth on each substrate, and 𝛽 is the coefficient for non-growth-associated carotenoid 

production. Estimation of process parameter is demonstrated in our previous work. The 

parameters are the same as our previous paper.163,164 The variable P is used to denote the 

concentration of the product, β-carotene. The parameters for the model (5.12)-(5.17) 

given in our pervious paper.163  

Validation experiments 

Two batch and two fed-batch experiments were performed to demonstrate the 

application of the unknown input observer. The batch experiments start with different 

inoculum size, each with a slightly different level of initial glucose, ethanol, β-carotene, 

biomass, and acetic acid. Fed batch experiments were performed by feeding glucose 

with set bulk concentrations, 200 g/L or 20 g/L of glucose in YNB medium, for a 

defined time period. The fed-batch model was derived from the batch model with the 

same model parameters. Details of the validation experiment are listed in the Table V.1.  
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The fed batch model is developed from the batch model as shown in the 

following equation:  

dX

dt
= (μ

G
+μ

E
+μ

A
) X-X⋅

Fg

V
                                                                             (5.18)               

dG

dt
=-

 μGX

YX G⁄
-G⋅

Fg

V
+Gin⋅

Fg

V
  

dE

dt
= k1 μ

G
X - 

μEX

YX E⁄
-E⋅

Fg

V
  

dA

dt
=(k2μ

G
+k3μ

E
)X-

μAX

YX A⁄
-A⋅

Fg

V
  

dP

dt
=(α1μ

G
+α2μ

E
+α3μ

A
)X+ βX-P⋅

Fg

V
  

dV

dt
=Fg  

where  Fg represents the feeding flow rate of glucose. Gin is concentrations of glucose in 

the feeding stock solution, which is 200 g/L. The fed batch 2 was fed with 20 g/L of 

glucose stock.  V is the volume (L).  

Table V.1. Details of validation experiments 

Batch number Initial conditions (g/L) 

[glucose, biomass, product, ethanol, acetic acid, volume (L)] 

Feeding 

Batch 1 [19.00; 0.20; 0.0058;  0.030;  0.024; 3.0]  None 

Batch 2 [17.79; 0.084; 0.0058;  0; 0.083; 3.0] None 

Fed-batch 1 [19.57; 0.12; 0.0060; 0; 0; 3.0] 0.0213 L/h of glucose 

(200 g/L) for 46 h 
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Table V.1. Continued 

Batch number Initial conditions (g/L) 

[glucose, biomass, product, ethanol, acetic acid, volume (L)] 

Feeding 

Fed-batch 2 [19.47; 0.17; 0.0060; 0.57; 0; 2.0] 0.1574 L/h of glucose 

(20 g/L) for 6 h 

Application of unknown input observer 

Validation of Existence condition and estimation of the unknown input matrix 

The Existence condition for the observer in Equation (5.3.3) limits the 

application of the unknown input observer for nonlinear systems. It is necessary to check 

if Equation (5.3.3) is satisfied. It is the local Lipschitz condition of the kinetic model of 

the bioreactor. From the fed-batch model in Equation (5.18), the following equation can 

be derived.  

f(x,u)-f(x,̂u)=

[
 
 
 
 
 
 
 
 
 
 ((μ

G
+μ

E
+μ

A
) -

Fg

V
)(X-X̂)

-
 μG

(X-X̂)

YX G⁄
-(G-Ĝ)*

Fg

V

(k1 μ
G

-
μE

YX E⁄
) (X-X̂)-(E-Ê)

Fg

V

((k2μ
G

+k3μ
E
)-

μA

YX A⁄
) (X-X̂)-(A-Â)*

Fg

V

((α1μ
G

+α2μ
E
+α3μ

A
)+ β) (X-X̂)-(P-P̂)*

Fg

V

0 ]
 
 
 
 
 
 
 
 
 
 

   (5.18b)              

In which, X̂,  Ĝ,  Ê,Â, and P̂ are the estimated states of biomass, glucose, ethanol, acetic 

acid, and product. Equation (5.18b) contains only linear term of the state. Using the 
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definition of Euclidean norm, it is easy to verify that Equation (5.3.3) can be satisfied 

from Equation (5.18b) when the feeding flow rate of glucose (Fg) are limited in a range.  

In the design of unknown input observer in Equation (5.2), the unknown input 

matrix 𝐸 is assumed constant. The estimation of matrix 𝐸 is based on fitting the observer 

estimation to an experiment measurement data of Batch 1 by adjusting the parameter 

matrix  𝐸. Three unknown inputs were considered in the states of biomass, product, and 

ethanol in matrix 𝐸. The parameters in matrix 𝐸 are obtained through a similar curve 

fitting process described by our previous paper.163,164 

Implementation of unknown input observer for a bioreactor 

In the validation experiments, Batch 2, Fed-batch 1, and Fed-batch 2 were 

performed to apply the unknown input observer to estimate the process states. The 

unknown input matrix 𝐸 was kept the same for all the batches as obtained. The only on-

line measurement for the observer is biomass, which can be done using either hardware 

or software measurement.165 Different initial conditions were used in the invalidation 

experiments and are listed in Table V.1.  To compare the difference between the original 

kinetic model prediction and the observer estimation, the normalized root mean square 

(RMS) error is calculated using the following equation.  

RMS error=√∑
(Xest.-Xmea.)

2

n

n
1 /Xmax                                (5.19)                                                       

In which, Xmea.  is the value of states from measurement. Xest. is the estimated 

value of states from either original kinetic model prediction or estimation from unknown 
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input observer. n is the measurement points and Xmax is the biggest measurement value 

of the state recorded in each experiment.  

Comparison between parameter estimation with unknown input observer 

A new set of parameters was estimated using the data from Batch 1. The new 

estimated parameters were applied to estimate Batch 2, Fed-batch 1, and Fed-batch 2, 

and results are compared to the state estimation from unknown input observer.  

Results and discussion 

Comparison between original kinetic model and validation experiments  

The parameters for the kinetic model were obtained from two batch experimental 

runs as demonstrated in our previous paper.163,164 Bioprocess is a more complex system 

than other chemical processes due to many unknowns in the microbial systems. For the 

kinetic modeling point of view, for example in our system, six states are considered 

including glucose, ethanol, product, acetic acid, biomass, and bioreactor volume. The 

growth and inhibition rates of the ethanol are considered in the model. However, there 

are many factors, which have not been considered in the model, e.g. for a bioreactor with 

high cell density, unmodeled uncertainty may involve nutrient limitation, oxygen 

insufficiency, and carbon dioxide accumulation, and inhibition of chemicals. To fully 

understand and model these effects, extensive scale-down experiments are required to 

perform studies on individual effects. Due to certain unexpected inputs or unmodeled 

effects of the biosystem, the model-plant mismatch is observed when applying our 

original kinetic model to the validation experiments. The unexpected inputs of the 

bioprocess are not fully understood. New experiments have different inoculum sizes and 
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different feeding strategies. The mismatch between the kinetic model and plant will 

affect the state estimation for process optimization and control. Figure V.1 and Figure 

V.2 show the model-plant mismatch for different validation experiments listed in Table 

V.1.  

Figure V.1 shows the mismatch between original kinetic model and 

measurements from batch experiments. The parameters in the original process model 

was obtained from two batch experiments, so the model-plant mismatch in other batch 

experiment is expected to be small. From Figure V.1, it is worth noticing that the 

original kinetic model estimated less biomass and ethanol but more product.  Model 

predicts faster ethanol and glucose consumption rate, which eventually turns the 

substrate (glucose and ethanol) into product. For our bioprocess system, the ultimate 

goal is to enhance the production of β-carotene through optimization or model-based 

control, so more attention will be given to the product (a state) for the rest of the paper. 

The figure also shows that for the first 10 h of the experiments in Figure 1a and first 30 h 

in Figure 1b, the original model can predict the behavior of the experiments. However, 

the predicted behavior the bioreactor differs from the experiment data after the initial 

stage. Glucose, ethanol, and acetic acid are considered as carbon source for the 

bioprocess, which are plotted using a same scale.  
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Figure V.1. Comparison between prediction from original kinetic model and measurement 

for experiment Batch 1(a) and Batch 2 (b) 

Figure V.2 demonstrates the model-plant mismatch between prediction from 

original kinetic model and fed-batch experiments. As listed in Table V.1, Fed-batch 1 

and Fed-batch 2 both feed glucose into the bioreactor. The major difference between 

Fed-batch 1 and Fed-batch 2 is the amount and time span of the feeding of glucose. Fed-
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batch 1 fed glucose at a high concentration for a prolonged period of time. As can be 

seen in Figure V.2a, the measurement of glucose concentration in Fed-batch 1 indicates 

the high level of glucose in the bioreactor. Fed-batch 2 fed a small amount of glucose 

into the bioreactor for a short time as shown in Figure V.2b.  

 

Figure V.2. Comparison between prediction from original kinetic model and measurement 

for experiment Fed-batch 1 (a) and Fed-batch 2 (b) 
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Figure V.2. Continued. 

As can be seen in Figure V.2a, significant differences between the prediction 

from original kinetic model and the measurements were observed for biomass, glucose, 

and product. According to our batch model, cells grow basing on the food source of 

glucose, ethanol, and acetic acid. After constant feeding of glucose for a prolonged 

period of time, the biomass is predicted by the model to increase to a very high level as 

shown in Figure V.2a. The low level of measured biomass may be due to the nutrient 

limitation. The large amount of biomass quickly consumes the glucose, as shown by the 

low level of glucose predicted by the model, as seen in Figure V.2a. The model 

predicted a higher increase of product compared to the measured data due to the higher 

predicted biomass.  Figure V.2b shows smaller model-plant mismatch than Figure V.2a, 

which can be attributed to the lower amount of glucose fed to the process in a shorter 

amount of time. The difference between the model prediction and the actual 
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measurements in Fed-batch 2 is similar to the batch experiment as shown in Figure V.1. 

This fact provides the possibility of an extension of the batch process to a fed-batch 

process using our previous process model.  

 

Figure V.3. Comparison of observer estimation and measurement of Batch 1 for estimating 

unknown input matrix 

Estimation of unknown input matrix 

To design the unknown input observer and solve the parameters for the observer, 

the first step is to obtain the unknown input matrix, which is matrix E in Equation (5.1). 

Equation (5.1) is a mathematical description of a nonlinear system, which is a 

combination of a known nonlinear model and linear unknown inputs. It is still an open 

question whether any nonlinear system can be described as such combination especially 

for the linear unknown inputs. Some unknown inputs can be reasonably assumed to be 

nonlinear. However, it is difficult to configure the exact effect of the unknown inputs 

due to the possible combination of many different inputs. In this paper, we assume the 
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overall effect of unknown inputs is linear. To estimate the parameter matrix of the 

unknown inputs, we apply the same parameter estimation as described in our previous 

paper. A line fitting is used to estimate parameter for the unknown input matrix. Figure 

V.3 shows the fitting of the observer estimation and measurements. Experimental data 

from Batch 1 is used for estimating the unknown input matrix and the results for the 

comparison between experimental data and the observer with estimated parameters are 

shown in Figure V.3. As can be seen in Figure V.4, after the estimation of the unknown 

input matrix parameter, the state estimation from the observer can predict the 

measurements in all the states except the small error in acetic acid. The production and 

utilization of acetic acid by the organism is still not fully understood. Due to the 

relatively low amount of acetic acid in the bioreactor, the estimation from the observer is 

acceptable. The unknown input matrix E is obtained and is depicted as follows: [0; -

1/1000; -6.6/1000; 0.35/1000; 0]. The other parameters for the observer in Equation 

(5.2) are shown below.  

𝐶=























000000

000000

000000

000010

000000

;  H=

























000000

000035.00

00006.60

000010

000000

; K=



























000000

00004994.10

00007426.230

00004953.230

000000
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Figure V.4. Comparison of states between estimation from unknown input observer and 

measurement for experiment Batch 2 

Comparison between observer estimation and experiments  

After the estimation of the unknown input matrix E, the unknown input observer 

can be applied to other validation experiments such as Batch 2, Fed-batch 1, and Fed-

batch 2 to test its ability for state estimation. Figure IV shows the state estimation results 

from the unknown input observer and its comparison to the off-line measurements. In 

the application of the unknown input observer, the biomass on-line measurements are 

available. In the figure, the biomass state is estimated from the unknown input observer 

rather than the measurement, which explains the difference between the unknown input 

observer and actual measurements in biomass.  Ethanol and product are the two states 

that show improved estimation compared to the estimation shown in Figure V.1b. The 

batch experiment is the most studied and understood operation mode. Estimation of 

original model parameters and the unknown input parameter matrix are both performed 
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in the batch mode, so the good performance of the unknown input observer in batch 

mode can be expected. Although some estimation error can be observed in the glucose 

and ethanol prediction, the estimation of product has a better fit of the measurement 

which is the main focus of the state estimation. Table V.2 provides the calculated RMS 

error for Batch 1 and Batch 2 from both the original model and the unknown input 

observer. Batch 1 is used to estimate the unknown input matrix. The results in Batch 2 

indicate the estimation error of ethanol and product is reduced.  

Table V.2. RMS error from original model and observer for batch experiment 
 Batch 1 Batch 2 

 Original kinetic 

model 

Observer Original kinetic 

model 

Observer 

Biomass 0.0850 0.0594 0.0759 0.0741 

Glucose 0.1301 0.0336 0.0616 0.0621 

Ethanol 0.2793 0.0811 0.2985 0.1653 

Product 0.3354 0.0992 0.2624 0.1114 

Acetic acid 0.3294 0.2725 0.4030 0.3542 

Batch and fed-batch are the two main operation modes in pharmaceutical 

industry. The original kinetic model is based on the batch operation. In this paper, we 

have tested the application of our unknown input observer to the fed-batch operation. In 

an ideal case of process modeling, the batch model can be directly modified into a fed-

batch model.  However, due to some unmodeled processes or certain disturbances, 

significant model-plant mismatch can exist, as shown in Figure V.2a.  The significant 

model-plant mismatch will limit the application of the modeling of fed-batch or 
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continuous operation.  In our results obtained by applying an unknown input observer to 

a fed-batch system, estimation from an unknown input observer can significantly reduce 

the model-plant mismatch. The difference in the results shown in Figure V.5a and Figure 

V.5b is due to the feeding strategy of glucose. As shown in Table V.1, the experiment 

whose results are shown in Figure V.5a involved feeding a large amount of glucose over 

46 hours. 

 

Figure V.5. Comparison of states between estimation from unknown input observer and 

measurement for experiment Fed-batch 1(a) and Fed-batch 2 (b) 
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Figure V.5. Continued. 

In the experiment whose results are shown in Figure V.5b, a small amount of 

glucose is fed into the bioreactor for a short amount of time. The glucose measurement 

data in Figure V.5a confirms the addition of large amount of glucose. In Figure V.5a, 

state estimations of glucose, ethanol, and product have been greatly improved compared 

to the original model prediction shown in Figure V.2a. Although there is certain error in 

the estimation of the state of final product, the observer can predict the overall trend of 

the product.  The error in model-plant mismatch is not currently well-understood. As we 

discussed in the previous section, we use a process model in Equation (5.1) to represent 

the whole system, which considers a linear disturbance. Although some disturbance or 

uncertainty certainly have a nonlinear effect, due to the lack of information of the 

disturbance, it is not possible to determine the exact nonlinear effect of each disturbance. 

Additionally, the error in the model-plant mismatch is the combination of all the possible 
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disturbances, which further complicates the problem. The results in Figure V.5a show 

the disturbance caused by a large amount of glucose feed is a nonlinear effect. However, 

the linear disturbance is the only possible method in the design of the observer for 

tackling such a problem. Figure V.5b shows a relatively small error in all the state 

estimations from the unknown input observer. The small error is due to the small amount 

of glucose fed into the bioreactor, which makes the process close to a batch process. 

Table V.3 summarizes the calculated RMS error for Fed-batch 1 and Fed-batch 2 

experiments. As indicated in the table, all the state estimations from the unknown input 

observer have reduced error when compared to the original kinetic model, especially for 

the prediction of the product state.  

Table V.3. RMS error from original model and observer for the fed-batch experiment 
 Fed-batch 1 Fed-batch 2 

 Original kinetic 

model 

Observer Original kinetic 

model 

Observer 

Biomass 1.7291 0.0476 0.0740 0.0403 

Glucose 0.2819 0.1467 0.1082 0.0622 

Ethanol 0.5294 0.1977 0.2021 0.0760 

Product 2.0213 0.2099 0.2212 0.0857 

Acetic acid 0.6569 0.5970 0.3963 0.3505 

Comparison between model with updated parameters and unknown input observer 

An ideal process model will have a fixed set of parameters for different 

operations. However, the biological experiments demonstrate that the existence of such a 

process model is almost impossible. One of the methods is to update the parameters for 
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each experiment run. However, the parameter estimation requires the measurements of 

as many states as possible, which contradicts the intent of process modeling. In our 

study, a comparison between the parameter update and unknown input observer is shown 

in Figure V.6, although the parameter update is based on the measurements of all the 

states and unknown input observer is based on the measurement of biomass only. In the 

comparison, we re-estimate the parameters for Batch 1 using the same method we used 

in our previous study, and we apply the re-estimated parameters for the Batch 2, Fed-

batch 1, and Fed-batch 2 experiments.163,164 The results are shown in Figure V.6. Batch 1 

is used to update the parameters (shown in Figure V.6a). Figure V.6b applies the same 

updated parameters for experiment Batch 2.  Figure V.6c and Figure V.6d shows the 

results for fed-batch experiments. As can be seen in the figure, the updated model can 

predict the batch experiment, but all not the fed-batch experiment, which indicates that 

there are key unmodeled disturbances.  
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Figure V.6. Prediction of the states from model with updated parameter for Batch 1 (a), 

Batch 2 (b), Feb-batch 1 (c), and Fed-batch 2(d) 
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Figure V.6. Continued. 

 

RMS error from the kinetic model prediction with updated parameters and the 

unknown input observer is shown in Table V.4 and Table V.5. The ‘updated model’ in 

the table indicates the model with re-estimated parameters. Since Batch 1 is the batch 

used for both parameter re-estimation and estimation of unknown input matrix, it is not 
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used for comparison purpose. As indicated in the table, Batch 2 has comparable 

estimation error when comparing the model with the parameter update and the unknown 

input observer. As shown in Table V.3 and Table V.5, kinetic models with updated 

parameters can reduce the estimation error for Fed-batch 2. However, the Fed-batch 1 

results indicate that the parameter re-estimation using a batch experiment still can’t 

estimate the fed-batch experiment efficiently. The result indicated that for a fed-batch 

experiment with large amount of glucose feeding, an adaptive update of parameter is 

preferred for the parameter estimation method. However, the adaptive parameter 

estimation requires off-line measurements of many state values, while the application of 

observer only requires online biomass measurement.  

Table V.4. RMS error from kinetic model with updated parameters and observer for batch 

experiment 
 Batch 1 Batch 2 

 Updated kinetic 

model 

Observer Updated kinetic 

model 

Observer 

Biomass 0.1804 0.0594 0.0573 0.0741 

Glucose 0.1374 0.0336 0.0713 0.0621 

Ethanol 0.1265 0.0811 0.1496 0.1653 

Product 0.0438 0.0992 0.0976 0.1114 

Acetic acid 0.3085 0.2725 0.1273 0.3542 
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Table V.5. RMS error from kinetic model with updated parameters and observer for fed-

batch experiment 
 Fed-Batch 1 Fed-Batch 2 

 Updated kinetic 

model 

Observer Updated kinetic 

model 

Observer 

Biomass 3.7944 0.0476 0.0584 0.0403 

Glucose 0.2799 0.1467 0.1183 0.0622 

Ethanol 0.3807 0.1977 0.1522 0.0760 

Product 1.4221 0.2099 0.0858 0.0857 

Acetic acid 1.1547 0.5970 0.3557 0.3505 

Comparison of three carbon sources 

As can be seen in Table V.2 to Table V.5, state estimation for acetic acid in both 

original model and observer has larger normalized RMS error than the other states. In 

this bioprocess, acetic acid is considered as a third carbon source for β-carotene 

production after glucose and ethanol. To compare contributions of the three carbon 

source, carbon molecules (mole) from each carbon source are calculated.  Quantity of 

glucose is calculated by its initial concentration. Quantities of ethanol and acetic acid are 

calculated by their maximal concentration, which occurs at the end of their production 

phase. It is assumed that ethanol starts acting as a carbon source after glucose is all 

consumed. And acetic acid acts as a carbon source after ethanol is all consumed. It also 

can be seen in the figures, such as in Figure 1a, ethanol reaches its maxima at 28 h, when 

glucose is all consumed. Acetic acid reaches its maximal concentration at 68 h when 

ethanol is all consumed. The inhibitory effort of ethanol on cell growth and toxic effect 

of acetic acid may lead to the priority sequence of the carbon source.166–168 For the fed-

batch experiments, the addition of substrate is also calculated.  



 

137 

 

The comparison results are shown in Figure V.7. As can be seen in the figure, 

acetic acid contributes less than 6% of the carbon source except Fed-batch 2. This is 

significantly less compared to glucose and ethanol.  Due to the low impact of acetic acid, 

the relatively large estimation error for acetic acid is accepted.   

 

Figure V.7. Contribution of carbon from three carbon source (carbon mole quantity) 

Summary of the chapter 

The measurement or estimation of process states is critical for process 

monitoring, advanced process control, and process optimization. For chemical processes 

where state information cannot be measured directly, techniques such as state estimation 

need to be developed. Model-based state estimation is one of the most widely applied 

methods for estimation of unmeasured states basing on a high-fidelity process model. 

However, certain disturbances or unknown inputs not considered by process models will 
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generate model-plant mismatch, and in some cases the mismatch is significant. To 

estimate the process state in the presence of process disturbances or unknown inputs, a 

new design of a nonlinear unknown input observer is proposed and applied to the 

estimation of states in a bioreactor. The design of such an observer is provided and 

sufficient and necessary conditions of the observer are discussed.  

Experimental studies of batch and fed-batch operation of a bioreactor are 

performed using Saccharomyces cerevisiae strain mutant SM14 to produce β-carotene. 

Based on the mathematical modeling of the process which is demonstrated in our 

previous study, an unknown input observer for the bioreactor is developed. Model-plant 

mismatch is observed when changes are made to the initial conditions or operating mode 

of the reactor. The state estimation of the process from the designed observer is 

demonstrated to alleviate the model-plant mismatch and is compared to the experimental 

measurements.  
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CHAPTER VI  

CONCLUSIONS AND FUTURE WORK 

 

Conclusions  

In this dissertation, different model-based state estimation techniques were 

proposed and applied to chemical processes.  

In Chapter II, non-isothermal natural gas flow equations in pipeline were 

developed to study the effect of inlet temperature, ground temperature, and heat transfer 

coefficient on the flow phenomena. The results showed that all the above-mentioned 

thermal properties have an observable impact on the flow rate and a relatively smaller 

impact on the pressure profile. The natural gas leak from the pipeline will change the 

flow rate, pressure, and temperature profile across the length of the pipeline depending 

on the size and location of the leak. The non-isothermal model can be conditionally 

reduced to an isothermal model when only considering the flow rate along the pipeline. 

The constant parameter ‘c’ in the isothermal model was estimated for different thermal 

conditions and leak occurrences. Unscented Kalman filter provides better flow rate 

estimation than extended Kalman filter. In the dual unscented Kalman filter with 

parameter update, the isothermal model can be used as an observer to estimate the gas 

flow rate under non-isothermal situations at steady state. With the non-isothermal model 

generating the data in place of real pipeline data, the proposed dual unscented Kalman 

filter can detect the leak location efficiently.  
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In Chapter III, a methodology for constructing a linear unknown input observer 

for a natural gas flow process was developed. Existence, stability, and robustness 

analysis of the observer was also provided. The method was illustrated by first 

approximating the nonlinear isothermal model with a linear model. A linear unknown 

input observer is proposed and solved through a linear matrix inequality method. It was 

shown that the observer is able to identify the effects of pressure oscillation and 

temperature changes without requiring the thermal measurement and real-time modeling. 

An adaptive linear model was also proposed for leak location estimation while 

considering the effects of changes in temperature and boundary pressure.   

Chapter IV chapter developed two different approaches to detect subsequent and 

simultaneous leaks from a natural gas pipeline. An unknown input observer-based 

estimation method was adapted to detect the subsequent multiple leaks with the ability to 

deal with process noise such as temperature and pressure change. An adaptive 

discretization global optimization algorithm method was proposed to locate the multiple 

leaks. The new optimization algorithm will significantly reduce the computation circles 

and can efficiently estimate the multiple leak locations.  

In Chapter V, A new design of a nonlinear unknown input observer was 

proposed and implemented using a bioreactor case study. The existence and stability of 

the observer was provided. The unknown input matrix was determined by one batch 

experiment and applied to other batch and fed-batch validation examples. The unknown 

input observer used the biomass measurement as a feedback to estimate the other states. 

Results indicated the unknown input observer can improve the prediction of the states in 
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both batch and fed-batch experiments. The assumption of a linear disturbance in the 

design of unknown input observer can be validated for certain batch and fed-batch 

experiments.  

Future work 

Development of hybrid fault detection observers 

New observer for fault detection and isolation is needed for complex system. 

Among the observers applied in the chemical system, process fault or unknown inputs 

are estimated from the first principle concept or experimental setting. However, for a 

complex system that process fault or disturbance cannot be measured directly, new 

observer technique needs to be developed. Hybrid observers integrate various observer 

developing techniques, which can be a candidate for state estimation for complex 

systems. 

Currently, most of the observer designs are based on the first principle modeling 

of a process. For certain systems, first principle modeling is hard to obtain. The observer 

design based on the incomplete knowledge of process modeling is still under 

development.  

Process monitoring of virus production and separation 

In our previous study, a novel strategy is proposed for preparing cellulose fiber 

monolith by partially dissolving and reshaping Lyocell cellulose fiber into monolith 

shape, which enhances the mechanical property of the monolith.  Process modeling and 

simulation is primarily studied. However, due to the numerous proteins participating in 

the separation process, process simulation of separating virus from cell proteins and 
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DNA remain a challenge. Process modeling and monitoring technique need to be 

developed for a complicated process with little knowledge of process variables. Limited 

sensor numbers could also be a bottleneck to overcome.  
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APPENDIX 

Development of non-isothermal natural gas flow models 

Nomenclature 

A Area of cross section 

D     Inner diameter of pipeline 

F Friction force 

G Gravity force 

H Enthalpy 

p Pressure 

Pr Force due to pressure drop 

q        Mass flow rate 

q_L Mass flow rate of leak 

Q Heat transfer rate 

U Heat transfer coefficient 

ρ Gas density 

The mass, momentum, and energy balance of the gas flow in a pipeline is shown 

below. 

Mass balance 

q
in
̇ -q

out
̇ =q

accu
̇

q
in
̇ =ρAv;    q

out
̇ =ρAv+

∂ρAv

∂x
∆x+q

L
; q

acc
̇ =

∂ρA∆x

∂t



163 

Momentum balance 

Ṁelement=Min
̇ -Ṁout+G+Pr+F 

Ṁin=ρAv∙v;   Ṁout= ρAv∙v+
∂ρAv∙v

∂x
∆x+q

L
∙v; Ṁelement=

∂(ρA∆xv)

∂t

𝐺 = −𝜌𝐴∆𝑥𝑔𝑠𝑖𝑛𝜃 

Pr=PA- (P+
∂P

∂x
∆x) A=-

∂P

∂x
A∆x  

F=
-ρfv2

2D
A∆x 

Simplify the equation to the following: 

∂(ρv)

∂t
+

∂ρv∙v

∂x
+

∂P

∂x
+

qL.v

A∆x
=-ρgsinθ-

ρfv2

2D

For the non-isothermal model, the equation can be written as: 

1

A

∂q

∂t
+

∂ρv∙v

∂x
+

∂P

∂x
+

qL.v

A∆x
=-ρgsinθ-

fq2

2DA2P
ZRT 

Energy balance 

Ėelement=Ein
̇ -Ėout+Ẇ+Q̇

Ėin=(H+
1

2
v2)ρAv

Ėout= (H+
1

2
v2) ρAv+

∂(H+
1

2
v2)ρAv

∂x
∆x+ (H+

1

2
v2) q

L

Ėelement=
∂(UT+

1

2
w2)ρA∆x

∂t

Ẇ=-ρgAvsinθ∆x 

Q̇=-
4UA(T-TG)

D
∆x  

So the energy balance equation can be written as: 
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∂(UT+
1

2
v2)ρ

∂t
+

∂(H+
1

2
v2)ρv

∂x
+

(H+
1

2
v2)qL

A∆x
=-ρgvsinθ-

4U(T-TG)

D

Having the following process variables: 

UT=H-PV 

dH=CPdT+ {
T

ρ
(

∂ρ

∂T
)
P

+1}
dP

ρ

(
∂ρ

∂T
)
P

=-
ρ

T
(1+

T

Z

∂Z

∂T
) 

The energy balance equation becomes: 

ρ
∂H

∂t
+ρv

∂H

∂x
-v

∂P

∂x
-

∂P

∂t
=

ρfv3

2D
-

4U(T-TG)

D

So the final non-isothermal process model is: 

∂P

∂t
=

-
1

A

∂q

∂x
-

1

A∆x
qL+(

1

ZCP

∂Z

∂T
+

1

TCP
)(

fq3z2R2T2

2DA
3

P2
-
4U(T-Tg)

D
-

q

A
CP

dT

dx
+(

T

Z

∂Z

∂T
+1)

q

AP
ZRT

dP

dx
)

(
1

ZRT
-

P

Z2RT

∂Z

∂P
-(

∂Z

∂T
)

2 T

Z2CP

-
2

ZCP

∂Z

∂T
-

1

TCP
)

∂q

∂t
=-A

∂P

∂x
-

AP

ZRT
gsinθ-

fq2

2DAP
ZRT-

1

A

qL

∆x
(

q

P
) ZRT

∂T

∂t
=

(
1

ZRT
-

P

Z2RT

∂Z

∂P
)

∂P

∂t

(
P

Z2RT

∂Z

∂T
+

P

ZRT2
)

+

1

A

∂q

∂x

(
P

Z2RT

∂Z

∂T
+

P

ZRT2
)

+
qL

A∆x

1

(
P

Z2RT

∂Z

∂T
+

P

ZRT2
)

Proof of Lemma 3.1 

The proof of Lemma 1 is similar to the reference.47 

[T N F0 G̅0 F1 G̅1 F2 G̅2 F3 G̅3 F4 G̅4]⋅ϕ1
=Ψ1

The solution for Equation (13c) exists if and only if 
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6



rank [
ϕ

1

Ψ1

] =rankϕ
1

By applying the definition of ϕ1,  Ψ1, and the above equation (AB1), the 

following equation can be obtained. W is assumed not an identity matrix.  

rank [
In W

C 0
] =n+rank W 

By multiplying a nonsingular matrix [
In 0

C -Ip
]at the left hand side of the above 

equation, we have the following equation. 

rank [
In W

0 CW
] =n+rankW 

so rank(CW) = rank (W) 

Proof of Theorem 3.2 

Theorem 3.2:  The observer estimation error will be asymptotically stable if and 

only if the following conditions hold: there exist matrices   P=PT>0 and Q
i
>0 satisfying

the following linear matrix inequality: 

Ξ=

4
t

i 0

i 1

t

1 1

t

2 2

t

3 3

t

4 4

P Q 0 0 0 0 F P

* Q 0 0 0 F P

* * Q 0 0 F P 0

* * * Q 0 F P

* * * * Q F P

* * * * * P



 
  
 

 
 

  
 
 

 
  



Briefly, the proof of Theorem 3.2 begins with the introduction of a discrete type 

Lyapunov-Karsovskii function, which is given by: 

V(ek)=et(k)Pe(k)+ ∑ ∑ et(θi)Q
i
e(θi)

k-1

θi=k-τi

4
i=1
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V(ek+1)=et(k+1)Pe(k+1)+ ∑ ∑ et(θi)Q
i
e(θi)

k

θi=k+1-τi

4

i=1

t

1 1

2 2

k k 1 k

3 3

4 4

e(k ) e(k )

e(k ) e(k )
V(e ) V(e ) V(e ) 0

e(k ) e(k )

e(k ) e(k )

 

 

 

 



    
   

 
        
    
   

    

, so 0   

By applying the Schur complement method and some additional mathematical 

manipulations, the matrix   can be transformed. More details on the application of

Lyapunov-Karsovskii function and Schur complement method can be found at the 

reference.122 

Proof of Theorem 3.3 

Theorem 3.3:  The norm of transfer function of 𝑇𝑒𝑛 will be smaller than γ  if 

there exists matrices, and 𝑃 = 𝑃𝑇 > 0;  Q
i
>0, which satisfy the following linear matrix

inequality. D equals to (NM+ ∑ GiM).

4
t t

i 0 0

i 1

t t

1 1 1

t t

2 2 2

t t

3 3 3

t t

4 4 4

2 t t

P Q 0 0 0 0 0 F P F P 0

* Q 0 0 0 0 F P F P 0

* * Q 0 0 0 F P F P 0

* * * Q 0 0 F P F P 0
= 0

* * * * Q 0 F P F P 0

* * * * * D P D P 0

* * * * * * P 0 0

* * * * * * * 0 P

* * * * * * * * I





 
  
 

 
 


 
 

  
 

 
 

 
 
 

  


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Proof of the above theorem is to introduce a variable:

T 2 T

edJ (e (k)e(k) n (k)n(k)) 0   , which is equal to the transfer function ‖Ten‖<γ.

Then
T 2 T

edJ (e (k)e(k) n (k)n(k) V) V(0) V( )      , in which V() is the Lyapunov-

Karsovskii function applied in the proof of Theorem 2.  With V(∞)≥0  and assumption 

of 0)0( V , the proof requires to find matrix parameters so that 

T 2 Te (k)e(k) n (k)n(k) V  <0. Then the equation can be rearranged as follows: 

t

1 1

2 2

3 3

4 4

e(k ) e(k )

e(k ) e(k )

0e(k ) e(k )

e(k ) e(k )

n(k) n(k)

 

 

 

 

    
   

 
   
     
   

    
      

 , 0  

By applying Schur complement method and mathematical manipulation, matrix 

  can be transformed in Theorem 3.3. Theorem 3.3 provides a validation method to 

examine the robustness of the design parameters. 




