
UNDERSTANDING AND DETECTING MALICIOUS CYBER

INFRASTRUCTURES

A Dissertation

by

JIALONG ZHANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Guofei Gu
Committee Members, Riccardo Bettati

James Caverlee
Narasimha Reddy

Head of Department, Dilma Da Silva

December 2016

Major Subject: Computer Engineering

Copyright 2016 Jialong Zhang

ABSTRACT

Malware (e.g., trojans, bots, and spyware) is still a pervasive threat on the In-

ternet. It is able to infect computer systems to further launch a variety of malicious

activities such as sending spam, stealing sensitive information and launching dis-

tributed denial-of-service (DDoS) attacks. In order to continue malevolent activities

without being detected and to improve the efficiency of malicious activities, cyber-

criminals tend to build malicious cyber infrastructures to communicate with their

malware and to exploit benign users. In these infrastructures, multiple servers are

set to be efficient and anonymous in (i) malware distribution (using redirectors and

exploit servers), (ii) control (using C&C servers), (iii) monetization (using payment

servers), and (iv) robustness against server takedowns (using multiple backups for

each type of server).

The most straightforward way to counteract the malware threat is to detect

malware directly on infected hosts. However, it is difficult since packing and obfus-

cation techniques are frequently used by malware to evade state-of-the-art anti-virus

tools. Therefore, an alternate solution is to detect and disrupt the malicious cy-

ber infrastructures used by malware. In this dissertation, we take an important

step in this direction and focus on identifying malicious servers behind those mali-

cious cyber infrastructures. We present a comprehensive inferring framework to infer

servers involved in malicious cyber infrastructure based on the three roles of those

servers: compromised server, malicious server accessed through redirection and ma-

licious server accessed through directly connecting. We characterize these three roles

from four novel perspectives and demonstrate our detection technologies in four sys-

ii

tems: PoisonAmplifier [113], SMASH [112], VisHunter [111] and Neighbour-

Watcher [110]. PoisonAmplifier focuses on compromised servers. It explores

the fact that cybercriminals tend to use compromised servers to trick benign users

during the attacking process. Therefore, it is designed to proactively find more com-

promised servers. SMASH focuses on malicious servers accessed through directly

connecting. It explores the fact that multiple backups are usually used in malicious

cyber infrastructures to avoid server takedowns. Therefore, it leverages the corre-

lation among malicious servers to infer a group of malicious servers. VisHunter

focuses on the redirections from compromised servers to malicious servers. It explores

the fact that cybercriminals usually conceal their core malicious servers. Therefore,

it is designed to detect those “invisible” malicious servers. NeighbourWatcher

focuses on all general malicious servers promoted by spammers. It explores the ob-

servation that spammers intend to promote some servers (e.g., phishing servers) on

the special websites (e.g., forum and wikis) to trick benign users and to improve the

reputation of their malicious servers. In short, we build a comprehensive inferring

framework to identify servers involved in malicious cyber infrastructures from four

novel perspectives and implement different inference techniques in different systems

that complement each other.

Our inferring framework has been evaluated in live networks and/or real-world

network traces. The evaluation results show that it can accurately detect malicious

servers involved in malicious cyber infrastructures with a very low false positive rate.

We found the three roles of malicious servers we proposed can characterize most of

servers involved in malicious cyber infrastructures, and the four principles we devel-

oped for the detection are invariable across different malicious cyber infrastructures.

We believe our experience and lessons are of great benefit to the future malicious

cyber infrastructure study and detection.

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my thanks and appreciation to my advisor,

Prof. Guofei Gu for his continuous guidance and support throughout my Ph.D.

study. Without his inspiration, I can not complete this research. I am grateful as

well to the rest of my dissertation committee members, Prof. Riccardo Bettati, Prof.

James Caverlee and Prof. Narasimha Reddy for generously giving their time and

expertise to better my work.

I have also been very fortunate to be a member of a great security research team

in our lab at Texas A&M university. I wish to thank Chao Yang, Zhaoyan Xu,

Seungwon Shin, Lei Xu, and Guangliang Yang for their valuable assistance on my

research. It is my pleasure to work with them over the past few years. They are not

only intriguing helpers for my research but also great friends in my life.

Furthermore, I would like to thank my collaborators, Xin Hu, Jiyong Jang, Ting

Wang, Marc Ph. Stoecklin, Sabyasachi Saha, Sung-Ju Lee, Marco Mellia for men-

toring me during my summer internship. They also provide useful data and valuable

comments for my research.

I also gratefully acknowledge the funding sources that made my Ph.D. work

possible. My work was supported by the National Science Foundation (NSF) under

Grant no. CNS-1314823, CNS-1218929, and CNS-0954096, and the Air Force Office

of Scientific Research (AFOSR) under Grant No. FA-9550-13-1-0077.

Last but not the least, I take this opportunity to thank my parents. Through

the good times and bad times, they always stand behind me and devote their love.

I cannot be more thankful to them.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

1. INTRODUCTION . 1

1.1 Malicious Cyber Infrastructure . 2
1.2 Research Challenges and Our Goals 4
1.3 Solution Overview . 6
1.4 Thesis Contribution and Organization 10

2. RELATED WORK . 12

2.1 Compromised Server Detection . 12
2.2 Malicious Server Detection . 13
2.3 Malicious Redirection Detection . 14
2.4 Malicious Cyber Infrastructure Detection 15

3. DISCOVERING COMPROMISED WEBSITES THROUGH REVERSING
SEARCH POISONING ATTACKS . 17

3.1 Problem Statement . 20
3.2 System Design . 22

3.2.1 Intuitions . 22
3.2.2 System Overview . 24
3.2.3 Seed Collector . 26
3.2.4 Promoted Content Extractor 27
3.2.5 Term Amplifier . 29
3.2.6 Link Amplifier . 30
3.2.7 Vulnerability Amplifier . 33

3.3 Evaluation . 34

v

3.3.1 Case Study . 35
3.3.2 Evaluation Dataset . 37
3.3.3 Evaluation Results . 38

3.4 Discussion . 47

4. SYSTEMATIC MINING ASSOCIATED SERVER HERDS INVOLVED IN
MALICIOUS CYBER INFRASTRUCTURES 50

4.1 Motivation and System Goals . 52
4.1.1 Case Studies . 52
4.1.2 Goals . 53

4.2 System Design . 53
4.2.1 System Overview . 53
4.2.2 Preprocessing . 54
4.2.3 Associated Server Herd Mining 55
4.2.4 Associated Server Herd Correlation 60
4.2.5 Pruning . 62
4.2.6 Malicious Campaign Inference 63

4.3 Evaluation Data . 63
4.3.1 Network Trace . 63
4.3.2 Ground Truth . 64

4.4 Evaluation Results . 65
4.4.1 Inference Results . 65
4.4.2 Attack Diversity & Persistency 70
4.4.3 Effectiveness of the Main and Secondary Dimensions 72
4.4.4 Attack Campaign Case Study 73

4.5 Discussion . 77
4.5.1 Overhead . 77
4.5.2 Limitations . 77
4.5.3 Evasions . 77

5. CHARACTERIZING AND DETECTING MALICIOUS ENTRANCES TO
MALICIOUS CYBER INFRASTRUCTURES 79

5.1 Research Goal and DataSet . 81
5.1.1 Research Goal . 81
5.1.2 DataSet . 81

5.2 Server Visibility . 83
5.3 Measurement Study of Server Visibility 85

5.3.1 Server Visibility Study . 86
5.3.2 Visibility Study on Redirections 89

5.4 System Design . 94
5.4.1 System Overview . 94

vi

5.4.2 Detecting Malicious Entrances 95
5.4.3 Inferring Malicious Infrastructures 97

5.5 Evaluation . 100
5.5.1 Data Trace and Ground Truth 100
5.5.2 Time Impacts on Visibility . 100
5.5.3 Search Engines Comparison 101
5.5.4 Malicious Entrance Detection Results 102
5.5.5 Inferring Results . 105
5.5.6 Case Study . 108
5.5.7 Comparison with Existing Work 109

5.6 Discussion . 110

6. INFERING PROMOTING SERVERS ON COMMENT SPAM 112

6.1 Problem Statement . 114
6.1.1 Threat Model . 116
6.1.2 Categories of Spam Harbors 117

6.2 Spam Harbor Measurement . 119
6.2.1 Dataset . 119
6.2.2 Quality of Harbors . 120
6.2.3 Spam Harbors Infrastructure 124

6.3 Inference System Design . 128
6.3.1 Overview . 128
6.3.2 Building Spamming Infrastructure Graph 130
6.3.3 Spam Inference . 133

6.4 Evaluation . 134
6.4.1 Dataset and Ground Truth . 134
6.4.2 Stability of Spamming Structure 135
6.4.3 Effectiveness of Inference . 136
6.4.4 Constancy . 138
6.4.5 Applications of Our System 140

6.5 Discussion . 143
6.5.1 Improvement . 144
6.5.2 Possible Evasion . 145

7. SUMMARY AND LESSONS LEARNED 147

7.1 Summary of Our Inference Systems 147
7.2 Lessons Learned . 148
7.3 Applicability to Malicious Infrastructures over Other Platforms . . . 150

7.3.1 Malicious Social Network Infrastructure 150
7.3.2 Malicious Mobile App Infrastructure 152

vii

8. CONCLUSION AND FUTURE WORK 154

8.1 Conclusion . 154
8.2 Future Work . 156

REFERENCES . 157

viii

LIST OF FIGURES

FIGURE Page

1.1 Malicious cyber infrastructure . 4

1.2 Our malicious cyber infrastructure detection framework 7

3.1 The workflow of search poisoning attacks. 20

3.2 The system architecture of PoisonAmplifier. 26

3.3 Flow of seed collector. 27

3.4 Flow of promoted content extractor. 28

3.5 Flow of term amplifier. 30

3.6 The illustration of inner-links and outer-links. 32

3.7 Example of outer-link. 33

3.8 Malicious script. 35

3.9 Hit rate distribution. 42

3.10 Daily new found compromised websites. 48

4.1 Malicious campaigns examples. 53

4.2 Obfuscated filenames. 57

4.3 Whois similarity. 60

4.4 Distribution of the client and campaign sizes. 69

4.5 Persistent vs dynamic campaigns. 72

4.6 Effectiveness of secondary dimensions. 74

5.1 Determination of server visibility . 83

5.2 Invisibility ratio distribution across all categories 86

ix

5.3 System overview. 94

5.4 Detection time difference distribution 105

5.5 Propagation results . 107

5.6 Onlinefwd.com campaign . 108

6.1 The workflow of comment spamming 114

6.2 PageRank score distribution of harbors 121

6.3 Distribution of harbor life time . 122

6.4 Googe indexing interval . 123

6.5 Relation graph of spam harbors . 125

6.6 Spam distribution ratio . 127

6.7 Distribution of time centrality ratio 128

6.8 System architecture of NeighbourWatcher 129

6.9 Normalized neighborhood relationship matrix 129

6.10 A case study of comment spamming on different subsets of harbors . 132

6.11 Changed relationship distribution . 136

6.12 Constancy of NeighbourWatcher 138

6.13 Spam category . 140

6.14 Zero day spam distribution . 141

6.15 Daily comparison with existing spam blacklists 142

x

LIST OF TABLES

TABLE Page

3.1 18 seed pharmacy words . 37

3.2 The number of seed terms for three different categories 38

3.3 The effectiveness of PoisonAmplifier. 39

3.4 The efficiency of different components. 40

3.5 Terms with top five hit rates . 42

3.6 Exclusive ratio of different components 43

3.7 Campaign ratio of different components 44

3.8 The comparison of effectiveness with existing work 45

3.9 Labeling results by using GSB . 46

4.1 ISP network traffic statistics. 64

4.2 Number of malicious campaigns. 65

4.3 Number of servers in malicious activities. 68

4.4 Attack categories. 70

4.5 Number of malicious campaigns during Data2012week. 71

4.6 Number of servers involved in malicious activities during Data2012week. 71

4.7 Bagle botnet. 74

4.8 Sality botnet. 75

4.9 iFrame injection attack. 76

4.10 Zeus botnet. 76

xi

5.1 Data collection . 82

5.2 Top 5 largest visible malicious categories 87

5.3 Top 5 largest invisible malicious categories 87

5.4 Feature selection . 96

5.5 Stability of visibility . 101

5.6 Comparison among different search engines 102

5.7 Malicious entrance detection results 103

5.8 Propagation results . 107

5.9 Typosquatting campaign . 109

6.1 Effectiveness of different types of detection features 118

6.2 Data collection of comment spam harbors 120

6.3 Notations used in this chapter . 131

6.4 Sensitivity of the hit rate and hit count to the choice of similarity
threshold . 137

6.5 Keywords for different spam category 139

6.6 Comparison with existing blacklist systems 143

7.1 Summary of our inference systems . 147

xii

1. INTRODUCTION

Malware is still a pervasive threat to current Internet. CNN [33] recently reported

that nearly 1 million new malware threats are released every day, and a variety of

malware has been developed such as trojans, bots, and spyware. These malware

controlled by cybercriminals is able to infect computer systems to further launch

different malicious activities such as sending spam, stealing sensitive information

and launching denial of services attacks [73] to either facilitate cyber crimes or gain

illegal profits.

To control malware efficiently and anonymously, cybercriminals usually set up a

variety of malicious servers, e.g., exploit servers, C&C servers, and phishing servers.

Based on a recent threat report from Websense [52], malicious websites have increased

by nearly 600% worldwide since 2012. Different malicious servers, such as redirectors,

exploit servers, C&C servers, and payment servers, often join forces to leverage their

diverse functionalities and to create more efficient and anonymous malicious cyber

infrastructures for malware distribution, control, and monetization.

In this chapter, we first introduce the malicious cyber infrastructure and explain

why it is important for malware detection. We also present an abstract model to

characterize the current malicious cyber infrastructures. We then outline the research

challenges for the malicious cyber infrastructure detection, and clarify the goals we

want to achieve in our solution. Next, we provide an overview of our solution: an

inference framework to detect servers involved in malicious cyber infrastructures from

different perspectives. Finally, we present the contributions of this dissertation and

the organization of remaining chapters.

1

1.1 Malicious Cyber Infrastructure

The most direct way to counteract malware is to detect it on the infected hosts.

However, it becomes more and more difficult. Since malware continues to evolve and

accelerate in frequency and complexity, current security measures are too slow to

evolve in addressing malware risks[30]. In addition, packing and obfuscation tech-

niques are frequently used by malware to evade signature-based detection. Typical

techniques include substituting equivalent code instructions, changing their order-

ing, and packing (which encrypts or compresses the original malware program into

random-looking data and decrypts the content when the packed malware is exe-

cuted). What makes them successful is that malware authors have the resources

(e.g., state-of-art security tools and time) to test version after version, and to incre-

mentally enhance their tactics up to the point where malware can infect a system

and go undetected. Recent research [70] shows that some malware authors will first

upload their new variants of malware into public online anti-virus services before

releasing that malware to the public. For example, the malware authors first upload

their malware on VirusTotal website[51], where more than 40 commercial anti-virus

software is used to scan the uploaded malware. If VirusTotal detects the uploaded

malware, malware authors will further obfuscate their malware until it can success-

fully bypass all those anti-virus tools installed on VirusTotal. In this way, they can

ensure that current state-of-the-art anti-virus tools can not detect them. Therefore,

detecting malware directly on infected hosts is challenging.

Thus, to counteract malware, another alternate solution is to detect and disrupt

malicious cyber infrastructures, which are used by cybercriminals to control mal-

ware and to launch malicious activities. Malicious cyber infrastructures essentially

comprise multiple servers with diverse functionalities. In a malicious cyber infras-

2

tructure, multiple servers are usually set to be efficient and anonymous in malware

distribution (using redirectors and exploit servers), control (using C&C servers) ,

monetization (using payment servers), and robustness against server takedowns (us-

ing multiple backups for each type of servers). Such combination with diverse ma-

licious servers makes the malicious cyber infrastructure become more powerful and

robustness. Thus, great efforts are needed to understand and mitigate malicious

cyber infrastructures.

Usually, there are mainly two ways for a user to visit malicious infrastructures.

A user may first connect to a compromised server (1© in Figure 1.2), which will

then redirect the user to an exploit server (Type A malicious server in Figure 1.2)

through one or multiple redirections. After the user’s machine got exploited and

infected with malware, the user’s machine may directly visit (2© in Figure 1.2) other

post-infection malicious servers (Type B malicious server in Figure 1.2) . Based on

this observation, in this dissertation, we model the malicious cyber infrastructure

based on how the servers under malicious infrastructures are accessed.

Figure 1.2 shows the model of our defined malicious cyber infrastructures. In this

way, we category all malicious servers with diverse functionalities into three roles:

compromised servers, Type A malicious server 1, and Type B malicious server 2. Such

model can represent most of the malicious cyber infrastructures, and these three roles

can represent all kinds of servers with diverse functionalities. For example, exploit

server is usually reached through one or multiple redirections from compromised

servers, therefore, it belongs to Type A malicious server in our model. C&C server is

usually accessed through directly connecting, it belongs to Type B malicious server

in our model.

1Malicious servers are accessed through redirections.
2Malicious servers are accessed through directly visiting.

3

Figure 1.1: Malicious cyber infrastructure

1.2 Research Challenges and Our Goals

To counter malicious activities and disrupt the malicious cyber infrastructures,

we first need to detect the servers with above three roles in malicious cyber infrastruc-

tures. There are several properties make such detection become more complicated.

• Malicious cyber infrastructures are very similar to benign web infrastructures.

Both of them use HTTP protocol, which is always the majority traffic in the

current network. In addition, malicious cyber infrastructures tend to utilize

compromised servers as their entrances, which are actually benign servers and

share similar features (e.g., benign web content and benign registration in-

formation) with other benign servers. Therefore, some domain name based

detection systems may not be effective.

• Servers involved in malicious cyber infrastructures are dynamically evolving.

For example, cybercriminals can easily add new malicious servers or compro-

mised servers more quickly than a user updates his blacklists. Thus, static and

signatures-based approaches may not be effective.

• Malicious activities are usually multi-phased processes, incorporating multiple

4

servers with same or different functions. Therefore, each server only needs

to involve in part of the whole malicious activities. Thus, looking at only

one specific stage or perspective, as many existing solutions do, may not be

effective.

• The number of infected clients involved in malicious activities are usually small

in certain networks. Therefore, such malicious activities are usually stealthy

and less frequently triggered. As a result, detection systems require multiple

infections will be less effective.

Because of these challenges, existing techniques such as traditional anti-virus

tools cannot sufficiently handle the malicious cyber infrastructures. In Chapter 2,

we provide a detailed overview of various related work (e.g., compromised server

detection, malicious server detection, malicious redirection detection and malicious

cyber infrastructure detection) and further explain why these existing solutions are

not adequate. In this dissertation, we propose our solution for malicious cyber in-

frastructure detection. When designing the solution, we have the following goals in

mind:

• Our solution should be based on sound principles that can capture the fun-

damental invariants of malicious cyber infrastructures rather than symptoms

(e.g., special template in HTTP traffic)

• Our solution should provide complementary techniques and cover multiple

stages, dimensions, and perspectives.

• Our solution should be general. By general, we mean the solution could detect

general malicious servers rather than a specific type of malicious servers.

5

• Our solution should be easily deployed with less requirement for the network

traffic. By less requirement, we mean that our system should not require the

large diverse user base or multiple infections in the network traffic.

• Our solution should provide practical prototype systems that can work in the

real-world network. By practical, we mean that our system can accurately

detect real-world malicious servers.

1.3 Solution Overview

We propose an inference framework to effectively detect servers behind the ma-

licious cyber infrastructures. Within this framework, we study and detect malicious

cyber infrastructures based on the three roles of servers and their correlations. We

explore four novel principles to characterize these three roles and build four de-

tection systems: PoisonAmplifier [113], SMASH [112], VisHunter [111], and

NeighbourWatcher [110]. PoisonAmplifier and NeighbourWatcher can

be deployed as online services to proactively find compromised servers and spammer

promoted servers. SMASH and VisHunter can be deployed at the network edge

router to monitor network traffic, they will generate alerts when servers in malicious

cyber infrastructures are detected.

Figure 1.2 illustrates our inference framework and four systems. Among these

systems, PoisonAmplifier focuses on compromised servers detection, SMASH fo-

cuses on Type A and Type B malicious server detection. VisHunter mainly focuses

on redirections from compromised servers to Type A malicious server and Neigh-

bourWatcher focuses on all spammer promoted servers, which may include com-

promised servers, Type A and Type B malicious server. In addition, while SMASH

and VisHunter are passive monitoring systems, PoisonAmplifier and Neigh-

bourWatcher use active strategies to proactively find more compromised servers

6

Figure 1.2: Our malicious cyber infrastructure detection framework

and malicious servers without relying on specific network traffic.

PoisonAmplifier focuses on compromised servers, which are usually used as

“stepping stone” servers to redirect the traffic to malicious servers during the search

poisoning attack. Most existing work [79, 104–106] on search poisoning attacks

focus on detection, however, this dissertation exploits search poisoning attacks to

proactively find more compromised servers. Through studying the search poisoning

attack, PoisonAmplifier can automatically discover compromised websites that

are utilized by attackers to launch search poisoning attacks. Particularly, starting

from a small seed set of known compromised websites utilized in search poisoning

attacks, PoisonAmplifier can automatically find more compromised websites by

analyzing special terms and links on poisoned webpages, and exploring compromised

websites’ vulnerabilities.

SMASH focus on Type A and Type B malicious server involved in malicious

7

cyber infrastructures. It leverages an insight that cybercriminals are increasingly

using multiple malicious servers in their malicious activities. Therefore, instead of

focusing on detecting individual malicious domains [60, 63], it identifies a group of

closely related servers that are potentially involved in the same malware campaign.

Specifically, it utilizes an unsupervised framework to infer malware associated server

herds (ASHs) by systematically mining the relationships among servers from multiple

dimensions.

VisHunter mainly focus on redirections from compromised servers to mali-

cious servers (we define such redirections as the entrances to malicious cyber infras-

tructures). However, its propagation component can also find more post-infection

servers3. VisHunter uses the fact that cybercriminals make efforts to conceal their

core servers (e.g., C&C servers, exploit servers, and drop-zone servers) in the mali-

cious cyber infrastructures in order to continue their malevolent activities without

being detected. We characterize such deliberate invisibility of those concealed mali-

cious servers by using a new property named server visibility. Base on this insight, we

conduct the first large-scale measurement study investigating the visibility of both

malicious and benign servers and identify a set of distinct features of malicious web

infrastructures from their locations, structures, roles, and relationship. Based on

the insights obtained from the study, VisHunter identifies malicious redirections

from visible servers to invisible servers at the entryway of malicious cyber infrastruc-

tures through a trained classifier and detects post-infection servers through a novel

graph-based inference algorithm.

PoisonAmplifier, SMASH and VisHunter have some limitations. They can

only find servers with part of three roles. In addition, SMASH and VisHunter can

only passively find malicious servers. Thus, to complement these systems, we pro-

3Post-infection servers are the servers directly connected by the infected clients after infection

8

pose NeighbourWatcher, which can pro-actively find spammer promoted servers

without relying on any specific network traffic. While existing work [80, 89] relies

on the content of postings, we utilize the spamming infrastructure for the promoted

server detection, which is much more robust for evasion. We leverage the observa-

tion that cybercriminals usually have a limited number of promoting harbors (i.e.,

normal websites allowing users to leave comments such as forums, wikis, guestbooks)

and they want to make full utilization of these harbors to promote their malicious

servers. Therefore, NeighbourWatcher exploits spammers spamming infrastruc-

ture information to infer cybercriminals’ promoted servers.

Our inference framework and four detection systems meet design goals mentioned

above. We provide a brief explanation here and leave the details for the remaining

chapters:

First, each system captures some perspectives of the invariants of malicious cy-

ber infrastructures, i.e., PoisonAmplifier explores attackers’ attacking pattern

for compromised server detection, VisHunter explores the hidden pattern of mali-

cious cyber infrastructure, SMASH captures the backup pattern of malicious cyber

infrastructure and NeighbourWatcher captures the promoting pattern. We be-

lieve these principles can potentially capture the invariants of future malicious cyber

infrastructures.

Second, each system covers a different part of malicious cyber infrastructures. For

example, PoisonAmplifier focuses on compromised servers and SMASH focused

on Type A and Type B malicious server. In addition, some techniques by themselves

can cover multi-dimensions. For instance, SMASH correlated malicious servers from

multi-dimensions. Furthermore, each system may have its own limitations and cov-

erage. However, they can complement each other to enlarge the detection coverage

from multiple different perspectives.

9

Third, most of our systems are general. In design, they target generate malicious

cyber infrastructures and can detect a variety of malicious servers with diverse func-

tionalities. In other words, they are not restricted to a very specific malicious cyber

infrastructure or a specific type of malicious servers.

Fourth, most of our systems can be easily deployed without any special require-

ment to the network traffic. Comparing to system [99] which requires a large diverse

user base for malicious web pages detection, our system SMASH and VisHunter

can detect malicious servers involved in malicious activities even only few clients get

infected.

Finally, our systems are practical and can work in real word. All of our system

can detect malicious servers missed by existing state-of-the-art anti-virus tools. This

will be demonstrated in the following chapters.

1.4 Thesis Contribution and Organization

In this dissertation, we make the following main contributions:

1. We characterize the malicious cyber infrastructure in three roles and propose

an inference system to detect servers involved in malicious cyber infrastructures from

different novel perspectives, i.e., PoisonAmplifier explore attackers’ attacking pat-

tern to find more compromised servers and VisHunter explores the invisibility of

malicious cyber infrastructures to detect malicious servers.

2. We provide four practical detection prototype systems (i.e., PoisonAmpli-

fier, SMASH, VisHunter, and NeighbourWatcher) to detect malicious cyber

infrastructures. These systems are evaluated on real-world network traffic and/or on-

line public dataset. They are shown to accurately detect different malicious servers

with a low false positive rate.

3. We provide a relatively sound principle to capture some fundamental patterns

10

of malicious cyber infrastructures. And we believe the general principles behind

these systems could also be used to detect future advanced malicious servers and

infrastructures, and can be applicable to the malicious infrastructure study over

other platforms such as social networks and mobile app markets.

The remainder of this thesis is organized as follows. In the next chapter, this dis-

sertation introduces related work and explains why the existing work is not adequate

to detect malicious cyber infrastructures. Chapter 3 presents an approach to pro-

actively discover more compromised web servers. This dissertation further describes

a novel system to infer a group of malicious servers involved in the same malicious

cyber infrastructures by characterizing their relationships in Chapter 4, and a sys-

tem to detect post-infection servers and entrances to malicious cyber infrastructures

in Chapter 5. Chapter 6 presents a system to pro-actively discover spammer pro-

moted servers. Chapter 7 summarizes the lessons learned from our systems and

demonstrates how to apply lessons learned from malicious cyber infrastructures in

this dissertation to study the malicious infrastructures over other platforms such as

malicious social network infrastructures and malicious app infrastructures. Finally,

Chapter 8 concludes the thesis and describes directions for the future work.

11

2. RELATED WORK

In the previous chapter, we identified the research challenges for the malicious

cyber infrastructure detection. In this chapter, we will answer the question why

existing techniques are not sufficient for the malicious cyber infrastructure detection.

2.1 Compromised Server Detection

Existing systems to detect compromised servers fall into two main categories. The

first category focuses on analyzing web content to determine the maliciousness of a

website. For example, compromised servers can be detected by analyzing changes

between the base version and a modified version of web contents [65] and JavaScript

libraries [87]. Others utilized instrumented browsers [95] or JavaScript engines [68] to

automatically visit suspicious websites, and examine the run-time system or browser

behaviors for the signs of drive-by download attacks. The second category inves-

tigates evasion behaviors that attackers use to hide their malicious activities. For

example, [102, 107] used web search cloaking to detect compromised servers. All of

these existing work passively detected compromised web servers.

In a recent concurrent study, EvilSeed [77] proposed a framework that can ac-

tively find compromised servers with the help of search engines. It searched the web

for pages that are likely malicious by starting from a small set of malicious pages.

However, EvilSeed used generic signatures in its SEO gadget to detect compromised

servers while our system PoisonAmplifier extracted the content that the attackers

intend to promote. Therefore, PoisonAmplifier can find more search poisoning

compromised websites more efficiently and effectively than EvilSeed, e.g., the hit rate

of EvilSeed is 0.93% in its SEO gadget compared with 6.87% hit rate in Poison-

Amplifier. We consider our system PoisonAmplifier as a good complement to

12

EvilSeed.

2.2 Malicious Server Detection

Detecting malicious domains has been widely studied from different angles. Many

schemes detected malicious domains from the DNS point of view. In [60, 63], the

authors used different features (e.g., the number of distinct TLDs, number of dis-

tinct malware samples that contacted the domain, changes in the number of requests

to a domain) to evaluate the reputation of each single domain in isolation. How-

ever, these methods need initial malicious domains as seeds to train their systems. In

addition, since they are focuses on the single domain detection, they miss the connec-

tions among malicious servers and can not capture the complete picture of malicious

campaigns. In [61], Antonkakis et. al. focused only on malicious domains gener-

ated by DGA malware, and such method can not be applied to general malicious

domains. Kopis [60] can be used to detect general malicious domains. However, it

needs to monitor DNS traffic at the upper DNS hierarchy, which dramatically limits

its application.

Another line of research detects malicious domains by extracting signatures from

malware traffic and applying generated signatures to live network to detect malware

traffic [90, 93]. Perdisci et al. [93] proposed a system that clusters malware samples

requesting similar URLs and generates structure signatures from them. The gen-

erated signatures can be used to detect infected hosts on live networks. Nelms et.

al. [90] improved upon [93] by generating an “adaptivetemplate.” Their system au-

tomatically built C&C templates from known malware traffic and self-tuned to apply

the templates to different environments. These work requires malware seeds to gener-

ate the templates, therefore, they can not detect evolved malware. In addition, some

of the templates they generated could be easily evaded by attackers. Our system

13

SMASH is a completely unsupervised system that does not need malicious traffic

seeds to train features or build templates/signatures and our system VisHunter

captures the fundamental pattern of malicious servers, named server visibility, which

can not be easily evaded by attackers without incurring any significant costs.

Gu et al. [71, 72] proposed anomaly-based botnet detection systems that look

for similar network behaviors across client hosts. A set of bots that share similar

anomaly patterns are detected as botnets. Yen et al. [109] detected malware by ag-

gregating traffic that shares the same external destinations or similar payload, and

involve internal hosts with similar OS platforms. The intuition behind these work

is that hosts infected with the same bot malware usually have common C&C com-

munication patterns. Therefore, they inferred the infected clients by analyzing the

relationship among clients. Different from these work, our four systems focus on

malicious servers; we study the relations among servers because server-side infras-

tructure is more robust and stable. While malware can easily randomize client-side

traffic patterns (e.g., injecting random content in their packets, sending requests to

random benign websites), they inevitably need to contact their malicious servers to

fulfill their desired functions. In addition, client-based approaches usually require

multiple infections of clients in a network. We believe server-side based detection

system is an excellent complementary to the existing client-side based detection sys-

tems.

2.3 Malicious Redirection Detection

Most malicious redirections are actually from compromised servers to malicious

servers. Leontiadis et al. [82] conducted the first measurement study on a search

poisoning attack and found that some high-ranking websites were compromised to

dynamically redirect users to online pharmacies. Later, Lu et al.[88] detected mali-

14

cious redirection chains in a search poisoning attack using a group of features (e.g.,

poisoning resistance) specific to search poisoning activities. Lee et al. [81] identi-

fied malicious redirections on Twitter using the tweet features, such as appearing

frequencies and the correlation of redirection chains in tweets. Wang et al. [102]

proposed an approach to indirectly detect malicious redirections based on the cloak-

ing techniques used by attackers. More similar to our work is that of Stringhini et

al. [99] which detected general malicious servers using the features extracted from

interactions between a crowd of web users’ browsers with websites. However, an

immediate limitation of the system is its requirements for a large and diverse user

base which may limit its applicability in practice.

Our system VisHunter differs from the previous work in that we designed 12

features (8 of them are newly proposed) from visibility perspective to characterize

the fundamental differences between benign and malicious redirections, which are

more robust against manipulation. In addition, our system does not require large

diverse user base and we can detect malicious entrances when there are only a few

clients accessing them.

2.4 Malicious Cyber Infrastructure Detection

Most of the existing research on malicious web infrastructure study only focused

on specific attack channels associated with malicious web infrastructures. Anderson

et al. [59] studied the Internet infrastructure used to host and support scams in

terms of its lifetime, stability, and so on. Li et al. [86] focused on malicious web

advertising and built a system to inspect advertisement delivery processes to detect

malicious advertising activities. Recently, Li et al. [85] conducted a study on general

malicious web infrastructures based on the redirection topology and detected 12 times

more malicious servers. However, their system required initial malicious seeds for

15

bootstrapping and require a large number of redirections. In addition, it can not cover

malicious servers accessed through directly visiting. In our inference framework,

we detect servers in malicious cyber infrastructure based on their access pattern

(e.g., directly connecting or connected through redirections). Thus, our framework

is not restricted to a specify attack channel. In addition, for each role in malicious

cyber infrastructures, we characterize it from different novel perspectives, which are

complementary to each other to provide a relatively complete view of malicious cyber

infrastructures.

16

3. DISCOVERING COMPROMISED WEBSITES THROUGH REVERSING

SEARCH POISONING ATTACKS∗

We have introduced our proposed model of malicious cyber infrastructures and

explained why previous work cannot sufficiently to detect servers behind malicious

cyber infrastructures. In this chapter, we present a novel and efficient approach,

PoisonAmplifier, to find compromised websites on the Internet that are utilized

by attackers to launch search poisoning attacks.

Search poisoning attacks, as one particular type of “black hat” Search Engine

Optimization (SEO) manipulation techniques, inject malicious scripts into compro-

mised websites and mislead victims to malicious websites by taking advantages of

users’ trust on search results from popular search engines. By launching search poi-

soning attacks, attackers can achieve their malicious goals such as spreading spam,

distributing malware (e.g., fake AntiVirus tools), and selling illicit pharmaceutical

products [36]. In April 2011, many search terms (e.g., those related to the royal wed-

ding between Britain Prince William and Catherine Middleton) were poisoned with

Fake AntiVirus links [39]. These links misled victims to install fake Security Shield

AntiVirus software. In 2011, one research group from Carnegie Mellon University

also reported substantial manipulation of search results to promote unauthorized

pharmacies by attackers through launching search poisoning attacks [8]. Essentially,

search poisoning attacks compromise benign websites by injecting malicious scripts

either into existing benign webpages or into newly created malicious pages. Then,

∗Part of this chapter is reprinted with permission from “PoisonAmplifier: A Guided Approach
of Discovering Compromised Websites through Reversing Search Poisoning Attack” Jialong Zhang,
Chao Yang, Zhaoyan Xu and Guofei Gu. In Proceedings of the 15st International Symposium On
Research in Attacks, Intrusions and Defenses (RAID’12), Copyright c© 2012 by SpringerVerlag
Berlin Heidelberg.

17

these scripts usually make the compromised websites respond with different web con-

tent to users that visit via or not via particular search engines. Specifically, once

compromised websites recognize that the requests are referred from specific search

engines, the compromised websites may lead the users to malicious websites through

multiple additional redirection hops. However, if the compromised websites recog-

nize that the requests are directly from users, the compromised websites will return

benign content rather than malicious content. Thus, this kind of cloaking makes the

attack very stealthy and difficult to be noticed. In addition, the good reputation of

these (compromised) websites (e.g., many are reputable “.edu” domains) essentially

help boost the search engine ranks and access opportunities of malicious webpages.

Because of this, it would be helpful to discover as many of those compromised web-

sites as possible.

Most current state-of-the-art approaches to find such compromised websites merely

utilize pre-selected key terms such as “Google Trends [20]”, “Twitter Trending Top-

ics [47]” or specific “spam words” to search on popular search engines. However, the

number of newly compromised websites discovered by using this kind of approaches

is highly restricted to those pre-selected key terms. First, the limited number of the

pre-selected terms will restrict the number of compromised websites that could be

found. Second, since these terms usually belong to some specific semantic topics, it

will be hard to find more compromised websites in different categories. In addition,

since many pre-selected key terms (e.g., Google Trends) are also widely used in be-

nign websites, such approaches will also search out many benign websites leading to

low efficiency.

In this chapter, we propose a novel and efficient approach, PoisonAmplifier,

to find compromised websites on the Internet that are utilized by attackers to launch

search poisoning attacks. Specifically, PoisonAmplifier consists of five major com-

18

ponents: Seed Collector, Promote Content Extractor, Term Amplifier, Link Ampli-

fier, and Vulnerability Amplifier. Seed Collector initially collects a small seed set

of compromised websites by searching a small number of terms on popular search

engines. Then, for each known compromised website, Promote Content Extractor

will extract “promoted web content”, which is promoted by compromised website

exclusively to search engine bots, but not seen by normal users. This web content

is normally promoted by attackers, and always has a close semantic meaning to the

content of the final malicious website (e.g., a website selling illicit pharmaceutical

products). Through extracting specific query terms from “promoted web content”,

Term Amplifier will find more compromised websites by searching those query terms

instead of simply using pre-selected key terms. The intuition behind designing this

component is that attackers tend to provide similar key terms for search engine bots

to index the webpages. For each compromised website, Link Amplifier first extracts

two types of links: inner-links and outer-links. Inner-links refer to those links/URLs

in the promoted web content of the compromised website. Outer-links refer to those

links/URLs in the web content of other websites, which also have links to known

compromised websites. Then, Link Amplifier finds more compromised websites by

searching those inner-links and outer-links. The intuition is that links in the pro-

moted content tend to link to other compromised websites. Also, the websites linking

to known compromised websites may also link to other (unknown) compromised web-

sites. Vulnerability Amplifier will find more compromised websites, which have the

similar system or software vulnerabilities to existing known compromised websites.

The intuition is that attackers tend to exploit similar vulnerabilities to compromise

websites for search poisoning attacks. Through implementing a prototype system,

PoisonAmplifier, our approach can find around 75,000 compromised websites by

starting from 252 known comprised websites within first 7 days and continue to

19

find 827 new compromised websites everyday on average thereafter. In addition,

our approach can achieve a high Amplifying Rate1, much higher than existing work

[83, 88].

3.1 Problem Statement

We next introduce the research scope of this work. As we mentioned before,

our research goal is to proactively find more compromised web servers. However,

a web server could be compromised by different attackers and could be used as

different functions. In this work, we focus on proactively finding one specific type

of compromised servers which are utilized in Search Poisoning Attack as “stepping

stone” servers. In the Search Poisoning Attack, this kind of compromised servers

usually responds with malicious content to the users referred via search engines,

while responds with non-malicious content to the direct visiting users.

Figure 3.1: The workflow of search poisoning attacks.

Figure 3.1 shows the workflow of search poisoning attacks. To launch such search

poisoning attacks, an attacker typically needs to first compromise a website by ex-

1It is the ratio of the number of newly discovered compromised websites to the number of seed
compromised websites.

20

ploiting the website’s system/software vulnerabilities, and then injects malicious

scripts (PHP or Javascript) into the compromised website (labeled as 1© in Fig-

ure 3.1). The core of such search poisoning attack is the ability for the compromised

website to utilize injected malicious scripts to recognize different origins of the re-

quests. Specifically, once the compromised website finds that the requests originate

from crawler bots such as Google Bots, the website responds with web content con-

taining special keywords and URLs injected by attackers. These special keywords

and URLs are essentially what attackers desire to promote exclusively to the search

engine crawler bots and hope to be indexed by the search engines(2©). Then, if a user

queries those keywords on search engines (3©) and sends requests to the compromised

website by clicking on the search results, the user will be the desired target victim

because he shows interest in finding this website. In this case, the compromised

server will provide malicious content to the user (4©). The malicious response could

directly be malicious web content or redirect the user to malicious websites through

multiple redirection hops (5©). However, if the request originates from direct users

(not via specific search engines), attackers will not intent to expose the malicious

content. This cloaking technique can make such attack very stealthy. In this case,

the compromised website will return non-malicious content (6©).

In our work, we define the web content responded by the compromised website

(after redirection if it has) to the crawler bot as “Bot View”, to users via the search

engine as “Searcher View”, and to users not via the search engine as “User View”. We

apply a similar technique used in [83, 101] to collect the ground truth on whether a

website is compromised by search poisoning attack or not, i.e., whether its Searcher

View and User View are different. More precisely, we conservatively consider the

two views (Searcher/User) are different only when their final domain names (after

redirection if there is any) are different [83]. In this way, we can reduce false positives

21

(due to dynamics in benign websites) and increase our confidence. 2

3.2 System Design

3.2.1 Intuitions

Our design of PoisonAmplifier is based on the following four major intuitions:

Intuition 1: Attackers tend to use a similar set of keywords in multiple

compromised websites (in the Bot View) to increase the visibility to de-

sired users through search engines. Attackers usually artificially construct the

content of Bot View, which will be indexed by search engines, to increase the chance

of making compromised websites be searched out by users through search engines.

More specifically, similar to keyword stuffing [26], a common way of achieving this

goal is to put popular keywords (those words are frequently searched by users on

search engines such as Google Trends) into the Bot View. In this way, different com-

promised websites may share the similar popular keywords to draw attention from

victims. However, since many popular benign websites may also use these popular

keywords and thus occupy high search ranks, it is difficult to guarantee high search

ranks for those compromised websites that may be not very popular. As a supple-

ment, another way is to buy some “distinguishable keywords” from specific websites

[25]. These keywords may be not so popular as those popular terms. However, they

tend to have low competition in search engines, i.e., they are not widely contained in

the websites and can be effectively used to search out target websites. Thus, through

promoting these words in the Bot View, the compromised websites could be easily

searched out when users query these keywords in search engines. Thus, attackers may

use these “distinguishable keywords” in multiple compromised websites to increase

2Note that we may have very few false negatives using this conservative comparison. However
that is not a problem for us because our goal is not on the precise detection of all compromised
websites, but on the high efficiency in finding more compromised websites.

22

their search ranks.

In addition, since some attackers desire to return malicious content to their target

victims rather than arbitrary users, they tend to put specific keywords into the Bot

View of compromised websites, which have close semantic meanings to the content

of promoted websites. For example, some attackers tend to post pharmacy-related

words into the Bot View, because they will finally mislead victims who are interested

in buying pharmaceutical products to malicious websites selling illicit pharmaceutical

products. In this way, different attackers who promote similar malicious content may

spontaneously use similar keywords in the Bot View.

Based on this intuition, once we obtain those specific keywords injected by attack-

ers into the Bot View of known compromised websites, we can search these keywords

in search engines to find more compromised websites.

Intuition 2: Attackers tend to insert links of compromised websites

in the Bot View to promote other compromised websites. To increase the

chance of leading victims to malicious websites, attackers usually use multiple com-

promised websites to deliver malicious content. Thus, to increase the search ranks of

those compromised websites to search engines, or to help newly created webpages on

compromised websites be indexed by search engines, attackers tend to link their com-

promised websites with each other by inserting links of other compromised websites

into the Bot View.

Based on this intuition, we can find more compromised websites by searching the

injected links in the Bot View.

Intuition 3: Attackers tend to post links to compromised websites in

benign third-party websites to trick victims into directly clicking or to

promote these compromised websites. Through posting compromised websites

into third-party websites such as forums, blogs, or guestbooks, attackers can easily

23

trick visitors into directly clicking these compromised websites when users review

content in third-party websites. Also, third-party websites with high reputations are

usually indexed by search engines frequently, which can help compromised websites

be indexed by search engines quickly, and even inherit some reputations from these

third-party websites. Furthermore, attackers with different malicious goals may spon-

taneously promote links of compromised websites into the same popular third-party

websites, either because these third-party websites are easy to be indexed by search

engines, easy for automatically posting, or they do not have sanitation mechanisms.

With these benefits, attackers intend to keep promoting compromised websites on

these third-party websites to maximize their profits, which also gives us a chance to

keep monitoring newly compromised websites.

Based on this intuition, we can find more compromised websites by searching the

links in the web content of third-party websites, which have already been exploited to

post links linking to known compromised websites.

Intuition 4: Attackers tend to compromise multiple websites by ex-

ploiting similar vulnerabilities. Once attackers compromise some specific web-

sites by exploiting their system/software vulnerabilities to launch search poisoning

attacks, they tend to use similar tricks (e.g., Google dork) or tools to compromise

other websites with similar vulnerabilities to launch search poisoning attacks.

Based on this intuition, once we know the vulnerabilities signatures exploited by

attackers to some compromised websites, we can find more compromised websites by

searching websites with similar vulnerabilities.

3.2.2 System Overview

We next introduce the system overview of PoisonAmplifier, based on four

intuitions described in Section 3.2.1. As illustrated in Figure 3.2, PoisonAmplifier

24

mainly contains five components: Seed Collector, Promoted Content Extractor, Term

Amplifier, Link Amplifier, Vulnerability Amplifier.

• Similar to other existing work [88, 104], the goal of Seed Collector is to collect

a seed set of compromised websites by searching initial key terms (e.g., Google

Trends) in popular search engines.

• For each compromised website, Promoted Content Extractor will first work

as a search engine bot to crawl the website’s Bot View, and then work as a real

user to obtain the websites’ User View. Then, Promoted Content Extractor

will extract those content that exists in the website’s Bot View but does not

exist in the website’s User View. This content, defined as “promoted content”,

is essentially what attackers desire to promote into search engines.

• After extracting the promoted content, Term Amplifier extracts special key

terms by analyzing the promoted content and querying these key terms in

search engines to find more compromised websites.

• Link Amplifier extracts URLs in the promoted content. Link Amplifier will

also extract URLs contained in the web content of third-party websites, which

have already been posted links to known compromised websites. Then, Link

Amplifier will analyze these URLs to find more compromised websites.

• By analyzing system/software vulnerabilities of those seed compromised web-

sites and newly found compromised websites through using Term Amplifier and

Link Amplifier, Vulnerability Amplifier finds more compromised websites

by searching other websites with similar vulnerabilities.

25

Figure 3.2: The system architecture of PoisonAmplifier.

3.2.3 Seed Collector

As illustrated in Figure 3.3, Seed Collector mainly uses the following four steps

to collect seed compromised websites: (1) it first uses Google Trends [20], Twit-

ter trends[47], and our customized key terms as initial key terms to search on

search engines. (2) For each term, it will extract the links of the top M search

results showed in the search engine3. (3) For each link, Seed Collector crawls its

Searcher View and User View through utilizing HttpClient-3.x package[24]4 to set

different HTTP header parameters and values. Specifically, to crawl the Searcher

View of the website linked by each search result, we send HTTP requests with cus-

tomized Http Referrer (http://www.google.com/?q=“term”) to simulate a user to

visit the website through searching Google. To crawl the User View, we send HTTP

requests with customized values of UserAgent in the HTTP header (e.g., UserA-

gent: Mozilla/5.0 (Windows NT 6.1), AppleWebKit/535.2 (KHTML, like Gecko),

Chrome/15.0.874.121, Safari/535.2) to simulate a user to directly visit the website.

For both User View and Searcher View, the seed collector follows their redirection

chains and gets their final destination URL. (4) For each link, if its final destination

domains between User View and Searcher View are different, we consider that this

3In our experiment, we choose M = 200.
4This package can handle HTTP 3xx redirection and provide flexible HTTP header configuration

functions

26

website is compromised and output it as a compromised website.

Figure 3.3: Flow of seed collector.

3.2.4 Promoted Content Extractor

As described in Section 6.1.1, the essence of the search poisoning attack is to

recognize different request origins and provide different web content to crawler bots

(Bot View), to users via search engines (Searcher View), and to users not via search

engines (User View). Attackers tend to inject specific content into Bot View to in-

crease the chances of their compromised websites to be searched out in search engines.

They may also tend to inject malicious content that is related to the final promoted

destination malicious websites. This content is usually different from normal web

content, and can not be seen by users without using search engines.

The goal of the Promoted Content Extractor is to extract that injected content

in the Bot View of known compromised webpages, which may also be contained in

other compromised websites. Note that Bot View may also contain normal content

that is not injected by attackers and will be displayed in the User View. To be more

effective, PoisonAmplifier only extracts and analyzes the content that is in the

Bot View but is not in the User View, i.e., the content will be indexed by crawler

bots, but not be seen by users directly visiting the websites. As illustrated in Fig-

27

ure 3.4, for each compromised website, Promoted Content Extractor crawls its Bot

View and User View through sending crafted requests from crawler bots and users

without using search engines, respectively. Specifically, to crawl the Bot View, we

send a request with customized value of UserAgent in the HTTP header (e.g., UserA-

gent: Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html))

to mimic a Google bot visit. Promoted Content Extractor crawls the User View in

the same way as Seed Collector. Then, Promoted Content Extractor extracts HTML

content that appears in the Bot View but not in the User View. Then, it further

filters web content that is used for displaying in the web browsers such as HTML

Tags and CSS codes, and also removes dynamic web function related codes such as

Javascript, which are not unique enough to help further amplification. Finally, it

outputs extracted “Promoted Content” after filtering.

Figure 3.4: Flow of promoted content extractor.

It is worth noting that some legitimate websites with dynamic server-side codes

can also return different content or even redirect to different websites for every request

no matter where the visit is from (User View or Bot View), which may lead to false

positives in our extracted promoted content. To decrease this kind of false positives,

we crawl the User View twice within a short time period. In this case, if the two

28

User Views are different, we will conservatively consider that this website is not

compromised (even its User View and Searcher View may be different) and discard

it for promoted content extraction.

3.2.5 Term Amplifier

Based on Intuition 1 in Section 3.2.1, the goal of Term Amplifier is to find more

compromised websites through searching specific terms extracted from promoted

content.

It is worth noting that if we use less distinguishable content as query terms to

search, we can obtain a higher recall number (more compromised websites could be

returned) but a lower accuracy (top search results are less likely to be compromised

websites), and vice versa. In addition, in order to obtain a higher accuracy, it is

practical to focus on analyzing replied search results with top search ranks rather

than analyzing all search results. Thus, the essential part of Term Amplifier is how

to extract effective query terms from promoted content, through searching which we

can obtain as many compromised websites as possible with a high accuracy. One

option is to use each word/phrase in the content as one query term. However, in this

way, some terms may be so general that most returned websites are benign, leading

to a low accuracy. Another option is to use the “n-gram” algorithm [32] (n ≥ 2).

In this way, some terms may be so distinguishable that many compromised websites

will be missed, leading to a low recall number.

In our work, we design an algorithm, named “distinguishable n-gram”, to extract

query terms. As illustrated in Figure 3.5, Term Amplifier first tokenizes the promoted

content into a sequence of phrases {Pi|i = 1, 2, . . . , N} by using the tokenizer of any

non-Alphanumeric character except “blank”, such as “comma”, “semicolon”, and

“question mark”. Then, for each phrase Pi, Term Amplifier will exactly search it

29

Figure 3.5: Flow of term amplifier.

on the search engine. If the number of returned search results SNi is lower than a

threshold TD
5, we consider Pi as a “distinguishable” term and directly add it into a

term set, named TermBank. Otherwise, Term Amplifier combines the phrases of Pi

and Pi+1 as a new query term to search. If this new term is “distinguishable”, we

add it into TermBank; otherwise, Term Amplifier combines the phrases of Pi, Pi+1

and Pi+2 as a new term to search. This process will continue until the number of

phrase in the new term is equal to n. If the new term with n phrases is still not

“distinguishable”, the algorithm will discard the phrase Pi. In this way, TermBank

comprises all the distinguishable terms extracted from the promoted content. The

detailed description of “distinguishable n-gram” algorithm is shown in Algorithm 1.

After building TermBank, similar to Seed Collector, Term Amplifier uses each

query term in TermBank to search in the search engine and identifies compromised

webpages through comparing their Searcher Views and User Views.

3.2.6 Link Amplifier

Based on Intuition 2 and Intuition 3 in Section 3.2.1, Link Amplifier first extracts

two types of links: inner-links and outer-links. Inner-links refer to those links/URLs

5TD can be tuned with the consideration of the tradeoff between the accuracy and the recall
number. In our preliminary experiment, we choose TD = 1, 000, 000.

30

Algorithm 1 : Distinguishable n-gram Algorithm

Tokenize promoted content into phrases {Pi|i = 1, 2, . . . , N}
for i := 1 to N do

for j := 0 to n− 1 do
Search “Pi Pi+1 . . . Pi+j” on the search engine to get SNi

if SNi ≤ TD then
Add ‘Pi Pi+1 . . . Pi+j” into TermBank
CONTINUE

end if
end for

end for
Return TermBank

in the promoted web content of the compromised websites (as illustrated in the left

part of Figure 3.6). Outer-links refer to those links/URLs in the web content of third-

party websites, which have been posted with URLs linking to known compromised

websites (as illustrated in the right part of Figure 3.6). We utilize Google dork [21]

to locate the outer-links. For example, if one compromised website “seed.com” is

obtained through searching seed term “seedTerm”, then we obtain those websites

through searching “intext:seed.com” on Google. Then we crawl all the websites in

search results, which usually are benign third-party websites such as blogs, forums,

and some company guestbooks, and extract postings that contain ”seed.com” and

other scam links from these third-party websites. Then, similar to Term Amplifier,

for each inner-link and outer-link, Link Amplifier crawls its Searcher View and User

View, and considers the linking website as compromised website if the Searcher View

and User View are different.

We acknowledge that since most of those third-party websites are benign and they

may also be posted with many benign links, this may lead to a relatively low accuracy

for outer-links. However, there are still several benefits for studying outer-links: (1)

Through analyzing those outer-links, we can find more categories of compromised

31

Figure 3.6: The illustration of inner-links and outer-links.

websites because different attackers may explore the same third-party websites to

post outer-links, or the same attackers will promote different categories outer-links

to evade detection mechanisms on these third-party websites. As an example, Figure

3.7 shows a benign forum webpage. We first find this forum webpage through search-

ing a compromised website ”http://apas.clas.asu.edu/contact/”, a known pharmacy

target compromised website. Then, through analyzing the content of the forum web-

page, we can also find other compromised websites with “Adult” content such as

”http://nazakia-kiamotor.com/blog/viewtopic.php?p=25267”. (2) To keep promot-

ing new/existing compromised websites, attackers intend to recycle these third-party

websites, which may be easy to be spammed on, or easily be indexed by search en-

gines. Thus, we can keep finding newly compromised websites in time by periodically

analyzing outer-links. Furthermore, we can somehow increase the accuracy of Link

Amplifier through focusing on only those third-party websites that have posted scam

terms, such as “intext:seed.com intext:seedTerm”. This is because that this kind of

websites are more likely to be used to promote malicious content by attackers than

other websites. Thus, the links posted on such websites are more suspicious.

32

Figure 3.7: Example of outer-link.

3.2.7 Vulnerability Amplifier

Once an attacker compromises a website to launch search poisoning attack by

exploiting specific system/software vulnerabilities of the websites, it is very likely that

he will use the same vulnerability to compromise more websites. For example, once

some attackers know about the vulnerabilities of some specific version of “WordPress”

[55] and successfully use some existing tools to compromise some websites with the

specific version of WordPress, they may try to find other vulnerable websites that

are also implemented with that version of WordPress. One possible simple way of

finding those vulnerable websites could be to search keywords such as “powered by

WordPress” on search engines.

Based on Intuition 4 in Section 3.2.1, Vulnerability Amplifier essentially mimics

the way of attackers to find those compromised websites. Specifically, Vulnerabil-

ity Amplifier first collects compromised websites by using Term Amplifier and Link

Amplifier. Then, it will analyze possible system/software vulnerabilities of those

compromised websites and extract the web content signature of the websites that

utilize the vulnerable software. In our preliminary work, we only focus on analyzing

the vulnerabilities of one specific software WordPress6, which is a very popular target

6Even though we only analyze the vulnerabilities of one specific software in this work, our

33

for attackers [1] recently. For example, one vulnerability of “Timthumb.php” in the

WordPress themes allows attackers to upload and execute arbitrary PHP scripts.

Vulnerability Amplifier will find compromised websites through searching those web-

sites that use WordPress and contain at least one scam word. Since the URLs of

the websites developed by WordPress typically contain a string of “wp-content”,

we can find those websites through searching Google Dork “inurl:wp-content in-

text:scamWord”. After visiting each of such websites, Vulnerability Amplifier ex-

amines whether it is compromised or not by comparing its Searcher View and User

View.

3.3 Evaluation

In this section, we first give a real case of search poisoning attack observed in

the wild. Then we evaluate PoisonAmplifier in two stages. For the first stage,

since the goal of our work is not to comprehensively detect all compromised web-

sites on the Internet, instead, we attempt to infer more compromised websites more

efficiently starting from a given small seed set, thus we evaluate PoisonAmplifier

regarding its effectiveness, efficiency, and accuracy with first 7 days’ data. We also

check the “discovery diversity” among different components in terms of finding exclu-

sively compromised websites, i.e, how different the discovered compromised websites

by different components are. In addition, we examine how existing Google secu-

rity diagnostic tools in labeling malicious/compromised websites work on our found

compromised websites. In the second stage, we extend time to 1 month to verify if

PoisonAmplifier can constantly find newly compromised websites.

approach can easily include other types of system/software vulnerabilities, which is our future
work.

34

3.3.1 Case Study

The prevalence of search poisoning attacks makes a variety of famous universities

victims. During our study, we have cooperated with the network administrators of a

compromised website in a university (after we notified them about the compromise).

Thus, we collected the malicious scripts uploaded by attackers and have a chance

to further analyze them. In this case, attackers explored a WordPress vulnerability

to upload new spam pages. Then, if a user visits these pages from search engines,

it will redirect the user to a pharmacy-related website. And if the user directly

inputs the URL in a browser, it will return an HTML 404 (page does not exist)

error. Figure 3.8 shows a snip of the malicious scripts uploaded by the attackers. To

further understand how such attacks proceed, we analyze the malicious scripts from

the following two perspectives:

Figure 3.8: Malicious script.

Search Bot Detection: To decide if the request comes from a search bot,

the script defines a function “detectBot($ server user agent,$ server remote addr, $

server query string, $server referer)”, This function uses UserAgent extracted from

35

HttpHeader and the IP address of the requestor as inputs7, and returns a boolean

value to indicate whether the request comes from a search bot or not. Specifically,

if the IP address of the requestor comes from Google Inc, Microsoft Corp, Yahoo,

and McAfee, etc, or if the request with UserAgent containing keywords such as

bot, google, yahoo in “$stop agent masks” in Figure 3.8, the function will return

true to indicate a bot request. In this case, we can simulate search engine bots by

manipulating bot UserAgent in HttpHeader.

Redirection Policy: After recognizing the requestor, the scripts will return

the original content plus malicious content to a bot requestor. If the requestor is

from human, the script further checks the referer and query string. Specifically, if

the referer contains keywords “google”, the script will redirect users to a pharmacy-

related website through a redirection chain. However, if the referer contains other

search engine keywords such as Bing, aol.com, and ask.com, the script will need to

further check that if the query string also contains target terms, such as key terms

in “$keys” shown in Figure 3.8. If so, it will still redirect users to a pharmacy-

related website. Otherwise, it will do nothing and return “not exist” pages. In this

case, we can see that the script has a loose redirection policy for requests coming

from Google while needs additional query string satisfaction for requests from other

search engines. In our system, we simply simulate the search view by manipulating

the referer as “google” and the query string with extracted terms. With this setting,

it is possible that we can detect only a subset of all compromised websites. Thus, not

surprisingly, the result here is only a low bound of actually compromised websites in

the wild.

7Although the function defines 4 parameters, “server query string” and “server referer” are not
used in this function.

36

3.3.2 Evaluation Dataset

As mentioned in Section 5.4.2, the seed term set consists of three categories:

Google Trends, Twitter Trends, and our customized keywords. For the Google Trend

Topics, we crawled 20 Google Trend keywords each day for a week. In this way, we

collected 103 unique Google Trends topics. For the Twitter Trends, we collected top

10 hottest Twitter trends each day for a week. In this way, we collected 64 unique

Twitter Trends topics. For the customized key terms, we chose one specific category

of scam words – pharmacy-related words8. Specifically, we chose 5 pharmacy-related

words from existing work [103], which provides several categories of scam words. We

also manually selected another 13 pharmacy-related words from several pharmacy

websites. Table 3.1 lists all 18 pharmacy words used in our study.

Table 3.1: 18 seed pharmacy words
kamagra diflucan levitra phentermine propecia lasix

viagra amoxil xanax cialis flagyl propeciatramadol

zithromax clomid Viagra super active cialis super active cipro pharmacy without prescription

Then, for each of 18 pharmacy words, we obtained another 9 Google Suggest

words through Google Suggest API [22]. In this way, we finally collected 165 unique

pharmacy words. Table 3.2 summarizes the total number and the unique number of

seed terms for each category.

Then, for each of these 332 unique seed terms, we searched it on “Google.com”

and collected the top 200 search results9. Then, for each search result, we use

8In our preliminary experiment, we only use pharmacy-related words. However, our approach
is also applicable to other categories of words such as “adult words” or “casino words”.

9In our experiment, we only focus on the search poisoning attacks on Google. However, our
approach can be similarly extended to other search engines such as “yahoo.com” and “baidu.com”.

37

Table 3.2: The number of seed terms for three different categories
Category # of terms # of unique terms

Google Trend 140 103

Twitter Trend 70 64

Pharmacy 180 165

Total 390 332

the similar strategy as in [83] to determine whether a website is compromised by

examining whether the domain of its Searcher View and User View are different. In

this way, we finally obtained 252 unique seed compromised websites through using

those 332 seed terms. We denote this dataset as SI , which is used in Stage I.

After one week’s amplification process, we denote amplified terms and compromised

websites from Stage I as SII , which is the input for Stage II to recursively run

PoisonAmplifier for 1 month.

3.3.3 Evaluation Results

3.3.3.1 Effectiveness

To evaluate the effectiveness of our approach, we check how many new com-

promised URLs/domains can be found through amplifying dataset SI . We use the

metric,“Amplifying Rate (AR)”, to measure the effectiveness, which is the ratio of

the number of newly found compromised URLs/domains to the number of seed com-

promised URLs/domains. Thus, a higher value of AR implies that the approach is

more effective in finding compromised URLs/domains.

Table 3.3 shows the number of newly found compromised URLs/domains for each

component. We can see that Term Amplifier has the highest AR of 323.03 for URLs

and 78.71 for domains, which confirms that Term Amplifier can be very effective in

Also, the number of 200 can be tuned according to different experiment settings.

38

discovering compromised websites. And Inner-link Amplifier has the lowest AR of

0.51 for domains, because attackers usually compromise multiple URLs in the same

domain, and intend to use inner-links to promote each other. Thus, most inner-

links belong to the same domains. In addition, even though Inner-link Amplifier and

Outer-link Amplifier have relatively lower ARs than Term Amplifier, they can still

discover over 10 times more compromised URLs from the seeds. Actually, the reason

why Term Amplifier can obtain a higher AR is mainly because we can extract many

more query terms than inner-links and outer-links from the promoted content. In this

way, we can search out much more websites that contain the query terms from search

engines. Furthermore, even though we only focus on analyzing one specific software

in our Vulnerability Amplifier, we can still discover over 4 times more compromised

URLs from the seeds.

Overall, starting from only 252 seed compromised websites, these four strategies

can totally discover 74,671 unique compromised URLs and 17,258 unique compro-

mised domains (on average 4.32 malicious URLs per domain), and achieve an overall

high amplifying rate of 296 for URLs. The distribution information of these com-

promised websites in terms of their Top Level Domain(TLD) is shown in Figure

6.12(a).

Table 3.3: The effectiveness of PoisonAmplifier.

Component
Seed CW1 # UniqueCW1 Amplifying Rate

URLs Domains URLs Domains URLs Domains
TermAmplifier 252 212 69,684 16,688 323.03 78.71

Inner-linkAmplifier 252 212 2,468 109 10.63 0.51
Outer-linkAmplifier 252 212 2,401 660 10.34 3.11

VulnerabilityAmplifier 252 212 482 360 4.49 1.70
Total (Unique) 252 212 74,671 17,258 296.31 81.41

1 Compromised Websites.

39

3.3.3.2 Efficiency

To evaluate the efficiency of our approach, we essentially examine whether the

websites visited by PoisonAmplifier are more likely to be compromised websites

or not. To measure the efficiency, we use another metric, named “Hit Rate (HR)”,

which is the number of newly found compromised websites to the total number of

websites visited by PoisonAmplifier. Thus, a higher Hit Rate implies that our

approach is more efficient because it means our approach can find more compromised

websites by visiting fewer websites. Next, we evaluate the efficiency of individual

amplification component, as well as the efficiency of different types of query keywords.

Component Efficiency. Table 3.4 shows the number of visited websites, the

number of newly found compromised websites, and the values of hit rate for each

component.

Table 3.4: The efficiency of different components.
Component # Visited Websites # CW1 Hit Rate

TermAmplifier 684,540 69,684 10.18%

Inner-linkAmplifier 3,097 2,468 79.69%

Outer-linkAmplifier 353,475 2,401 0.68%

VulnerabilityAmplifier 45,348 482 1.06%

Total 1,086,496 74,671 6.87%

1 Compromised Websites.

From this table, we can see that Inner-link Amplifier can achieve the highest hit

rate of 79.69%. This confirms that attackers tend to promote links of compromised

websites to the search engine bots. The hit rate of Term Amplifier is around 10%,

which is lower than that of Inner-link Amplifier. However, Term Amplifier can dis-

cover much more compromised websites than that of Inner-link Amplifier in terms of

40

overall quantity because we essentially extract significantly more terms than inner-

links to search on search engines. The hit rate of Outer-link Amplifier is relatively

low, which is mainly because most of those outer-links are benign or do not have

redirections. However, through using Outer-link Amplifier, we can find new types

of scam terms promoted by different attackers. This is very useful to increase the

diversity of the seed terms and to find more types of compromised websites. Vulner-

ability Amplifier also has a relatively low hit rate, because most top ranked websites

with “WordPress” are benign. However, similar to Outer-link Amplifier, Vulnerabil-

ity Amplifier also provides a method to find more (new) types of scam words and

compromised websites.

Term Efficiency. We also analyze the term efficiency in finding compromised

websites, i.e., which kinds of terms can be used to efficiently search out compro-

mised (rather than normal) websites. Specifically, we compare three types of terms:

seed terms (those 332 seed terms used in the Seed Collector), promoted phrases (the

sequence of phrases obtained through tokenizing promoted content), and distinguish-

able terms (all the terms in TermBank obtained by utilizing “Distinguishable n-gram

Algorithm”). Essentially, we use these three types of terms to search on Google to

find compromised websites by utilizing Term Amplifier.

As seen in Figure 3.9, among these three types of terms, our extracted distin-

guishable terms can achieve the highest hit rate. Specifically, around 60% of distin-

guishable terms’ hit rates are less than 0.2, while around 80% of promote phrases

and 90% of seed terms have such values. This implies that using distinguishable

terms is more effective to find compromised websites. In addition, over 60% of seed

terms’ hit rates are nearly zero, which shows that the current pre-selected terms are

not very efficient compared to our new terms extracted from promoted content.

To find what specific terms are most efficient, we further analyze the terms with

41

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Hit Rate

E
m

p
ir

ic
a

l
C

D
F

Promote Phrases

Seed Terms

Distinguishable Terms

Figure 3.9: Hit rate distribution.

the top five hit rates in TermBank. As seen in Table 3.5, we can see that all these

five terms’ hit rates are higher than 79%. In addition, we also find that three of

these five terms have the same semantic meanings of sub-phrase as “No Prescription

Needed”. That may be due to the reason that attackers frequently use such phrases

to allure victims, because many kinds of pharmacy drugs need the prescription to buy

in reality. The other two terms contain the names of two popular drugs: “Diflucan”

(an anti-fungal medicine) and “Nimetazepam” (working specifically on the central

nervous system).

Table 3.5: Terms with top five hit rates
Term Hit Rate

Order Diflucan from United States pharmacy 90%=180/200

Buy Online No Prescription Needed 87%=174/200

Buy Cheap Lexapro Online No Prescription 85%=170/200

Online buy Atenolol without a prescription 83%=166/200

Nimetazepam interactions 79.5%=159/200

42

3.3.3.3 Diversity Among Different Components

In this part, we analyze the diversity of different components in terms of newly

found compromised websites and campaigns.

To analyze the diversity of newly found compromised websites among different

components, we essentially examine how many newly found compromised websites

of each component are exclusive, which can not be found by other components. The

intuition is that if one component can find the compromised websites that can not be

found by another component, then these components are very complementary and

they can be combined together to be effective in discovering compromised websites.

To measure the diversity, we use a metric, named “Exclusive Ratio (ER)”, which

is the ratio of the number of compromised websites that are only found by this

component to the total number of compromised websites found by this component.

As seen in Table 6.5, we can find that all four components can obtain high exclu-

sive ratios, higher than 88%. This observation shows that all these four components

are complementary and it makes perfect sense to combine them together to achieve

high effectiveness in discovering new compromised websites. Also, we can find that

Term Amplifier’s exclusive ratio is over 99%. That is mainly because Term Amplifier

can find more compromised websites through visiting more websites.

Table 3.6: Exclusive ratio of different components
Component TermAmplifier Inner-linkAmplifier Outer-linkAmplifier VulnerabilityAmplifier

Exclusive Ratio 99.56% 96.11% 89.09% 88.77%

We further examine how good each component is in terms of finding more compro-

mised websites in different campaigns. We define a campaign as a set of compromised

43

websites that share the same final or intermediate domains in their redirection chains.

The intuition here is that if some components can efficiently find compromised web-

sites in certain campaigns, and others are mainly for finding new compromised web-

sites in different campaigns, then these components can greatly complement each

other. Following this intuition, we design a metric, named “campaign ratio”, which

is the ratio of the number of found campaigns over the number of compromised web-

sites. A higher ratio will indicate the component is good at finding new compromised

websites in different campaigns rather than mainly finding compromised websites in

the same set of campaigns.

Table 3.7: Campaign ratio of different components
Component TermAmplifier Inner-linkAmplifier Outer-linkAmplifier VulnerabilityAmplifier

Campaign Ratio 0.33% 2.88% 6.50% 7.47%

From Table 3.7, we can see that Term Amplifier and Inner-link Amplifier have

relatively lower ratio than Outer-link Amplifier and Vulnerability Amplifier, which

indicates that Outer-link Amplifier and Vulnerability Amplifier are better in finding

compromised websites in new/diverse campaigns while Term Amplifier and Inner-link

Amplifier are better in finding compromised websites in certain campaigns. Thus,

these four components can work together to find more compromised websites in

both known and unknown campaigns. We also find that the largest campaign in our

dataset is a pharmacy related one, which contains 439 compromised websites.

3.3.3.4 Comparison With Existing Work

In this experiment, we test the performance of the pre-selected term method,

which is widely used in existing work, with our dataset. Then we further compare

44

the performance of PoisonAmplifier with two existing work: Leontiadis et al. [83]

and Lu et al. [88]. They represent current methods of collecting websites compro-

mised by search poisoning attacks, although their goals are not trying to find more

compromised websites. Table 3.8 shows the comparison results.

Table 3.8: The comparison of effectiveness with existing work
Research Work # Seed Terms # Visited Websites # CW1 Hit Rate Time

Leontiadis et al. [83] 218 3,767,040 63,000 1.67% 9 months

Lu et al. [88] 140 500,000 1,084 0.2% 1 months

Pre-selected terms 332 64,400 252 0.39% 7 days

PoisonAmplifier 332 1,086,496 74,671 6.87% 7 days

1 Compromised Websites

From this table, we can see that compared with pre-selected terms method, with

the same number of seed terms and same time period, our work can find much more

compromised websites (290 times than pre-selected terms method). This observation

shows that pre-selected terms currently lead to a low hit rate, which has also been

verified by [77]. To further compare with [83] (only collect compromised websites

related to illicit pharmaceutical products) and [88] (collect compromised websites

related to general spam), PoisonAmplifier can find more general compromised

websites with highest hit rate (4 times than [83] and 34 times than [88]) within a

significantly shorter period (only 7 days). Thus, our approach is more efficient and

effective in discovering/collecting compromised websites, because our approach does

not highly rely on the pre-selected terms, which are used by both existing work.

3.3.3.5 Comparison With Google Security Diagnostic Tools

We conduct another experiment to further evaluate the effectiveness of our ap-

proach. We want to test whether our newly found compromised websites are also

45

detected in a timely fashion by Google’s two state-of-the-art security diagnostic tools:

Google Safe Browsing (GSB) [18] and Google Security Alert [15]. GSB is a widely

used URL blacklist to label phishing websites and malware infected websites. Google

Security Alert is another security tool, which labels compromised websites through

showing the message “This site maybe compromised” within Google search results.

We first check how many compromised websites found by each component are

labeled as “phishing” or “malware infected”. As seen in Table 3.9, we found that

GSB labels only 547 websites as “malware infected” and zero as “phishing” after

examining 74, 671 newly found compromised websites. We next check how Google

Table 3.9: Labeling results by using GSB
Component # CW1 # Phishing # Malware Infected

TermAmplifier 69,684 0 536

Inner-linkAmplifier 2,468 0 2

Outer-linkAmplifier 2,401 0 3

VulnerabilityAmplifier 482 0 6

Total (Unique) 74,671 0 547

1 Compromised Websites

Security Alert works on our newly found compromised websites. Specifically, we

sampled 500 websites (which were randomly selected from those 74, 671 compromised

websites) and manually checked them in Google. None of them were labeled as

compromised.

Through the above experiments, we can find that most of our newly found com-

promised websites have not been detected by current Google security diagnostic tools.

Although we do not argue that our approach is more effective than those two Google

security tools, this observation shows that our approach can be effectively utilized

46

to discover many new compromised websites that Google has not yet detected.

3.3.3.6 Accuracy

We collect the ground truth through comparing the difference between Searcher

View and User View, which proves to be a conservative and effective approach to

identify search poisoning attacks [83, 101]. To further gain more confidence, we have

conducted a manual verification on 600 randomly sampled URLs from all labeled

compromised websites. And all of them were manually verified as indeed compro-

mised websites.

3.3.3.7 Constancy

To evaluate the constancy of our approach, we essentially examine whether Poi-

sonAmplifier can continue to find new compromised websites over time. Figure

6.12(b) is the distribution of new crawled compromised websites in Stage II. We can

see that during the first several days, our system can find more new compromised

websites because Term Amplifier inherits a large number of terms from data SI .

With these terms, our system can efficiently find other compromised websites shar-

ing similar terms. After that, the daily newly found compromised websites decrease

quickly due to the exhaustion of terms. However, Link Amplifier and Vulnerability

Amplifier can keep finding new terms and compromised websites everyday because

the attackers keep promoting and attacking everyday. In this case, our system can

still constantly find new compromised websites everyday leading to 26,483 newly

found compromised websites during 1 month’s recursive amplification process.

3.4 Discussion

In this section, we discuss possible limitations of PoisonAmplifier.

We first acknowledge that since we mainly utilize pharmacy-related keywords as

47

Figure 3.10: Daily new found compromised websites.

initial terms in our evaluation, this method may generate some bias. We use illicit

pharmaceutical products as a specific case study to evaluate our approach mainly

because it is a typical target of search poisoning attacks. However, our approach can

be easily applied to other scenarios such as fake AntiVirus or web scams through

changing customized keywords. In addition, through our evaluation, we can also

observe that even though we use pharmacy-related keywords as initial customized

keywords, those newly found compromised websites could be injected with content

related to other scenarios. Thus, PoisonAmplifier can discover a broader range

of compromised websites, instead of being restricted to only those used to promote

illicit pharmaceutical products by attackers.

We also acknowledge that since it is still difficult for Promoted Content Extractor

to accurately filter all dynamic content, this may decrease the performance (in terms

of hit rate) of our approach. However, visiting websites multiple times can somehow

48

relieve this kind of problem. In addition, we indeed manually checked several hundred

randomly sampled compromised websites and we have not found such kind of false

positives so far. Also, our Distinguishable n-gram Algorithm can filter some general

terms (generate by dynamic content) and reduce their impacts.

In addition, we realize that once attackers know about the principle of our ap-

proach, they may try to evade our approach through providing non-malicious content

to our Bot View with the utilization of IP-based cloaking techniques. For example,

they may refuse to deliver malicious content if they find the IP address from our

crafted Google bot crawler does not match known addresses of Google. However, as

an alternative technique of Bot View by manipulating Http Referer, we can use the

cache results of search engines such as Google cache as Bot View. In such way, we

can obtain the Bot View of those compromised websites, as long as attackers want

to make their content be crawled and indexed by popular search engines to launch

search poisoning attacks. Besides, attackers may also try to decrease the effectiveness

of our approach through inserting noisy content into their injected content. However,

if the noisy content is general, our system will drop them based on our “Distinguish-

able n-gram Algorithm”. Otherwise, we can still consider these noisy data as “real”

promoted content as long as they are shared in multiple compromised websites.

49

4. SYSTEMATIC MINING ASSOCIATED SERVER HERDS INVOLVED IN

MALICIOUS CYBER INFRASTRUCTURES∗

We have described our first detection system,PoisonAmplifier. It only fo-

cuses on compromised servers detection. In this chapter, we present a new system,

SMASH, which will focus on detecting malicious servers behind malicious cyber

infrastructures.

SMASH leverages an insight that cyber criminals are increasingly using a dy-

namic malicious infrastructure with multiple servers to be efficient and anonymous

in (i) malware distribution (using redirectors and exploit servers), (ii) control (us-

ing C&C servers), (iii) monetization (using payment servers), and (iv) being robust

against server takedown (using multiple backups for each type of servers). As a re-

sult, in each malware campaign, there are multiple malware servers used as well as

common benign servers they attacked. As illustrated in Figure 4.1, those servers are

correlated, e.g., they share similar client sets. This is typically not true for benign

servers because different (independent) servers usually have different sets of clients.1

This insight comes from an inquisition that benign servers usually serve different

benign users whose behaviors might be diverse while malicious servers are set up for

certain malicious clients. Not only connected by a similar set of clients, but also

if these servers are the same type (e.g., both are exploit or C&C servers), they are

likely to receive requests targeting the same/similar URI files (e.g., vulnerable files or

exploit scripts) from malware clients. For benign servers, each server usually has lots

∗Part of this chapter is reprinted with permission from “Systematic mining of associated server
herds for malware campaign discovery” Jialong Zhang, Sabyasachi Saha, Guofei Gu, Sung-Ju Lee,
and Marco Mellia. In Proceedings of the 35rd International Conference on Distributed Computing
Systems (ICDCS’15), Copyright c© 2015 by IEEE

1Even in the case of load balancing or Content Distribution Networks where multiple benign
servers are used, these servers are likely to serve different set of clients (e.g., based on their locations).

50

of scripts/pages and different users likely visit different pages for different purposes.

On the other hand, as malicious servers are set up for certain purpose (e.g., C&C,

malware downloading), it only uses certain scripts/pages to handle all their bots’

requests. In addition, we observe many other correlations among malware servers

in the same campaign. For example, they may have the same IP address although

with many different domain names (i.e., domain-fluxing, as shown in Figure 4.1(a)),

or their domains are registered by the same organization at a similar time.

Based on the above insights, instead of focusing on detecting individual malicious

domains, we propose a complementary approach to identify a group of closely related

servers that are involved in the same malware campaign, which we term as Associated

Server Herd (ASH). Our scheme, SMASH (Systematic Mining of Associated Server

Herds), is designed to be deployed at enterprise or ISP networks to automatically

detect malicious servers that communicate with their bot/malware armies. It uses an

unsupervised community detection technique to characterize the relationship among

the servers from multiple dimensions, e.g. if they are contacted by common clients,

if the same or similar files are accessed/downloaded from them, or if they have the

same Whois information, etc. Our data mining based approach exposes that often

servers involved in an attack retain some similarity at multiple dimensions and we

can detect such groups by combining them. Therefore, SMASH is not a real-time

detection system, however, it can be run everyday to detect daily malicious activities

in a large ISP/Enterprise networks or be run on a large network traffic trace to dig

out previously unknown malicious activities.

SMASH detects malicious campaigns by correlating ASHs generated from multi-

ple dimensions. Although each dimension itself might not be sufficient to distinguish

malicious servers from benign servers, the combination of these dimensions can gener-

ate ASHs involved in malicious campaigns. The suspicious score of correlated ASHs

51

is based on different combinations. The more close relationship an ASH has, the

higher the probability the servers in it are involved in malicious activities

4.1 Motivation and System Goals

In this section, we first use two case studies to illustrate our motivation and then

present our system goals.

4.1.1 Case Studies

Figure 4.1 shows the example of two types of malicious activities. In the com-

munication activity (Figure 4.1(a)), there are two clients sending HTTP requests to

multiple C&C domains. Malware often uses such domain fluxing to evade detection,

leading to sharing the same IP address. In addition, since these C&C servers use the

same communication protocol, they utilize the same script “login.php” to handle the

requests from their bots. These multiples C&C domains form a malicious communi-

cation campaign. In the attacking activity (Figure 4.1(b)), which is a ZmEu scanning

campaign, there are two clients/bots that kept scanning seven benign servers target-

ing on “setup.php” script, which has a known code injection vulnerability. In this

case, those two clients/bots scan the default path of phpMyAdmin for the exploita-

tion leading to sharing the same file “setup.php”. Those seven targeted servers form

a malicious attacking campaign.

We can see that both types of malicious activities share very similar server-side

properties: those servers are correlated by sharing similar clients and the URI path

(e.g., “login.php” for the communication activity and “setup.php” for the attacking

activity).

52

(a) Communication activity (b) Attacking activity

Figure 4.1: Malicious campaigns examples.

4.1.2 Goals

Motivated by the above example, we proposed a novel framework to detect a

group of closed related servers that are potentially involved in the same malware

campaigns. Different from existing work that relies on signatures [90], client side

behavior patterns [71], or supervised learning of individual server reputation [63],

our framework utilizes an unsupervised approach that focuses on server side com-

munication patterns and does not rely on signatures. Therefore, our approach can

detect zero-day malware campaigns. In addition, since we study the group behaviors

of malware servers rather than a single server, we can provide more complete views

of malicious campaigns than existing work focusing on single server detection.

4.2 System Design

4.2.1 System Overview

The primary goal of SMASH is to detect suspicious correlated servers that are

involved in malicious activities by passively looking at the network-wide HTTP com-

munications. Such malicious activities include launching HTTP attacks on benign

53

servers and communicating with malicious servers through the HTTP channel. In-

stead of detecting each server in isolation, we study the different relationship among

all the servers involved in similar activities. Those servers involved in the same

malicious activity are inferred as a malicious campaign by SMASH.

Figure 6.8 depicts the architecture of SMASH. The system takes HTTP network

traffic as input, and has five components: traffic preprocessing, ASH mining, ASH

correlation, pruning, and malicious campaign inference.

4.2.2 Preprocessing

The goal of preprocessing is to reduce the traffic that needs to be processed by

SMASH. We explore two steps to reduce the number of input servers to SMASH.

First, we assume that domains with the same second-level domain belong to the

same organization.2 For example, a.xyx.com.cn and b.xyz.com.cn both belong to

xyz.com.cn, thus there is no need to differentiate them. Some CDN/Cloud servers

will be also aggregated as one server in this case. For example, all the Facebook CDN

servers will be aggregated as “fbcdn.net”. Amazon cloud servers will be aggregated

as “amazonaws.com”. The aggregation of all domains based on their second-level

domains leads to 60% reduction of all servers.

We further remove most benign servers based on their popularity.3 To measure

the “popularity” of servers, we utilize the concept of inverse document frequency

(IDF), which is a measure of whether the term is common across all documents in

information retrieval. In our case, we try to remove common servers across all the

clients’ requests. We define the popularity of a server as the number of clients that

2There are some exceptions such as cloud servers, dynamic DNS. We will discuss them in Section
6.5.

3We acknowledge that we may miss some compromised popular domains. However, we argue
that this represents a necessary tradeoff between performance and accuracy. In reality, most popular
servers have resources and incentives to secure their websites and thus have a lower possibility to
be compromised than less popular ones.

54

communicated with the server. The more clients the server is connected to, the more

popular the server is.

We select an IDF threshold of 200 based on the popularity distribution of IDS

confirmed malicious servers, which filters very popular servers but still keeps 99%

of the servers. After the preprocessing process, we reduced 58.6% of traffic in our

dataset.

4.2.3 Associated Server Herd Mining

The goal of ASH mining is to find closely related servers that are involved in

the same malware campaign. We define one main dimension and three secondary

dimensions to characterize the relationship among the servers, and systematically

mine ASHs. ASH generated from each dimension itself might not be sufficient to

distinguish the malicious group of servers from benign servers, but ASHs associated

with the combination of these dimensions are more likely to generate server groups

involved in malicious campaigns.

To find the correlated servers, a simple way is to assign each server with a feature

vector and perform clustering on this multi-dimension feature vector. However, the

dimensions are different in nature and it is inefficient to combine them to evaluate

similarity. Also, as we show in Section 4.4.3, it is hard to assign a unique weight for

each dimension because different malicious campaigns rely on different combinations

of those dimensions. We observe that malicious servers in the same malicious cam-

paign usually share a very similar (if not the same) set of malware clients while those

malicious servers are usually not connected by benign clients. Thus, we use client

similarity as the main dimension, which is much more robust against manipulation

from attackers than other dimensions, and can reliably group the servers.

We see that although client similarity alone may not directly distinguish malicious

55

servers from benign servers, it separates benign server groups from malicious server

groups. Thus, the main dimension must be satisfied for all campaigns.

Each secondary dimension characterizes the relationship among different servers

from a certain perspective. We evaluate how their combinations can be used to

infer malicious campaigns in Section 4.4.3. Note that we envision SMASH, as an

extensible system, can easily incorporate new dimensions. For example, to keep our

system lightweight, we have not included all payload downloaded from each host.

However, this can be an interesting dimension to consider and can be easily added

as another dimension.

4.2.3.1 Main Dimension

We use client similarity as the main dimension. Client similarity between two

servers depends on the common set of clients contacting them. We define the client

similarity between servers Si and Sj as:

Client(Si, Sj) =
|Csi

⋂
Csj |

|Csi |
∗
|Csj

⋂
Csi |

|Csj |
(4.1)

where CSi
denotes the set of clients contacting the server Si. The ratio

|CSi

⋂
CSj
|

|CSi
|

represents the importance of the common clients for server Si. The intuition here is

that if two servers with many clients are similar, there will be a large overlap between

their clients. Thus, two servers are similar when their common clients are important

to both servers.

Since malicious servers are usually not connected by benign clients while infected

clients are usually connected to the same set of suspicious servers, two servers sharing

similar sets of client connections should belong to the same ASH. Specifically, we

build a communication graph G = (V,E), where V denotes all the servers and each

edge (i, j) ∈ E denotes that servers i and j share a set of clients. The weight of the

56

Figure 4.2: Obfuscated filenames.

edges reflects the strength of similarity between the two servers in terms of client

similarity.

To extract ASH from G, we adopt a graph based clustering algorithm [64] that is

designed to efficiently uncover communities in large networks. It uses modularity to

measure the quality of extracted community, which is a scalar value between -1 and

1, and represents the density of the links inside the community as compared with

the links between communities. It automatically finds high modularity partitions of

large networks in short time. The nodes that are still connected to each other after

this process form ASHs of the main dimension.

4.2.3.2 Secondary Dimensions

We present our current secondary dimensions.

URI File Similarity: We study the relationship among servers based on URI

files as servers in the same malicious activities might share similar/same URI files.

For example, web attacks target certain vulnerable files, and thus different targeted

servers share the same destination files. Different C&C servers in the same campaign

may use the same scripts to handle the requests from the infected clients, and hence

they might also share the same files. We extract all the URI files of the servers by

checking the HTTP requests. Here we focus on URI files rather than the whole URI

57

path because in attacking activities, some benign servers share the same vulnerable

file but have different paths due to the different configurations on each web server.

We define a URI file as the substring of a URI starting from the last ‘/’ until

the end before the question mark, which usually is the file or script used for han-

dling clients’ requests. As shown in Figure 4.2, sometimes attackers use obfuscated

filenames for different malicious servers that are involved in the same malicious cam-

paign. We define URI file similarity between the two files as follows. If the length of

the filename is shorter than or equal to len, we define the similarity function of files

fi and fj as:

sim(fi, fj) =

1 iffi = fj, (4.2)

0 otherwise. (4.3)

Thus, two files are similar if they are exactly the same, since short filenames are

usually not obfuscated. However, if the length of a filename is longer than len4, we

define the similarity function as:

sim(fi, fj) =

1 if cos(θ) > 0.8 (4.4)

0 otherwise (4.5)

where

cos(θ) =
CharSetfi · Charsetfj

‖CharSetfi‖ · ‖CharSetfj‖
. (4.6)

where CharSetfi is the character distribution vector of file name fi. Thus, for long

filenames, we check the characters frequency distribution (CharSet in Eq. (6.3)) of

the filenames. Two filenames are similar as long as their names have similar character

distributions. For the exact same filenames, the similarity score is 1. While our

4len is empirically set to 25 in this chapter, which is based on the length distribution of the
filenames whose servers have been labeled by IDS.

58

similarity function works well in our evaluation, it can be replaced by any similarity

functions such as Levenshtein distance and Hamming Distance.

We now define the file similarity between the two servers Si and Sj as

File(Si, Sj) =

∑
m
maxn(sim(fSim

, fSjn
))∑

m
1

∗

∑
n
maxm(sim(fSjn

, fSim
))∑

n
1

(4.7)

where fSim
is the m-th file from server Si. Similar to client similarity, the first term

of the right hand side of Eq. (4.7) reflects the importance of similar files to server Si,

and the second term of the right hand side of the equation reflects the importance of

similar files to server Sj. Thus, if two servers share enough similar files, they might

be involved in the same activities, and should be in the same ASH.

IP Address Set Similarity: We investigate the relationship among the servers

based on their IP addresses because malicious domains may share a similar set of IP

addresses. For example, malicious servers may use fast flux to evade domain based

detection, and thus multiple domains may share the same IP address. In our dataset,

skolewcho.com, switcho81.com, jikdooty0.com and swltch081.com all used the same

IP address. Similar to client similarity, we define IP address set similarity as:

IP (Si, Sj) =
|ISi

⋂
ISj
|

|ISi
|

∗
|ISj

⋂
ISi
|

|ISj
|

(4.8)

where ISi
is the set of IPs that server Si is associated with. Thus, if two servers

share similar IP addresses, they might be involved in the same activities and should

be in the same ASH.

Whois Similarity: We study the relationship among servers based on their

whois information as malicious servers may be registered with similar information,

such as register name, home address, email address, phone number, and name servers.

Figure 4.3 shows the whois information of two example malicious servers. Although

59

Figure 4.3: Whois similarity.

they have different registrants, they share the same home address, phone number,

and name servers. We use the whois similarity to measure the relationship among

servers, which is defined as the number of shared fields between the two servers

over the union of fields. We require that the two servers share at least two above

mentioned fields to be considered as associated servers to avoid the case that two

servers only share the domain name registration proxy.

4.2.3.3 ASH Generation

After studying the similarity among servers from different multiple dimensions,

we build similarity graphs for different dimensions, and use the same graph based

community detection algorithm mentioned in Section 4.2.3.1 to generate ASHs. The

nodes connected to each other after this process form ASHs for each dimension.

4.2.4 Associated Server Herd Correlation

Once we obtain the ASHs from different dimensions, we perform ASH correla-

tion. The goal of multi-dimension correlation is to distinguish malicious ASHs from

benign ASHs. To achieve this, we consider ASHs in different dimensions and extract

their common associated servers to form new ASHs. Ideally, the more dimensions an

ASH belongs to, the more likely it is involved in malicious activities. The intersec-

tion of ASHs between the main dimension and secondary dimensions forms the new

suspicious ASHs.

60

For example, (ASHd
j

⋂
ASHm

i) forms a new ASH combining ASHm
i from the

main dimension m and ASHd
j from a secondary dimension d. We compute the

suspicious score for each server in the new ASH as follows:

S(Si) =
∑

d∈Sec Dimensions
wd(C

d
Si

)wm(Cm
Si

)Φ(|Cd
Si

⋂
Cm
Si
|) (4.9)

where Φ(x) = 1
2
(1 + erf(x−µ

γ
)), erf(·) is the “S” shaped Gaussian error function,

and µ and γ are user specified parameters.5 Cm
Si

is an ASH from dimension m that

includes server Si and wd(C
d
Si

) represents the ASH density. Density is measured as

the number of edges |e| in one group over the number of edges in the fully connected

graph with |v| vertices in that group (2 ∗ |e|/(|v| ∗ (|v| − 1)). The intuition here is

that the denser a group is, the more likely it belongs to a malicious group, as benign

servers are less likely to be well connected. When we obtain the suspicious score

for each server in the newly formed ASH, the servers whose scores are below the

threshold thresh are removed. In addition, the groups with only one server left are

also removed because that server can not be associated with others. We discuss the

selection of thresh value in Section 4.4.

In Eq. (4.9), Φ(ASHm
i

⋂
ASHd

j) measures the suspiciousness of the newly formed

ASH, created with the servers common in two ASHs formed based on dimensions

m and d. It is based on the size of the ASH and promotes the ASHs with a large

number of servers. A smaller value of |ASHm
i

⋂
ASHd

j | means that there are only a

few servers in the ASH, and we have less confidence in its maliciousness. Hence we

need to cross check with more dimensions to make a decision.

The “S” shaped Φ() normalizes Φ(ASHm
i

⋂
ASHd

j) into a value between 0 and

1. After the normalization, a group with less than four servers receives a low score,

5We empirically set µ = 4 and γ = 5.5. Choice of µ promotes the clusters with size larger than
4. γ determines the desired steepness of the curve.

61

and need to be cross checked with more dimensions to accumulate higher suspicious

scores. For each dimension, the highest score is 1. In this case, the correlation score

reflects how the ASHs are formed. Suspiciousness score S(.) of each server then

accumulates scores from all ASHs it belongs to. The higher the score, the more

suspicious the server is. If a server has suspiciousness score below thresh, it gets

removed from all the ASHs. After the removal, the ASHs (created by combining

multiple dimensions) are left with only servers with high scores. For example, a

score higher than 1.0 means that the server is inferred through one main dimension

and at least two secondary dimensions. We then call the ASHs with high scoring

servers as suspicious.

4.2.5 Pruning

After the correlation, we define and prune two types of noisy ASHs: (i) Redi-

rection Group and (ii) Referrer Group. For the redirection group, some servers are

associated with each other because they belong to the same redirection chain. Hence

they share exactly the same sets of clients, IP addresses, and sometimes URI files.

For the referrer group, some servers are associated with each other because they are

referred by the same landing server (e.g, landing websites are embedded with other

websites).

To remove these noisy servers without eliminating malicious servers, we use their

landing servers to replace all the servers in the same redirection chain instead of

simply dropping those groups, if all the servers in the chain share same IP addresses,

URI files or Whois information. Similar to the redirection group, we also use landing

servers to replace all the referred servers. The intuition here is that for the redirection

and the referrer groups, if a client visits the landing server, it automatically visits

other servers in the redirection chain or the embedded servers. We, therefore, use

62

only the landing server to represent those servers.

We collect the redirection chains by sending an HTTP request to each server in

the ASHs, and obtain referrer information by extracting the HTTP “referrer” field

from the input network traffic. After the pruning process, if there still exist more

than one server in the ASH, we keep that group as a candidate malicious ASH.

4.2.6 Malicious Campaign Inference

ASH correlation process typically captures specific malicious activities, but not

the whole malicious activities. For example, bots first download encrypted files from

some servers and then connect to other C&C servers. In this case, ASH correlation

process might separate these two processes into two different herds, making it difficult

to analyze the file downloading activities. Towards this end, we apply a refinement

step in which we rebuild the original attack campaign based on the client similarity.

Two malicious ASHs are merged when their servers are in the same herd for the

main dimension, i.e., they share a very similar set of clients. The intuition is that

the main dimension captures the group connection behaviors of malicious activities,

and the infected clients that connect to different files or IPs could still belong to the

same malicious campaign.

4.3 Evaluation Data

We now describe the details of the network dataset and the ground truth used to

evaluate SMASH.

4.3.1 Network Trace

To evaluate our system, we experiment with real network traffic traces collected

at the edges of a large ISP. We monitored all the incoming and outgoing traffic in

the network. The monitored users were mostly residential, and connected to the

63

Table 4.1: ISP network traffic statistics.
Data2011day Data2012day Data2012week

of clients 14,649 18,354 28,285
of HTTP requests 28,544,473 40,522,026 168,726,091

of Servers 92,517 117,507 354,578
of URI Files 1,521,249 2,936,082 12,698,176

Internet via high-end ADSL links. Our traces are PCAP files and for every TCP

connection and UDP flow, we collected the first 5000 bytes, including the IP addresses

and domain names of the destination servers. Table 6.4 presents the information

of the ISP traffic we collected at different times: one day data from October 2011

(Data2011day), one-day data from August 2012 (Data2012day), and one-week data from

October 2012 (Data2012week). We choose data from different periods to evaluate the

performance of SMASH over time.

4.3.2 Ground Truth

To estimate the false positives and negatives of our inference results, we use the

following data sources as the ground truth.

4.3.2.1 Intrusion Detection System (IDS)

We used a well-known commercial IDS with signatures to label malicious flows

with corresponding threat identifiers. Note that since IDS signatures are constantly

updated, we used two versions of the same IDS, one from early 2012 and the other

from June 2013. We run all the collected network traces through both IDS versions

and generate two ground truth datasets: the servers (IDS2012) labeled by the 2012

IDS signatures and the servers (IDS2013) labeled by the 2013 signatures but not in

IDS2012.

64

Table 4.2: Number of malicious campaigns.
Data2011day Data2012day

Infer Thresh. 0.5 0.8 1.0 1.5 0.5 0.8 1.0 1.5

SMASH 34 17 11 6 38 19 12 2
IDS 2012 total 1 1 1 0 0 0 0 0
IDS 2013 total 0 0 0 0 0 0 0 0

IDS 2012 partial 4 3 3 0 0 0 0 0
IDS 2013 partial 1 0 0 0 2 0 0 0
Blacklist partial 16 10 5 6 13 12 7 1

Suspicious 4 0 0 0 9 2 1 0
False Positives 8 3 2 0 14 5 4 1

FP (Updated) 4 1 1 0 7 1 1 0

4.3.2.2 Online Blacklist

We also check our inferred results with popular blacklists, including Malware Do-

main Block List [27], Malware Domain List [28], Phishtank [37], SpyEye Tracker [43],

ZeuS Tracker [58] and online services such as Virustotal [51], Web of Trust (WOT) [56]

and WhatIsMyIPAddress [4]. If a server is listed as malicious by any of these

blacklists, except WhatISMyIPAddress, we confirm it as a malicious server. As for

WhatIsMyIPAddress, which integrates results from 78 blacklist services, we require

a malicious report from at least two blacklists to confirm as a malicious server.

4.4 Evaluation Results

4.4.1 Inference Results

4.4.1.1 Number of Malicious Campaigns

We first evaluate inference results in terms of malicious campaigns.6 Table 4.2 re-

ports the number of malicious campaigns the SMASH inferred with different thresh

we described in Section 4.2.4. For those inferred campaigns, we verify them with our

ground truth. If all the servers of a campaign are confirmed by the IDS, we term it as

6Due to the page limit, here we only discuss the campaigns that have at least two involved
clients.

65

“IDS 2012/2013 total.” If only a subset of the servers in a campaign is confirmed by

the IDS, we term it as “IDS 2012/2013 partial.” If none of the servers of a campaign

are confirmed by IDS but confirmed by online blacklist, we term it as “Blacklist.”

For the campaigns that can not be confirmed by either IDS or Blacklist, we further

check the HTTP request status code of those servers from the network traffic, and

send the HTTP requests to verify the existence of those servers.7 If at least half of

the servers in a campaign have an error code in their network traffic or do not exist

any more, we consider this as a “suspicious” campaign. All other campaigns are

considered as false positives. Note that there may exist malicious campaigns that

are labeled as false positives because we do not have enough information to confirm

them. Thus, the false positives here should be an upper bound for our system.

ForData2011day with threshold 0.8, SMASH infers 17 malicious campaigns. Among

these, one campaign has all the servers confirmed by 2012 IDS signatures. There are

three campaigns where some of their servers are confirmed by 2012 IDS signatures.

There are ten campaigns that have their servers partially detected by blacklists.

Three campaigns are false positives. If we reduce the threshold to 0.5, SMASH

identifies 34 malicious campaigns but the false positives increase to eight. On the

other hand, if we increase the threshold to 1.0 and then to 1.5, SMASH detects 11

and 6 campaigns, but with two and zero false positives, respectively. Similar results

are observed from Data2012day.

Further analyzing the false positives, we discovered two major categories of false

positives: Torrent and TeamViewer [45], a remote online collaboration tool. For the

Torrent category, several P2P clients connect to a large number of torrent servers by

only requesting “scrape.php” files. Thus, they share at least the same filename and

7We only check the existence of those domains. Our intuition is that malicious domains usually
have a short lifetime, and thus might have expired while benign domains usually have a longer
lifetime.

66

sometimes the same IP addresses. For TeamViewer, it has a large pool of servers

that are used by their clients to retrieve their ID, which leads to sharing the same

path name among those servers. By removing the false positives of these two “noisy”

campaigns, we have very few false positives as shown in the last row (FP Updated)

of Table 4.2.

4.4.1.2 Number of Servers in Malicious Campaigns

Table 4.3 shows the inference results of the number of servers involved in malicious

activities. Similar to the malicious campaign, if a server is confirmed by the 2012

IDS signatures, we term it as IDS 2012, and if a server is confirmed by the 2013

IDS signatures but not by the 2012 IDS signatures, we term it as IDS 2013. For

those servers that are not confirmed by either IDS signatures but confirmed by the

blacklist, we term it as “Blacklist.” All the servers in “suspicious” attack campaigns

(as described in Section 4.4.1.1) are inferred as “suspicious”. For the remaining

servers, we compare them with IDS and Blacklist confirmed servers in terms of the

requested path, User-Agent, and parameter patterns. Servers confirmed through this

way are termed as “New Servers”, which are previously undetected servers. All other

servers are false positives.

For Data2011day with threshold 0.8, SMASH infers 3,156 servers that are involved

in malicious campaigns. Among these servers, only 20 are labeled by IDS signatures

and 401 are confirmed by the blacklist. Our system can infer 2,701 more servers which

is nearly 7 times the servers detected by IDS and blacklists combined. There are 34

false positives and only 16 after excluding the P2P and TeamViewer cases. We can

also see that we generate fewer false positives with higher thresholds. For threshold

1.5, there were no false positives for either Data2011day or Data2012day. However, this

comes at a price of missing many attack campaigns. We, therefore, select 0.8 as the

67

Table 4.3: Number of servers in malicious activities.
Data2011day Data2012day

Infer Thresh. 0.5 0.8 1.0 1.5 0.5 0.8 1.0 1.5

SMASH 3,222 3,156 3,039 845 407 287 150 9
IDS 2012 20 19 19 0 0 0 0 0
IDS 2013 2 1 1 0 3 0 0 0
Blacklist 413 401 389 74 67 55 29 2

New Servers 2,713 2,701 2,626 771 171 152 91 0
Suspicious 13 0 0 0 27 5 2 0

False Positives 61 34 4 0 139 75 28 7

FP (Updated) 22 16 2 0 32 5 2 0

threshold, where we detect many attack campaigns while the highest false positive

rate is only 0.064%. After removing noise, the largest false positive rate is 0.017%.

We see that SMASH discovers many malicious servers that are not discovered

by IDS and blacklist. In Table 4.2 with threshold 0.8 for Data2011day, 13 clusters

are partially detected by IDS or blacklist. Among these clusters, IDS detects only

20 servers and blacklists detect 401 servers. On the other hand, SMASH inferred

2,701 servers that are new, previously unknown malicious servers. Those servers

either share the similar pattern with IDS confirmed servers in terms of User-Agent,

parameter patterns and URI files, etc or are detected by other researchers based on

the Google search results. This indicates that about 86.5% of these malicious servers

could not be detected by simply relying on IDS or blacklists.

Furthermore, we see from Table 4.3 that without any training or signature up-

dating, SMASH infers malicious severs that are detected by new IDS signatures

but missed by old IDS signatures. This shows that SMASH can detect zero-day

malicious campaigns before IDS signatures get updated.

Finally, we measure the malware servers detected by the IDS but missed by

SMASH, i.e., false negatives. To get the ground truth of malware server groups

from IDS labels, we group the IDS-labeled malicious servers based on the IDS threat

68

Figure 4.4: Distribution of the client and campaign sizes.

identifier, assuming all the servers in the same threat identifier belong to the same

malicious campaign. We have a total of 26 missed malware servers for Data2011day

and 27 for Data2012day.

There are two major types of false negatives. First, there are 40 malicious servers

(in the Cycbot, Fake AV, and Tidserv threat labels) that do not share any secondary

dimension, thus are missed by our system. However, most of those servers share

the same URI parameters pattern. Thus, if we extend our URI file dimension to

consider the parameter pattern, we could detect these threats. Second, several false

negatives are caused by our pruning/filtering process because these servers share the

same referrer. SMASH has room for improvement and nevertheless, it can be a

great complementary tool to existing approaches.

4.4.1.3 Activity Scale of Malware Campaigns

We measure the scale of malware campaigns by observing the number of clients

and servers involved in each malicious campaign. Figure 4.4 presents the distribution

of the campaign size and the client size. We see that about 75% of the attack

campaigns have the size smaller than 18, which indicates that most attack campaigns

69

Table 4.4: Attack categories.
Activity Category # of Servers

Communication

C&C 30
Web exploit 1
Phishing 5
Drop zone 2
Other malicious servers 1,120

Attacking
Web scanner 23
iFrame injection 14

do not connect to a large number of malicious servers. However, campaigns with a

size larger than 18 are usually attacking campaigns, which attack a large number of

benign servers (e.g, web scanning and iFrame injection attacks). As for the number

of involved clients, 75% of attack campaigns have only one infected client. This

result suggests that most client-side clustering systems [71, 72] might be ineffective

because they need to correlate among multiple infected clients in the same network.

4.4.2 Attack Diversity & Persistency

To demonstrate that SMASH is not limited to only certain types of malicious

campaigns, we evaluate SMASH from two different perspectives: attack categories

and persistence of servers involved in malicious activities.

4.4.2.1 SMASH infers diverse malicious campaigns

Our inference results include the attack campaigns related to malicious commu-

nication activities and web attacking activities. Table 6.5 categorizes part of our

inferred servers involved in malicious campaigns based on IDS labels and Online

Blacklists. The servers belonging to communication activities are typically malicious

servers, such as those involved in botnet activities and web exploits. The servers

belonging to attacking activities are usually benign websites that are targeted by

70

Table 4.5: Number of malicious campaigns during Data2012week.
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

SMASH 31 36 51 40 34 47 51
IDS 2013 total 1 1 1 0 1 1 1

IDS 2013 partial 3 5 7 4 3 8 8
Blacklist 14 19 28 19 16 18 25

Suspicious 4 5 3 4 3 4 6
False Positives 9 6 12 13 11 16 11

FP (Updated) 3 3 11 9 6 12 9

Table 4.6: Number of servers involved in malicious activities during Data2012week.
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

SMASH 1023 1246 1481 1157 911 1286 1301
IDS 2013 7 15 27 11 7 13 13
Blacklist 371 645 726 348 253 354 698

New Servers 467 398 586 668 443 737 497
Suspicious 13 19 8 18 10 8 21

False Positives 165 169 134 122 198 174 72

FP (Updated) 82 14 130 36 24 89 52

malware, such as web scanning and iFrame injection.

4.4.2.2 SMASH infers both persistent and agile malicious campaigns

Persistent malicious campaigns are a set of servers that continue to communicate

with infected clients for multiple days. On the other hand, agile malicious cam-

paigns are a set of newly identified servers that are communicated by known infected

clients. To study the evolution of persistent and agile malicious campaigns, we test

our system with one-week data from 2012, Data2012week. Tables 4.5 and 4.6 show

the inference results.8 We consider the first day of the week data as the bench-

mark. Figure 4.5 shows the results of each day, where there are 1,014 servers and 27

clients involved in malicious activities at the benchmark day. We see that SMASH

infers both persistent (Old Server in Figure 4.5) and agile malicious campaigns

8For the campaign with one client, we use threshold 1.0 while for the campaign with more than
one client, we use threshold 0.8.

71

Figure 4.5: Persistent vs dynamic campaigns.

(New Server Old Client). It can also infer new campaigns (New Server New Client

in Figure 4.5). In addition, we observe that most servers belong to agile malicious

campaigns. This result suggests that malware may change their servers/domains

every day to evade existing domain-based detection.

4.4.3 Effectiveness of the Main and Secondary Dimensions

4.4.3.1 Main Dimension

24,964 servers in Data2011day and 33,603 servers in Data2012day are dropped af-

ter the main dimension processing because they can not be correlated with other

servers in client similarity. For those remaining servers, we further investigate the

relationship among those servers in the same ASH.9 To do this, we manually study

50 randomly chosen campaigns from each day. 60% of ASHs are “referrer groups,” in

which all servers in the same group are referred by the same server. Such groups can

be further filtered by the pruning process. 10% of ASHs are “redirection groups,” in

which all servers in the same groups belong to a redirection chain. Such groups can

be also filtered by the pruning process. 8% of ASHs are “similar content groups,”

9Here, we ignore ASH with only one client, as all the servers in this case are correlated together
only because they are visited by one client.

72

in which all servers share very similar content. We further analyze those servers and

most of them belong to adult web servers. 18% of ASHs are “unknown groups,” in

which we can not directly find any relationship among those servers. However, they

are visited by similar sets of clients. Most of these servers are different companies

selling different products or services. The remaining 4% of ASHs belong to malicious

ASHs. None of these servers is detected by the IDS while SMASH did.

4.4.3.2 Secondary Dimensions

In SMASH, the ASHs need not satisfy all secondary dimensions. Hence, we mea-

sure the effectiveness of each secondary dimension. Figure 4.6 is the decomposition

of inferred servers. We see that 15.05% of the servers satisfy all secondary dimen-

sions and there is no false positive for these herds. URI File dimension is the most

effective secondary dimension, which by itself contributes to 53.71% of the detected

servers. Although Whois and IP Address Set dimensions individually are not very

effective, these two dimensions can help the URI File dimension to confirm more

suspicious ASHs. For example, 14.16% are inferred through the combination of IP

Address Set and URI File dimensions, and 17.01% are inferred through URI File and

Whois dimension combination.

4.4.4 Attack Campaign Case Study

We investigate with case studies the advantages of SMASH over detecting each

malicious server in isolation.

4.4.4.1 Capturing the Insight of Malicious Activities

ASHs help us understand the malicious campaign in a holistic fashion. Table 4.7

shows the Bagle botnet [3], which is a mass-mailing computer worm campaign that

SMASH inferred. In this campaign, the bot first goes to some servers to download an

73

Figure 4.6: Effectiveness of secondary dimensions.

Table 4.7: Bagle botnet.
Categories Servers URI UserAgent Parameters

C&C Domain

novitacolori.it /images/news.php Internet Exploder p=16435&id=21799517&e=0
beachrugbyfestival.com /images/news.php Internet Exploder p=16435&id=21799517&e=0

beautywoman.sk /images/news.php Internet Exploder p=16435&id=21799517&e=0
...

Downloading

lajuve.org /images/file.txt Mozilla/4.0 ... na
shayestegansch.com /images/file.txt Mozilla/4.0 ... na

www.bigdaybreaker.com /images/file.txt Mozilla/4.0 ... na
...

encrypted file “file.txt” and then connects to C&C servers by requesting “new.php”

with the same parameter pattern “p=[]&id=[]&e=[]”. There are 94 servers involved

in this campaign and they can be clustered in two categories; 40 downloading servers

and 54 C&C servers. None of the downloading servers was detected by the IDS

or blacklists. Only three C&C servers were detected by VirusTotal. Without the

holistic approach of SMASH, we would not have captured the downloading servers

and many additional C&C servers.

Table 4.8 shows a Sality botnet [41] campaign also inferred by SMASH. There

are 12 servers involved in this campaign. All have been labeled by the IDS but

only eight have been labeled by the blacklists. Again, we cluster the servers in this

74

Table 4.8: Sality botnet.
Categories Servers URI UserAgent Parameters

C&C Domain
kukutrustnet777.info / KUKU v5.05exp =22667130988 22adcdc=72726968
kjwre9fqwieluoi.info / KUKU v5.05exp =22667130988 e65564=135856260

Downloading

merc-connect.com /images/mainf.gif KUKU v5.05exp =22667130988 8fff57=84933135
meta-kit.com /images/logos.gif KUKU v5.05exp =22667130988 4f152d=10365530

fashionenigma.com /images/logos.gif KUKU v5.05exp =22667130988 6f2483=58270744
...

campaign into C&C servers and downloading servers. Two C&C servers are inferred

because they share the same set of IP addresses, the same filename “/” and the

same registration information; thus they form a strong ASH. Downloading servers

form different ASHs based on the shared filenames. Different from the Bagle botnet,

only downloading servers are benign websites compromised by the attackers. Thus,

they do not share IP addresses or Whois information. The Sality botnet campaign is

inferred by merging these ASHs. The bots might first go to the compromised servers

to download additional malware through requesting “.gif” files. They then go to

C&C servers to get further instructions.

Based on above two examples, most of the downloading servers and some C&C

servers from the Bagle botnet are compromised websites. Therefore, domain-reputation-

based systems [63] or similarity-based detection systems [61] would not detect such

malicious servers.

4.4.4.2 Finding More Malicious Activities

Table 4.9 shows a web injection attack campaign, where infected hosts inject

malicious iFrames to benign websites. SMASH inferred 600 benign servers suffering

from such attacks while the IDS labeled only four of such attacks, missing more

than 99% of the servers. All of these inferred servers are queried by the same set of

clients with the same file “sm3.php” under different paths. The servers not labeled

by the IDS share the same UserAgent “-” in their HTTP requests to the IDS labeled

75

Table 4.9: iFrame injection attack.
Server URI UserAgent

smileenh????.co.uk /images/sm3.php ’-’
dorsets????.org /images/sm3.php ’-’

calu????.it /images/sm3.php ’-’
zi??.nl /wp-content/uploads/sm3.php ’-’

...

Note: for the privacy protection reason, we use ? to mask part of
the detected domains.

Table 4.10: Zeus botnet.
Zeus C&C Server URI
4k0t155m.cz.cc /login.php
4k0t177m.cz.cc /login.php
4k0t144m.cz.cc /login.php
4k0t166m.cz.cc /login.php
4k0t111m.cz.cc /login.php

... ...

servers. This confirms that they belong to the same attack campaign. Note that

most of the URIs have the path “wp-content,” which indicates that those servers are

installed with WordPress web application. This attack campaign explores WordPress

vulnerability to upload a malicious script “sm3.php.”

Table 4.10 is the Zeus botnet [57] that SMASH also inferred. This campaign

includes eight C&C servers of Zeus. 2012 IDS signatures labeled none of these

domains while the blacklists detected only one domain. However, 2013 IDS signatures

detected all of these domains. This shows that, as SMASH does not need to update

signatures, it can detect zero-day attack campaigns. This campaign seems to be using

a DGA-based algorithm to generate similar domain names. All these domains are

requested by the same set of clients, and share the same IP addresses and filename

76

“login.php.” We searched these domains in Google, and only “4k0t111m.cz.cc” is

confirmed as “Zeus tracker.”

4.5 Discussion

4.5.1 Overhead

SMASH is designed to monitor the traffic at the edge of a network. Thus, it can

be deployed at enterprise or ISP networks. The most expensive computation part

of SMASH is on the similarity calculation, whose complexity is N2 where N is the

number of servers, as we need pairwise similarity among different servers. However,

the complexity of similarity calculation can be significantly reduced by using Bloom

filters [5] or sparse matrix multiplication [67].

4.5.2 Limitations

SMASH assumes that cyber criminals use multiple servers to conduct their ma-

licious activities. Thus, if an attacker uses only a single server to conduct malicious

activities (which is now very rare), SMASH can not detect it. In addition, since we

use second-level domain for the inference, we might miss the malicious servers using

dynamic DNS or hosted on third-party cloud servers. However, those services could

incur the significant financial cost to the attackers.

4.5.3 Evasions

SMASH relies on the correlation between the main and secondary dimensions.

Thus, an attacker who gains the knowledge of SMASH might try to mislead our

system by manipulating their relationships as follows:

77

4.5.3.1 Evading the Main Dimension:

To mislead the main dimension, an attacker can make their bots visit many

benign domains with the same URI file.10 In this case, our main dimension might

generate ASHs that include both benign and malicious servers. However, since our

client similarity looks at the similarity among all the client sets, it is difficult for

an attacker to assure that there are no other benign clients that visit those benign

domains. Even when an attacker can use some benign servers to mislead our system,

their malicious servers are still included in ASHs that SMASH inferred, which can

be further filtered through other heuristics. For example, benign domains might not

have such URI files, which may return an error code. In addition, an attacker can also

let different bots communicate with different servers to prevent us from generating

ASHs. However, this would be a very costly method for attackers, as the more bots

they have, the more servers they need to register.

4.5.3.2 Evading Secondary Dimensions:

Compared with the main dimension, secondary dimensions can be relatively easily

changed. However, the process is very inconvenient and costly for the attackers. For

example, to evade the IP dimension, an attacker can fast flux the IP addresses of

their servers, which is very expensive yet easily detected [75]. To evade the URI File

dimension, an attacker can assign different names for different servers. However, it

makes their connections less scalable; for the attacking campaigns, it usually targets

the vulnerabilities of certain files, and thus an attacker can not change such filenames.

Although an attacker may successfully evade one of the secondary dimensions, it is

non-trivial to simultaneously evade all dimension.

10There is a very low possibility that the benign domains share similar IP addresses and Whois
information with the malicious servers.

78

5. CHARACTERIZING AND DETECTING MALICIOUS ENTRANCES TO

MALICIOUS CYBER INFRASTRUCTURES∗

Previously, we have described PoisonAmplifier and SMASH. PoisonAm-

plifier only focuses on compromised servers that are utilized in Search Poisoning

attacks. Therefore, it is not applicable to detect the general compromised servers.

SMASH can discover the relationship among different malicious servers to infer

a group of malicious servers. However, it requires multiple malicious servers in-

volved in. In this chapter, we introduce a new system VisHunter, which mainly

focuses on detecting entrances (e.g., redirections from compromised servers to mali-

cious servers) to malicious cyber infrastructures. Based on the detected malicious en-

trances, its propagation component can further find more malicious servers under the

malicious cyber infrastructures. Comparing to PoisonAmplifier and VisHunter,

VisHunter can cover all types (e.g., compromised server, Type A and B malicious

server) of servers we defined in our model without requiring multiple malicious servers

involved in.

VisHunter studies malicious web infrastructures from a novel perspective, i.e.,

visibility. In a nutshell, we define the visibility1 of a server as whether the server is

visible to benign users, for instance, through search engines. To obtain a compre-

hensive understanding of whether invisible malicious web infrastructures are indeed

popular, we investigate 100,000 benign servers and nearly 45,000 malicious servers

collected from both public blacklists and real-world enterprise networks. Our key

∗Part of this chapter is reprinted with permission from “Hunting for Invisibility: Characterizing
and Detecting Malicious Web Infrastructures through Server Visibility Analysis” Jialong Zhang,
Xin Hu, Jiyong Jang, Ting Wang, Guofei Gu and Marc P. Stoecklinby. In Proceedings of IEEE
International Conference on Computer Communications (INFOCOM’16), Copyright c© 2016 by
IEEE.

1An in-depth discussion on visibility will be in Section 5.2.

79

findings include: 1) Unlike legitimate servers, a large number of malicious servers

tend to be invisible, especially for some categories such as C&C servers and exploit

servers. C&C servers used to communicate with bot-infected machines are almost

always invisible to benign users. This is because bot masters naturally try to mini-

mize the exposure of their C&C servers to keep their malicious activities under the

radar. 2) Server visibility alone is not sufficient to precisely pinpoint malicious web

infrastructures because a small number of benign servers are also invisible. There-

fore, we further examine 41,190 redirections collected from a large enterprise network

and observe that the “entrance” into malicious web infrastructures, i.e., redirection

from visible servers to invisible servers, is significantly different from that of benign

web infrastructures.

Motivated by these findings, we design a lightweight yet effective system, VisHunter,

to detect the malicious web infrastructure, which includes compromised servers, ma-

licious entrances, and post-infection servers. VisHunter uses a trained classifier

to identify the “entrance” to the malicious web infrastructures based on 12 features

including several novel visibility-related features and applies a graph-based propaga-

tion algorithm to find more compromised servers and post-infection servers starting

from detected malicious entrances. Our evaluation with one month traffic from a

large enterprise network shows that VisHunter achieves an average true positive

rate of 96.2% at a false positive rate of 0.9% for the malicious entrance detection, and

identifies 6x more malicious servers under the malicious cyber infrastructure based

on the detected malicious entrances.

80

5.1 Research Goal and DataSet

5.1.1 Research Goal

Our research goal is to provide the first empirical analysis on the visibility of ma-

licious cyber infrastructures. Through analyzing the visibility pattern of both benign

servers and malicious servers (in Section 5.3), we identify a set of distinct features

of malicious servers involved in malicious cyber infrastructures from their locations,

structures, roles, and relationship. Based on these features, we aim to design an

efficient system to detect the servers involved in malicious cyber infrastructures from

the visibility perspective, which could be complementary to existing work [76, 78].

5.1.2 DataSet

Our dataset consists of both benign servers and malicious servers extracted from

public blacklists and the real enterprise network traffic.

5.1.2.1 Public Blacklists

This dataset consists of domains from two blacklists: Malware Domain List [29]

and DNS-BH Malware Domain Blocklist [9], both of which have been widely used as

ground truth in existing work [62]. We collected 43,768 malicious SLDs from 2009 to

2014 from [29] and 10,967 SLDs from 2011 to 2014 from [9], and performed visibility

check on Oct 2014. Results show that around 80% of them were invisible. One caveat

here is that malicious domains may have already expired leading to search engines

may not index them anymore. To avoid such bias, we selected only the domains

that were blacklisted in 2013 and 2014, and verified their existence by checking if

the domains could be successfully resolved to IP addresses. As a result, this dataset

contains 875 malicious SLDs from Malware Domain List (M PB1) and 5,739 malicious

SLDs from DNS-BH (M PB2).

81

5.1.2.2 Enterprise Traffic

To avoid possible bias caused by public blacklists, we also captured real network

traffic from a large enterprise network from June 16 to June 20, 2014, from which

we extracted 462,226 unique servers. Among them, 1,782 servers (M Enter) were

detected as malicious by an internal intrusion detection system (IDS). For those that

were not detected by the IDS, we randomly chose 100,000 benign servers that did not

share any clients with malicious servers in M Enter and labeled them as B Enter. We

performed the viability check on these servers at the same time we captured them.

We also collected one month traffic of an institute in June 2013. Due to privacy

and storage constraints, we stored only the metadata and the header information of

all the web requests and responses, which included the request URL paths, HTTP

response codes, host names, user agents, referrers, cookies, and so on. Notice that

without the content of the web pages, we were not able to directly determine certain

types of redirections, e.g., JavaScript or iFrame based redirections. Therefore, we

focused on HTTP header redirections in this dataset. In total, we extracted 41,190

redirections(R Enter) and performed the viability check on this data on June 2014.

Table 6.4 summarize the data collection results.

Table 5.1: Data collection
M PB1 M PB2 M Enter B Enter R Enter

of servers 875 5,739 1,782 100,000 165,957
of redirections N/A N/A N/A N/A 41,190

82

5.2 Server Visibility

The concept of visibility used in this work hinges on how a normal user locates

a server. For popular or frequently visiting websites, a user may directly type the

domain names into the address bar or follow bookmarks to access the web servers.

We consider these servers visible to normal users. For other (less popular) websites,

a user may locate them using search engines, and access the websites through search

results. We also consider these web servers visible if the server itself (not only the

domain name) is indexed by search engines. Intuitively, benign servers are more likely

to be visible to normal users because their owners are often motivated to promote

their websites in search engines to increase their user base. On the contrary, malicious

servers, especially the ones in the core malicious infrastructure (e.g., exploit servers),

are less likely to be indexed by search engines because attackers try to minimize

their exposure and avoid being detected. Therefore, we determine server visibility

as follows (cf. Fig. 5.1).

Figure 5.1: Determination of server visibility

1. For a domain name, we extract its second-level domain (SLD) based on [46].

Since an SLD is commonly associated with the organization that registers the

83

domain, we assume that a domain has the same visibility as its SLD. In the

remaining of this chapter, the term domain denotes its SLD unless stated oth-

erwise.

2. If a domain is well-known (e.g., google.com), we consider it visible. We utilize

two public whitelists to determine well-known domains: top 1 million domains

from Alexa [2], and domains from EasyList [10]. Alexa provides a global popu-

larity ranking of domains based on their collected web traffic. EasyList provides

a list of well-known Ad-network domains and trackers. Notes that domains in

whitelists only reflect the popularity of them, it does not mean that they are

benign domains.

3. For other domains, we query them in search engines 2 and obtain top 100 3

search results. If the queried domain appears in the search results, meaning

that it was crawled and indexed by the search engines, we further examine

the indexed content of the domain. If the site owner blocks the access to the

content (e.g., Google displays a message under the domain name “A description

for this result is not available because of this site’s robots.txt”), we consider the

domain invisible; otherwise, it is considered visible. Note that since multiple

search results may be returned for a domain, for the domain to be classified

as invisible, none of them should have available content. This is to avoid

misclassifying legitimate cases where a site owner may use robots.txt to prevent

search engines from crawling their sensitive webpages (e.g., admin interface).

4. If the queried domain does not appear in the top 100 search results, we consider

2We use Google search engine in the current implementation. However, other search engines
could be used to reduce possible bias of search engine results.

3100 is the maximum number of search results per page. Since we directly search the domain,
the pages on that domain are usually returned in the first.

84

it invisible.

5. All IP addresses are considered as invisible.

Noting that the definition of server visibility depends on search engine results

that may change dynamically along with time, we evaluate the server visibility over

time in section 5.5.2.

5.3 Measurement Study of Server Visibility

Our hypothesis is that legitimate servers are more likely to be visible because their

owners have the incentives to promote their products or services. However, certain

categories of malicious servers (e.g., exploit servers), tend to remain invisible for

several reasons. First, from the cyber criminals’ perspective, they may only want to

allure their targeted victims to reach the core malicious servers in order to minimize

the exposure to security analysts because previous work has shown that it is easy to

pinpoint malicious servers using search engines [76]. Second, from the search engines’

perspective, it may not be straightforward to crawl and index malicious servers.

Some malicious servers are intentionally isolated from the World Wide Web without

any hyper-links pointing to them. Other malicious servers may be ephemeral and

dynamically changing such as domains generated by domain generation algorithms

(DGAs). Third, search engines employ their own algorithms (e.g., PageRank) to

index and rank servers. In general, they prefer to return to their users with high

reputation websites. Hence, malicious websites may not be indexed by search engines

or not be returned to the users.

To validate our hypothesis, we conduct a comprehensive measurement study on

the visibility of both benign and malicious servers using real-world datasets.

85

5.3.1 Server Visibility Study

5.3.1.1 Visibility of Malicious Servers

We first determined the visibility of malicious servers in M PB1, M PB2, and M Enter

using the process outlined in Section 5.2. To better understand how visibility cor-

relates with specific malicious types, we measured the visibility distribution of ma-

licious servers within each attack category. Based on the description of malicious

functionalities in M PB1 and M PB2, we classified them into 63 and 109 categories

respectively.

We then calculated invisibility ratio, defined as the number of invisible servers

over the total number of servers in a category. The CDF of the invisibility ratio

distribution across all the categories is illustrated Figure 5.2. Only around 10% of

categories from M PB1 had the ratios lower than 30%, meaning that the servers in

those categories were likely to be visible. For M PB2, around 35% of categories had

low ratios.

Figure 5.2: Invisibility ratio distribution across all categories

Table 5.2 lists the top 5 largest visible malicious categories in terms of their sizes.

86

Most visible servers in M PB1 were compromised servers and had labels, such as “leads

to”, “iFrame”, and “JavaScript”. M PB2, on the other hand, had different distribution

of malicious servers with more social-engineering type of attacks like phishing and

rogue software. These servers, by their nature, were designed to be easily accessible

to unsuspecting users, and therefore were more likely to be visible. Overall, less than

half of servers, 356 (44.49%) in M PB1 and 363 (31.33%) in M PB2 belonged to these

categories.

Table 5.2: Top 5 largest visible malicious categories
M PB1 M PB2

Category # of servers Invisibility ratio Category # of servers Invisibility ratio

leads 246 25.20% unsafe 159 22.01%

spyware 21 28.57% highrisk 65 23.07%

iFrame 17 29.41% fake 27 25.93%

JavaScript 14 21.43% phishing 13 15.38%

compromised 5 0% rogue 53 0.25%

Table 5.3: Top 5 largest invisible malicious categories
M PB1 M PB2

Category # of servers Invisibility ratio Category # of servers Invisibility ratio

blackhole 31 90.32% malware 652 65.18%

- 21 52.386% malspam 215 64.65%

drive-by 5 66.66% zeus 81 60.49%

java 5 100% fake flash 34 73.53%

fake 4 100% putter panda 27 96.29%

As a comparison, Table 5.3 lists the top 5 largest invisible malicious categories

with their sizes. We can see that malware and exploit servers, such as blackhole, Zeus

87

and drive-by-download, were among the most common invisible malicious server

types. For example, more than 90% of blackhole servers and more than 96% of

“putter panda” servers, which were C&C servers used in a cyber espionage campaign,

were hidden from search engine crawlers.

Noting that the invisibility ratio for the largest invisible malicious category is

not 100%. This is because that some of them are actually compromised servers

rather than malicious servers. For example, northerningredients.com was visi-

ble according to our visibility definition, and it was labeled as malicious by both

Malciousdomain.com and VirusTotal. Further investigation on its Whois informa-

tion and its web contents revealed that the food company’s domain was registered

in 2006 with an expiration date in 2019. Such a long history made us believe that it

was a compromised legitimate domain instead of a malicious server set up by cyber

criminals. In addition, other visible malicious servers usually shared certain patterns

in their contents or URLs, which could be leveraged to efficiently detect a group of

similar servers using existing work such as EvilSeed [76] and PoisonAmplifier [78].

We further checked the visibility of M Enter from the enterprise network. 67.51%

of them were invisible, and 13.99% of them belonged to the top 1 million Alexa web

list, indicating that they were likely compromised or abused.

5.3.1.2 Visibility of Benign Servers

Next, we checked the visibility of benign servers in B Enter. As expected, only

very small portion of them, i.e., 6,626 (6.63%) were invisible. To better understand

the underlying causes for their invisibility, we manually analyzed a set of randomly

selected 100 servers. We found that most of the benign invisible servers were: 1)

new servers which had not been indexed; 2) service providers which actively blocked

crawlers or chose not to be indexed by search engines. As a result, we can leverage

88

these characteristics to distinguish them from their malicious invisible servers, which

we will elaborate in Section 5.4.2.

Lessons learned: As demonstrated above, there exist significant and consistent

differences between certain malicious servers and legitimate servers in terms of their

visibility status. These findings suggest that visibility could be an effective feature

for malicious server identification. However, we also note that visibility alone is

not sufficient, as many legitimate servers, although few percentages, may not be

directly accessible to users through search engines for various reasons. Therefore,

we explore several new redirection-based features to augment visibility and minimize

false positives.

5.3.2 Visibility Study on Redirections

Based on the visibility of each server, we clustered the redirections in R Enter

into four categories: visible to invisible (1,063 (2.58%)), visible to visible (36,727

(89.17%)), invisible to invisible (1,559 (3.78%)) and invisible to visible (1,841 (4.47%)).

Unsurprisingly, the majority of redirections were among visible servers, which were

mostly benign redirections with a few from one compromised server to another.

Many existing systems detect malicious redirections using the characteristics of

the full redirection chains [88, 99], such as chain lengths, geolocations of landing

and final servers, and so on. Unfortunately, such features can be easily manipulated

when extracting them on the whole redirection chain. For example, attackers can

change the length of the redirection chain by appending more/fewer compromised

or malicious servers. Alternatively, attackers can also add arbitrary inner domain

redirections since they can partially control compromised servers and fully control

their own malicious servers.

In contrast, only the transition from visible to invisible servers is more resilient to

89

manipulation whenever attackers want to lure unsuspecting users to their malicious

infrastructures. Therefore, we only focus on such kind of redirection and inspect it

from several different perspectives.

To collect ground truth, we used VirusTotal to label 1,063 redirections from visible

servers to invisible servers. Specifically, if an invisible server was labeled as malicious

by at least two anti-virus vendors, we considered the redirection as malicious. In this

way, we finally collected 27 malicious redirections. To collect benign redirection cases,

we checked the Whois history of invisible servers for the remaining redirections. We

removed redirections whose invisible server had a lifetime (the expiration date minus

the creation date) less than or equal to one year, which have a high chance to be

malicious but not yet been labeled by VirusTotal. As a result, we collected 683

benign redirections.

Below we itemize our observations and lessons learned from these redirections

5.3.2.1 Location Attributes

Typically attackers can not control the place where the compromised benign

servers are located so that visible compromised servers and invisible malicious servers

would be located at different places. In VisHunter, we characterize the location

difference using IP addresses, Whois information, and autonomous systems numbers

(ASNs). Specifically, we consider a redirection to be made between different locations

if its visible and invisible servers do not locate under the same IP subnet (/24), do

not share the same Whois information, and do not have the same ASNs. Otherwise,

the two servers are likely to be co-located. In our ground truth dataset, all but one

malicious redirections had different locations. On the other hand, 188 (27.53%) of

benign redirections had co-located visible and invisible servers. In fact, those visible

servers usually hosted the home page of the company’s website while those invisible

90

servers provided internal or non-public services. These invisible servers may actively

block search engine crawlers and/or there is no way for the crawlers to find them.

5.3.2.2 Structure Attributes

To capitalize on their resources, attackers often compromise a large number of

servers and point them to a small set of their core malicious servers. Thus, we

assume there should be an authority structure in the malicious redirections: multiple

visible servers redirect to a few authority invisible servers. To characterize this

hub/authority structure, we propose a metric “in-out ratio”, defined as the degree

of the invisible server over the degree of the visible server. A ratio lower than 1.0

means that multiple visible servers redirect to only a few invisible servers, making

the invisible servers authorities. On the other hand, a visible server that redirects

to many invisible servers will have a high in-out ratio and become a hub in the

redirection graph.

Looking at our ground truth dataset, 33.33% (9) of malicious redirections had

invisible authorities, and 7.41% (2)had visible hubs. In comparison, for the benign

redirections, only 3.22% (22) of them had invisible authorities while 80.23% (548)

of them had visible hubs. For all the hubs, we further checked the number of IP

addresses they redirected to. The intuition here is that malicious hubs may redirect

to multiple domains hosted on the same IP address in order to minimize cost and

maximize server utilization. On the other hand, benign hubs may redirect to multiple

servers which belong to different organizations and thus have a large number of IP

addresses. This intuition was also confirmed by our data: a malicious hub indeed

redirected to two domains that shared the same IP address, whereas those benign

hubs all redirected to multiple IP addresses.

91

5.3.2.3 Role Attributes

Some benign redirections are caused by advertisement networks. One notable

characteristic of an advertiser is that it can redirect to a large number of both

visible and invisible servers. In this work, we use the metric Numvis, the number of

redirections to visible servers, to define advertisers, and find 467 advertisers in the

benign redirections with Numvis > 3 (68.37%). We also define the reputation of an

advertiser Rep as Numvis / Numinvis, where Numinvis is the number of redirections

to invisible servers. Essentially, an advertiser is considered to be more suspicious if

it redirects to more invisible servers than visible servers. In fact, such a pattern has

been used by certain cloaking servers, which redirect target users to either exploit

servers or legitimate websites depending on users’ operating systems and browser

versions. 174 (37.26%) of advertisers redirected to more visible servers than invisible

servers for benign redirections; therefore, they were more likely to be benign . In

this dataset, there was no advertiser in malicious redirections.

5.3.2.4 Relation Attributes

Benign redirections often serve a purpose, for example, moving websites to an-

other server, load balancing, delivering contents from local data centers, etc. We

characterize such relationship from the following perspectives.

CDN: CDNs account for a large portion of the benign redirections. In addition to

whitelisting well-known CDNs such as Akamai, CloudFront, etc., we apply a heuristic

to attribute a redirection to a CDN if two servers involved have the same URL path

and the path length4 is longer than 2. 19.18% (131) of benign redirection in our

dataset fell into this category whereas none of the malicious redirections had a CDN

relationship.

4We measure the path length based on the number of slashes (“/”) in URLs.

92

Other general partner relation: To identify other general partner relation-

ships, we employ two heuristics leveraging both historical information and search

engines results. First, if a specific redirection happens regularly over a long period of

time T 5, we consider the two servers have a stable partner relationship. Second, we

leverage search engines to reveal the potential partnership between two servers. More

specifically, we query two servers involved in the redirection in the search engines

at the same time, for example, search “visible.com and invisible.com” in Google. If

both of them appear in the same search results, we believe that there likely exist the

relationship between these two servers. In our dataset, most of such relationships

were due to sharing contents and were also reported by websites like siteslike.com

and websitesalike.com. To further eliminate potential false positives that may

be caused by security websites analyzing a particular malicious server instance, we

ignore such partner relationship if the search results contain any security related key-

words such as “security”, “virus”, “malicious”, and “malware”, etc. As a result, only

5 (18.52%) of malicious redirections had partner relationships while 513 (75.11%) of

benign redirections had such relationships.

Lessons learned: Detecting malicious redirections is a complicated task. Sim-

ply relying on features associated with compromised servers is immediately subject

to evasion, given the attacker’s freedom to use public services or multiple compro-

mised servers. At the same time, detecting malicious terminal servers is hindered

by their diversities and various cloaking techniques. However, observations from our

measurement study convey a positive message: malicious redirections from visible

servers to invisible servers exhibit distinguishable behaviors from their benign coun-

terpart, which are more intrinsic to malicious infrastructures and difficult to evade.

5In current implementation, we set T=1 month.

93

5.4 System Design

5.4.1 System Overview

Based on the study in Section 5.3, we observe that there exist certain categories

of malicious servers that are always invisible, and there exist notable differences

between entrances to malicious invisible infrastructures and benign invisible infras-

tructures. Therefore, VisHunter focuses on the redirections from visible servers

into invisible servers and leverages discriminative features to detect the entrances

into malicious web infrastructures, especially for the entrances to the exploit infras-

tructure, where most traffic comes from compromised servers to exploit servers. Fur-

thermore, VisHunter automatically identifies connections among invisible servers

based on their relationships and infers other malicious servers under the malicious

web infrastructure through graph-based propagation.

Figure 5.3: System overview.

An overview of VisHunter is shown in Figure 5.3. VisHunter takes HTTP

traffic as an input and extracts all observed servers (nodes in 1©) as well as the

redirections among them (edges between servers in 1©). Then, VisHunter checks

the visibility of each server and divides them into two categories: visible servers

94

and invisible servers (2©). Next, only the redirections from visible servers to invisible

servers are submitted to the malicious entrance detection component, where a trained

classifier is used to identify malicious entrances (red edges in 3©). Later, the malicious

infrastructure inferring component will construct a relation graph-based on all the

recorded redirections (solid edges in 4©) and the newly-derived relationships among

invisible servers (dash edges in 4©). The malicious infrastructure inferring component

then applies the PageRank algorithm on the generated relation graph to infer the

entire malicious web infrastructure, essentially to find more compromised servers (red

nodes in the left part of 4©) and malicious servers (red filled nodes in the right part

of 4©).

5.4.2 Detecting Malicious Entrances

We define an “entrance” as a redirection from SLD of a visible server to SLD of

an invisible server. An entrance is considered malicious if the destination invisible

server is malicious, i.e., belonging to attackers’ invisible malicious web infrastruc-

tures. Based on our intensive study in Section 5.3.2, we propose 12 features that

characterize the differences between benign entrances and malicious entrances, which

are difficult for attackers to evade without a significant amount of cost. As summa-

rized in Table 5.4, the features leveraged by VisHunter are divided into four groups.

95

Table 5.4: Feature selection
Aspects Features Novelty

Location

IP location [88]

Whois location New

AS location [88]

Graph

In-degree of invisible server New

Out-degree of visible server New

In-Out-ratio [98]

IP diversity of invisible server [92]

Role
Advertiser New

Reputation of advertiser New

Relation

CDN New

Partner based on history New

Partner based on search results New

Location-based Features: This group aims to capture the location differences

of the entrances. Since this group of features is derived from the physical locations

of the entrances, it is difficult for attackers to forge.

Location-based features proposed in existing work are not as resilient as our

proposed features. For example, the location differences between a landing server

and a terminal server [88] can be easily changed by adding another redirection to

the original server after an infection. An attacker can simply add an iFrame in

the malicious server such that it sends users back to the landing server. In this

way, it can evade location features in [88]. On the other hand, as long as attackers

rely on compromised servers to redirect users to their malicious web infrastructures,

VisHunter will detect the location difference.

Graph-based Features: This group aims to characterize the structure of en-

trances based on graph properties. Attackers would be required to change their

fundamental operation structures for evasion. For example, to evade the invisible

96

authority feature, malicious invisible servers would be allowed to use only a few

compromised servers to redirect to them, which effectively limits the effectiveness of

attackers’ operations.

Role-based Features: This group aims to distinguish between benign and ma-

licious entrances to the advertisement infrastructures. To evade this group of fea-

tures, attackers are required to either abuse public known advertisers, for example,

googleadservices.com to redirect traffic, which is not trivial since those services

usually have strict scrutiny processes, or to directly redirect users using compromised

servers, which can be detected through other features (e.g., location-based features).

Relation-based Features: The group aims to characterize general entrances of

benign infrastructures. CDN-based features are hard to evade since malicious servers

usually have different paths with compromised servers. At first glance, partner based

on search results feature seems easier to evade, e.g., attackers may circumvent search

engine partner relationships by posting compromised servers and malicious servers

together. However, such behavior could lead existing work (e.g., EvilSeed [76] and

PoisonAmplifier [78]) to find more malicious servers easily.

As a result, 12 features are extracted for each entrance, and a classifier (J48

decision tree) is trained with known malicious and benign entrances to detect the

entrances to malicious web infrastructures. We acknowledge that attackers may

artificially manipulate some of our proposed features to evade VisHunter. However,

it is not trivial for attackers to evade the detection based on the combined use of all

features without putting a significant amount of investment.

5.4.3 Inferring Malicious Infrastructures

Malicious entrance detection component identifies malicious entrances, which es-

sentially characterizes the typical exploit process where an unsuspecting user is redi-

97

rected by a compromised server and lured into an attacker’s malicious web infras-

tructure. However, as described in Figure 1.2, a victim machine may directly visit

malicious servers at the post-infection stage, e.g., bots connecting to their C&C

servers. Therefore, this component is to infer the other missed malicious servers

(e.g., post-infection servers) under the malicious infrastructures.

To obtain a complete view of the entire malicious infrastructure, the inferring

component first builds a relation graph to characterize the relationship among ma-

licious servers, then it exploits a graph based propagation algorithm to identify ad-

ditional malicious servers based on their correlation with malicious servers already

detected by the previous component and their visibility statuses. Specifically, we use

the following two heuristics to build a propagation graph.

Malicious hosts are typically inter-connected. Recent work [85] shows

that there exist a set of topologically dedicated malicious servers linking to 76.2%

malicious redirections. Motivated by this observation, we first build the relation

graph with all the redirections, not only between visible and invisible servers but

also amongst visible/invisible servers themselves. Thus, through the propagation of

malicious scores to those dedicated malicious hosts, we can find additional compro-

mised servers and visible malicious servers. To exploit the locality among malicious

servers, we further add an edge to the propagation graph if two servers share the

same IP subnet (/24). Since most malicious servers are invisible, we add such edges

only for invisible servers to reduce the graph complexity.

Malicious servers are typically accessed by only compromised clients.

Post-infection malicious servers, such as C&C and drop-zone servers, are often in-

tended to be accessed only by infected client machines. To characterize this relation-

ship, we add edges between client nodes and their visiting invisible servers on the

propagation graph.

98

In this way, we build our propagation graph as a heterogeneous graph. The nodes

consist of both servers and clients, and the edges reflect the connection via redirec-

tions, IP sharing, and direct visiting. Next, similar to how the PageRank algorithm

evaluates the importance of webpages based on their link structure, VisHunter

propagates malicious scores from detected malicious servers to other servers. We

note that some compromised servers are legitimate servers that may also be con-

nected with other benign servers. Therefore, to propagate malicious scores inside

malicious web infrastructures, we compute two scores for each server in a similar

way to [85]: one to measure the server’s reputation and another to measure the

closeness to malicious infrastructures.

Specifically, we use the visibility property to characterize closeness to malicious

infrastructures. At the beginning, we assign each server si an initial visibility score

vissi as follows: 1) all the invisible servers will have a visibility score 0; 2) all the

visible servers that do not redirect to/from invisible servers will have a visibility

score 1; 3) for those visible servers that have connections with invisible servers, we

define their visibility score as: vissi = Numvis

Numinvis+Numvis
where Numinvis and Numvis

represent the number of connections to invisible and visible servers from server si,

respectively. Therefore, a high visibility score means that the server is far from

malicious infrastructures, thus more likely to be a benign server.

In addition, VisHunter also assigns each server an initial malicious score malsi ,

with malsi = 1 for the servers among the identified malicious entrances and malsi = 0

for the other servers. Then, VisHunter propagates both scores separately on the

propagation graph with a PageRank-like algorithm. After rounds of iterations till

both scores are converged, servers with high malicious scores and low visibility scores

will be considered to be a part of malicious infrastructures.

99

5.5 Evaluation

In this section, we describe our collected datasets for evaluation and present

evaluation results of each component of VisHunter and case studies. Then, we

compare VisHunter with existing approaches.

5.5.1 Data Trace and Ground Truth

Enterprise Traffic: We collected 6 months (from July 2013 to Oct 2013 and

from Nov 2014 to Dec, 2014) traffic from the same institute described in section

5.1.2.

Online Public Malware Traffic: We also crawled malware traces from a public

website malware-traffic-analysis.net [31] which provided more than 402 pcap

traces of malware collected from June 2013 to Jan 2015. Those traces showed de-

tailed analysis on how malware was delivered, typically through compromised servers

and drive-by-download exploit kits. Specifically, 213 cases used various redirection

methods to deliver malware, including JavaScript redirection, iFrame redirection,

and HTTP header redirection. Among them, 159 redirections were from visible

servers to invisible servers. Others were either because the incomplete traces made it

impossible to obtain the corresponding compromised servers or attackers leveraged

public servers (e.g., dynamic DNS server redirectme.net) as their exploit servers.

5.5.2 Time Impacts on Visibility

As the server visibility depends on search engine results that may change dy-

namically, we measured the stability of visibility over time. Specifically, we recorded

the visibility of each server in M Enter and B Enter when we collected the dataset

(June 2014) and then re-checked their visibility status every two months. The results

are summarized in Table 5.5. We can see that server visibility was relatively stable.

100

Only about 2% of the servers, regardless of their maliciousness, changed their visi-

bility status after 6 months, though malicious servers seemed slightly more volatile.

Further investigation showed that visible servers changed into invisible primarily

because their domain names expired and hence were removed from search engine

indexes. On the other hand, for those invisible servers that changed into visible,

it was mainly because those servers were newly registered and recently indexed by

search engines or they completed website construction and unblocked the crawlers

in “robots.txt”.

Table 5.5: Stability of visibility

time
visible → invisible invisible → visible

M Enter B Enter M Enter B Enter

Jun,2014 - - - -

Aug,2014 20 (1.12%) 1,043 (1.04%) 22 (1.23%) 885 (0.86%)

Oct,2014 34(1.91%) 1,782(1.78%) 30(1.68%) 1,306(1.31%)

Dec,2014 47(2.64%) 2,615(2.61%) 36(2.02%) 1,583(1.58%)

5.5.3 Search Engines Comparison

To evaluate the possible bias of the visibility results for different search engines,

we randomly select 100 servers from B Enter and M Enter respectively, and test their

visibility on different search engines. We use visibility from Google search results as

the baseline. “+” means other search engines find new visible servers, and “-” means

other search engines mislabel some visible servers to invisible servers. Table 5.6 shows

the results. We can see that overall different search engines return similar results.

Bing and Yahoo have very similar results since now Yahoo search engine is based

on Bing. Google only mislabels few visible servers as invisible servers. The missed

101

servers in M Enter are probably because those search engines refrain from showing

known malicious sites. In addition, the combination of different search engines can

provide a better view of visibility, which could be leveraged in our future work.

Table 5.6: Comparison among different search engines
Visible servers in B Enter Visible servers in M Enter

Bing +4,-4 +3,-14,

Yahoo +4,-4 +4,-13,

5.5.4 Malicious Entrance Detection Results

To evaluate the performance of VisHunter, we first performed a 10-fold cross-

validation of VisHunter’s classifier with Strain, the ground truth dataset we used for

the measurement study on redirections in Section 5.3.2. The J48 classifier achieved

an average true positive rate of 96.2% at a 0.9% false positive rate.

We investigated the misclassified cases. The only missed malicious redirection

(false negative) was because a visible server redirected to two invisible servers with

different IP addresses, which was labeled as a benign advertisement behavior. For

six false positive cases, they all redirected from a visible server to an invisible server.

Two of the redirections, even though their domains were not detected by VirusTo-

tal, included IP addresses labeled as malicious. For the redirection deal4u.in →

rggg.net, the invisible server is now visible and for sale. The redirection eoaclk.com

→ paragonhondaoffers.com is an interesting case. paragonhondaoffers.com was

the website of a car company who blocked search engines’ crawlers. This was not

usual because car dealers would want to promote their offers. We further checked

its Whois information and found that the domain was registered by a third party

102

Table 5.7: Malicious entrance detection results

VisHunter
2013 2014 13-14

Jul Aug Sep Oct Nov Dec Malware
59 26 36 41 34 69 135

Confirmed 34 11 15 21 12 27 135
Suspicious 9 1 6 6 8 17 0

Manual 0 1 2 1 7 3 0
Expired 9 8 4 2 0 0 0

False Positive 7 5 9 11 7 22 0
False Negative N/A N/A N/A N/A N/A N/A 24

company that provided marketing services. The remaining two false positive redi-

rections were essential between the partner websites that provided similar products.

This could be addressed by calculating the topic similarity of two websites.

We further evaluated VisHunter with 6 months enterprise traffic and the public

malware traces. Table 5.7 presents the number of malicious entrances VisHunter

detected. To get the ground truth of those detected entrances, we checked the invis-

ible servers in the entrances against VirusTotal. If at least two anti-virus software

detected an invisible server as malicious, we believed that the corresponding entrance

was malicious, and marked it as “confirmed”. If only one anti-virus software detected

it as malicious, we marked the corresponding entrance as “suspicious”. If a domain

was expired, we marked it as “expired”. For all the remaining servers, we manually

verified them. If a server was reported by other resources (security blogs, analysis

reports, and etc) as malicious, we marked the corresponding entrance as “manual”;

otherwise, it was considered to be a false positive.

Note that the false positives here were not always benign entrances. Some of them

did have suspicious behaviors. For example, the redirection ???ssdns.com/wp-conte

nt/favicon1.png → ???cloudproxy.com/2devnulltracker, was suspicious as it

103

was from an image file favico1.png to a proxy server. However, since we were unable

to procure an evidence to confirm its maliciousness, we conservatively labeled it as a

false positive. Some other false positives were due to CDNs. For example, for the en-

trance nv.ahcdn.com/axx/598132.flv → 88.208.57.3/bxx/598132.flv, the two

servers shared similar path patterns and the same filename. However, since our

CDN-related features required that two servers shared the same URI, VisHunter

detected the entrance as a false positive. For the remaining false positives, we found

that they were the entrances to benign partner web servers. One complementary fea-

ture to eliminate these false positives is to check topic similarity of the two servers.

We also note that VisHunter was capable of detecting new malicious invisible

servers that were missed by VirusTotal, even though one would expect that for

data from 2013, which were more than 2 years old, VirusTotal would have already

captured the most, if not all, malicious servers. In fact, for the recent data from 2014,

we have successfully submitted several new malicious cases to VirusTotal. Therefore,

we believe that VisHunter, as a behavior-based approach, is complementary to the

widely used blacklisting and signature-based methods (e.g., IDS), and has a potential

to detect targeted/stealthy attacks that elude public blacklists.

For the online malware traffic traces, VisHunter detected 84.9% of all malicious

entrances. The missed cases were mainly the visible servers redirecting to multiple

invisible servers with completely different IP addresses. Further investigation showed

that this was because we aggregated all the redirections over one and half year

together. For a shorter period of time, e.g. 1 month, the compromised servers or

the public proxy servers abused by attackers only redirected to a limited number of

invisible malicious servers.

For those confirmed malicious servers, we further extracted the earliest timestamp

when they were detected by VirusTotal and compared it against our detection time.

104

Figure 5.4 shows the CDF of the detection time difference distribution. We can see

that when VisHunter detected those malicious servers, around 50% of them were

still not detected by VirusTotal.

Figure 5.4: Detection time difference distribution

5.5.5 Inferring Results

We evaluated the performance of the inferring component for each month. We

used all the detected malicious entrances as the seeds without removing any false

positive cases. We believe this provides the most realistic and accurate assessment

of how VisHunter would perform when used in practice.

To quantify the effectiveness of the inference results, we considered both the

number of correctly inferred malicious servers, termed as “Hit Number”, and the

ratio of the hit number to the total number of inferred servers termed as “Hit Rate”.

Thus, a higher hit number indicates that the propagation component can catch more

malicious servers, and a higher hit rate indicates the algorithm can infer malicious

servers more accurately.

105

In general, the server with high malicious score (low reputation) and low visi-

bility score (close to malicious infrastructures) is likely to be malicious. We used

July data as the training set to choose the appropriate selection sizes for malicious

score and filtering size for visibility scores. In particular, after the propagation con-

verges, VisHunter will output top 600 servers with the highest malicious scores

(Top600Mscore) as selection size and top 1000 servers with highest visibility scores

(Top1000V score) as filtering size. Those servers that appear in Top600Mscore but

not in Top1000V score will be inferred as malicious servers. This way, VisHunter

achieved a hit rate around 70%.

Figure 5.5 shows the propagation results for the July data with different selection

sizes and filtering sizes.

Varying Filtering Size based on visibility score (Sv). As can be seen

from Figure 5.5(a), when filtering size increases, the hit rate also increases. For

instance, assuming selection size is Top600Mscore; if VisHunter filters top 1000

servers with the highest visibility score (filtering size is Top1000V score), it can achieve

a 65% hit rate. If the filtering criterion is set to top 20000 servers (filtering size is

Top20000V score), the hit rate will increase to 77%.

Moreover, as shown in Figure 5.5(b), the hit number decreases with the increase

of the filtering size based on visibility score. This is mainly because we also filter

some high reputation compromised servers.

Varying Selection Size based on malicious score (Sm). Figure 5.5 also

shows that with an increasing selection size, more malicious servers could be identi-

fied by VisHunter. More specifically, assuming filtering size is Top1000V score; the

number of malicious servers detected by VisHunter will increase from 71 to 295

when the selection size varies from top 100 (Top100Mscore) to top 800 (Top800Mscore)

servers with the highest malicious score.

106

Table 5.8: Propagation results

Inferring Results
2013 2014

Jul Aug Sep Oct Nov Dec
Inferred Servers 328 293 380 284 405 366

Visible servers 64 56 77 68 61 94
Invisible servers 264 237 303 216 344 272

Malicious servers 229 186 238 202 206 225
Hit rate 69.8% 63.5% 62.6% 71.1% 50.9% 61.5%

In addition, we can see from Figure 5.5(a), the hit rate will decrease when we

increase the selection size, because we include servers with lower malicious scores

which have a high chance to be legitimate.

In fact, figure 5.5 represents a typical trade-off between true positives (detected

malicious servers) and false positives (misclassified benign servers), with two selection

parameters governing the balance between them. To achieve a good trade-off, we

use July data as the training set and select the appropriate selection sizes for Sm

(Top600Mscore) and filtering size for Sv (Top1000V score).

(a) Hit Ratio (b) Hit Number

Figure 5.5: Propagation results

Table 5.8 summarizes the results for each month. On average, VisHunter was

107

capable of finding 6-9 times more malicious servers on top of the malicious seeds,

with around 65% hit rate. We further clustered the inferred malicious servers based

on their visibility. We do not distinguish compromised servers and malicious servers

here since VirusTotal does not provide such labels. However, our manual study shows

that those visible servers were likely to be legitimate servers that were compromised

or abused by attackers. On the other hand, those invisible servers were often part of

attackers’ malicious infrastructures.

5.5.6 Case Study

Next, we present some case studies detected by VisHunter.

Case Study of the Detection Component. Most of the malicious redirections

detected by VisHunter were from one visible server to one invisible server. Since

VisHunter does not require a diverse set of clients for detection [99], it can even

detect the malicious infrastructure even only one client accesses it. One interesting

case VisHunter detected was Onlinefwd.com campaign [54], which was associated

with adware and browser hijackers. In our data, five domains redirected users to

Onlinefwd.com, and all of those five domains were for sale. When we accessed

them recently, both saplab.org and ruby.runpaint.org redirected users to fake

AV websites.

Figure 5.6: Onlinefwd.com campaign

108

Table 5.9: Typosquatting campaign
Domain True domain Rank V score Rank Mscore

anvidea.com nvidia.com 15666 342
carigslist.com craigslist.org 13324 355
yourube.com youtube.com 14587 396
creaers.net creaders.net 16635 416

fandago.com fandango.com 16647 417
...

Case Study of the inferring Component. Since our propagation graph is

built from both redirections and inner relationships, VisHunter can find more

various types of malicious servers under the malicious cyber infrastructure. One in-

teresting campaign VisHunter found was a typosquatting campaign. There were

totally 21 typosquatting domains involved in the campaign and they all shared the

same IP address. Table 5.9 lists the malicious typosquatting domains and their cor-

responding correct domains. All of these servers have high malicious scores and low

visibility scores. Further investigation shows that these servers were propagated with

high malicious scores because an infected client visited these typo servers. Moreover,

since these typosquatting servers shared the same IP address, they also propagated

the malicious score to themselves. Some of the domains were already expired, e.g.,

anvidea.com, while other, such as yourube.com, which was registered on 2005, were

still redirecting users to fake AV servers.

5.5.7 Comparison with Existing Work

Unlike VisHunter, existing work on malicious redirection detection either target

on specific attack channels or require a large and diverse user base, which limits their

practicality. In this section, we quantitatively compare VisHunter with existing

work SURF [88].

SURF makes use of 9 features to detect malicious servers involved in a search

109

poisoning attack. Three of them belong to poisoning resistance, which is only ap-

plicable for a search poisoning attack. Besides these attack-specific features, there

remain six features. Since all the redirections in VisHunter from visible servers

to invisible servers are already cross-site redirections, we ignore “total redirections

hops” and “cross-site redirections hops”. In fact, as discussed, these two features

could be easily manipulated by attackers who have a control over the compromised

and/or malicious servers. Since the information about “page to load/render errors”

was not available in our dataset, we implemented a classifier based on the remaining

three features for comparison.

Unfortunately, SURF missed all the malicious redirections because most benign

and malicious cases shared similar features. 72.47% of benign redirections had differ-

ent locations, and 39.97% benign redirections also redirected from domain names to

IP addresses. Moreover, none of the malicious redirections used cloaking techniques.

We acknowledge that our comparison might not be comprehensive enough to draw a

solid conclusion partially due to the fact that we were not able to completely repro-

duce SURF’s classifier, and the main goal of SURF was to detect a search poisoning

attack rather than general malicious redirections. Nevertheless, it is worth to note

that redirection features alone are subject to circumvention by attackers, and lever-

aging visibility as a complementary feature allows VisHunter to achieve better

detection accuracy and to be more robust against manipulation.

5.6 Discussion

Overhead: The most significant overhead in VisHunter is the visibility checking

on the search engines. However, as shown in Section 5.5.2, visibility of servers is not

changed frequently. In other words, we do not need to check the visibility of all the

servers every day.

110

Limitation: For some visible malicious servers hosted on compromised servers,

VisHunter may not guarantee to detect them. However, since those visible mali-

cious servers are indexed by search engines, they become good targets for existing

work, such as EvilSeed [76] and PoisonAmplifier [78], which explore the shared pat-

terns among the malicious servers and use search engines to find them.

Evasion: An attacker who gains the knowledge of VisHunter may attempt to

circumvent it by either manipulating the visibility of malicious servers or misleading

the VisHunter classifier.

To manipulate the visibility of malicious servers, attackers can make their mali-

cious domains be public leading to malicious redirection from visible servers to visible

servers, which will be filtered by VisHunter. One way to promote malicious do-

mains to be public is to inject them into other compromised servers. However, this

will make them easily to be detected by the administrators of those compromised

servers. In addition, researchers can easily find all of the compromised servers by

searching the malicious domain in search engines. In addition, if cyber criminals

directly submit their domains to search engines, such malicious servers will not link

with other benign servers. Therefore, we can use other features such as the number

of search results, to assign some weights to the server visibility. Malicious servers

will be visible with fewer weights.

To mislead the classifier, as discussed in Section 5.4.2, those features can not be

easily evaded by attackers without causing a significant amount of cost. Therefore,

even some adversaries may still find ways to bypass VisHunter, the resource con-

straints would limit the effectiveness of the adversaries’ campaigns or raise the higher

cost for them.

111

6. INFERING PROMOTING SERVERS ON COMMENT SPAM∗

We have introduced PoisonAmplifier, SMASH, and VisHunter. Although

SMASH and VisHunter together can detect all types of servers in our proposed

malicious cyber infrastructure model. However, these two systems are needed to be

deployed at the edge of the network to passively monitor the network traffic. In this

chapter, we study malicious cyber infrastructure from a new perspective, the servers

promoted by spammers. These promoted servers could be any type of servers.

Spamdexing (also known as web spam, or search engine spam) [74] refers to the

practice of artificially improving the search rank of a target website than it should

have. The rise of such spam causes unnecessary work for search engine crawlers,

annoys search engine users with poor search results, and even often leads to phishing

websites or malware drive-by downloads. In a recent study [40], Google reports

about 95,000 new malicious websites every day, which results in 12-14 million daily

search-related warnings and 300,000 download alerts.

To boost the ranking of the target websites, spammers have already developed

lots of spamdexing techniques [74] in the past few years, most of which also called

Black Hat SEO (Search Engine Optimization). Text and Link manipulations are

two main SEO techniques frequently abused by spammers to exploit the incorrect

application of page rank heuristics. Through injecting excessively repeating con-

tents in their websites or changing the perceived structure of web graph, spammers

have successfully improved their search ranks in the past [13]. However, since search

engines have already developed new techniques to detect these content/link manipu-

∗Part of this chapter is reprinted with the permission from “NeighborWatcher: A Content-
Agnostic Comment Spam Inference System” Jialong Zhang and Guofei Gu. In Proceedings of the
20th Annual Network and Distributed System Security Symposium(NDSS’13), Copyright c© 2013
by Internet Society.

112

lation tricks [17, 19], spammers begin to change to another new trick of spamdexing,

named comment spamming. Comment spamming refers to the behavior of automat-

ically and massively posting random comments or specific messages (with links to

some promoting websites) to a benign third-party website that allows user-generated

content, such as forums (including discussion boards), blogs, and guestbooks. In this

chapter, we refer to those benign victim websites that are frequently used by spam-

mers to post comment spam as spam harbors (or sometimes harbors for short). This

new trick of comment spam can benefit spammers in several ways: (1) spammers

can easily inherit some reputations of these harbors with nearly zero cost; (2) the

risk of being detected by search engines is reduced; (3) spammers can easily disguise

themselves as normal visitors who also contribute content.

In this chapter, starting from a seed set of collected spam, we first perform a

measurement study on spam harbors’ quality and the graph structure of spam har-

bors, which reveals the structure of spammers’ infrastructure. We find that spam

harbors usually have relatively low qualities/reputations, which is quite counterintu-

itive because spammers are expected to spam on high-quality harbors to maximize

their profits. To compensate the low reputations of these harbors, spammers in-

tend to keep using a large variety of harbors for spamming. As for the structure

of their spamming infrastructure, we find that spam harbors in the same campaign

always post similar spam links at the similar time, which reflects that spam harbors

in the same campaign always have close relationships while normal websites do not

necessary have such relationships.

Based on observations from this measurement study, we design a system named

NeighbourWatcher. Our intuition is that if the promoting link in a comment

also appears in the neighbors (cliques in the spam harbor infrastructure) of this

harbor, it has a higher possibility of being a spam message, because normal links

113

are not necessary always been posted on the specific set of harbors that have been

verified to be exploited by the same spammer/campaign. NeighbourWatcher

uses a graph-based propagation algorithm to characterize neighborhood relation-

ships among collected spam harbors in order to infer the spamming infrastructure.

When a new comment is posted with some link, NeighbourWatcher performs

a neighborhood watch on the graph and calculates a suspicious score based on the

graph-based inference. With a prototype implementation running on a real-world

dataset, we show that NeighbourWatcher can keep finding new spam and spam

harbors every day.

Figure 6.1: The workflow of comment spamming

6.1 Problem Statement

Most existing state-of-the-art approaches to detect comment spam use three types

of features: (1) content-based features [80, 89], e.g., the utilization of certain words,

content redundancy/frequency, topic or language inconsistency; (2) context-based

114

features [91], which mainly refer to the existence of URL cloaking or redirection

techniques (because normal URLs rarely use them); (3) behavior-based features [96,

100], which mainly refer to the time difference between main article and comment

posting (which is typically short in normal cases). Unfortunately, all of them have

their clear limitations and spammers already become agiler in evading them. To

evade content-based detection [80, 89], spammers can artificially manipulate their

posting content by mixing spam links with normal content, or posting very few

content on each harbor site but spamming on a large variety of harbors. Thus they

can easily disguise themselves as normal visitors, and remain not detected. In [91],

the authors used context-based features, i.e., checking the use of URL cloaking or

redirection tricks, which is effective for the certain type of spam. However, it has

a low coverage in the detection scope, because most comment spam currently is

mainly used for search rank manipulation [96]. Thus, URL hiding/cloaking is no

longer necessary and less used. The limitation of time differences between main

article and comment posting [96, 100] is also clear; it is applicable to only some

blogs, which are time sensitive, while not easily applicable to more broader websites

such as forums, guestbooks. As we can see, within these three types of features, the

later two typically may not work well alone, thus they are suggested to combine with

content-based features. Finally, we note that another limitation for content-based

detection is that the training overhead is typically high; it needs to be trained and

updated constantly (with the fast-changing web contents) and it has to be customized

specifically for each individual website.

Complementary to previous work on comment spam detection, we approach the

problem from a new perspective, i.e., we focus on exploiting the structure of spam-

ming infrastructure, an essential component of comment spamming (which is rel-

atively stable), rather than the content (which changes frequently). The intuition

115

behinds structure-based inference is that, while spamming content can be dynamic,

spamming campaigns and spamming structure are much more persistent. If we can

recognize spamming patterns that characterize the structure of spammers’ infrastruc-

ture, then we can continue to detect spam even if the spammers frequently change

their spam content.

6.1.1 Threat Model

Driven by profits, spammers always want to take full advantage of their resources

(e.g., spam harbors). Usually, there are two ways to achieve this goal: massive

spamming on a few harbors, or posting few on each harbor but spamming on a

large variety of harbors. If spammers post similar spam content massively on a few

harbors, it is easy to be detected by content-based detection systems. However, if

spammers post spam on a large number of harbors, the chance of detection at the

individual harbor is reduced. In particular, spammers typically keep using their

familiar harbors, because these websites may not have effective sanitization/filter

mechanisms or posting on them can be easily automated, thus making a comfort

zone for the spammers.

As illustrated in Figure 6.1, in comment spamming, spammers typical need to

first find out suitable harbors, e.g., those with good reputations, those that can be

automatically spammed, or those that have weak or no sanitization mechanisms. To

achieve these goals, spammers usually use different Google dorks [6] to find target

harbors or simply buy some harbors from underground markets. In this way, they

can get a set of harbors that can be used to automatically post spam (labeled as 1©).

These collected harbors are usually some forums, blogs, or guestbooks that support

user contributed content, and normal users typically contribute a lot to them. In this

case, spammers can easily disguise them as normal visitors, which makes content-

116

based detection inefficient. Then spammers need to verify these collected harbors to

assure that they can automatically post spam on these harbors without being easily

blocked. They can do this by posting random normal content. After verification,

spammers begin to spam on validated harbors in a large scale (2©). As a result,

when search engine bots crawl these harbors, they will index the spam URLs posted

in these harbors, which can finally improve the search rank of the promoted websites

in the spam (3©). Thus, when users search certain keywords through search engines,

those promoted spam websites may have higher search ranks than they should have

(4©), which may lead victims to click spam websites in search results (5©). Or victims

may directly click the embedded spam links when they read those spam comments,

which will directly lead them to spam websites (6©)

6.1.2 Categories of Spam Harbors

As described in Section 6.1.1, to launch efficient comment spam, spammers need

to carefully choose their spam harbors. Next, we describe three most common types

of harbors frequently used by comment spamming.

Web blogs are typically websites where people can post articles. Usually, these

blogs have comment areas for each article, which allow visitors to comment on corre-

sponding articles. Thus, spammers can also use these comment space for spamming.

A possible detection feature of such spamming is that spammers may post repeat-

ing spam comments, and also the time difference between the article and the spam

comment could be longer than the normal case [96].

Forums are typically websites where people can have conversations in the form

of posting messages. Since most forums need users to register beforehand, spammers

can also post their spam as long as they can automatically register accounts for these

websites. Since some of the conversations could last for a long time, it is hard to

117

detect this kind of spam based on the posting time.

GuestBooks are typically platforms to let visitors to communicate with cor-

responding websites. Most companies websites have their guestbook pages to let

people leave a message to their companies. GuestBooks are agiler than blogs and

forums because there are no normal timing patterns and no conversations; everyone

can leave any message anytime with fewer restrictions.

Table 6.1 summarizes the effectiveness of existing different types of detection

features on different types of harbors. We can see that content-based and behavior-

based features are relatively effective for blog spam. Articles in blogs usually have

specific topics, thus it is easy to detect spam whose content is not related to articles.

Also, it is less common for normal users to comment on an out-of-date article in a

blog. Unfortunately, most blogs still do not have any such detection system, which

leaves them still to be a good platform for spammers. In the contrast, there are

typically no specific topics in guestbooks; everyone can leave any message at any

time. Thus guestbook spam is hard for all existing detection features. Context-

based features, i.e., detecting URL cloaking, do not have good results on all the

harbors because of the very limited effectiveness scope. In short, as we can clearly

see that existing detection features are certainly not enough in fighting comment

spam. The need for effective and complementary techniques is pressing.

Table 6.1: Effectiveness of different types of detection features
Features Content Behavior Context

Blogs good good bad
Forums medium medium bad

GuestBooks bad bad bad

118

6.2 Spam Harbor Measurement

Comment spamming, as a relatively new trick of spamdexing, has been reported

for quite a while, ever since 2004 [11]. However, until recently, comment spamming

has not been sufficiently studied, and existing approaches are clearly insufficient as

discussed earlier. To gain an in-depth understanding of the comment spamming,

we study the problem from a new perspective, i.e., spam harbors, which form the

basic infrastructure for spammers. Why spammers choose these harbors? Are there

any special properties of these harbors? Can we use these properties to help defend

against comment spam? In this section, we will try to answer these questions and

present what we have learned from these harbors.

6.2.1 Dataset

To collect spam harbors, we started from 10,000 verified spam links Sstudy (which

are collected from our previous work [113]) and collected a dataset containing 38,913

real-world spam harbors, which are represented with unique domain names. Specif-

ically, we searched all these spam links in Google and collected the search results.

Among these search results, not all of them are spam harbors, e.g., some are secu-

rity websites that report those search links as spam, and some are benign websites1

that link to those search links. However, we observe that spam harbors typically

contain embedded hyperlink tags (e.g., anchor tag < a href = ”...” > and BBCode

[URL]...[/URL]). This is because spammers perform automated posting on massive

websites, and typically they are unsure whether their target spam harbors support

embedded links or not. Thus, in order to achieve a high success rate of posting the

spam links, they choose to use embedded hyperlink tags [97]. Based on this obser-

1Since some of those search links are compromised benign links, they may also be linked by
other benign websites.

119

vation, we only extracted those search results with embedded hyperlink tags in their

contents as spam harbors.2

For each spam harbor, starting from the page that contains our verified spam

links, we further crawled all possible pages on that website and recorded times-

tamps on the page (typically these webpages always record the time when a message

is posted). Table 6.2 provides an overview of our collected data. To study the

differences among three categories of harbors, we roughly group the collected har-

bors based on their URLs. That is, if a harbor URL contains keywords such as

“blog”,“forum”,“guestbook”, we will cluster them into blog, forum, and guestbook

category, respectively. We do not further distinguish remaining harbors without clear

keywords (listed as “other” in Table 6.2), and treat them as the mixing of these three

categories. Among 38,913 spam harbors returned by search results, 35,931 are still

active so we can crawl further pages on these harbors. We have crawled more than

9 million postings in total.

Table 6.2: Data collection of comment spam harbors
blog forum guestbook other total

of search results 27,846 29,860 31,926 500,717 590,349
of harbors (domain) 4,807 2,515 3,878 27,713 38,913

of active harbors 4,685 2,185 3,419 25,642 35,931
of postings 532,413 640,073 1,469,251 6,497,263 9,139,000

6.2.2 Quality of Harbors

Since the goal of comment spamming is to improve the search ranks of spam web-

sites, the higher quality spam harbors have, the more effective comment spamming

2Note that we may not extract a complete list of harbors in this way. Instead, our conservative
goal here is to extract spam harbors with a higher confidence.

120

is. In this section, we try to evaluate the quality (e.g., reputation) of these spam

harbors in the following three perspectives.

PageRank Score is calculated by PageRank algorithm [35], which is widely

used by search engines to rank the importance of websites. A high PageRank score

indicates a better reputation of the website, which can lead to a high search rank. To

evaluate the overall quality of spam harbors, we use PageRank scores of spam harbors

as an indicator of the quality of them. We randomly choose 1,000 spam harbors in

each category, and use Google toolbar [16] to automatically request PageRank scores

of these spam harbors. Figure 6.2 shows the PageRank scores distribution of these

harbors.

Figure 6.2: PageRank score distribution of harbors

We can see that spammers target on both high-reputation and low-reputation

harbors. From the graph, less than 20% harbors have a PageRank score higher than

3, which is the average PageRank score based on [53]. The reason is mainly because

that websites with high PageRank scores usually have stronger spam sanitization

mechanisms or more strict posting rules, which make it harder for spammers to

121

keep automatically spamming on these websites. In addition, about 40% guestbook

harbors have PageRank scores of 0, because most of them are small company websites

that do not have notable reputations. However, spam links can still inherit and

accumulate some reputation from a large number of such harbors. At least, they can

use this way to let search engines to index them.

Life Time is defined as the time interval between the posting time of the first

spam and the recent spam (based on our crawled dataset). Spammers tend to find

some stable harbors that they can keep using. Thus, a long life time should be a

good indication of high quality for spammers. Since there is no ground truth for

the first spam and last spam, we randomly choose 100 harbors in each category and

manually check their postings. Since we may not be able to crawl all the pages inside

a given harbor, our estimated life time based on the limited crawled dataset is simply

a lower bound. Figure 6.3 shows the distribution of lifetime of spam harbors.

Figure 6.3: Distribution of harbor life time

We can see that for both blog and forum harbors, more than 80% harbors have

a long lifetime more than 1 year. And more than 70% guestbook harbors have a

122

lifetime longer than 2 years. During the manual checking process, we found that for

most harbors, the initial postings are benign but later these harbors are frequently

exploited by spammers for spamming. Especially for guestbook harbors, almost all

the later postings are spam, which confirms that these spam harbors are kept being

used by spammers for a long time.

Google Indexing Interval is defined as the time difference between two con-

secutive Google crawling (indexing) time of the same spam harbor. To reduce the

crawler overhead but also keep pace with dynamically updated web pages, search

engine bots need to periodically crawl websites. Thus, there always exist a time lag

between posting time and search engine indexing time. A shorter time lag (indexing

interval) should be a sign of a high quality for spammers, because search engines can

quickly index the new spam. Google Cache[14] contains the time when Google bot

crawled the web page. Thus we randomly choose 100 active spam harbors in each

category 3 and crawl their cache pages every day. Figure 6.4 shows the distribution

of Google indexing interval.

Figure 6.4: Googe indexing interval

3Note that Google Cache has a request limitation per day. Thus we only choose 100 harbors in
this test. Also, Google does not cache all web pages, so we choose those pages that are cached by
Google

123

Compared with guestbook harbors, blog and forum harbors have relatively shorter

indexing intervals because normal postings on them update much more frequently

than postings on guestbooks. Thus, Google bots crawl blog/forum harbors much

more frequently than guestbook harbors. However, still, nearly 80% of all harbors

have an indexing interval larger than 20 days, which indicates that the overall in-

dexing frequency is still not too high.

Lessons learned: Although high-reputation harbors should be the best choice

for spammers, high-reputation websites usually have more strict spam filtering mech-

anisms or have stronger authentication systems, which makes it harder for spammers

to automatically spam on them. Thus, spammers tend to keep using a large number

of harbors for spamming regardless of their reputations to compensate the relatively

poor quality of individual harbors. However, our observations also convey a posi-

tive message to the defenders: since there typically exists a long time lag between

spamming time and search engine indexing time, if we can detect these spam before

search engines index them, we can still efficiently prevent comment spamming from

impacting search ranks.

6.2.3 Spam Harbors Infrastructure

After finding out qualified spam harbors, spammers intend to take full utilization

of these harbors for spamming. In this section, we study how spammers utilize these

harbors for spamming, and what are the relationships that spammers formed on

these harbors.

6.2.3.1 Relationship Graph

To reduce the possibility of being detected, and also to take full utilization of

their spam harbors, spammers tend to distribute their spam among multiple spam

harbors. Thus, different spam harbors may always share similar spam, because

124

spammers intend to recycle these harbors. This special close relationship among

these harbors, which may rarely occur in the normal case, gives us a chance to study

the spamming behaviors of spammers. To characterize such relationship, we build

a relationship graph G = (V,E) among these spam harbors. We view each spam

harbor as a node v and build up an edge e between two spam harbors if they share

same spam (links) in their postings. The resulting graph G for our entire database

consists of 13 connected subgraphs, each of which has more than two nodes. The

largest connected component G0 contains 97 % spam harbor domains.

Figure 6.5: Relation graph of spam harbors

Figure 6.5 is a partial visual representation of G0. We can see that there exists a

large number of communities within G0, i.e., a group of nodes closely interconnected

with each other and only loosely interconnected with other communities. Here,

each community represents a set of harbors in close relationships with each other,

125

possibly used by the same spammer. In addition, although different spammers may

have different harbors, there always exist some harbors shared by multiple spammers,

which provides us a good opportunity to find more other harbors (even starting from

a small seed set).

6.2.3.2 Spam Harbor Community

In the spamming process, spammers first need to choose spam harbors to post

their spam, and then need to distribute their spam on these selected harbors. In this

section, we will study how spammers choose their harbors, and how they distribute

spam to selected harbors.

Choosing Spam Harbors. In this part, we analyze how spammers choose

spam harbors, i.e., we examine how many harbors are used for spamming each time.

Some spammers may spam on all their available harbors to fully use their resources,

and some may only sample parts of their harbors for spamming to avoid the expo-

sure/detection of all their resources. To measure how spammers choose harbors each

time, we define a metric named “Distribution Ratio”, which is the ratio of the num-

ber of harbors posting same spam over the number of harbors in their community

[7]. Thus, a higher Distribution Ratio indicates that spammers tend to fully use their

spam harbors for spamming. Figure 6.6 shows the distribution of Distribution Ratio

for Sstudy.

We can see that 80% of spammers tend to use only less than 50% of their spam

harbors for the same spam. In this way, they can reduce the possibility of all their

resources being detected/exposed. However, since spammers always have a limited

number of harbors, to keep spamming, they have to recycle these harbors. As a

result, we will finally observe a relatively stable relationship among harbors.

Distributing Spam. After selecting spam harbors, spammers need to decide

126

Figure 6.6: Spam distribution ratio

how to distribute their spam to these selected harbors. For example, some spammers

may post the same spam on their selected harbors at a similar time. In that case,

posting time on these harbors should be similar. Other advanced spammers may

choose to distribute different spam on different selected harbors. In this study, we

simply consider two spam messages are posted in a similar time if they are posted

in the same month. To measure the similarity of spam posting time, we design a

metric, named “Time Centrality Ratio”, which is the ratio of the maximal number of

harbors that post the spam in the same month over the total number of harbors that

post this spam. The intuition here is that if all the harbors post a spam message in

the same month, it is possible that this spam is distributed to all selected harbors.

Otherwise, spammers will distribute different spam to selected harbors. Thus, a high

Time Centrality Ratio indicates that spammers distribute the same spam to most of

their selected harbors at a similar time. Figure 6.7 shows the distribution of Time

Centrality Ratio of Sstudy.

We can see that about 60% spam have a high ratio larger than 0.6. This means

that about 60% spam is distributed by spammers to more than 60% of their selected

harbors in one month for spamming.

Lessons learned: To efficiently utilize spam harbors, spammers intend to keep

127

Figure 6.7: Distribution of time centrality ratio

utilizing the spam harbors from a relatively stable set (pool) that they own. Thus, es-

sentially spammers build an artificial relationship among these spam harbors, which

is considered as their spamming structure. In addition, since spammers have a lim-

ited number of harbors, they must use/recycle these harbors with a large scale of

spamming to maximize their profits. Also, although different spammers may have

different strategies to find their harbors, there always exist some intersections among

them, which gives us a chance to find more other spam communities even starting

from a small seed set.

6.3 Inference System Design

In this section, we present a brief overview of our inference system, then describe

in details its two core components: building spamming infrastructure graph and

spam inference.

6.3.1 Overview

From the measurement study in Section 6.2, we can see that if a link (in a com-

ment) is posted on a set of harbors that have a close relationship (e.g., within the

128

Figure 6.8: System architecture of NeighbourWatcher

Figure 6.9: Normalized neighborhood relationship matrix

same spam community in the infrastructure graph) at a similar time, it has a high

possibility to be spam. Following this intuition, we design a spam inference system,

named NeighbourWatcher. NeighbourWatcher infers comment spam purely

based on the links promoted in the postings, ignoring other content information. An

overview of NeighbourWatcher is shown in Figure 6.8. In practice, Neighbour-

Watcher keeps monitoring (and updating) spam harbors in our database and builds

the spamming infrastructure graph based on their posting history. In the inference

phase, when a new post is given, NeighbourWatcher extracts the embedded links,

and also finds out the websites that have been posted with the same links (we call the

set of these websites as a “real posting structure”). Based on the spam infrastructure

and the real posting structure, NeighbourWatcher calculates a suspicious score

to tell how likely this is spam. Next, we will describe the algorithms of building our

spamming infrastructure graph and inferring comment spam.

129

6.3.2 Building Spamming Infrastructure Graph

From Section 6.2, we know that spammers always have their own preferred spam

harbors, and they intend to keep utilizing these spam harbors for spamming. Thus

if multiple harbors always share similar postings in their history, it should be a good

indication that they are exploited by the same spammer for spamming, and also

have a high probability to be spammed by the same spammer in future. In this case,

if we find a new posting occurs on these harbors at a similar time, we could infer

this posting as spam with a reasonably high confidence. Following this intuition, we

build spammers’ spamming infrastructure based on shared postings (in historic data)

among these spam harbors. We define the spamming infrastructure (or sometimes

we simply use “spamming structure” to denote the same concept) as neighborhood

relationships among spam harbors. Thus, spam harbors spammed by the same spam-

mers should have close neighborhood relationships because they always share similar

spam postings in history. To quantify such relationships, given an input harbor, we

calculate neighborhood scores for all other spam harbors. A higher neighborhood

score of a harbor indicates a much closer neighborhood relationship with the given

(input) harbor.

To formalize the above intuition, we view all neighbor relationships among spam

harbors as a weighted undirected graph G = (V,E), in which V denotes the set of all

spam harbors, and each link (i, j) ∈ E denotes that harbor vi and harbor vj share

at least one common posting. The weight on the edge should reflect the strength

of the relationship between two harbors. In our case, let Li be the set of postings

(represented with their embedded URLs) in node vi and Lj be the set of postings in

node vj, then we define weight wi,j as |Li
⋂
Lj|. Thus, the more postings two harbors

share, the much closer they are. We further normalize wi,j by dividing
∑n
j wi,j as

130

shown in Figure 6.9.

Next, we design a graph-based propagation algorithm to propagate neighborhood

score from the input harbor(s) to its neighbors based the neighborhood relationship

graph G. Table 6.3 shows the notations used in our algorithms.

Table 6.3: Notations used in this chapter
W Normalized adjacency matrix of the neighbor graph
I Input harbor vector, Ii = 1 if i is a input harbor
N Neighbor score vector. Ni is the neighbor score of harbor i
R Real spam posting vector. Ri = 1 if harbor i posts the same input link
α Dampen factor. α = 0.85
n The number of spam harbors

Before propagation, we first assign an initial score Ii to each node Vi. For the

input harbor j, Ij is assigned with 1, and others are assigned with 0. Then we

calculate neighborhood scores for all harbors as follows:

N = I ·W (6.1)

Eq.(6.1) can capture the immediate neighbors of the input harbor. In this case,

each immediate neighbor is assigned with a neighborhood score based on the number

of common postings shared with the input harbor. The more common postings they

share, the higher score they should have. As shown in Figure 6.9, node 3 has a

higher score than node 1, because node 3 shares more common postings with the

input harbor node 1 in history. However, as we show in Section 6.2, spammers might

not always spam on all their harbors for each message, and our observed history

relationships may be only a subset of the spammers’ real relationships. To illustrate

131

this scenario and demonstrate how we handle this problem in a generalized way, we

show a case study in Figure 6.10.

Figure 6.10: A case study of comment spamming on different subsets of harbors

For this example, in the spamming process, a spammer first spams on node 1,2,3

for one spam message. And then the spammer spams on node 2,4,5 and node 3,5,6

with different spam messages. The neighborhood graph based on the history infor-

mation is shown in solid circles. Now if the spammer spams on node 1, 4, 5, 6 (as

seen in dashed circles), applying Eq.(6.1) with node 1 as the input harbor will assign

score 0 to node 4, 5, 6, because they are not directly connected with the input harbor

node 1. This makes neighborhood score be less efficient to capture potential rela-

tionships between the input harbor and other harbors that will possibly be spammed

by the same spammer. To overcome this problem, we need to deeply propagate the

neighborhood relationship, similar to the page rank algorithm. Specifically, if we

propagate the neighbor scores one further hop, this gives us I · W · W = I · W 2,

which will propagate neighbor scores from node 1 to 4. Thus the average received

132

score for each node in this case is (IẆ + I ·W ·W)/2. Naturally, the propagation

scores should decay along with the distance from the input harbor. To achieve this

goal, we dampen matrix W by a constant α (0 < α < 1).4 Thus the farther the dis-

tance between a harbor and the input harbor, the less neighbor score it can inherit.

Based on all of above, we propagate neighborhood scores for each harbor as follows:

N =

∑t
i=1 I · (α ·W)i

t
(6.2)

Once the neighbor score vector converges after t propagation steps, we can obtain

the final (stable) neighborhood scores for each harbor, and this score reflects how

close the neighbor relationship is between the input harbor and the corresponding

harbors. Next, we will present how to use these scores to infer a given new spam

message.

6.3.3 Spam Inference

To infer whether a given new message/posting is spam or not, we also need to

crawl other harbors to check if the link in the given posting also appears on them.

Thus, we obtain a real posting structure vector R, Ri = 1 if harbor i is also posted

with the given link. Now we have both real posting structure and neighborhood

scores for each harbor, next we present how to combine them to infer spam.

Intuitively, if harbors with high neighborhood scores have also been posted with

the same messages, it has a high possibility that the input message is spam. Neigh-

borhood scores reflect the neighbor relationships between other harbors and the input

harbor. Thus, if harbors have high neighbor scores, they may have a high possibility

to be spammed by the same spammer, which means if we find the input message

appears in these harbors, it should have a high possibility to be spam. Thus, we

4We empirically set α = 0.85 based on [66].

133

infer the spam by computing how real posting structure and neighborhood scores

combine together to contribute to a suspicious spam score. Specifically, we use a

modified cosine similarity function F (R,N) to characterize the similarity between

the real posting structure and the learned neighborhood relationship in the spam-

ming infrastructure. We define the final spam score for the input message/URL i as

follows:

Scorei = F (R,N) =
R ·N∑n
i Ri

(6.3)

Here, a higher spam score means that the real posting structure matches very well

with closer neighbors of the input harbor. Thus we should have a higher confidence

to infer the input message as spam.

6.4 Evaluation

In this section, we evaluate our system in two stages. For the first stage, we

evaluate NeighbourWatcher regarding its inference stability and effectiveness.

We also measure how many new spam and harbors can be inferred everyday, and

the topic diversity of these spam postings. In the second stage, we discuss possible

applications of our inference results.

6.4.1 Dataset and Ground Truth

To build the neighborhood relationship graph, we use the collected spam harbors

in Section 6.2. After that, we keep monitoring these spam harbors every day and ex-

tracting new postings from them for spam inference. Also, after inference, we search

inferred spam links in Google and use the same way in Section 6.2 to extract new

harbors from search results. To evaluate the effectiveness of our inference system,

we need to choose true spam links and benign links for testing. For the former, we

extract random postings from harbors and manually choose 500 verified spam mes-

134

sages (that contain spam links). To find a normal postings set, we assume domains

in Alexa [2] top 20,000 are highly reputable websites that have less chance to be

posted in comment spam. Thus, we check how many links in our collected postings

have the intersection with these domains. In this way, we get 754 normal postings

and combine them with 500 spam postings as our testing dataset Stest.

6.4.2 Stability of Spamming Structure

Our system exploits spammers’ posting infrastructure (or spamming structure) to

infer spam. Thus, if such infrastructure changes frequently, it will make our system

less effective. For example, if spammers keep using new harbors for spamming every

day, our system cannot infer their spam. To evaluate the stability of the spamming

structure, we essentially examine how the neighborhood relationship among spam

harbors change over the time. We build the neighborhood relationship graph of

spam harbors by setting wi,j = 1 to indicate that two spam harbors share at least

one common link and wi,j = 0 to represent no relationship between two harbors.

Then we consider such relationship graph in the time window [t, t+∆t5] as the initial

spamming structure and the relationship graph in the next window [t+ ∆t, t+ 2∆t]

as the testing spamming structure. Thus, the difference between two structures

indicates the instability of the spamming structure. To quantify such instability,

we use Hamming Distance [23] to measure the number of changed relationships CR

between these two-time window, as shown in Eq.(6.4). Here n is the number of total

harbors.

CRi =
n∑
j

|W t+2∆t
i,j −W t+∆t

i,j | (6.4)

Thus, a smaller value of CR implies a much more stable spamming structure.

For each spam harbor i in our database, we calculate its changed relationship CRi.

5We empirically set ∆t 1 month here.

135

Figure 6.11 shows the distribution of changed relationships for all spam harbors.

Figure 6.11: Changed relationship distribution

We can see that about 40% harbors do not change their neighbor relationships

because spammers keep utilizing the same harbors. In addition, about 80% spam

harbors change their relationships less than 20, which is also less than half of the

average community/clique size 50. Thus, even if a community loses 20 harbors, we

can still infer spam with the remaining 30 harbors as long as spammers keep recycling

their harbors. Furthermore, the continuous updating of our harbor database can

somehow compensate such instability, we will discuss more this in Section 6.5.

6.4.3 Effectiveness of Inference

To evaluate the effectiveness of our system, we test our system with Stest. We

consider both the number of correctly inferred spam, termed as “Hit Count”, and

the ratio of this number to the total number of inferred spam, termed as “Hit Rate”

(i.e., accuracy). Thus, a higher value of Hit Count indicates that our system can

catch more spam; and a higher value of Hit Rate indicates that our system can infer

spam more accurately.

136

Table 6.4: Sensitivity of the hit rate and hit count to the choice of similarity threshold
Sim. Threshold Hit Rate Hit Count False Positive

0.3 57.29% 432 322
0.4 75.93% 426 135
0.5 97.14% 408 12
0.6 97.8% 360 8

Since we infer spam based on the spam score threshold, we also check how the

threshold contributes to the inference results, a way similar to [94]. In our case, a

higher (thus more conservative) threshold may lead to a higher hit rate but with a

lower hit count. Table 6.4 shows how Hit Rate and Hit Count vary with different

settings of the threshold. We can see that a spam score threshold of 0.5 yields to a

relatively high hit rate (97%) with a relatively high hit count. Also, there are still 92

links that can not be correctly inferred as spam (i.e., false negatives) and 12 incorrect

inferred links based on our labels (i.e., false positives). We further check these links,

most of the false negatives only appeared in its input harbor, which means these spam

links do not appear in other harbors in our database. This is possible because our

database is relatively small and may not cover all spammers’ harbors. However, the

effectiveness could be easily further improved if one can build a larger dataset, e.g., by

recursively updating the spam harbors database, which will be discussed in Section

6.5. Among 12 false positives, 5 are actual benign websites posted by spammers in

order to conduct harbor testing (as discussed in Figure 6.1). 7 of them are those link

to some Alexa top 20,000 websites and we expected (labeled) them to be non-spam

as explained in our test dataset preparation. However, they turn out to be actual

spam posted on reputable websites (e.g., in some Google groups). If we exclude

them, our actual false positives are only five, which is pretty low. Finally, we note

again that our inference algorithm only uses the spamming structure information,

137

and it does not leverage other existing content features yet. Once combined with

existing features, we surely can expect a better performance.

(a) New Spam (b) New Spam Harbors

Figure 6.12: Constancy of NeighbourWatcher

6.4.4 Constancy

To evaluate the constancy of our system, we essentially examine whether our

system can continue finding new spam over time. We keep monitoring spam harbors

every day to check new postings. These new postings are submitted to our system

for spam inference. For each new inferred spam, we further search it in Google to

find new spam harbors (using the same method mentioned in Section 6.2) that are

not included in our database, then add them to our database every day.6 After 3

weeks’ study, we have totally inferred 91,636 new spam and 16,694 new spam harbors.

Figure 6.12 is the distribution of new inferred spam and new spam harbors over time.

We can see that our system can constantly find new spam and spam harbors as long

6We may add a few normal websites in our database in this way because our inference hit rate is
not 100%. However, we note that these websites most likely will not have close relationships with
other spam harbors, thus will not impact our inference results much.

138

as spammers keep posting new spam and also spamming on new harbors.

Diversity of New Spam. To have a sense of the variety of spam content we

inferred, we surveyed 10,000 randomly chosen spam postings and clustered them in

7 categories based on their anchor keywords. Table 6.5 shows the keywords we used

for clustering spam, and Figure6.13 shows the category results. We can see that

pharmacy is still the most popular spam, and spammers always try to promote them

to have a higher search rank [84]. On the other hand, our system can keep capturing

general spam (other than just pharmacy) in terms of their spam content.

Table 6.5: Keywords for different spam category
Categary Terms

Rogue Pharmacy cialis,viagra,prescription,levitra ...
Rogue software virus,windows,desktop,software...

Porn porn,sexy,fuck,adult...
Gambling casino,poker,roulette,gambling...

Money insurance,debt,mortgage,credit...
Accessories handbag,dress,luxurious,louis...

Context-based Analysis of Spam. For those newly inferred spam, we ran-

domly sample 1,000 spam links and use the same method in [91] to find out URL-

redirection and cloaking spam. Specifically, we send requests to each link 3 times by

setting different HTTP header parameters to emulate Google Bot crawling, directly

visiting, and visiting through search result clicking, respectively. We consider it as

cloaking spam if any of two visits lead to different websites through redirection. In

this case, among 1,000 spam links, we only see 34 spam using cloaking techniques,

which also reflects that context-based detection has a low coverage in the face of cur-

rent comment spam. However, we test these 34 spam links with Google Safe Browsing

139

Figure 6.13: Spam category

(GSB) [18], none of them has been reported. Thus context-based detection is still an

effective way to find new spam within their limited scope, and our system also can

cover such spam (but can detect more other spam that the context-based detection

can not).

6.4.5 Applications of Our System

In this part, we will evaluate how our inference results can be applied to provide

early warning for search engine bots, and to complement current BlackList services.

Early Warning. “nofollow”[34] is an HTML tag which is designed to instruct

search engines that the corresponding links should not be counted for ranking. Usu-

ally, different search engines have little different policies in the face of “notfollow“

tags. As for Google [38], it will not transfer PageRank or anchor text across cor-

responding links. In this case, search engines can efficiently filter comment spam

if webmasters attach each posting with a “nofollow“ tag. However, among 35,931

spam harbors we found, only 4,367 harbors contain such tags, which means spam

on other harbors can be successfully exploited for search rank manipulation. Fortu-

140

nately, according to our measurement study in Section 6.2, there always exists a time

lag between the time that spammers post spam and the time search engines index

the spam. Thus, if we can detect the spam before Google indexes them, we can also

efficiently filter comment spam. To measure this timeliness, we examine the number

of “zero-day spam”, which is the spam that can not be searched out by Google at

the time. Totally we collected 1,364 “zero-day spam” in our test using Neighbour-

Watcher. Interestingly, when we manually check these “zero-day spam”, we find

that some spam messages contain randomly generated domains that have not been

registered yet. Thus, it is possible that spammers may first promote these links and

then register them later based on their promoting results. Figure 6.14 shows the

distribution of daily “zero-day spam”.

Figure 6.14: Zero day spam distribution

We can see that currently we can only detect few “zero-day spam”, because most

spammers intend to promote a certain set of spam links that may have already

been indexed by Google before (but search ranks were probably not good enough).

141

However, as long as spammers begin to promote new links, our system can quickly

find more “zero-day spam“. In this case, we can give an early warning to search

engine bots, or search engine bots can integrate our inference system to help better

filter these comment spam.

BlackList. Existing comment spam blacklists usually provide a collection of

source IP addresses, register emails, or usernames of spammers. Most of existing

online blacklists [12, 42, 44] collect such spammer information by building honey

blogs/forums. However, we can early imagine that honey blogs could only collect

limited number of spam, thus limiting the effectiveness of such approaches.

(a) Daily IP (b) Daily Email

Figure 6.15: Daily comparison with existing spam blacklists

To measure our inference approach can complement existing solutions, we com-

pare it with 3 popular online BlackList services. Note that since our system targets

on more general spam harbors, not all of the harbors provide complete IP and email

information of the posting users in public. Luckily, there does exist some spam har-

bors in our database that provide IP or email address information. Thus, we can

compare these inferred IPs and emails with these 3 Blacklist services.

142

Table 6.6 shows the comparison result. We can see that for both IP and email,

our system can always infer new spammers that are not observed by existing services.

Figure 6.15 shows the daily comparison with these 3 BlackList Services. From the

figure, each day we can find new spammers that are not labeled by any of these

existing BlackLists. In addition, considering the dynamic property of IP addresses,

most IP-based BlackLists need to be daily updated. Thus, for IPs detected by these

existing systems, we further check their “last seen time”, the time of last observation

by these existing services. We find most of them are out of date, which means

existing BlackLists observe these spammers long time ago but in fact they are still

active at the moment. In summary, our system could be a good complement to

existing BlackList systems to actively find new spam and to improve the coverage of

existing systems. Furthermore, we find some constant email addresses and IPs keep

contributing to spam, which also reflects that spammers intend to keep utilizing these

spam harbors.

Table 6.6: Comparison with existing blacklist systems
BlackList # of IP # of Email

NeighbourWatcher 378 5,945
StopForum 231 1,937
SpamBust 185 122

GlobalSpyware 29 3

6.5 Discussion

Although NeighbourWatcher shows promise for inferring new spam and spam

harbors, there is still much room for improvement. In this section, we discuss sev-

eral specific improvement areas, and the possible evasions to our current inference

143

algorithm.

6.5.1 Improvement

Combining More Features. NeighbourWatcher only uses spamming struc-

ture information to infer spam, other spamming behaviors could also be incorporated

together to help improve the accuracy. For example, we find some spammers post

their spam with both < a href = ”...” > tags and BBcode tags to assure they

can embed spam links, because they have no idea about what kind of method the

target spam harbors support to embed links. In addition, some spam links are

posted on websites with different languages because spammers do not care about

harbor’s native languages. For example, some spammers post Russian spam in Chi-

nese websites, Korean websites, and English websites, which is extremely unlikely to

be normal postings. In this case, we can incorporate these features to improve the

overall inference accuracy.

Improving Algorithms. In Eq.(6.3), we assume these postings on different

harbors have the same weight. However, postings on different harbors are not neces-

sarily equal. For example, if postings on a harbor have a similar posting time, same

email, or same IP address with the input posting, then it has a high possibility that

they are spammed by the same spammer at the same time. Thus we could assign

different weight to different harbors by considering these factors.

Updating Spam Harbors. In our system, we find new spam harbors by re-

cursively searching inferred spam in search engines. Thus, as long as spammers

keep utilizing these spam infrastructures, we can always find out new spam harbors.

However, our current system cannot infer those spam posted on only one harbor in

our dataset, thus we cannot find out other harbors that are also posted with this

spam. In this case, we could use the following strategy. From the search results of

144

the posting link, we attempt to build a relationship graph among returned websites

based on whether they already share similar postings (excluding the searched link)

on existing pages on the websites. If these websites show very close relationships

(e.g., dense connections), the searched link has a good chance to be spam (and thus

the corresponding search result websites are possible spam harbors). The intuition

here is that although a few normal links may appear on a variety number of web-

sites, it is extremely unlikely that normal users will keep posting similar postings on

certain websites. Our ongoing work will design and test new algorithms to efficiently

update our spam harbors dataset.

6.5.2 Possible Evasion

Evasion by exploring new harbors. Obviously, spam harbors that we col-

lected are only the subset of spammers’ harbors. Thus if spammers know our col-

lected harbors, they may try to spam on other harbors that are not included in our

database, or they may find brand new harbors. In this case, our neighborhood-based

inference algorithm could not detect their new structure. However, as long as spam-

mers also post spam on both these new harbors and old harbors, we can still find out

their new harbors by keeping updating our database. Otherwise, spammers need to

keep finding new harbors and give up existing qualified harbors, which is less likely

to happen considering the cost.

Evasion by changing spamming behaviors. If spammers know that we use

spam links to build up relationship graphs, spammers may spam different links on

different harbors. Thus we can not build up their spamming structure. However, in

this case, spammers need to keep finding more harbors to post their variety links,

which will increase their cost and time. Otherwise, they need to post the same spam

several times on certain harbors (in order to boost search ranks), which will increase

145

the possibility of being detected by content-based detection systems.

Evasion by spamming polymorphic URLs. Our algorithm relies on grouping

identical URLs (e.g. we infer a possible spam message if the spamming URL also

appears on many of its neighborhood clique harbors). Thus, spammers may try to

evade our system with polymorphic URLs (i.e., each URL can be different on different

harbors). However, in general, it is not always possible to make full polymorphic

URLs for a given spam URL to be promoted. If spammers choose URL shortening

services to achieve polymorphic URLs, we can always use the resolved final URLs

in our system. Furthermore, we can use the domain of a spam URL instead of the

full URL as input, which is relatively stable if spammers want to promote certain

domains.

146

7. SUMMARY AND LESSONS LEARNED

In this chapter, we plan to answer the following questions: How are our systems

related to and different from each other? What lessons have we learned from de-

signing these systems? Can we apply the lessons learned from malicious network

infrastructures to other platforms such as malicious social network infrastructures

and malicious mobile app infrastructures?

7.1 Summary of Our Inference Systems

Table 7.1 provides a brief summary of our systems.

Table 7.1: Summary of our inference systems

PoisonAmplifier SMASH VisHunter NeighbourWatcher

Host or network based network network network network
Require multiple infections N/A No No N/A

Detection target CS1 MA2and MB3 All All
Passive or proactive proactive passive passive proactive

Supervised or unsupervised supervised unsupervised supervised supervised
Deployment online service network edge network edge online service

1 Compromised server
2 Type A malicious server
3 Type B malicious server

We can see that these systems have some similar features. They all study the

malicious cyber infrastructures from the network level. Therefore, they are robust to

malware obfuscation and encryption. In addition, all of them do not require multiple

infections or a large diverse user base. Therefore, they are applicable to be deployed

at enterprise networks.

Despite the above similarity, these systems are different in several dimensions.

In terms of the detection target, PoisonAmplifier only focuses on compromised

147

servers and SMASH focuses on Type A and Type B malicious servers. Although

VisHunter mainly focuses on redirections from compromised servers to Type A

malicious servers. Its propagation component can somehow detect Type B malicious

servers. NeighbourWatcher is designed to detect the spammer promoted servers,

which could include all type of servers. In terms of the detection mode, SMASH and

VisHunter need to monitor network traffic to passively detect malicious servers.

However, PoisonAmplifier and NeighbourWatcher could be deployed as on-

line services, and they can pro-actively find more compromised servers and malicious

servers through the Internet. In terms of the detection method, PoisonAmplifier,

VisHunter, and NeighbourWatcher are supervised systems and they require

initial seeds to either train the system or to bootstrap the propagation. However,

SMASH complements to these systems by using an unsupervised method. There-

fore, it can discover possible zero-day attacks.

As we can see, although these systems have their advantages and limitations, they

greatly complement each other by being united and provide a relatively complete and

multi-perspective inferring framework for the malicious cyber infrastructure detec-

tion.

7.2 Lessons Learned

As we have highlighted earlier regarding the challenges in the malicious cyber

infrastructure detection, different malicious servers often join forces to leverage their

diverse functionalities makes the malicious cyber infrastructure more powerful and

complicated. From the failure of the previous detection approaches (as discussed in

Chapter 2) and the success of our designed systems in their desired principles, we

have learned the following valuable lessons.

148

Detecting malicious cyber infrastructures could be an effective way to

counteract malware infection. Malware can evolve quickly and malware authors

have enough resources (e.g., time and state-of-the-art security tools) to test version

after version of their malware. Therefore, it is challenging to detect malware directly

on infected hosts. The evaluation of our systems shows that malicious cyber infras-

tructure detection can detect malicious servers that are missed by state-of-the-art

anti-virus tools and find new infected clients. Therefore, detecting malicious cyber

infrastructures could be an excellent complement to existing host-based detections.

Our proposed model of malicious cyber infrastructures is effective to

characterize general malicious cyber infrastructures. As we noticed, mali-

cious cyber infrastructures usually comprise a variety of servers with diversity func-

tions (e.g., exploit server, C&C server, and drop-zone server). Characterizing these

servers based on their functionalities could restrict the systems to some specific type

of servers. However, our proposed model based on the access patterns could avoid

this problem, and the evaluation results further demonstrate that the systems based

on our model can detect a variety of malicious servers.

An effective malicious cyber infrastructure detection solution should

capture some fundamental properties of the malicious cyber infrastruc-

ture and study malicious cyber infrastructures from multiple dimensions

to get a complete view. Servers involved in malicious cyber infrastructure are

complicated and flexible. Even our proposed model has already simplified the ma-

licious cyber infrastructure, in fact, no single technique or principle can perfectly

detect all malicious servers involved in it. Each of our systems can only focus on the

part of malicious cyber infrastructures, and each of our principles is effective only

within its defined detection scope. However, we can combine multiple techniques to-

gether to cover multiple perspectives to improve the coverage of servers in malicious

149

cyber infrastructures, similar to the case in which we use four principles to charac-

terize malicious cyber infrastructures from different perspectives. This dissertation

provides our experience in detecting malicious cyber infrastructure from different

perspectives. We showed that our inference systems have different focuses and are

complementary.

7.3 Applicability to Malicious Infrastructures over Other Platforms

With the research present in this dissertation, researchers can now make use

of the characteristics of malicious cyber infrastructures we proposed in this dis-

sertation to study the malicious cyber infrastructure over other platforms, such

as malicious social network infrastructures and malicious mobile app infrastruc-

tures. For the malicious cyber infrastructures in this dissertation, we design four

systems to characterize it from its attacking pattern (PoisonAmplifier), inner-

correlation pattern(SMASH), hiding pattern (VisHunter) and promoting pattern

(NeighbourWatcher). Next, I will try to outline how to apply these patterns can

help to understand and detect the malicious social network infrastructure and the

malicious mobile app infrastructure.

7.3.1 Malicious Social Network Infrastructure

The social network has emerged in recent few years but is growing rapidly in

popularity. This viral growth makes them a very lucrative attack target. Cyber-

criminals have utilized social networking platforms (e.g., Twitter and Facebook)

to conduct their malicious behaviors including sending spam [50], spreading mal-

ware [48], hosting botnet command and control (C&C) channels [49], and launching

other underground illicit activities.

A large number of malicious accounts are created, and lots of benign accounts got

compromised by cybercriminials to facilitate crimes and gain illegal profits. Those

150

malicious accounts and compromised accounts essentially form the malicious social

network infrastructure. Then we present how each pattern of malicious network

infrastructure can guide the study of the malicious social network infrastructure.

Regarding the attacking pattern, in the social network context, we can still ob-

serve that spammers tend to explore some popular terms and tags in their postings to

trick benign users. Therefore, we can still use search engines on social network plat-

forms to pro-actively find more malicious accounts that post those special terms. In

PoisonAmplifier, after finding a server sharing attackers’ promoted contents, we

use Search Poisoning Attack as an oracle to evaluate whether it belongs to compro-

mised server or not. However, in social network platforms, definitely we need features

extracted from their domain (e.g., Twitter spam [108]) as an oracle to achieve this.

Regarding the inner-correlation pattern, there do exist correlation among those

malicious accounts. For example, from the follower/following perspective (similar to

client dimension in SMASH) in the social network, those malicious accounts usually

share many followers/followings. From the server perspective, those malicious ac-

counts may post the same malicious URL. Therefore, we can still correlate malicious

accounts from different perspectives to infer a group of correlated malicious accounts.

Regarding the hidden pattern, the malicious URLs promoted by malicious ac-

counts still rely on the existing malicious network infrastructures to launch further

malicious activities, in other words, our visibility feature could be still effective to

catch these malicious URLs.

Regarding the promoting pattern, we observe that spammers will keep using

compromised accounts to promote their malicious content. Those accounts form the

promoting platforms for spammers. Similar to our system NeighbourWatcher,

if we find the same content are promoted on previous uncorrelated accounts, such

content has a high possibility to be the spammer promoted content.

151

Therefore, if we apply the patterns of malicious network infrastructure present

in this dissertation to the malicious social network infrastructure plus the features

extracted from social network domains, I believe it will provide a better view of

malicious social network infrastructure.

7.3.2 Malicious Mobile App Infrastructure

Different from spread desktop malware, smartphone malware authors can utilize

app markets to spread their malicious apps more efficient. Therefore, those malicious

apps and the market accounts used to publish those malicious apps form the malicious

mobile app infrastructure.

Regarding the inner-correlation pattern, there do exist correlation among ma-

licious apps. For example, two malicious apps published by the same/correlated

accounts could be correlated. From the network perspective, two malicious apps

connecting to the same remote servers could be correlated. Therefore, we can still

correlate malicious apps from different perspectives (e.g., market accounts level and

network level) with some domain specific features (e.g., app permissions) to infer a

group of correlated malicious apps.

Regarding the hidden pattern, the malicious servers connected by malicious apps

still rely on the existing malicious network infrastructures and are usually invisible

to benign users. Therefore, our visibility feature may still somehow catch these

malicious servers.

Regarding the promoting pattern, app infrastructure is different with social net-

work infrastructure and network infrastructure. Attackers in app market promote

their malicious apps through posting fake reviews. Such review contents are usually

positive comments for the malicious apps. However, the reviewers still form the pro-

moting platforms of attackers. And the reviewers always promote unrelated apps

152

together may become more suspicious.

Although the malicious app infrastructure has much difference with the malicious

social network and malicious network infrastructure because of its context, the cy-

bercrimnals of the malicious app infrastructure still need to promote their malicious

apps and those malicious apps could be still correlated due to the limited resources

(e.g., malicious servers and market accounts) the cybercriminals have.

153

8. CONCLUSION AND FUTURE WORK

8.1 Conclusion

Obfuscation and encryption techniques make directly malware detection less ef-

fective. Fortunately, malicious cyber infrastructures build by cybercriminals for mal-

ware distribution, control, and monetization gives us a chance to counteract malware.

Thus, we urgently need solutions to characterize and disrupt malicious cyber infras-

tructures.

In this dissertation, we model the malicious cyber infrastructures based on how

clients access to them. As a result, we characterize all the servers in malicious

cyber infrastructures into three categories: compromised servers, malicious servers

accessed through redirections, and malicious servers accessed through directly con-

necting. Then we proposed an inference framework to infer servers involved in mali-

cious cyber infrastructures. Our framework consists of four prototype detection sys-

tems (PoisonAmplifier,SMASH,VisHunter, and NeighbourWatcher) with

different focus of malicious cyber infrastructures. We have discussed the techniques

and principles we used and summarized the lessons we have learned for each system.

Our inference framework meets the three goals proposed in Chapter 1.

First, each system is guided by a sound principle that captures some fundamental

invariants of malicious cyber infrastructures. PoisonAmplifier explores the fact

that attackers need to inject special terms and links to promoted those compromised

servers. Therefore, as long as attackers want to trick users, PoisonAmplifier can

always be used to find more compromised servers no matter how those servers are

compromised. SMASH explores the fact that cybercriminals usually utilize mul-

tiple servers together to launch malicious activities, which characterize the nature

154

of cyber infrastructure. VisHunter leverages an insight that cybercriminals make

efforts to conceal their core servers in order to continue their malevolent activities

without being detected. Thus, if cybercriminals exposure their servers to be vis-

ible, they have high chances to be detected by existing security system [76, 78].

NeighbourWatcher leverages an insight that cybercriminals usually have limited

number of promoting platforms (normal websites that allow users to leave messages

such as forums, wikis, and guestbooks), and they want to make full utilization of

these platforms. It is not easy to find those perfect promoting platforms and fre-

quently changing them will incur significant costs for cybercrimnials. Therefore, we

believe our four principles can also be applicable to detecting future malicious cyber

infrastructures.

Second, our solution characterizes malicious cyber infrastructures from different

perspectives and provides four complementary systems to detect malicious cyber

infrastructures. These systems are complementary in terms of their detection tar-

gets, deployment method, and detection model (passive vs proactive). For example,

PoisonAmplifier can only detect compromised servers while SMASH mainly fo-

cuses on malicious servers detection. For the deployment, SMASH and VisHunter

need to be deployed at the edge of the network to monitor HTTP traffic passively

while PoisonAmplifier and NeighbourWatcher can be implemented as online

services to find more compromised and malicious servers pro-actively on the Inter-

net. Therefore, each system has advantages and limitations, and works well in its

desired detection scope. We combine these different systems with different detec-

tion focuses/perspectives to provide a comprehensive and complementary inference

framework for malicious cyber infrastructure detection.

Third, our solution is general. In design, each system is not restricted to a specific

type of malicious servers (e.g., exploit server or C&C server), but instead, it targets

155

on certain categories of servers (e.g., compromised servers or malicious servers).

Finally, our systems are practical and capable to work in real world. Our systems

are evaluated on real-world network traces and/or with online public dataset. Ex-

perimental results show that our systems can accurately detect real-world malicious

servers with a very low false positive rate on real-world normal network traffic.

8.2 Future Work

In the future, we plan to study the following directions:

• Improvement on efficiency and coverage of our inference systems. We plan

to study new principles to improve the efficiency of systems and increase the

detection coverage of malicious servers in malicious cyber infrastructure. For

example, the current implementation of SMASH only explores a few dimen-

sions to characterize the relationship among malicious servers. However, they

can be extended by considering time-based dimension [69].

• Cooperative detection in depth and breadth. My current studies show that

modern attacks become much more complex than before due to multiple diverse

entities involved in and multiple stages they have. Therefore, in the future,

we plan to study malicious cyber infrastructure in depth and breadth. By

in depth, we mean that we will study the connection between those multiple

diverse entities involved in malicious activities from novel perspectives. By

breadth, we mean that we will correlate security results from different layers

(e.g., Host, DNS, Proxy) since different layers usually have different views of

the threats. My final goal is to design a framework to apply big data platform

to coordinate security controls from different layers and perspectives to gain a

complete view of threats.

156

REFERENCES

[1] 50,000 websites infected with spam from ’wplinksforwork’.

http://news.softpedia.com/news/50-000-Websites-Infected-with-Spam-From-

Wplinksforwork-223004.shtml/.

[2] Alexa Internet. http://www.alexa.com/.

[3] The bagle botnet. http://securelist.com/analysis/36046/the-bagle-

botnet/.

[4] Blacklist check. http://whatismyipaddress.com/blacklist-check.

[5] Bloom filter. http://en.wikipedia.org/wiki/Bloom_filter.

[6] Botnets and google dorks: A new recipe for hacking.

http://www.darkreading.com/vulnerabilitymanagement/

167901026/security/vulnerabilities/231500104/

botnetsandgoogledorksanewrecipeforhacking.html.

[7] cfinder. http://www.cfinder.org/.

[8] CMU researcher finds web hackers profiting from illegal online pharmacies.

http://www.darkreading.com/insider-threat/167801100/security/client-

security/231400204/cmu-researcher-finds-web-hackers-profiting-from-illegal-

online-pharmacies.html.

[9] DNS-BH-Malware Domain Blocklist. http://www.malwaredomains.com/.

[10] Easylist. https://easylist.adblockplus.org/en/.

[11] The (evil) genius of comment spammers. http://www.wired.com/wired/

archive/12.03/google.html?pg=7.

[12] Globalspyware. http://globalspyware.com/.

[13] Google bombs. http://www.searchenginepeople.com/blog/incredible-

157

google-bombs.html.

[14] Google cache. http://www.googleguide.com/cached_pages.html.

[15] Google fights poisoned search results. http://www.securitynewsdaily.com/

google-poisoned-search-results-0603/.

[16] Google pagerank api in php. http://www.fusionswift.com/2011/10/

google-pagerank-api-in-php-october-2011/.

[17] Google rolls out content spam detection. http://www.nationalpositions.

com/blog/seonewsgooglerollsoutcontentspamdetection/.

[18] Google safe browsing. http://code.google.com/apis/safebrowsing/.

[19] Google search and search engine spam. http://googleblog.blogspot.com/

2011/01/google-search-and-search-engine-spam.html.

[20] Google trend. http://www.google.com/trends.

[21] Googledork. http://googledork.com/.

[22] Googlesuggest. http://code.google.com/p/google-refine/wiki/SuggestApi.

[23] Hamming distance. http://en.wikipedia.org/wiki/Hamming_distance.

[24] Httpclient. http://hc.apache.org/httpclient-3.x/.

[25] The keyword shop. http://www.blackhatworld.com/blackhat-seo/buy-

sell-trade/.

[26] Keyword stuffing. http://www.seo.com/blog/keyword-stuffing/.

[27] Malware domain blocklist. http://www.malwaredomains.com/.

[28] Malware domain list. http://www.malwaredomainlist.com/.

[29] Malware domain list. http://www.malwaredomainlist.com/.

[30] Malware evolving faster than security software. http://www.stuff.tv/sg/

news/malware-evolving-faster-security-software.

[31] Malware traffic analysis. http://malware-traffic-analysis.net/.

[32] N-gram algorithm. http://en.wikipedia.org/wiki/N-gram.

158

[33] Nearly 1 million new malware threats released every day. http://money.cnn.

com/2015/04/14/technology/security/cyber-attack-hacks-security/.

[34] Notfollow. http://en.wikipedia.org/wiki/Nofollow.

[35] Page rank. http://en.wikipedia.org/wiki/PageRank.

[36] The pharmacy example. http://www.cmu.edu/news/stories/archives/

2011/august/aug11_onlinepharmacyhackers.html.

[37] Phishtank. http://www.phishtank.com/.

[38] rel=“nofollow”. http://support.google.com/webmasters/bin/answer.py?

hl=en&answer=96569.

[39] Royal wedding, obama birth certificate search poisoned with fake av

links. http://www.eweek.com/c/a/Security/Royal-Wedding-Obama-Birth-

Certificate-Search-Poisoned-with-Fake-AV-Links-489242/.

[40] Safe browsing-protecting web users for five years and count-

ing. http://googlepublicpolicy.blogspot.com/2012/06/safe-

browsingprotecting-web-users-for.html.

[41] Sality botnet. http://en.wikipedia.org/wiki/Sality.

[42] Spambust. http://spambusted.com/.

[43] Spyeye tracker. https://spyeyetracker.abuse.ch/.

[44] Stop forum spam. http://www.stopforumspam.com/.

[45] TeamViewer. http://www.teamviewer.com/.

[46] TLD List. https://wiki.mozilla.org/TLD_List.

[47] Trending topics. http://support.twitter.com/entries/101125-about

-trending-topics.

[48] Twitter accounts spreading malicious code. https://www.helpnetsecurity.

com/2010/12/03/twitter-accounts-spreading-malicious-code/,.

[49] Twitter-based botnet command channel. https://www.arbornetworks.com/

159

blog/asert/twitter-based-botnet-command-channel/,.

[50] Twitter vulnerability allows cyber criminals to spread spam. https:

//www.one.com/en/web-hosting-news/website/twitter-vulnerability-

allows-cyber-criminals-to-spread-spam-links$800076628.htm.

[51] VirusTotal. https://www.virustotal.com/\#url.

[52] Websense 2013 threat report. http://www.websense.com/assets/reports/

websense-2013-threat-report.pdf.

[53] What does your google pagerank mean. http://www.redfusionmedia.com/

google_pagerank.htm.

[54] What is onlinefwd.com. http://botcrawl.com/how-to-remove-onlinefwd-

virus/.

[55] Word press. http://wordpress.com/.

[56] Wot (web of trust). http://www.mywot.com/.

[57] Zeus botnet. http://en.wikipedia.org/wiki/Zeus_(Trojan_horse).

[58] Zeus tracker. https://zeustracker.abuse.ch/.

[59] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker. Spamscatter:

characterizing internet scam hosting infrastructure. In USENIX Security Sym-

posium’07, 2007.

[60] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, and D. Dagon. Detecting

malware domains at the upper DNS hierarchy. In USENIX Security Sympo-

sium, 2011.

[61] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee,

and D. Dagon. From throw-away traffic to bots: Detecting the rise of DGA-

based malware. In USENIX Security, 2011.

[62] M. Antonakakis, Perdisci R, W. Lee, N. Vasiloglou, and D. Dagon. Detecting

malware domains at the upper DNS hierarchy. In USENIX Security Sympo-

160

sium’11, 2011.

[63] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding malicious

domains using passive DNS analysis. In NDSS, 2011.

[64] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding

of communities in large networks. In Journal of Statistical Mechanics: Theory

and Experiment, 2008.

[65] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. Delta: automatic

identification of unknown web-based infection campaigns. In CCS, 2013.

[66] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search

engine. In Proceedings of the seventh international conference on World Wide

Web, 1998.

[67] Aydın Buluç and John R. Gilbert. Parallel sparse matrix-matrix multiplication

and indexing: Implementation and experiments. SIAM Journal of Scientific

Computing (SISC), 34(4):170 – 191, 2012.

[68] M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-by-

Download Attacks and Malicious JavaScript Code. In WWW’10, 2010.

[69] H. Gao, C. Yegneswaran, Y. Chen, P. Porras, S. Ghosh, J. Jiang, and H. Duan.

An empirical reexamination of global DNS behavior. In sigcomm, 2013.

[70] M. Graziano, D. Canali, L. Bilge, A. Lanzi, and D. Balzarotti. Needles in a

haystack: mining information from public dynamic analysis sandboxes for mal-

ware intelligence. In Proceedings of the 24th USENIX Conference on Security

Symposium, 2015.

[71] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering analysis of

network traffic for protocol- and structure-independent botnet detection. In

USENIX Security Symposium, 2008.

[72] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. BotSniffer: De-

161

tecting botnet command and control channels in network traffic. In NDSS,

2008.

[73] Q. Gu and P. Liu. Denial of Service Attacks. In Technical Report.

[74] Z. Gyongyi and H. Garcia-Molina. Web Spam Taxonomy. In Technical report,

Stanford Digital Library Technologies Project, Mar, 2004.

[75] C. Hsu, C. Huang, and K. Chen. Fast-flux bot detection in real time. In RAID,

2010.

[76] L. Invernizzi, S. Benvenuti, P.M. Comparetti, M. Cova, C. Kruegel, and G. Vi-

gna. EVILSEED: A Guided Approach to Finding Malicious Web Pages. In

IEEE Symposium on Security and Privacy (Oakland’12), 2012.

[77] L. Invernizzi, P. Comparetti, Stefano Benvenuti, C. Kruegel, M. Cova, and

G. Vigna. EVILSEED: A Guided Approach to Finding Malicious Web Pages.

In IEEE Symposium on Security and Privacy, 2012.

[78] Z. Xu J. Zhang, C. Yang and G. Gu. PoisonAmplifier: A Guided Approach of

Discovering Compromised Websites through Reversing Search Poisoning At-

tacks. In Proceedings of the 15th International Symposium on Research in

Attacks, Intrusions and Defenses (RAID12), 2012.

[79] J. John, F. Yu, Y. Xie, M. Abadi, and A. Krishnamurthy. deSEO: Combating

search-result poisoning. In Proceedings of the 20th USENIX Security, 2011.

[80] P. Kolari, T. Finin, and A. Joshi. SVMs for the blogosphere: Blog identi-

fication and splog detection. In Proceedings of AAAI Spring Symposium on

Computational Approaches to Analysing Weblogs, March, 2006.

[81] S. Lee and J. Kim. WarningBird: Detecting suspicious URLs in Twitter stream.

In NDSS’12, 2012.

[82] N. Leontiadis, T. Moore, and N. Christin. Measuring and Analyzing Search-

Redirection Attacks in the Illicit Online Prescription Drug Trade. In USENIX

162

Security Symposium’11, 2011.

[83] N. Leontiadis, T. Moore, and N. Christin. Measuring and analyzing search-

redirection attacks in the illicit online prescription drug trade. In Proceedings

of the 20th USENIX Security, 2011.

[84] N. Leontiadis, T. Moore, and N. Christin. Measuring and analyzing search-

redirection attacks in the illicit online prescription drug trade. In Proceedings

of the 20th USENIX Security, 2011.

[85] Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang. Finding the Linchpins of

the Dark Web: a Study on Topologically Dedicated Hosts on Malicious Web

Infrastructures. In IEEE Symposium on Security and Privacy (Oakland’13),

2013.

[86] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing your enemy: under-

standing and detecting malicious web advertising. In CCS’12, 2012.

[87] Zhou Li, Sumayah Alrwais, XiaoFeng Wang, and Eihal Alowaisheq. Hunting

the Red Fox Online: Understanding and Detection of Mass Redirect-Script

Injections. In IEEE Symposium on Security and Privacy, 2014.

[88] L. Lu, R. Perdisci, and W. Lee. SURF: Detecting and Measuring Search Poi-

soning. In Proceedings of ACM Conference on Computer and Communications

Security, 2011.

[89] G. Mishne, D. Carmel, and R. Lempel. Blocking Blog Spam with Language

Model Disagreement. In First International Workshop on Adversarial Infor-

mation Retrieval on the Web, at 14th international conference on World Wide

Web(WWW), 2005.

[90] T. Nelms, R. Perdisci, and M. Ahamad. Execscent: Mining for new C&C

domains in live networks with adaptive control protocol templates. In USENIX

Security Symposium, 2013.

163

[91] Y. Niu, Y.M. Wang, H. Chen, M. Ma, and F. Hsu. A quantitative study of

forum spamming using context-based analysis. In Proceedings of Network and

Distributed System Security Symposium(NDSS), February, 2007.

[92] R. Perdisci, I. Corona, and G. Giacinto. Early Detection of Malicious Flux Net-

works via Large-Scale Passive DNS Traffic Analysis. In IEEE Transactions on

Dependable and Secure Computing, 9(5), Sept.-Oct. 2012, pp. 714-726, 2012.

[93] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of HTTP-based

malware and signature generation using malicious network traces. In USENIX

NSDI, 2010.

[94] A. Ramachandran, A. Dasgupta, K. Weinberger, and N. Feamster. Spam or

ham?: characterizing and detecting fraudulent not spam reports in web mail

systems. In Proceedings of the 8th Annual Collaboration, Electronic messaging,

Anti-Abuse and Spam Conference(CEAS 11), 2011.

[95] C. Seifert, I. Welch, and P. Komisarczuk. HoneyC - The Low-Interaction Client

Honeypot. In NZCSRCS’07, 2007.

[96] Y. Shin, M. Gupta, and S. Myers. Prevalence and mitigation of forum spam-

ming. In Proceedings of the 30th Annual IEEE Conference on Computer Com-

munications (INFOCOM), 2011.

[97] Y. Shin, M. Gupta, and S. Myers. The Nuts and Bolts of a Forum Spam

Automator. In Proceedings of the Wkshp. on Large-Scale Exploits and Emergent

Threats (LEET), 2011.

[98] J. W. Stokes, R. Andersen, C. Seifert, and K. Chellapilla. WebCop: Locating

Neighborhoods of Malware on the Web. In USENIX LEET, 2010.

[99] G. Stringhini, C. Kruegel, and G. Vigna. Shady paths: Leveraging surfing

crowds to detect malicious web pages. In CCS, 2013.

[100] E. Tan, L. Guo, S. Chen, X. Zhang, and Y. Zhao. Spam behavior analysis and

164

detection in user generated content on social network. In Proceedings of 32nd

International Conference on Distributed Computing Systems (ICDCS 2012),

Macao, China, June 18-21,, 2012.

[101] D. Wang, S. Savage, and G. Voelker. Cloak and Dagger: Dynamics of Web

Search Cloaking. In Proceedings of ACM Conference on Computer and Com-

munications Security, 2011.

[102] D. Y. Wang, S. Savage, and G. M. Voelker. Cloak and Dagger: Dynamics of

Web Search Cloaking. In CCS’11, 2011.

[103] Y. Wang, M. Ma, Y. Niu, and H. Chen. Double-Funnel: Connecting Web

Spammers with Advertisers. In proceedings of the 16th international conference

on World Wide Web, pages 291300, 2007.

[104] B. Wu and B. Davison. Cloaking and redirection: A preliminary study. In

Adversarial Information Retrieval on the Web, 2005.

[105] B. Wu and B. Davison. Identifying link farm spam pages. In Special Interest

Tracks and Posters of the International Conference on World Wide Web, 2005.

[106] B. Wu and B. Davison. Detecting semantic cloaking on the Web. In Proceedings

of International Conference on World Wide Web, 2006.

[107] B. Wu and B. D. Davison. Cloaking and redirection: A preliminary study. In

AIRWeb’05, 2005.

[108] C. Yang, R. Harkreader, and G. Gu. Die free or live hard? empirical evalua-

tion and new design for fighting evolving twitter spammers. In Proceedings of

the 14th International Symposium on Recent Advances in Intrusion Detection

(RAID’11), 2011.

[109] T. Yen and M. K. Reiter. Traffic aggregation for malware detection. In DIMVA,

2008.

[110] J. Zhang and G. Gu. Neighborwatcher: A content-agnostic comment spam

165

inference system. In Proceedings of the 20th Annual Network and Distributed

System Security Symposium(NDSS’13), 2013.

[111] J. Zhang, X. Hu, J. Jang, T. Wang, G. Gu, and M. Stoecklin. Hunting for in-

visibility: Characterizing and detecting malicious web infrastructures through

server visibility analysis. In Proceedings of IEEE International Conference on

Computer Communications((INFOCOM’16), 2016.

[112] J. Zhang, S. Saha, G. Gu, S.J. Lee, and M. Mellia. Systematic mining of

associated server herds for malware campaign discovery. In Proceedings of the

35rd International Conference on Distributed Computing Systems (ICDCS’15),

2015.

[113] J. Zhang, C. Yang, Z. Xu, and G. Gu. Poisonamplifier: A guided approach of

discovering compromised websites through reversing search poisoning attack.

In Proceedings of the 15st International Symposium On Research in Attacks,

Intrusions and Defenses (RAID’12), 2012.

166

