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ABSTRACT

In this dissertation I will discuss the effect of real, momentum, and mixed space 

Berry phases in B20 compounds: MnSi, Mn1−xFexGe, and Fe1−yCoyGe. Recently 

there has been a tremendous experimental effort in stabilizing skyrmion crystal 

phases in these systems. We calculate, from state of the art first principle cal-

culations, the Dzyaloshiniskii-Moriya interaction (DMI), the anomalous Hall effect 

(AHE), and the topological Hall effect (THE). These three effects are intimately 

related through Berry phase physics, where I test how the strength of the exchange 

interactions and spin-orbit coupling play a role in the underlying physics for these 

systems. In this dissertation, I compare the strength of different first principle meth-

ods in calculating magnetic ground state properties in B20 compounds. In this, I 

see that Full Potential Linearized Augmented Plane Wave Method treats different 

magnetic states most accurately. Calculations of spin-spiral states are preformed in 

these B20 compounds showing long wavelength spin-spirals due to the interaction of 

the exchange stiffness and the DMI field. The DMI in these materials reaches max-

ima and minima with alloying concentration due the hybridization of d-states, which 

I complement with an intuitive tight-binding model. The AHE is also calculated in 

these materials and shows remarkable agreement with experimental measurements. 

Whereas the THE agrees in sign for these materials and quantitatively in the FeGe, 

the values in MnGe predict smaller values. This discrepancy, where the DMI is also 

smaller than expected, is attributed to breakdown of the adiabatic theorem, where 

in MnGe, the magnetic texture rotates too quickly to capture the real space Berry 

phase physics. The work of this dissertation is compared with computational results 

that have followed and ongoing experimental studies.
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Grünberg Institut & Institute for Advanced Simulation, Forschungszentrum Jülich
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1. INTRODUCTION

Recently, the interest in magnetic skyrmions [16, 136] has generated a significant

effort in spintronics research for the purpose of use in logic devices [182, 181, 137, 69,

39]. Magnetic Skyrmions are topologically protected non-trivial magnetic structures

(see fig. 1.1), that stem from ideas of nuclear physics [149]. The topological charge

for a skyrmion in two dimensions can be detailed as,

S =
1

4π

∫
n̂ · (∂xn̂× ∂yn̂)dxdy (1.1)

where n̂ is the magnetization unit vector. The topological charge, S, can take integer

values from 0, ±1,±2, ±3..., is a topologically non-trivial object ( for |S| >0 ) and a (-

)+ corresponds to a (anti-)skyrmion. Experimentally, the skyrmion phase can be de-

tected using Lorentz transmission electron microscopy, hall measurements, small an-

gle neutron scattering and magnetic susceptibility measurements [113, 179, 171, 129].

These topologically protected objects were first seen to be stable in Cuprates [2]

and the B20 transition metal compounds [113, 179, 171, 129, 145, 49] and more re-

cently in Heusler materials [104]. Although not necessary, the Dzyaloshiniskii-Moriya

interaction (DMI) plays a crucial role in the stabilization of magnetic skyrmions

and domain walls with chiral textures [75, 7, 65, 130]. The DMI arises in mag-

netic systems with spin-orbit coupling and broken structural inversion symmetry

[110, 109, 108, 75, 7, 65, 130]. Contradictory to the symmetric scalar Heisenberg ex-

change interaction, the DMI prefers spins to point perpendicular for linked magnetic

moments.

The DMI is a ground state property that can be calculated from a phase-space

1



Figure 1.1: a) Spiral skyrmion b) hedgehog skyrmion [78]

Berry curvature where crossings in reciprocal and real space lead to a finite DMI.

Analogous to the DMI, the intrinsic anomalous Hall effect (AHE) is seen as the

momentum-space Berry Curvature where crossing Bloch functions in the k-space

produce magnetic monopoles accelerating charged quasi-particles with spin perpen-

dicular to both the external electric field and the magnetization direction [114]. The

AHE also has contributions from non-Berry phase effects due to impurities giving rise

to the impurity-density independent side jump mechanism and the impurity-density

dependent skew-scattering mechanism [114]. In principle the strength and sign of the

scattering mechanisms are material and sample preparation dependent, whereas the

intrinsic mechanism is purely dependent on the electronic structure. Furthermore,

real space Berry-phases can arise in non-trivial magnetic textures with a finite wind-

ing number, S i.e. a skyrmion. The topological Hall effect (THE) arises from a finite

Berry phase due to an emergent magnetic field that acts with an opposite sign on

charged quasiparticles with opposite spin [20]. These three phenomena can be gath-

ered into a 6×6 anti-symmetric phase-space Berry curvature (BC) tensor (described

below) [174].
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Figure 1.2: a) B20 structure with P213 symmetry. The grey (black) are the mag-
netic transition metal (semi-metallic Ge) atoms. The transition metal ion carries the
larger magnetic moment and the spin-spiral. The diagonal line shows atoms which
keep the C3 symmetry. b)Magnetic temperature phase diagram of MnSi showing the
onset of the A−phase [120].

In this dissertation we study the effect of this BC tensor in the limits of strong and

weak interactions of magnetism and spin orbit coupling, resulting in these emergent

phenomena using first principle density functional theory (DFT) calculations. In

recent years DFT has shown promising results in real materials for the calculation of

the AHE for bulk materials and the DMI in bilayer systems, reproducing qualitative

and in some cases predicting quantitative results [73, 42, 44, 131]. However, there

has been little description of the THE in realistic materials [42]. Furthermore, the

B20 compounds MnSi, Mn1−xFexGe and Fe1−yCoyGe are particularly interesting

materials to study from a computational effort, in that a range of effects, due to

the electronic structure, can be seen in these materials without changing the crystal

symmetry. These materials have become very popular for experimentalists, where

MnSi has small magnetic moments dominated by spin fluctuations [67], Mn1−xFexGe

and Fe1−yCoyGe show that spiral skyrmion (see fig. 1.1) sizes change several orders

3



of magnitude with concentration, and lastly CoGe collapses to a paramagnetic phase

[28, 118].

The work of Pfleiderer et al. initiated experimental studies of skyrmions in con-

densed matter physics [120, 129]. In this seminal experimental work, the authors

were the first to experimentally realize the illusive A-phase, i.e skyrmions, in the

B20 compound MnSi below the transition temperature of 29.5 K. A few years later

the work by Shibata et al. characterized the skyrmion crystal phase of Mn1−xFexGe

as a function of concentration x [156, 145, 107]. In these studies it was found that at

the critical concentration of x=0.8 there is a reversal in the chirality of the skyrmions.

Furthermore, the authors found that at this critical point the size of the skyrmions

blow up and as the concentration recedes from this point the size decreases. It is

found that the skyrmion sizes in FeGe are on the order of 70 nm [64], where as MnGe

shows the smallest skyrmion crystal phase of 3 nm [97, 34] giving rise to a large THE

[71]. In addition to the work of Shibata et al., Grigoriev et al. nearly simultaneously

showed that there is a discontinuity around the critical concentration for the helical

pitch length in Mn1−xFexGe [49]. However, there has not been any computational

or theoretical studies to explain the varying skyrmion size in these materials as a

function of concentration.

In this dissertation we will show that these phenomena in the B20 compounds

are governed by Berry phase physics, by using first principle calculations. This

dissertation is divided into three parts: i) first principle calculations of the DMI

and the simple tight-binding model to interpret the results, ii) calculation of the

hall effects with the use of the Wannier interpolation and the connection to Berry-

phase effects, iii) lastly, the connection to recent studies of the DMI and ongoing

calculations in direct comparison to experiments. In the first part we will discuss the

advantages and shortcomings of our DFT to treat magnetism in B20 compounds,
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while also comparing it to that of other methods. Within the DFT method I will

discuss how to calculate the DMI in the long wavelength approximation. We will

describe simple models to explain these systems and how they give an intuitive

picture to the underlying physics. We then discuss the calculations of the AHE and

THE in the BC picture using Wannier functions [111, 166, 42] as input into the Kubo

formula and semiclassical Boltzmann formulae, respectively. Lastly, I will briefly

discuss some of the ongoing results using DFT in direct comparison to experimental

measurements. The dissertation is then concluded in Section 4.

5



2. FIRST PRINCIPLE CALCULATIONS

Although, this is the first section in this dissertation, it is not the heart but the

backbone of this work. Despite the fact that first principle calculations are not the

main focus of this body of work, we can make use of electronic structure methods to

obtain experimentally relevant results. First principle calculations show predictive

and experimentally comparable results for many types of materials ands states of

matter [68]. In this dissertation I will primarily focus on density functional theory

(DFT) calculations in the bulk helimagnetic B20 compounds.

Within the last sixty years DFT has shown very promising results for many types

of materials, i.e. magnetic, metallic, and semiconductive. One of the well-known

shortcomings of DFT is the incorrect prediction of band gaps in semiconductors

and insulators. However, within recent years there has been a significant effort

in correcting this problem using state-of-the art approximations, such as the GW

approximation, hybrid functionals, time-dependent DFT and so on. These methods

can also be applied to magnetic metals, however they are outside the focus of this

work, in that we are only interested in ground state properties. In many cases, one

may wish to calculate properties of materials based on impurities or disorder. For

these types of calculations one would use approximations such as KKR [32] and CPA

[134, 91], which are also outside the scope of this work.

The main purpose of the dissertation is to understand Berry phase effects, such

as the anomalous Hall effect, Dzyaloshinkii-Moriya interaction and topological Hall

effect in magnetic materials. It is necessary to have an computationally accurate

description of the electronic ground state in order to compute relevant quantities of

these phenomena. In that vein, most of this section is devoted to comparing different

6



types of electronic structure methods for the B20 compounds. This results will serve

as a basis for all results in this work.

2.1 Density Functional Theory

DFT began in the early 1930’s for calculating the properties of solids. However

it was not until the theorems of Hohenberg and Kohn and the reformulation of the

problem of by Kohn and Sham that DFT became practical for the calculation of

condensed matter properties in realistic materials. Walter Kohn has received the

Nobel prize in chemistry for his contributions to DFT. In this section, we will set the

stage for DFT calculations by briefly describing the seminal work of Kohn. We also

discuss the relevance of the Jacob’s ladder of exchange-correlation approximations.

2.1.1 The Hohenberg-Kohn Theorem

The beginning of DFT started with the Thomas-Fermi (TF) model[159, 37]. This

was the first step in simplifying the many-body Schrödinger equation for N interact-

ing electrons with 3N degrees of freedom. The TF model aimed to solve a many-body

problem for a functional, the total energy E[n], in terms of the electron density, n(r),

that is a function of the position. The TF model’s approximations are crude in the

simplification of the kinetic energy of electrons as a functional of the local density

for non-interacting electrons of a homogeneous electron gas.

In addition, the model neglected exchange and correlation of the electrons. A

few years later, Dirac[27] extended the model to include the exchange energy, due

to the Pauli exclusion principle[123, 125]. This model is only correct for infinite

nuclear charge. However, the approximations fail to capture the relevant physics in

the description of electrons in matter. Specifically, in molecules, the model gives an

incorrect picture of the binding[158].

Contrary to the TF approximations, the Hohenberg-Kohn (HK) approach is exact
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for the formulation of the electron density in a many-body system of interacting

particles. Neglecting the nuclei-nuclei interaction at the moment, the Hamiltonian

for N electrons in an external potential, Vext(r), can be written as,

Ĥ =
~2

2me

N∑
i

∇2
i +

N∑
i

Vext(ri) +
1

2

N∑
i 6=j

e2

|ri − rj|
. (2.1)

In Eq. 2.1 the first sum is the kinetic energy of the electrons, and the kinetic energy

of the nuclei are treated adiabatically in the Born-Oppenheimer approximation[18].

The last term is the electron-electron Coulomb interaction. Lastly, Vext(ri) includes

all external forces on an electron i, i.e. the nuclei and any external field.

The objective of the HK approach is to solve a system of interacting particles

in an external potential as a function of only the electron density, that contain all

the information of the many-particle wave function. The theorem states that ground

state density no(r) uniquely determines the Vext(r) up to a constant. Secondly, HK

proved that if the functional E[n] is known, then the true ground state density

minimizes the functional, given that the total number of particles does not change.

The HK theorems lead to a very powerful statement such that the energy functional

can be written as,

EHK [n] = FHK [n] +

∫
drVext(r)n(r) + ENN . (2.2)

Here I have introduced the term ENN as the nuclei-nuclei interaction. The func-

tional FHK [n] = T [n] +Eint[n] is a universal functional for all systems of N particles,

where the kinetic, T [n], and the interaction, Eint, energy are only functionals of the

density. Levy[89] and Lieb [90] have generalized and simplified the HK theorem.

DFT has also been extended for spin dependent densities[164, 68, 53] and for that
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current-DFT[163].

2.1.2 Kohn-Sham States and Jacob’s Ladder

The TF approximation gave an intuitive picture of DFT, however the crude

approximations are too inaccurate for the understanding of real systems. Contrary

to the TF approximation, the HK theorems are exact, yet they lead to no practical

method of the calculation of FHK [n] = T [n]+Eint[n] in equation 2.2. Quantum Monte

Carlo methods can calculate exact properties by a direct treatment of the many-body

wavefunction[22, 41]. Hartree-Fock allows for a mean-field approximation (MFA)

of the many-body problem with an exact description of the exchange[55, 56, 40,

151]. However, both of these methods are computationally expensive for large solid

state systems. Kohn and Sham (KS) proposed a method that takes into account a

single-particle picture in a MFA that includes exchange and correlation on a density

functional setting[83].

The KS method is the most computationally accepted method for quantitively

and qualitatively describing the nature of large many-body systems. The self-

consistent method replaces the many-body problem of HK with that of independent

particles in an interacting density. The HK energy functional can be rewritten as,

EKS[n] = Tind[n] +

∫
drVext(r)n(r) + ENN + EH [n] + Exc[n]. (2.3)

Here, I have introduced the term Tind for the independent-particle kinetic energy.

Secondly, there is the classical self-interaction of the electron density, EH , which

is typically called the Hartree energy. The last term in Eq. 2.3 is the exchange-

correlation (XC) energy which includes all many body effects, and is written as so,

Exc[n] = FHK [n]− (Tind[n] + EH [n]) (2.4)
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All of the many-body effects are in the XC energy described in Eq. 2.4. Eq. 2.3

solves the many-body problem for the correct XC functional. In practical calcula-

tions, the XC functional is approximated. There are many approximations for the

XC functional, employing different constraints on the density. The level of these

approximations is termed Jacob’s Ladder of DFT[157, 127].

The practical advantage of DFT comes from the use of approximate XC func-

tionals that depend on the locality of the density. The strength of these approxima-

tions increases with constraints on some physical quantity, e.g. the charge density,

gradients of the density, the kinetic energy density, the KS orbitals and non-local

contributions to the XC energy. These functionals should be determined heuristi-

cally for transferability and applicability to specific problems. On the bottom level

of Jacob’s Ladder is the Hartree-Fock method where exchange is treated exactly and

the correlation energy is neglected.

1st Level The first level on this ladder is the local density approximation (LDA).

The effects of XC potential are local in the limit of the homogenous electron gas

(HEG). In this approach one can use the LDA (or the local spin density approxima-

tion (LSDA)), where the XC energy is an integral over space with the XC energy

density equivalent to that of an HEG,

ELSDA
xc [n↑, n↓] =

∫
drn(r)εHEGxc (n↑(r), n↓(r)). (2.5)

Here, I have split the total density into spin dependent densities with the as-

sumption that the spin-quantization axis is collinear at all points in space. The

generalization to non-collinear spins and the exact form of the XC energy density

can be found in the Appendix B. The LDA and LSDA approximations work best for

descriptions of systems that are close to the HEG, e.g. a nearly-free-electron metal.
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The approximation fails in inhomogeneous cases such as atoms and molecules where

the density must smoothly go to zero aways from the centre.

2nd Level The success of the LSDA method has led to the development of the

generalized gradient approximation (GGA). The GGA approximation is widely used

in chemistry, in addition to the main XC functional used in this body of work. The

objective GGA describes the functional in terms of the local density as well as the

magnitude of gradient of the density |∇nσ(r)|. The many GGAs propose functions

to treat large gradients for desired quantities, which can be defined in a general form,

EGGA
xc [n↑, n↓] =

∫
drn(r)εxc(n

↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, ...). (2.6)

In the appendix the forms of Perdew and Wang (PW91) [128], and Perdew, Burke

and Enzerhof (PBE) [126] are discussed. These functionals have led to some of the

most highly cited papers in physics and have shown accurate descriptions of many

materials, from solids to molecules. There are higher levels of Jacob’s ladder, such as

meta-GGA’s and hybrid functionals, which are beyond the scope of this dissertation.

2.2 DFT Methods

In actual DFT calculations one has to take care of how the basis functions are

treated. In principle, the most efficient way to treat Bloch functions (see Appendix...)

as a linear combination of plane waves. However, close to the nucleus the infinite

Coulomb potential causes rapid variations in the wavefunction, which requires an

increasing number of plane waves for larger Z( See Fig. 2.1). In attempt to cir-

cumvent this issue the many DFT codes take different approximations of a given

area surrounding the nucleus and treat the interstitial differently. In this section we

will discuss the details of the TB-LMTO code primarily developed by Ole Krogh

Andersen at the MPI institute in Stuttgart. We will also discuss the comparison
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to other methods, such as pseudo-potentials (PP), the full potential linearized aug-

mented plane wave (FLAPW) method and linear combination of atomic orbitals

(LCAO), and the various advantages and shortcomings of the different DFT codes

that use these methods [100]. These methods attempt to solve the singularity of of

the Coulomb potential giving rise to a rapidly varying wavefunction as r → 0 ( See

Fig. 2.1)

2.2.1 TB-LMTO-ASA

Firstly, lets begin with describing a very general Hamiltonian for linear equa-

tions, where the linearity governs the differential equation, and for a muffin-tin

(MT) potential which encapsulates many of the methods listed above. We would

like to solve a Hamiltonian for Bloch functions expanded in a set of basis functions

ψi,n(r) =
∑

n ci,n(k)χn(r) . For simplicity we will only take into account a flat in-

terstitial potential with muffin-tin radii of S. For a single muffin-tin the Schrödinger

equation follows:

(
−~2/2me

d2

dr2
+ VMT − Eν

)
rψ(Eν , r) = 0, (2.7)

with an arbitrarily chosen energy ε = Eν . The energy partial derivative of a nor-

malized ψ in the MT taken at ε = Eν . From here it is easy to show that ψ and ψ̇

are orthogonal, and the two functions span a larger space with,

(Ĥ − ε)ψ̇(ε, r) = ψ(ε, r) (2.8)

Higher order derivatives of ψ can be formulated in terms of ψ and ψ̇. The aug-

mentation functions as a function of the energy can be specified in terms of the
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dimensionless logarithmic derivative,

D(ε) =

[
r

ψ

dψ

dr

]
r=S

(2.9)

with

ψ(D) = ψ + ω(D)ψ̇ (2.10)

and ω given by,

ω(D) = −ψ(S)

ψ̇(S)

D −D(ψ)

D −D(ψ̇)
. (2.11)

When ψ and ψ̇ are calculated at a reference energy Eν the wavefunction is first order

in energy E(D) − Eν , the second order in energy is Eν + ω(D) and the variational

estimate of third order in energy is,

E(D) = − 〈ψ(D)|H|ψ(D)〉
〈ψ(D)|ψ(D)〉

= Eν +
ω(D)

1 + ω(D)2
〈
ψ̇(D)

∣∣∣ψ̇(D)
〉 . (2.12)

The LMTO method builds upon the properties of muffin-tin orbitals, which was

introduced by Andersen (cite) in 1971 to provide a satisfying interpretation of the

electronic structure of materials with a minimal basis of localized augmented orbitals.

In addition, the LMTO method should coincide with the linear limit of the KKR

method, which is beyond the scope of these notes. In general a linearized equation

for muffin-tin orbital basis can be written from the above equations 2.7-2.12.

χj(r) = χej(r) +
∑
L,s

[
ψl,s(r− τs)ΠLsj + ψ̇l,s(r− τs)ΩLsj

]
ilYL(r̂− τs). (2.13)

Here ψ and ψ̇, the energy derivative, are the radial part of the wavefunctions in

the muffin-tins, and Π and Ω are factors to be determined. YL ≡ Y m
l and for each
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atom s at origin τs. The function χej describes the interstitial region between the

MT’s and from here one can describe the LAPW method with plane waves or the

LMTO method with a sum of Neumann or Hankel functions. Let us continue with

the description of the LMTO method and we will continue later with a comparison

of the FLAPW method later on. In the LMTO method the envelope function is

described by the energy ε and the constant decay function κ. Inside the muffin-tin

for a fixed value of κ the basis functions are a linear combination of ψ and ψ̇ at

ε = Eν . This is formally written as,

χLMTO
L (r) = ilYL


ψl(ε, r) + κ cot(ηl(ε))Jl(κr), r < S,

κNl(κr), r > S.

(2.14)

functions Jl and Nl play an analogous role to the Bessel and Neuman functions jl

and nl for MTO when κ=0. Eq. 2.14 leads to an energy-independent basis function

when ε = Eν because the energy derivative of χLMTO
L (ε, r, κ) vanishes at the muffin-

tin boundary S. With the augmented Neumann functions NL defined in terms of nl

the LMTO basis functions is a linear combination of ψ and ψ̇, in the muffin tin and

continuing smoothly in tho the interstitial region and joining smoothly to ψ̇ in each

neighboring MT.

To simplify we set κ = 0 the w.f. in the MT are chosen to match the interstitial

solution ∝ (r/S)−l−1. This is accomplished for r < S for radial w.f. with ψ(D =

−l − 1, r) ≡ ψl−(r) and for w.f. from other MT overlapping onto the original MT

ψ(D = l, r) ≡ ψl+(r) and of course with proper normalization. We can then define an

energy independent LMTO orbital with a smooth continuation into the interstitial
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as,

χLMTO
L,k (r) =

ψL−(r)

ψl−(S)
− 1

ψl+(S)

∑
L′

ψL′(r)
1

2(2l′ + 1)
SLL′(k). (2.15)

The orbital contains effects of neighbors through the structure constants SLL′(k)

that depend on the crystal environment and are constant κ and do not depend on ε,

which is in contrast to the KKR method.

Figure 2.1: Comparison of a wavefunction in the Coulomb potential of the nucleus
(blue) to the one in the pseudo-potential (red). The real and the pseudo wavefunction
and potentials match above a certain cutoff radius.

2.2.2 (F)LAPW

Now let us briefly discuss the basis functions for the LAPW method. This is

achieved by choosing plane waves for the envelope functions in the interstitial. The
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basis functions take the form,

χLAPWKm
(r) =


∑

LsCLs(Km)ψLs(DlsKm , r)ilYL(r̂− τs) r < S,

eiKm·r, r > S.

(2.16)

with similar notation in the LMTO basis Km = k+Gm where Gm are the reciprocal

lattice vectors for m = 0, 1, 2, 3.... Also Km = |Km|. The coefficients CLs are

found by forcing a boundary condition at r = S that the wavefunction and its first

derivate are continuous from the solution in the MT to the plane wave. This leads

to ψLs(DlsKm , r) as a function of the wave function and its derivative including an

energy dependence to first order without increasing the size of the basis. Dls is the

usual logarithmic derivative at the MT boundary and fixes the solution inside the

sphere for given values of L and K as in Eq. 2.10.

Lastly let us give a general overview of the pseudo-potential method (see Fig. 2.1).

The main idea of the pseudo-potential method is to simulate the effect of the strong

Coulomb potential with an effective ionic potential describing the core electrons and

acting on the valence electrons. This approximation is valid when the core states

in the nucleus remain relatively unchanged by the valence states. In practice most

pseudo-potential codes use plane wave in the interstitial region.

2.2.3 DFT Method Rankings

Let us now list the strength of the DFT methods from the strongest to the

weakest. However, a caveat, is that any of these methods can give you meaningful or

meaningless results and it quite depends on the user’s understanding of the problem

at task.
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1. FLAPW The Full-potential LAPW with all electron basis set is the strongest

of the methods and most cumbersome. In contrast to the LAPW here there is

a full non-spherical potential in the MT and spatially varying potential in the

interstitial. There are no approximations on the wavefunctions or the potential

except for truncations at lmax and Gmax. In practice large values of lmax are

need for accurately satisfying the continuity conditions. The most relevant

codes that use this method are ELK, FLEUR (spin-spiral), and WIEN2K.

2. PP There are many ways to approximate pseudo-potentials such as Ultra-soft

and PAW but much less of a reproducible method and requires ingenuity and

expertise in developing accurate potentials. This method offers a large speed up

compared to the FLAPW method. When accurate PP are used it gives good

results for relaxations making use of the Born-Oppenheimer approximation

and that the nucleus is inert. Many pseudo-potentials can include relativistic

effects. The most relevant codes that use this method are ABINIT, CASTEP

(good reproduction of full potential), GPAW, Quantum Espresso, VASP (most

robust, spin-spiral).

3. LCAO The localized atomic-(like) orbitals provides a basis that captures the

essence of the atomic like features of molecules and solids which provide a

localized description of the electronic structure. This method is close to a tight-

binding picture is widely used in molecular calculations. Many of the codes

have inputs for NEGF transport. The most relevant codes that use this method

are OpenMX, SIESTA (NEGF transport included), QuantumWise (nearly the

same as SIESTA, transport much more developed)

4. LMTO The fastest of the methods and one of the least accurate. This method

is interchangeable with the above (3). The LMTO method can also be approx-
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imated to include the full potential method. In addition the code is suitable for

electronic structure calculations of large systems with much smaller basis sets

and requiring small lmax. In construction this code is most similar to method

one the FLAPW. There are many version of the TB-LMTO code, however they

all stem from the original of Ole Andersen.

2.3 Spin-Orbit Coupling in DFT

One of the more necessary interactions in this dissertation is the spin-orbit in-

teraction. Spin-orbit coupling (SOC) is necessary for the anomalous Hall effect in

collinear ferromagnets (see 3.13). In magnetic systems that break inversion symme-

try the Dzyaloshinkii-Moriya interaction (DMI) is allowed and is first order in SOC

(see 3.2.2). The DMI plays a large role in the stabilization of non-collinear mag-

netic textures, e.g. skyrmions (see 1.1). Lastly, the magneto-crystalline anisotropy

energy is a second order effect in SOC, causing magnetic structures to orient in a

high symmetry direction.

The spin-orbit interaction stems from relativistic physics, and becomes increas-

ingly important with heavier nuclei due to high kinetic energy of the electrons in the

proximity of the nucleus. One of the great success’s of DFT is the inclusion of the

Dirac-equation [95] which gives a relativistic density-functional theory. In this sec-

tion, we simply show how to obtain the relativistic correction to the Pauli equation

[124] starting from the Dirac equation. For a more extensive and complete review the

reader is directed towards the works of Sinova [147] and Winkler [172]. The Dirac

equation for an electron in an external potential reads:

{cα · p +
1

2
βc2 + Vext(r) + Bxc · σ}Ψν(r) = EνΨν(r). (2.17)

In the above equation: c is the speed of light, p is the momentum operator, Vext

18



is the external potential as described in the previous sections, Bxc is the exchange-

correlation field. Here the relativistic energy Eν = εν+1/2c2 is the kinetic energy plus

the rest energy. The vector of Pauli spin-matrices is denoted by σ. The wavefunction,

Ψν , is a four component spinor with

α =

 0 σ

σ 0

 , (2.18)

β =

 I 0

0 −I

 . (2.19)

Here I is a 2×2 identity matrix. The four component spinor can be separated into

two parts each with two spins, the large and small component.

Ψν =

ϕν
χν

 , ϕν =

ϕ↑ν
ϕ↓ν

 , χν =

χ↑ν
χ↓ν

 . (2.20)

In systems with a larger atomic numbers, it becomes increasingly more crucial to fully

solve the relativistic Dirac equation (see Eq. 2.17). However, in the B20 compounds

of interest it is sufficient to solve the non-relativistic KS equation (see Eq. 2.3) with

relativistic corrections in a 1
c2

-expansion of the full Dirac equation [8]. This leads

to a computationally simpler matrix to diagonalize, which scales to the third power.

The KS equation takes a new form,

Hrelφν = ενφν . (2.21)
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One can write the small and large component spinors in in terms of the spinor

wavefunction, φν , as

ϕν =

(
1− 1

2c2
p2

)
φν +O(c−4), (2.22)

χν =

(
1

c
(σ · p) +

1

c3
(−p2

2
+ V − εν)(σ · p)

)
φν +O(c−5) (2.23)

With the relativistic corrections the Hamiltonian takes the form,

Hrel = HKS +
1

c2

(
−p41 +

1

2
(∇2(Veff1 + σ ·Bxc))

)
+

1

c2
σ · ((Veff )× p) +

1

c2
B.

(2.24)

The last term containing B is a 2×2 matrix that is small compared to other cor-

rections and is usually neglected. The first part of the Hamiltonian, HKS, is the

non-relativistic hamiltonian discussed in section 2.1.2. The second term includes

the mass-velocity and Darwin contributions which are invariant for rotations in spin

space [94]. These terms are included in the scalar-relativistic approximation, where

nearly every DFT code takes into account at the lowest level.

The next correction is the so-called spin-orbit coupling [81] and is written as,

HSO =
1

c2
σ · ((Veff )× p). (2.25)

Contrary to the other terms, HSO is not invariant for for rotations in spin space.

This term contribution is substantial the for large gradients where atomic number

is large and in the proximity of the nucleus. In the vicinity of the nucleus one can

approximate the potential as spherical,

∇V (r) ≈
∑
µ

∂Ṽ (rµ)

∂rµ
rµ)

rµ
, (2.26)
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here Ṽ (rµ) is a spherically averaged potential centered at rµ = r −Rµ for the µth

nucleus in real space coordinates. This leads to an analytic expression for the spin-

orbit operator in first principle calculations,

HSO =
∑
µ

ξµ(rµ)σ · Lµ =
∑
µ

ξµ(rµ)

Lµz Lµ−

Lµ+ −Lµz

 , (2.27)

where ξµ(rµ) = 1
c2rµ

∂Ṽ (rµ)
∂rµ

is the spin orbit coupling constant proportional to the

atomic number Z and quickly decays as a function of rµ. Lastly, the angular mo-

mentum is denoted by Lµ, where Lµz is the z-component and Lµ± = Lµx ± iLµy .

In collinear magnets without SOC the spin-quantization axis (SQA) is arbitrarily

chosen along the z-axis. When SOC is included, the matrix of Eq. 2.27 must be

rotated with a spin-rotation matrix U . This leads to non-vanishing expectation

values of the orbital moments 〈Lµ〉.

2.4 DFT Results in B20 Compounds

At the start of this dissertation there were many first principle calculations on

B20 compounds. However, most have been for collinear magnetic compounds and

insulating compounds with out much attention on Berry-Phase effects. Most of these

studies have been on MnSi spin fluctuations in this system [67]. There have been

some studies on the pressure-induced phase transitions in FeGe [118, 132]. Also

there are studies on the insulating to magnetic phase transition in FeSi1−nGen [175].

Until now there has not been any significant study comparing different codes and

XC functionals.

In figure 2.2 the crystal structure of the B20 structure is shown with the magne-

tization direction point perpendicular to the 〈111〉 direction. The figure shows the

right and left-handed crystal chiralities of the B20 compound side by side, which are
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just mirror images of the each other. From the image it is clear that the system

breaks inversion symmetry.

Figure 2.2: Right and left-handed crystal chiralities of the B20 compound. The
green arrows show an arbitrary magnetization direction.

In table 2.1 a comparison of four different types of DFT codes are compared for

xc-functionals of the LDA and GGA type in the B20 compound FeGe at the experi-

mental lattice constant. In addition, the total energies are compared for differences

in the antiferromagnetic and ferromagnetic states. The two magnetic states are com-

pared because they represent different limits for high symmetries of spin-spirals and

points in between can be considered as a mixture of the two states.

Firstly, the code that shows the most discrepancies for the B20 compounds is the

LCAO of the SIESTA program. In the case of the GGA calculation the code over

predicts the total magnetic moment and the moment on the Fe ions. In both the LDA

22



and the GGA cases of the SIESTA code, the moments on the Fe ion vary drastically

on the each of the four transition metal ions in the unit cell. The AFM calculations

could not be converged with sufficient accuracy. In the case of the TB-LMTO code

the FM calculations reproduce previous computational work [175]. However, the

antiferromagnetic calculations results in a non-magnetic state with zero magnetic

moment where no fixed-spin-moment restraints where applied, and the energy is

relaxed from an initial AFM state.

The calculations of the FM state in the PP code Quantum Espresso and FLEUR

show results that agree with previous work [118, 132]. The TB-LMTO and FLEUR

codes are nearly exactly the same for the FM moment, which is due to the similar

treatment of the muffin-tin core. Whereas in Quantum Espresso the radii of the core

potential are smaller, which may lead to smaller moments. The codes differ in the

case of the AFM moments. Where the FLEUR code shows the largest moment for

the GGA AFM moment. In addition, Quantum Espresso shows that the AFM is

a lower energy state for the GGA xc-functional. The most reliable xc-functional

Table 2.1: Magnetic moments in µB for the Fe ion and total per bond in the
experimental volume. Energy difference between the FM and AFM states.

mFe(mtot)-FM mFe(mtot)-AFM EAFM -FFM (meV)

FLEUR
LDA
PBE

1.11 (1.05)
1.20 (1.14)

0.20950 (0)
1.03 (0)

735
201

TB-LMTO
LDA

PW91
1.13 (1.01)
1.21 (1.06)

0
0

74
194

SIESTA
LDA
PBE

1.182 (1.08)
1.857 (1.962 )

Quantum Espresso
LDA
PBE

1.03 (0.99)
1.0 (0.96)

0.03 (0)
0.55 (0)

94
-25

Exp [93] 1
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is the GGA within the FLEUR code. The rest of this dissertation will focus all

calculations using this functional, to reproduce experimentally comparable results.

The convergence criterion for the FeGe can be found in the appendix.

In figure 2.3 the spin- and orbitally-resolved density of states (DOS) is plotted

for several concentrations of x=0, 0.4, 0.8 and 1, in Mn1−xFexGe using the virtual

crystal approximation ( discussed in the next section). In this figure the FLEUR

code is used for collinear magnetic structures without SOC. For all concentrations

the orbitally-projected p-states of the Ge ions are shown in purple. In the figure the

peaks of the px-states (below and above 1 eV) are relatively unchanged with varying

concentration. In the B20 compound the px, py and pz state hybridize with the d

states and show the some DOS, so only one is plotted and multiplied by ten. This

can be seen where there are large peaks for the p-states that coincide with that of

the d-states. All p states are partially occupied.

In the case of the d states the DOS is projected onto the eg and t2g states. The

eg are plotted in the dashed blue and the t2g are in solid red. Here with the increase

in concentration of x the peaks of the d-states move closer to the Fermi energy. In

the case of x=0.4 the eg and t2g strongly hybridize at the Fermi energy. Whereas,

in the case of x=0.8 the eg and t2g are separated by the Fermi energy. Lastly in

the case of FeGe the two types of d orbitals hybridize below the Fermi energy. The

reordering of of states with varying concentration gives some information for why

there is a change in the behavior of the Berry-Phase effects.

2.4.1 Alloy Calculations

To capture the effect of alloying we use the virtual crystal approximation (VCA)

[10]. Within the all-electron FLPAW method this is done by averaging the fractional

atomic charges of two elements at a single site. The total electron density must
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Figure 2.3: First principles collinear ferromagnetic spin- and orbitally-resolved DOS
at a given concentration x of a) 0 for MnGe, b) 0.4, c) 0.8, d) 1.0 for FeGe, for the
dxy (solid red), dx2−y2 (dashed blue), and px (purple with dots) orbitals, computed
without SOC.
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equal the total nuclear charge to satisfy a neutral charge environment. Therefore the

alloying effectively modifying the electronic structure and Fermi surface topology of

two pure B20 compounds into an average effective potential. There are two major

disadvantages for this approximation: i) The two alloying materials must have the

same crystal structure, ii) the details of microscopic electron scattering off impurities

are not taken into account. Lastly, in all-electron methods due to the averaging of

nuclear charges, only neighboring elements make use of the VCA approximation.

Pseudo-Potential methods are not limited in this regard, in that any two pseudo-

potentials can be averaged. However, in this dissertation we are concerned with

smoothly modifying the electronic structure to see the extent the intrinsic Berry

curvature changes.

In the pure B20 compounds we take the experimental lattice constants and basis

[28]. The lattice constants and positions of the alloy compounds are computed using

Vegard’s law, i.e. ax = {1−x}a1 +{x}a2. For example, in Fe1−yCoyGe, a1 the lattice

constant of FeGe and a2 is that of CoGe where x is exchanged with y. In figure 2.4

we show the comparison of the lattice constant input into the ab initio, which is the

blue curve. The experimental curve shown in red is the lattice constant for thin film

samples prepared by the group in Leeds. The bottom curve shows the calculated and

measured magnetic moment per formula unit. The thin films show a discrepancy of

the lattice constant with that of the calculations in the Fe rich side. We attribute

this behavior to the thickness of the thin films. Where the ab initio lattice constant

taken from bulk experimental results [28], using the Vegard’s lattice constant.

The results for figure 2.4 assures computationally accurate results for the use of

the VCA approximation and Vegard’s law in alloyed B20 compounds. In figure 2.6

the FM (blue closed square) and AFM (red open square) moment in Cr1−wMnwGe,

Mn1−xFexGe, Fe1−yCoyGe is plotted in the top graph as a function of alloying. The
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Figure 2.4: top Ab initio input of the lattice constant in Fe1−yCoyGe compared to
thin film measurements (red) of the lattice constant. bottom Comparison of magnetic
moment per formula unit (f.u.) for ab initio and experiment.
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bottom curve shows the energy difference (green closed square) of the AFM and FM

state. In addition, we include the DFT results for that of MnSi shown in circles. The

upper graph shows a smooth behavior of the magnetic moment for the concentration

w of Mn ions in CrGe, x of Fe ions in MnGe, and y of Co ions in FeGe.

In figure 2.5 the collinear band structure of three concentrations in Mn1−xFexGe

without SOC is compared of x=0.1, 0.8 and 0.9. These concentrations are shown,

because x=0.1 and 0.9 are close to the pure concentrations of MnGe and FeGe

respectively. The concentration at x=0.8 is where experimentalists see a transition

in the magnetic properties of Mn1−xFexGe [145, 49]. In the figure the concentration

at x=0.8 is plotted for the majority (maj) in solid blue and the minority (min) in

solid green. In the top (bottom) graph the collinear band structure is plotted for

x=0.1 (0.9) with the majority as dashed black and the minority as dashed red.

In figure 2.5 the energy range is only from -2 eV to + 2 eV to emphasize the

change around the Fermi energy. In the top graph the minority channel is shifted

nearly a half of an eV up above the Fermi energy comparing the green solid bands

(0.8) to that of the red dashed bands (0.1). This is clearly seen at the high symmetry

point of k = R. In addition, comparing the majority bands blue (0.8) and black (0.1)

there is a shift upwards of nearly 50 meV at the high symmetry point of k = R.

On the contrary the bottom curve shows the minority channel shifts down slightly,

where as the majority curve also shifts up as in the previous comparison. From the

actual calculations, there is not only a rigid shift of the bands, but in addition the

curvature of the bands change.

The Stoner model is one the simplest models to describe ferromagnetism in a

single-particle picture [100, 99]. Although ferromagnetism arises from the electron-

electron interactions, in a single-particle band picture ferromagnetism is energetically

favored over paramagnetism when the density of states, g(EF ), causes an increase
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in the energy for the electrons to move from one spin channel to the other. The

stoner model is written as E(k)↑,↓ = ε(k)± I N↑−N↓
N

, where I is the stoner parameter,

N↑
N

(
N↓
N

) is the spin up (down) density and ε(k) is the spin-less dispersion relation.

When Ig(EF ) > 1 the systems prefers a polarized state. In Mn1−xFexGe we see that

the Stoner parameter in approximately 1 eV for all concentrations of x. This leads

to the fact that the change in magnetism is these systems is due to the electronic

density of states at the Fermi energy.

The results in Mn1−xFexGe show the largest magnetic moments and the most

monotonous behavior of the magnetic moment as a function of concentration. Ex-

perimentally, the Mn1−xFexGe are known to be ferromagnetic helimagnets with some

of the highest transition temperature from an ordered magnetic state to a paramag-

netic state [145]. Both CrGe and CoGe are paramagnetic in the ground state [28].

However, the first principle calculations in CrGe show a ferromagnetic ground state

at the experimental volume. The paramagnetic ground state is recovered in the ab

initio minimal volume. An interesting feature of this curve is where the antiferro-

magnetic moment is larger than that of the ferromagnetic moment for Cr0.4Mn0.6Ge.

To understand this better we can look for the exchange interactions in these systems.

Within the simplest MFA [96] we can calculate the Curie temperature as Tc =

2
3kB

J0. As can be seen in the bottom graph of figure 2.6 the plotted green curve

of J0 = EAFM − EFM should give information on the magnetic ordering of these

materials. Using this approximation we can calculate J0 for MnSi, MnGe and FeGe

to be 4 meV, 22 meV and 36 meV for the experimental TC of 29.5, 170 and 278.2

K respectively. It can be seen at this level of approximation that the experimental

results differ from the computational results in figure 2.6 by orders of magnitude.

The failure of this MFA is due to the i) treating the four magnetic sub-lattices as

one, ii) treating the system as ferromagnetic iii) more specifically in MnSi there
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Figure 2.5: Top Collinear ferromagnetic ab initio band structure comparison in
Mn1−xFexGe with x=0.1 and x=-0.8 using the VCA approximation for the majority
(maj) and and minority (min) spin channels. Bottom Collinear ferromagnetic ab
initio band structure comparison in Mn1−xFexGe with x=0.9 and x=-0.8 using the
VCA approximation.
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moments in the first principle calculations are predicted to be 0.9 µB as compared

to the experimental value of 0.4 µB.

In the first case the, we only take the simplest MFA approximation, which works

well for simple cubic compounds such as Iron, Nickel, and Cobalt [96]. However,

already at this level the MFA approximation overestimated the TC compared to that

of the experiment. In the B20 compounds there are 4 magnetic sub-lattices (see

Fig. 2.6), which is not taken into account for this level of the MFA. One can take

into account the multiple sub-lattices [5, 24, 25] in calculating the TC , however this

still gives a miss representation of the magnetic ordering temperature as can be seen

for calculations in MnSi [63]. This can been remedied by taking into account spin-

spiral solutions as the ground state of the B20 compounds, which is the solution to

the second failure of the MFA. This can be taken into account in the random phase

approximation (RPA) which is discussed in the following section [165, 35]. Lastly,

as discussed earlier in MnSi the spin fluctuations cause the magnetic moment to be

smaller experimentally [67], which will not be discussed in this dissertation.

2.4.2 Spin-Orbit Coupling in B20 Compounds

In figure 2.7 the orbital projected bands are plotted for FeGe (MnGe) on the

left (right). The red (blue) circles shows states mostly with d (p) character. In

the calculations, the SQA is along the [001] direction. The size of the circles is

determined by the strength of the spin-orbit interaction which is multiplied by 15 to

enhance the quality of the graph.

In the figure one can see in both band structure plots that around ±2 eV around

the Fermi energy that the d-states give the largest contribution. The d-states are

directly due to the transition metal ions Fe and Mn. The occupied p-states in red

lie below the Fermi energy from -7 eV to -2 eV, which is due to the Ge ions. Below
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Figure 2.7: Left Orbital projected bands of FeGe with SOC. Bottom Orbital pro-
jected bands of MnGe with SOC. The red (blue) circles show the d (p) character of
the bands and the size of the circles show the amount of the SOC×15.

-7 eV there is a gap between the occupied p-states and the s-sates of the Ge ions,

where the s-states do not have any SOC contribution. However, there is some small

hybridization of the s and p-states. Above the Fermi energy there are also unoccupied

p-states from the Ge ions that hybridize with the d-states of the transition metal ions.

This can be seen on some bands that are colored both red and blue at certain points

in the Brillouin zone.

Most of the effects due to spin-orbit coupling determined by Berry-phases are

determined by the Fermi occupation (see 3.11). In figure 2.7 one can see that band

structures of the two pure B20 compounds MnGe and FeGe, show many resem-

blances. This can especially be seen at the high-symmetry point R. MnGe has four

less electrons than FeGe, so there are more unoccupied d-states for the transition

metal ion. From the previous section, the affect of alloying would effectively shift

the bands and hence change the Fermi surface. From figure 2.5 the minority states
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have the larges shift causing a change in the number of crossing points with SOC

around the Fermi energy. Around the high-symmetry point R there is only one

crossing point in MnGe of the majority state, where in FeGe there is a mixture of

crossing points for minority and majority states. However, simply looking at the

band structure does not tell the full story of the Berry-phase effects and this will be

discussed in more detail in section 3.11. Lastly, it is important to note the effects of
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Figure 2.8: Band structure of MnGe with SOC for the SQA in the 001 (green) and
the (111).

the choice of the SQA has on the band structure. In figure 2.8 the band structure

of MnGe is plotted in a small energy window (-0.5–0.8 eV) around the Fermi energy

for the SQA along the [001] and the [111] directions, in green and black respectively.
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Here it is seen that there are very small differences in the band structure for the

different directions. In addition, at the Fermi level there is little to no difference in

in the eigenenergies of the band structure. The small difference is due to the cubic

symmetry of the B20 compound, where the cubic directions 〈100〉, 〈110〉 and 〈111〉

display the lowest total energies. For the SQA along these high-symmetry directions

the total energy difference is on the order of 1 µeV, which is beyond the accuracy of

the DFT method.

The usual method to calculate the magnetocrystalline anisotropy is to take the

difference in energies of two magnetic directions [21]. In section 3.1.4 the magne-

tocrystalline anisotropy will be discussed in more detail. In the next section we will

also discuss the Heisenberg interactions in respect to DFT calculations.
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3. HEISENBERG INTERACTIONS AND NON-COLLINEAR MAGNETISM

Non-collinear magnetism arises in many forms and from many types of interac-

tions. In some cases it arrises due to frustration of the lattice or reduction of the

dimension of the lattice. It can be caused by finite temperature effects producing

spin waves. In other cases it is due the competition of exchange interactions. For

instance, if the exchange interaction of the first and second nearest neighbor are of

the same order with different sign, this may cause a twisted helicoidal state [26].

This work is interested in long wavelength non-collinear spin states caused by the

interaction of the exchange interaction and the DMI. ∗

3.1 Classical Spin Hamiltonian

Here, we are interested in the classical classical ground state of a spin Hamiltonian

of the form,

H = Hexch +Hani +Happ (3.1)

Where Hexch is the exchange energy Hani is the anisotropy energy and Happ is the

due to applied fields. This Hamiltonian captures the essential physics of spin inter-

actions at an atomic scale without non-magnetic effects. The dominant term in the

Hamiltonian is Hexch, due to the symmetry of the electronic wave function and the

Pauli exclusion principle, where it gives the energy between relative orientations of

two Heisenberg linked spins. The typical interactions scale of these energies are on

the order of electron Volts and orders of magnitude larger than the next largest con-

tributions. The exchange interaction dominates the magnetic ordering temperature.

∗Reprinted with permission from ”Dzyaloshinskii-Moriya Interaction and Hall Effects in the
Skyrmion Phase of Mn1−xFexGe” J. Gayles, F. Freimuth, T. Schena, G. Lani, P. Mavropoulos,
R. A. Duine, S. Blügel, J. Sinova, and Y. Mokrousov. Physical Review Letters,115(3):1-6, 2015.
Copyright 2016 by Copyright Clearance Center
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3.1.1 Symmetric Exchange

The exchange interaction dominates the magnetic ordering temperature. The

symmetric exchange described in Eq. 3.3 is due to the direct exchange energy of two

electronic wave functions being interchanged for two atomic sites. For two atomic

sites the energy only decreases when the exchange energy decreases the total energy

of the system. In metallic systems the exchange interactions is mediated by the

itinerant electrons over large distances, which is commonly referred to as the RKKY

interaction [139, 74, 178]. There are other forms of exchange that cause magnetic

ordering, i.e. double [180] or super exchange [86, 4] which is not the case in the B20

compounds. For the helimagnetic systems of study in this dissertation the symmetric

exchange is the leading term to cause magnetic ordering. With the exception of

CrGe and CoGe which have paramagnetic ground states. The form of the exchange

interactions is,

JM
ij =


Jxx 0 0

0 Jyy 0

0 0 Jzz

 , (3.2)

and the Hamiltonian,

Hexch = −
∑
i 6=j

JijSi · Sj (3.3)

where Jij is the exchange interaction linking atomic sites i and j for the atomic spin

Si,j. The sign of Jij determines the preferential alignment of linked spins where Jij>0

is ferromagnetic (FM) and Jij<0 is antiferromagnetic (AFM).

In principle Jij can extend to many distance of rij but quickly drops off due

to the RKKY interaction. In many simple cases Jij takes the form of an isotropic
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interaction,

JM
ij =


J 0 0

0 J 0

0 0 J

 (3.4)

Do to the cubic symmetry of the B20 compounds, the exchange interaction does

take this for cubic directions along 〈100〉 planes. However these exchange for the

〈100〉, 〈110〉 and 〈111〉 planes is anisotropic as expected. Due to the weak crystalline

anisotropy energy of these compounds, one can simply rotate the magnetic ordering

in different planes with an external magnetic field.

3.1.2 Antisymmetric Exchange

However the exchange interaction can be more complex and take into account

anisotropic terms and antisymmetric terms ( Dzyaloshinskii-Moriya interaction or

DMI) which is also anisotropic in our systems for different sets of crystal planes.

The full tensor for the exchange interaction will then take the form,

JM
ij =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 (3.5)

Here the DMI is represented by the off-diagonal terms such as Dz = 1/2(Jxy −

Jyx) and the interaction energy, HDMI = Dij · (Si × Sj) preferring spins to point

perpendicular on connecting sites. The DMI arises in magnetic systems breaking

inversion symmetry that also include spin-orbit coupling. Recently, it has been noted

as a crucial interaction to stabilize chiral structures, more specifically skyrmions. In
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general, The DMI is a tensor with a directional preference,

DM
ij =


0 Dz Dy

−Dz 0 Dx

−Dy −Dx 0


ij

(3.6)

The DMI gives a chiral ground state and when coupled with a strong Heisenberg

interaction a long wavelength spin-spiral is expected. There are many was to calculate

the DMI from first-principle calculations such as the spin-cluster expansion technique

[154, 30] or the relativistic torque method [92, 33]. We make use of ab-initio methods

to calculate D along the ê[111] direction (discussed in the next section). The DMI

vector along different planes is anisotropic for different cubic planes, but largest in

the ê[111] direction. With the full information of the exchange interaction from the

ab-initio calculations we can move forward with the form of the exchange energy

where we only consider the DMI acting on nearest neighbors. Within our ab-initio〈

method we make use of the frozen magnon calculations which implement spin-spiral

formalism to calculate the symmetric exchange parameters. For the DMI interaction

we calculate the first order perturbative spin-orbit coupling (SOC) energy added to

the spin-spiral state.

3.1.3 Symmetry of the DMI

Including SOC, inversion symmetry must be broken in order for the DMI to arise.

In bilayer systems such as Co/Pt and Mn/W this inversion symmetry is broken at the

surface[162, 45, 58]. For three dimensional materials the symmetry must be broken

in the bulk, and in the case of the B20 compounds the crystals either have a right- or

left-handed chirality. The direction of the DMI can determined for spin-spirals in an

isotropic system. However other mechanisms can also break the symmetry such as
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dislocations, impurities, etc. The direction of the DMI can be found from the rules

first stated by Moriya [109].

If one takes two spins located at R1 and R2 where the center is at Rinv =

(R1 + R2)/2 then:

• The center of inversion is at Rinv

D=0.

• A mirror plane, A perpendicular to R1 and R2 and passes through Rinv,

D ‖ A or D ⊥ (R1 −R2).

• A mirror plane B including R1 and R2,

D ⊥ B.

• A two-fold rotation axis c perpendicular to (R1−R2) and passes through Rinv,

D ⊥ c.

• A n-fold axis d along (R1 −R2) for n ≥2,

D ‖ (R1 −R2) .

In the B20 compounds the crystal symmetry is P213, where the is a 3-fold rotation

axis along the [111] direction. This allows for a DMI in the [111] direction as stated

by the last rule.

3.1.4 Anisotropy

Another important interaction due to SOC is the magnetic anisotropy, that

prefers moments to point along a particular direction in the crystal, stabilizing

the magnetic structure. The leading effect of anisotropy is the magnetocrystalline

anisotropy due to the interaction of electron orbitals with the local crystal environ-

ment. For our systems the most important form is the uniaxial anisotropy that acts
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on single ions independently and forces them to align along a single axis, and has also

shown to be crucial in the formation of skyrmions. Uniaxial anisotropy is usually

found due to the shape of the crystal such as in hcp Co or L10 ordered FePt [106].

The energy for the anisotropy follows,

Huni
ani = −ki

∑
i

(Si · e)2 (3.7)

Here ki is the anisotropy per atom. Secondly, and much weaker is the cubic anisotropy,

generally seen in cubic systems like bcc Fe and fcc Ni. The Cubic anisotropy has

three directions that are easy, hard and very hard. The energy can be described as,

Hcub
ani = k′i

∑
i

(S4
x + S4

y + S4
z ) (3.8)

where k′i is the cubic anisotropy energy per atom.

Lastly there is the applied field energy which is also important in stabilizing exotic

magnetic structures. This can come from an external magnetic field or an electric

current that produces a non-equilibrium field. The energy added to the system by

an external field is detailed as,

Happ = −
∑
i

µsSi ·Happ. (3.9)

3.1.5 Higher Order Exchange

In principle there can be higher order exchange interactions other that the DMI

and the two-spin Heisenberg exchange. Upon expanding the Heisenberg Hamiltonian

the two most relevant leading terms are the bi-quadratic and the four-spin exchange

[61, 3]. These interactions have shown to stabilize skyrmions in two dimensions

[59, 31], yet at the knowledge of this dissertation there have not been many studies

41



of these interactions in bulk materials. The bi-quadratic exchange takes the form,

HBI = −
∑
ij

Bij(Si · Sj)2, (3.10)

and the four-spin exchange interaction,

H4S = −
∑
ijkl

Kijkl [(Si · Sj)(Sk · Sl) + (Sj · Sk)(Sl · Si)− (Si · Sk)(Sj · Sl)] (3.11)

These terms tend to be quite small compared with the two-spin term and the DMI. In

addition for vanishing magnetic moments the higher-order exchange is less dominant,

which is a reasonable approximation in the case of FeGe with a moment of 1.2 µB.

Whereas in MnGe the magnetic moment is on the order of 2.3 µB. However, the

four-spin and the bi-quadratic exchange do not directly relate to Berry-Phase effects

and are beyond the scope of this dissertation.

3.2 First-Principles approach to Non-Collinear Magnetism

In the previous section (2) we described the energy functional in terms of the

charge density n and the magnetization density m. However, for non-collinear sys-

tems it is more advantageous to equivalently describe the functionals in terms of a

2×2 hermitian density matrix ρ. The density matrix and the potential matrix can

be expressed in a similar form,

ρ =
1

2
n I + σ ·m =

 n+mz mx− imy

mx+ imy n−mz

 (3.12)

and

ρ = V I + µBσ ·B =

 V + µBBz µB(Bx − iBy)

µB(Bx + iBy) V − µBBz

 . (3.13)
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The components of the density matrix are determined by the KS states, ραβ =∑N
i=1 φ

∗
i,αφi,β. When, solving the KS equation (Eq. 2.3) the kinetic energy is diagonal

in the two spin directions. The off diagonal components of the potential matrix

couple the two components of the Pauli spinor for finite values of Bx and or By. In

the case when both Bx and By are zero, one considers the collinear case an solves the

KS equation independently for each spin. In the case of non-collinear calculations

the Hamiltonian matrix is always complex, due the complex Pauli matrix σy. This

increases the time for calculation where the full Hamiltonian matrix must be solved

and the amount of memory needed to store the matrix. Lastly, in systems that lack

inversions symmetry, i.e B20 compounds, the Hamiltonian and the overlap matrix

are complex hermitian.

In the absence of spin-orbit coupling or dipole interactions, the relation between

spin and spatial coordinates are decoupled in the Hamiltonian. The two differ-

ent spatial systems can be treated independently. Here we can act the spin space

group operator on the two component spinor {αS|αR|t}ψ(r) = U(αS)ψ(α−1R r−α−1R t)

[19, 140, 141]. Where αS and αR are the spin and space rotation and t is the space

translation. Lastly, U is the spin 1/2 rotation matrix. In the presence of SOC, αS

is restricted to equal αR in order to leave the Hamiltonian invariant for transfor-

mations. However, in the absence of SOC, αS and αR are allowed to differ. This

is an essential feature of the spin space group and necessary for the treatment of

spin-spiral calculations.

In the case homogenous and incommensurate spin-spiral calculations the peri-

odicity is lost with respect to lattice translations along the spin-spiral direction q.

However in the absence of SOC, the unit cells of the spin-spiral structure are equiv-

alent. That is the magnitude of the magnetization in each cell and the relative angle
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between neighboring cells is the same. This leads to the generalized Bloch Theorem

[60, 142], which is valid for spin-spiral solutions without SOC (See Appendix). The

generalized Bloch theorem combines a spin rotation and a lattice translation that

leaves the Hamiltonian invariant under actions. This allows for the calculations of

spin-spiral structures that are computationally less expensive, in a single unit cell.

Figure 3.1: Half of a homogeneous spin-spiral state on a mono-atomic 1D magnetic
lattice with ϕ being the rotation angle between neighboring unit cells.

An incommensurate spin-spiral has a lattice length that is different than that of

the crystal lattice structure, where a homogenous spin-spiral has a constant angle

between neighboring magnetic unit cells. In this case, it is simple to describe a

magnetic spin-spiral in each unit cell without SOC as,

mn,µ = m


cos(q · (Rn + τµ) + φµ)sinθµ

sin(q · (Rn + τµ) + φµ)sinθµ

cosθµ

 . (3.14)

In the above equation, Rn is a lattice vector pointing from the unit cell to cell n,

τmu is the vector to the basis atom µ, θµ is the cone angle between the rotation axis

and the magnetic moment at µ, φµ is the phase shift associated with atom µ, and q

is the spin-spiral vector with the rotation axis set parallel. Due to the generalized
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Bloch theorem the spinor wavefunction takes the form,

Ψq,k(r) =

 ei(k−q/2)·ru↑k(r)

ei(k+q/2)·ru↓k(r),

 (3.15)

here the Bloch phase factor consists of the real-space translation eik·r and the spin

rotation around the z-axis e±iq·r for the two respective spin components. Spin-spirals

are sometimes called frozen magnons because they are a snapshot of a magnon at

a given time. For this reason spin-spiral calculations are used to simulate finite

temperature effects on a magnetic system as well as domain walls. The calculations of

spin-spiral ground states in fcc iron [160] and 4f and 5f metals [121] has lead to many

theoretical calculations of spin-spiral systems [112, 161]. Spin-spiral calculations

have also lead to more accurate calculations of the exchange parameters and curie

temperatures [54].

3.2.1 Spin-Stiffness

Many times it is more advantageous to describe the magnetization as continuous

vector m(r) instead discrete magnetic moments Si with |m| = 1. This assumption is

valid when the magnetization varies slowly compared to that of the distance between

unit cells. If the magnetization rotates along a high-symmetry line for a homogenous

spin-spiral, one can adopt a quasi one-dimensional model where the energy is only a

function of one variable, the spatial period length λ=2π/|q|. In this micromagnetic

model the discrete spins of a classical Heisenberg-like Hamiltonian are mapped to

continuum limit where the magnetization changes very smoothly in space. When the

magnetization is constant in magnitude the total energy of the spin-spirals is only
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dependent on the parameter q, and can be written as

E(q) = Aq2 +D(q · ê[111]) + K̄, (3.16)

where K̄ is the magneto-crystalline anisotropy tensor, which we neglect for the stud-

ied cubic B20 compounds, ê[111] is the unit vector in the high symmetry direction for

the DMI D, and A is the spin-stiffness parameter. This is termed the micromagnetic

model.

The spin-stiffness constant A is calculated from the local values of Jij and the

interatomic distances as [80, 29, 6],

A = 4π2 ∆

2b

∑
j>0

j2J0j. (3.17)

In the above, 4π2 is a normalization factor for one period length of the spin rotation,

∆ is the nearest-neighbor distance for magnetic sites parallel to the spiral direction

q, and b is the nearest-neighbor distance for magnetic sites perpendicular to the

spiral direction q. In our calculations we calculate the spin-stiffness directly from

the converged self-consistent spin-spiral calculations. Here we fit the energy if the

spin-spiral as E(q) = Aq2 for long wavelength spirals close to the Γ (q=(0,0,0))

point in the spin-spiral Brillouin zone. The calculated spin stiffness changes from

280 for MnGe to 500 meVÅ2 for FeGe.

In figure 3.2 the spin-spiral dispersion relation is plotted for Mn1−xFexGe for x=1

(black), x=0 (red) and x=0.8 (green) on the left and for different high symmetry

directions at x=0.8 on the right. The graph on the right shows the spin-stiffness

changes for flat helical spirals as the electronic structure is changed. The concavity

of the FeGe (black curve) is the largest of the B20 compounds of interest. In FeGe the
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magnetic transition temperature is also the highest for the B20 compounds studied

in this dissertation, at ∼280 K [36, 170]. The next curve at x=0.8 (green) is the

critical concentration where experimentally it has been seen that the skyrmion size

goes to zero [145, 49]. From the analysis there is no discontinuity between in the spin-

stiffness which would cause the skyrmion size to vanish as a function of concentration.

Furthermore the spin-spiral dispersion relation is also plotted for MnGe in red, and

the concavity is less than that of FeGe. The spin-stiffness for the entire rage of x

shows a monotonous behavior. Given that the spin-stiffness is directly related to the

ordering temperature, these values compare well with experimental results if SOC is

neglected [145]. This plot explains the discrepancy in the curve shown in figure 2.6.

In these helimagnetic materials the concavity close the Γ point is can be large while

the energy difference of the FM and AFM states are small, and vice versa.
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Figure 3.2: Left Spin-spiral dispersion relation for Mn1−xFexGe for x=1 (black),
x=0 (red) and x=0.8 (green) up to half of the spin-spiral Brillouin zone, M, along
the high symmetry direction (q,q,q) . Right Spin-spiral dispersion relation for
Mn0.2Fe0.8Ge for high symmetry spin spiral directions along (0,0,q) in black, (0,q,q)
in red, and (q,q,q) in green. The inset shows the spin spiral direction up to the edge
of the Brillouin zone.
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In the second figure (3.2) on the right the spin-spiral dispersion relation is shown

for the concentration of x=0.8 at three different high symmetry directions up to half

of the Brillouin zone. The three directions are along the (q,q,q) in green, the (0,q,q) in

red, and the (0,0,q) in black. In this curve the spin-stiffness is anisotropic for the three

high-symmetry directions but isotropic for equivalent planes, i.e. Jxx = Jyy = Jzz.

The largest exchange interaction is in the (q,q,q) direction for long-wavelength spin-

spirals. In the inset there is the spin-spiral for the (q,q,q) direction up to the edge

of the Brillouin zone. The Γ point is a ferromagnetic spin-spiral, however the edge

of the Brillouin zone is the antiferromagnetic point. In the inset the AF point is

a metastable point in the dispersion curve. This metastable point could be do to

higher energy dispersion curves that cross the lowest curve, however this is beyond

the scope of this work.

Lastly, in figure 3.3 the spin-stiffness (blue) on a log scale and the magnetic

moment (green) as a function of concentration in Fe1−yCoyGe. At the concentration

of y=1.0 there is no spin-spiral where CoGe shows paramagnetic behavior. The

green curve is the magnetization per transition-metal Ge bond, which is reproduced

from figure 2.6. The blue curve shows a monotonous trend of the spin-stiffness

for the (q,q,q) direction. This can be directly related to experimental transition

temperatures [50] by using the random phase approximation [165, 35].

From the above results (see Figs. 3.2 and 3.3) it is clear that the symmetric

Heisenberg exchange interaction does not cause the sign change in skyrmion tex-

tures in this systems. The monotonous behavior is consistent with experimental

results [145, 49, 50]. It is also clear that the magnetization is quite smooth in the

concentration of alloying, not giving any rise to discontinuities. So far we have only

considered interactions that are weakly based on SOC. It is well known that the

MCA interactions in cubic B20 compounds is quite small

48



 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

 0  0.2  0.4  0.6  0.8  1
 10

 100

 1000

µ
B(

m
om

en
t)

Sp
in

 S
tif

fn
es

s (
A

)
y (concentration)

Figure 3.3: Plot of the spin-stiffness (blue) on a log scale and the magnetic moment
(green) in Fe1−yCoyGe. The line at x=0.5 is the value with the lowest DMI where
one would expect the size of the skyrmions to increase to a ferromagnetic state with
no chirality.
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3.2.2 Dzyaloshinkii-Moriya Interaction

The linear term in Eq. 3.16 is due to the DMI, with D as the DMI strength.

Thus, we compute the D as the slope of the flat spin-spiral energies in the vicinity

of q=0 upon including the perturbative effect of SOC [57]. We include the effect of

spin-orbit on the energy of spin-spiral states by treating the spin-orbit Hamiltonian

HSO =
∑

µ=atoms

ξµ σ · Lµ (3.18)

within the first order perturbation theory, with µ marking the atoms in the lattice,

ξµ as the SOC strength of atom µ, and Lµ as the orbital momentum operator with

respect to atom µ. The vector of Pauli spin matrices is denoted by σ. The first order

correction to the energy of a spin-spiral, or, the DMI energy, is given by

EDM(q) =
∑
µ

∑
n=occ

∑
k

〈ψkqn |HSO |ψkqn〉 =
∑
µ

δεµ(q) (3.19)

with

δεµ(q) =
∑
n=occ

∑
k

〈ψkqn | ξµ σ · Lµ |ψkqn〉 (3.20)

as the contribution to δε(q) from atom µ, and ψkqn as the eigenstates of the spin-

spiral Hamiltonian without SOC. The last two expressions are used to determine the

strength of the total DMI and its atomic decomposition.

The index free description of the DMI is described by and effective constant as

the averaged contribution to the energy,

D = 2π
1

b

∑
j>0

jD0j. (3.21)
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In this case the DMI is calculated as an effective field. In figure 3.4 the total DMI is

plotted for Mn1−xFexGe (left) and Fe1−yCoyGe (right) as the green curve. In addition

the DMI for MnSi is plotted as the black dot at the concentration x=0. The graph

on the left separates the DMI contribution of the transition metal ion, Mn1−xFex

(blue squares) and the Ge ion (red open squares). The inset on the right is the B20

compound with right-handed chirality with transition ions in light grey and Ge in

dark grey.

Figure 3.4: Left: ∗Strength of the DMI as a function of concentration x in
Mn1−xFexGe alloys. The total value of the DMI (filled squares) is decomposed into
the contributions coming from the transition-metal (red dots) and Ge (blue dots).
The inset depicts the crystal structure of the studied B20 compound, with light grey
and dark grey spheres representing the transition-metal (TM) and Ge atoms, respec-
tively. Right: Strength of the DMI as a function of concentration x in Fe1−yCoyGe
alloys.

The above figure shows that the DMI in these B20 compounds primarily comes

from the transition metal ions. This is due to the bands around the Fermi energy,

which are dominated by the magnetic d-states (see fig. 2.7). The SOC from the Ge

p-states approximately add a constant background to the DMI and do not cause any

discontinuity. At the concentration of x=0.8 the value of D rapidly increases with
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alloying, and reaches a value of 10 meVÅ at x = 0.4. In addition the experimental

results show a rapid decrease in the size of skyrmions as the concentration approaches

the critical concentration where this ∼1/D is fulfilled. However, upon approaching

the Mn rich alloying, the DMI decreases to a value of 1.2 meV Å. Thus, the theoretical

findings of the DMI in MnGe is not in agreement wit the experimental findings

observation of ultra-small of skyrmions in MnGe, on the order of 3 nm [71]. It is

assumed that the ab-initio description of the electronic structure of MnGe is reliable.

Than the discrepancy with experimental findings can be attributed to the breakdown

of adiabatic approximation for slowly varying magnetic textures, used to evaluate

the D. Another possible explanation for this discrepancy could be that the real

spin structure in MnGe is more complex than a simple skyrmion lattice [138, 156].

The very small value of skyrmion size makes current experimental measurements

challenging and leaves ambiguity in the structure of the spin lattice in MnGe [145, 70]

3.2.3 Band Structures of Spin-Spiral States

Lastly, as stated above spin-spiral states break the symmetry, where k 6= −k. In

figure 3.5 the electronic band structure of selected spin-spiral states in pure MnGe

(top) and FeGe (bottom) is shown as the black lines. In addition, we plot the SO

correction at each k-point and energy as the positive (negative) shift with respect

to the unperturbed state in blue (red) dots whose size depends on the strength of

the interaction. The plots on the right show the density of such energy shifts as a

function of energy for the pure MnGe and FeGe on top and bottom, respectively.

Integrating the latter SOC-correction energy density up to a certain energy allows

us to plot the total DMI energy EDM(q) for a given spin-spiral state as a function

of the chosen Fermi energy (see Eq. 3.19).

The above plot shows the effect of the SOC on the spin-spiral bands in MnGe and
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Figure 3.5: Left panels: the unperturbed spin-spiral bands for a) MnGe and b)
FeGe with the spin-orbit correction to them displayed with blue (positive) and red
(negative) dots. Right panels: the density of SOC-induced energy correction to the
eigenvalues at a given energy, eDM , and the value of the total DMI energy as a
function of Fermi energy EF , EDM , obtained as an integral of all eDM below EF .

FeGe. In the MnGe there are very linear bands at the Fermi energy with positive

spin-orbit correction to the states, leading to a small and positive DMI. Whereas, in

FeGe the spin-orbit correction is mostly negative close to the Fermi energy. The DMI

is a summation of the negative and positive spin-orbit contributions up to the Fermi

energy as seen in the energy projected DOS. This causes an oscillatory DOS that

changes sign based on the Fermi energy, or occupation level. However the details

of the band structure are not completely intuitive, therefore in the next section we

develop a simple model to estimate the DMI in B20 compounds derived from our

ab-initio results.
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3.3 TIGHT-BINDING CALCULATIONS OF THE DMI

In this section, I will discuss localized orbitals in the tight-binding (TB) method

[13], which was theorized more than 80 years ago for a simple picture of the electronic

structure in solids. Then I will briefly discuss the Slater-Koster (SK) two center

approximation [150] which improved upon the TB approximation and allowed for

a more accurate calculation of the electronic structure by taking into account the

orientation of atomic orbitals. Lastly, I will describe our simple TB model on a

trimer-type molecule which uses the TB and SK approximations for the electronic

structure. Our model compares to the Fert-Levy picture [38] of the DMI. In this

section I will primarily focus on the describing the TB approximation for the trimer

model ( See Fig. 3.8) and later I will discuss a 2-D TB model for the calculation of

the AHE and THE in section 7. ∗

3.4 Tight-Binding Approximation

The TB approximation is considered the simplest approximation to calculate

electronic band structures of crystals, and the eigenstates of molecular systems. The

method is computationally inexpensive and also allows for a simple intuitive picture

of the electronic structure. The TB method can sometimes be refereed to as the

Linear Combination of Atomic Orbitals (LCAO), where one s the assumption that

the crystal basis functions, χkli(r), can be expanded from a basis of atomic like

orbitals, ϕl(r− ti), that are tightly-bounded to the atoms [77, 100, 99]. Where k

is the crystal momentum, l is the usual angular momentum characters of an atom

s, p, d, ... and ti is the position of the i-th atom in the PUC. One must take at least

∗Reprinted with permission from ”Dzyaloshinskii-Moriya Interaction and Hall Effects in the
Skyrmion Phase of Mn1−xFexGe” J. Gayles, F. Freimuth, T. Schena, G. Lani, P. Mavropoulos,
R. A. Duine, S. Blügel, J. Sinova, and Y. Mokrousov. Physical Review Letters,115(3):1-6, 2015.
Copyright 2016 by Copyright Clearance Center
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the number of valence states on a given atom for the number orbitals to consider in

a practical calculation of the LCAO method.

The χkli(r) serve as a basis for expansion of the crystal single-particle eigenstates,

Ψ
(n)
k (r), where both can be written as;

χkli(r) =
1√
N

∑
R′

eik·R
′
ϕl(r− ti −R′),

Ψ
(n)
k (r) =

∑
l,i

c
(n)
kli (r)χkli(r).

(3.22)

In the appendix A confirm that the crystal basis functions are periodic and Bloch-

like in nature. The coefficients c
(n)
kli , for each band n, are to be determined, for a single

particle equation [77],

HΨ
(n)
k (r) = ε

(n)
k Ψ

(n)
k (r)⇒

∑
l,i

[
〈χkmj|H |χkli〉 − ε(n)

k 〈χkmj|χkli〉
]
c

(n)
kli = 0 (3.23)

Where we only consider matrix elements of states with the same k index,
〈

Ψ
(n)
k

∣∣∣Ψ(n′)
k′

〉
∼

δ(k − k′) with k and k′ restricted the IBZ. The secular Eq. 3.23 at each k-

point has a finite number of solutions (bands, n), which is equal to the number

for each different atom type. One can solve Eq. 3.23 by evaluating the integrals

〈χkmj|χkli〉 =
∑

R eik·R 〈ϕm(r− tj)|ϕl(r− ti −R)〉, which are called the overlap ma-

trix elements between atomic states. In a similar way we can solve for the Hamilto-

nian matrix elements.

In the TB method it is common to take an orthogonal basis as an approximation

for the overlap matrix elements, 〈ϕm(r− tj)|ϕl(r− ti −R)〉 = δlmδijδ(R), where

elements are only non-zero for the same orbitals on the same atom. In a similar

fashion we can have the so called on-site energies for orbitals on the same atoms as,
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〈ϕm(r− tj)|H |ϕl(r− ti −R)〉 = δlmδijδ(R)εl. The Hamiltonian matrix elements of

different orbitals on the same site are zero, which can be seen from the symmetry of

the atomic orbitals (see Fig. 3.6). On the contrary the interactions between nearest

neighbor sites, dnn is called the hopping matrix elements, which can be non-zero for

two sites in the same unit cell or neighboring unit cells. The hopping matrix elements

are defined as, 〈ϕm(r− tj)|H |ϕl(r− ti −R)〉 = δ((tj − ti−R)−dnn)Vlm,ij. In Fig.

3.6 the non-zero hopping elements are shown for s, p and d orbitals. These bonds are

detailed as: 1) A σ if there is a head to head bonding. 2) π if two orbitals have the

same orientation through a plane. 3) Lastly a δ bond is only seen for two d orbitals

with four lobes. The nomenclature comes from molecular bonding in chemistry.

With these elements, this is the simplest approximation in the TB method, and

only the values of the matrix elements need to be calculated. One of the most

common methods, and still an active area of research [103], is to consider these

elements as parameters to be obtain from usually fitting first principle calculations.

However, it is not always common that orbitals are oriented on the on the same axis as

in Fig. 3.6. In this case we take into account the Slater-Koster (SK) approximation,

which is briefly described in the next section with references.

3.5 Slater-Koster Two-Center Approximation

Slater and Koster proposed a that the Hamiltonian matrix elements can be ap-

proximated with a two-center form [150], which can be used as to simplify electron

band structure calculations. In the two-center approximation, interactions only only

involve two orbitals on neighboring sites, which is the same as cylindrically symmet-

ric diatomic molecule in free space [100]. In Fig. 3.7, the line, R, between the center

of two p-orbitals determines the values of m with respect tot he azimuthal angular

momentum. The figure shows the how the interaction between a px and pz orbital
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Figure 3.6: Hamiltonian hopping matrix elements between s, p and d states. Where
red(blue) lobes are positive(negative).
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can be expressed in terms of the irreducible matrix elements. In a similar fashion

this can be carried out for all s, p and d orbitals with analytical expressions for the

matrix elements [150]. In general one can consider three-center integrals and higher

which are smaller, but sometimes not negligible.

The advantage of the SK approach is calculating the electronic bands of complex

systems. In order to calculate total energies and forces for different structures the

two-center integrals are not sufficient. In addition the integrals must be known as

a function of distance. In our tight-binding model we are only interested in the

electronic state for the purpose of calculating the DMI, and not structural changes

or forces.

3.6 Trimer Model for B20 Compounds

In the previous sections I have neglected the concept of spin in describing the

TB approximation. Within our model we will take exchange and SOC into account,

which will double the size of our Hamiltonian. The tight-binding model in this work

is specifically designed to capture the essential aspects of the electronic structure of

the B20 compounds MnGe and FeGe for the formation of the DMI. It is in the vein

of the model described by Kashid et al. [73]. This model has many similarities to

the Fert-Levy picture of DMI [38]. It differs in that the SOC is only present on the

non-collinear magnetic sites and the inversion site is spin degenerate with no SOC.

In our model an atomic trimer has been used (of Fig. 3.8), which consists of

two identical magnetic atoms A and B with the atomic orbitals dxy and dx2−y2 each,

representing the transition metal (TM) atoms, and a non-magnetic atom C with a

px orbital, representing the Ge atom. The B20 compound structure comprises of

several of those trimers (see Fig. 2.2), and thus the DMI vector of the unit cell is

a sum of the DMI vectors of each of these trimers. Since the ab-initio calculations
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Figure 3.7: Schematic figures for two-center elements between p−x and pz for sites
distance by vector R.
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Figure 3.8: Schematic figure of the trimer model with grey sites as non-collinear
magnetic sites with angle of 2ϕ between magnetic directions and dx2−y2(dxy)-states
in blue(red). The dark site is contains the spin-degenerate p-state.

reveal that the sign change in the DMI depending on the concentration of Mn/Fe is

solely caused by the spin-orbit coupling (SOC) of the TM atoms (see Fig. 3.4), SOC

is only considered in the TM atoms in the model, whereas it is absent in the non-

magnetic atom. In representation of the basis (dA
xy, d

A
x2−y2 , d

B
xy, d

B
x2−y2 , p

C
x ), with the

superscripts denoting the site index, we obtain a 10×10 Hamiltonian, which looks as

follows with the z-axis as global spin-quantization axis:

H =

 H↑↑ H↑↓

H↓↑ H↓↓

 , (3.24)

H↑↑ =


EA,xy iξ 0 0 t1
−iξ EA,x2−y2 0 0 t2
0 0 EB,xy iξ t1
0 0 −iξ EB,x2−y2 −t2
t1 t2 t1 −t2 EC

 , (3.25)
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H↑↓ =


−e−iϕIsm̃/2 0 0 0 0

0 −e−iϕIsm̃/2 0 0 0

0 0 −eiϕIsm̃/2 0 0

0 0 0 −eiϕIsm̃/2 0

0 0 0 0 0

 , (3.26)

H↓↑ =


−eiϕIsm̃/2 0 0 0 0

0 −eiϕIsm̃/2 0 0 0

0 0 −e−iϕIsm̃/2 0 0

0 0 0 −e−iϕIsm̃/2 0

0 0 0 0 0

 , (3.27)

H↓↓ =


EA,xy −iξ 0 0 t1

iξ EA,x2−y2 0 0 t2
0 0 EB,xy −iξ t1
0 0 iξ EB,x2−y2 −t2
t1 t2 t1 −t2 EC

 , (3.28)

where EA,xy = EB,xy and EA,x2−y2 = EB,x2−y2 are the onsite energies of the or-

bitals dxy and dx2−y2 of the TM site A and B, and EC is the onsite energy of the

non-magnetic site C. The hopping element t1 describes the hopping between the

dxy and px orbital, and t2 is the hopping element between the dx2−y2 and px state,

which also introduces the inversion-asymmetry in the system. Note that no direct

hopping between the magnetic sites is needed to obtain non-vanishing DMI in this

model, and thus only the hopping between the magnetic and non-magnetic sites are

included to make the model as simple as possible. The magnetism is incorporated

within a Stoner model with an exchange splitting energy Ism̃, where Is is the Stoner

parameter of the TM sites and m̃ their magnetic moment and ϕ, which is the math-

ematically positive/negative angle between the magnetic moment of the site A and

B, respectively, and the x-axis. The dxy and dx2−y2 orbitals are coupled via the SOC
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of the TM sites, where the parameter ξ is connected to the strength of the SOC.

The DMI energy EDMI is calculated treating SOC within first order perturbation

theory, as it is also done for the ab-initio calculations of the B20 compounds. Thus,

the DMI energy is calculated from the energy corrections due to SOC δεn as follows:

EDMI =
∑
n

δεn · f(εn) =
∑
n

〈n|HSO|n〉 · f(εn), (3.29)

where f(εn) is the Fermi-Dirac occupation function, HSO is the SOC part of the

Hamiltonian in Eq. (3.24) and |n〉 is the nth eigenfunction of the non-collinear Hamil-

tonian without SOC.

The following parameters have been estimated from the orbitally-resolved DOS of

the ab-initio calculation (see Fig. 2.3): EA,xy = −0.5 eV, EC = −1.5 eV, t1 = 0.5 eV

and t2 = 0.3 eV. A Stoner parameter of Is = 1.0 eV and a SOC parameter ξ = 0.06 eV

have been used, which are close to the reported values of Fe in [52]. The maximally

canted case of ϕ = 45◦ has been considered.

Furthermore, to properly model the situation of the sign change of the DMI when

varying the concentration of Mn and Fe in the B20 compound, the onsite energy

difference between the dxy and dx2−y2 states and the magnetic moment have been

changed with the electronic occupation number. We varied the electronic occupation

from a bit less than half-filled (4.2 electrons) to more than half-filled (5.2 electrons),

and at the same time decreasing the onsite energy difference between the t2g state dxy

and the eg state dx2−y2 linearly with the electronic occupation, as well as decreasing

the magnetic moment quadratically with the electron occupation in accordance to

the ab-initio results (see Fig. 2.3 and Fig. 3.10). The following equations have been

used, with Ne as the electronic occupation number, ∆E = EA,x2−y2 − EA,xy as the
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onsite energy difference of the TM d states, and m̃ as the magnetic moment:

∆E = 6.125−Ne (3.30)

m̃ = −0.057(Ne − 4.625)2 − 0.094(Ne − 4.625) + 1.3. (3.31)

Note that the first-principles magnetic moment of MnxFe1−xGe ranges from about

2.2 µB to 1.2 µB depending on the concentration, but the maximal magnetic moment

achievable with our tight-binding model is 2 µB. Hence, the magnetic moment in

the model is varied only between 1.3 µB and 1.1 µB with respect to the electronic

occupation. A non-zero difference in the onsite energies of the dxy and dx2−y2 state

is necessary to obtain DMI, since otherwise the DMI vanishes due to the degeneracy

in the eigenvalues.

The magnitude of the DM vector computed within this model, depending on the

electronic occupation, is displayed in Fig. 3.9, showing a nice agreement with the ab-

initio result. For the analysis of the maximum at about 4.7 e and the zero-crossing

of the DMI energy at 4.95 e, we plot the orbitally-resolved DOS of the trimer in

the ferromagnetic state, broadened by using normalized Gaussian functions. The

schematic representation of these computed DOS is presented as an upper panel of

Fig. 3.9 and in Fig. 3.10 and 3.11. In Fig. 3.11 we also show the energy of the DMI,

EDM shown in green, in each occupation as a function of the Fermi energy. Where

EDM is the integral of the projected SOC energy density of states, eDM shown in

black.
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Figure 3.9: ∗Bottom: Strength of the DMI as a function of electron occupation
computed from a simple tight-binding model of a finite trimer (structure shown in
inset). Essential is the breaking of local inversion symmetry of the bond between the
transition-metal (light gray) and Ge (dark gray). The direction of the left (S1) and
right (S2) spin lies in the xy plane, and the DMI vector is pointing out of plane. Top:
schematic evolution of the d states at the Fermi energy in the tight-binding model
with electron occupation.
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3.7 WANNIER FUNCTIONS FOR BERRY CURVATURE

First principle calculations have shown much promise in calculating the ground

state properties of many materials over the years. to compare with experimental

results one would like to calculate transport properties of the system. Theoretically

the three most well-known methods are: the semiclassical Boltzmann formalism, the

Kubo formalism, and the Landauer-Bütikker formalism [114]. The idea is to take

accurate electronic ground states from the Kohn-Sham method (see section 2.1.2)

and calculate observables, such as currents, linear responses to external fields, and

correlations between two operators. Each of these methods have their strengths and

weaknesses. In many cases these methods are equivalent in specific regimes. In

this dissertation we consider only the semiclassical Boltzmann (SB) and the Kubo

formalisms which give a more intuitive understanding of Berry-Phase effects [100].

The SB formula is the most intuitive from a pictorial point of view [114]. Although

it may not be clear the correct result in certain regimes, and this requires checking

with the other two approaches. In regards to the anomalous Hall effect, one can

separate the contributions into intrinsic and extrinsic mechanisms, [146]. However,

in this dissertation we are only interested in intrinsic effects, i.e. completely due to

the band structure. Irregardless, these methods require some basis to in which the

Hamiltonian must be determined.

In all three methods one can calculate the properties of the Hamiltonian in a real

space or momentum space basis. Most first principle codes form the Hamiltonian in a

momentum space basis in the form of Bloch functions, which is the case for the main

code of use, FLEUR. Bloch functions are complex and delocalized and calculating

velocity operators is generally not trivial, v 6= ∂ε
∂k

being the energy derivative of the

band. Whereas, maximally localized Wannier functions (MLWF) are real valued
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for collinear systems without SOC and easily relatable to the Bloch functions by a

unitary transformation.

Wannier functions were introduced by Wannier as the Fourier transform of Bloch

functions [167]. MLWF are advantageous to study local correlation effects, to see a

pictorial view of the shape of the functions, hoping integrals, and center and spreads.

Within a Wannier basis one can construct a Hamiltonian in real space basis, where

the only k dependence is in the exponential factor eiφ(k)e−ik·R. In this basis, the

velocity operators are simple k partial derivatives. The velocity operators act on the

eigenstates of the Hamiltonian, which are the Wannier functions. In this section a

general introduction to Wannier functions is shown. The subsequent section (3.11)

focuses on calculating Berry-Phase effects from the results of this section.

3.8 Theory

Wannier functions are a set of localized orthonormal functions constructed from

a combination of a set of Bloch states[167, 168]. There have been several well-

written review of Wannier functions [168, 119, 102]. In addition, there are articles

detailing the implementation for practical use[111, 43]. In this section we focus on

a formal definition of Wannier functions, which is relevant for understanding the

physical properties related to physical properties related the electronic structure of

a material.

In the independent particle approximation, Bloch’s theorem states that the eigen-

states of a crystal are also eigenvalues of the translation operator (see appendix A).

In this case each eigenstate extends throughout the crystal with the same magnitude

in each unit cell and a different phase. Due to the arbitrary definition of the eigen-

state phase, the Bloch functions are subject to gauge transformation which leaves

all physical quantities unchanged. Wannier functions are Fourier transformations of
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Bloch states for one band, n, centered at site R. They are defined as,

〈r|R〉 = wn(R, r) =
1√
N

∑
k

e−ik·Rψnk(r). (3.32)

In the above, N is the number lattice site and the number of k in the first Brillouin

zone. From this it is quite clear how to compute the Bloch functions for known

Wannier functions as

ψnk(r) =
1√
N

∑
R

wn(R, r)eik·R. (3.33)

One can see from Eq. 3.32 and 3.33 that the Bloch satisfy a periodic gauge for all

reciprocal lattice vectors. This assumption is true only if the Bloch functions are

periodic in reciprocal space.

The Bloch function for a single band defined as ψk(r) = eik·ruk(r) and uk(r+R) =

uk(r). From this each Wannier function, n, can be defined as a linear combinations

of a set of Bloch functions labeled, i. The the Wannier Functions are then given

by unk =
∑

i U
k
inu

(0)
ik , where Uk

in is k-dependent unitary transformation[100]. This

formulation gives an intuitive interpretation of chemical bonding in crystals.

It is known that the eigenstates are orthonormal, and from this fact is is straight

forward to prove that the Wannier functions form an orthonormal set [99, 100]

∫
all space

drw∗m(R′, r)wn(R, r) =

∫
all space

dr
1

N

∑
k

∑
k′

e−i(k·R−k
′·R′)ψ∗mk′(r)ψnk(r)

=
1

N

∑
kk′

e−i(k·R−k
′·R′)δm,nδk,k′

= δR,R′δm,n

(3.34)

From here one can compute the matrix elements of the relevant position operators,
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r̂ [14, 100]

〈wn(R, r)| r̂ |wm(0, r)〉 = i
Ω

(2π)3

∫
dke−ik·R 〈unk(r)|∇k |umk(r)〉 (3.35)

and

〈wn(R, r)| r̂2 |wm(0, r)〉 = − Ω

(2π)3

∫
dke−ik·R 〈unk(r)| ∇2

k |umk(r)〉 (3.36)

Bloch functions are defined to be determined up to a constant phase in space. On

the contrary, the disadvantage of Wannier functions is that they are not uniquely

defined. They can strongly vary in shape and size due to variations in Uk
in changing

the relative amplitude of the Bloch functions at different k and band index n. It

has been shown that the center of mass, which is the sum of all the centers of all

Wannier functions, is invariant [14]. All higher order terms are gauge dependent. In

addition, each Bloch function is deteremined within an overall phase factor, where

the phase is completely arbitrary and real function of k.

The localization of Wannier function in a specific band is related to the energy gap

that separates other bands. In degenerate cases it is impossible to construct localized

Wannier functions from the entangled Bloch bands. The above description to the

Wannier functions show non-analytic behavior for bands that cannot be disentangled.

However, one can describe Wannier-functions for a subspace of bands that spans a

desired range of energies.

There are two approaches for the computation of localized Wannier functions from

a subspace of entangled bands. The first, termed the maximally projected Wannier

functions, attempts to construct a reduced set of localized functions from each type of

orbital in a given energy range [85, 82]. However this work, uses the second approach
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of maximally localized Wannier functions [102] which is more appropriate for metallic

systems such as the helimagnets of interest. This result is described in detail in the

next section with regards to FLAPW formalism [43].

3.9 Computation

The most important quantity for maximally localized Wannier functions is the

matrix M
(k,b)
mn , which contains the all information of the center and the spread of the

Wannier functions. The matrix M
(k,b)
nn ≡ 〈ukm|uk+bn〉 can be defined for wannier

functions of the form,

w′n(R, r) =
1√
N

∑
k

eiφ(k)e−ik·Rψnk(r), (3.37)

where iφ(k) is an arbitrary function, and restricted to be continuous in k. These

MLWF are non-unique where iφ(k) is determined up to a constant [43]. One can

now write the relevant observables in terms of the matrices.

〈r〉n = − 1

Nk

∑
k,b

wbbImlnM̃ (k,b)
nn ,

〈r2〉n =
1

Nk

∑
k,b

wb

[
1− |M̃ (k,b)

nn |2 + (ImlnM̃ (k,b)
nn )2

]
.

(3.38)

The matrix M̃
(k,b)
mn can be evaluated as,

M̃ (k,b)
mn =

∑
m1

∑
m2

(U (k)
m1m

)∗U (k+b)
m2n

M (k,b)
m1m2

, (3.39)

which evolves on a uniform k-grid during the minimization process due to the it-

erative fitting of U
(k)
mn. In the FLAPW method (see section 2.2.2) the potential is

separated into two regions, the interstitial region and the muffin-tin sphere posi-
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tioned at µ. Therefore the matrices are also partitioned as M
(k,b)
mn = M

(k,b)
mn |INT +∑

µM
(k,b)
mn |MTµ . Within the muffin-tin the block functions are expanded into spher-

ical harmonics that are the solutions of the scalar relativistic equation. In the in-

terstitial the solutions of the Bloch functions already take the form of plane waves

and this is a simple expansion to the MLWF, where a step function is introduced to

separate the the muffin-tin area. This method can be extended to spin-dependent

systems and systems with spin-orbit coupling. For a more extensive review of MLWF

in the FLAPW method the reader is referred to the work of Freimuth [43].

One of the most concrete ways to maximally localize wannier functions is to

minimize the mean square of the spread Ω, which is defined as,

Ω =

Nbands∑
n

[
〈r2〉n − 〈r〉2n

]
. (3.40)

The expectation is for the n-th Wannier function in the unit cell. It is useful to

separate the spread (Eq. 3.40) in terms of a gauge invariant part, ΩI that is the

physical measure of the localization and a gauge dependent part Ω̃ [101, 152, 100].

These two terms are positive and sum to the total spread,

Ω = ΩI + Ω̃

=

Nbands∑
n

[
〈r2〉n −

Nbands∑
Rm

| 〈wm(R, r)| r̂ |wn(0, r)〉 |2
]

+

Nbands∑
n

Nbands∑
Rm6=0n

| 〈wm(R, r)| r̂ |wn(0, r)〉 |2.

(3.41)

This forces ΩI to be both invariant and positive. Minimizing the spread leads to

a set of MLWF for a given system, which is the Ω̃ part since ΩI is invariant. For

a given set of Bloch functions one can take all possible unitary transformations as
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seen in Eq. 3.39 and minimizing the matrices by varying U(k) using the steepest

descent method [101, 100]. Once the Wannier functions are maximally localized one

can proceed with calculation of properties of the system of interest.

One of the significant properties of interest in this dissertation is the Hamiltonian

in terms of the Wannier functions, which is represented in a real space basis. If the

number of bands are equal to the number of MLWFs then the U(k) will be unitary.

From here we can write the Hamiltonian in the form,

Ĥ =
∑
R1m

∑
R2m′

Hm,m′(R1 −R2) |WR1m〉 〈WR2m′ | (3.42)

where

Hm,m′(R1 −R2) =
1

N

∑
kn

εn(k)eik·(R1−R2)
[
U (k)
nm

]∗
U

(k)
nm′ . (3.43)

The hopping integrals are determined by Hm,m′(R1 −R2) between to MLWFs and

εn(k) are the eigenvalues of the diagonal Bloch Hamiltonian. With the Hamiltonian

we can compute useful quantities such as the Berry curvature.

3.10 Band Structure Results

Many times after the minimization of MLWF one would like to check the quality

of the Wannier functions. In insulating systems one can check the sum centers and

the sum of the spreads of the Wannier functions. In metallic systems and systems

with entangled bands MLWF have large spreads due to the electronic nature in

metallic bands. One can also compare the band structures in k-space of the MLWF

with that of the ab-initio electronic structure calculations.

In figure 3.12 the electronic band structure with SOC is plotted for FeGe of the

ground state ab-initio calculation ( see 2.4.2) as the black curves along with that
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of the MLWF in red crosses. In FeGe the optimization process uses 64 MLWF, 10

d-type Wannier functions for the four transition magnetic elements, and 6 p-type

Wannier functions for four the main group elements. For the calculation of the

entangled bands a disentanglement procedure is adapted, where two energy windows

are set [152]. Specifically in the case of FeGe the disentanglement (”outer”) window

is set from -7.43 eV (in the gap above s states) to 18.97 eV above the Fermi energy,

where ΩI is minimized. In the outer window the optimal energy bands may not

correspond to the original energy bands due to the hybridization of energy states.

In order to retain the exact properties of the system within a desired energy range a

frozen (”inner”) energy window is set from the bottom of the outer energy window

up to 4.77 eV where the states are physically exact in this desired subspace. Similar

windows are made for the B20 compounds Mn1−xFexGe and Fe1−yCoyGe within ±0.2

eV.

Figure 3.12: Left SOC bands of FeGe ab-initio in black and the MLWF in red for
the outer window. Right Zoom of the plot on the left ±2 eV around the Fermi level.

In figure 3.13 the Wannier functions for MnGe is shown in comparison to the

ab-initio calculations. Here the four plots show the Wannier functions above the
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gap (top left) a 2 eV range around the Fermi level (top right) and the above the

Fermi energy (bottom plots). Here only the results for MnGe are shown, where the

MLWF have been optimized on a similar setting. The first three graphs (excluding

the bottom right) are within the inner energy window where the MLWF match the

bands of the FLEUR calculation exceptionally well. The region of most interest is

the top right graph for the MLW within ±1 eV of the Fermi level. This is the most

important region for the calculation of Berry-phase effects. Adding a small amount

of disorder will keep the Fermi surface within this window. The last graph on the

bottom right is where the bands begin to deviate from the ab-initio bands. In the

regime the bands above 4.5eV are out side of the frozen window, but still in the outer

window. This method for calculating the Hamiltonian from the MLWFs is repeated

for Mn1−xFexGe and Fe1−yCoyGe where we use the SOC MLWF for the calculation

of the AHE and DMI.

Lastly, we calculate the MLWF for spin polarized bands without SOC and the

spin dependent Hamiltonians. Similar to the case with SOC the same inner and outer

window is used in for the spin-polarized case without SOC. This leads to two non-

interacting Hamiltonians for each spin. As in the previous case, we use 64 MLWFs

to fit to the ab-initio electronic band structure, 32 for each spin state. The MLWFs

are converged for each spin separately. In figure 3.14 the MLWF for majority (left

red circles) and the minority (right blue circles) are plotted in comparison with the

ab-initio spin polarized (black bands) electronic band structure of Mn0.4Fe0.6Ge .

Here the energy is plotted only within ±2 eV of the Fermi energy. The agreement

between the first principles calculations and the MLWFs is suitable for calculation

of transport properties. We use the Wannier Hamiltonian and MLWFs in the next

section for the calculation of the the topological Hall constant.
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Figure 3.13: Top eft SOC bands of MnGe ab-initio in black and the MLWF in red
from the bottom of the frozen energy window to -1 eV below the Fermi level. Top
right MLWF at ±1 eV around the Fermi Level. Bottom left MLWF from 1 eV above
the Fermi level to 3 eV above the Fermi level. Bottom right MLWF from 3 eV above
the Fermi level to 7 eV above the Fermi level.

Figure 3.14: Left Black bands show majority spin bands for Mn0.4Fe0.6Ge and
red circles are the fitted MLWFs. Right Black bands show minority spin bands for
Mn0.4Fe0.6Ge and blue circles are the fitted MLWFs.
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3.11 BERRY PHASE EFFECTS

Although, the concept of geometric phases existed for some time it was not until

the intuitive work of Berry [12] that there was an increased interest in geometric

phases in condensed matter physics. In this section the Berry phase effects of the

B20 compounds will be discussed. The theoretical background of this section follows

the lecture notes of Mokrousov et al. [105]. For an introduction to general Berry-

Phase theory the reader is referred to the books of Griffiths [48] and Marder [99].

For mathematical perspective of geometric phase the reader can refer to the books of

Nakahara [115] and of Bohm [17]. Berry-Phase effects can be found in most branches

of physics, but electronic properties in condensed matter systems have come to the

forefront and is nicely reviewed by Xiao et al. [173]. Berry-Phases are useful in

the description of electric polarization [133], Chern and topological insulators [11].

However, in this case we are more interested in the phase-space Berry effects in

metallic systems [174]. ∗

It is very clear that these materials exhibit strong Berry-Phase effects, mixing real

space and reciprocal space. However, these materials have not been closely examined

from this point of view in an electronic structure setting to produce experimentally

agreeable results. The antisymmetric 6 × 6 phase-space Berry curvature (BC) is

detailed as,

Ωn,ij =

 Ω
(THE)
n,RR Ω

(DMI)
n,Rk

Ω
(DMI)
n,kR Ω

(AHE)
n,kk


ij

, (3.44)

where a non-zero Ω
(THE)
n,RR produces emergent magnetic fields arising from non-

∗Reprinted with permission from ”Dzyaloshinskii-Moriya Interaction and Hall Effects in the
Skyrmion Phase of Mn1−xFexGe” J. Gayles, F. Freimuth, T. Schena, G. Lani, P. Mavropoulos,
R. A. Duine, S. Blügel, J. Sinova, and Y. Mokrousov. Physical Review Letters,115(3):1-6, 2015.
Copyright 2016 by Copyright Clearance Center
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trivial textures allowing for a finite THE. Ω
(AHE)
n,kk is the momentum space Berry

curvature which gives rise to the AHE for magnetic systems with spin-orbit cou-

pling. Lastly, Ω
(DMI)
n,Rk contains information of the DMI where a Berry phase it picked

up as an electron traverses the phase-space [44]. The DMI is closely related to the

spin-orbit torque phenomena which is seen in magnetic systems that also break inver-

sion symmetry [45]. The DMI can be seen as the free energy correction to systems

with smoothly varying magnetization in real space. To my knowledge the three

phenomena have not been simultaneously calculated from an electronic structure

perspective.

3.12 General Berry-Phase Theory

The idea of geometric phases starts with a quantum system described by some

Hamiltonian H(λ) that depends on a set of parameters determined by λ. Its is

assumed that λ is also a function of the eigenstates, where both the Hamiltonian

and the eigenenergies, ελ,are smooth functions of λ. Here λ is taken to be a slowly

varying parameter, taking on an adiabatic approximation. In this approximation

a particle in the eigenstate |Ψλ〉 will remain in this eigenstate [99]. However, this

statement completely disregards the phase of the particle.

If λ is time dependent the Schrödinger equation has the form,

− ~
i

∂ |Ψ〉
∂t

= H |Ψ〉 (3.45)

where the λ and t dependence are dropped for convenience. The trial solution can

take the form, |Ψ〉 = e−(i/~)
∫ t
0 dt

′εeiφ |Ψ〉. The second part of the phase factor that

depends on φ is time dependent and is a correction to the eigenstate. This solution
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can be inserted into the Eq. 3.45 to get,

∂φ

∂t
= iλ · 〈Ψ| ∂

∂λ
|Ψ〉 . (3.46)

The expectation value in Eq. 3.46, i 〈Ψ| ∂
∂λ
|Ψ〉, is called the Berry connection, which

connects the wavefunction on two points in λ. In many cases when the berry con-

nection is integrated on a closed loop this leads to a nonzero value, called the Berry-

Phase,

Γ =

∮
iλ · 〈Ψ| ∂

∂λ
|Ψ〉 dλ. (3.47)

Of course, λ can take on any values such as momentum, k, or the position, r. How-

ever, this can be written at a single point in λ space as ∂
∂λ
|nΨ〉 =

∑
m 6=n

〈mΨ| ∂H
∂λ
|nΨ〉

εn−εm |mΨ〉.

From here one can solve for the gauge-invariant expression for the Berry curvature

[105],

Ωn
ij = −2Im

∑
m6=n

〈nλ| ∂H
∂λi
|mλ〉 〈mλ| ∂H

∂λj
|nλ〉

(εn − εm)2
. (3.48)

The curvature above is a second-rank antisymmetric tensor. From Eq. 3.48, it can

be intuitively seen that degeneracies in the band (n,m) energies will increase the

curvature, i.e. as (εn − εm)2 goes to zero the curvature will go to infinity. This

discontinuity will be discussed in the following section.

3.13 Anomalous Hall Effect

Over a hundred ago the anomalous Hall effect (AHE)was discovered a year after

Edwin Hall discovered the Hall effect, however it was not until the last two decades

that the underlying physics of the AHE was explained, which is quantum mechan-

ical in origin as Berry curvature of Bloch states [114]. The AHE in ferromagnetic
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materials with SOC as a transverse response to an electric field that is perpendicular

to the magnetic field. In some cases the AHE can arise in non-collinear antiferro-

magnets due to orbital magnetization [23, 62]. Furthermore, within the last decade

first principle calculations have shown tremendous effort in calculating the AHE in

ferromagnetic metals and textured magnetic materials. Most of the computational

effort has gone to calculating the intrinsic Hall effect due the momentum space Berry

curvature. However, recently there has been promising results in the calculation of

extrinsic mechanisms using gaussian disorder or the coherent potential approxima-

tion [169]. Within this work we are primarily interested in the intrinsic mechanism

[166, 176] in B20 compounds. Where the calculation of the extrinsic mechanisms,

namely the side-jump, may have significance in future work.

The calculation of the intrinsic AHE is carried out using the Kubo formalism

where the eigenstates are taken from ground state first principle calculations. In the

Kubo formalism we take a constant-γ approximation, where we take the intrinsic

value as γ → 0 [166, 176]. For the calculations of the AHE in Fe1−yCoyGe we collab-

orated with experimentalists at the University of LEEDs in the group of Professor

Chris Marrows. In oder to compare the AHE with experimental results we match

the longitudinal conductivity in the Kubo formalism as a function of γ, where we

take the diagonal conductivity at this value (see section 3.20).

In the technical calculation of the Kubo formalism we use maximally localized

Wannier functions, instead of the Kohn-Sham eigenstates. Although Kohn-Sham

eigenstates (ukn) are Bloch functions, where momentum is a good quantum number,

the expectation of the velocity operator is not precisely the derivative of the energy

band, 〈ukn|vkn|ukn〉 6= 1
~
∂εkn
∂k

. However, with Wannier functions the k-dependent

Hamiltonian is Fourier transformed into a function of R, where the k-dependence

is considered in an exponential factor. In this case it is simple to take momentum

80



derivatives of the Hamiltonian, where it is just the derivative of an exponential

function, and allows for simple expressions for velocity operators. The Wannier

functions are an over-complete basis of the Hamiltonian, however it allows for a

speed up in computation where they are fit to the Kohn-Sham eigenstates of the

first principle calculation, in a given energy range. The Berry curvature (BC) within

the Kubo formalism for the AHE takes the form,

Ωn
ij(k) = −2Im

∑
m6=n

〈unk| ∂Hk

∂ki
|umk〉 〈umk| ∂Hk

∂kj
|unk〉

(εnk − εmk)2 + γ2
. (3.49)

From here it is convenient to introduce the sum of the BC as the sum over occupied

bands Ωij(k) =
∑

n fnΩn
ij(k). This is the momentum space Berry curvature that is

written (Ω
(AHE)
n,kk )ij = Ωn

ij(k). The intrinsic anomalous hall conductivity is calculated

as the integral of the BC over the entire Brillouin zone:

σij(γ) = − e~
(2π)3

∫
BZ

Ωij(k)dk (3.50)

Here the conductivity is a function of γ, the disorder parameter. The calculation

of the conductivity is converged as a function of the k point grid in the full BZ. In

principle, the AHE is also anisotropic, however there have not been many studies in

regards to first principle studies [106], however this has not yet been studied in the

B20 compounds. In this case, we are interested in the AHE as the intrinsic value

varies with concentration as also the DMI changes.

3.14 Topological Hall Effect

Contrary to the AHE, the THE does not require spin-orbit coupling and arises

from a non-trivial magnetic texture which produces a Berry’s phase in real space.

This effect was first predicted by Bruno et al. in 2004 and shortly after confirmed
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in experiments in the B20 compound MnSi of Neubauer et al. in 2009 [20, 120].

Although, in many of the systems, SOC is necessary in order to stabilize chiral

magnetic structures (e.g. DMI), the origin of the THE is due to the emergent field

that acts on electron quasiparticles that traverse a magnetic texture[1]. In the limit

of strong exchange much larger than the SOC and where the magnetization slowly

varies form one site to the next, one can take the approximation that there is little

interaction between up and down spins[20]. In this adiabatic approximation one

can solve for each spin separately for the THE as the subtraction of the two spin-

dependent ordinary Hall effect (OHE) do to the emergent magnetic field, Be, which

has an opposite sign for opposite spins [120]. The relation between the OHE and

THE is analogous to that of the AHE and the SHE[45, 148]. Where the THE is seen

as the subtraction of spin dependent hall effects in an emergent magnetic field, and

the OHE is the addition of the spin dependent hall effects in an external field.

This approximation is made possible due to the fact that the magnetization struc-

ture is varying slowly, i.e. that in the local vicinity of a point in real space the

direction of the magnetization is considered constant. This gives a set of eigenvalues

and wave functions that depend on the local nature of the Hamiltonian. In this case

the Hamiltonian is dependent on the position as the electron traverses through a

magnetic texture. Generally, this is seen as a mapping of real space to a point on a

sphere of S2 which depends on angles θ and ϕ. The adiabatic dynamics for each spin

is determined by the trajectory on the sphere, where the adiabatic condition requires

that time scales of traversing a trajectory is much smaller than spin-flip processes.

This means that a quasiparticle stays in a spin-dependent subband throughout the

trajectory.

For each spin σ on the sphere there is a Berry connection that contribution

from the top and bottom poles of the sphere. The BC corresponds to an emergent
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magnetic field that is opposite for each spin which takes the form of

Ωσ
ij(R) = −2Im

〈
∂ψσ
∂Ri

∣∣∣∣∂ψσ∂Rj

〉
. (3.51)

This is the real space BC which is equivalent to (Ω
(THE)
n,RR )ij = Ωσ

ij(R), which is deter-

mined for a particular band. This BC can be written in terms of the magnetization

texture as Ωσ
ij(R) = ~σn · ( ∂n

∂Ri
× ∂n

∂Rj
)/2. Here n is the vector of the magnetiza-

tion, and determines the winding number for each time it winds around the sphere

S2. The magnitude of the BC tensor at a point in real space is determined by the

strength of the variation of the magnetization texture. When the both spin subbands

are equally occupied, the sum of the BC equals zero.

In the general case of real ferromagnetic materials the two spin subbands are

not equally occupied. A realistic Hamiltonian with a magnetic texture also includes

SOC and the crystal potential. In the case of no SOC, the spin and orbital degrees

of the wavefunction are decoupled leading to any k dependent BC to be zero, e.g.

(Ω
(AHE)
n,kk )ij = 0. Thus the only finite part of the BC tensor is (Ω

(THE)
n,RR )ij. The

problem can effectively be solved in spin-space because without the effect of SOC,

any rotation of the spin-quantization axis does not change the eigenspectrum. Due to

the slowly varying in-plane magnetic texture, the electrons scattering on the length

scale of the texture can be solved by the Boltzmann equation within the relaxation

approximation for an out of plane emergent field Be as [135],

σTHEij ≈ 1

(2π)3

∑
σ

σ|Bσ
e |
∑
n

∫
BZ

τ 2
σn

(
(vink)2

mjj
nk

− vinkv
j
nk

mij
nk

)
∂f0(εσnk)

∂ε
dk. (3.52)

Here τσn are the spin dependent relaxation times, vnk are the velocities, mnk is the
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effective mass tensor and f0 is the Fermi occupation. The ordinary Hall effect would

read in a similar equation without the index of the spin in the sum.

In order to compare the calculation of the THE in DFT with that of experiments,

the topological Hall constant |Rtop
yx | = ρtopyx /Be is calculated. This allows for the

calculation of a scattering independent value that solely depends on the electronic

structure of a collinear ordered magnetic structure. Using Wannier functions of the

collinear magnetic structure for each spin channel the topological Hall constant is

calculated in this semiclassical Boltzmann regime. This calculation in the linear

response of the OHE for each spin channel depends on the scattering lifetime τ 2 in

the simplest approximation. The longitudinal conductivity is computed and linear

in the scattering lifetime. The topological Hall constant is computed as Rtop
yx =

(σOHE,↑xy − σOHE,↓xy )/Be(σ
↑
xx + σ↓xx)

2. For both conductivities the τ → 0 limit is taken.

3.15 Phase-Space Berry Effects

In the case where there is SOC and a magnetization texture the (Ωn,RR)ij and

(Ωn,kk)ij part of the BC tensor are finite and both contribute to the transverse

conductivity. In addition, there is a non-vanishing component of the mixed BC

(Ωn,kR)ij. With both SOC and a magnetization texture there is a modification of

the phase density of states gn(k,R) = 1
(2π)d

(1−
∑

i(Ωn,kR)ii) [44]. From here the

free energy at a local point R in space is defined as,

F (R) = − 1

β(2π)d

∑
n

∫
dk

(
1−

∑
i

(Ωn
kR)ii

)
ln(1 + e−β(εnkR−µ)). (3.53)

In the time-independent case the electron wave packet in the semi-classical band

energies acquire an additional contribution due to the magnetic texture, εnkR =

εnkR − Im
∑

i

〈
∂unkR
∂R

∣∣ εnkR − HkR

∣∣∂unkR
∂k

〉
. The second part is the correction δεnkR

to the band energy. The expansion of the free energy in terms of gradients of the
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magnetization leads to a first order correction due tot the chirality,

δF (R) = − 1

β(2π)d

∑
n

∫
dk

(
fnkδεnkR −

∑
i(Ω

n
kR)ii
β

ln.(1 + e−β(εnkR−µ)

)
. (3.54)

In equation 3.54 β is the product of the Boltzmann constant and temperature, and

fnk is the Fermi occupation. This term can be rewritten in terms of the magnetization

gradient as [45]:

δF (R) = Dij(R)êi · (n̂×
∂n̂

∂Rj

). (3.55)

In the above, Dij corresponds to the DMI as discussed in section 3.2.2. Using equa-

tion 3.55 and 3.54 the DMI at zero temperature can be written in terms of the

phase-space Berry curvature [45], (Ω
(DMI)
n,kR )ij, as

Dij =
1

β(2π)d

∑
n

∫
dkfnk

[
AijnkR − (εnkR − µ)Bij

nkR

]
. (3.56)

The above equation introduces AijnkR termed as the twist torque moment to the

eigenstate n, and Bij
nkR which is due to the phase-space BC. The terms are shown

in detail in the notes of Mokrousov et al. and the work of Freimuth et al. [105, 45].

This method presents a simplification of computing the DMI from electronic structure

methods, however it is not as intuitive as the approach shown in section 3.2.2 where

the correction due to SOC is explicitly computed.

3.16 Results in B20 Systems

The computation of the anomalous Hall conductivity at each concentration was

carried out i) self-consistently and included the effect of spin-orbit interaction for

the ferromagnetic state; ii) with 64 maximally localized Wannier functions using

the WANNIER90 code [111]; iii) on a 5123 k-point grid in the full Brillouin zone
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employing the Wannier interpolation technique [166, 177]. Thus, the wave functions

entering the calculation of (Ω
(AHE)
n,kk )xy are the eigenfunctions of the collinear ferro-

magnetic system with SOC. The Wannier functions are the results used in section

3.10. In addition, the Fermi occupation is taken for only the p and d states which

form the Wannier band structure. Test were made where s below the gap (see fig.

3.12) and also with Wannier functions using local orbitals, where results do not

change the value of the AHC.

In figure 3.15 the anomalous hall conductivity is plotted as a function of the

disorder broadening parameter γ from 1e−4 to 1 eV for FeGe. As γ approaches zero

the value of the conductivity σxy is constant and reaches the value of -108 S/cm where

the magnetization is pointing in the negative z-direction. Upon increasing γ the

conductivity varies over 100 S/cm, and at large values of γ > 0.01 the conductivity

consistently increases.

The calculations of the topological Hall constant have been performed analogously

to the anomalous Hall conductivity. In this case a set 32 Wannier functions are used

for each spin. The value of 5123 k-points proved to provide converged values of

the transport properties. In addition, in this case SOC is neglected. Thus, the wave

functions entering the calculation of (Ω
(THE)
n,RR )yx are the eigenfunctions of the collinear

ferromagnetic system without SOC. The Wannier functions are the results used in

section 3.10. The Fermi occupation is taken for only the p and d states which form

the Wannier band structure for each spin which have different occupations (see fig.

3.14).

In figure 3.16 the density of states (top left), longitudinal conductivity (top right),

and the ordinary Hall conductivity (bottom left) is plotted for each spin channel as

a function of the Fermi occupation. On the bottom right the ordinary Hall con-

ductivity is plotted as a function of the disorder parameter. The two spins are the
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Figure 3.15: The anomalous Hall conductivity σxy in FeGe as a function of the
disorder parameter with the magnetization in the negative z-direction.
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minority (green) spin. Bottom Left: The ordinary Hall conductivity as a function of
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ordinary Hall conductivity as a function of the disorder parameter for the majority
(red) and minority (green) spin.
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majority (spin2 red) and the minority (spin1 green) spin channels. Within the small

energy window ± 0.1 eV the density of states does not vary drastically. Whereas the

longitudinal and the ordinary Hall conductivity vary drastically as a function of the

Fermi energy. However, the OHE and the topological Hall constant does not vary

strongly as a function of the disorder broadening. In this regime, the calculation

of the topological Hall constant is acceptable within in the current approximation,

where is should be independent of the disorder.
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Figure 3.17: Left: ∗The anomalous hall conductivity (blue squares) and topological
Hall constant (green circles) is plotted for Mn1−xFexGe and Right : Fe1−yCoyGe for
different concentrations of Fe.

Lastly, in figure 3.17 the anomalous hall conductivity (blue squares) and topolog-

ical Hall constant (green circles) is plotted for Mn1−xFexGe (left) and Fe1−yCoyGe

(right) for different concentrations of Fe. Both plots consist of the intrinsic values

of the hall effects due purely to the electronic structure in the limit of zero disorder.

The anomalous Hall conductivity varies due to the Fermi occupation of the electronic

structure. The intrinsic AHE agrees remarkably well experimental results in the pure

cases of MnGe [71] and that of FeGe [131]. In addition, the AHE was recently mea-
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sured for different concentrations of Fe in Mn1−xFexGe, which shows strong variation

in the conductivity as a function of concentration [72]. Whereas, there calculation of

the THE aggress well in the FeGe [64], but in the MnGe [71] there is a breakdown

in the adiabatic approximation where the skyrmion size is on the order of 3 nm. In

addition, the DMI is lower than the expected experimental results. The THE in the

Fe1−yCoyGe shows a monotonous behavior as a function of concentration, where at

the critical concentration of y=0.5 the THE begins to diverge due to the blow up of

skyrmions where the DMI goes to zero (see fig. 3.4). Unfortunately, there are not

yet any experimental studies of the THE in ternary compounds of the FeCoGe to

compare.
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3.17 OVERVIEW AND DISCUSSION

In this last section before the conclusion, the work of the dissertation will be

compared with recent computational work, that has followed since the main publi-

cation of this work in Gayles et. al [47]. Then the connection of this body of work

and the many experimental studies will be reviewed. Lastly, the ongoing work in

B20 compounds in collaboration with experimentalist will be discussed with future

perspectives.

3.18 Theoretical Studies

One of the first studies to calculate the DMI in B20 compounds was done by

Freimuth et al in the MnSi [44]. This article uses phase-space Berry curvatures de-

scribed in section 3.15. These calculations for D=-4.1 meVÅ show good agreement

with the expected experimental value of -3.43 meVÅ. The results also show that the

phase-space Berry-Phases are essential for the stabilization of skyrmionic textures

in these compounds and they cause of the redistribution of charge in the skyrmion

phase. In this work the calculated the DMI in MnSi is positive and nearly twice the

value of what is seen in Freimuth et al. The sign change is due to the using opposite

crystal chiralities. In the calculations of Freimuth et al the magnetic moment is con-

strained to 0.4 µB, where in this work there are no constraints on the magnetization

which relaxes to 0.9 µB.

One of the more prominent studies that followed this work, is the calculations of

Kikuchi et. al [79]. In this paper the authors argue that DMI arises due to a static

intrinsic spin current Doppler shift, which is due to the SOC and broken inversion

symmetry. Therefore the DMI is calculated as the expectation value of a equilibrium

spin-current, D =
〈
ĵs

〉
in Mn1−xFexGe and Fe1−yCoyGe (in fig. 3.18 y is replaced by

x). In figure 3.18 a schematic of the intrinsic spin-current response to a magnetization
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texture in an adiabatic limit. Which is a rewrite of the calculating the DMI as the

moments of the torque operator [44]. In addition in figure 3.18, the DMI for varying

concentration is plotted comparing the expectation of the intrinsic spin current and

the method used in this dissertation. The calculations of the DMI follow the same

Figure 3.18: Top: Schematic of static spin-current Doppler shift. Bottom: Com-
parison of DMI for expectation of the static spin-current (red) and from the values
of a helical spin-spiral (blue) [79].

trend and are of the same magnitude as the work in this dissertation. The red curve

shows the calculation of the DMI using the static spin-current operator and the blue

shows the calculation of helical spin spirals. The blue curve uses the same methods
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as this dissertation. However, there is discrepancy in the Mn-rich alloying, where in

Kikuchi et. al there is another sign change. This discrepancy is believed to come

from the lower density of k-points used by the author, of a 10x10x10 grid. Where

in this work 24x24x24 grid was used to calculate the DMI. The convergence of the

DMI can be quite cumbersome, similar to the MCA.

Another interesting article, which was simultaneously completed as the work of

Gayles et. al is the that of Koretsune et. al [84]. In this work they derive the DMI

as a q derivative of the spin correlation function, D ∝ ∂χ(q)
∂q
|q=0. These results do

not reproduce the change of sign in the DMI at x ≈0.8 as in Gayles et al. and

Kikuchi et. al. However, the discrepancy in these calculations may be due to the

approximation used by Koretsune et. al. In this case the authors use a tight-binding

model fitted from ab-initio results. To mimic the alloying affect, the authors vary

the electronic occupation by shifting the Fermi energy. In figure 3.19 the anomalous

Figure 3.19: Left: AHE and DMI as a function of chemical potential from FeGe.
Right: x and y component of the DMI as a function of uniaxial strain on the y axis
at the concentration of n=-0.45 [84].

hall effect (black curve) and the DMI (red curve) is plotted as a function of electron
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occupation. The results of the AHE are comparable to the results of the dissertation

work. Whereas, the DMI values show slightly different trends, but with similar

values. Koretsune et. al do find the largest value for the DMI in MnGe when they

start with tight-binding parameters fitted from ab-initio FeGe and reduce the Fermi

occupation. If they start from parameters from self-consistent calculations of MnGe

the results differ drastically. In addition, in comparison to my results they do not

use the Vegard’s lattice constant for varying concentration, and the electronic levels

are not reoriented for different occupations. However, it is interesting to see that the

DMI is strongly anisotropic under strain (see figure 3.19), which can lead to very

interesting effects for magnetic structures.

Moreover, in recent years there has been an increase in interest of understand-

ing and manipulating the DMI. It was shown in 3d monolayers an 3d-5d interfaces

that the chemical trend of the DMI follows Hund’s first rule [9]. Also, in ferromag-

netic/heavy metal bilayers systems it was shown with numerical studies that the

interfacial DMI increase the switching current while decreasing the thermal energy

barrier [66]. In Rashba SOC systems the DMI increases with SOC strength but de-

creases with spin-polarization[87]. Lastly, it was shown using DFT+U that the DMI

in MnSi is due to a strong hybridization of the Mn-d states and the Si-p states [143],

consistent with the work of this dissertation.

3.19 Experimental Studies

Experimentally, the subject of the DMI has been studied for years. In regards to

the B20 compounds the story flows almost like a detective story. It started in 1976

with the first measurements in MnSi showing a helical spiral ground state along the

〈111〉 direction, where the screw axis coincided with the external field direction [65].

It was not until the early 1980’s that a clear picture started to arise showing that the
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main cause for these spin-spirals are due to the DMI. At this time the first papers

derived the thermodynamic expressions for a spin-spiral in the B20 compound as a

function of q, in powers of magnetization, while taking into account the symmetry

[7, 130, 116, 117]. However, it was not until the work of Muhlbauer et al. that were

the first experiments to show the existence of magnetic skyrmions in B20 compounds

[113]

Since this, skyrmions have become an interesting topic in condensed matter

physics. Where skyrmions in the B20 compounds have shown a large THE [120,

71, 42, 76]. In addition, it was shown by Shibata et al that the size of the skyrmions

can be tuned in Mn1−xFexGe with concentration of x [145]. This can also be seen

in other B20 compounds [72, 107, 50]. The calculations of this dissertation have

shown good agreement with the experimental results of Shibata et al and Grigoriev

et al, especially in the regime of the critical concentration close to x=0.8 [145, 49].

However, at the time publication of Gayles et al there were no experimental studies

on the AHE and THE for varying concentrations. There have been experimental

studies in the pure Mn/FeGe that measure the AHE and THE [71, 131, 64]. As was

discussed in the previous section, the AHE compares well with experiments, where

the THE fails to agree with experiments in the case of MnGe [47].

Figure 3.20 shows the experimental findings of the Hall conductivity at fields

higher than the field required for ferromagnetic saturation [72]. The results from

Kanazawa et al study the magnetic and magneto-transport properties with varying

concentration in Mn1−xFexGe. In agreement with past theoretical work [47, 84, 79]

the experimentalists show agreement for the magnetization and transport properties.

The authors also conclude that by changing the electron occupation the spin orbit

effects such as skyrmion size/helicity and transport properties also change continu-

ously.
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Figure 3.20: The Hall conductivity (black circles) and magnetization as a func-
tions of temperature at fields higher than the critical field to cause a ferromagnetic
structure. The insets show the temperature dependence of the zero field resistivity
[72].
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Since the publication of Gayles et al there have been many experimental works

following that expanded the field of Berry-Phase effects. A particular article studies

different skyrmions lattices in the pure FeGe compound [144]. Here they see that the

shape of the skyrmion and even the lattice shape can vary with magnetic field direc-

tion and magnitude. Where the inter-skyrmion distance is invariant in an external

magnetic field. In addition, recent experiments have shown that the stabilization of

skyrmions in zero magnetic field in FeGe epitaxial thin films on Si(111) surfaces [46].

The results show that as the film thickness is decreased the field for maximum stabil-

ity decreases. However, there have not been many studies comparing experimental

results and computational results side by side in these materials.

3.20 Experimental and Computational Studies of FeCoGe

Since the studies of B20 Mn1−xFexGe and MnSi, there have been many more

studies in other helimagnetic compounds the have the possibility for skyrmion states.

One of of the B20 that has not seen as much attention as FeGe and MnSi is CoGe.

In the bulk at equilibrium pressure CoGe was deteremined to be a non-magnetic

metal [28], where earlier studies believed it to be antiferromagnetic [155]. Previous

studies on the ternary compounds have mostly been studied in a monoclinic structure

[88]. It was not until recent interest in skyrmions that the helical magnetic structure

of Fe1−yCoyGe became of interest [50]. Furthermore, is was shown that the cubic

anisotropy plays a role by limiting the stability for long wavelength spin-spirals. In

addition, it has a contribution to critical external field need to cause ferromagnetic

saturation [51].

In figure 3.21 the exchange constant J and the DMI D are calculated from ex-

periment spiral vector using two methods i) ks = D/J [145] and ii) gµBHc2 ≈ Ak2
s

[98, 15]. The first model shows a a monotonous behavior of J as the concentration of
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Co is increased and a sign change of the DMI at the critical concentration of x=0.6.

The second model shows the a divergence of both the DMI and J at the critical

concentration, which the authors attribute to the change in cubic anisotropy. As the

concentration is decreased from the critical concentration the two methods begin to

agree.

Figure 3.21: Experimental calculation of the exchange constant and the DMI using
two methods [51].

In a recent collaboration, we compare first-principle calculations with experiments
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in thin films of Fe1−yCoyGe [153]. The experimental measurements were carried out

by Charles Spencer at ISIS, Oxford, using time-of-flight Polarized neutron reflectom-

etry (PNR) on the Polref instrument. Samples of 20×20 mm samples were mounted

in a helium flow cryostat in a θ − 2θ configuration. A magnetic field was applied in

plane with the film and parallel to the FeGe [110] direction. The reflected intensities

of a polarized neutron beam is split into up (I+) and down (I−) and measured as

a function of scattering vector qz = (4π/λ)sinθ. Here θ is the incident angle and

λ is the wavelength of the incident neutron. The variation in qz is provided by the

distribution of velocities within the neutron beam and two values of θ are used to

provide a range of 0 - 0.15 Å
−1

. The total resolution of this PNR method data is

0.03 Å
−1

.

In figure 3.22, the results of the PNR measurements are shown in blue for the

Fe1−yCoyGe for the helical spiral wavelength λs ≈ J/D. In addition, the comparison

of the bulk first-principles calculations are shown in red along with results from pre-

vious experiments using small-angle neutron scattering (SANS) in the bulk shown

in red [50]. The results agree as the concentration recedes from the critical concen-

tration. However, the bulk ab-initio results agree better with the thin film PNR

measurements, in terms of the critical concentration and the wavelength. The dis-

crepancy in the results that have larger Co concentrations that the critical point may

be due to the small magnetic moment in the system. In addition, the PNR results

never reach discontinuity in λs due to the thin film nature of the samples (70-116

nm). However from these results it is quite clear that the DMI causes a discontinuity

in the helical spiral.

The calculations of the bulk first principles were furthered by calculating the AHE

for different concentrations of Co. Within the first-principle calculations disorder

was introduced by using the constant γ approximation (see section 3.13). These
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y

Figure 3.22: Helical wavelength of the Fe1−yCoyGe compound as a function of y
comparing the thin film PNR (blue), bulk ab-initio (red), and bulk SANS (black)
[50]. The inset is a zoom out of the original plot, where lines are shown as guides for
the eye.
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results are compared to that of the experimental results from the samples used in

the PNR measurements. In both cases, the longitudinal conductivity and the AHE

are compared, which for the first-principle calculations the same disorder parameter

is taken into account.
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Figure 3.23: Left: Comparison of first-principles (green with line) longitudinal
conductivity with that of the thin film measurement. Right: The anomalous Hall
conductivity for Fe1−yCoyGe comparing the first-principle and experimental results.

In figure 3.23 the longitudinal conductivity and the AHE are plotted on the left

and right respectively, comparing the experimental (points) and first-principle (green

line) results. The experimental data was taken for samples of 23, 70, 90 and 116 nm.

The first principle calculations are matched to the longitudinal conductivity in the

pure FeGe at 70 nm with a disorder parameter of γ = 0.57 eV. From here, the

same γ is used for the calculation of the longitudinal conductivities and the AHE

for all concentrations of Co. The discrepancy in the longitudinal data is due to high

concentration of impurities for ternary compounds, that are not the pure FeGe. The

AHE (see fig 3.23 right) agrees well the experimental data for concentrations below
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the critical point. The two possible reasons for this discrepancy, are possibly due to

i) the vanishing magnetic moment for concentrations y¿0.5 and ii) the absence of

scattering mechanisms to the AHE. Where in the small Co concentration limit the

AHE is dominated by the intrinsic mechanism.

Lastly there is the calculation of the THE, which is shown for the scattering

independent result in section 3.16. These results are still in the process of being

measured experimentally. However, it is already clear that the THE will follow the

adiabatic approximation in Fe1−yCoyGe due to the long wavelength spin-spirals that

are expected. At the time of this dissertation there is no knowledge of measurements

or calculations of the THE in the Fe1−yCoyGe compounds. This would lead to a

new perspective in comparison to the results in Mn1−xFexGe where the adiabatic

approximation breaks down for small skyrmion lattices.
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4. CONCLUSION

In this dissertation, we used first principle calculations to understand the Berry

phase contributions in ternary B20 compounds Mn1−xFexGe and Fe1−yCoyGe. These

alloys have interested the condensed matter community over the last four decades

for their chiral magnetic properties, and recently being some of the first materials

to display geometrical magnetic skyrmion phase at finite temperatures and subject

to external magnetic fields. The skyrmion phase in these materials is due to spin

orbit coupling, causing a the Dzyaloshiniskii-Moriya interaction to stabilize a chiral

structure with a preferred handiness. Furthermore, there is the topological Hall

effect, which is purely due to the geometrical magnetic texture, and the anomalous

Hall effect which coexist in the skyrmion phase. Skyrmions show potential for next

generation logic devices due to there stability against external magnetic fields and

the ease of manipulation with small current densities. Therefore it is of interest to

understand the underlying mechanisms, i.e. Berry phase physics, that control the

size and the transverse responses due to electrical fields that are used to detect them.

To understand the origin of the sign change in the DMI we have developed a

minimal tight-binding model for a finite trimer system (see Fig. 3.8), positioned in

the xy-plane. Within our model, the trimer of atoms mimics the bond between the

two transition metals and one Ge atom in B20 structure (see Fig. 2.2). This model

is derived in a similar way as a previous model for 3d-5d transition metal chains, and

it captures the essential physics of the DMI in our ternary alloys. Based on the DFT

results, in our model we neglect the SOC on the Ge atom, while the effects of non-

collinearity and SOC on transition metals lead to a finite DMI strength, D = |D|, via

contribution to the energy of the type EDM = D · (S1 × S2), with S1 and S2 as spin
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moments of two transition metal atoms. Within this model a finite DMI is estimated

from the difference in energy between two configurations of S1 and S2, with both

spins lying in the xy-plane and vector D out-of-plane. This intuitive model showed

that the maximum and minimum in the DMI comes from the hybridization of the

t2g and eg states.

In terms of the anomalous Hall effect, we considered the reciprocal space con-

tribution and evaluated the k-resolved and summed over all occupied states BC

(Ωn,kk)xy for [001]-direction of the magnetization in our ferromagnetic Mn1−xFexGe

and Fe1−yCoyGe crystals for all x and y up to 0.8, with the SOI treated self-

consistently. Our calculations show that the anisotropy of (Ωn,kk)xy with respect to

the direction of the magnetization is rather small. The manifestation of (Ωn,kk)xy is

the intrinsic contribution to the AHE, with the anomalous Hall conductivity (AHC)

σxy given by the Brillouin zone integral of the non-vanishing k-space (Ωn,kk)xy. The

dependence of the computed AHC on the concentration of Fe in these alloys, is pre-

sented in Fig. 3.17, is ragged, which is typical for transition-metal ferromagnets

upon changing the parameters of the electronic structure. Our values can be directly

compared to experimental measurements of the AHC in the ferromagnetic phase of

MnGe and FeGe, which constitute 150 and 38 S/cm, respectively. Clearly, there is

a good qualitative agreement in magnitude, sign and trend between our calculations

and experiments, while the remaining differences can be attributed to, e.g., extrinsic

contributions to the AHE.

We also calculate the real part of BC tensor (Ωn,RR)yx which gives rise to the

topological Hall effect. For pure alloys, the sign of the THE which we predicted

agrees with the experimental values. In the case of FeGe the value of Rtop
yx consti-

tutes 88×10−11 Ωm/T and compares remarkably well with the experimental value of

72×10−11 Ωm/T, computed from the experimental values for ρtop
yx and Be. In MnGe
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we obtain a value of 25×10−11 Ωm/T for Rtop
yx , which is two orders of magnitude larger

than the experimental value of 0.4×10−11 Ωm/T. The overestimation of the topolog-

ical Hall constant along with the underestimation of the DMI in Mn-rich alloys, can

be attributed to the breakdown in the adiabatic approximation. This essential Berry

phase viewpoint, shows the inability to properly capture the effect of a conduction

spin to follow the rapidly varying magnetization of the skyrmion lattice. The physics

of the electron dynamics and Hall effects in this regime, and its proper description

with first principles methods, present important directions to tackle, especially in

the light of recent intensive interest in nano-scale non-trivial spin textures arising at

surfaces and interfaces.

In conclusion, our calculations have shown the extent of first-principle calculations

in the regime of the adiabatic approximation for metallic chiral magnetic materials.

The work we published has initiated studies to understand the Berry Phase physics

from many perspectives. We see that these BC effects can be manipulated by the

electronic occupation and alloying leading for precise atomic control of the spin-orbit

effects, which could possibly lead to technology for next generation devices.
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S. Blügel, A. Rosch, Y. Mokrousov, and C. Pfleiderer. Real-space and

reciprocal-space berry phases in the hall effect of Mn1−xFexSi. Physical Re-

view Letters, 112(18):186601, may 2014.

110



[43] F. Freimuth, Y. Mokrousov, D. Wortmann, S. Heinze, and S. Blügel. Maximally
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Kubetzka, Roland Wiesendanger, G. Bihlmayer, and Stefan Blügel. Spon-
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[69] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer,
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APPENDIX A

BLOCH THEOREM

A.1 Periodic Systems

Lattices are commonly described by a set of vectors a1, a2,..... aN called primitive

lattice vectors, whereN is the number of dimensions. The position of all lattice points

are described by the lattice vectors R that connect all equivalent points in space and

is referred to as the Bravais lattice.

R = n1a1 + n2a2 + ....nNaN (A.1)

The volume Ω enclosed by three primitive lattice vectors in three dimensions is

considered the primitive unit cell: Ω=|a1 · (a2 × a3)|

In order to actually have a crystal one needs a lattice and a basis. The basis describes

the positions of atoms/ions in regards to the the lattice. It is often better to describe

the behavior of electrons in the reciprocal space of the crystal. In three dimensions

the reciprocal vectors are defined by

b1 =
2π(a2 × a3)

Ω
, b2 =

2π(a3 × a1)

Ω
, b3 =

2π(a1 × a2)

Ω
(A.2)

Where ai·bj=2πδij shows the property eiG·R=1. This defines the reciprocal lattice

vector G which connects all equivalent points in reciprocal space analogous to eq. 1

it is written

G = m1b1 +m2b2 + ....mNbN (A.3)
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For a given function f(r) with the periodicity of the lattice can be written as a

function of the Fourier transform.

f(r) =
∑
G

eiG·rf(G) (A.4)

Because of the periodicity the function only needs to be studied in the primitive unit

cell with respect to r. Equation A.4 leads to Bloch Theorem in the single particle

case.

For electrons moving about a simple potential U(r) that is periodic, the electrons

can be considered to be subject to an approximated potential,

U(r + R) = U(r) For allR in the lattice. (A.5)

This model permits the prediction of real properties of solids such that some are met-

als, as opposed to semiconductors or insulators. The single–particle wavefunctions

will also have a symmetry but subject to a phase factor

Ψk(r + R) = eik·RΨk(r) (A.6)

Where the wavefunction can be decomposed to a periodic functions and plane waves:

Ψk(r) = eik·Ruk(r) (A.7)

The periodic function uk(r) contains the full symmetry of the Bravais lattice

A.2 Generalized Bloch Theorem

In the case of spin-spiral with rotation angle ϕ = qRn that is counterclockwise.

The exchange-correlation field, Bxc constantly varies from one unit cell to the next.
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Then the Hamiltonian ,H(r), must satisfy

H(r + Rn) = U(qRn)H(r)U †(qRn). (A.8)

Where U(qRn) is the spin 1/2 rotation matrix,

U =

 e−iϕ/2 0

0 eiϕ/2

 . (A.9)

A general translation operator can be defined Tn = {−qRn|1|R}, where a translation

and a spin rotation operator are combined with 1 being the identity matrix. The

translation operator is part of the spin space group and satisfy the relation TnTm =

TmTn = Tn+m. Applying this generalized translation operator to Hψ leads to,

TnH(r)ψ(r) = U(−qRn)Hr + Rn)U †(−qRn)U(−qRn)ψ(r)

= H(r)U(−qRn)ψ(r)

(A.10)

Which leaves the Hamiltonian invariant with the generalized translation operator,

i.e. TnH = HTn. The Bloch eigenstates take the form,

Tnψ(k, r) = U(−qRn)ψ(k, r + Rn) = e−ik·Rnψ(k, r) (A.11)

and the eigenstates have the form,

ψ(k, r) = e−ik·r

 e−iq·r(k, r

eiq·rβ(k, r)

 . (A.12)

Here α and β are periodic functions, i.e. α(k, r) = (k, r + Rn).
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APPENDIX B

EXCHANGE AND CORRELATIONS FUNCTIONALS

In this appendix the analytical forms for the LDA and GGA exchange-correlation

energies functional are shown. The forms of these energies are relatively simple

compared to other potentials and form the lowest rungs of the Jacob’s Ladder.

B.1 Local Density Approximation

In general the spin unpolarized exchange-correlation energy functional takes the

form,

ELDA
xc [n] =

∫
n(r)εxc[n(r)]dr, (B.1)

and the spin polarized,

ELSDA
xc [n,m] =

∫
n(r)εxc[n(r),m(r)]dr. (B.2)

The electron density n(r) =
∑

i,s|ψi,s(r)|2 and the spin density

m(r) =
∑

i 〈ψi(r)|σ |ψi(r)〉 are functions of the position r. The spin index is denoted

as s for up/down bands, i. In the case of unpolarized LDA the spin index is take

out of the sum, due to the degeneracy of the wavefunctions. The exact exchange of

a unpolarized homogenous electron gas is [27],

ELDA
x [n] = −3

4
(
3

π
)1/3

∫
n(r)4/3dr. (B.3)

The energy functional for the correlation has analytic expressions for the high and

low density limits [122].
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The exchange-correlation potential is,

vLDA
xc (r) =

∂ELDA
xc

∂n
= εxc(n(r)) + n(r)

∂εxc(n(r))

∂n
. (B.4)

Within in the LSDA the exchange-correlation field is parallel to the spin density,

The exchange-correlation potential is,

Bxc(r) =
δELDA

xc [n,m]

δm
= n(r)

∂εxc(n(r),m(r))

∂m(r)
m̂. (B.5)

B.2 Generalized Gradient Approximation

The GGA functional [126] corrects for rapid variations in the LDA functional by

adding derivatives to the exchange-correlation potential as,

EGGA
xc [n] = ELDA

xc [n] +

∫
∆εxc[n(r), |∇n(r)|]dr, (B.6)
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APPENDIX C

CONVERGENCE

For the collinear ferromagnetic first principle calculations with and without spin-

orbit coupling we found that the planewave cutoff radius Kmax of 4.0 bohr−1 and a

12×12×12 k-points equivalent to 119 Nk in the IBZ converged the total energy to

less than 0.1 meV (see fig. C.1). The calculation of the self-consistent spin-spiral
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Figure C.1: Left: Total energy convergence in FeGe as a function of the number
of kpoints in the IBZ. Right: Total energy convergence in FeGe as a function of the
planewave cutoff radius Kmax.

is found to be converged at 18×18×18 in the full BZ, however the calculation of the

DMI is converged for <1 meV at 24×24×24. For the calculation of the DMI and the

exchange stiffness the k-grid of 24×24×24 is used.

133


	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	Introduction
	First Principle Calculations
	Density Functional Theory
	The Hohenberg-Kohn Theorem
	Kohn-Sham States and Jacob's Ladder

	DFT Methods
	TB-LMTO-ASA
	(F)LAPW
	DFT Method Rankings

	Spin-Orbit Coupling in DFT
	DFT Results in B20 Compounds
	Alloy Calculations
	Spin-Orbit Coupling in B20 Compounds


	Heisenberg Interactions and Non-collinear Magnetism
	Classical Spin Hamiltonian
	Symmetric Exchange
	Antisymmetric Exchange
	Symmetry of the DMI
	Anisotropy
	Higher Order Exchange

	First-Principles approach to Non-Collinear Magnetism
	Spin-Stiffness
	Dzyaloshinkii-Moriya Interaction
	Band Structures of Spin-Spiral States

	Tight-Binding Calculations of the DMI
	Tight-Binding Approximation
	Slater-Koster Two-Center Approximation
	Trimer Model for B20 Compounds
	Wannier Functions for Berry Curvature
	Theory
	Computation
	Band Structure Results
	Berry Phase Effects
	General Berry-Phase Theory
	Anomalous Hall Effect
	Topological Hall Effect
	Phase-Space Berry Effects
	Results in B20 Systems
	Overview and Discussion
	Theoretical Studies
	Experimental Studies
	Experimental and Computational Studies of FeCoGe

	Conclusion
	REFERENCES
	APPENDIX Bloch Theorem
	Periodic Systems
	Generalized Bloch Theorem

	APPENDIX Exchange and Correlations Functionals
	Local Density Approximation
	Generalized Gradient Approximation

	APPENDIX Convergence



