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ABSTRACT

Wave-modeling can be categorized in terms of different scales and theoretical

frameworks. This dissertation focuses on the numerical modeling of wind-wave gen-

eration and its effects on wave growth and propagations. As categorized by scales

and methodologies, wind-wave modeling in this dissertation covers two main topics:

1) Large-scale modeling: wind-wave development in real seas. As a phase-average

model, SWAN is employed to study the wind-wave environment in the Persian Gulf

and Qatar. The wind-wave generation is parameterized as source terms in a spec-

tral model. The special wind condition, called shamal, is particularly investigated.

An experimental tower is installed around Doha Port, and by using video imagery,

the in situ wave features are extracted and compared. 2) Small-scale modeling: de-

tailed wave development using CFD (Computational Fluid Dynamics). A curvilinear

surface-fitted moving grid model for three-dimensional Navier-Stokes equations is

developed and used to simulate linear and non-linear waves with fully nonlinear sur-

face conditions. Also, by simplifying it to a fixed rectilinear grid based on Cartesian

formulations, a DNS (Direct Numerical Simulation) model is developed with an air-

water fully-coupled domain and improved coupled interface conditions. By using this

DNS model, the detail of wind-wave generation is investigated from still water and

the applied top shear wind.

For the second topic, the CFD problems are solved by an in-house numerical tool, 

SPX. SPX is a general PDE (Partial Differential Equations) framework, devel-oped 

by using C++1y (shortened form of C++11/14/17), currently aiming at the 

structural domain. It is designed by modern software methodologies, such as generic 

programming, meta-programming and object-oriented programming. In addition,
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concept-based generic programming, an ongoing advanced software technology, is

first introduced into the PDE numerical tool design. By using these modern design

methodologies, all significant components used for solving PDE, particularly for fluid

and wave problems, are all implemented in SPX. These components include high-

performance numerical array, implicit solvers, grids, differential basis and operators,

time integrators, and system infrastructures such as serializations and timer. On

structured domain, a general PDE can be expressed by the arbitrary combination

of any general differential operator and any arithmetic operator, which is the most

challenging part of SPX design. This research proposes a general stencil operator

design that integrates with the concept-based expression template. It is successfully

demonstrated that the proposed design can automatically deduce the resulting sten-

cils to represent the resulting field operator by giving an arbitrary PDE expression

at any given grid point. With the deduced stencils, the user-defined PDE expres-

sion is therefore, numerically-solvable by using any solver. In consequence, SPX

can be easily applied to any user-defined PDE problem on structural grids with ar-

bitrary user-specified numerical components. Its design shows high flexibility and

re-usability without sacrificing efficiency. The development of SPX, therefore, justi-

fies the success of C++-Concept applications on the large-scale numerical framework

design.
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1. INTRODUCTION

The process by which wind generates waves requires sophisticated physical mech-

anisms to describe and spans many spatial and temporal scales. The generation and

evolution of wind-waves have been studied for almost 100 years, yet many questions

remains. How do waves grow by air flow? Does air turbulence play a role? How does

the surface wave interact with mean flow and ocean upper boundary layer? What

is the wave age-dependent process for wind-wave growth from linear to exponential

growth rate, from short waves to long waves, and from small scale to large scale?

What is the fundamental connection between small scale wind-wave growth to the

time-dependent spectrum in an actual sea?

This dissertation will investigate specific small and large scale problems in wind-

wave generation and propagation. Given the scale-dependent nature of wind-wave

generation and the different types of wave modeling, we will involve two approaches:

1) a large-scale study using spectral wave modeling for the wind-wave propagation in

a real sea, and 2) a small-scale study using computational fluid dynamics (CFD) that

solves three-dimensional Navier-Stokes. For the first approach, the phase-averaged

spectral wave model SWAN (”Simulating WAves Nearshore”; [10, 62]) is used to

study the wind-wave conditions in Persian Gulf and Qatar, while in the second

approach the CFD work will be performed with our in-house developed SPX. SPX

is a general numerical framework for solving partial differential equation (PDE) on

structural grids, which can generally solve any user-defined problems. The PDE tool

is developed as a generalizable, flexible utility for the numerical solution of partial

differential equations, and as such will comprise a major portion of this dissertation.

The dissertation consists of three parts. We will briefly introduce each part as

1



follows:

• Part 1—A Large Scale Study: Wind-Waves in Persian Gulf and Qatar. In this

part we will use numerical models to investigate the wind-wave propagation

in Persian Gulf and Qatar, with particular focus on the unique wind-wave

conditions in this area known as ”shamal”. The SWAN model is central to this

work. This phase-averaged model is expressed in terms of wave action density,

within which energy sources, sink and redistribution functions are described.

The model is used to uncover the long term climatology for the basin. Moreover,

the effects of bathymetry, swell boundary conditions, hindcasting domain size,

and the selection of wind source, will be investigated. One wind source is from

local measurements taken from an experimental pier installed in the nearshore

area around Qatar. In addition to winds, cameras were also used to provide

imagery of the waves. Therefore, in this section we also employ video imagery

analysis to extract wave properties from these images.

• Part 2—SPX: A Generic PDE Framework for Structrual Grids using C++11/14/17

and Concept-Based Design. The goal of SPX is to allow users to easily solve

any PDE on the structured domain. It allows user to 1) arbitrarily pick any

one of two types of domain: rectilinear or curvilinear, 2) generally define any

differential operator and build equation for every individual node, 3) select

differential schemes such as finite different or spectral method for any order

differentiations (SPX also supports mixed schemes), 4) choose any time in-

tegration scheme (an ODE solver) for transient problems, and 5) choose any

implicit linear or nonlinear solvers for stationary problems. Thanks to the ma-

jor advance of C++1y (shortened form of C++11/14/17), the design of SPX

is aligned with the state-of-the-art concept-based generic programming, as well

2



as emphasizes the modern features provided by the new C++ standards. They

allow SPX to use a powerful infrastructural features such as high-performance

numerical arrays and the automatic deduction of any general stencil differential

operator at compile-time, using concept-based expression templates.

• Part 3—A Small Scale Study: Detailed Wave Development using CFD. In this

part, a small scale study for the generation of wind-waves is conducted using

CFD. Unlike other approaches, which use simplifying assumptions and make

use of coarse parameterizations, DNS provides an ab initio solution in which

waves can be grown from a flat surface by the upper air turbulent flow that

is driven by applying an upper shear wind. By using SPX, a CFD model is

developed to solve the three-dimensional Navier-Stokes equations with surface-

fitted curvilinear moving grid, and nonlinear surface stress conditions, by using

pseudospectral method. In addition, a simplified version is also developed for

the use of DNS modeling in which a fixed rectilinear grid is employed with

Cartesian formulations with the air-water fully coupled interfacial conditions.

Having the results of DNS modeling, the growth of surface wave elevation and

the evolution of many interface properties can be examined accordingly.
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2. PART 1—A LARGE SCALE STUDY: WIND-WAVES IN PERSIAN GULF

AND QATAR∗

2.1 SWAN model

The SWAN model (”Simulating WAves Nearshore”; [10, 62]) is a third generation

wind wave model for coastal regions. The wave evolution problem is solved in terms

of action density spectrum (a statistical quantity related to the energy spectrum)

in different dimensions. The SWAN model also includes the effects of currents and

bathymetry of the wave evolution. Because the presence of an ambient current causes

frequency-shifting, energy density is not conserved, while action density is conserved

and is thus the dependent variation in SWAN. Action density spectrum N(σ, θ)

is related to energy density spectrum E(σ, θ) by N(σ, θ) = E(σ, θ)/σ. Instead of

absolute radian frequency, action density is varied with respect to relative radian

frequency σ, as well as the wave direction θ. In spherical coordinates, the spectral

action balance equation used in SWAN can be formulated with respect to geospatial

reference of coordinates

∂

∂t
N +

∂

∂λ
CλN + (cosϕ)−1 ∂

∂ϕ
CϕN +

∂

∂σ
CσN +

∂

∂θ
CθN =

S

σ
(2.1)

where action density N is propagated with respect to several independent variables—

time t, longitude λ, latitude ϕ, relative radian frequency σ, and the wave direction

θ. The first term on the left hand side is the local rate of change of action density in

∗Part of the content reported in this chapter is reprinted with permission from: 1) “The effect
of wind variability and domain size in the Persian Gulf on predicting nearshore wave energy near
Doha, Qatar”, February 2016. Applied Ocean Research, 55, 18-36, Copyright by c©Elsevier Ltd.
2) “Numerical Investigation of Wind Waves in the Persian Gulf: Bathymetry Effects”, January
2016. Journal of Atmospheric and Oceanic Technology, 33(1), 17-31, Copyright by c©American
Meteorological Society.
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time, the second and the third terms describe the spatial variations of action density

with propagation velocities Cλ and Cϕ, respectively along with λ and ϕ dimensions.

The fourth term represents shifting of relative radian frequency due to currents,

with propagation velocity Cσ along with σ dimension. The fifth term stands for

the depth-induced and current-induced refraction in which action density transports

with propagation velocity Cθ along the θ dimension.

On the right hand side, S = S(σ, θ) represents the energy sources and sinks.

These include the effects of: wave generation (e.g., linear and exponential wind

growth); wave dissipation (e.g., whitecapping, bottom friction, and depth-induced

breaking); and nonlinear wave-wave interactions (e.g., triad and quadruplet wave-

wave interactions). For these simulations, the SWAN model is run in ”third-generation”

mode, indicating that there are no apriori restrictions on the spectral evolution [29],

apart from those which govern the existence of the spectrum.

The wind source term is represented by two parts:

S = S(σ, θ) = α + βE(σ, θ) (2.2)

where the first term stands for the linear initial growth stage [57] and the second

term stands for the exponential growth stage in terms of Miles’ feedback mechanism

[48]. The value α evaluated from SWAN is formulated by [12]:

α =


0.0015

g22π
[u∗ cos(θ − θwind)]4G ∀ |θ − θwind| ≤ 90◦

0 ∀ |θ − θwind| > 90◦
(2.3)
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where the cut-off function G is given by

G = exp

[
−
(

σ

σ∗PM

)−4
]

with σ∗PM = 2π
0.13g

28u∗
(2.4)

where θwind is the angle of winds, σ∗PM is the peak frequency of the Pierson and

Moskowitz spectrum, and u∗ is the friction velocity that can be converted from 10-m

height wind velocity U10 by using

u2
∗ = CDU

2
10 with CD =


1.2875× 10−3 ∀U10 < 7.5m/s

(0.8 + 0.065U10)× 10−3 ∀U10 < 7.5m/s

(2.5)

On the other hand, for the exponential growth stage, the value β is given by [72, 43]:

β = max

{
0, 0.25

ρa
ρw

[
28
u∗
c

cos (θ − θwind)− 1
]}

(2.6)

where c is the phase speed, ρa is the air density, and ρw is the water density.

SWAN Cycle III version 40.92 was used for this study. Any adjustable parameters

used to constrain physical processes were set to default values as defined in the model

documentation [22].

2.2 Literature reviews for wind-wave study for Persian Gulf

The Persian Gulf is a large body of water located bordered by Iran, Kuwait, Iraq,

Saudi Arabia, Bahrain, Qatar, and the United Arab Emirates. It is connected to the

Indian Ocean by the Strait of Hormuz. The Gulf holds a significant portion of the

world’s oil reserves, and the Strait of Hormuz is considered a critical chokepoint for

energy security; it is estimated that as many as 17 million barrels of crude oil per

day passed through the straits in 2011 [85].

A major component of the meteorological environment in this area is the shamal,
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a strong northwesterly wind caused by cold fronts passing over the mountains of

eastern Turkey and northern Iraq. It is a seasonal wind event occurring primarily

during summer and winter. The winter shamal season generally lasts from November

to February with an average speed of 5(m/s), while the summer shamal season lasts

from June to September with a slightly weaker average speed of 3(m/s) [19, 83].

Gusts associated with these magnitudes can result in energetic wind seas, which

would hamper marine traffic. Figure 2.1 shows the area of interest.

Attention has been primarily focused on the hydrodynamics of the area [20, 83].

Before 2010, there have been relatively few studies of wind wave processes in the

Gulf, particularly with respect to the response to the shamal [53, 54, 59], which

all are based on the WAM model (”The WAve Model”; [30]). However, comparing

to WAM, SWAN incorporates source terms which have more relevance to shallow

water processes (e.g. depth limited breaking); [63, 31] show that the SWAN model

outperforms the WAM model for when compared to coastal cases. SWAN is therefore

much appropriate to be used for modeling regional oceans, such as Persian Gulf. [49]

employed SWAN to perform wave hindcast for Persian Gulf in which winds from

ECMWF and a spatially-constant in-situ wind station are used as wind sources.

Wave assimilation using SWAN and in-situ measurements for this area has been

studied since 2012 [50, 51].

The effects of bathymetric variation in wave modeling have been widely stud-

ied. Many regional studies have, in recent years, used SWAN. [25] discussed the

complex bathymetric effects for the Scripps Canyon. [40] performed a sensitivity

analysis focusing on the regional wave response upon a complex bathymetry. [64]

applied a multi-level approach in three different levels of detail of computational

grid and bathymetry resolution. [58] studied the alongshore and cross-shore wave

and hydrodynamic sensitivity, while [47] derived optimization schemes using genetic
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algorithms to reduce the bathymetric sampling required in nearshore wave and hy-

drodynamic modeling. Both [86] and [55] involve in data assimilation for nearshore

wave modeling in which bathymetry effects are discussed.

There are fewer studies concerned with basin-scale characteristics of waves in the

Persian Gulf, mainly because proper characterization requires long-term hindcasting

using reliable and high-resolution wind data. [52] published the first wave atlas for

Persian Gulf. A 10-year (1992-2001) hindcasting was conducted using the MIKE 21

SW and ECMWF wind. Similarly, by a 25-year hindcasting (1984-2008) using SWAN

and ECMWF wind, [41] studied the wave features both spatially and temporally, not

only plotting the wave power spatial distribution, but also investigating the seasonal

variations of wave power, as well as the decadal trends using time series of annual

average values. However, wave atlas shows only the most expected values and does

not usually offer other statistics. [56] proposed a statistical study but it is only for

the north Persian Gulf.

In section 2.3 we will introduce the study area and the data used for modeling,

including the observation tower built on the maintenance pier near Doha Port for the

on-site data observations. Two long-term basin-scale investigations are respectively

discussed in section 2.4 for climatological and statistical properties and, in section

2.5 for the effects of bathymetry. In section 2.6 we propose a multi-level modeling

approach and develop a series of model configurations to investigate the effects of

domain size, swell boundary conditions, and the effects of different wind forces on

the climatological results. Finally, in section 2.7 the methodology of video imagery

is developed and employed to extract the wave properties from videos of the free

surface taken at the maintenance pier, which can be used to compare with numerical

results.
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Figure 2.1: Bathymetry and computational domain of the study area

2.3 Data preparation

2.3.1 Study area

The Perisan Gulf is a long, flat and shallow semi-enclosed basin, located between

24− 30◦N and 48− 57◦E. The basin width varies from 56 to 338km, while its central

axis is about 990km long. Its total area is about 226, 000km2 and the average water

depth is around 35m [21]. The only large-scale passages are Straits of Hormuz,

located in the south of the basin with a narrow opening 56km and which connects

the Persian Gulf to the Gulf of Oman and the Arabian Sea.

2.3.2 The maintenance pier

As shown in Figure 2.2, a maintenance pier at (25.247448◦N, 51.630375◦E), built

to service approach lights at Doha International Airport, was the site of an instal-
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lation of instruments intended to measure winds and ocean waves [71]. The water

depth at this site is 2.1 m. The instrumentation installed at the site included three

sonic anemometers and two video cameras mounted on an aluminum tower, as well

as a weather station mounted a short distance away from the tower. Details of the

anemometers can be found in [71]. Of interest in this study is the weather station (a

Davisnet Vantage Pro 2), which was mounted at an elevation of 4.5 m above mean

sea level. Wind information from the weather station consisted of 15 minute averages

of velocity (in m/s) and direction (measured from north in 22.5◦ intervals).

Iran	
  

Saudi	
  Arabia	
  

Oman	
  
United	
  Arab	
  
Emirates	
  

Qatar	
  

Doha	
  

Loca7on	
  of	
  
Instruments	
  

Doha	
  
Interna7onal	
  
Airport	
  

Figure 2.2: Maps of the Persian Gulf, Qatar, and the instrument location.

2.3.3 Bathymetry data

The ETOPO1 database [5] is used for the bathymetric data in all cases. The

bathymetry in this database has a resolution of one arc-minute in both latitude

and longitude, and a vertical resolution of around 10m. There are no other freely
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available sources of bathymetric information at higher resolution. For our purposes,

this is not an issue since we will be investigating relative performance of the model

given varying amounts of bathymetric information. Moreover, [55] shows that for

flat basin and straight coastlines without bathymetric details does not changes the

sensitivity for the nearshore wave modeling using SWAN.

2.3.4 Hindcast wind fields

Modeled hindcast wind fields were used to provide spatially-dense wind fields for

the area. We use two different hindcast data sets for this study: Coupled Atmosphere

Mesoscale Prediction System (COAMPS) and Climate Forecast System Reanalysis

(CFSR). In addition to hindcast wind fields, measured winds from a weather station

(denoted QTRSTA) mounted on the maintenance pier were also used as the spatially-

constant wind source.

1. COAMPS[32] : an ocean-atmosphere coupled mesoscale weather model devel-

oped by the Naval Research Laboratory. The model combines the physics of

mesoscale atmospheric dynamics with a data assimilation scheme to increase

the accuracy of the solution via updated boundary conditions. Data from

the model consists of grid-based wind speed vectors at a spatial resolution of

0.2◦ × 0.2◦. Furthermore, the temporal resolution was 12 hours.

2. CFSR[2] : developed by the National Center for Environmental Prediction

(NCEP). The data set will be referred to as NCEP hereafter. While COAMPS

is an analysis data set, NCEP is a reanalysis, with more data used to increase

the accuracy of the windfields. NCEP provides a grid-based 10-m wind vector

data at a spatial resolution of 0.3125◦ × 0.3123◦ and a temporal resolution of

6 hours.
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3. QTRSTA: Wind velocity components u and v deduced from the weather station

mesurements were converted from their values at 4.5 m elevation to 10 m height

according to a one-seventh power law [60]:

U10 = U

(
10

4.5

)1/7

(2.7)

where U10 is the velocity component at 10-m height and U is the velocity

component measured by the weather station at 4.5-m height. The missing data

are filled by inverse-distance interpolation from the neighbor weather stations.

2.4 Long-term wind-wave climatology

Given a deficiency of wave measurements, hindcasting is a typical approach to

provide wave climate information. Wind-wave hindcasting is usually driven by an

archived wind field, a reanalysis or operational dataset assimilated with meteorolog-

ical observations, typically provided by global meteorological or oceanic institutes,

i.e., ECMWF (European Center for Medium Range Weather Forecasts). Statistical

techniques can be applied to the results to provide climatological characterization.

In this study, a 5-year (2004-2008) hindcasting exercise is performed using COAMPS.

The parameters for model configuration are listed as Table 2.1. The time step of

computation is selected as 20 min throughout 5-year simulation from 2004/01/01

to 2008/12/31. Regular discretization is used for both spatial and spectral domain.

The extent of computational domain coincides with the area of bathymetry, bounded

between 24◦02′ − 29◦17′N and 47◦01′ − 57◦42′E, and discretized into 641× 315 cells

with 1′ × 1′ spatial resolution. For the spectral domain, the spectral direction is

equally divided into 36 subdivisions around a circle in which 4θ = 360◦/36 = 10◦;

the frequency dimension is bounded between 0.06 Hz and 1 Hz and for the grid res-

olution 36 discrete frequencies are logarithmically distributed along σ space. The
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results are outputted every 3 hours.

Table 2.1: Model configuration for long-term hindcasting.

Parameter Value

Origin (◦ E, ◦ N ) 47◦1′, 24◦2′

x-length (longtitude) 10◦41′

y-length (latitude) 5◦15′

Number of x-cells 641
Number of y-cells 315
∆x 1′

∆y 1′

∆t (min) 20
Frequency range (Hz) 0.06–1
Frequency subdivisions 36 (in log space)
θ subdivisions 36 (in linear space)
∆θ 10◦

As a result of these computations, each grid point in the computational domain

has its own 5-year time series for every physical parameter, i.e., wind speed U(m/s),

peak period Tp(s), and significant wave height Hs(m). For long-term climates, the

joint probability of these parameters can be all described by Weibull distribution,

among others. The spatial variation of these parameters is of interest. Therefore,

the first step is to compute the regression of Weibull distribution for each grid point

within the basin region for these parameters. A two-parameter Weibull probability

density distribution P for a random variable φ, i.e., U , Tp, or Hs, can be formulated

as

P (φ) =

(
C

B

)(
φ

B

)C−1

exp

[
−
(
φ

B

)C]
(2.8)

13



where B is scaling parameter and C is shape parameter. Note that B is dimensional.

i.e., m/s for U , s for Tp, and m for Hs, while C is dimensionless. The scaling pa-

rameter B implies the characteristic magnitude of the distribution, i.e., it is linearly

proportional to mean, median and mode. The parameter B also determines the

spread of distribution, i.e., given a fixed value of C, larger B implies broader distri-

bution with a wider extent of coverage. On the other hand, the shape parameter C

determines the shape of function curve. Given a fixed value of B, C does not change

the extent of coverage, but it changes the shape. For example, typical distribution

for U , Tp, and Hs has a bell shape curve, which means C > 1. The larger value of

C, the narrower the shape, and vice versa.

2.4.1 Results

By using a two-parameter Weibull regression, the scaling parameter B and shape

parameter C for wind speed U , significant wave height Hs, and peak period Tp are

computed at each grid point and plotted as seasonal contour maps.

To plot seasonal contour maps, the first step is to identify the definition of ”shamel

season”. However, there is no consistent definition of month period for wintertime

and summertime shamal seasons [19, 83]. Wintertime shamal is commonly known as

a flexible range beginning from November, while summertime shamal, much rarely

mentioned in literatures, is known as a flexible range from June to September. In

order to make sure the period of wintertime and summertime shamal, we run the

monthly Weibull regressions for U , Hs and Tp over 5 years, and plot the contour maps

for B and C for each month. By comparing the patters, we found that the patterns

out of November to March are pretty similar, and also the patterns out of June and

July are similar. The other periods show distinct pattern changes. Therefore, in this

research we use the definitions for the periods of shamal seasons:
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• Winter : November to March

• Spring : April to May

• Summer : June to July

• Fall : August to October

According to the definitions, the seasonal contour plots can be obtained. Figure

2.3 and Figure 2.4 show the seasonal contour maps for wind speed U respectively

for Weibull scaling parameter B and shape parameter C; Similarly, Figure 2.5 and

Figure 2.6 for significant wave height Hs; Figure 2.7 and 2.8 for peak period Tp. The

discussions and conclusions can be remarked as below.

• According to Figure 2.3, due largely to the different shamal seasons, the largest

and second largest average wind speed U can be found in winter and summer,

respectively. For the seasonal spatial features, the radial distribution can be

found in the wintertime covering whole basin area in which peak resides at

the Iran side. In spring season the magnitude of winds basically retains the

distribution similar to winter, but with weakened magnitudes. In addition,

strong winds in spring are slightly down shifted to south pass. At the tip of

Straits of Hormuz, B ≈ 6.0(m/s), which is larger than winter season (B ≈

5.5(m/s)).

Because of summertime shamal, the summertime pattern is largely different

from wintertime pattern. The wind speed in summer rises again and has the

second largest B values subsequent to winter season. The strong winds in

summer are with long and wide distributions covering only the northern area

of the entire basin. Because of north-coming shamals, the pattern shows large

winds are distributed over most of northern area. In spite of the same coming

directions of winds in both summertime and wintertime shamal seasons, the
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magnitude of summertime shamal is however much weaker and has no enough

power to bring a southern radial distribution with a distinct peak value. In fall

season, the wind is pretty calm for all basin area.

• Figure 2.4 shows the contour map of Weibull shape parameter C for wind speed

U . It is found that irrespective of which season, higher C values are generally

distributed along south coast near Saudi Arabia, which implies narrower shape

of Weibull curves. It corresponds to the distributions of B in which for all

seasons smaller winds are distributed along south coast.

• According to Figure 2.5, the seasonal distributions of Hs are basically associ-

ated with the patterns of U . High wind regions correspond to large Hs, and vice

versa. Similar to wind speed U patterns, shape parameter B for Hs has radial

patterns in which peak values reside at the locations near Iran-side coast. Low

waves are mainly distributed along the southern coastlines. Because of shamal

seasons, winter and summer respectively have the largest and the second largest

Hs, in terms of large B values.

• Similar to U distributions, because of low waves usually distributed in nearshore

areas, for all seasons higher C values are distributed along coastlines, particu-

larly along the southern coast. It is worth noting that at the eastern nearshore

region of Qatar, C has particularly high values (narrow shape), i.e., C > 2.2

for most of time in a year except summer since more strong winds are at north-

ern basin. The reason of sharper distributions at this area is because of low

Hs at lee side of waves for north-coming winds. For example, at Doha Port,

Hs < 0.6m results in pretty sharp curves of Weibull regression, i.e., C = 2.482

for winter, C = 2.271 for summer, and C = 2.513 for non-shamal season (re-

gression for combined values of spring and fall).
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• The seasonal contour maps of B for Tp shows evidence of long-fetch wind wave

development. Because of the shallow, flat, and long basin, for all seasons

the magnitudes of Tp appear to increase southward along the central axis of

Gulf, which results in spatial distributions almost constant across the gulf,

varying primarily along the long axis. Due to the seasonal characteristics of

the shamal, the largest and second largest Tp can be respectively found during

winter, ranging in B = 3.5 − 5.25(s), and the summer, ranging in B = 3.0 −

4.75(s). Similarly, for spring and fall, scaling parameters have the range of

B = 3.0− 4.5(s) and B = 3.0− 4.0(s), respectively.

• According to Figure 2.8, it can be found that, within the main basin area

(inside the Straits), the patterns of seasonal contour maps of C for Tp roughly

follow the distributions of parameter B of wind speed U . The area of stronger

winds (higher B in Figure 2.3) corresponds to narrower shape (higher C) of

Tp, and vice versa. In addition, for all seasons the symmetric patterns can be

found centering at the area of peak values. In winter, for example, a span-axial

symmetrical pattern can be found in which C ≈ 3.0 at the top and bottom of

the basin and gradually rise to C ≈ 4.5 at the north of Qatar. That is, along

the long axis of the basin the shape of Weibull regression curve of Tp gradually

changes from wide to narrow, and back to wide. This fact implies that stronger

winds result in more concordant wave periods, irrespective of the magnitude of

the actual Tp values.

2.5 The effects of bathymetry

The next study concerns understanding the role of bathymetrically induced re-

fraction and breaking in the Persian Gulf, as well as the local effects near Qatar, on

the seasonal variability of wave statistics. Long-term hindcasting helps us to discover
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Figure 2.3: Weibull scaling parameter B–wind speed (m/s)
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Figure 2.4: Weibull shape parameter C–wind speed U
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Figure 2.5: Weibull scaling parameter B–significant wave height Hs (m)
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Figure 2.6: Weibull shape parameter C–significant wave height Hs (m)
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Figure 2.7: Weibull scaling parameter B–peak period Tp (s)
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Figure 2.8: Weibull shape parameter C–peak period Tp
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the general properties for wind wave processes, but has often been done at discrete

locations rather than over spatial domain. With the high spatial resolution data

sources used for wind forcing, the general spatial features of wave climates at the

basin scale can also be determined.

In this study we employ the identical model setting for long-term hindcasting

used in section 2.4. However, to investigate the effects of bathymetry, in addition to

the normal hindcasting case (denoted as origin below), two alternative scenarios are

carried out as well. One is to switch off the refraction (denoted as noRefc below) and

the other is to switch off depth-induced wave breaking (denoted as noBrek below).

The remainder of the configuration is identical to the origin case. Although the

absence of observations disallow us from comparing the results to determine absolute

skill, we can obtain valuable information on model skill by relative comparisons

between the standard hindcast simulations and the alternative cases.

2.5.1 Results

Here we examine the basin-scale differences in wave energy between noRefc,

noBrek cases and origin. The average energy density per unit horizontal area is

defined by

E =
1

8
ρgH2

s (2.9)

where the specific weight ρg is regarded as a constant in time, and the energy E

is in the unit of J/m2. Therefore, given a grid point at xi, the 5-year total energy

deviation (TED) for case noBrek or for case noRefc can be approximated by

TED(xi) =

∑
n Ē(xi, tn)−∑nE(xi, tn)∑

nE(xi, tn)
=

∑
n H̄

2
s (xi, tn)−∑nH

2
s (xi, tn)∑

nH
2
s (xi, tn)

(2.10)
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where n loops over all values during the length of the simulation. The overbar (̄·)

indicates the values given by case noBrek or case noRefc, while variables without

an overbar refer to the values from reference case origin. Therefore, as long as the

time series of significant wave height Hs is given, the mean energy deviation can be

computed.

Figure 2.9 and Figure 2.10 show the maps of percentage of 5-year TED, respec-

tively for case noBrek and case noRefc. The 5-year total energy deviation TED

is calculated for each grid point and plotted as seasonal contour maps. TED due to

wave breaking is in the range of ±2%, mainly distributed in the Straits of Hormuz,

behind islands, and the nearshore regions. Depth-induced wave breaking in the main

basin is not immediately apparent, but in the non-shamal season it is manifest in the

transition region between the Straits of Hormuz and the Gulf of Oman due to the

steep drop of depth. On the other hand, TED due to refraction (noRefc) is in the

range of ±20%, an order of magnitude larger than that due to breaking (noBrek).

In addition to the regions behind islands and in the nearshore area, non-zero TED

due to refraction also can be found in most shallow area of the main basin, particu-

larly in the southern area (24−26◦N) in the east of Qatar (51.5−55◦E). In contrast

to wave breaking, depth-induced refraction is affected by the effect of bathymetry

in the offshore region, as well as by the effect of coastlines. For example, in the

northeastern region of Qatar, TED is < −20% in the wintertime of all 5 years.

In summary, understanding the effect of shamals on the wind waves in Persian

Gulf is important for the energy industry. Compared to recent studies, this work

is the first to employ the high-resolution COAMPS wind field, as well as long-term

hindcasting, to quantitatively characterize the wind-wave seasonal and spatial fea-

tures due to bathymetric effects.
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Figure 2.9: Five-year total energy deviation (%) for case noBrek
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Figure 2.10: Five-year total energy deviation (%) for case noRefc

23



2.6 The effects of swell boundary, wind sources, and domain size

As addressed in section 2.3.4, one practical consideration of wave modeling in

a large, yet confined, area such as the Persian Gulf includes the treatment of the

wind forcing, particularly when different sources are used. Measurements of winds

generally provide relatively high temporal resolution (less than one hour between

successive measurements) but are coarsely resolved in space, and are mostly located

in coastal areas, e.g., the QTRSTA wind source. In contrast, wind information

from most available databases generated by model hindcasts replicate the spatial

variability of windfields but often have relatively coarse output temporal resolution,

e.g., COAMPS [32] and NCEP wind sources [2].

Another consideration is the configuration of the numerical grids and the im-

plementation of boundary conditions. This becomes a concern when determining

nesting configurations for models in order to propagate swell generated from remote

weather events to the nearshore. Recent work [64] has shown that multiple nests

are needed to reliably capture swell fields in the Southern California Bight, as outer

swells are brought into the inner domain by ensuing nested grids. The SWAN model

includes utilities in the code which greatly facilitates grid nesting, thus allowing

for high resolution only in areas where it is warranted (coastal areas, for example)

without using curvilinear or finite element grids (which typically require additional

gridding software). While swell may be an important consideration for areas bor-

dering the Pacific Ocean [64], it is not evident how important swell might be for a

confined area such as the Persian Gulf.

In this study, we investigate wind and swell waves around the coast of Qatar

during October and November 2010, in an effort to determine the importance of

various modeling procedures and physical processes on nearshore wave energy. In
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particular, we wish to determine the following:

• The importance of the characteristics (spatial, temporal) of the wind forcing

on the nearshore wave environment.

• The importance of remotely-generated swell and wind sea on the nearshore

waves.

A multi-level grid setup is used for the model, in which a succession of nested grids

are used to propagate waves from their generation in the larger Gulf area to the

coast of Qatar. A variety of wind fields are used, from hindcast fields from the

COAMPS model and NCEP, to local observations QTRSTA located at the end of a

maintenance pier. We use the winds to force waves and determine the effect of various

grid configurations, nesting options and source of winds on the wave statistics at the

maintenance pier. The end result is the establishment of a modeling methodology

for prediction of the nearshore wave environment which accounts for the relevant

processes affecting wind wave generation for the area.

The time frame used for this study encompasses October and November 2010.

While [8] has determined that the month of October is generally a weak shamal

month, this time frame was chosen because data for this time from all three sen-

sor platforms (sonic anemometers, video cameras and weather station) were made

available.

2.6.1 Multilevel cases and grid configuration

The numerical grid used for the SWAN model was set up in spherical coordinates,

which best suits the large size of the Persian Gulf as well as the format of the

bathymetric input. To study the effects of grid nesting and boundary condition

specification on the nearshore waveheights, three levels of nested computing domains
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were developed. Level-1 (L1) is the outermost domain, which coincides with the

area of the entire Gulf; Level-2 (L2) covers the Qatar peninsula; Level-3 (L3) is the

smallest domain only covering the area of our pier and Doha port. Waves can be

seamlessly propagated from outer domain (offshore) to inner domain (nearshore) by

applying nested swell boundary conditions, a built-in option in SWAN. L1, L2, and

L3 grids are shown as Figure 2.11, while Table 2.2 lists the detailed properties for

each domain.
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Figure 2.11: Bathymetry and computational domain of the study area

The grid resolution of L1 is identical to the resolution of bathymetry (one arc-

minute in latitude and longitude). The grid resolution of L2 is four times that of

L1, while the resolution of L3 is four times that of L2. The bathymetry used in
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Table 2.2: Nested domains

Grid L1 L2 L3

Origin (◦ E, ◦ N ) 47◦1′, 24◦2′ 50◦30′, 24◦30′ 51◦30′, 25◦

x-length (longtitude) 10◦41′ 2◦ 30′

y-length (latitude) 5◦15′ 2◦ 30′

Number of x-cells 641 480 480
Number of y-cells 315 480 480
∆x 1′ 0.25′ 0.125′

∆y 1′ 0.25′ 0.125′

∆t (min) 20 10 5

these simulations is at the one arc-minute input resolution for all grids; the SWAN

model automatically interpolated the bathymetry to the resolution germane to the

computational grid.

2.6.2 Model testing

In this section we outline our testing scheme for determining the importance of

forcing characteristics (wind and incoming waves) on nearshore wave conditions. As

mentioned previously, we anticipate that the dominant factors affecting the predic-

tion of nearshore conditions at the pier are:

1. The nature of wind forcing. As described earlier, we use COAMPS analysis

and NCEP re-analysis hindcast winds, as well as QTRSTA winds, as our wind

sources. The QTRSTA data is applied as a spatially-constant field with high

temporal resolution, while the COAMPS and NCEP hindcasts are spatially-

variable wind fields with coarser temporal resolution.

2. The inclusion of boundary conditions from larger grids. While related to the

question of domain size, this factor addresses the importance of incoming swell
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and wind sea on the wave environment inside a modeled domain. In this test we

control the application of boundary conditions along L2 and L3 model domains

to determine their effect on the prediction of nearshore wave conditions. We

note here that this testing is hierarchical; either no boundary conditions were

applied to the L2 or L3 grids, or boundary conditions were applied to both

grids. For the cases that use QTRSTA as wind forcing in L2 and L3 domains,

plus any boundary conditions from outer domain

3. The size of the modeled domain. L2 and L3 respectively represent our two

primary domain sizes, with L1 generally involved only in supplying forcng

conditions to L2. Variation of the domain sizes help determine whether local

domain modeling is tenable over an area as generally calm as the Persian Gulf,

or if the entire gulf area must be included.

Table 2.3 lists all possible combinations for the three listed testing conditions, which

comprise a total of eight cases for wave hindcasting. As only one of the above factors

was altered for each run, it is possible to perform inter-comparisons between various

simulations. For example, by comparing the differences between waves purely driven

by winds (cases 3, 5, 7, 10, 12, and 14) and waves driven by winds and incoming

waves from the boundaries (cases 4, 6, 8, 9, 11, 13, 15 and 16) , the effect of incoming

waves on the nearshore wave predictions can be determined.

2.6.3 Results

Both the hindcast winds (COAMPS and NCEP) and measured (QTRSTA) winds

were input into the SWAN model for the various grid configurations listed above

and run, with output at the location of the pier measurement station. The wave

bulk parameters of interest - significant wave height Hs, peak period Tp and mean

direction θm - were output by the model once every three hours and histograms of
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percent occurrence derived. In addition, we also output the significant swell height

Hswl, in which we defined swell as wave energy with a frequency less than 0.167 Hz

[67].

Monthly statistics (for October and November 2010, separately) are plotted as

figures for Tp, Hs, Hswl, and θm, respectively. Figure 2.12 shows the example for

Hs. In addition to histograms, correlation coefficients and RMSDs between results

of the various run configurations were calculated to help quantify the similarities

in the dependencies of these wave parameters on aspects of the forcing (boundary

conditions or wind variability).

Our first set of comparisons looked at the effect of using varying wind fields.

The results for significant wave height Hs show different values for the peak of the

distributions for either COAMPS or QTRSTA runs, with a higher percentage of

wave heights. This is thought to be a possible indication of the effect of strong

basin-scale events during November, as only the COAMPS or NCEP winds include

any basin-scale events. The wave peak periods Tp and mean angles θm also display

some evidence of waves generated by a strong basin-scale wind; hindcast winds show

longer period and narrower distribution of wave angles than QTRSTA.

The second set of comparisons concerned the use of boundary conditions. By com-

paring the cases with and without boundary conditions (L2-COAMPS-BC to L2-COAMPS-noBC,

for example) it can be seen that more energetic conditions exist at the measurement

pier with the boundary conditions included; in many cases, the peaks of the distri-

butions of Hs are shifted to higher values. These trends appear to be independent

of the wind fields used, and reflect the use of COAMPS or NCEP winds for the

L1 domain for the simulations for L2 and L3 domains. Peak periods also show the

effect of boundary conditions; those simulations with boundary conditions tend to

have a higher precentage of wave conditions at the nearshore location with periods
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Figure 2.12: Monthly Statistics of Occurrences–Significant Wave Height Hs. Dotted
line: mean µ; Dashed line: median Q; Solid line: mode M .
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exceeding 4s, and also have distribution shapes similar to that from the basin-scale

L1 grid.

Finally, we investigated the effect that domain size (L2 or L3 domains) have on

the nearshore wave conditions. It appears that the effect of domain size (which is

essentially the size of the domain over which the wind generates waves) is mitigated

somewhat by the use of boundary conditions, which connects locally-generated waves

with those generated remotely over L1; these serve to reduce the differences between

L2 and L3 cases. For cases without boundary conditions, however, the effect of the

domain size is clear, as conditions generated over L2 are distinctly different (for all

parameters) than those generated over L3.

2.7 On-site study using video imagery

To verify the numerical results, we employ video imagery to extract wave prop-

erties from 35 videos taken by the camera mounted at the maintenance pier. For

single camera video imagery, Figure 2.13 shows the preparation procedures before

analyzing wave properties. Note that for the rectification steps we will follow [33]:

1. Perform lab camera calibration and calculate necessary parameters: effective
focal length f = 12.5(mm), λu = 0.99995, and λv = 1

2. Rectify the image by ”re-sampling” technique in which the transformation func-
tions are given by

camera to world:

[
x
y

]
=

[
L1 − L9u L2 − L10u
L5 − L9v L6 − L10u

]−1(
u− L4

v − L8

)

world to camera: u =
L1x+ L2y + L4

L9x+ L10y + 1
v =

L5x+ L6y + L8

L9x+ L10y + 1

where geometric coefficients Ln are function of camera parameters (f , λu, λv),
camera position (xc, yc, zc), and camera rotation angles (φ, τ , σ). For exam-
ple, Figure 2.13(a) and Figure 2.13(b) respectively show the raw and rectified
images.
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3. Choose a scanline horizontally or vertically, and make a timestack. For exam-
ple, a horizontal scanline AB is chosen in Figure 2.13(b), and Figure 2.13(c)
shows its timestack in which every row represent a temporal record of AB.

4. Perform FFT to each column (time dimension) to convert the timestack to
frequency domain. For example, Figure 2.13(d) shows the resulting FFT spec-
trum of the timestack in Figure 2.13(c).

u 

v 

(a) Raw image

x 

y 

B A 

(b) Rectified image

B A 

time 

(c) Timestack

B A 

frequency 

(d) Timestack FFT

Figure 2.13: Video imagery preparations: (a) raw image; (b) rectify image in terms
of transformation functions; (c) make a timestack from a scanline AB; (d) apply
FFT to timestack.

In terms of the timestack FFT coefficients Y (x, f), 1D analysis can be performed.

By [73], mean wave frequency fmean and wavenumber kx can be estimated. As long as
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fmean and kx are available, wave speed and wave angle can be accordingly estimated

as well. The frequency can be estimated by

1. Set up lower and higher bound to filter out low frequency trends and noise:
fmin = 0.05(Hz) fmax = 2.5(Hz).

2. Calculate mean frequency using weighted average method:

fmean(x) =

∑fmax
i=fmin

|Y (x, fi)| fi(x)∑fmax
i=fmin

|Y (x, fi)|
(2.11)

Wavenumber kx can be estimated by using CEOF (Complex Empirical Orthogonal

Function):

1. Calculate cross-spectrum matrix Qij =
〈
Y (x, fi)Y (x, fj)

〉
2. Normalize Qij and obtain Q

3. Perform eigenvalue analysis: [Vi, λi] = EOF (Q) where Vi and λi are respec-
tively i-th eigenvector and eigenvalue.

4. Use the first mode (the largest percentage) V1 = a(x) + ib(x) to estimate

amplitude A(x) =
√
a2(x) + bb(x) and phase φ(x) = tan−1

(
b(x)
a(x)

)
5. Calculate wavenumber vector kx(x) = dφ(x)

dx

Moreover, a block analysis can be done by repeat the above procedure to traverse

each column and each row of the rectified image. An example of video analysis result

is shown as Figure 2.14. The results show that the mean frequency can be captured

clearly. The average value is about 1.20 to 1.25 Hz, and there is no value below 1

Hz, which implies that only pure wind sea waves are captured while the swells are

in absence. It is because all the video sources taken on site are neither sufficient

long nor with sufficient shooting range. Every video is only 12 seconds long, and

the camera only shoots on the range smaller than 5 meters. It also accounts for the

noisy spatial distribution of wave angle, and similarly for wavenumber results, since
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it is too difficult to capture concordant waves for pure wind sea within a such small

shooting room. In addition to pure wind sea waves, to validate the numerical results,

we also need more information regarding swells extracted from video. To achieve

this, longer video and larger shooting room are expected in the future experiments.

Furthermore, stereo video imagery technique is even more helpful since the wave

height can be exactly identified. Having the wave heights, the spectrum is possible

to be measured from video imagery and finer comparisons can be done.
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(a) Mean frequency fmean (b) Wavenumber kx

(c) Wave angle (degree) (d) Wavenumber magnitude k = |k|

Figure 2.14: An example of video analysis result: (a) and (b) are taken along x-axis;
(c) and (d) are block analysis results
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3. PART 2—SPX: A GENERIC PDE FRAMEWORK FOR STRUCTRUAL

GRIDS USING C++1Y AND CONCEPT-BASED DESIGN

3.1 Core principles and scopes

SPX is a general numerical framework for solving PDE on structured domain.

According to general practice, there are three main parts for the core design: 1) grids

and domain, which can be comprised of arbitrary dimensions; 2) general represen-

tations of differential operators; 3) implicit and explicit solvers. Typically implicit

solvers include stationary solver based on stencil operators while explicit solvers are

for ODE and time integrations that support different schemes. With the term ”gen-

eral”, the features of SPX are:

• Support general differential operators, including the composite operator such

as linear combinations. For example, the code 2*dx+dy(dz) represnets 2 ∂
∂x

[·]+
∂
∂y

(
∂
∂z

[·]
)
, and can be applied to any node.

• Support both rectilinear and curvilinear domains. PDE can be generally built

at any given node.

• Support abstract differential basis, i.e., periodic or non-periodic finite differ-

ence basis for any order differentiation, and spectral basis such as Fourier,

Chebyshev, and Legendre basis. Any general linear differential operator can

be composed by mixing of different schemes.

• Support commonly used time integration schemes. Time marching should be

generically designed and should not be coupled with any other particular SPX

components. Users can easily assign and switch time schemes, regardless the

kind of differential equations, operators, grids and domains.
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• Support linear and non-linear implicit solvers, or just simply called ”solvers”.

The design idea is similar to time marching. Solvers should be designed as

independent and general components. Users can easily specify any solvers for

any type of equations and operators.

• Provide robust infrastructure, i.e., a highly-efficient numerical array.

Figure 3.1 shows the UML package diagram for the layout of SPX framework. In

the following sections will explain the designs and implementations for each subsys-

tem and subpackage.

SPX

array

expression

dense_array

descriptor

core

ode

geogrid

solver

high-performance
numerical array

core components (stencil
& stencil_array)

differential basis
basis

1) domain and grids
(curvilinear &
rectilinear)
2) mesh generator

implicit solver
(Krylov, SOR, direct
solver, ...)

ODE solver (time
integration)

math

type

util

mathematical
functions

type libary for
meta-programming

utilities (data
serialization,
timer,...)

Figure 3.1: UML package diagram for the layout of SPX framework.
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3.2 Generic programming and C++-Concepts in C++1y

Generic programming (GP) is a programming paradigm that can compensate for

the side effects of from runtime type binding such as object-oriented (OO) program-

ming. Instead of dynamic type binding, GP uses a static type system, which means

every polymorphism type used in a program should be deduced by the compiler and

determined at compile-time. The technique used in GP is usually referred to “tem-

plate”, so GP is sometimes called “template programming”. Templates are realized

by compilers differently depending on the compiler design for different programming

languages, i.e., Java compiler substitutes template types in linking stage, and C#

compiler substitutes template types at runtime stage, which all does not fully take

the advantage of GP-static type deduction.

C++ [76], invented in 1983 by Dr. Bjarne Stroustrup, is the first language to

introduce template to operate generic types in 1988 [74] based on the strong type

system of C++. GP by using C++ templates guarantees all generic types can be

deduced and determined at compile-time. That is, without the redundancy of run-

time type binding, a well-designed GP software package can not only perform super

high efficiency for runtime performance but also not sacrifice the type polymorphism.

Standard Template Library (STL), first released in 1998, is the C++ standard library

using GP to provide generic type containers and algorithms.

Designing GP software framework is usually more difficult than a pure OO frame-

work, because there is no “standard methodology” to guide how to proceed with the

GP design for large-scale software; GP-based software developments are mostly based

on the practices. Boost [66] is a gigantic and comprehensive C++ GP framework

to provide the components and algorithms required in any kind of developments of

scientific programs, almost covering all the possibilities. Many components of Boost
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have also gone on to affect C++ standards. An important technique, which can

be seen as the only systematic methodology being used in GP, adopted in Boost is

“meta-programming”. Meta-programming is also a kind of template programming

aimed at the operations on generic types. For example, type traits are a set of tem-

plate classes to check the type information for any given generic type; enable if<..>

is a template class to select type statically in terms of given conditions at compile

time.

Since in C++ generic types are designed to be “truly generic”, any particular

type can be substituted in any particular template without checking. For example,

a generic sorting algorithm, which supposes only being used for “sortable” types,

actually can be substituted by any non-sortable types, and of course results in many

nonsense errors at compile time or runtime. How to constrain specific types that can

be accepted by a given generic algorithm or container at compile time is a challenge

and is still an ongoing research topic. The goals are clear: 1) constraint types

according to the acceptance requirements; 2) generate human readable compile errors

as long as any generic type is incorrectly substituted, and of course, all should be done

statically. Unfortunately, there was no intrinsic solution. Typical solutions to coin

static constraints for generic types could be done by the use of meta-programming

and template partial specializations. This study will not discuss theses details since

they were partial alternatives and essentially could not fulfill the goals.

The intrinsic solution is to introduce C++-Concepts [3]. Concepts can program-

matically express the requirements for generic types, which implies the necessary of

new syntax going to be introduced in C++. It had been discussed and proposed since

2005 [28, 68, 18, 27, 37]. However, since it was overly complex to be understood,

ISO committee voted to remove ”concepts” from C++0x in 2009, but allowed more

years to have a simplified version [65, 75]. A simplified version (called “concept-lite”)
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was therefore proposed [77, 80, 81, 82] and opinion passed by vote in 2013. In ad-

dition, a completely new version of the C++ standard was released in 2011, with

minor revisions in 2014 and major revision that will be delivered in 2017, denoted

as C++11/14/17 or shortly C++1y for convenience. The use of suffix ”1y” is due

to many major changes making C++ resemble a new language, compared to its pre-

vious main standard in 1998. Some important features are directly associated with

GP, e.g., variadic templates and static assertions. Developed by Dr. Andrew Sutton,

origin [79] is the first C++1y package that uses concept-lite to redesign STL, as well

as provides many useful tools for library development. In SPX we will employ origin

as the very important foundation to build up upper level PDE tools.

3.3 High-efficiency numerical array using concept-based design

For any numerical framework, a user-friendly, robust, and high-efficiency numer-

ical array is always required to start. It can be easily imagined how important it is

for any operation of basic linear algebra subprograms (BLAS) [45, 17, 16]. Because

of no runtime overhead, C++ generic programming offers both high-efficiency and

flexibility via static polymorphism. Many successful C++ generic libraries for ar-

ray or linear algebra have been proposed and have been proven successful, such as

Blitz++[89], MTL (Matrix Template Library) [69, 70], MTL4 [26], and Eigen [1].

Thanks to C++1y new features, a better array design is now possible. For example,

by using variadic template, element access in arbitrary rank can be treated as arbi-

trary length of function arguments and resolved at compile time [6], which was not

possible previously. SPX array is the first generic array library that not only supports

arbitrary rank but also employs concept-based design, particularly emphasizing the

new features provided by C++1y.

Comparing to matrix-aimed design such as MTL, Eigen, origin’s matrix [76], and
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TC++PL4’s matrix [76], SPX array emphasizes at the scope of element storage and

access via subscription and subarray slicing using concept-based design, which is

more similar to Blitz++. The main difference between SPX array and the other

matrix-aimed libraries is that SPX array is just the design of multi-dimensional

array but not really for matrix. SPX array is more like a container of elements,

similar to the containers in STL. The design of SPX array is optimized for indexing,

slicing, and storage. On the other hand, although a matrix can be declared as a

two-dimensional array, but actually we can do more mathematical design for it since

a matrix is of the mathematical semantic (but array is not). For example, in Eigen

package, the expression template for “matrix (M)” and “vector (V )” are optimized

for linear algebra calculation. For instance, in the case of M ×M × V , instead of

plain evaluation of (M×M)×V , by using expression template it can be optimized as

M × (M × V ) so as to significantly reduce the cost of matrix-matrix multiplication.

There is no such linear algebra-optimized design in SPX array, since SPX array

is currently designed as a container for the elements in hyper-dimensional indexing

domain. Due to the differences of fundamental concepts between array and matrix, in

the future development, a SPX matrix would be expected to be designed separately

in which the linear algebra-focused and -optimized design can be applied.

3.3.1 Dense descriptor

A basic idea for SPX array is to design a multidimensional container with arbi-

trary rank for any generic type. The underlying elements will be stored in a linear

space. Therefore, a “dense descriptor” is an index placeholder and transformer that

can map the index space from arbitrary rank into a linear memory offset starting

from 0. Given rank N , there are some parameters to represent a general dense de-

scriptor: 1) For index domain, extents L[N ] represents the length for each dimension
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so that L[0]× L[1]× · · ·L[N − 1] will be the total size (number of elements); index

base B[N ] represents the index lower bounds to allow the index domain to not nec-

essarily be 0-based, i.e, 1-based for Fortran-like array. 2) For storage and mapping,

storage order SO[N ] is for the ranking of storage dimension. For example, given a

3×4×5 array, Figure 3.2 demonstrates the examples for four different storage order.

For C-like array, SO[N ] is always from highest dimension to lowest one, and vice

versa for Fortran-like array. Strides TR[N ] is the parameter that for each dimension

how many elements should be skipped for a unit index increased at this dimension. p

is the offset parameter to ensure the mapped memory offset starting at zero. Having

subscript index I[N ] bounded between B[d] and B[d] + L[d] − 1 for any dimension

d, the linear memory offset M is given by

M = p+ dot(I, TR) (3.1)

where M always starts from 0. The relationship clearly shows that TR[N ] and p are

the parameters actually used to map the subscript index to the linear space. TR and

p are dependent parameters and can be pre-calculated. TR can be calculated from

SO and L by TR[SO[0]] = 1 and TR[SO[d−1]] = TR[SO[d−2]]∗L[SO[d−2]]. Also,

p can be obtained from B and TR by p = dot(−B, TR). That is, only SO, B, and L

are independent parameters. As long as a new dense descriptor constructed with the

three parameters, TR and p will be updated correspondingly once and repeatedly

used many times, so as to minimize the calculation for every time requesting an index

subscript.

3.3.2 Concepts for slice and subscript

As mentioned above, as long as the array has been sliced, a new subarray will be

constructed. The new subarray will hold the reference of the original storage, but its
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Figure 3.2: Four examples for array storage order (SO) for a 3 × 4 × 5 array; (a)
C-like storage, and (c) Fortran-like storage.

dense descriptor is updated from the old one so as to make it described by the new

indexing domain. Figure 3.3 is the example that shows how to update the descriptor.

Assuming that a uniform slice created by slice(5,17,3) (starting s = 5, ending

e = 17, and stride r = 3) is applied to the dimension d, and the base index of this

dimension is B[d] = −2, the new memory offset M is given by

M = (p+ (s−B[d] ∗ r) ∗ TR[d]) + I[d] ∗ (r ∗ TR[d]) = p2 + I[d] ∗ TR2[d] (3.2)
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Obviously, for the new descriptor the offset parameter p2 is updated by p2 = p +

(s − B[d] ∗ r) ∗ TR[d] and the stride is updated by TR2[d] = r ∗ TR[d]. Also, the

new length L2[d] = (e − s)/r + 1 = (17 − 5)/3 + 1 = 5. The similar procedure can

be applied for any other dimension. The new descriptor also keeps the base index

starting B[d] = −2 at the dimension d.

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21" 22" 23" 24"
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on3new3array"

s" e"

M1"

Figure 3.3: Illustration of uniform slicing on a specific dimension.

The example is only for the case of uniform slicing applied to a specific dimension.

However, slice and subscript can be very general. The design goal is to provide any

dense descriptor with a homogeneous interface looks like:

template <Indexable... Args>

decltype(auto) operator()( Args&&... args ) const

{

/* returns any of

* a) memory offset M if it is subscript of a single element

* b) a new descriptor if it is slicing a subarray
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*/

}

The GNU g++-concept compiler allows a shorthand convention to apply the concept

Indexable to every argument listed by the variadic template. The return type is

automatically deduced depending on the arguments. It could be a memory offset

M for a single element access or a new descriptor for slicing a subarray. Therefore,

the concept Indexable is the most abstract of those considered, since C++ Concept

can be defined by either the description of itself or by relying on other existing ones,

i.e., by the union of sub-concepts. In this case, Indexable is at the root of concept

hierarchy, and Figure 3.4 shows the complete hierarchy of all concepts for the design

of slice and subscript in SPX.

First of all, any Indexable can be only one argument of Indexable range or

multiple arguments of Indexable argument, where Indexable range is a range of

Indexable argument that can be checked by concept Range. For example, it could

be a std::vector<T> or a std::initializer list<T> whose element type T con-

forms Indexable argument. For Indexable argument, it can be a Subscript or a

Slice. Since each Indexable argument represents a dimension, Subscript means

subscribing at a specific position at this dimension, while Slice means slicing a sub-

index domain for this dimension. Accordingly, given multiple Indexable argument,

if all are Subscript, then return a specific memory offset M for a single element;

otherwise, return a new descriptor for a subarray. If all arguments are Slice, the

new descriptor is of the rank equal to the old one, while if some are Subscript, it

is reduced slicing; the new descriptor is of the rank equal to the old rank minus the

number of Subscript, i.e., for a 3D descriptor d, d( slice all(), slice all(),

4 ) will return a 2D descriptor.

The concept Subscript can be a real integer represented by concept Can be signed

46



Indexable	
  

OR	
  

Indexable_range	
  

Indexable_argument	
  

range_of

OR	
  

Slice	
   Subscript	
  

OR	
  

Can_be_signed	
  

Named_posi:on	
  OR	
  

Nonuniform
_id_space	
  

Undertermined_uniform_idx 

Determined_uiform_idx	
  

Uniform_id_space	
  

t.start()
t.end()

t.start()
t.end()

Figure 3.4: Concepts of slice and subscript

or a undetermined position Named position. Since it is not possible to define a

strictly mathematical concept for ”integers” Can be signed is to check if the sub-

stituted integer type can be converted to a signed type in that all integers should

be signed even though the substituted type is unsigned itself. Named position is a

design of lazy evaluation to determine the real index at the runtime. For example,

SPX allows user to use first(), last(), or half() to represent the undetermined

positions whose index will be calculated at the runtime. It is a very convenient

design similar to the numerical array in Matlab or Python that we can subscribe

the last element without a specific index number. Also, in SPX implementations,

it supports expression, i.e., half()+3, last()-4, and (first()+last())/4 all are
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valid expressions.

The concept Slice can be a uniform index space Uniform id space or an nonuni-

form index space Nonuniform id space. Uniform id space describes the slice by a

starting index, an ending index, and a stride for element stepping. Its starting and

ending indices must conform the concept Subscript. For examples, slice(2, last(), 2)

is valid and all() is always identical to slice(first(), last(), 1). Uniform id space

consists of concept Determined uniform idx and its complement set Undetermined_

uniform_idx, where Determined uniform idx clearly defines that integer types are

used for both starting and ending indices. Nonuniform id space describes the index

space by a list of real index that can be distributed randomly. As long as any di-

mension is sliced by Nonuniform id space, the new descriptor will be a nonuniform

dense descriptor whose descriptor information is updated much complicated and can

not trivially updated by the way similar to the example explained in Figure 3.3. We

will not go through the details. The following examples all are valid:

a( 2, 4, 5 );

a( slice(2, 7, 2)), 2, 3 );

a( (first() + half())/2, 4, 2 );

a( all(), slice(4, last(), 2), half() );

3.3.3 Concepts for descriptors

According to section (3.3.1) and (3.3.2), we may define the concept Descriptor

as

template <typename T>

concept bool Descriptor()

{

return Dense_storage_major<T>()

&& requires( Main_type<T> t ) {

typename Size_type<T>;
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typename Index_type<T>;

{ T::rank() } -> Size_type<T>;

{ t.extent( Size_type<T>() ) } -> Size_type<T>;

{ t.stride( Size_type<T>() ) } -> Size_type<T>;

{ t.lbound( Size_type<T>() ) } -> Index_type<T>;

};

}

where storage ranking SO[] can be defined by the concept of Dense storage major:

template <typename T>

concept bool Dense_storage_major()

{

return requires (T t) {

{ t.store_dim( std::size_t() ) } -> std::size_t;

};

}

For most of cases, the base index B[] is unchangeable, i.e, 0-based or 1-based array.

However, to keep all possibilities, SPX also defines a concept for the base changeable

descriptors, called a flexible descriptor:

template <typename T>

concept bool Flex_descriptor()

{

return Descriptor<T>()

&& requires( Main_type<T> t ) {

// t.rebase( rank, new_base );

t.rebase( Size_type<T>(), Index_type<T>() );

};

}

Accordingly, spx::dense array can be defined by the combination of a linear

storage and a descriptor. In the implementation, spx::dense array is inherited

from a general dense storage for linear element access. The descriptor for dense

array is handled by the storage rather than spx::dense array itself, because only

the storage needs to know how to read / write the mapping elements from subscribing
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and slicing. The subclass spx::dense array itself remains only an interface adapter.

As a consequence, any class is Describable if it defines a member type of de-

scriptor and has an interface to access the instance of its descriptor:

template <typename T>

using Descritor_type = typename T::descriptor_type;

template <typename T>

concept bool Describable()

{

return requires( T t ) {

requires Descriptor<Descritor_type<T>>();

{ t.descriptor() } -> Descritor_type<T>;

};

}

3.3.4 Concepts for array storage

Besides the descriptor, the other significant part for the design of a general dense

array is the linear storage. As mentioned above, the responsibility of descriptor is to

convert the subscription and slicing from the hyper dimensional index space into a

linear storage space. However, it does not define how the elements are actually stored

and accessed in the linear space. This section will therefore explain the concepts and

designs for SPX array storage.

Currently SPX array supports 3 types of linear storage: 1) static storage. For

known extents, its shape is assigned via template arguments, so the size can be de-

termined at compile-time and elements can be stored by conventional C-array. The

advantage is that many loop-based calculations can be done at compile time by re-

cursive unpacking of template arguments. 2) dynamic storage. This is a normal

dynamic array. The simplest implementation to manage underlying elements can

be realized by std::vector. However, for more flexibility, any other resizable ele-
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ment container can also be applied, i.e., a sparse storage. 3) sparse storage. It is

an important special case of dynamic storage since any sparse storage is a type of

dynamic storage. The only difference is that only non-zeros (non-shared) elements

are actually stored in memory rather than all elements. SPX general differential

operator is also designed based on the idea of sparse storage. Due to its importance,

we will explain more in section 3.3.5.

Figure 3.5 shows the concepts for SPX array storage, where the grey sections are

the class design for sparse storage that to be explained later. The general concept

Dense storage could be a static storage (Static dense storage) or a dynamic

storage (Dynamic dense storage). Either one must be a ranked storage:

template <typename T>

concept bool Ranked_storage()

{

return Range<T>() // T supports begin() and end()

&& Describable<T>() // T must have a dense descriptor

&& requires( T t ) {

// T must provide data() to its random access iterator

{ *(t.data()) } -> Value_type<T>;

requires Random_access_iterator<decltype(t.data())>();

// T must provide the information for rank() and size()

{ T::rank() } -> Size_type<T>;

{ t.size() } -> Size_type<T>;

};

}

The difference is that Dynamic dense storage is Resizable (by providing an

resize(...) interface to re-allocate space) and returns size information at run-

time, i.e., { t.size() } -> Size type<T>, whereas Static dense storage can

not re-allocate space and returns size information statically, i.e., { T::size() }

-> Size type<T>.
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Figure 3.5: Concepts for array storage and designs of sparse array.

An obvious advantage for static storage is that the element-loop (for-each) cal-

culation can be done by different implementations in terms of the known size of

elements. For example, applying a function to each element can be done by either

compile-time recursive loop-unrolling (for small number of elements), or by a regular

runtime loop (for large number of elements). Thanks to the C++-Concept over-

loading, one of the implementation can be automatically selected at compile time

based on the maximum recursive depth of C++ template, which can be assigned as
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a compile option:

constexpr auto MAX_TEMPLATE_DEPTH = compile_options::max_template_depth();

template <Input_iterator I, typename F>

requires (static_storage<T, Desc, D...>::size() < MAX_TEMPLATE_DEPTH)

void apply( I first, I last, F&& f )

{

// use compile-time recursive loop-unrolling

}

template <Input_iterator I, typename F>

requires (static_storage<T, Desc, D...>::size() >= MAX_TEMPLATE_DEPTH)

void apply( I first, I last, F&& f )

{

// use regular runtime loop

//

decltype(auto) iter = base_t::begin();

for( ; first != last; ++first, ++iter )

f( *iter, *first );

}

3.3.5 Sparse array

As mentioned above, sparse storage is a special case of dynamic storage since

elements in any sparse array are always dynamically allocatable. The advantage is

that the elements are not required to be allocated in advance, but it still can behave

like a dense array. The array can be therefore declared in a very large shape with

most of empty (zero) elements. The design of sparse storage in SPX is shown as the

gray part in Figure 3.5. Instead of “a real chunk of memory”, in SPX the sparse

storage is designed in a more general role. It is like an “element generator”, for

example, a callback to access elements. The callback mechanism can be also used

for “element-sharing” storage in which only a few instances are initiated and shared

by the others, i.e., a stencil array that most of domain nodes only requires a shared
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instance (see section 3.4 for details). This is why the design idea is important since

the idea will be borrowed and applied to the design of general differential operators,

which is the core innovative part in this research.

template <typename T>

concept bool Sparse_data_generator()

{

return Describable<T>()

&& requires( T t ) {

{ t.get( std::ptrdiff_t() ) } -> Value_type<T>;

};

}

template <typename T>

concept bool Sparse_databank()

{

return Sparse_data_generator<T>()

&& requires( T t ) {

{ t.insert_on() }; // begin insertion of new elements

{ t.insert_off() }; // end insertion of new elements

{ t.elems() }; // access underlying real elements

};

}

Accordingly, Sparse data generator is the concept that defines the require-

ments of data generator. Any generator just provides with a simple callback interface

get( ptrdiff t ) to return the corresponding element by giving the memory offset

in linear space. Sparse databank is therefore a special case for a traditional sparse

array that deals with real memory chunks in which the interfaces for fetching and

inserting real elements are provided.

Shown as the gray sections in Fig (3.5), sparse storage<S> itself behaves as

a regular dense array by realizing Dynamic dense storage, but it forwards the re-

sponsibility of element access to a sparse data generator. Its data iterator sparse_

iterator<S> turns out to be a simple placeholder without real instance, i.e., a
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plain integer std::ptrdiff t. It will call back the real storage by invoking get(

ptrdiff t ) if the element access is actually performed. SPX provides several sparse

storages:

1. spx::sparse default gen: the traditional sparse array that realizes Sparse_

databank. Owing to an arbitrary higher rank, instead of traditional two-

dimensional sparse storage such as compressed row storage (CSR), the elements

are stored as a hash map std::unordered map<std::ptrdiff t, T> [7].

2. spx::sparse const: designed for constant array. Only one element is initiated

and kept. Therefore, any element access requested via get( ptrdiff t ) will

return the same instance.

3. spx::sparse func gen: designed as an adapter class with an external function

in which all element access via interface get( ptrdiff t ) will be forwarded

to the external function. This design will be very useful to create a “callback

array” and provides with the maximum flexibility in that all element access

will be lazily evaluated, determined at runtime, and all defined by user specific

implementation. The callback mechanism is used in the design for general

stencil operator in that any stencil requested at an index is lazily evaluated at

runtime in terms of the differential expressions.

3.3.6 Expression template

Expression template (ET) [88] is a commonly used technique to customize the

arithmetic expression by using C++ operator overloading. For example, in linear

algebra given a matrix M and a vector v, without ET, the default calculation of

the expression M * M * v is (M * M) * v, which involves expensive matrix-matrix
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multiplication. By using ET, Eigen [1] can catch the expression and evaluate the

results by M * (M * v), which involves matrix-vector multiplication only [34, 35].

In contrast to linear algebra, SPX array is designed for a multi-dimensional con-

tainer. The ET used in SPX is more similar to Blitz++. Any calculation between

arrays is element-wised. Our idea is similar to ET in Blitz++, but to improve the

design by using C++1y features and Concepts. An expression is designed as a ran-

dom access iterator that can sequentially traverse all elements or randomly subscribe

a single element. Accordingly, the concept Expression iterator is defined by

template <typename T>

concept bool Expression_iterator()

{

return Random_access_iterator<T>()

&& requires( T t ) {

{ t.suggest_stride( std::size_t() ) } -> std::size_t;

{ t.is_stride( std::size_t(), std::size_t() ) } -> bool;

{ t.can_collapse( std::size_t(), std::size_t() ) } -> bool;

{ t.advance_data( std::ptrdiff_t() ) };

{ t.advance_data() };

{ t.advance_stride( std::size_t(), std::ptrdiff_t() ) };

{ t.advance_stride( std::size_t() ) };

requires Expression_rank<decltype(T::rank())>();

{ t.extent( std::size_t() ) } -> decltype(T::rank());

};

}

where can collapse( i, j ) is to detect whether elements along contiguous ranks

SO[i] and rank SO[j] are distributed continuously, i.e., sharing the same stride.

If so, then the element traversing can be expedited by looping them as the same

dimension. The optimistic case is to traverse the newly created array—all elements

are contiguous and can be traversed linearly without stride jumping across ranks.

According to the ideas, the concept Expressible can be defined as
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template <typename T>

concept bool Expressible()

{

return requires( T t ) {

requires Expression_iterator<decltype( as_expr(t) )>();

};

}

That is, for any type T substituted into a generic function as expr(), this function

can promote it to a corresponding expression iterator. SPX provides 3 types of

expression:

1. For any type of concrete array, as expr() will turn it to expr dense. It will

act like a normal array iterator.

2. For any type of constant applicable to each element in array, as expr() will

turn it to expr const, which is a wrapper iterator that always traverses at the

same element for whatever iterator operations.

3. For any function operations, including operator overloading, as expr() will

turn it to expr func. This is an important design for lazy evaluation. For

long expression involving a couple of large arrays such as a * b * c *...,

without ET the binary operator * will be applied to all elements of two operands

immediately before evaluating next * operator, which results in slow efficiency.

expr func is to wrap both the operator * (spx::multiply) and all operands

into a expression, and will evaluate the value later by traversing each element

and applying operator element-wisely, i.e., a[0] ∗ b[0] ∗ c[0] ∗ ... for the first

element of the resulting array, and so on.

4. For the type that already conforms Expression iterator, as expr() will not

further promote, and just simply return the instance itself.
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as_expr(a): expr_dense
as_expr(b): expr_dense

// f1: expr_func
f1 = make_expr_func(
       ops::multiply(),
       as_expr(a), 
       as_expr(b))

// f2: expr_func
f2 = spx::sin(c);

template <Expressible... E>
  decltype(auto) sin( E&&... expr )
  {
    return make_expr_func(
      []( auto v ) { return std::sin( v ); }, 
      as_expr(expr)... );
  } 

as_expr(2.0)
  : expr_const

// f4: expr_func
f4.advance_data();

// recursively update every child nodes
void advance_data() {
  tuple_for_each( 
    [&]( auto& e ) { e.advance_data(); },
    exprs );
}

auto v = *f4;

// recursively evaluation: evaluate value 
// by evaluating every child node and 
// substituting evaluated values to the 
// function of this node.
decltype(auto) operator*() {
  return tuple_unpack_and_subst(
    [&]( auto&... e ) -> decltype(auto)                                   
    { return f( *e... ); }, // <-- RECURSIVE!! 
exprs );
}

Figure 3.6: Expression tree for a*b+2.0*sin(c); a, b, and c are the instances of
Dense expressible

Figure 3.6 is an example to illustrate how ET works in SPX. The expression

tree will be automatically built at compile time for the expression a*b+2.0*sin(c).

a, b, and c are arrays so as expr will return expr dense. 2.0 is constant and

will be converted into a expr const, which behaves like a normal iterator and can

be operated with other expression iterators, but will always refer to a single value

internally. For any operations such as multiplying or numerical function sin(),

make expr func(...) will firstly promote all Expressible operands to expression

iterator by invoking as expr() and then return the function expression iterator

expr func that wraps one operator and many operands of expressions. For binary

arithmetic operators, the expressions can be created by C++ operator overloading,

i.e., node f1, f3, and f4, while for callable functions, it can be created in the way

listed as the note for node f2. Thanks to C++1y variadic template, the arbitrary
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number of expression operands are saved as std::tuple<E...>. SPX implements

useful function tuple for each() that can unpack and loop each tuple argument

(expression operands) by substituting them into a function. The left note of node

f4 shows how to use the function to forward the invocation of ”advance data()” to

every its child node, which is possibly another function expression such as f1 or f3 in

this case. Therefore, as long as the root node f4 for the expression a*b+2.0*sin(c)

is moved forward, all the sub nodes in the trees will be recursively updated and

moved forward as well. Similarly, the function tuple unpack and subst() is to

unpack all tuple elements and forward all unpacked elements into a function as its

function arguments. It is used for the evaluation shown as the right note of node

f4. When the iterator is invoked by de-reference, the value at current position is

being evaluated by recursively evaluating every child node and substituting evaluated

values to the function of this node.

As for the out class operator overloading, considering the traditional C++ design

for out class binary operators, it requires many combinations for just one single op-

erator. For example, std::complex<T> requires three combinations for a operator

”+” overloading to do the same thing: complex<T> + complex<T>, complex<T> +

T, and T + complex<T>. Similarly, here we have three expressible types: dense array

(A), expression it self (E), and constant value type (T). Therefore, for any operator

there will need 8 overloading versions doing same thing: A-A, A-E, A-T, E-E, E-A, E-T,

T-A, and T-E. Thanks to the C++-Concept, instead of exhaustively listing the combi-

nations and repeating the same implementations, the design of out-class binary oper-

ators is possible in a more general way to make all possible combinations collapse into

a single interface for one operator: by introducing a concept Binary expressible.

For example, all possible combinations for operator ”+” overloading can be included

in a single interface by checking this concept:
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template <Expressible T, Expressible U>

requires Binary_expressible<T, U, ops::plus>()

constexpr decltype(auto) operator + ( T&& t, U&& u )

{

return make_expr_func( ops::plus(),

std::forward<T>(t), std::forward<U>(u) );

}

Before designing binary expressible, we can categorize Expressible into two

sub concepts, constant or non-constant expressible. A non-constant expressible

type (Nonconst expressible) is defined as a dense array (Dense array) or an

Expression iterator, since classes for the two concepts are specifically introduced

in SPX design and will be correspondingly promoted to particular expressions. Any

other types, on the other hand, remain in an array constant value that will be pro-

moted as a constant expression (expr const) and regarded as an integral object

operating with each of array elements. Therefore, a Const expressible can be

simply defined as any Expressible type except a Nonconst expressible one:

template <typename T>

concept bool Nonconst_expressible()

{

return Dense_array<T>() || Expression_iterator<T>();

}

template <typename T>

concept bool Const_expressible()

{

return Expressible<T>() && not Nonconst_expressible<T>();

}

Accordingly, the concept of binary expressible can be very elegant by check-

ing types T and U in three cases: 1) both are Nonconst expressible, 2) T is

Nonconst expressible and its value type can be binary operated with U through

checking the function F, and 3) the counterpart of case 2:
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template <typename E, typename C, typename F>

concept bool Binary_expressible_check()

{

return requires( Value_type<E> e, C c, F f ) {

{ f( e, c ) };

};

}

template <typename T, typename U, typename F>

concept bool Binary_expressible()

{

return ( Nonconst_expressible<T>()

&& Nonconst_expressible<U>() )

|| ( Nonconst_expressible<T>()

&& Binary_expressible_check<T, U, F>() )

|| ( Nonconst_expressible<U>()

&& Binary_expressible_check<U, T, F>() );

}

Here we have shown how C++-Concept can be applied in the general design of

out-class binary operator overloading for expression templates to significantly reduce

duplications by checking the behavior of expressible types rather than exhaustedly

listing all combinations.

3.4 General design for linear stencil operator

A linear equation built on a node (called collocation node) consists of a stencil

linear operator L[·] and its right hand side value. The stencil operator on the node

xm can be generally represented by

L[φ(xm)] =
∑

n∈S(xm)

wmnφ(xn) (3.3)

where S(xm) is the set of neighbor nodes of xm, and wmn is the weight for the stencil

operator at node xm for its neighbor node xn. Considering a N -dimensional regular

grid, xm is at the node index Im = [I0, I1, · · · , IN ]m ∀I ∈ Z, or denoted as x(Im),
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so its neighbor node xn can be represented as x(In) = x(Im + ∆In) in which ∆In is

node index offset from the applying node Im. Because of all collocation coordinates

fixed on the node grids, stencil can be expressed as a set of key-value pairs in which

key is ∆In and value is its corresponding weight wmn, denoted as In → wmn. For

example, the stencil of a 2D Laplace operator looks like Table 3.1.

∆In wmn

[0, 0] −2
(

1
(∆x0)2 + 1

(∆x1)2

)
[1, 0] 1

(∆x0)2

[−1, 0] 1
(∆x0)2

[0, 1] 1
(∆x1)2

[0,−1] 1
(∆x1)2

Table 3.1: Illustration of stencil binary operator overloading.

Accordingly, stencil in SPX is designed like a “map container”, which can be

implemented by using std::map<K, V> or hash table std::unordered map<K, V>.

C++-Concept for stencil can be defined as

template <typename T>

using Index_type = typename T::index_type;

template <typename T>

using Weight_type = typename T::weight_type;

template <typename T>

using Index_vector_type = typename T::idx_vec_t;

template <typename T>

concept bool Stencil()

{

return requires( T t ) {
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{ T::rank() } -> Size_type<T>;

typename Index_type<T>();

typename Weight_type<T>();

requires Range_of_type<Index_vector_type<T>, Index_type<T>>();

requires Default_constructible<Index_vector_type<T>>();

// map-like query interface

{ t[ Index_vector_type{} ] } -> Weight_type<T>;

// iterator key-value pairs like std::map

requires Range<T>();

};

}

Since stencil operator is a linear operator, it implies that linear arithmetic op-

eration ”axpy” is applicable to stencils. For example, any stencil operator can be

multiplied with a constant or a scalar field not depending on unknowns. Also, given

two linear terms, adding or subtracting a linear term to the other one, or applying a

linear term to the other one such as ∂
∂x0

(
∂
∂x1

)
, all result in another linear term. By

whichever linear operations applied, the resultant stencil is called “composite sten-

cil”, still representing a linear term, acting like a normal stencil, and can be linearly

joined by another linear term. It can be formulated like below in which a can be a

constant or a known scalar field.

linear term(xm) =


normal stencil (leaf) at xm

composite stencil(xm)

a(xm)× linear term(xm)

composite stencil(xm) =


linear term 1(xm)± linear term 2(xm)

linear term 1[linear term 2(xm)]

As stencil is designed like a map container, these operations can be done by

directly manipulating on the entries of key-value pairs. For example, the multipli-
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cation of constant coefficient can be trivially implemented by multiplying all values

(weights) within the stencil by this coefficient, illustrating as Figure 3.7.

a(xm) ×
∆In wmn
[0, 0] −2

(∆x1)2

[0, 1] 1
(∆x1)2

[0,−1] 1
(∆x1)2

=

∆In wmn
[0, 0] a(xm) −2

(∆x1)2

[0, 1] a(xm) 1
(∆x1)2

[0,−1] a(xm) 1
(∆x1)2

∂2

∂(x1)2 a(xm) ∂2

∂(x1)2

Figure 3.7: Illustration of stencil operator overloading for multiplying constant coef-
ficient.

For adding two linear terms, we can merge two stencils by set union with the

operation of plus or minus. Figure 3.8 demonstrates the example how SPX can au-

tomatically generate a 2D Laplace stencil out of adding two unidirectional differential

stencil operators, which could be automatically generated by the differential basis

(see section 3.5.1 for details).

∆In wmn
[0, 0] −2

(∆x0)2

[1, 0] 1
(∆x0)2

[−1, 0] 1
(∆x0)2

+

∆In wmn
[0, 0] −2

(∆x1)2

[0, 1] 1
(∆x1)2

[0,−1] 1
(∆x1)2

=

∆In wmn
[0, 0] −2

(∆x0)2 + −2
(∆x1)2

[1, 0] 1
(∆x0)2

[−1, 0] 1
(∆x0)2

[0, 1] 1
(∆x1)2

[0,−1] 1
(∆x1)2∂2

∂(x0)2
∂2

∂(x1)2

∇2 = ∂2

∂(x0)2 + ∂2

∂(x1)2

Figure 3.8: Illustration of stencil operator overloading for binary plus.
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Therefore, we may have a basic design of spx::stencil class. The implementa-

tion of the stencil operations can be done by C++ operator overloading, listing as

below. The out-class binary operator overloading can be implemented accordingly.

Moreover, unary operation such as − ∂
∂x0 is also supported, implemented by unary

minus operator overloading that forwards it to the binary multiplication of −1 and

∂
∂x0 .

template <typename T, std::size_t D, typename X = std::ptrdiff_t>

class stencil

{

private:

std::unordered_map<static_vector<X, D>, T, idx_hash> data;

public:

/*

... necessary implementations to fullfil concept Stencil()

*/

// operator overloading for stencil & stencil

//

// plus another stencil

template <typename U>

requires Has_plus_assign<T, U>()

stencil& operator += ( const stencil<U, D, X>& x )

{

for( auto kv : x )

data[ kv.first ] += kv.second;

return *this;

}

// operator overloading: minus another stencil

template <typename U>

requires Has_minus_assign<T, U>()

stencil& operator -= ( const stencil<U, D, X>& x )

{

// similar to +=

}

// operator overloading for stencil & scalar

//
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// multiply coefficient

template <typename U>

requires Has_multiplies_assign<T, U>()

stencil& operator *= ( const U& c )

{

for( auto& kv : data )

kv.second *= c;

return *this;

}

// divide by coefficient

template <typename U>

requires Has_divides_assign<T, U>()

stencil& operator /= ( const U& c )

{

// similar to *=

}

};

In addition, a more important design is that applying a linear term to the other

linear term results in another linear term. Its corresponding stencil also can be

deduced automatically. Take an example such as ∂
∂x0

[
∂φ
∂x1

]
:

∂φ

∂x0

∣∣∣∣
0,0

=
φ1,0 − φ0,0

∆x0

∂φ

∂x1

∣∣∣∣
0,0

=
φ0,1 − φ0,0

∆x1

⇒
∂
∂x0

[
∂φ
∂x1

]
=

φ1,1−φ1,0

∆x1 −
φ0,1−φ0,0

∆x1

∆x0 = φ1,1−φ1,0−φ0,1+φ0,0

∆x0∆x1

To deduce the resulting stencil, we may loop the entry of the first stencil. Each

entry i in the first stencil ∆I(i)
m → w

(i)
mn is therefore further applied to every entry j, by

a second loop, of the second stencil and to deduce the resulting entry ∆I(i)
m +∆I(j)

m →

w
(i)
mnw

(j)
mn. Figure 3.9 illustrates the example we used here.

This example only shows applying a stencil to another stencil. To expand to

a more general application, a stencil can be applied to any composite stencil–an

expression of linear equation. That is, the inner stencil is not necessary to be pre-
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∂

∂x0



[1, 0]→ 1

∆x0
apply to

∂

∂x1


[0, 1]→ 1

∆x1
⇒ [1, 0] + [0, 1] →

(
1

∆x0

) (
1

∆x1

)
⇒ [1, 1]→ 1

∆x0∆x1

[0, 0]→ −1

∆x1
⇒ [1, 0] + [0, 0] →

(
1

∆x0

) ( −1

∆x1

)
⇒ [1, 0]→ −1

∆x0∆x1

[0, 0]→ −1

∆x0
apply to

∂

∂x1


[0, 1]→ 1

∆x1
⇒ [0, 0] + [0, 1] →

( −1

∆x0

) (
1

∆x1

)
⇒ [0, 1]→ −1

∆x0∆x1

[0, 0]→ −1

∆x1
⇒ [0, 0] + [0, 0] →

( −1

∆x0

) ( −1

∆x1

)
⇒ [0, 0]→ 1

∆x0∆x1

Figure 3.9: Illustration of stencil operator overloading for applying to another linear
stencil.

determined. Instead, it can be an expression with value type of stencil that can be

lazily evaluated on site at the node that the outer stencil is applying to. Therefore,

the inner part is no more a fixed one, but dynamically generates the corresponding

stencil at the request location. In summary, the procedure looks like: 1) give an

entry i of outer stencil ∆I(i)
m → w

(i)
mn, 2) shift the current index by this offset to

a new index: In = Im + ∆I(i)
m , 3) generate another (inner) stencil at In: ∆In →

wnk, 4) similar to last example, apply the outer stencil to inner stencil by looping

each entry j of inner stencil ∆I(i)
m + ∆I(j)

n → w
(i)
mnw

(j)
nk , and 5) loop next i and

repeat steps 1 to 4. Obviously, Expression iterator with its value type of Stencil

is the best candidate to be adopted in the design since it perfectly fulfills every

requirement in that every expression iterator is also a Random access iterator that

can be randomly shifted to anywhere, and then stencil generation can be done by

de-reference at the shifted location. Accordingly, the operator () overloading can

be appended into spx::stencil class as below.

template <Expression_iterator E>

requires Stencil<Value_type<E>>()

decltype(auto) operator () ( E e ) const
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{

using S = Value_type<E>; // S = spx::stencil

using U = Weight_type<S>;

using R = function_result<ops::multiplies, T, U>;

stencil<R, D, X> s;

for( auto kv_i : *this )

{

// shift iterator e by the shifting index kv_i.first

// and de-reference to return stencil at this location

decltype(auto) s_j = *e.shift( kv_i.first );

for( auto kv_j : s_j )

{

idx_vec_t idx = kv_i.first + kv_j.first;

s[ idx ] += kv_i.second * kv_j.second;

}

}

return s;

}

However, in addition to form and solve linear problem, stencil can be applied to a

known field and evaluate the operated values. It is not required to be linear operator.

For example, multiplying stencil ∂
∂x0 with the other stencil ∂

∂x1 results in a nonlinear

operator
(

∂
∂x0

) (
∂
∂x1

)
, which is not possible to deduce its resulting stencil. It is no

longer linear, but still applicable to evaluate a unknown scalar fields, i.e., by term-by-

term evaluating a single value separately using inner product and then multiplying

the two values together. More specifically, if the inner expression iterator is not

type of Stencil, but its value type is “linearly combinable” with the stencil weight

type, it implies the stencil is applying on a known scalar field and the resultant value

can be obtained by linear combination. Therefore, we need to introduce a concept

Linearly combinable to check if two given types T and U are defined for (T*U) +

(T*U) + ...

template <typename T, typename U>

concept bool Linearly_combinable()

{
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return Has_multiplies<T, U>()

&& requires( T t, U u ) {

requires Has_plus<decltype(t * u)>();

requires Has_plus_assign<decltype(t * u)>();

requires Default_constructible<decltype(t * u)>();

};

}

Therefore, we can add an overload version of operator () to spx::stencil. It

comes with the same declaration with the previous version of operator (). Thanks

to the C++-Concept overloading, by checking the concepts for value type of the

operatee expression, C++-Compiler will automatically dispatch the implementation

version at compile time. If stencil is applying to an expression of another, then choose

the first to generate another stencil; if it is applying to an expression of a pure scalar

field, then choose the second (as below) to compute and return the operated single

value.

template <Expression_iterator E, typename T = weight_type, typename U =

Value_type<E>>

requires not Stencil<U>()

&& Linear_combinable<T, U>()

decltype(auto) operator () ( E e ) const

{

using S = function_result<ops::multiplies, T, U>;

S s{0};

// shift iterator e by the shifting index kv_i.first

// and de-reference to return value (of type U) at this location

for( auto kv_i : *this )

s += kv_i.second * (*e( kv_i.first ));

return s;

}

Stencil can be integrated with spx::array, as the type of array elements. Phys-

ically speaking, a dense array represents a regular grid, so an array of stencil repre-

sents the operational field in which stencil at each node stands for the linear operator
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applying at this location. Therefore, two advantages are obvious: 1) expression tem-

plate will automatically supports for the inter-operation of a stencil array and a scalar

field (a constant coefficient array) or another stencil field; 2) the designs of subscrip-

tion and slicing addressed in section 3.3.2 are automatically supported for stencil

array. As mentioned in section 3.3.5, sparse array is the best candidate applied to

the design of stencil array. Provided a sparse data generator with the value type of

Stencil, the stencil array can generate stencils dynamically by the callback mecha-

nism whenever element access is performed. In summary, spx::stencil array can

be implemented by inheriting spx::dense array:

template <Sparse_data_generator SG>

class stencil_array

: public dense_array<Value_type<SG>, sparse_storage<SG>>

{

public:

using base_t = dense_array<Value_type<SG>, sparse_storage<SG>>;

using base_t::base_t;

// case 1: operate on another stencil field

// --> return the expression of stencil (a new stencil field)

//

template <Stencil_generator T>

decltype(auto) operator()( T&& sg )

{

return as_expr(*this)( as_expr( std::forward<T>(sg) ) );

}

// case 2: operate on a sclar field (linearly combinable)

// --> return the expression of operated field (a sclar field)

//

template <Expressible T>

requires Linearly_combinable<Value_type<T>, typename

Value_type<SG>::weight_type>()

decltype(auto) operator()( const T& t )

{

return as_expr(*this)( as_expr(t) );

}
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// for subscription and slicing, just forward to base class of

spx::dense_array

//

template <Indexable... Args>

decltype(auto) operator()( Args&&... args )

{

return base_t::operator()( std::forward<Args>(args)... );

}

};

where the concept of Stencil generator can be defined as an Expressible with the

value type of Stencil, i.e., a spx::dense array itself or an Expression iterator

with value type of Stencil:

template <typename T>

concept bool Stencil_generator()

{

return Expressible<T>() && Stencil<Value_type<T>();

}

Similar to sparse array (see section 3.3.5 and Figure 3.5), to generate stencils,

SPX provides three useful classes fulfilling Sparse data generator used as stencil

data generators:

1. spx::stencil 1d to nd. For regular grid problems, the numerical schemes for

differential operators are usually represented as a set of basis along a particular

axis. Therefore, this class is an adapter to adopt Basis 1d (see section 3.5.1)

from 1-dimension to N-dimension domain. For example, a forward difference

scheme for ∂
∂x0

is defined along axis x0, and by using stencil 1d to nd as the

stencil generator, we can create a 2D or 3D stencil array to represent ∂
∂x0

for

whole domain. As representing the differential operator directly associating

with numerical scheme, this class usually turns out to be the leaf nodes of the

expression tree.
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2. spx::stencil func gen. Similar to spx::sparse func gen, it provides a call-

back function to forward get( ptrdiff t) to the external user function to

generate the stencil at the request index. It is very useful for two purposes:

a) shared stencil. Similar to spx::sparse const and the “Flyweight” pattern

[23], if many locations share the same stencil, only one instance is needed to be

created and kept and through the callback it is used for those locations, i.e., a

Dirichlet operator represented by an identity stencil and used everywhere can

form an identity stencil array (an identity operational field). b) expression.

Considering an Expression iterator with value type of Stencil represent-

ing an expression of linear composite operator, instead of explicit evaluating, it

can be used as a callback stencil array to generate stencil by lazily evaluating at

the request index since any expression iterator can be randomly shifted to any

location. The code below lists the factory functions for the two applications:

// factory method for callback stencil array

//

template <Descriptor Desc, typename F>

decltype(auto) make_stencil_array( const Desc& desc, F&& f )

{

using SG = stencil_func_gen<Desc, F>;

return stencil_array<SG>( SG( desc, std::forward<F>(f) ) );

}

// application 1: make_on_node

//

// Given a descriptor, a stencil array can be formed with a shared

// Dirichlet operator applied everywhere, named a "on_node"

// operator, or an identity stencil ( zero offset pairing

// with weight=1 ).

//

template <typename T, Descriptor Desc>

decltype(auto) make_on_node( const Desc& desc )

{

using S = stencil<T, Desc::rank()>;
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auto f = []( auto& desc, auto id ){ return S::on_node(); };

using F = decltype(f);

auto gen = stencil_func_gen<Desc, F>( desc, std::forward<F>(f) );

return make_stencil_array( std::move(gen) );

}

// application 2:

//

// Given an expression iterator that is also a stencil generator

// (value type of Stencil), the stencil array can be formed with

// a callback function that just shifts the expression to the

// request index, de-reference to get the stencil and returns it.

//

template <Stencil_generator SG>

requires Expression_iterator<SG>()

decltype(auto) make_stencil_array( SG expr )

{

return make_stencil_array( expr.descriptor(),

[e = expr]( auto&& desc, auto idx )

-> decltype(auto)

{

return *e( desc.index_of( idx ) );

} );

}

3. spx::stencil selector. Given multiple stencil arrays that each array repre-

sents a type of differential operator applying to the entire domain, stencil_

selector can integrate them to form a selective stencil array in which each

array only provides stencils for partial domain and the selection function is

defined by users. It is extremely useful for boundary value problems. For ex-

ample, if we have a stencil array representing ∇2 operator for entire domain

and also have the other one representing ∂
∂x0

, by using stencil_selector we

can form a stencil array to represent the boundary value problem in which

the stencils for ∇2 are selected for domain nodes, while ∂
∂x0

are selected for

boundary nodes for Neumann boundary conditions.
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3.4.1 Example

To put all together, the following example shows the complete code to represent

the expression of b(x)∇2
(
a(x) ∂

∂x1

)
+ ∂

∂x0
(b(x)∇2) at a 5-by-5 2D domain.

using T = double;

int main()

{

// 5 x 5 domain for [0, 1] x [0, 1]

//

size_t N[2] = { 5, 5 };

auto x0 = linspace( 0, 1, N[0] );

auto x1 = linspace( 0, 1, N[1] );

// 1D basis of 1st order difference

//

auto b0 = make_fd_basis( x0, 1 ); // along x0

auto b1 = make_fd_basis( x1, 1 ); // along x1

// through stencil_1d_to_nd, the stencil array for d0() and d1()

// can be respectively formed for the 5x5 entire domain

//

auto d0 = make_stencil_array<2>( N, b0, 0 ); // wrap axis-0

auto d1 = make_stencil_array<2>( N, b1, 1 ); // wrap axis-1

// laplace operator:

//

// 1) d0( d0 ) and d1( d1 ) will be dispatched via case 1 of

// spx::stencil_array and return expressions of stencil for

// d^2/d(x0)^2 and d^2/d(x1)^2, respectively.

//

// 2) the "+" is automatically supported by regular expression

// template since both sides are Expression_iterator

//

// 3) through application 2 of stencil_func_gen, a stencil array for

// laplace operator can be established through a callback to

// the expression

//

auto lap = make_stencil_array<2>( d0( d0 ) + d1( d1 ) );

// prepare coefficients (dynamic arrays)
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//

d_arr<T, 2> a( N );

a = {1, 2, 3, 4, 5,

//... //,

21, 22, 23, 24, 25};

d_arr<T, 2> b( N );

b = {1, 1, 1, 1, 1,

2, 2, 2, 2, 2,

//... //,

25, 25, 25, 25, 25};

// expressions can be very flexible

//

auto op = make_stencil_array<2>( b * lap( a * d1 ) + d0( b * lap ) );

return 0;

}

To extend to a boundary value problem, we may define op as the domain operator,

while d0 as the boundary operator to represent Neumann boundary conditions at

top and bottom. Through stencil selector, the whole problem can be defined as

a selective stencil array lhs to represent the left hand side for the linear equation.

// define the left hand side of BVP

//

auto lhs = make_stencil_array(

[]( auto& desc, auto idx, auto it_dom, auto it_d0 )

{

if( idx[0] == desc.ubound(0) // top

|| idx[0] == desc.lbound(0) ) // bottom

{

return *it_d0;

}

else

{

return *it_dom;

}

},

op, // domain operator
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d0 ); // boundary operator

// applying lhs to a scalar field will be dispatched via case 2

// of spx::stencil_array to evaluate the operated results of this

// BVP (must be identical to the right hand side).

//

d_arr<T, 2> rhs = lhs( a );

where the last line is to apply the resulting operator to a scalar field to obtain the

operated results. Since the stencil array lhs itself is also a spx::dense array, the

powerful design for subscription and slicing (section 3.3.2) can be all applied here.

For example, if we query at a particular index, lhs will deduce and return the stencil

at this node. Also we can slice lhs to obtain the sub stencil array:

// deduce and return stencil at a node

//

lhs( 2, 2 ); // domain node --> stencil from op

lhs( last(), 2 ); // boundary node at top --> stencil from d0

// a sub stencil array of lhs

//

lhs( half(), slice( 2, last() ) ); // part of the row 2 (the half row)

lhs( all(), 3 ); // the column 3

As the left hand side of a well defined boundary value problem, lhs is ready to be

submitted to an implicit solver with a right hand side of scalar field (loading term) to

solve the results. If a stencil is used for relaxation stationary solver, spx::stencil

provides a set of interface to return different iterators that can traverse the specific

entries, i.e., traversing key-value pairs for a line of nodes aligning the collocation

node along a specified dimension (see section 3.5.3 for details). On the other hand, if

a linear system is solved by an actual matrix, a stencil can form a row of the matrix,

representing an equation at the collocation node. Consequently, through the design

of expression template and stencil array, any expression of linear operator can be
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compiled into composite stencil equation automatically.

3.5 Significant components

3.5.1 Differential basis

Any scalar field φ operated by a linear operator L[·] at collocation node i, denoted

as L[φ(xi)], can be generally represented by the inner product of the weight and the

basis from neighbor nodes. On structure grids, it can be seen as stencil operator,

which is also generally supported by SPX mentioned in section 3.4. However, for

structure grids, most of differential operators are associated to unidirectional dif-

ferentiation. For example, considering a 2D example, Laplace operator at node i

is actually the combination of two 1D 2nd-order differentiations along 0− and 1−

directions respectively:

L[φ(xi)] = ∇2φ(xi) =
∂2φ

∂(x0)2

∣∣∣∣
x=xi

+
∂2φ

∂(x1)2

∣∣∣∣
x=xi

(3.4)

The abstract class for unidirectional differential basis in SPX is therefore generally

defined as a set of 1D nodes that can generate differential stencils at q-order to

represent ∂q

∂(x)q
. Since for N -dimensional structure domain the PDE problem is solved

on a rectilinear grid, which is spanned by N 1D axes. SPX allows user to choose

any basis attaching on a specific axis along dimension n. As long as the example

such as Eq. (3.4) is queried at node i, the basis for axis 0 and axis 1 will generate

the stencils of 2nd order differentiation along axes 0 and 1, respectively, and then

the stencil of Laplace operator at this node will be generated by the union of two

stencils (so the stencil generated by the basis is the “leaf” of the composite tree of

joint stencils). That is, a user can easily mix different differential schemes. Also, for

the domain with periodic boundary condition along direction n, a user may simply
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select periodic basis , i.e., Fourier basis and period finite difference basis, without

any additional considerations.

basis

+is_periodic(): bool
+length(): T
+coordinate(id: std::size_t): T
+diff_stencil(id: std::size_t): stencil_t
+set_diff_order(o: std::size_t)

T

basis_fourier

T

basis_chebyshev

T

basis_fd

T

basis_fd_pbc

T

basis_fd_base

T

basis_legendre

T

basis_spectral

T

Figure 3.10: Conceptual UML class diagram for differential basis.

Figure 3.10 shows the conceptual UML class diagram of the hierarchy of differ-

ential basis classes. It is only used to demonstrate that the differential basis can

be easily designed in a hierarchical structure. However, instead of object-oriented

approach, in SPX the basis is designed by using C++-Concept and generic program-

ming. Any concrete basis can be specialized according to its properties:

1. period / non-period: Fourier and period finite difference are periodic basis,
while Chebyshev, Legendre and regular finite difference basis are non-period.

2. fixed / flexible griding: grids for all finite difference basis can be arbitrarily
defined, i.e., non-uniform grid, while all spectral basis must be fixed griding
(Fourier grids are uniformly spanned, and Chebyshev and Legendre grids are
Gauss or Gauss-Lobatto quadrature points).
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3. uniform / non-uniform griding: grids for Fourier basis must be uniform, finite
difference basis can be optionally uniform, but Chebyshev and Legendre basis
must be non-uniform.

4. length: for non-period basis the length is the distance between the first and
the last node, while for period basis the length is longer than it. Period length
is bounded by domain size. For example, Fourier basis with N grids actu-
ally represents the length of N∆x. SPX supports the calculation of periodic
distance.

To design the concept of differential basis, some requirements are therefore listed:

1) generate differential stencils, i.e., a 1D array of Stencil; 2) define axial coordinates

(1D array) at which those stencils are defined; 3) define periodicity; 4) define bounded

basis length; and 5) user can assign the order of differentiation:

template <typename T>

concept bool Basis_1d()

{

return Default_constructible<T>()

&& Movable<T>()

&& Copyable<T>()

&& requires( T t ) {

requires Stencil<typename T::stencil_t>();

{ t.diff_stencil()[ std::size_t() ] } -> typename T::stencil_t;

{ t.coords()[ std::size_t() ] } -> Value_type<T>;

{ T::periodic() } -> bool;

{ t.length() } -> Value_type<T>;

{ t.set_diff_order( std::size_t() ) };

};

}

It can be observed that the C++-Concept definition is very similar to the base

class in object-oriented approach. However, the basis classes in SPX are imple-

mented in pure generic programming in which no class hierarchy is needed and

the flexibility can be easily done by type alias of a general version of a generic

base class. For example, the implementations for period and non-periodic finite

difference are only different at the calculation of stencils, while the rest parts re-
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main identical to fulfill Basis 1d. Therefore, in SPX the class spx::basis 1d fd

is the general version of finite difference basis. Its private function update stencil

used to update the member data of differential stencils will have two different ver-

sions. Thanks to C++-Concept overloading, by checking periodic() at compile

time only one version will be adopted correspondingly. Therefore, the classes for

periodic (spx::basis fd pbc<T>) and regular (non-periodic) finite difference basis

(spx::basis fd<T>) are just simply defined by type alias:

template <typename T, pbc_type P>

class basis_1d_fd

{

public:

constexpr static bool periodic() { return P == pbc_type::periodic; }

// ...implementations for "Basis_1d" concept

private:

template <bool dummy = true>

requires basis_1d_fd<T, P>::periodic()

void update_stencil()

{

// update stencils for PERIODIC finite difference basis

}

template <bool dummy = true>

requires not basis_1d_fd<T, P>::periodic()

void update_stencil();

{

// update stencils for NON-PERIODIC finite difference basis

}

};

// type alias

//

template <typename T>

using basis_fd = basis_1d_fd<T, pbc_type::non_periodic>;

template <typename T>

using basis_fd_pbc = basis_1d_fd<T, pbc_type::periodic>;
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3.5.2 Geometry and grids

As shown in Figure 3.11, SPX supports both regular and curvilinear domains.

Coordinates for any domain are represented by a position vector field. For N -

dimensional regular domain, the position vector field is spanned by N coordinate

axes, and formed as a rectilinear grid. If this regular domain is used as a computa-

tional domain, each axis along with a specific dimension might be associated with

a differential basis (section 3.5.1). On the other hand, the position vector field for

curvilinear domain has individual coordinate components and covariant basis for each

domain node. Position vector will be defined by a standard vector field to ensure

x0

x1

ξ 0

ξ1

Figure 3.11: Illustration of curvilinear (left) and rectilinear (right) domain.

the vector invariance. For the example of Figure 3.11, given a node index (I0, I1) we

have the position vector invariance:

r(I0, I1) = x0(I0, I1)e0(I0, I1) + x1(I0, I1)e1(I0, I1)

= ξ0(I0, I1)a0(I0, I1) + ξ1(I0, I1)a1(I0, I1) (3.5)
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Clearly, the requirement of grid class is to provide the N × N basis and its asso-

ciated N coordinate components for every node. For every node, both rectilinear

(spx::rectlin grd) and curvilinear (spx::curvlin grd) grids provide the follow-

ing geometric information:

1. coordinates. Since curvilinear domain is formed upon an underlying rectilinear

grid spanned by ξi axes, which is the reference domain used for the computa-

tions, invoking coords() can get the coordinates of ξ. Note that, as a rectilin-

ear grid, ξ need not to be uniform, while it depends on what numerical scheme

is used for reference domain, i.e., nonuniform regular grid for Chebyshev basis.

For rectilinear domain, on the other hand, coords() just returns the Cartesian

coordinates in for real geometry.

2. coordinate basis : invoking b covrnt() to get covariant basis aj = ∂x
∂ξj

. In

SPX it is stored as ∂xi

∂ξj
for each node, i.e., a 3 × 3 matrix for 3D domain and

each column j represents aj. Similarly, b contra() is for contravariant basis

aj = ∇ξj.

3. identity matrix : invoking g covrnt() to get covariant metric tensor gij = ai·aj,

while invoking g contra() to get contravariant metric tensor gij = ai · aj.

4. Christoffel symbol : invoking cristoffel() to get Γijk.

5. Jacobian: invoking jacobian() to get Jacobian J = det(J) = det
(
∂xi

∂ξj

)
Curvilinear domain requires to compute and store all geometric information for all

nodes. Those information listed as above can be updated by calling update( const

A& x ), where x is a dense array of Cartesian coordinates mapped in real geometry.

For rectilinear grid, on the other hand, most of nodes share the same geometry

information, so SPX will not really initiate instances for every node. For example,
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for Cartesian grid we only need to initiate an instance of basis that can be shared

by all nodes. Thanks to the general design of sparse array (see section 3.3.5), the

famous meshgrid function in Matlab to generate Cartesian grid can be implemented

via the callback mechanism. The value of coordinate vector is only lazily determined

when element access is performed, while most of elements are sparsely kept only for

axial coordinates:

// return a dense_array with a callback sparse storage

//

template <Vector V, Vector... Args>

decltype(auto) meshgrid( const V& x0, const Args&... x )

{

using T = Value_type<V>;

constexpr auto D = 1 + sizeof...(Args);

return make_callback_array<D>(

// extents

{ x0.size(), x.size()... },

// callback function to return element

[&]( auto& desc, auto id )

{

using S = static_vector<T, D>;

auto idx = desc.index_of(id);

return varargs_trans(

[&]( auto&&... u ) { return S{ u... }; },

[&]( auto&& y, auto d ) { return y[ idx[d] ]; },

x0, x... );

} );

}

where varargs trans(...) is an auxiliary function supported by SPX type library

for the transformation of variadic arguments. It takes input arguments of x0, x1,

x2, ..., as well as the ”reduce” function g (the first argument) and the ”trans-

form” function f (the second argument), and eventually returns g( f(x0), f(x1),

f(x2), ... ). In this example, the transform function returns the corresponding
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axial coordinate in terms of request index, and then the reduce function will combine

them into a vector of coordinate.

Moreover, SPX also supports dynamic curvilinear grid, named curvilin_dyn_

grid, which can be used for moving grid problems. It is based on two assumptions:

1) time steps for real domain (t) and reference domain (τ) are identical, t = τ ;

and 2) the coordinates ξ are stationary, not changed wit respect to τ . The design

therefore can be simplified to just keeps a few time points of static grids (3 × 3 for

3D domain rather than 4 × 4) used for the calculation of temporal differentiation.

For example, if 3-point finite difference is applied, given the latest time step tc only

the grids tc, tc −∆t, tc − 2∆t are kept to be used for the evaluation of ∂
∂t

at current

time tc. By calling advance( const A& x ) for the latest mapping coordinate,

curvilin dyn grid will roll back the grids and update the spatial and temporal

geometric information. Besides the information provided by the static curvilinear

grid, curvilin dyn grid gives some more temporal information for moving grid:

1. grid velocity : invoking grid vel contra() to get contravariant components

of grid velocity (along covariant basis) w̄i = wj ∂ξ
i

∂xj
, where the grid velocity

wj = ∂xj

∂τ
= ∂xj

∂t
can be obtained by grid vel().

2. grid history : invoking grid history() to get recent history of grids kept cur-

rently.

3.5.3 Implicit solver

Implicit solver is used for boundary value problem or implicit initial value prob-

lem. Given any scalar field φ(x, t), one can be generally written in

L[φ(x, t)] = 0 (3.6)
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where L[·] can be any linear or nonlinear operator. In practice, instead of being

directly solved, many nonlinear problems can not be decomposed and solved in linear

problems. Therefore, linear solver is even more important. Any linear problem can

be written in the form

Lφ = b (3.7)

The most common form of linear operator L here is, but not limited to, a matrix.

L can be designed generally. For example, it could be a stencil matrix-free operator

that directly evaluates the operated field directly on the grid rather than forming

a matrix. Or reversely, any linear stencil operator can be transfered into a global

matrix form. However, we rarely do so unless we would like to doubly confirm the

solution for a small problem size. For example, evaluating a typical Laplace operator

on a N ×M grid only needs N ×M operations of inner product of 5 numbers, but

it requires solving a (N ×M)2 sparse matrix if it is converted to the matrix form.

According to the numerical format of the linear operators, SPX supports 3 types

of solver: 1) matrix-free Krylov methods for linear and nonlinear solvers, 2) direct

solver, and 3) successive-over-relaxation (SOR) (stationary iterative) methods.

1. Matrix-free Krylov methods (linear). Krylov subspace methods are used to solve

large linear system in the form of Eq. (3.7) by a iteration solution that only

involves in matrix-vector product operation without knowing the individual

element in the matrix. SPX currently supports conjugate gradient (CG), bi-

conjugate gradient (biCG), and bi-conjugate gradient stable method (biCG-

Stab). By this approach, the matrix operator can be designed as a general one

that can operate on a scalar field, and also the vector φ can be in any form of

scalar field. In SPX, the operator is designed as a callback that can operate on
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a scalar type assigned as a generic type in the template argument, which means

forming matrix is not necessary and it is based on a matrix-free workaround.

Therefore, the C++-Concept for a Krylov operator is simply defined as the

Krylov operatable:

template <typename O, typename V>

concept bool Krylov_operatable()

{

return requires( O op, V phi ) {

{ op( phi ) } -> V;

};

}

The UML class diagram shown as Figure 3.12 demonstrates the design for

Krylov iterative solvers. The iterative solving procedures are designed in de-

rived classes with the interface of operator()(...) overloading. The linear

solver iter solver<T, S> takes the policy class S for the Krylov methods,

i.e., cg, bicg, or bicgstab (default value). The solution can be obtained by

invoking operator()(op, b, f) with the (matrix-free) operator op, the right

hand side of Eq. (3.7) b, and the (optional) constraint function f for adjust-

ing the solution at each iteration, which can be optionally used for boundary

conditions are applied.

2. Matrix-free non-linear solver. It is easily to extend Krylov solvers to a non-

linear solver to solve Eq. (3.6). The tradition non-linear solver such as New-

ton’s method for large system will inevitably involve the burden calculation of

Jacobian ∂L(Φ)
∂Φ

for Φ = [φ(x1), φ(x2), φ(x3), · · · ], which is not always easily to

be formed. In SPX, we design and implement a simple nonlinear solver using

Jacobian-free Newton-Krylov (JFNK) method [42]. By employing any linear

solver, increment of correction field δΦk at iteration k can be solved, and the
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iter_solver_base

+set_verbose(b: bool)
+verbose(): bool
+set_tolerance(tol: T)
+tolerance(): T
+set_max_iter(N: std::size_t)
+max_iter(): std::size_t

T

iter_solver

+operator()(op, b, f)

T
S = bicgstab

template <typename O, typename V, typename F>
requires Krylov_operatable<O, V>()
  decltype(auto) operator()( const O& op, const V& b, F&& f )
  {
    V phi = b;
    auto g = [&]( auto err )
    {
      // adjust phi for constraint (BC)
      f( phi ); 
      // ... print & log
      return check_stop( err );
    };
  
    // solve
    S::solve( op, b, phi, g );
    return phi;
  }

nonlin_solver

-lin_sol: L

+set_lin_solver(s: const L&)
+lin_solver(): const L&
+operator()(op, phi, f)

T
S = jfnk
L = iter_solver<T>

template <typename O, typename V, typename F>
requires Krylov_operatable<O, V>()
  decltype(auto) operator()( const O& op, V& phi,  F&& f )
  {
    std::size_t it = 0;
    auto g = [&]( auto err )
    {
      // ... similar to iter_solver<T>::operator()(...)
    };
  
    // solve
    S::solve( op, phi, g, lin_sol ); 
    return phi;
  }

Figure 3.12: UML class diagram for Krylov iterative solver.

solution Φk+1 can be updated iteratively until converged, written as

JkδΦk = −L(Φk), Φk+1 = Φk + δΦk, k = 0, 1, · · · (3.8)

In JFNK, the matrix-free Jacobian can be simply evaluated numerically, i.e.,

in first order approximation

J ≈ L(Φ + εδΦ)− L(Φ)

ε
(3.9)

where ε is a small perturbation. It can be clearly observed that for JFNK all
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we need are merely a matrix-free operator L(Φ), and a embedded matrix-free

linear solver.

As shown in Figure 3.12 it is designed as the derived class nonlin solver<T,

S, L>, where the default value of policy class S is jfnk, and takes an external

linear solver L whose default value is, by reuse, the linear Krylov iterative

solver iter solver, which is used to solve the increment of correction field

δΦk at each iteration k. It implies, as commonly applied nonlinear iterative

solver, two nested loops are required to obtain the nonlinear solution. Similar

to the linear version, in this class operator()(op, phi, f) takes op for the

nonlinear operator, phi for the guess solution for the initial point of iteration,

and f for the constraint function.

3. Direct solver. Form a concrete matrix and solve it by iterator solvers addressed

above or by direct method such as Gaussian elimination. The first option is

usually used for large scale problem, which can be done by wrapping the matrix-

vector product as the operator used in the iterator solvers:

template <Matrix A, Vector V,

typename T = Value_type<V>, typename S = bicgstab>

decltype(auto) iter_solve( const A& a,

const V& b,

T tol = 1.e-16,

std::size_t max_it = 10000,

bool verbose = true,

S krv = S() )

{

auto op = [&]( auto& x )

{

return MxV( a, x );

};

auto f = make_iter_solver( tol, max_it, verbose, krv );

auto x = f( op, b );

return x;
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}

where MxV is just the function to perform matrix-vector product. The sec-

ond method, on the other hand, is to directly solve the linear matrix without

residue error, usually used for small problem since it takes time complexity

O(N3). In SPX, several options can be used to directly solve a matrix: simple

LU decomposition, LAPACK LU solver, or matrix inversion. In addition, tridi-

agonal matrix algorithm (TDMA, or Thomas algorithm) is also implemented

for solving tridiagonal matrix:

// directly solve ax = b

// method 1: simple LU

// b will be modified and turn out to be the solution

lu_solve( a, b );

// method 2: LAPACK LU

// b will be modified and turn out to be the solution

lapack_solve( a, b );

// method 3: matrix inversion

d_arr<T, 2> a_inv = inv( a );

d_vec<T> x = MxV( a_inv, b );

// TDMA: solve tridiagonal matrix

// b will be modified and turn out to be the solution

tdma_solve( a, b );

4. Successive-over-Relaxation (SOR) (stationary iterative) methods. This type

of solver is quite different from all the solvers mentioned above. Comparing

to Krylov-subspace solver that uses a general matrix-free operator, or to a

standard matrix operator, a relaxation method will solve a linear problem by

directly iterating on the grids. For any linear operator L[·] on structure grid, the
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stencil operator usually exists. The design details are mentioned in section 3.4

and not repeated here. The spx::stencil class provides with a few different

filtered iterators (provided by origin library) that allow user can iterate on

specific nodes. Figure 3.13 demonstrates a 2D example for a pseudo-spectral

problem in which the uniform finite difference is used as the differential basis

along ξ1, while a non-uniform Chebyshev or Legendre spectral basis is used for

axis ξ0. The detail of problem configuration procedure can be checked in section

3.4.1. According to the configuration, the colored nodes represent the stencil

generated at node xI,J for the operator L [φ(x)] = ∂
∂ξ1 + ∂

∂ξ0 + ∂2

∂ξ0∂ξ1 , where the

term ∂
∂ξ1 involves in the horizontal nodes aligning i = I, the term ∂

∂ξ2 involves

in the vertical nodes aligning j = J , and the term ∂2

∂ξ0∂ξ1 involves in all colored

nodes due to the auto-deduction design for coupled stencils (section 3.4). Note

that the stencil composition may be different site by site, i.e., different operator

on boundaries if a boundary value problem is being solved.

Regardless what nodes involved for which sub term, the lumped operator is

all represented by the colored nodes. Different filtered iterators that provides

different sweeping strategies for each entry of a stencil. For example, given a

stencil s at node xI,J , s.range line(0) returns an iterator for the key (∆xi,j)-

value pairs along i = I (orange and blue nodes). That is, a ”1D” line iterator.

The other cases are similar:

• s.range line(0)→ iterator of nodes for key=∆xi,j, i = I

• s.range line(1)→ iterator of nodes for key=∆xi,j, j = J

• s.range line else(0)→ iterator of nodes for key=∆xi,j, i 6= I

• s.range line else(1)→ iterator of nodes for key=∆xi,j, j 6= J

• s.range off()→ iterator of all nodes but self, key=∆xi,j 6= ∆x0,0

• s.range()→ iterator of all nodes (normal iterator)

• s.self()→ weight of self node, key=∆x0,0
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distinguished by different iterators.

based on these iterators, many SOR methods can be implemented gener-

ally. Some popular schemes supported by SPX are Jacobi iteration method,

point Gauss-Seidel iteration method (PGS), line Gauss-Seidel iteration method

(LGS), point successive over-relaxation method (PSOR), line successive over-

relaxation method (LSOR), and alternating direction implicit method (ADI).

Generally all SOR methods take a Stencil array and a Dense array as in-

puts, respectively standing for the field of linear operator and the right hand

side scalar field, as well as take the relaxation factor for PSOR, LSOR, and

ADI methods. The following example code shows how PGS method can be

solved by using s.self() and s.range off():

template <Stencil_array S, Dense_array A, typename T = Value_type<A>>

void point_gauss_seidel( const S& stnarr, const A& rhs, A& u )
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{

// node index type (such as std::size_t[])

using X = typename Value_type<S>::idx_vec_t;

auto it = stnarr.dense_begin();

auto end = stnarr.dense_end();

// loop all nodes

for( ; it != end; it++ )

{

// index at the current node

X idx = it.index();

// pump the stencil (auto-deduced if necessary)

auto s = *it;

// loop the stencil entries except "self"

// and calculate the applied result

T c{0};

for( auto& kv : s.range_self_else() )

{

X id = idx + kv.first; // shift index

c += kv.second * u( id ); // apply weight on neighbor node

}

// update solution

u( idx ) = (1.0 / s.self()) * (rhs( idx ) - c);

}

}

Note that for PGS the solution is updated on the old field so as to achieve con-

verged faster than Jacobi method. From a matrix view, s.range self else()

loops the nodes identical to the off-diagonal terms, while s.self() is the diago-

nal term, and (rhs( idx ) - c) is therefore the residue for the results applied

by the off-diagonal terms. The other SOR methods can be implemented simi-

larly by using the different categories of stencil entry iterators.
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3.5.4 Time-integration (ODE solver)

Mathematically speaking, time integration is the solver for the first order ODE,

which is needed by many transient (non-stationary) problems. SPX will support

two types of ODE solver: 1) multiple step schemes, and 2) fractional step schemes,

such as Runge-Kutta (RK) methods. Considering a scalar field of dependent variable

u = u(x, t), it can be updated by implicit part and explicit part, either one or both.

∂Ju

∂t
= f(u) + g(x, t) = fI + fE + g (3.10)

where J = J(x, t) is the coefficient for the dependent variable u, g is a loading term

not changed with the dependent variable u, fI is the implicit operator while fE is the

explicit operator. Note that the representation of f could be comprised of multiple

fI and fE. For multiple step schemes, the scalar field is constantly updated with a

time step ∆t by using the solutions in previous steps n, n− 1, n− 2, · · · . Therefore,

the design idea in SPX is to support this general numerical form:

1
∆t

(α0(Ju)n+1 + α1(Ju)n + α2(Ju)n−1 + · · · ) = fI + fE + g (3.11)

fI = β0f
n+1
I + β1f

n
I + β2f

n−1
I + · · · (3.12)

fE = γ0f
n
E + γ1f

n−1
E + γ2f

n−2
E + · · · (3.13)

By rearranging we have

(α0

∆t
Jn+1

)
un+1 − β0f

n+1
I =

(
β1f

n
I + β2f

n−1
I + · · ·

)
+

(
γ0f

n
E + γ1f

n−1
E + γ2f

n−2
E + · · ·

)
−

(α1

∆t
(Ju)n +

α2

∆t
(Ju)n−1 + ...

)
+ g (3.14)
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where αn, βn, γn are the coefficients depending on selected numerical schemes. We

may write the C++-Concept for multi-step schemes accordingly:

template <typename T>

concept bool Multistep_scheme()

{

return requires( T t ) {

// implicit scheme?

{ T::implicit } -> bool;

// coefficient of transient term

requires Static_vector<decltype(t.coef_u())>();

// number of transient term

requires (decltype(t.coef_u())::size() == T::num_u);

// coefficient of f term

requires Static_vector<decltype(t.coef_f())>();

// number of f term

requires (decltype(t.coef_f())::size() == T::num_f);

};

}

Accordingly, the C++ Concepts for explicit and implicit multiple step schemes are

easily defined with respect to T::implicit:

template <typename T>

concept bool Implicit_multistep_scheme()

{

return Multistep_scheme<T>()

&& requires( T t ) {

requires (T::implicit);

};

}

template <typename T>

concept bool Explicit_multistep_scheme()

{

return Multistep_scheme<T>()

&& not Implicit_multistep_scheme<T>();

}
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The multi-step schemes supported by SPX include: 1) Leap-frog explicit method;

2) Adams-Bashforth (AB) explicit methods: forward Euler (AB1), AB2, AB3, and

AB4; 3) Adams-Moulton (AM) implicit ethods: backward Euler (AM1), Crank-

Nicolson (CN) or θ-method (AM2), AM3, and AM4; and 4) Backward-Dierence

Formulas (BDF, implicit): BDF2, BDF3, and BDF4. Users can easily assign any

scheme by substituting them as the class template arguments constrained by the

Multistep scheme concept.

The design of multi-step solver in SPX is pretty general. From Eq. (3.11) to Eq.

(3.14) it is found that it is not necessary to just have operators fI and fE on the

right hand side. Instead, it is possible to embed arbitrary number of operators and

choose the corresponding multi-step scheme for each term, implicit or explicit, i.e.,

picking up AM2 and AM3 for two implicit operators respectively, as well as AB2 and

AB3 for two other explicit operators. In addition, the loading term g also could be

many. To achieve this goal, firstly the class spx::multi diff term is introduced to

represent a single operator term:

// The implementation class for differential term: explicit or implicit

//

template <Dense_array U, Multistep_scheme T, Diff_operator<U> O>

class multi_diff_term;

where type U is a Dense array to represent the dependent variable u, and type O

represents the operator (fI or fE) that fulfills the concept of differential field operator

Diff operator, defined in a simple behavior that can operate on a dense array to

result in an operated scalar field:

template <typename O, typename U>

concept bool Diff_operator()

{

return Dense_array<U>()
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&& requires( O op, U u ) {

{ op( u ) } -> U;

};

}

Two main classes are introduced subsequently: spx::multi stepper transcoef and

its subclass spx::multi stepper. The first one is the most general class to solve

Eq. (3.10) and the second one is the specialized subclass without the consideration

of the transient coefficient J , i.e., J = 1.

// main class - WITH transient coefficient

//

template <typename V, Multistep_scheme T, Dense_array U,

typename J, typename... Args>

requires Not_empty<Args...>()

class multi_stepper_transcoef : public multi_stepper_term<U, Args...>

// main class - WITHOUT transient coefficient

//

template <typename V, Multistep_scheme T, Dense_array U,

typename... Args>

requires Not_empty<Args...>()

class multi_stepper : public multi_stepper_transcoef<V, T, U, V, Args...>

where V is the value type, T is the multi-step scheme for transient term, U is the

dense array of dependent variable u, and J is the type of transient coefficient J .

The main class will deal with transient term by itself, since we always only have

one transient term, while forward the operators terms and loading terms (type

of Args...) to the base class spx::multi stepper term<U, Args...>. The de-

sign of spx::multi stepper term is a recursive inherited hierarchy in which each

right hand side term, an operator or a loading term, will map to a base class of

spx::multi stepper term:

// base class
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//

template <typename... Args>

class multi_stepper_term;

// operator term

//

template <Dense_array U, Multistep_scheme T, Diff_operator<U> O>

class multi_stepper_term<U, T, O>;

// loading term

//

template <Dense_array U, Dense_array S>

class multi_stepper_term<U, S>;

// recursive class - operator term

//

template <Dense_array U, Multistep_scheme T, Diff_operator<U> O,

typename... Args>

requires Not_empty<Args...>()

class multi_stepper_term<U, T, O, Args...>

: public multi_stepper_term<U, Args...>;

// recursive class - loading term

//

template <Dense_array U, Dense_array S, typename... Args>

requires Not_empty<Args...>()

class multi_stepper_term<U, S, Args...>

: public multi_stepper_term<U, Args...>;

This technique is very common in generic or metaprogramming. The hierarchy

of class inheritance depends on the expansion of type list Args... If C++ com-

piler encounters a pair of Multistep scheme and Diff operator<U>, it implies an

operator term with its corresponding multi-step scheme, while if encounters just

a Dense array, it implies a loading term (source term). The responsibility of

spx::multi stepper term is to calculate the right hand side of Eq. (3.14), and

the calculation of operator term will be carried out by forwarding to the class

spx::multi diff term explained above.
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This design serves the maximum flexibility for client code. Users can assign

the terms for right hand side as many as they want, in arbitrary combination of

the sequence of 1) a pair of operator and multi-scheme or 2) a loading term. For

example, a convection-diffusion equation can be declared as:

using T = double;

// define diffusion operator as a stencil array,

// i.e., a stencil array of Laplace operator

//

auto dfus_op = make_stencil_array( ... );

// define convection operator (evaluate explicitly)

//

auto conv_op = []( auto& u )

{

d_arr<T, 3> cnv = //... calculate convection of u

return cnv;

};

// initial condition for u

//

d_arr<T, 3> u = initial_u();

auto eq = make_multi_stepper( dt, bdf1<T>(), u, // BDF1 for transient term

am2<T>(), dfus_op, // AM2 for diffusion term

ab2<T>(), conv_op ); // AB2 for convection term

where dfus op is the diffusion operator in the type of Stencil array while conv op

is the lambda function for convection operator that evaluates convection explic-

ity. Note that both Stencil array and the C++ lambda function fulfill Diff_

operator<U> and can be used as the operators in spx::multi stepper. Users can

embed the operators or loading terms as many as they want after the third term.

Note that if the problem is defined including any implicit term, we need to further

employ implicit solver to solve it, addressed in section 3.5.3. Otherwise, for explicit-

only problem, un+1 can be updated directly without any more iteration. Therefore,
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for this example, due to the implicit diffusion term, users need to solve it by an

external implicit solver at each time step:

auto solver = [&]( auto& rhs, auto coef_a, auto& ut,

auto beta_0, auto&& op )

{

d_arr<T, 3> u =

/*

... use an implicit solver to solve:

coef_a * u - beta_0 * op(u) = rhs

at time (n+1)

*/

return u;

};

// advance the equation and get updated solution

//

d_arr<T, 3> new_u = eq.advance( solver );

Comparing to Eq. (3.14), rhs is the lumped array at right hand side, coef a is

the coefficient for transient term
(
α0

∆t
Jn+1

)
where J = 1 in this example, ut is the

current (un-updated) solution, beta 0 is β0, and op is the corresponding implicit

operator, which is dfus op in this example. It is expected that an implicit solver

would be employed here to solve un+1 and return. By calling advance( solver

), the equation class will roll back the old solutions, update and return the latest

solution for un+1 by invoking solver. If there is no implicit operator, then the solver

is not required.

For fractional step method, SPX supports explicit Runge-Kutta method, which

is given by

un+1 = un + ∆t
s∑
i=1

biki (3.15)
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where s is the number of stages, and

k1 = f(tn, un),

k2 = f(tn + c2∆t, un + ∆t(a21k1)),

k3 = f(tn + c3∆t, un + ∆t(a31k1 + a32k2)),

...

ks = f(tn + cs∆t, u
n + ∆t(as1k1 + as2k2 + · · ·+ as,s−1ks−1))

Obviously, the coefficients s, aij, bi, and ci can be listed as a Butcher tableau and

form a Runge-Kutta scheme. The C++-Concept can be easily defined accordingly:

template <typename T>

concept bool Runge_kutta_scheme()

{

return requires( T t ) {

// number of stages

{ T::N } -> std::size_t;

// coefficients

{ t.a( std::size_t(), std::size_t() ) } -> Value_type<T>;

{ t.b( std::size_t() ) } -> Value_type<T>;

{ t.c( std::size_t() ) } -> Value_type<T>;

};

}

Although users can easily expand the new Runge-Kutta scheme by following the

definition of this concept, there are already a few commonly used schemes that have

been implemented and supported in SPX: 1) The first order scheme (RK1): rk1<T>()

as known as the forward Euler method; 2) The second order methods with two stages

(RK2): rk2<T>(p) where p = 1/2 is the midpoint method (default value), p = 2/3

is the Ralston method, and p = 1 is the Heun’s method; 3) The third order method

(RK3, rk3<T>()); 4) The 4th order methods (RK4): rk4<T>() for the conventional
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RK4 method, while rk4 38<T>() for the 4th order method with 3/8-rule.

Considering that the ODE problem can be solved for either a single dependent

variable or multiple dependent variables, as known as the ODE system, by using

partial specialization of variadic templates the design of Runge-Kutta classes look

like:

// base class

//

template <typename... Args>

class runge_kutta;

// Single-variable

//

template <typename V, Runge_kutta_scheme T, Dense_array U>

class runge_kutta<V, T, U>;

// Multi-variables

//

template <typename V, Runge_kutta_scheme T, Dense_array... U>

requires ( sizeof...(U) > 1 )

class runge_kutta<V, T, U...>;

where V is the value type and U... are types of Dense array for dependent variables.

Similar to multi-step solvers, spx::runge kutta provides with an interface advance(

f ) to roll back old solutions, update and return the new solution:

// Single-variable

//

template <typename F>

requires RK_operator<F, V, U>()

const U& advance( F&& f )

{

for( std::size_t s = 1; s < T::N; ++s )

{

// ...

// call back f to get right hand side for k[s]

k[s] = f( s, c[s]*dt, u[s] );
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// ... update solution

}

// return new solution

}

// Multi-variable

//

template <typename F>

requires RK_operator<F, V, U...>()

const std::tuple<U...>& advance( F&& f );

where f is a user specified callback function to determine what to return for the

operated field on the right hand side, which is defined as a “Runge-Kutta” operator

RK operator:

template <typename F, typename V, typename... U>

concept bool RK_operator()

{

return All( Dense_array<U>()... )

&& requires( F f, V v, U... u ) {

{ f( std::size_t(), v, u... ) };

};

}

The first argument is s representing the current stage, the second argument is the

current fractional time point that equals to cs∆t, and the rest of arguments are the

dense arrays for the current solution at stage s. If multi-variable version is employed,

std::tuple can be used to return the right hand side for ∂u
∂t

at time t+ cs∆t:

using T = double;

t = 0; // initial time

dt = 0.1; // time step

// create 3 arrays with arbitrary types,

// i.e., different dimmensions

d_arr<T, 2> u0( 5, 5 ); // 5 x 5 2D array

d_arr<T, 2> u1( 8, 8 ); // 8 x 8 2D array
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d_arr<T, 3> u2( 6, 6, 6); // 6 x 6 x 6 3D array

// initial conditions (IC)

//

u0 = // ... IC for u0 (at t = 0)

u1 = // ... IC for u1 (at t = 0)

u2 = // ... IC for u2 (at t = 0)

// RK operator: right-hand-side evaluation function

//

// s: current stage

// cs_dt: time increment from time t to current stage

// u0_s, u1_s, u2_s: temporary solutions at current stage

//

auto f = []( std::size_t s, T cs_dt, auto& u0_s, auto& u1_s, auto& u2_s )

{

T t_s = t + cs_dt; // fractional time at current stage

d_arr<T, 2> u0_dt = //... evaluate d(u0)/dt at time t_s

d_arr<T, 2> u1_dt = //... evaluate d(u1)/dt at time t_s

d_arr<T, 3> u2_dt = //... evaluate d(u2)/dt at time t_s

// wrap up to a tuple and return

return std::make_tuple( u0_dt, u1_dt, u2_dt );

};

// create RK4

//

rk = make_runge_kutta( dt, rk4<T>(), u0, u1, u2 );

// advance to obtain updated solutions (in std::tuple)

auto sol_tup = rk.advance( f );

// assign back to update variables

u0 = std::get<0>( sol_tup );

u1 = std::get<1>( sol_tup );

u2 = std::get<2>( sol_tup );

// advance time

t += dt;

In this example, every time advance( f ) is performed, f will be called four times,

at cs dt = 0, cs dt = 0.5*dt, cs dt = 0.5*dt, and cs dt = dt, respectively, ac-

companying with different values of u0 s, u1 s, and u2 s, respectively standing for
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u0, u0, and u2 at that time stage. The corresponding values of ∂u0

∂t
, ∂u1

∂t
, and ∂u2

∂t
at

time t s need to be evaluated here and returned by wrapping up in a std::tuple.

On the other hand, if only a single variable is being solved here, i.e., only u0, then

none of std::tuple needs to be used.

3.5.5 Math functions and infrastructure

Many basic math functions will be employed, whether for library code or client

code. SPX provides all necessary math functions and global functions with generic

types, and will be used like Matlab or Python. Currently they are mostly for FFT

functions and the functions required for spectral methods, i.e., the node and weight

generation functions for Chebyshev and Legendre basis.

According to section 3.3.4, some useful C++ concepts can be defined for mathe-

matical calculations. Note that Static matrix NxN shows that requirement checking

of C++ concepts can be applied for checking a square static matrix.

// vector

template <typename T>

concept bool Vector()

{

return Range<T>()

&& requires( T t ) {

{ t.size() } -> Size_type<T>;

{ t[ std::ptrdiff_t() ] } -> Value_type<T>;

{ *(t.data()) } -> Value_type<T>;

requires Random_access_iterator<decltype(t.data())>();

requires not Ranked_storage<T>()

|| (Ranked_storage<T>() && T::rank() == 1);

};

}

// matrix

template <typename T>

concept bool Matrix()

{

return Dense_array<T>()
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&& requires( T t ) {

requires (T::rank() == 2);

};

}

// static vector

template <typename T>

concept bool Static_vector()

{

return Static_dense_storage<T>()

&& Vector<T>();

}

// static matrix

template <typename T>

concept bool Static_matrix()

{

return Static_dense_storage<T>()

&& Matrix<T>();

}

// N-by-N static matrix

template <typename T, std::size_t N>

concept bool Static_matrix_NxN()

{

return Static_matrix<T>()

&& requires() {

{ type_impl::check_nxn( size_constant<N>(), Main_type<T>() ) };

};

}

namespace type_impl

{

// check matrix NxN

template <std::size_t N, typename T, typename Desc,

std::size_t N0, std::size_t N1>

requires (N == N0) && (N == N1)

constexpr defined_t check_nxn( size_constant<N>,

g_static_array<T, Desc, N0, N1>&& );

}

Some external libraries are also linked for fundamental mathematical calculations, i.e.

FFTW and LAPACK. C++-Concept helps for the optimization by using overloading.
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For example, similar to the example explained in section 3.3.4, given a Static_

matrix the implementation of matrix inversion can be optimized at compile time in

terms of its extents: direct inverse for small static matrix (N < 5) while LAPACK

inverse used for large matrix or any dynamic matrix.

// Matrix inverse

//

// det: determination of ORIGINAL matrix x

template <Matrix A, typename T>

requires Static_matrix_NxN<A, 1>()

decltype(auto) inv( const A& x, T& det ) { /* direct inverse */ }

// ... similar for Static_matrix_NxN<A, 2>()

// ... similar for Static_matrix_NxN<A, 3>()

// ... similar for Static_matrix_NxN<A, 4>()

// a wrapper without determination (just inverse)

template <Matrix A>

requires Static_matrix_NxN<A, 1>()

|| Static_matrix_NxN<A, 2>()

|| Static_matrix_NxN<A, 3>()

|| Static_matrix_NxN<A, 4>()

decltype(auto) inv( const A& x )

{

using T = Value_type<A>;

T det(0);

return inv( x, det );

}

// use LAPACK for N >= 5 static matrix or any non-static Matrix

template <Matrix A, typename... Args>

requires not Static_matrix_NxN<A, 1>()

&& not Static_matrix_NxN<A, 2>()

&& not Static_matrix_NxN<A, 3>()

&& not Static_matrix_NxN<A, 4>()

decltype(auto) inv( const A& x, Args&&... args )

{

A r = x;

lapack_inv( r, std::forward<Args>(args)... );

return r;

}
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In addition, in the context of a comprehensive framework, the infrastructure

is also very important. The data serialization in SPX is also supported for VTK

and HDF5 formats. spx::vtk writer and spx::vtk writer bin are respectively

designed for ASCII and binary VTK file output. spx::hdf writer and spx::

hdf_reader are designed for Dense array output and input serialization in HDF5

format. Given any writer w, any Dense array can be written out with a name

by using w.name( "p" ) << p. Moreover, SPX also provides with a general timer

spx::task timer that can be used for simple benchmark for a piece of code (but

not for profiling).

3.5.6 Parallelization

Simple parallelization has been also designed and implemented in SPX. The ap-

proach follows the C++ concurrency specifications, available since C++11 stan-

dard, which implies the shared-data algorithms on a single machine with multi-

ple processors. There are two places designed with parallelization: 1) the eval-

uation of expression template, and 2) SOR solvers. The idea is simple that as

long as the number of available threads sported by the current machine is known,

all workload is therefore equally distributed to the working threads. First of all,

std::thread::hardware concurrency() is invoked to get the suggested number of

concurrent threads for current environment. Note that it is just a hint number, usu-

ally (but not always, depending on the C++ compiler implementation and running

machine) equal to the number of processors. As long as the number is available,

each working thread will execute a dispatched task, running together with the others

concurrently:

// number of working threads currently available

std::size_t np = std::thread::hardware_concurrency();
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// prepare task

//

// th_id: the thread ID of current thread running this task

auto task = [&]( std::size_t th_id )

{

// do sub-problem with part of workload

// according to the current th_id

};

// launch threads

std::vector<std::thread> thds;

for( std::size_t n = 0; n < np; ++n )

thds.push_back( std::thread( task, n ) );

// join trheads

for( std::size_t n = 0; n < np; ++n )

if( thds[ n ].joinable() )

thds[ n ].join();

Considering a composite expression with multiple expressions with common stride,

evaluating the result of this expression can be simply done by traversing each ele-

ment without dealing with dimensional stride. Therefore, in the evaluation proce-

dure, it is easily to equally distribute the total elements to the working threads.

Since Expression iterator can be copied and randomly shifted to any location,

each working thread executes the task by duplicating the original expression at the

starting position of local workload for itself, which can be obtained in terms of th id.

SOR algorithms can be easily parallelized by this approach as well. For example,

LSOR method is to construct and solve 1D matrices along a specific axis in high

dimensional domain. Therefore, each task can solve part of matrices assigned by

equal domain subdivision, and can be executed by working threads concurrently.

3.6 Overall performance

As for the overall efficiency, since SPX is a pure C++ generic library, there is

no runtime overhead due to dynamic type information. All of abstraction, flexibility
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and generality are carried out at compile-time stage due to static type system of

C++ templates. In addition, runtime performance can be optimized by using the

techniques of generic programming such as expression template. Another example

is to utilize C++-Concept overloading such as the last example in section 3.3.4 and

the matrix inversion example in section 3.5.5. Thanks to concept overloading, the

performance can be optimized for small static size, automatically determined by

compiler, in which for-loop calculation can be unrolled and compiled in plain and

inlined assembly code. It is a common technique in generic programming to prevent

runtime for-loop overhead.

This research work aims at the design of SPX, particularly for the application

of C++-Concepts on the large numerical framework. Therefore, the rigorous perfor-

mance benchmark waits for the future evaluation. Also the enhancement of efficiency

requires future developments. However, most of cases in the dissertation work can

be done pretty quickly. The performance of two larger cases can be roughly given as

below:

• Stokes’ wave (section 4.8.3). Less than one day by using Mac Pro (2 x 2.4GHz

Quad core Intel Xeon E5620) with 8 GB RAM.

• Air-water DNS (section 4.7). About two weeks after turbulence initialization

by using 2 x 3.0GHz Quad core Intel Xeon E5450 with 8GB RAM.
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4. PART 3—A SMALL SCALE STUDY: DETAILED WAVE DEVELOPMENT

USING CFD

4.1 Literature review on the generation of wind-waves

As mentioned earlier, the underlying mechanisms governing wind wave growth

are still unclear. The earliest physical explanation was proposed by Jefferey in 1925

[38, 39]. In his “sheltering” mechanism, the waves can be grown by the pressure

difference between the upwind side and the lee side of wave. However, it had been

proved to be insufficient in that observations show that the rate of growth is an

order of magnitude larger than prediction due to the underestimation of the pressure

difference. The full physical models for wind-wave generation were first proposed

by Phillips [57] and Miles [48]. Both are based on the resonance mechanism for

inviscid flow. Also, both theories make a priori assumptions for the instantaneous

presence of initial conditions, irrespective of the previous wave or fluid conditions. In

Phillips’ theory, a stationary random distribution of turbulent pressure fluctuations

is assumed as the a priori condition; in Miles’ theory, a perfect mean air flow is

assumed. Both theories then consider the effect of perturbations caused by surface

waves as a basis for development. Phillips’ theory is founded on the resonant forcing

on the free surface due to turbulent pressure fluctuation, while Miles’ is based on the

interaction between wave-induced pressure fluctuation and surface waves. One result

is that growth if the wave spectrum under Phillips’ theory is linear with time, where

the growth rate is proportional to the variance spectrum of the turbulent pressure

fluctuation, and of the order of O(ρair/ρwater). On the other hand, Miles’ theory gives

the exponential growth in which growth rate is proportional to the spectrum itself

and of the order of O(ρ2
air/ρ

2
water). Miles’ theory is generally considered the most
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promising physical model, but it is still limited due to over-simplified assumptions:

1) inviscid airflow makes air turbulence not playing a role to maintain shear flow;

2) non-linear effect such as wave-mean flow interaction is neglected, which might

be critical for in-phase winds and waves. The field experiments show that in Miles’

theory the rate of energy transfer from winds to waves is underestimated in an order

of magnitude [15].

Considering turbulent effects, mixing length model, for wind-wave generation

have been proposed and investigated by [24, 61, 4, 36, 13]. The wave growth result-

ing from mixing length models are similar to that from quasi-laminar theory such

as Miles’ model. However, the direct effect of small-scale eddies and finite wave

steepness on wave growth is small. Additionally, the prediction contrasts with Miles’

theory when: 1) mean flow U is in the opposite direction of wave propagation with

phase speed C; 2) C > U if both toward same direction. For both cases, these

models give considerable wave damping. In addition, a mixing length model fails for

low-frequency waves since the phase speeds of these waves allow their residence time

in the generation area to be less than the eddy-turnover time, which is supposed to

be the fastest process in mixing length model [87]. This leads to insufficient time

to allow the momentum transfer from eddies to waves. A similar problem was also

founded by [9] when there is remote air turbulence passing over slowly propagat-

ing waves, resulting in a severe truncation of the mixing length in the outer layer.

Belcher and Hunt also proposed a “non-separated sheltering” mechanism [9]. Simi-

lar to Jeffrey’s hypothesis, the mechanism details how Reynolds stress near surface

thickens the boundary layer on the lee side of waves, allowing for flow separation

if wave slope is large. According to rapid distortion theory, in Belcher’s model the

critical layer mechanism is only relevant for very fast moving waves [14].

In short, so far there is no perfect physical model to theoretically explain the
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wave growth by winds. Thanks to growing computing power, it is possible to perform

a numerical simulation by using direct numerical simulation (DNS) to inspect the

process of wind-wave generation, ab initio: applying a shear wind on the top of

air domain, driving air turbulence, and generating waves by the coupled interface

conditions. Since there is no ensemble and averaging, and all eddies are resolved both

in time and space, DNS can be seen as a means for providing small-scale information,

given that the experimental measurements for wave growth by turbulent air flow can

not be easily achieved. By using three-dimensional DNS, [78] simulated the turbulent

air flow over an idealized wave surface, while [84] simulated the water and waves

generated by specified wind stress. The first truly air-water coupled DNS simulation

was proposed by [46] in which a 3D air domain and a 3D water domain are solved

separately and coupled by kinematic and dynamic surface boundary conditions that

considers surface tensions and the continuity of tangential stress. The work assumes

linearized surface conditions and because of the space-fixing Eulerian grids, the fully

nonlinear interface condition is not possible as it is only valid when it is evaluated at

z = η rather than by Taylor’s expansion from z = 0. Accordingly, [90, 91] proposed

the improved works in which curvilinear grid is employed and moving with surface

waves.

In this part, we first propose a numerical approach for wave modeling using a

surface-fitted moving grid, so as to evaluate fully non-linear conditions at the free sur-

face. It is similar to [84, 90] but allows for more flexibility since it is implemented by

using our well-designed SPX framework, which implies every piece of the procedure

can be arbitrarily replaced according to researcher’s requirements. Our approach

also has several differences from previous works in more general derivations, coor-

dinate mappings, Navier-Stokes projection methods, surface condition treatments,

etc. Two main study cases are carried out subsequently. The first study case is a
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DNS result for air-water coupled wave generation in which all formulations are sim-

plified to Cartesian coordinates and solved on the fixed grid. We improve the work

proposed in [46] by using nonlinear normal stress surface conditions, and make the

comparisons and discussions. The second study case is to run several examples using

the proposed curvilinear moving grid for water, to verify that the proposed approach

is feasible.

4.2 Definition of domain and grids

A surface-fitted moving grid is employed in the numerical approach, so as to

make the nonlinear properties, i.e., nonlinear surface stress, applicable directly at

the free surface. To achieve the goal, a surface-fitted curvilinear grid is therefore

used in which, as shown in Figure 4.1, x-domain represents the actual surface in

Cartesian coordinates, while ξ-domain represents the mapping reference domain for

computation, which must be a rectilinear grid.

x 1

x 2

x0

(a) x-domain.

ξ 1

ξ 2

ξ 0

(b) ξ-domain.

Figure 4.1: Illustration of 3D surface-fitted curvilinear and reference grids.
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For horizontal axes, x1 and x2 are exactly coincident with or linearly scaled to

ξ1 and ξ2, respectively. In addition, the domain along both horizontal axes are

periodic. For the vertical axis, on the other hand, the definition of coordinates

in Cartesian domain is shown as Figure 4.2. The surface elevation is defined as

η = x0 = f(x1, x2, t), while the possible uneven bottom is defined as h′ = f(x1, x2, t).

Figure 4.3 shows the mapping of vertical axis. In our approach, ξ0 is defined as the

unperturbed coordinate in the fixed range of ξ0 : [z2, z1], which is mapped to an

arbitrary range of x0 : [z2 + h′, z1 + η] in Cartesian domain.

x0

h

η

!h

x0 = z1

x0 = z2

Figure 4.2: Configuration of surface coordinates in Cartesian domain.

Having the transformation,

Sij =
∂ξi

∂xj
(4.1)

based on the fact of this grid configurations, the important properties can be seen

for simplification in many formulation transformations:

S1
0 = S2

0 = S2
1 = S1

2 = 0 (4.2)

114



z1 +η

z2 + !h

z1

z2
x0 − axis ξ 0 − axis

Figure 4.3: Illustration of coordinate mapping between x0 and ξ0.

In addition, the differential operator can be transformed from xi to ξi by chain rule:

∂

∂x0
= S0

0

∂

∂ξ0
(4.3)

∂

∂x1
= S0

1

∂

∂ξ0
+ S1

1

∂

∂ξ1
(4.4)

∂

∂x2
= S0

2

∂

∂ξ0
+ S2

2

∂

∂ξ2
(4.5)

Also, based on the mapping of vertical axis, we have two significant relationships

between Sij and η, which can be used in the derivation of surface conditions through-

out:

S0
1 = −ηx1S

0
0 (4.6)

S0
2 = −ηx2S

0
0 (4.7)

where ()x1 indicates ∂
∂x1 and similar for ()x2. The detail of derivations in this section

can be found in appendix section A.3 and section A.4.
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4.3 Solving Navier-Stokes equations on curvilinear coordinates

The conservation form of Navier-Stokes equations for constant density ρ, constant

viscosity ν, and incompressible Newtonian fluids reads

∇ · u = 0 (4.8)

∂u

∂t
= −∇ · (uu)−∇P + ν∇2u (4.9)

where P = p/ρ and p is the pressure. By using chain rule and Eq. (4.3) to (4.5),

converting continuity equation from Cartesian coordinates to curvilinear coordinates

results in

S0
0

∂u0

∂ξ0
+ S0

1

∂u1

∂ξ0
+ S1

1

∂u1

∂ξ1
+ S0

2

∂u2

∂ξ0
+ S2

2

∂u2

∂ξ2
= 0 (4.10)

Similarly, the momentum equations become

∂ui

∂τ
= −C[ui]−Gi[P ] + ν∇2ui (4.11)

Gi =
∂

∂xi
= Sji

∂

∂ξj
(4.12)

Assuming t = τ , we have

∂

∂t
=

∂

∂τ
− w̄i ∂

∂ξi
(4.13)

where the contravariant grid velocity w̄i = −∂ξi

∂t
. Obviously, w̄1 = w̄2 = 0 and the

term is actually of the form of convection velocity, so numerically it is commonly

merged with the convection term. By Eq. (4.3) to (4.5) the convection operator C[·]

116



therefore becomes

C[ui] = S0
0

∂(u0ui)

∂ξ0
+ S0

1

∂(u1ui)

∂ξ0
+ S1

1

∂(u1ui)

∂ξ1
+ S0

2

∂(u2ui)

∂ξ0
+ S2

2

∂(u2ui)

∂ξ2
− w̄0 ∂u

i

∂ξ0

(4.14)

For the Laplace operator, it can be decomposed into two terms as below (see appendix

A.7 for derivation in detail).

∇2 = ∇2
d +∇2

off (4.15)

∇2
d = Hc

∂2

∂ξ0∂ξ0
+ g11 ∂2

∂ξ1∂ξ1
+ g22 ∂2

∂ξ2∂ξ2
(4.16)

∇2
off = (g00 −Hc)

∂2

∂ξ0∂ξ0
+ 2g01 ∂2

∂ξ0∂ξ1
+ 2g02 ∂2

∂ξ0∂ξ2

+

[
S0

0

∂S0
0

∂ξ0
+ S0

1

∂S0
1

∂ξ0
+ S1

1

∂S0
1

∂ξ1
+ S0

2

∂S0
2

∂ξ0
+ S2

2

∂S0
2

∂ξ2

]
∂

∂ξ0
(4.17)

where gij is the contravariant metric tensor and Hc is a constant relative to the order

of g00, i.e., Hc = 1 for the mapping illustrated in Figure 4.3.

ζ 0

u1, u2, p
u0

Figure 4.4: Vertical griding along ξ0-axis. ◦: collocation points for u1, u2, and p; 4:
staggered points for u0.
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Pseudospectral method is employed as the numerical scheme in which finite dif-

ference method is applied for ξ0, while Fourier basis is applied for ξ1 and ξ2. Owing

to the mixed scheme, a staggered grid is used for ξ0 axis only, as shown in Figure

4.4, where u0 is solved at staggered points while the others are solved at collocation

points. Two-sided Vinokur method (spx::two sided vinokur) is used to generate

grid points. By defining the ratios of the first grid spacing ∆ξ0 and the last grid

spacing ∆ξN0 to the uniform grid space ∆ξu:

S0 = ∆ξ0/∆ξu (4.18)

S1 = ∆ξN0/∆ξu (4.19)

choosing S0 > 1 and S1 < 1 will generate denser grid points close to the surface

(compression) while coarser close to the bottom (expansion). For the quantity eval-

uated at the collocation points above the surface (φsurf ) or below the bottom (φbtm),

the finite difference extrapolation can be used

φsurf = φN0 + ∆ξN0

∂φ

∂ξ0

∣∣∣∣
ξ0=z1

(4.20)

φbtm = φ0 −∆ξN0

∂φ

∂ξ0

∣∣∣∣
ξ0=z2

(4.21)

where ∂φ
∂ξ0 is evaluated by using higher-order finite difference (spx::basis 1d fd

supports any order of differentiation and any order of accuracy).

The numerical scheme also accounts for the reason for the decomposition from

Eq. (4.15) to (4.17) and why an additional constant Hc is introduced here. It is

because of the restriction of Fourier basis in which applying Fourier transformation

to g00 ∂2

∂ξ0∂ξ0 will result in a nonlinear convolution since g00 = f(ξ1, ξ2), even though

this term itself is a linear term.
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The operator ∇2
d can be therefore solved implicitly using linear stencil operator,

while ∇2
off can be combined with explicit terms. Accordingly, we may define an

implicit operator LI [·] and an explicit operator LE[·], given by

LI [u
i] = ν∇2

du
i (4.22)

LE[ui] = ν∇2
offu

i − C[ui] (4.23)

Therefore, Eq. (4.11) becomes

∂ui

∂t
+Gi[P ] = LI [u

i] + LE[ui] (4.24)

By applying numerical schemes, the general multiple step and single stage operators

can be respectively represented as

∂ui

∂t
=

1

∆t

(
α0

[
ui
]n+1

+ α1

[
ui
]n

+ α2

[
ui
]n−1

+ α3

[
ui
]n−2

+ · · ·
)

(4.25)

LI [u
i] = β0LI [u

i]n+1 + β1LI [u
i]n + β2LI [u

i]n−1 + β3LI [u
i]n−2 + · · · (4.26)

LE[ui] = γ0LE[ui]n + γ1LE[ui]n−1 + γ2LE[ui]n−2 + γ3LE[ui]n−3 + · · · (4.27)

where αn, βn, and γn are the coefficients depending on the selected time schemes, and

n is the index of time iterator with constant time step ∆t. Accordingly, Eq. (4.24)

can be rewritten in the form below, similar to the general form of advection-diffusion

scalar transport equation.

119



α0

∆t

[
ui
]n+1 − β0LI [u

i]n+1 +Gi[P ]n+1 = RHS (4.28)

RHS = β1LI [u
i]n + β2LI [u

i]n−1 + β3LI [u
i]n−2 + · · ·

+ γ0LE[ui]n + γ1LE[ui]n−1 + γ2LE[ui]n−2 + · · ·

− 1

∆t

(
α1

[
ui
]n

+ α2

[
ui
]n−1

+ · · ·
)

where the unknown is on the left hand side while all unknowns remain on the right

hand side, denoted as RHS.

Based on this formulations, Navier-Stokes equations can be solved by using frac-

tional step method. By introducing an intermediate velocity [ui]∗ and an artificial

correction scalar field φ, according to [11], a two-stage approach named “increment-

pressure projection method” can be written as

1. prediction step. Solve for intermediate velocity [ui]
∗

α0

∆t

[
ui
]∗ − β0LI [u

i]∗ = −Gi[P ]n−1/2 +RHS (4.29)

2. projection step. Project velocity by

[
ui
]n+1

=
[
ui
]∗ − ∆t

α0

Gi[φ]n+1 (4.30)

To obtain φn+1, considering continuity equation for time n+ 1

∇ ·
[
ui
]n+1

= 0 (4.31)
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the boundary value problem for φn+1 is therefore defined as

∇2φn+1 =
α0

∆t

(
∇ ·
[
ui
]∗)

on Ω (4.32)

Gi[φ]n+1 =
α0

∆t

([
ui
]∗ − [ui]n+1

)
on ∂Ω (4.33)

In addition, the relationship between φ and P can be found as below, which can be

used to update pressure.

P n+1/2 = P n−1/2 + φn+1 − ∆tβ0

α0

(
ν∇2φn+1

)
(4.34)

4.4 Dynamic surface conditions

Surface and bottom boundary conditions are required for solving Eq. (4.29) and

Eq. (4.32). Given impermeable air-water interface with constant surface tension,

the total stress balance equations can be decomposed into 1) normal stress balance,

and 2) tangential stress balance. Appendix A.1 shows the details of derivations for

surface dynamics.

From the normal stress balance, the relationships of air and water for the surface

pressure in Cartesian coordinate can be found as

−pw +Mw + ρwgη = −pa +Ma + ρagη − γκ (4.35)

where γ is the coefficient of surface tension (force per unit length), κ is mean curva-

ture given by

κ =
−ηx2x2 (1 + η2

x1)− ηx1x1 (1 + η2
x2) + 2ηx1ηx2ηx1x2

(1 + η2
x1 + η2

x2)
3
2

(4.36)
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and Mα is given by

Mα =
2µα

(1 + η2
x1 + η2

x2)

{(
∂u0

∂x0

)
− ηx1

(
∂u0

∂x1
+
∂u1

∂x0

)
− ηx2

(
∂u0

∂x2
+
∂u2

∂x0

)
+η2

x1

(
∂u1

∂x1

)
+ ηx1ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
+ η2

x2

(
∂u2

∂x2

)}
(4.37)

The superscript α could be a or w to indicate air or water phase. For example, if

α = a then velocities ui are evaluated in air phase, and similar for water. With the

absence of air, the relationship can be simplified and the surface pressure for water

is given by

pw = ρwgη +Mw + γκ (4.38)

The details of derivation can be seen in appendix A.2.1. As the derivations addressed

in appendix A.5, Converting Mα to curvilinear coordinates results in

Mα =
2µα

1 + η2
x1 + η2

x2

{
−(η2

x2 + 1)

(
S1

1

∂u1

∂ξ1

)
− (η2

x1 + 1)

(
S2

2

∂u2

∂ξ2

)
−ηx1

(
S1

1

∂u0

∂ξ1

)
− ηx2

(
S2

2

∂u0

∂ξ2

)
+ ηx1ηx2

(
S2

2

∂u1

∂ξ2
+ S1

1

∂u2

∂ξ1

)}
(4.39)

On the other hand, according to continuity of tangential stress across the interface

of air and water, given that σ1 and σ2 are the surface traction forces along the

tangential direction x1 and x2, respectively, we have

σw1 = σa1 (4.40)

σw2 = σa2 (4.41)
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With the absence of air, the tangential stress for water surface simply meets

σw1 = 0 (4.42)

σw2 = 0 (4.43)

The detail of the full form of σα and its derivations can be seen in appendix A.2.2.

More importantly, the surface velocity conditions ∂u1

∂ξ0 and ∂u2

∂ξ0 can be respectively de-

rived from σ1 and σ2. As the derivations shown in appendix A.6, the final forms read

∂u1

∂ξ0
= C0

{
C1
∂u0

∂ξ1
+ C2

∂u0

∂ξ2
+ C3

∂u1

∂ξ1
+ C4

∂u1

∂ξ2
+ C5

∂u2

∂ξ1
+ C6

∂u2

∂ξ2
+ C7

σαt1
µα

+ C8
σαt2
µα

}
(4.44)

∂u2

∂ξ0
= D0

{
D1

∂u0

∂ξ1
+D2

∂u0

∂ξ2
+D3

∂u1

∂ξ1
+D4

∂u1

∂ξ2
+D5

∂u2

∂ξ1
+D6

∂u2

∂ξ2
+D7

σαt1
µα

+D8
σαt2
µα

}
(4.45)

where

C0 = [S0
0(G0)2]−1

C1 = S1
1(η2

x1 − η2
x2 − 1)

C2 = 2ηx1ηx2S
2
2

C3 = S1
1ηx1(3 + η2

x1 + 3η2
x2)

C4 = S2
2A

C5 = S1
1A

C6 = S2
2ηx1(1 + η2

x1 − η2
x2)

C7 = (1 + η2
x2)G1

C8 = −ηx1ηx2G2

A = ηx2(1 + η2
x2 − η2

x1)

D0 = [S0
0(G0)2]−1 = C0

D1 = 2ηx1ηx2S
1
1

D2 = S2
2(η2

x2 − η2
x1 − 1)

D3 = S1
1ηx2(1 + η2

x2 − η2
x1)

D4 = S2
2B

D5 = S1
1B

D6 = S2
2ηx2(3 + 3η2

x1 + η2
x2)

D7 = −ηx1ηx2G1

D8 = (1 + η2
x1)G2

B = ηx1(1 + η2
x1 − η2

x2)

123



and

G0 = (1 + η2
x1 + η2

x2)

G1 =
√

(1 + η2
x1)G0

G2 =
√

(1 + η2
x2)G0

As for ∂u0

∂ξ0 at the surface, it can be directly given from the continuity equation Eq.

(4.10), leading in

∂u0

∂ξ0
= − 1

S0
0

{
S0

1

∂u1

∂ξ0
+ S1

1

∂u1

∂ξ1
+ S0

2

∂u2

∂ξ0
+ S2

2

∂u2

∂ξ2

}
(4.46)

Owing to the restrictions of Fourier transform applied to horizontal axes in which

a linear differential term with non-constant coefficient will turn to be a nonlinear con-

volution term in frequency domain, similar to the reason accounting for the decom-

position of Laplace operator, keeping only the simple forms of ∂u1

∂ξ0 and ∂u2

∂ξ0 (without

coordinate-dependent coefficients) as the surface conditions respectively used in solv-

ing velocity u1 and u2 can avoid non-linear convolutions. In addition, keeping all the

terms on the right hand side of Eq. (4.44) and Eq. (4.45) only with respect to ∂
∂ξ1

and ∂
∂ξ2 , without finite difference calculations for vertical terms, ensures that only

the spectral differentiations are involved, which improves the accuracy for evaluating

surface conditions.

4.5 Kinematic surface conditions

An ordinary kinematic free surface boundary condition can be given by

∂η

∂t
= f(ui, η) = u0 − u1ηx1 − u2ηx2 (4.47)
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Since the independent variables in Eq. (4.47) only associate with non-moving hori-

zontal x1 and x2 axes and in our approach dependent variables ui are all expressed

using Cartesian coordinates, Eq. (4.47) can be solved as an independent 2D initial

problem by applying Fourier basis for both axes, and need not be further converted

to curvilinear coordinates.

4.6 Consolidation

First of all, η can be updated by Eq. (4.47) using current ui. As long as η is

updated, it can be further used to update the curvilinear grids by perturbing the

surface grid from rectilinear initial grid. Thus, all geometry properties are accord-

ingly updated, and the momentum equations for ui can be solved in terms of updated

curvilinear grid, so as to feed in Eq. (4.47) to update η at next time step.

Eq. (4.47) can be solved by using a second order Runge-Kutta method. As

addressed in section 3.5.4, by setting p = 1 for rk 2<T> we have Heun’s method for

the second order Runge-Kutta written in

η̂n+1 = ηn + ∆tf([ui]n, ηn) (4.48)

ηn+1 = ηn +
∆t

2

[
f([ui]n, ηn) + f([ûi]n+1, η̂n+1)

]
(4.49)

where [ûi]n+1 indicates ui evaluated at time n+1 using η̂n+1. Note that the selection

of Heun’s method rather than the other second order schemes is to avoid ui evaluated

at fractional time step, due to ui solved by a multiple step solver with constant ∆t.

Withing each internal Runge-Kutta step, a full procedure for solving momentum

equation is performed as following steps:

1. update geometry. Use given η to update curvilinear grid and all geometry

properties.
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2. extrapolate φn to φn+1
E . To obtain the boundary conditions for velocity and

pressure at time t + 1, we need a guess field of φn+1
E extrapolated from φn by

one of the following extrapolation schemes. Numerical experiments show that

r = 1 or r = 3 give much more stable results.

φn+1
E =



0 r = 0

φn r = 1

2φn − φn−1 r = 2

3φn − 3φn−1 + φn−2 r = 3

3. prepare Neumann boundary conditions at surface for [ui]
∗
. Extrapolate [ui]

n+1
E

by using Eq. (4.30):

[
ui
]n+1

E
=
([
ui
]∗)k −Ri (4.50)

Ri =
∆t

α0

Gi[φE]n+1 (4.51)

where
(
[ui]
∗)k

is a guess field and k denotes the internal iteration, given by

the previous internal iteration of [ui]
∗
, which will be converged after several

iterations of solving [ui]
∗
. Eq. (4.44), Eq. (4.45), and Eq. (4.46) can be

therefore evaluated as

∂

∂ξ0

[
u1
]∗

=
∂R1

∂ξ0
+ f

([
ui
]n+1

E
, C0, · · · , C8

)
(4.52)

∂

∂ξ0

[
u2
]∗

=
∂R2

∂ξ0
+ f

([
ui
]n+1

E
, D0, · · · , D8

)
(4.53)

∂

∂ξ0

[
u0
]∗

=
∂R0

∂ξ0
+ f

([
ui
]n+1

E
, Sij

)
(4.54)

which are respectively used for the surface Neumann boundary conditions for
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solving [u1]
∗
, [u2]

∗
, and [u0]

∗
.

4. prepare bottom boundary conditions for [ui]
∗
. According to [11], for increment-

pressure project method, if prescribed velocities are imposed at the bottom,

Dirichlet boundary conditions can be directly applied by the known [ui]
n+1

:

[
ui
]∗

=
[
ui
]n+1

at x0 = −h+ h′ (4.55)

On the other hand, if slip bottom is considered, i.e., emulating deep sea, the

Neumann boundary conditions are imposed at the bottom as

∂ui

∂x0
= S0

0

∂ui

∂ξ0
=
[
dU i

]n+1
∣∣∣
∂Ω

(4.56)

where the prescribed boundary values are usually [dU1]
n+1
∣∣∣
∂Ω

= [dU2]
n+1
∣∣∣
∂Ω

=

0 for free slip bottom. Similar to the surface Neumann boundary conditions,

we have

∂

∂ξ0

[
ui
]∗

=
∂Ri

∂ξ0
+

1

S0
0

[
dU i

]n+1
at x0 = −h+ h′ (4.57)

5. solve [ui]
∗
. With the surface and bottom boundary conditions, solve Eq. (4.29)

using the implicit solver supported by SPX. Considering the resultant stencil

for the left hand side of Eq. (4.29) at any given node n, the stencil entries only

distribute along ξ0-axis due to the stencil of o-th order Fourier differentiation

with respect to ξ1 and ξ2 only regarding “self” node as
(
ik1
n

2π
L1

)o
and

(
ik2
n

2π
L2

)o
respectively, where kpn indicates the mode number along p-axis for node n.

Accordingly, LSOR is the best chose to solve this problem, since by setting

sweeping direction along 0-axis, it takes only one iteration to reach converged.
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6. converge [ui]
∗
. Repeat step 3 to 5 to converge [ui]

∗
, i.e., L2-norm at the surface

smaller than a tolerance:

∥∥∥([ui]∗)k+1 −
([
ui
]∗)k∥∥∥

2

7. prepare Dirichlet boundary conditions at surface for φn+1 On the basis of con-

verged solution of [ui]
∗
, extrapolate [ui]

n+1
E again using Eq. (4.50), and evaluate

pressure pn+1 at surface using Eq. (4.38). Hence, P at time t + 1 is given by

P n+1 = pn+1/ρ, and P n+1/2 can be obtained by quadratic interpolation:

P n+1/2 =
1

15

(
8P n+1 + 10P n−1/2 − 3P n−3/2

)
(4.58)

According to Eq. (4.34), the Dirichlet boundary condition at the surface for

φn+1 can be given by

φn+1 = P n+1/2 − P n−1/2 +
∆tβ0

α0

(
ν∇2φn+1

E

)
(4.59)

8. prepare Neumann boundary conditions at the bottom for solving φn+1. Accord-

ing to [11], for increment-pressure projection method, the boundary conditions

for solid walls is given by n · ∇φn+1|∂Ω = 0. Therefore, the Neumann bottom

boundary condition for Eq. (4.32) is simply given by

∂φn+1

∂ξ0
= 0 at x0 = −h+ h′ (4.60)

9. solve φn+1. Solve Eq. (4.32) for φn+1 with the surface and bottom boundary

conditions resulted from step 7 and 8, as well as the loading term evaluated
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based on [ui]
∗

resulted from step 6. Similar to solving momentum equations, the

Laplace operation on the curvilinear coordinates is firstly decomposed by using

Eq. (4.15) to Eq. (4.17). The operator ∇2
d involves no nonlinear convolution

so it is kept on the left hand side as the implicit operator, while the remaining

terms in ∇2
off are lumped with the loading terms on the right hand side. By

introducing an internal iteration index k, φn+1 can be therefore solved as

∇2
d

(
φn+1

)k+1
= −∇2

off

(
φn+1

)k
+
α0

∆t

(
∇ ·
[
ui
]∗)

(4.61)

Similar to step 5 and 6, LSOR is chosen as the solver to sweep along 0-axis.

After each iteration, the residue can be calculated by

Rk+1 = ∇2
(
φn+1

)k+1 − α0

∆t

(
∇ ·
[
ui
]∗)

(4.62)

The convergence therefore can be checked with the maximum residue
∥∥Rk+1

∥∥
∞

being smaller than a tolerance. Numerical experiments shows that the number

of iterations depends on the mapping: x0 : [−h + h′, η] → ξ0 : [0, 1] requiring

fewer steps while x0 : [−h + h′, η] → ξ0 : [−h, 0] requiring more steps. The

tolerance is suggested to be 10−10.

10. update velocity and pressure. As long as φn+1 is solved, [ui]
n+1

can be updated

by Eq. (4.30), while pressure P n+1 can be updated by Eq. (4.34).

11. update η and advance. As long as [ui]
n+1

is updated, η can be updated by Eq.

(4.48) or Eq. (4.49), depending on the stage of Runge-Kutta. If it has not

reached the final stage, then repeat step 1 to 10. Otherwise, advancing a time

step by rolling back ui and P . A full time step is complete and we then move

forward to the next time step.
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4.7 Case study–wind generation on Cartesian coordinates

In this case, we study an air-water coupled wind generation process by following

[46] with the identical configurations using Cartesian formulations on fixed grid. The

work proposed in [46] is only based on linearized formulations. To improve this, we

study the same case by using nonlinear normal stress surface condition. First, Eq.

4.35 can be expanded and written in the non-dimensionalized form as

[
pw − η

Fr
+

2

Rew
Gw

]
− ρa

ρw

[
pa − η

Fr
+

2

Rea
Ga

]
=

κ

We
(4.63)

where Fr = U√
gL

is Froude number; Rea = ρaUL
µa

and Rew = ρwUL
µw

are respectively

air and water Reynolds numbers; We = ρwU2L
γ

is the Weber number. Gα = Mα

2µα
,

Mα given by Eq. (4.37), and curvature κ given by Eq. (4.36) may differ between

non-linear and linearized forms. Numerical results in this study will examine the

differences.

1. Linearized forms [46]:

Gα =

[
∂u0

∂x0
+
∂v1

∂y1

]
(4.64)

κ = −ηx1x1 − ηx2x2 (4.65)

2. Nonlinear forms, Gα = Mα

2µα
, and κ remains the same as Eq. (4.36):

Gα =
1

1 + η2
x1 + η2

x2

[(
∂u0

∂x0

)
− ηx1

(
∂u0

∂x1
+
∂u1

∂x0

)
− ηx2

(
∂u0

∂x2
+
∂u2

∂x0

)
+η2

x1

(
∂u1

∂x1

)
+ ηx1ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
+ η2

x2

(
∂u2

∂x2

)]
(4.66)

κ =
−ηx2x2 (1 + η2

x1)− ηx1x1 (1 + η2
x2) + 2ηx1ηx2ηx1x2

(1 + η2
x1 + η2

x2)
3
2

(4.67)

130



4.7.1 Model configuration

As addressed in previous sections, pseudospectral method is employed as the

numerical scheme to solve the model equations. Fourier basis is used to solve deriva-

tives along x2-axis (streamwise) and x1-axis (spanwise), which implies that periodic

boundary conditions (BCs) are applied along two horizontal directions. The x0 di-

rection is non-periodic and we use second order finite difference schemes to solve all

vertical derivatives. Additionally, a non-uniform staggered grid is also used along

vertical direction, shown as Figure 4.3. Since in this case all formulations are based

on Cartesian coordinates and fixed grid, choosing the computational ξ-domain iden-

tical to the real x-domain will degenerate all transformed formulations degenerated

to Cartesian ones, so that no curvilinear mapping is required.

Because the air and water domains are solved separately, inevitable “ghost grids”

are placed above water domain and below air domain. Since Navier-Stokes equations

are solved entirely in each domain, BCs are required on the ghost points, which are

the boundary points for each domain. Thus, the BCs derived in the previous section

are used to provide the boundary values for the ghost points.

As for the model configuration to perform the numerical cases, non-uniform com-

putational grids are used along vertical direction. Finer grids are collocated near

air-water interface for both domains, while coarser grids are collocated far from

interface. The number of grids is (N2, N1, N0) = (64, 64, 65). The dimension of

computational domain (L2, L1, L0) equals to (6h, 6h, h) in which the reference length

scale L = h is equal to 4cm. Reference velocity is set to be U = U0 = 300(cm/s),

so the reference time is 0.01333s. The time step is 0.005 in non-dimensional units,

which equals to 6.6667−5s in dimensional units. A fractional step method, one of

the project methods, is employed to solve Navier-Stokes equations, and low storage
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second Runge-Kutta method is used for the time-marching scheme. The proposed

model is also parallelized and the numerical case is performed using 8 processors.

According to our numerical experience, a successful simulation case should pro-

ceed in prescribed steps rather than naively triggered ab initio by only the shear

wind. A complete simulation is sequentially performed in three stages, which are

explained below.

1. Stage I. The first step is to assign the mean velocity profile analytically, and

set a constraint for free surface to retain flat interface. Therefore, we spin up

the turbulence by adding a buoyancy force in the x0-momentum equation for

80 turnover time units (physically 1.0664s).

2. Stage II. At the second stage the buoyancy force in the x0-momentum equation

is turned off, but we still continue the spin-up simulation for another 2400 large-

eddy turnover time units to reach a pure shear-driven state (physically 32s).

3. Stage III. In turn, we release the constraint to allow the flat interface to become

freely deformable. Waves are then generated according to the prescribed air

and water flow conditions, as well as the coupled BCs. Therefore, based on the

fully developed shear-driven turbulent provided by the previous Stage II, we

officially start our simulation when the waves reach fully developed state.

4.7.2 Flow snapshots

Figure 4.5 and 4.6 respectively show the water elevation η and streamwise velocity

u at interface at 2.6s, 15.37s, 26.44s, and 66.8s. It can be observed that at 26.44s

waves are in the transition state in which random waves become uniform. Before

the transition region, wind waves occupy the initial linear growth stage, which is

exemplified by highly random waves with shorter crests. After the transition region
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waves are developed and enter the exponential growth stage in which gathered waves

propagate toward uniform direction with long crest.

4.7.3 Wave growth

The rate of wave growth can be defined as 〈η2〉–mean-squre-of-η, which is the

most significant indicator for the state of wind waves. The wave growth results

from linearized normal stress BC and nonlinear normal stress BC are compared and

shown in Figure 4.7. It is seen that at the linear growth stage (t < 35s) waves

generated using the nonlinear normal stress BC amplify at a faster rate than those

from linearized normal stress BC. However, the opposite occurs after the transition

region: waves generated from the linearized normal stress BC grow at a faster rate at

exponential growth stage. Therefore, there is a crossover point found at the transition

stage at around t = 37s.

At the linear growth stage, we can compare the numerical results with the theo-

retical prediction using the formulation proposed by Phillips (1957):

〈
η2
〉
≈

〈
p′a

2
〉

2
√

2ρ2
wg (18u∗a)

t (4.68)

where p′a is the air pressure fluctuation near interface, and the friction velocity u∗a is

related to wind shear stress τs, calculated by

u∗a =

√
τs
ρa

(4.69)

The results are shown in Figure 4.8. It can be observed that at linear growth

stage, the analytical result is underestimated comparing to the both DNS results.
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Figure 4.5: Water surface elevation η at time t = 2.6s, 15.37s, 26.44s, and 66.8s (top
to bottom). Left column: results from linearized normal stress BC. Right column:
results from nonlinear normal stress BC
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Figure 4.6: Streamwise velocity u at interface x0 = 0 at time t = 2.6s, 15.37s, 26.44s,
and 66.8s (top to bottom). Left column: results from linearized normal stress BC.
Right column: results from nonlinear normal stress BC
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Figure 4.7: Wave growth–root-mean-square of water elevation 〈η2〉. (a) shows full
stage of wave growth. (b) shows the transition stage (20s < t < 40s). (c) shows the
exponential gwoth stage (t > 40s). Green: numerical solution with nonlinear normal
stress BC. Blue: numerical solution with linearized normal stress BC.
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wave growth at the initial stage(t < 20s). Blue: analytical solution. Red: numerical
solution with nonlinear normal stress BC. Green: numerical solution with linearized
normal stress BC.
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4.7.4 Evolution of interfacial properties

Figure 4.9 shows the evolution of some interfacial air properties. For both linear

and nonlinear normal stress BC cases, wind shear stress τs remains almost constant

in the linear growth stage and linearly increases in the exponential growth stage.

The friction velocity u∗a, which is related to τ and can be calculated by Eq (4.69),

also has the same trend and gives the averaged value u∗a ≈ 8.616 (cm/sec). The root-

mean-square of shear stress fluctuation
√〈

τ ′s
2
〉

shows similar trends for both linear

and nonlinear cases. One reason why both cases can not be distinguished clearly

for shear stress-related properties is because the shear stress BC used is the same as

that of Lin et al. (2008). Due to different normal stress BCs, on the other hand,

root-mean-square of pressure fluctuation
√〈

p′a
2
〉

and form stress Dp show different

results between linear BC and nonlinear BC. The stress Dp is related to p′a and can

be calculated by

Dp =
1

L1L2

∫ ∫
p′a

(
∂η

∂x1
+

∂η

∂x2

)
dx1dx2 (4.70)

It is found that at exponential growth stage, Dp for linear BC case is larger than

nonlinear BC case, which is consistent with the results of wave growth in Figure 4.7.

Accordingly, it can be concluded that at exponential growth stage using linearized

normal stress BC causes over-estimated growth rate and form stress.

4.7.5 Summary

We offer several concluding remarks drawn for the work proposed by this work:

1. A high-resolution numerical tool has been developed for high Reynolds num-

ber problem using pseudospectral method. It is successfully applied for the

simulation of air-water coupled two-phase flow.
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Figure 4.9: Interfacial air properties

2. Linear and nonlinear normal stress BCs for wind-wave generation process have

been compared and studied using DNS.

3. From the the results of wind-wave generation, we can conclude that

(a) Linear growth (t < 40s) stage: for the growth rate, faster in the case of
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nonlinear normal stress BC but slower in the case of linear normal stress

BC.

(b) Exponential growth (t > 40s): for the growth rate, slower in the case of

nonlinear normal stress BC but faster in the case of linear normal stress

BC. Using linearized stress BC formulation, form stress Dp is also over-

estimated at this stage.

4.8 Case study–wave modeling using surface-fitted moving grid

4.8.1 Decaying vortex

To test the convergence for the proposed algorithm, a series of benchmark cases

are performed and compared. As associated exact solution exists, shown as Eq.

(4.71) to Eq. (4.73), two-dimensional decaying vortex is an appropriate candidate to

be used for comparison, particularly for unsteady Navier-Stokes problems.

u1 = sin(x1) cos(x0) exp(−2νt) (4.71)

u0 = − cos(x1) sin(x0) exp(−2νt) (4.72)

p =
ρ

4
[cos(2x0) + cos(2x1)] exp(−4νt) (4.73)

Owing to the pseudospectral method mixing two numerical schemes for spatial

discretization where the spectral Fourier differentiation is used for x1-axis, low order

finite difference scheme for vertical x0-axis therefore turns out to be the bottleneck

that dominates the spatial convergence. Accordingly, given domain size (L0, L1) =

(2π, 2π), four cases are set up with (N0, N1) equal to (40, 32), (80, 32), (160, 32), and

(320, 32), respectively. Grid size doubles only for ∆x0, while ∆x1 keeps constant.

By fixing CFL=0.5, time step ∆t can be computed for each case, which implies that

smaller ∆x0 will associate with smaller ∆t, and vice versa. Density and viscosity are
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chosen to be ρ = ν = 1. All cases are performed with total length of 0.5 seconds.
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Figure 4.10: Results of decaying vortex for N0 versus root-mean-square error of
velocity (RMSE). Solid lines: numerical results. Dashed line: the perfect second
order convergence.

Figure 4.10 shows the results for N0 versus root-mean-square error (RMSE) of

velocities u0 and u1. By comparing with exact solution Eq. (4.71) to Eq. (4.73),

RMSE can be obtained by the average of whole time horizon, as well as average of

all grid points. Owing to the second order of accuracy chosen for finite difference

scheme, u0 is expected with second order convergence with respect to N0 (or ∆x0).

The theoretical second order convergence with slope equal to -2 is shown as the black

dash line. Obviously, u0-RMSE shows perfect agreement with theoretical line, while
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u1-RMSE is not as optimal since it is not dominated by the vertical finite difference

scheme.

4.8.2 Linear viscous wave

Considering a 2D linearized Navier-Stokes equations, aka Stokes’ flow in that the

nonlinear convection terms are neglected, according to [44], its exact solution for

deep water waves propagating along x1-direction can be described as

η = a0 exp(N) sin(kx1 + ωt)

u1
pot = −ωa0 exp(kx0 +N) sin(kx1 + ωt)

u0
pot = ωa0 exp(kx0 +N) cos(kx1 + ωt)

u1
vis = 2νkβa0 exp(βx0 +N)[sin(φ)− cos(φ)]

u0
vis = −2νk2a0 exp(βx0 +N) sin(φ)

where a0 is the amplitude and

ω =
√
gk + γk3

β =
√
ω/2ν

N = −2νk2t

φ = βx0 + kx1 + ωt

and the resultant velocity can be obtained by the superposition of potential part uipot

and viscous part uivis:

u0 = u0
pot + u0

vis

u1 = u1
pot + u1

vis
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To simulate this case, we choose γ = 0, a0k = 0.01, k = 2π
λ

= 1 where λ is the

wave length, domain size (L0, L1) = (3.5, 2π), and grids (N0, N1) = (128, 64). Note

that the streamwise length of domain L1 is equals to the length of one wave, and the

depth L0 > λ/2 meets the assumption of deep water. As mentioned as Eq. (4.18)

and Eq. (4.19), the parameters used in two-sided Vinokur grid generation are given

by

S0 = ∆ξ0/∆ξu = 1.52788

S1 = ∆ξN0/∆ξu = 0.39725

which implies compression grids near the free surface while expansion grids near the

bottom. In addition, Reynolds number Re = c
kν

is studied for Re = 50 and Re = 500

cases. Total length 2.7T is performed, where wave period T = 2π
ω

, and the time step

can be determined by given CFL=0.4.

The numerical results of decaying a0 are shown as Figure 4.11. Comparing with

exact solutions, it can be found that in the numerical results a0 decays faster. It is

possible because full Navier-Stokes equations are solved in both cases, which include

the effects of nonlinear convections, whereas the exact solution is based on the as-

sumption without the nonlinear effects, i.e., Re << 1. However, good agreements

can be found for the case of smaller Reynolds number.

4.8.3 Stokes wave

Given a0k ≥ 0.1, the nonlinearity can not be neglected. In this case we will

perform the simulation of weekly nonlinear third order Stokes wave by giving a0k =

0.1. This is a good example to examine the robustness of the proposed numerical

approach, particularly for the stability of the surface conditions. The known exact
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Figure 4.11: Results of a0 decaying in linear viscous wave.

solution can be used for comparison, as well as the initial and bottom Dirichlet

conditions. First of all, the frequency is given by

ω =
√
gk tanh(kh)

{
1 + a2

0k
2

[
8

9

(
tanh−2(kh)− 1

)2
+ tanh−2(kh)

]}
(4.74)
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Given φ = kx1 − ωt, the surface elevation can be given by

η = a0 cos(φ) + C1 cos(2φ)− C2 cos(φ) + C3 cos(3φ) (4.75)

C1 =
1

4
a2

0k tanh−1(kh)
(
3 tanh−2(kh)− 1

)
C2 =

3

8
a3

0k
2
(
tanh−4(kh)− 3 tanh(kh) + 3

)
C3 =

3

64
a3

0k
2
[
8 tanh−6(kh) +

(
tanh−2(kh)− 1

)2
]

In addition, given ψ = k(x0 +h), the velocities u1 (streamwise) and u0 (vertical) can

be respectively given by

u1 = D1 cosh(ψ) cos(φ) +D2 cosh(2ψ) cos(2φ) +D3 cosh(3ψ) cos(3φ) (4.76)

u0 = D1 sinh(ψ) sin(φ) +D2 sinh(2ψ) sin(2φ) +D3 sinh(3ψ) sin(3φ) (4.77)

D1 =
a0kg

ω
cosh−1(kh)

D2 =
3

4

a2
0k

2g

ω
tanh−1(kh)

(
tanh−2(kh)− 1

)2

D3 =
3

64

a3
0k

3g

ω

(
tanh−2(kh)− 1

) (
tanh−2(kh) + 3

) (
9 tanh−2(kh)− 13

)
cosh−1(3kh)

The numerical case is set up with the domain size (h, L1) = (2π, 4π) with the

grids (N0, N1) = (97, 128) and the parameters for grid generation are the same as

those used in the case of linear viscous wave, S0 = 1.52788 and S1 = 0.39725. For

the wave parameters, we choose a0k = 0.1, and k = 2π
λ

= 1, which is equal to half

of streamwise extent of domain. According to Eq. (4.74), having phase velocity

c = ω
k

= 3.1634, and viscosity chosen as ν = 3.1634× 10−3, the Reynolds number of

this case is therefore to be Re = c
kν

= 1000. Wave period is T = 2π
ω

= 1.98621s, and

time step is chosen as ∆t = 0.013021s. The initial grid given by the exact solution

is shown as Figure 4.12. Since the wave unidirectionally propagates along x1-axis,
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the length along x2-axis is not of significance. For x2-axis, we choose L2 = π and 16

grids.

Figure 4.12: Initial grid for Stokes wave a0k = 0.1.

Figure 4.13 shows the η results for nT , (n+ 0.25)T , (n+ 0.5)T , and (n+ 0.75)T ,

where n ranges from 1 to 5. The exact solutions are delineated as the solid lines.

Although the exact solution of Stokes wave mentioned above is used for the initial

condition and Dirichlet bottom boundary condition, the governing equations being

solved here are Navier-Stokes equations with the viscosity associated with Re = 1000.

A not high enough Re value implies the viscous effects are still of significance. There-

fore, waves damped by the viscosity can be observed in the results. The amplitude

decays with respect to time, and the corresponding velocity also decays, which even-

145



tually makes the waves out of phase of exact solutions.

Figure 4.14 shows a couple of snapshots at different time steps, where bulk color

represents the pressure, surface color represents η, and vector color represents the

magnitude of velocity. The velocity vectors are randomly selected for representatives,

and the vector lengths are scaled by the magnitudes of velocity. This case retains

a pretty long execution, which implies that the proposed approach is stable enough

for the numerical simulation of nonlinear waves.
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Figure 4.13: η results for Stokes wave a0k = 0.1
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(a) 0.13s (10∆t) (b) 1.302s (100∆t)

(c) 2.604s (200∆t) (d) 3.906s (300∆t)

(e) 5.208s (400∆t) (f) 6.511s (500∆t)

Figure 4.14: Snapshots for the results of Stokes wave a0k = 0.1. Surface color:
η; Bulk color: pressure; Vector color: velocity magnitude. Velocity vectors are
randomly selected for representatives.
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5. CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

• Part 1- The first part of this research work is to employ the phase-average

spectral model SWAN to investigate the wind-wave conditions at large scale

and actual conditions. The study is for Persian Gulf and Qatar, particularly

aiming at the shamal wind condition unique to the area. Several concluding

remarks can be made:

1. A 5-year (2004–2008) long-term hindcasting using COAMPS winds has

been performed, and the seasonal and spatial features of wave climates

have been examined by the spatial distribution of statistical parameters.

Two-parameter Weibull regression has been applied to every grid point, so

that the contour maps of scaling parameter B and shape parameter C can

be plotted in terms of seasons, respectively for wind speed U , significant

wave height Hs, and peak period Tp. Long-term statistics for Persian

Gulf, particularly for wintertime ans summertime shamal seasons, have

been discovered and concluded. The largest and second largest average

wind speed U can be found in winter and summer, respectively. In spring

season the magnitude of winds basically retains the distribution similar

to winter, but with weakened magnitudes. The radial distribution can be

found in the wintertime covering whole basin area in which peak resides

at the Iran side, whereas the strong winds in summer are with long and

wide distributions covering only the northern area of the entire basin. The

seasonal contour maps ofB for Tp shows that Persian Gulf is in a long-fetch

wind wave condition. The shallow, flat, and long basin provides with the
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conditions to make the magnitudes of Tp constantly increase southward

along the central axis of Gulf.

2. The effects of bathymetry particularly around Qatar have been investi-

gated by using a long-term hindcasting configured as same as the study

for long-term wave climate. The 5-year total energy deviation (TED) has

been used as the indicator to investigate the wave energy deviation be-

tween the case origin (default case) and the tuned cases, noBrek (turning

off depth-induced breaking) or noRefc (turning off refraction). TED due

to wave breaking (noBrek) is mainly found in the Straits of Hormuz,

behind islands, and the nearshore regions. On the other hand, TED due

to refraction (noRefc) is mainly found in most shallow area of the main

basin, particularly in the southern area in the east of Qatar. The re-

sult also shows that TED due to refraction (in the range of ±20%) is in

an order of magnitude larger than that due to breaking (in the range of

±2%).

3. The effects of boundary swells (with or without remotely-generated swells),

hindcasting domain size (L1, L2, and L3) and sources of wind forcing

(COAMPS, NCEP, and QTRSTA) have been inter-compared and inves-

tigated, by using a proposed multi-level hindcasting approach during Oc-

tober and November 2010. As a constant wind source applied to a small

local area (L3 domain), QTRSTA, the in-situ measurement from our own

experimental towers, has been successfully used in the hindcasting model.

The results show that 1) wind sources dominates the trends of Hs and

Tp; 2) consideration of incoming swells as boundary conditions results in

more energetic wave conditions–higher Hs, and higher percentage of wave
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conditions with Tp > 4s; and 3) the effect of hindcasting domain size is

mitigated somewhat by the use of boundary conditions, which connects

locally generated waves with those generated remotely over the domain

L1.

4. An analysis tool of video imagery for single camera has been developed,

including image rectification and CEOF analysis. The on-site wave pa-

rameters such as mean frequency, wave angle, and wavenumber, have been

extracted from the video taken at the experimental pier. In addition,

block analysis has also been applied to the entire shooting window, so

as to identify the spatial distribution of wave parameters. However, the

shooting range is too small and the recording time is too short, so the

information for swells could not be captured and can not be really used

for numerical comparisons and verifications. The future experiments will

have to consider a wider range and longer recording time.

• Part 2. The development of SPX—a general PDE framework for structured

grid. SPX is the first large-scale numerical framework designed and devel-

oped by applying C++-Concept and emphasizing the new features provided

by C++1y. The conclusions of SPX development can be drawn with respect

to two aspects:

– Software development. C++-Concept, as an ongoing advanced software

technology, has been firstly shown its success to be applied to the design

of large-scale numerical framework. Two significant features of C++-

Concept have been found extraordinarily useful in the design process:

1. Deduction and dispatch based on type behavior rather than type trait.

Type dispatch is based on the definition of concepts, and each concept
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defines the requirements in a general way, by checking a set of behav-

iors of a single type or among a group of types. Comparing to tradi-

tional generic programming that type dispatch is usually through de-

fined and matched type traits, C++-Concept has demonstrated more

generality since many redundant checking functions for generating

traits can be avoided. Moreover, a sophisticated interface according

to the function arguments can be easily designed using concepts, i.e.,

the versatile interface of spx::array::operator()( Args... ) for

subscription and slicing, and the interface of out-class binary operator

overloading by checking concept of Binary expressible. The two

examples have shown how C++-Concept helps for the interface design

in terms of ”type behaviors” of function arguments rather than any

deduced type trait. Comparing to traditional generic programming

that a deduced or matched type trait is necessary for each function

generic argument, this approach can significantly reduce unnecessary

functions for type trait deduction, and reduce the number of func-

tions with different combinations of function arguments if they could

have been grouped for the same purpose. In consequence, instead of

coining a lot of type traits and many non-intuitive meta-programming

techniques, C++-Concept delivers the direct support for developers

that can focus on the design of interaction of generic types directly ac-

cording to their behaviors in higher domain-specific level rather than

programming level, so as to bring in more software abstraction.

2. Concept overloading. Static function overloading at compile time has

shown to be used on the design of performance optimization, i.e.,

dispatching implementations in terms of constant expression. Tradi-
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tional generic programming can achieve this purpose by several alter-

native manners, such as by ”enable-if”, by type trait, or by partial

specialization. However, all of the solutions still rely on an intermedi-

ately defined or deduced type to be dispatched. The design and imple-

mentation of SPX has shown that C++-Concept overloading can deal

with the overloading by directly evaluating constant expression itself,

which results in more clean-cut and human-readable code. For exam-

ple, given a template class, its a set of overloading member functions

can be ”enabled” or ”disabled” at compile time by developer-defined

constant expressions in terms of class or function template arguments,

which avoid a bunch of partially specialized classes.

– Numerical PDE framework. Due to enhanced new features for static type

system supported by C++-Concept and C++1y, SPX has been designed

as a modern generic framework. The design of SPX emphasizes efficiency,

extensibility, flexibility, and usability. There are three innovative high-

lights can be drawn as conclusions:

1. Concept-based numerical array and expression template. The concept-

based designed high performance numerical array has been firstly de-

veloped. In particular, the versatile subscription and slicing in ar-

bitrary rank via a rich interface whose, by using C++-Concept, ar-

guments of variadic template can be described by requirements and

be dispatched correspondingly by their inter-behaviors. Similar tech-

niques are also applied to the design of dense descriptors and array

storage. In addition, the expression template has been developed in

which C++-Concept is particularly useful in the innovative design of
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out-class binary operator overloading in terms of the ”interoperabil-

ity of given types” itself rather than any deduced type trait or any

intermediate helper type tag.

2. Scheme-free PDE expression and auto-deducible stencils. PDE ex-

pression and operators are generally supported, by a proposed concept-

based design of stencil operator integrating with expression template.

The resulting stencil, representing the numerical-solvable field differ-

ential operator, can be automatically deduced by giving any PDE

expression at any given grid point.

3. Decoupled and decomposable numerical components. Each component

required in solving PDE is decoupled, decomposable and designed in-

dividually in generic manners. Users can ensemble those components

in the way as flexible as they want, i.e., easily switching the algorithms

for implicit solvers, or switching the differential basis.

In consequence, SPX provides a high-level software abstraction to make

user easily deal with any PDE problem without involving implementation

details. Instead, they can focus on the physical problem itself. For the

CFD software vision in the future, SPX firstly proves that C++-Concept

technology can be incorporated with the design of large-scale numerical

framework by providing its powerful basis of generic abstraction without

sacrificing efficiency.

• Part 3. By using CFD to solve three-dimensional Navier-Stokes equations, the

detail of wave development has been investigated on small scale. A curvilinear

surface-fitted moving grid model has been proposed to capture non-breaking

waves in detail with fully nonlinear surface conditions. Examples show the ver-
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ifications of proposed algorithms for linear viscous wave and nonlinear Stokes

waves. By simplifying it to a fixed rectilinear grid based on Cartesian for-

mulations, a two-phase 3D DNS model has been developed in which air and

water phase are solved separately that are coupled by the interface conditions

with nonlinear normal stress and linearized shear stress. By applying a shear

wind at the top of air domain, the origin of the nature for wind-wave gen-

eration from the small scale has been studied. Owing the the detail results

of velocity and pressure fields, the evolution of interface properties are also

analyzed accordingly. For example, the rate of growth of surface elevation,

time-dependent wind shear stress, friction velocity, pressure fluctuation, form

stress, shear stress fluctuation, and mean surface current are all examined.

5.2 Future works

The linkage between small scale (part 3) and large scale (part 1) can be further

developed and studied. For example, the results from CFD model can be integrated

with the results from phase-average wind-wave model, or the drag coefficient obtained

by DNS model can be used as the parameters in spectral source term for SWAN.

For software development, retaining the concept-based design, more elements can

be further developed into SPX, i.e., parallel computing using GPU, SIMD, and MPI,

more computational schemes such as unstructured grid and meshless methods, and

more physical models such as turbulent modeling.
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APPENDIX A

MATHEMATICAL DERIVATION

A.1 Surface dynamics

Considering an impermeable, continuously differentiable, topologically unchange-

able (non-breaking), and no-slip liquid-gas interface represented, we have unit tan-

gent vector ti and unit normal vector ni respectively defined by

ti = tiai =
ai
‖ai‖

=
ai√
gii

(1)

ni = nia
i =

ai

‖ai‖ =
ai√
gii

(2)

where ti and ni are respectively contravariant and covariant components, ai and ai

are respectively covariant and contravariant basis, and gij and gij are respectively

covariant and contravariant metric tensors. Here we employ the surface-fitting curvi-

linear coordinates, i.e., the covariant basis always fit on the surface, so that we may

further define the tensor index 0 along the direction penetrating the interface while

the indices 1 and 2 are tangential directions. As illustrated in Figure A.1, the forces

air 

water 

surface 
tension γ

−n̂

n
t1

t2

Figure A.1: Illustration of air-water interface.
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projected onto the surface are balanced by the surface tension. Given a constant

surface tension γ (force per unit length) for water, to represent the continuity of

stress across interface, the stress balance equation can be written as

Ta · n−Tw · n = γn (∇ · n)−∇γ (3)

where ∇ · n is the mean curvature, denoted as κ,

κ = ∇ · n (4)

T is Cauchy stress tensor, i.e., for Newtonian Navier-Stokes equations on Cartesian

coordinates

T ij = −pδij + µ

(
∂ui

∂xj
+
∂uj

∂xi

)
(5)

and the superscripts a and w indicate air and water phases respectively. Ta · n

indicates the traction force exerted by air on water, while Tw · n̂ = −Tw ·n indicates

the traction force exerted by water on air. Note that Eq. (3) contains both normal

and tangential components. Taking n · (3) and t · (3) will separate Eq. (3) into

the surface-normal and surface-tangential stress balance equations, which can be

respectively written as below.

Normal Stress Balance:

n ·Ta · n− n ·Tw · n = γκ (6)
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Tangential Stress Balance:

t ·Ta · n− t ·Tw · n = t · ∇γ (7)

Assuming γ is constant everywhere, we have ∇γ = 0, and Eq. (7) becomes

t ·Tw · n = t ·Ta · n (8)

If there is no external tangential stress from air phase,

t ·Tw · n = 0 (9)

representing a shear-free surface. Accordingly, the relationship of continuity of tan-

gential stress can be used for the Neumann boundary conditions for solving momen-

tum equations in Navier-Stokes.

A.2 Derivation of surface stress in Cartesian domain

Given surface elevation η = x0 = f(x1, x2, t), a scalar function F = x0− η can be

defined in which the air-water interface can be implicitly expressed by the iso-surface

of F = 0. Therefore, normal vector can be defined by

n =
∇F
‖∇F‖ =

(1,−ηx1,−ηx2)√
1 + η2

x1 + η2
x2

(10)

where ()x1 indicates ∂
∂x1 and similar for ()x2. Similarly, according to Eq. (1), two

tangent vector t1 and t2 respectively along covariant basis a1 = ∂r
∂x1 and a2 = ∂r

∂x2 in
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Cartesian coordinates can be written as

t1 =
a1

‖a1‖
=

∂r
∂x1∥∥ ∂r
∂x1

∥∥ =
(ηx1, 1, 0)√
η2
x1 + 1

(11)

t2 =
a2

‖a2‖
=

∂r
∂x2∥∥ ∂r
∂x2

∥∥ =
(ηx2, 0, 1)√
η2
x2 + 1

(12)

where position vector at surface r = (η, x1, x2). The mean curvature κ can be easily

obtained accordingly:

κ = ∇ · n =
−ηx2x2 (1 + η2

x1)− ηx1x1 (1 + η2
x2) + 2ηx1ηx2ηx1x2

(1 + η2
x1 + η2

x2)
3
2

(13)

A.2.1 Derivation of surface normal stress

Expanding n · T · n in Eq. (6) in Cartesian coordinate by using Eq. (10) and

symmetric T ij = T ji results in

n ·T · n =

[
n0 n1 n2

]
T 00 T 01 T 02

T 10 T 11 T 12

T 20 T 21 T 22



n0

n1

n2



=
1

‖∇F‖2


[
1 −ηx1 −ηx2

]
T 00 T 01 T 02

T 10 T 11 T 12

T 20 T 21 T 22




1

−ηx1

−ηx2




=
1

‖∇F‖2

(
T 00 − 2ηx1T

01 − 2ηx2T
02 + η2

x1T
11 + 2ηx1ηx2T

12 + η2
x2T

22
)

(14)
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which can be further expanded by using Eq. (5)

n ·T · n =
1

‖∇F‖2

{
−p+ 2µ

(
∂u0

∂x0

)
− 2µηx1

(
∂u0

∂x1
+
∂u1

∂x0

)
− 2µηx2

(
∂u0

∂x2
+
∂u2

∂x0

)
− pη2

x1 + 2µη2
x1

(
∂u1

∂x1

)
+ 2µηx1ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
−pη2

x2 + 2µη2
x2

(
∂u2

∂x2

)}
(15)

Note that −p(1 + η2
x1 + η2

x2) = −p ‖∇F‖2. After rearranging, the final result comes

up with

n ·T · n = −p+
2µ

‖∇F‖2

{(
∂u0

∂x0

)
− ηx1

(
∂u0

∂x1
+
∂u1

∂x0

)
− ηx2

(
∂u0

∂x2
+
∂u2

∂x0

)
+η2

x1

(
∂u1

∂x1

)
+ ηx1ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
+ η2

x2

(
∂u2

∂x2

)}
(16)

Substituting Eq. (16) back into Eq. (6) with the consideration of static pressure

ρgη, we have

−pw +Mw + ρwgη = −pa +Ma + ρagη − γκ (17)

where

Mα =
2µα

(1 + η2
x1 + η2

x2)

{(
∂u0

∂x0

)
− ηx1

(
∂u0

∂x1
+
∂u1

∂x0

)
− ηx2

(
∂u0

∂x2
+
∂u2

∂x0

)
+η2

x1

(
∂u1

∂x1

)
+ ηx1ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
+ η2

x2

(
∂u2

∂x2

)}
(18)

The superscript α could be a or w to indicate air or water phase. For example, if

α = a then velocities ui are evaluated in air phase, and similar for water. If there is
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no coupled air phase, the pressure on the water surface can be simplified as

pw = ρwgη +Mw + γκ (19)

A.2.2 Derivation of surface tangential stress

Eq. (8) can be respectively written for t1 and t2 as below.

t1 ·Tw · n = t1 ·Ta · n (20)

t2 ·Tw · n = t2 ·Ta · n (21)

As defined σαt1 = t1 ·Tα · n and σαt2 = t2 ·Tα · n where α could be a for air or w for

water, the two equations can be expanded respectively. First of all, expanding σαt1

by using Eq. (11), Eq. (10), and symmetric T ij = T ji results in

σαt1 = t1 ·T · n =

[
t01 t11 t21

]
T 00 T 01 T 02

T 10 T 11 T 12

T 20 T 21 T 22



n0

n1

n2



=
1

‖t1‖ ‖∇F‖


[
ηx1 1 0

]
T 00 T 01 T 02

T 10 T 11 T 12

T 20 T 21 T 22




1

−ηx1

−ηx2




=
1

‖t1‖ ‖∇F‖

ηx1T
00 + T 01 − η2

x1T
01︸ ︷︷ ︸

=(1−η2
x1)T 01

−ηx1T
11 − ηx1ηx2T

02 − ηx2T
12


(22)
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which can be further expanded by using Eq. (5)

σαt1 =
1

‖t1‖ ‖∇F‖

{
ηx1

(
�
�−p + 2µα

∂u0

∂x0

)
+ (1− η2

x1)µα
(
∂u0

∂x1
+
∂u1

∂x0

)
−ηx1

(
�
�−p + 2µα

∂u1

∂x1

)
− ηx1ηx2µ

α

(
∂u0

∂x2
+
∂u2

∂x0

)
−ηx2µ

α

(
∂u1

∂x2
+
∂u2

∂x1

)}
(23)

where the pressure terms are eventually canceled out. On the other hand, similar

expansion of σαt2 by using Eq. (12) and Eq. (10) results in

σαt2 = t2 ·T · n =

[
t02 t12 t22

]
T 00 T 01 T 02

T 10 T 11 T 12

T 20 T 21 T 22



n0

n1

n2



=
1

‖t2‖ ‖∇F‖


[
ηx2 0 1

]
T 00 T 01 T 02

T 10 T 11 T 12

T 20 T 21 T 22




1

−ηx1

−ηx2




=
1

‖t2‖ ‖∇F‖
(
ηx2T

00 + T 20 − ηx1ηx2T
01 − ηx1T

21 − η2
x2T

02 − ηx2T
22
)

(24)

where T 20 − η2
x2T

02 = (1− η2
x2)T 02. Substituting Eq. (5) results in

σαt2 =
1

‖t2‖ ‖∇F‖

{
ηx2

(
�
�−p + 2µα

∂u0

∂x0

)
− ηx2

(
�
�−p + 2µα

∂u2

∂x2

)
−ηx1µ

α

(
∂u2

∂x1
+
∂u1

∂x2

)
+ (1− η2

x2)µα
(
∂u0

∂x2
+
∂u2

∂x0

)
−ηx1ηx2µ

α

(
∂u0

∂x1
+
∂u1

∂x0

)}
(25)
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where the pressure terms are canceled out as well. By rearranging Eq. (23) and Eq.

(25), the final results for σαt1 and σαt2 are respectively expressed as

σαt1 =
µα

G1

{
2ηx1

(
∂u0

∂x0
− ∂u1

∂x1

)
− ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
+(1− η2

x1)

(
∂u0

∂x1
+
∂u1

∂x0

)
− ηx1ηx2

(
∂u0

∂x2
+
∂u2

∂x0

)}
(26)

σαt2 =
µα

G2

{
2ηx2

(
∂u0

∂x0
− ∂u2

∂x2

)
− ηx1

(
∂u2

∂x1
+
∂u1

∂x2

)
+(1− η2

x2)

(
∂u0

∂x2
+
∂u2

∂x0

)
− ηx1ηx2

(
∂u0

∂x1
+
∂u1

∂x0

)}
(27)

where

G1 =
√

(1 + η2
x1)(1 + η2

x1 + η2
x2) (28)

G2 =
√

(1 + η2
x2)(1 + η2

x1 + η2
x2) (29)

A.3 Surface-fitted curvilinear grid and basic assumptions

Set

Sij =
∂ξi

∂xj
(30)

Given surface-fitted grid generated by vertically perturbing (along axis-0) the refer-

ence rectilinear domain with the height of surface elevation η = x0 = f(x1, x2, t),

then we have

S1
0 = S2

0 = S2
1 = S1

2 = 0 (31)
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Note that the grid is non-orthogonal, but the skewness is small enough to be ne-

glected. Therefore, by chain rule the differential operators can be transformed to ξi

plane as

∂

∂x0
= S0

0
∂
∂ξ0 +

����S1
0
∂
∂ξ1 +

����S2
0
∂
∂ξ2 = S0

0

∂

∂ξ0
(32)

∂

∂x1
= S0

1
∂
∂ξ0 + S1

1
∂
∂ξ1 +

�
���S2
1
∂
∂ξ2 = S0

1

∂

∂ξ0
+ S1

1

∂

∂ξ1
(33)

∂

∂x2
= S0

2
∂
∂ξ0 +

��
��S1

2
∂
∂ξ1 + S2

2
∂
∂ξ2 = S0

2

∂

∂ξ0
+ S2

2

∂

∂ξ2
(34)

The continuity equation can be transformed accordingly:

∂u0

∂x0
+
∂u1

∂x1
+
∂u2

∂x2
= 0 (35)

⇒ S0
0

∂u0

∂ξ0
+ S0

1

∂u1

∂ξ0
+ S1

1

∂u1

∂ξ1
+ S0

2

∂u2

∂ξ0
+ S2

2

∂u2

∂ξ2
= 0 (36)

Further, assuming that horizontal axes between x-domain and ξ-domain are not only

coincident but also linearly scaled, S1
1 and S2

2 are therefore to be constant. Hence,

S1
1 = constant⇒ ∂S1

1

∂ξi
= 0 (37)

S2
2 = constant⇒ ∂S2

2

∂ξi
= 0 (38)

A.4 The relationships between Sij and η at surface

The coordinate configuration in Cartesian domain is shown as Figure 4.2, where

h′ = f(x1, x2) represents the possibly uneven bottom. On the other hand, as shown

in Figure 4.3, given the arbitrary range of x0 : [z2 + h′, z1 + η] mapped to reference

domain with fixed ξ0 : [z2, z1], which identical to the range of unperturbed Cartesian
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grid, the ξ0 = f(x0, x1, x2) can be therefore defined as

ξ0 =
x0 − z2 − h′

z1 + η − z2 − h′
(z1 − z2) + z2 =︸︷︷︸

z1−z2=h

x0 − z2 − h′
h+ η − h′ h+ z2 (39)

Accordingly, at surface x0 = z1 + η we have S0
j terms:

S0
0

∣∣
x0=z1+η

=
∂ξ0

∂x0
=

(h+ η − h′)
(h+ η − h′)2

h

=
1

h+ η − h′h (40)

S0
1

∣∣
x0=z1+η

=
∂ξ0

∂x1
=

−h′x1(h+ η − h′) + (−ηx1 + h′x1)(x0 − z2 − h′)
(h+ η − h′)2

h

=︸︷︷︸
z1−z2=h

���−h′x1 + �
�h′x1 − ηx1

h+ η − h′ h

=
−ηx1

h+ η − h′h (41)

S0
2

∣∣
x0=z1+η

=
∂ξ0

∂x2
=

−h′x2(h+ η − h′) + (−ηx2 + h′x2)(x0 − z2 − h′)
(h+ η − h′)2

h

=︸︷︷︸
z1−z2=h

�
��−h′x2 + �

�h′x2 − ηx2

h+ η − h′ h

=
−ηx2

h+ η − h′h (42)

where ()x1 indicates ∂
∂x1 and similar for ()x2. By comparing the results of S0

1 and S0
2

with the result of S0
0 , two important relationships can be found as

S0
1 = −ηx1S

0
0 (43)

S0
2 = −ηx2S

0
0 (44)

175



Note that these relationships are also held for other mapping ranges. For examples,

[84] uses the mapping x0 : [−h, η] → ξ0 : [0, 1], and [90] uses the mapping x0 :

[−h+ h′, η]→ ξ0 : [0, 1]. Both can obtain the same Eq. (43) and Eq. (44), so we do

not repeat the derivations here.

A.5 Derivation of curvilinear Mα for surface normal stress

Having Eq. (18)

Mα =
2µα

1 + η2
x1 + η2

x2

Qα (45)

where

Qα =
∂u0

∂x0
− ηx1

(
∂u0

∂x1
+
∂u1

∂x0

)
− ηx2

(
∂u0

∂x2
+
∂u2

∂x0

)
+ η2

x1

(
∂u1

∂x1

)
+ ηx1ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
+ η2

x2

(
∂u2

∂x2

)
(46)

and α indicates the phase, i.e., dynamic viscosity µa and µw for air or water respec-

tively. Replacing ∂u0

∂x0 by continuity equation

∂u0

∂x0
= −∂u

1

∂x1
− ∂u2

∂x2
(47)

results in

Qα = −∂u
1

∂x1
− ∂u2

∂x2
− ηx1

(
∂u0

∂x1
+
∂u1

∂x0

)
− ηx2

(
∂u0

∂x2
+
∂u2

∂x0

)
+ η2

x1

(
∂u1

∂x1

)
+ ηx1ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
+ η2

x2

(
∂u2

∂x2

)
(48)
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After rearranging we have

Qα = (η2
x1 − 1)

(
∂u1

∂x1

)
+ (η2

x2 − 1)

(
∂u2

∂x2

)
− ηx1

(
∂u0

∂x1
+
∂u1

∂x0

)
− ηx2

(
∂u0

∂x2
+
∂u2

∂x0

)
+ ηx1ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
(49)

Applying Eq. (32) to (34) to expand Qα in curvilinear domain results in

Qα = (η2
x1 − 1)

(
S0

1

∂u1

∂ξ0
+ S1

1

∂u1

∂ξ1

)
+ (η2

x2 − 1)

(
S0

2

∂u2

∂ξ0
+ S2

2

∂u2

∂ξ2

)
− ηx1

(
S0

1

∂u0

∂ξ0
+ S1

1

∂u0

∂ξ1
+ S0

0

∂u1

∂ξ0

)
− ηx2

(
S0

2

∂u0

∂ξ0
+ S2

2

∂u0

∂ξ2
+ S0

0

∂u2

∂ξ0

)
+ ηx1ηx2

(
S0

2

∂u1

∂ξ0
+ S2

2

∂u1

∂ξ2
+ S0

1

∂u2

∂ξ0
+ S1

1

∂u2

∂ξ1

)
(50)

After rearranging we have

Qα = (−η2
x2 − 1)

(
S1

1

∂u1

∂ξ1

)
︸ ︷︷ ︸

Qα1

+(η2
x1 + η2

x2)

(
S1

1

∂u1

∂ξ1

)
+ (η2

x1 − 1)

(
S0

1

∂u1

∂ξ0

)

+ (−η2
x1 − 1)

(
S2

2

∂u2

∂ξ2

)
︸ ︷︷ ︸

Qα1

+(η2
x1 + η2

x2)

(
S2

2

∂u2

∂ξ2

)
+ (η2

x2 − 1)

(
S0

2

∂u2

∂ξ0

)

−ηx1

(
S1

1

∂u0

∂ξ1

)
︸ ︷︷ ︸

Qα1

−ηx1

(
S0

1

∂u0

∂ξ0
+ S0

0

∂u1

∂ξ0

)

−ηx2

(
S2

2

∂u0

∂ξ2

)
︸ ︷︷ ︸

Qα1

−ηx2

(
S0

2

∂u0

∂ξ0
+ S0

0

∂u2

∂ξ0

)

+ηx1ηx2

(
S2

2

∂u1

∂ξ2
+ S1

1

∂u2

∂ξ1

)
︸ ︷︷ ︸

Qα1

+ηx1ηx2

(
S0

2

∂u1

∂ξ0
+ S0

1

∂u2

∂ξ0

)
(51)
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which can be further written in the decomposition

Qα = Qα
1 +Qα

2 (52)

where

Qα
1 = −(η2

x2 + 1)

(
S1

1

∂u1

∂ξ1

)
− (η2

x1 + 1)

(
S2

2

∂u2

∂ξ2

)
− ηx1

(
S1

1

∂u0

∂ξ1

)
− ηx2

(
S2

2

∂u0

∂ξ2

)
+ ηx1ηx2

(
S2

2

∂u1

∂ξ2
+ S1

1

∂u2

∂ξ1

)
(53)

and

Qα
2 = (η2

x1 + η2
x2)

(
S1

1

∂u1

∂ξ1

)
+ (η2

x1 − 1)

(
S0

1

∂u1

∂ξ0

)
+ (η2

x1 + η2
x2)

(
S2

2

∂u2

∂ξ2

)
+ (η2

x2 − 1)

(
S0

2

∂u2

∂ξ0

)
− ηx1

(
S0

1

∂u0

∂ξ0
+ S0

0

∂u1

∂ξ0

)
− ηx2

(
S0

2

∂u0

∂ξ0
+ S0

0

∂u2

∂ξ0

)
+ ηx1ηx2

(
S0

2

∂u1

∂ξ0
+ S0

1

∂u2

∂ξ0

)
= 0 (54)

To prove Qα
2 = 0, first of all we have to use Eq. (43) and (44). Rearranging Qα

2

results in

Qα
2 = (η2

x1 + η2
x2)

(
S1

1

∂u1

∂ξ1

)
+ (η2

x1 + η2
x2)

(
S2

2

∂u2

∂ξ2

)
+ [η2

x1S
0
1 −S0

1 − ηx1S
0
0︸ ︷︷ ︸

=0

+ηx1ηx2S
0
2 ]

(
∂u1

∂ξ0

)

+ [η2
x2S

0
2 −S0

2 − ηx2S
0
0︸ ︷︷ ︸

=0

+ηx1ηx2S
0
1 ]

(
∂u2

∂ξ0

)

−
[
ηx1S

0
1 + ηx2S

0
2

](∂u0

∂ξ0

)
(55)
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Therefore, Qα
2 comes up with

Qα
2 = (η2

x1 + η2
x2)

(
S1

1

∂u1

∂ξ1

)
+ (η2

x1 + η2
x2)

(
S2

2

∂u2

∂ξ2

)
+ ηx1(ηx1S

0
1 + ηx2S

0
2)

(
∂u1

∂ξ0

)
+ ηx2(ηx2S

0
2 + ηx1S

0
1)

(
∂u2

∂ξ0

)
− (ηx1S

0
1 + ηx2S

0
2)

(
∂u0

∂ξ0

)
(56)

Again by using Eq. (43) and (44), we have

ηx1S
0
1 + ηx2S

0
2 = −η2

x1S
0
0 − η2

x2S
0
0 = −S0

0(η2
x1 + η2

x2) (57)

Substituting this fact back to the last three terms of Qα
2 comes up with

Qα
2 = (η2

x1 + η2
x2)

(
S1

1

∂u1

∂ξ1

)
+ (η2

x1 + η2
x2)

(
S2

2

∂u2

∂ξ2

)
− ηx1S

0
0(η2

x1 + η2
x2)

(
∂u1

∂ξ0

)
− ηx2S

0
0(η2

x1 + η2
x2)

(
∂u2

∂ξ0

)
+ S0

0(η2
x1 + η2

x2)

(
∂u0

∂ξ0

)
(58)

Hence,

Qα
2 = (η2

x1 + η2
x2)

{
S1

1

(
∂u1

∂ξ1

)
+ S2

2

(
∂u2

∂ξ2

)
− ηx1S

0
0

(
∂u1

∂ξ0

)
− ηx2S

0
0

(
∂u2

∂ξ0

)
+ S0

0

(
∂u0

∂ξ0

)}

Again replacing the third and fourth terms by Eq. (43) and (44) results in

Qα
2 = (η2

x1 + η2
x2)

{
S1

1

(
∂u1

∂ξ1

)
+ S2

2

(
∂u2

∂ξ2

)
+ S0

1

(
∂u1

∂ξ0

)
+ S0

2

(
∂u2

∂ξ0

)
+ S0

0

(
∂u0

∂ξ0

)}
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Obviously, the terms in the bracket are exactly equal to the continuity equation

expressed as Eq. (36), which leads in zero:

Qα
2 = (η2

x1 + η2
x2){0} = 0 (59)

In consequence,

Mα =
2µα

1 + η2
x1 + η2

x2

Qα
1 (60)

or

Mα =
2µα

1 + η2
x1 + η2

x2

{
−(η2

x2 + 1)

(
S1

1

∂u1

∂ξ1

)
− (η2

x1 + 1)

(
S2

2

∂u2

∂ξ2

)
−ηx1

(
S1

1

∂u0

∂ξ1

)
− ηx2

(
S2

2

∂u0

∂ξ2

)
+ ηx1ηx2

(
S2

2

∂u1

∂ξ2
+ S1

1

∂u2

∂ξ1

)}
(61)

A.6 Derivation of curvilinear ∂u1

∂ξ0 and ∂u2

∂ξ0 from surface tangential stress

Our goal is to derive ∂u1

∂ξ0 and ∂u2

∂ξ0 at the surface from σαt1 and σαt2. An important

trick will be imposed in the procedure of derivations is to eliminate ∂
∂ξ0 terms on

the right hand side, since for pseudospectral method evaluating lumped vertical

and horizontal terms will involve in mixed numerical schemes, i.e., finite difference

and Fourier differentiation. If we keep only horizontal terms on right hand side to

represent the surface conditions for ∂u1

∂ξ0 and ∂u2

∂ξ0 , the evaluations merely involve in

spectral methods and result in higher accuracy.

First of all, after expanding Eq. (26) and Eq. (27) in curvilinear coordinates
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using Eq. (32) to Eq. (34), we have

G1

µα
σαt1 = 2ηx1

(
∂u0

∂x0
− ∂u1

∂x1

)
− ηx2

(
∂u1

∂x2
+
∂u2

∂x1

)
+ (1− η2

x1)

(
∂u0

∂x1
+
∂u1

∂x0

)
− ηx1ηx2

(
∂u0

∂x2
+
∂u2

∂x0

)
= 2ηx1

(
S0

0

∂u0

∂ξ0
− S0

1

∂u1

∂ξ0
− S1

1

∂u1

∂ξ1

)
− ηx2

(
S0

2

∂u1

∂ξ0
+ S2

2

∂u1

∂ξ2
+ S0

1

∂u2

∂ξ0
+ S1

1

∂u2

∂ξ1

)
+ (1− η2

x1)

(
S0

1

∂u0

∂ξ0
+ S1

1

∂u0

∂ξ1
+ S0

0

∂u1

∂ξ0

)
− ηx1ηx2

(
S0

2

∂u0

∂ξ0
+ S2

2

∂u0

∂ξ2
+ S0

0

∂u2

∂ξ0

)
(62)

G2

µα
σαt2 = 2ηx2

(
∂u0

∂x0
− ∂u2

∂x2

)
− ηx1

(
∂u2

∂x1
+
∂u1

∂x2

)
+ (1− η2

x2)

(
∂u0

∂x2
+
∂u2

∂x0

)
− ηx1ηx2

(
∂u0

∂x1
+
∂u1

∂x0

)
= 2ηx2

(
S0

0

∂u0

∂ξ0
− S0

2

∂u2

∂ξ0
− S2

2

∂u2

∂ξ2

)
− ηx1

(
S0

2

∂u1

∂ξ0
+ S2

2

∂u1

∂ξ2
+ S0

1

∂u2

∂ξ0
+ S1

1

∂u2

∂ξ1

)
+ (1− η2

x2)

(
S0

2

∂u0

∂ξ0
+ S2

2

∂u0

∂ξ2
+ S0

0

∂u2

∂ξ0

)
− ηx1ηx2

(
S0

1

∂u0

∂ξ0
+ S1

1

∂u0

∂ξ1
+ S0

0

∂u1

∂ξ0

)
(63)

After term by term rearranging, they can be rewritten as below. Note that the final

coefficients of E0
0 , E1

0 , E2
0 , F 0

0 , F 1
0 , and F 2

0 are derived by using Eq. (43) and Eq.

(44).
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G1

µα
σαt1 = E0

0

∂u0

∂ξ0
+ E0

1

∂u0

∂ξ1
+ E0

2

∂u0

∂ξ2
+ E1

0

∂u1

∂ξ0
+ E1

1

∂u1

∂ξ1
+ E1

2

∂u1

∂ξ2
+

�
�

�
��

0

E2
0

∂u2

∂ξ0
+ E2

1

∂u2

∂ξ1

(64)

E0
0 = 2ηx1S

0
0 + (1− η2

x1)S0
1 − ηx1ηx2S

0
2

= 2ηx1S
0
0 − ηx1(1− η2

x1)S0
0 + ηx1η

2
x2S

0
0

= S0
0ηx1(1 + η2

x1 + η2
x2)

E1
0 = −2ηx1S

0
1 − ηx2S

0
2 + (1− η2

x1)S0
0

= 2η2
x1S

0
0 + η2

x2S
0
0 + (1− η2

x1)S0
0

= S0
0(η2

x1 + η2
x2 + 1)

E2
0 = −ηx2S

0
1 − ηx1ηx2S

0
0

= ηx1ηx2S
0
0 − ηx1ηx2S

0
0

= 0

E0
1 = (1− η2

x1)S1
1

E1
1 = −2ηx1S

1
1

E2
1 = −ηx2S

1
1

E0
2 = −ηx1ηx2S

2
2

E1
2 = −ηx2S

2
2

G2

µα
σαt2 = F 0

0

∂u0

∂ξ0
+ F 0

1

∂u0

∂ξ1
+ F 0

2

∂u0

∂ξ2
+

�
�

�
��

0

F 1
0

∂u1

∂ξ0
+ F 1

2

∂u1

∂ξ2
+ F 2

0

∂u2

∂ξ0
+ F 2

1

∂u2

∂ξ1
+ F 2

2

∂u2

∂ξ2

(65)

F 0
0 = 2ηx2S

0
0 + (1− η2

x2)S0
2 − ηx1ηx2S

0
2

= 2ηx2S
0
0 − ηx2(1− η2

x2)S0
0 + η2

x1ηx2S
0
0

= S0
0ηx2(1 + η2

x1 + η2
x2)

F 1
0 = −ηx1S

0
2 − ηx1ηx2S

0
0

= ηx1ηx2S
0
0 − ηx1ηx2S

0
0

= 0

F 2
0 = −2ηx2S

0
2 − ηx1S

0
1 + (1− η2

x2)S0
0

= 2η2
x2S

0
0 + η2

x1S
0
0 + (1− η2

x2)S0
0

= S0
0(1 + η2

x1 + η2
x2)

F 0
1 = −ηx1ηx2S

1
1

F 2
1 = −ηx1S

1
1

F 0
2 = (1− η2

x2)S2
2

F 1
2 = −ηx1S

2
2

F 2
2 = −2ηx2S

2
2
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To eliminate ∂u0

∂ξ0 , we replace it by using continuity equation Eq. (36):

S0
0

∂u0

∂ξ0
= −S0

1

∂u1

∂ξ0
− S1

1

∂u1

∂ξ1
− S0

2

∂u2

∂ξ0
− S2

2

∂u2

∂ξ2
(66)

Substituting into E0
0
∂u0

∂ξ0 of Eq. (64) results in

E0
0

∂u0

∂ξ0
= ηx1(1 + η2

x1 + η2
x2)

[
−S0

1

∂u1

∂ξ0
− S1

1

∂u1

∂ξ1
− S0

2

∂u2

∂ξ0
− S2

2

∂u2

∂ξ2

]
(67)

Again, after term by term rearranging Eq. (64), we have

G1

µα
σαt1 = [(1− η2

x1)S1
1 ]
∂u0

∂ξ1

+ [−ηx1ηx2S
2
2 ]
∂u0

∂ξ2

+ [S0
0(1 + η2

x1 + η2
x2)−ηx1S

0
1(1 + η2

x1 + η2
x2)︸ ︷︷ ︸

S0
1=−ηx1S0

0 (Eq. 43)

]
∂u1

∂ξ0

+ [−2ηx1S
1
1 −ηx1S

1
1(1 + η2

x1 + η2
x2)︸ ︷︷ ︸]∂u1

∂ξ1

+ [−ηx2S
2
2 ]
∂u1

∂ξ2

+ [−ηx1S
0
2(1 + η2

x1 + η2
x2)︸ ︷︷ ︸

S0
2=−ηx2S0

0 (Eq. 44)

]
∂u2

∂ξ0

+ [−ηx2S
1
1 ]
∂u2

∂ξ1

+ [−ηx1S
2
2(1 + η2

x1 + η2
x2)︸ ︷︷ ︸]∂u2

∂ξ2

Note that the underbrace terms come from the continuity equation. Simplified equa-
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tion reads

G1

µα
σαt1 = [(1− η2

x1)S1
1 ]
∂u0

∂ξ1

+ [−ηx1ηx2S
2
2 ]
∂u0

∂ξ2

+ [S0
0(1 + η2

x1 + η2
x2)(1 + η2

x1)]
∂u1

∂ξ0

+ [S1
1ηx1(−3− η2

x1 − η2
x2)]

∂u1

∂ξ1

+ [−ηx2S
2
2 ]
∂u1

∂ξ2

+ [ηx1ηx2S
0
0(1 + η2

x1 + η2
x2)]

∂u2

∂ξ0

+ [−ηx2S
1
1 ]
∂u2

∂ξ1

+ [−ηx1S
2
2(1 + η2

x1 + η2
x2)]

∂u2

∂ξ2
(68)

Bold terms are still regarding vertical differentiation ∂
∂ξ0 . If we want to employ Eq.

(68) as the surface condition of ∂u1

∂ξ0 , we need to further eliminate ∂u2

∂ξ0 to make sure

no vertical differentiation needs to be evaluated.

Similarly, replacing F 0
0
∂u0

∂ξ0 of Eq. (65) with Eq. (66) results in

F 0
0

∂u0

∂ξ0
= ηx2(1 + η2

x1 + η2
x2)

[
−S0

1

∂u1

∂ξ0
− S1

1

∂u1

∂ξ1
− S0

2

∂u2

∂ξ0
− S2

2

∂u2

∂ξ2

]
(69)
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After term by term rearranging Eq. (65), we have

G2

µα
σαt2 = [−ηx1ηx2S

1
1 ]
∂u0

∂ξ1

+ [(1− η2
x2)S2

2 ]
∂u0

∂ξ2

+ [−ηx2S
0
1(1 + η2

x1 + η2
x2)︸ ︷︷ ︸

S0
1=−ηx1S0

0 (Eq. 43)

]
∂u1

∂ξ0

+ [−ηx2S
1
1(1 + η2

x1 + η2
x2)︸ ︷︷ ︸]∂u1

∂ξ1

+ [−ηx1S
2
2 ]
∂u1

∂ξ2

+ [S0
0(1 + η2

x1 + η2
x2)−ηx2S

0
2(1 + η2

x1 + η2
x2)︸ ︷︷ ︸

S0
2=−ηx2S0

0 (Eq. 44)

]
∂u2

∂ξ0

+ [−ηx1S
1
1 ]
∂u2

∂ξ1

+ [−2ηx2S
2
2 −ηx2S

2
2(1 + η2

x1 + η2
x2)︸ ︷︷ ︸]∂u2

∂ξ2
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As the same, the underbrace terms come from the continuity equation. Simplified

equation becomes

G2

µα
σαt2 = [−ηx1ηx2S

1
1 ]
∂u0

∂ξ1

+ [(1− η2
x2)S2

2 ]
∂u0

∂ξ2

+ [ηx1ηx2S
0
0(1 + η2

x1 + η2
x2)]

∂u1

∂ξ0

+ [−ηx2S
1
1(1 + η2

x1 + η2
x2)]

∂u1

∂ξ1

+ [−ηx1S
2
2 ]
∂u1

∂ξ2

+ [S0
0(1 + η2

x1 + η2
x2)(1 + η2

x2)]
∂u2

∂ξ0

+ [−ηx1S
1
1 ]
∂u2

∂ξ1

+ [S2
2ηx2(−3− η2

x1 − η2
x2)]

∂u2

∂ξ2
(70)

Similar to Eq. (68), bold terms are regarding vertical differentiation ∂
∂ξ0 . If we want

to employ Eq. (70) as the surface condition of ∂u2

∂ξ0 , we need to further eliminate ∂u1

∂ξ0

to make sure no vertical differentiation needs to be evaluated.

To cancel out ∂u2

∂ξ0 to keep only ∂u1

∂ξ0 in Eq.(68), and cancel out ∂u1

∂ξ0 to keep only

∂u2

∂ξ0 in Eq. (70), we can apply the operations:

eliminate
∂u2

∂ξ0
in (68)⇒ (1 + η2

x2)× (68) + (−ηx1ηx2)× (70) (71)

eliminate
∂u1

∂ξ0
in (70)⇒ (−ηx1ηx2)× (68) + (1 + η2

x1)× (70) (72)
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The results of Eq. (71) can be written in

C1
0

∂u1

∂ξ0
=− C0

1

∂u0

∂ξ1
− C0

2

∂u0

∂ξ2
− C1

1

∂u1

∂ξ1
− C1

2

∂u1

∂ξ2
− C2

1

∂u2

∂ξ1
− C2

2

∂u2

∂ξ2

+

[
(1 + η2

x2)
G1

µα
σαt1 − ηx1ηx2

G2

µα
σαt2

]
(73)

where

C0
1 = (1− η2

x1)S1
1(1 + η2

x2) + η2
x1η

2
x2S

1
1 = S1

1(1 + η2
x2 − η2

x1)

C0
2 = −ηx1ηx2(1 + η2

x2)S2
2 − ηx1ηx2(1− η2

x2)S2
2 = −2ηx1ηx2S

2
2

C1
1 = S1

1ηx1(1 + η2
x2)(−3− η2

x1 − η2
x2) + ηx1η

2
x2S

1
1(1 + η2

x1 + η2
x2) = −S1

1ηx1(3 + η2
x1 + 3η2

x2)

C1
2 = −ηx2S

2
2(1 + η2

x2) + η2
x1ηx2S

2
2 = −ηx2S

2
2(1 + η2

x2 − η2
x1)

C1
0 = S0

0(1 + η2
x1 + η2

x2)(1 + η2
x1)(1 + η2

x2)− η2
x1η

2
x2S

0
0(1 + η2

x1 + η2
x2) = S0

0(1 + η2
x1 + η2

x2)2

C2
1 = −ηx2S

1
1(1 + η2

x2) + η2
x1ηx2S

1
1 = −S1

1ηx2(1 + η2
x2 − η2

x1)

C2
2 = −ηx1S

2
2(1 + η2

x1 + η2
x2)(1 + η2

x2)− S2
2ηx1η

2
x2(−3− η2

x1 − η2
x2) = −ηx1S

2
2(1 + η2

x1 − η2
x2)

After rearranging, the final form can be written as

∂u1

∂ξ0
= C0

{
C1
∂u0

∂ξ1
+ C2

∂u0

∂ξ2
+ C3

∂u1

∂ξ1
+ C4

∂u1

∂ξ2
+ C5

∂u2

∂ξ1
+ C6

∂u2

∂ξ2
+ C7

σαt1
µα

+ C8
σαt2
µα

}
(74)
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where

C0 = [S0
0(G0)2]−1

C1 = S1
1(η2

x1 − η2
x2 − 1)

C2 = 2ηx1ηx2S
2
2

C3 = S1
1ηx1(3 + η2

x1 + 3η2
x2)

C4 = S2
2A

C5 = S1
1A

C6 = S2
2ηx1(1 + η2

x1 − η2
x2)

C7 = (1 + η2
x2)G1

C8 = −ηx1ηx2G2

A = ηx2(1 + η2
x2 − η2

x1)

G0 = (1 + η2
x1 + η2

x2)

G1 =
√

(1 + η2
x1)G0

G2 =
√

(1 + η2
x2)G0

Similarly, the results of Eq. (72) can be written in

D2
0

∂u2

∂ξ0
=−D0

1

∂u0

∂ξ1
−D0

2

∂u0

∂ξ2
−D1

1

∂u1

∂ξ1
−D1

2

∂u1

∂ξ2
−D2

1

∂u2

∂ξ1
−D2

2

∂u2

∂ξ2

+

[
(−ηx1ηx2)

G1

µα
σαt1 + (1 + η2

x2)
G2

µα
σαt2

]
(75)

where

D0
1 = −ηx1ηx2(1− η2

x1)S1
1 − ηx1ηx2(1 + η2

x1)S1
1 = −2ηx1ηx2S

1
1

D0
2 = η2

x1η
2
x2S

2
2 + (1− η2

x2)S2
2(1 + η2

x1) = −S2
2(η2

x2 − η2
x1 − 1)

D1
1 = −η2

x1ηx2S
1
1(−3− η2

x1 − η2
x2)− S1

1ηx2(1 + η2
x1)(1 + η2

x1 + η2
x2) = −S1

1ηx2(1 + η2
x2 − η2

x1)

D1
2 = ηx1η

2
x2S

2
2 − ηx1S

2
2(1 + η2

x1) = −S2
2ηx1(1 + η2

x1 − η2
x2)

D2
0 = −η2

x1η
2
x2S

0
0(1 + η2

x1 + η2
x2) + S0

0(1 + η2
x1)(1 + η2

x2)(1 + η2
x1 + η2

x2) = S0
0(1 + η2

x1 + η2
x2)2

D2
1 = ηx1η

2
x2S

1
1 − η2

x1S
1
1(1 + η2

x1) = −S1
1ηx1(1 + η2

x1 − η2
x2)

D2
2 = η2

x1ηx2S
2
2(1 + η2

x1 + η2
x2) + S2

2ηx2(1 + η2
x1)(−3− η2

x1 − η2
x2) = −S2

2ηx2(3 + η2
x2 + 3η2

x1)
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After rearranging, the final form can be written as

∂u2

∂ξ0
= D0

{
D1

∂u0

∂ξ1
+D2

∂u0

∂ξ2
+D3

∂u1

∂ξ1
+D4

∂u1

∂ξ2
+D5

∂u2

∂ξ1
+D6

∂u2

∂ξ2
+D7

σαt1
µα

+D8
σαt2
µα

}
(76)

where

D0 = [S0
0(G0)2]−1 = C0

D1 = 2ηx1ηx2S
1
1

D2 = S2
2(η2

x2 − η2
x1 − 1)

D3 = S1
1ηx2(1 + η2

x2 − η2
x1)

D4 = S2
2B

D5 = S1
1B

D6 = S2
2ηx2(3 + 3η2

x1 + η2
x2)

D7 = −ηx1ηx2G1

D8 = (1 + η2
x1)G2

B = ηx1(1 + η2
x1 − η2

x2)

G0 = (1 + η2
x1 + η2

x2)

G1 =
√

(1 + η2
x1)G0

G2 =
√

(1 + η2
x2)G0

A.7 Derivation of curvilinear ∇2 operator

By using Eq. (32) to (34), expanding each term of

∇2 =
∂2

∂x0∂x0
+

∂2

∂x1∂x1
+

∂2

∂x2∂x2
(77)

results in

∂2

∂x0∂x0
= S0

0

∂

∂ξ0

(
S0

0

∂

∂ξ0

)
= S0

0

∂S0
0

∂ξ0

∂

∂ξ0
+
(
S0

0

)2 ∂2

∂ξ0∂ξ0
(78)
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∂2

∂x1∂x1
=

(
S0

1

∂

∂ξ0
+ S1

1

∂

∂ξ1

)(
S0

1

∂

∂ξ0
+ S1

1

∂

∂ξ1

)
= S0

1

∂S0
1

∂ξ0

∂

∂ξ0
+
(
S0

1

)2 ∂2

∂ξ0∂ξ0
+ S0

1

∂S1
1

∂ξ0

∂

∂ξ1
+ S0

1S
1
1

∂2

∂ξ0∂ξ1

+ S1
1

∂S0
1

∂ξ1

∂

∂ξ0
+ S1

1S
0
1

∂2

∂ξ0∂ξ1
+ S1

1

∂S1
1

∂ξ1

∂

∂ξ1
+
(
S1

1

)2 ∂2

∂ξ1∂ξ1

=

(
S0

1

∂S0
1

∂ξ0
+ S1

1

∂S0
1

∂ξ1

)
∂

∂ξ0
+

(
S0

1

∂S1
1

∂ξ0
+ S1

1

∂S1
1

∂ξ1

)
∂

∂ξ1

+ 2S0
1S

1
1

∂2

∂ξ0∂ξ1
+
(
S0

1

)2 ∂2

∂ξ0∂ξ0
+
(
S1

1

)2 ∂2

∂ξ1∂ξ1
(79)

∂2

∂x2∂x2
=

(
S0

2

∂

∂ξ0
+ S2

2

∂

∂ξ2

)(
S0

2

∂

∂ξ0
+ S2

2

∂

∂ξ2

)
= S0

2

∂S0
2

∂ξ0

∂

∂ξ0
+
(
S0

2

)2 ∂2

∂ξ0∂ξ0
+ S0

2

∂S2
2

∂ξ0

∂

∂ξ2
+ S0

2S
2
2

∂2

∂ξ0∂ξ2

+ S2
2

∂S0
2

∂ξ2

∂

∂ξ0
+ S0

2S
2
2

∂2

∂ξ2∂ξ0
+ S2

2

∂S2
2

∂ξ2

∂

∂ξ2
+
(
S2

2

)2 ∂2

∂ξ2∂ξ2

=

(
S0

2

∂S0
2

∂ξ0
+ S2

2

∂S0
2

∂ξ2

)
∂

∂ξ0
+

(
S0

2

∂S2
2

∂ξ0
+ S2

2

∂S2
2

∂ξ2

)
∂

∂ξ2

+ 2S0
2S

2
2

∂2

∂ξ0∂ξ2
+
(
S0

2

)2 ∂2

∂ξ0∂ξ0
+
(
S2

2

)2 ∂2

∂ξ2∂ξ2
(80)

Summing three terms together turns out to be

∇2 =
[(
S0

0

)2
+
(
S1

1

)2
+
(
S2

2

)2
] ∂2

∂ξ0∂ξ0
+
(
S1

1

)2 ∂2

∂ξ1∂ξ1
+
(
S2

2

)2 ∂2

∂ξ2∂ξ2

+ S0
1S

1
1

∂2

∂ξ0∂ξ1
+ S0

2S
2
2

∂2

∂ξ0∂ξ2

+

[
S0

0

∂S0
0

∂ξ0
+ S0

1

∂S0
1

∂ξ0
+ S1

1

∂S0
1

∂ξ1
+ S0

2

∂S0
2

∂ξ0
+ S2

2

∂S0
2

∂ξ2

]
∂

∂ξ0

+

[
S0

1

∂S1
1

∂ξ0
+ S1

1

∂S1
1

∂ξ1

]
︸ ︷︷ ︸

=0 due to Eq. (37)

∂

∂ξ1
+

[
S0

2

∂S2
2

∂ξ0
+ S2

2

∂S2
2

∂ξ2

]
︸ ︷︷ ︸

=0 due to Eq. (38)

∂

∂ξ2
(81)
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On the other hand, given contravariant metric tensor gij as

gij = ∇ξi · ∇ξj =
∂ξi

∂xk
∂ξj

∂xk
= SikS

j
k (82)

by using Eq. (31), expanding gij results in

g00 = S0
0S

0
0 + S0

1S
0
1 + S0

2S
0
2 =

(
S0

0

)2
+
(
S0

1

)2
+
(
S0

2

)2

g11 = �
��S1
0S

1
0 + S1

1S
1
1 + �

��S1
2S

1
2 =

(
S1

1

)2

g22 = ���S2
0S

2
0 + ���S2

1S
2
1 + S2

2S
2
2 =

(
S2

2

)2

g01 = �
��S0
0S

1
0 + S0

1S
1
1 + ���S0

2S
1
2 = S0

1S
1
1

g02 = �
��S0
0S

2
0 + �

��S0
1S

2
1 + S0

2S
2
2 = S0

2S
2
2

g12 = ���S1
0S

2
0 + ���S1

1S
2
1 + ���S1

2S
2
2 = 0

Substituting these results into Eq. (81) leads in

∇2 = g00 ∂2

∂ξ0∂ξ0
+ g11 ∂2

∂ξ1∂ξ1
+ g22 ∂2

∂ξ2∂ξ2
+ 2g01 ∂2

∂ξ0∂ξ1
+ 2g02 ∂2

∂ξ0∂ξ2
+ C0

∂

∂ξ0

(83)

where

C0 =

[
S0

0

∂S0
0

∂ξ0
+ S0

1

∂S0
1

∂ξ0
+ S1

1

∂S0
1

∂ξ1
+ S0

2

∂S0
2

∂ξ0
+ S2

2

∂S0
2

∂ξ2

]
(84)

Considering pseudospectral method with periodic horizontal dimensions, Fourier

basis is applied to ξ1 and ξ2 axes. Given that S1
1 and S2

2 are constants, in this case

only g11 and g22 are constants, while the other gij terms are non-constants. Applying

Fourier transform to any term with non-constant coefficient will result in non-linear
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convolutions even if it is linear term, which implies that such type of term can only be

evaluated explicitly and can not be the implicit linear operators on the left hand side

of equations. On the basis of mathematical restrictions, in Eq. (83) only g11 ∂2

∂ξ1∂ξ1

and g22 ∂2

∂ξ2∂ξ2 can be solved implicitly. To make the solution constrained with the

∂2

∂ξ0∂ξ0 term, an additional constant Hc is introduced to make Eq. (83) become:

∇2 = ∇2
d +∇2

off (85)

∇2
d = Hc

∂2

∂ξ0∂ξ0
+ g11 ∂2

∂ξ1∂ξ1
+ g22 ∂2

∂ξ2∂ξ2
(86)

∇2
off = (g00 −Hc)

∂2

∂ξ0∂ξ0
+ 2g01 ∂2

∂ξ0∂ξ1
+ 2g02 ∂2

∂ξ0∂ξ2
+ C

∂

∂ξ0
(87)

where Hc is relative to the order of g00, i.e., Hc = 1 for the mapping addressed in

section A.4, while Hc = 1
h2 for [84] and [90]. The decomposition of ∇2 shown above

is ready to be used in the numerical solving, i.e., the solution of momentum equation

or the Poisson’s equation for pressure field. For example, ∇2
d can be solved implicitly

using any solver, while ∇2
off needs to be evaluated explicitly and lumped with the

loading term on the right hand side.
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