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ABSTRACT

The aim of this research is to introduce the notion of parametric optimization

(PO) as a useful approach for solving systems design challenges. In this research,

we define PO as the process of finding the optimal solution as a function of one or

more parameters. Parameters are variables that affect the optimal solution but, un-

like the decision variables, are not directly controlled by the designer. The principal

contributions of this research are (1) a novel formulation of the PO problem relevant

to systems design, (2) a strategy for empirically assessing the performance of para-

metric search algorithms, (3) the development and evaluation of novel algorithms

for PO, and (4) a demonstration of the use of PO for two real-world systems design

challenges. The real-world demonstrations, include the design of (i) a multi-ratio

vehicle transmission, and (ii) a Liquid Metal Magnetohydrodynamic Pump.

A practical challenge of applying the notion PO to systems design is that existing

methods are limited to problems where the models are accessible algebraic equations

and single objectives. However, many challenges in systems design involve inaccessi-

ble models or are too complicated to be manipulated algebraically and have multiple

objectives. If PO is to be used widely in systems design, there is a need for search

methods that can approximate the solution to a general PO problem. As a step

toward this goal, a strategy for performance assessment is developed. The use of

the mean Hausdorff distance is proposed as a measure of solution quality for the PO

problem. The mean Hausdorff distance has desirable properties from a mathematical

and decision theoretic basis. Using the proposed performance assessment strategy,

two algorithms for parametric optimization are evaluated, (a) p-NSGAII which is a

straightforward extension of existing methods to the case with parameters, and (b)

ii



P3GA an algorithm intended to exploit the parametric structure of the problem. The

results of the study indicate that a considered approach, P3GA, to the PO problem

results in considerable computational advantage.
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NOMENCLATURE

σ Electrical conductivity.

P̄ Fluid volumetric thermal power input.

βi Lagrangian multiplier

ṁ Fluid mass flow rate.

µ Fluid dynamic viscosity.

ω angular velocity of a single wheel on the automobile

ωe angular velocity of the engine shaft

Φ Data space → feature space

φ Voltage potential.

ρ Material density.

ρ density of air

ε0 Electrical permittivity of free space.

εr Material-relative permittivity.

τ Fluid viscous stress tensor.

θ Set of design parameters.

θlb,θub Lower and upper bounds on design parameters.

a centroid of hyper-sphere
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B Magnetic flux density vector.

b centroid of feature space hyper-sphere

Br Remnant magnetic flux density vector.

D Electric displacement vector.

E Electric field vector.

F Set of objective functions (e.g., to be minimized).

f Fluid volumetric force vector.

fL Lorentz volumetric force vector.

f oth Additional fluid volumetric force contributions.

I Identity tensor.

J Current density vector.

S Fluid strain rate tensor.

u Fluid velocity.

v Set of design variables.

v∗ Set of design variables satisfying a constrained optimization problem.

vlb,vub Lower and upper bounds on design variables.

xi A vector in the design variable space X

z Test point

ξd speed ratio for the differential
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ξi Slack variable

Ξt discretely adjustable speed ratio for the mechanical transmission

ζ0 Magnetic permeability of free space.

ζr Material-relative magnetic permeability.

A effective frontal area for the automobile

Aelec Area of MHD pump electrodes.

c SVDD Parameter

Cd dimensionless drag coefficient for the automobile

cp Fluid specific heat at constant pressure.

Cr rolling resistance coefficient for the automobile

dchan Fluid channel depth.

dmag Permanent magnet depth.

g gravitational constant

Iapp Total current applied to MHD pump electrodes.

K Kernel function

k Fluid thermal conductivity.

lchan Fluid channel length in flow direction.

lelec Length of MHD pump electrodes in flow direction.

lmag Permanent magnet length in flow direction.
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lres Hot/cold reservoir length in flow direction.

m mass of the automobile

mchan Fluid-filled channel mass (reservoirs neglected).

N Dimensionality of thermodynamic conditions space

n Number of data points

p Fluid pressure.

PEM Thermal power added to fluid channel by electromagnetic effect of MHD

pump.

Phot Thermal power added to fluid channel by electronic subsystem.

pref Fluid reference pressure.

Q Fluid volumetric flow rate.

q Gaussian kernel parameter

R radius of a single tire on the automobile

r Hyper-sphere radius

rchan Fluid channel aspect ratio (wchan/dchan).

T Fluid temperature.

T torque on a single wheel of the automobile

t time

Te torque on the engine shaft
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Tcold Cold reservoir sink temperature.

TEM MHD pump temperature.

Thot Hot reservoir temperature.

Vapp Voltage applied across MHD pump electrodes.

wchan Fluid channel width.

wmag Permanent magnet width.

wres Hot/cold reservoir width.

X Training data set

yi Training-data label
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1. INTRODUCTION: PARAMETRIC OPTIMIZATION FOR SYSTEMS

DESIGNERS

1.1 Parametric Optimization for Systems Design

1.1.1 Motivation

Before optimization can be done, the decision problem must be properly mod-

eled. Correctly modeling the problem is as important as the optimization since good

optimization techniques do not remedy a poor model. A mathematical approach to

a decision problem is often divided into four steps

(a) selection of mathematical process model

(b) selection of the decision variables available for control

(c) selection of preferences among decision criteria

(d) selection of appropriate search strategy

Much of engineering literature is concerned with (a) and (b), i.e., the development of

models of engineered artifacts. The focus of this research is instead on the selection

of (c) decision criteria and (d) search strategy. Specifically, we consider decision

problems where some preference information is not known.

Parametric optimization is a type of mathematical optimization where the opti-

mization problem is solved as a function of one or multiple parameters. We define

parameters as variables relevant to optimization that are outside of the control of

the designer; often these are environmental variables or variables controlled by other

designers. By solving the optimization problem in this way, we can remain agnostic

about preferences in the parameter(s).

1



The general notion of parametric optimization, as we have defined it, has been

used in several fields, including economics, mathematical optimization, and more re-

cently model based controls engineering. The broad aim of this research is to present

parametric optimization in a way that is relevant to systems design challenges. In

this research, an engineered system is defined as something designed by more than

one person [1]. Such systems require disciplinary expertise that are to broad for a

single person or the system is too extensive (containing too many parts). The design

of engineered systems requires not only in-depth multidisciplinary technical knowl-

edge, but also the careful management of its conception and realization. Systems

design traditionally encompasses architecture definition, specification of interfaces,

performance requirements, etc. We draw a distinction between systems design and

systems engineering, the latter is typically considered a broader field that includes

customer elicitation, life-cycle planning, and documentation, to name a few. Because

systems engineering subsumes systems design, we will refer to systems designers as

“systems engineers.” This research is not focused on a particular area or problem in

systems design, rather the aim is to (i) demonstrate how some systems design chal-

lenges can be better formulated as PO problems, and (ii) to develop and evaluate

parametric approaches for addressing specific challenges.

1.1.2 Terminology

Prior to discussing parametric optimization for systems design further, it is useful

to establish terminology used throughout this work. Terms such as parameter, design

variable, attributes, etc. are not consistently defined in the literature. The following

definitions are used throughout this dissertation.

Definition 1. (Discipline Engineer) Specialists in a specific engineering field or dis-

cipline, such as mechanical engineering, civil engineering, etc. A discipline engineer
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may refer to a single person or a team and may have expertise in multiple areas. The

goals of the discipline engineers are typically performance-related, such as minimize

mass, maximize speed, etc.

Definition 2. (Systems Engineer) Engineer focused on the system architecture and

interfaces between subsystems. A key task of the systems engineer is to manage the

discipline engineering tasks. The goal of the systems engineer are typically project-

related, such as project cost, safety, value, etc.

Definition 3. (Designer) Engineer involved in the design of a system. May refer

to either systems and discipline engineers. The designer has some decision making

ability.

Definition 4. (Design Variable) The variables specify the alternatives available to

the designer. The designer has direct control over the design variables. Also some-

times referred to as decision variables.

Definition 5. (Objective) A design goal with measurable progress. For example, “to

minimize structural mass.”

Definition 6. (Objective Attribute) A measure of progress relevant to decision mak-

ing. Also referred to as performance metric, or cost metric. We chose the term

“objective attribute” rather than the more common “ performance attribute” to avoid

confusion when discussing “algorithmic performance.”

Definition 7. (Parameter Attribute) The variables relevant to decision making that

are outside of the control of the designer. These are often environmental variables

or variables controlled by other designers. Here in, the terms parameter attribute

and parameter are used synonymously.
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Definition 8. (Attribute) Characteristics of an alternative relevant to decision mak-

ing. These include parameters and objective attributes.

1.2 Major Research Tasks

The aim of this research is to introduce the concept of parametric optimization as

a useful approach for systems design challenges. As a first step towards this goal, we

consider the following major research tasks.

1.2.1 Application of Parametric Optimization to Systems Design Chal-

lenges

Many designers use parametric optimization informally for systems design. Math-

ematical descriptions allow for a better understanding of complex design challenges.

Therefore, designers would benefit from a mathematical treatment of parametric

optimization problems. Specifically, the parametric optimization problems will be

motivated by (1) the problem of computing the expected value of information, and

(2) capability modeling.

1.2.1.1 Approximating the Value of Gathering Information

It is important for engineering firms to be able to develop forecasts of recom-

mended courses of action based on available information. In this context, good

decisions are characterized by careful management of uncertainty. Information gath-

ering activities, such as prototype development, or consulting experts, can reduce

uncertainty but at a cost. The first step in deciding whether or not to perform an

information gathering action is to compute its value. We term this the information

decision. For example, an automobile manufacturer may use a computer simula-

tion of a hydraulic motor and pump in the design of a new vehicle. The model may

contain random variables that can be more accurately determined through expensive

4



experiments (information gathering actions). To decide whether or not to perform

the experiments, the automobile manufacturer must be able to first quantify the gain

of conducting them.

Under several decision making frameworks, the information decision is addressed

by considering the expected reward of performing the information gathering activ-

ity. One considers the distribution of information that might be revealed and how

that information is expected to improve the design. Mathematically, one takes an

expectation of the design decision over the distribution of the random variable: the

revealed information. Problematically, in engineering the design decision often in-

volves complex optimization, resulting in a “nested” optimization loop. As has been

shown in the literature, solving the “nested” loop can become prohibitive, even for rel-

atively straightforward information decision problems. The computational expense

may even exceed the cost of actually performing the information gathering activity.

Consequently, if information decisions are to be addressed algorithmically, there ex-

ists a need for novel approaches to reduce the computational expense associated with

computing the expected value of gathering information.

In this research, we will show that by recasting the nested optimization as a

PO problem, one can potentially eliminate the “nested” loop that arises in many

information decision frameworks. In this research, we will show that the information

decision problem can be more efficiently solved by exploiting its parametric structure.

1.2.1.2 Subsystem Capability Modeling

Engineering projects typically involve many individuals, each contributes knowl-

edge to the project and none has complete knowledge about the system under devel-

opment. Although this specialization of knowledge is necessary and even desirable

from certain perspectives, it can create challenges for system-level decision making.
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This challenge is evident in the relationship between systems engineers and disci-

pline engineers during the early stages of a systems engineering project. Systems

engineers must make decisions such as to define the system architecture (relation-

ships between subsystems, especially at the interfaces) and to allocate requirements

or objectives to subsystems (setting performance and compatibility requirements)

[2, 3]. They do this with system-level objectives in mind (e.g., to maximize system

value) but must consider carefully the capabilities and limitations of the subsystem

technologies available for use in the system. Failure to recognize, for example, that

particular combinations of properties for a subsystem are impossible can lead to an

inferior system definitions or requirements that are altogether infeasible.

Discipline engineers have relevant expertise about particular engineering tech-

nologies, but individual discipline engineers generally are knowledgeable about only

a subset of the technologies under consideration and may know nothing about system-

level considerations. Thus, communication of capabilities from discipline engineers to

systems engineers can be an important factor in the success of a systems engineering

project.

Consider for example, space mission design where a key step is the evaluation of

alternative mission architectures. The mission architecture includes launch element,

spacecraft bus, payload, etc. The spacecraft trajectory that optimizes performance

is dependent on the mission architecture. In order to evaluate the various mission

architectures that may be under consideration, it is necessary to compute the opti-

mal trajectory for each architecture. A common approach to this problem is for the

astrodynamics engineer to precompute the optimal trajectory as a function of various

mission parameters. In other words, the astrodynamics engineer solves a challenging

parametric optimization problem: maximize performance as a function of mission

parameters. The aim is to facilitate the evaluation of the large number of available
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mission architectures. In this scenario, parametric optimization is used to allow for

concurrent or off-line optimization independent of the rest of the system. Once the

parametric problem is solved by the discipline engineer, that solution can be used to

evaluate mission architectures at a system level. This process of “capability model-

ing,” where the optimal capabilities of a subsystem are determined as a function of

external parameters is a powerful tool that is commonly used by practicing design-

ers; typically handled ad hoc. Designers would benefit from a formal mathematical

technique for capability modeling. Such a mathematical representation would allow

for the development of tailored optimization techniques.

The parameterized Pareto frontier (PPF) [4] has been introduced as a mathe-

matical basis for modeling the capabilities of a subsystem. The PPF contains only

designs that may potentially be optimal and can serve a compact representation of

the capabilities of a subsystem. Importantly, the PPF features multiple parameter

and performance attributes. In this research we will extend the parametric optimiza-

tion problem formulation to the case with multiple objectives. The solution to the

mutltiobjective multi-parametric optimization problem is the PPF.

1.2.2 Performance Assessment of Approximation Algorithms for Para-

metric Optimization

It is important in any optimization field to be able to quantitative evaluate and

compare different optimization algorithms. The performance assessment of algo-

rithms allows us to simplify judgment between algorithms and helps us better under-

stand the algorithm’s behavior. The appropriate framework for comparison depends

on the nature of the algorithms of interest and the problems which those algorithms

aim to solve.

We develop an empirical framework for assessing the performance of parametric
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optimization algorithms. The focus is on the question of how to determine whether

one solution is better than another for parametric optimization. For traditional

single-objective optimization algorithms, comparing solution quality is straightfor-

ward: one only needs to consider the objective value, smaller or larger is better.

This however is not the case for parametric optimization. Instead of a single solu-

tion, parametric optimization problems have a solution set. Evaluating the quality

of the solution set is a practical challenge for the empirical performance assessment

of parametric algorithms.

1.2.3 Propose and Evaluate Novel Algorithms for Parametric Optimiza-

tion

Engineering models are often nonlinear (dynamical systems, regression models) or

non-analytical (Finite Element Analysis, Process Models, etc.). Thus, this research

will be focused on general nonlinear problems that may be non-convex, multi-modal,

and discontinuous.

As a first step in as a first step in introducing parametric optimization to sys-

tems design, we develop two heuristic algorithms for parametric optimization (i)

the parametric non-dominated sorting algorithm (p-NSGAII) which is an extension

of NSGAII to the case with parameters and (ii) predictive parametric Pareto ge-

netic algorithm (P3GA). At the cost of solution accuracy, the benefits of heuristic

approaches are (1) they are easy to implement since they require little knowledge

about the mathematical structure of the problem (2) and can be applied to a wide

range of problems.

1.2.4 Demonstration of Parametric Optimization for Systems Design

Finally, we demonstrate the use of parametric optimization on realistic engineer-

ing problems. Specifically, we demonstrate the use of parametric optimization for
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computing the expected value of gathering information in the design of a multi-ratio

transmission and capability modeling of a cooling system.

1.3 Contributions and Scope

A summary of the major contributions of this research is as follows

1. Demonstration of the use of parametric optimization in the context of systems

design.

2. Development of a performance assessment strategy for approximation algo-

rithms for parametric optimization

3. Assessment of novel heuristic algorithms for parametric optimization

4. Demonstration of parametric optimization for real-world systems design chal-

lenges.

In this dissertation, we demonstrate how some common systems design challenges

can be modeled as parametric optimization problems. The aim in modeling the prob-

lem this way is to allow for the development of tailored solution techniques that can

exploit the parametric structure of the problem. As a first step, we develop two gen-

eral purpose heuristic algorithms for parametric optimization. Because of the wide

applicability of heuristic algorithms, they are a reasonable first step in introducing

parametric optimization to systems design. However, heuristic algorithms are lim-

ited in their performance, especially in terms of the optimally of the solution. The

aim of presenting the heuristic algorithms is not to present the way to do parametric

optimization in systems design but simply one way.

The purpose of solving a parametric optimization problem is to use the solution.

However, in approximating the solution rather than finding it exactly, a number of
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new problems arise. Two particularly difficult issues are (1) how to best use the

approximation and (2) what is the penalty we pay for using an approximation? In

this dissertation, we present an approach for using the approximation but do not

explore alternatives or what the consequences are of using the approximation.
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2. BACKGROUND

2.1 Definition of Parametric Optimization

2.1.1 Standard Optimization

Let X ⊆ Rn be the set of feasible decision vectors x. The feasible set X is typ-

ically defined by geometric constraints, physical laws, and practical considerations.

The objective function f : X → R ranks each decision vector. We will use minimiza-

tion herein without loss of generality since maximizing f is equivalent to minimizing

−f . Using this notation, the standard optimization problem as

y∗ = min
x

f(x)

subject to x ∈ X ⊆ Rn

(2.1)

The aim is to find a solution, denoted y∗, that is the minimum of the objective func-

tion f(x), and x ∈ X. Generally, mathematical optimization techniques are used

to find the extrema (local or global) of the function f . In engineering, optimization

is often used in the development of computational models. For example, in compu-

tational materials science, the total Gibbs energy of all phases is minimized for the

calculation of phase equilibria [5]. Because focus of this work engineering design, we

use optimization for the selection of the “best” alternative(s).

2.1.2 Parametric Optimization

In parametric optimization, one seeks to find the solution to a standard opti-

mization problem as a function of some parameters. The parameters are variables

that relevant to decision making but are outside of the control of the designer. In

a systems design context, parameters may include unspecified design requirements,
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environmental conditions, or properties of other subsystems. Intuitively, the para-

metric search problem can be thought of as an application of standard optimization

at every combination of some parameter value(s). Let Θ ⊆ Rp be the set of feasible

parameter vectors θ. We extend Eq. 2.1 to the parametric case as

y∗(θ) = min
x

f(x,θ)

subject to gi(x,θ) ≤ 0 ∀ i = 1, . . . , q

hi(x,θ) = 0 ∀ i = 1, . . . , r

θ ∈ Θ ⊆ Rp

x ∈ X ⊆ Rn

(2.2)

In the case of parametric optimization, the objective function is optimized as a

function of the parameter vector. In other words, y∗(θ) is a relation between θ and

minx∈Xf(x,θ). Thus, the solution rather than being a single point is a (potentially

infinite) set. The constraints gi and hi are those that involve both design variables

and parameters.

Figure 2.1 is an illustration of a solution in the 2-dimensional case. The shaded

region is the feasible region in the objective space. The bold line is the maximum of

the objective function for a given θ. Note, the x dimension not shown would be into

the page.

The feasible parameter space may be defined simply by upper and lower bounds

as in Figure 2.1 or by more general (nonlinear) constraints. In some applications,

it may be useful to define constraints in terms of both x and θ. For example, the

parameter may be a response of the design variables θ : Rn → Rp. The constraint

θ = θ(x) would be represented as an equality constraint in Eq. 2.2.

Consider the scenario where two analysis models (each belonging to different
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Solution Set

Feasible 
region

Figure 2.1: Notional illustration of a solution set to a parametric optimization prob-
lem. a

designers ) may share an interface property. For example, a suspension model and

chassis model may share a spring constant in their analysis. The spring constant is

a function of design variables, e.g., wire thickness, number of coils, etc. In this case,

the parameter space would be the set of feasible spring constants. The parametric

optimum would be the best suspensions/chassis designs possible for every possible

spring constant.

2.1.3 Parametric Optimization Example

Consider the standard optimization problem

y∗ = max
−2≤x1,x2≤2

f(x1, x2) (2.3)

where f(x1, x2) = 0.5 + x1e
−x21−x22 . It is easy to see that y∗ = 2+

√
2e

2
√
2e

and occurs

at (x1, x2) =
(√

1
2
, 0
)
. See Fig. 2.2 for a graphical representation of the optimum.

aReprinted with permission from “A Parallel Approach for Computing the Expected Value of
Gathering Information” Galvan, E., Hsiao, C., Vermillion, S., & Malak, R., 2015. SAE Int. J.
Mater. Manf., 8(2):271-282, Copyright 2015 by SAE International.
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Figure 2.2: Comparison between standard and parametric optimization.

Say that we wish to "parameterize" this simple optimization problem along x1 as

y∗(x1) = max
−2≤x2≤2

f(x1, x2)

− 2 ≤ x1 ≤ 2

(2.4)

In other words, we want to find the x2 that maximizes the objective function

f(x1, x2) for any −2 ≤ x1 ≤ 2. See Fig. 2.2 for a graphical representation of

the parametric solution. In this case, the parametric solution is an infinite set, a

1-dimensional “frontier” or surface.

2.2 Applications and Techniques for Parametric Optimization

In this research we have defined parametric optimization notionally as the process

of determining how the solution to an optimization problem changes as a function of

one or more variables, which we termed parameters. This general concept has appli-

cations in several fields, notably in economics and process engineering. The details

of problem formulation and solution techniques vary from discipline to discipline. In
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this section, we provide a limited review of some of the applications and solution

techniques for parametric optimization in the literature.

2.2.1 Economics: Comparative Statics

The concept of parametric optimization has been used previously in economics

and [6, 7], typically with the aim of investigating solution sensitivity to one or a

few parameter variables. This type of analysis is useful in understanding a system’s

response to uncertain parameters. For example, fluctuations in market requirements,

and prices in economics, or boundary conditions, and system characteristics in engi-

neered systems. When such fluctuating conditions are considered in an optimization

problem, a parametric optimization technique can be used to understand their effect

on the solution.

For example, in the area of economics known as comparative statics, one seeks

to study how a firm’s optimal strategy or the equilibrium of a market is affected by

changes in an exogenous parameter such as the cost of labor [8]. Consider a firm’s

profit expression

π = θ · x− C(x) (2.5)

where a firm chooses x to maximize profit, and C(x) is the cost of producing x. The

parameter θ represents market price of x. Comparative statics asks the question “How

does the optimal choice change as a function of the parameter θ?” In Equation 2.5,

the optimal argument as a function of the parameter is x∗(θ). By substituting the

optimal argument into first order optimality conditions, we see that dx∗(θ)/dθ > 0,

that is a profit maximizing firm increases output as market price increases. This

result is perhaps obvious but it is illustrative of the analysis involved in comparative

statics and the types of results one can expect. In general, comparative statics is
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interested in parametric problems of the form

min
x

f(x, θ)

subject to x ∈ X

θ ∈ Θ

(2.6)

where one seeks to find x that minimizes f(x, θ) subject to the constraint that x ∈ X

for any value of the parameter θ ∈ Θ. In economics, parametric optimization focuses

predominantly on theoretical results and simplified problem formulations (e.g., linear

or quadratic approximations, monotonic relationships) to learn about behavioral

trends (such as the output-price relationship) rather than exact information about

an exact outcome.

2.2.2 Mathematics: Fuzzy Optimization

Another application of parametric optimization is so-called “fuzzy optimization.”

The approach was first proposed by Zimmermann [9] to solve the multiobjective opti-

mization problem (or vectormaximum problem), where there are multiple objective

that are simultaneously optimized. A fuzzy objective and constraints are charac-

terized by their membership functions. Fuzzy optimization is intended to model

situations where the designer cannot specify clearly the goal and constraints of the

problem. Let x = (x1, x2, . . . , xn) be a vector of decision variables. The general fuzzy

optimization problem can be stated as

min
x∈X

f(x)

subject to gi(x) . 0 ∀ i = 1, . . . , q

(2.7)
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where ’∼’ indicates imprecision on the part of the designer. The fuzzy formulation

in Equation 2.7 can be formulated as a parametric optimization problem as [10]

min
x∈X

f(x)

subject to gi(x) ≤ θi ∀ i = 1, . . . , p

θ ∈ Θ ⊂ Rp.

(2.8)

where θ = (θ1, θ2, . . . , θp).

2.2.3 Engineering: Process Optimization

More recently, the concept of parametric optimization has been applied to ar-

eas in process engineering. The design of engineered processes, such as the control

of chemical processes, involve optimization for a fixed set of parameters, such as

process coefficients, scheduling constraints, plant parameters, etc. However, these

parameters are subject to change during operation such that the optimal solution at

nominal parameter values ceases to be truly optimal. By recasting the problem as a

parametric optimization problem, a designer can solve for the optimal as every value

of the parameter. The result is an optimal “frontier” rather than a single point, see

Figure 2.1. When the parameters deviate from their nominal value, one can obtain

the corresponding optimal solution from the frontier rather than solving another op-

timization problem. This approach is particularly useful for control and operation

problems, where the time delay in solving an optimization problem at each step is

prohibitive for on-line corrective action. Thus, the goal is to reduce real-time opti-

mization to a simple function evaluation. In process optimization, the parametric

17



optimization problem is typically stated as

x∗(θ) = argmin
x

f(x,θ)

subject to gi(x,θ) ≤ 0 ∀ i = 1, . . . , q

hi(x,θ) = 0 ∀ i = 1, . . . , r

θ ∈ Θ ⊆ Rp

x ∈ X ⊆ Rn

(2.9)

where gi and hj are constraints involving both the design variables and parameters.

Again, f is the objective attribute, x is a vector or design variables, and θ is a vector

of parameters. In the case of process optimization, the aim is to obtain x∗(θ), the

argument that minimizes in the objective as a function of the parameter. In this

research, we are instead primarily interested in the objective function value of x∗.

2.2.4 Collaborative Design

Another application of parametric optimization is in the area of collaborative

design. In a collaborative design setting, the optimal performance of a system or

subsystem will depend on some parameters that may be outside of the control of

the designer, for example, changing constraints and requirements. In such cases,

designers may be interested in finding not a single optimum but a family of optimal

solutions as a function of the changing parameter value.

In [11], Wagner and Papalambros propose the use of the Parametric sensitivity

analysis to investigate how the optimal performance of an engine varies with pack-

aging objectives. The aim is to use the set of parametric optimal solutions as a

point of negotiation between designers. Another relevant design method is Bilevel

Integrated System Synthesis (BLISS) developed by Sobieszczanski et al [12]. Under
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BLISS, the aim is to concurrently optimize an engineered system by decomposition.

Each decomposed optimization problem is linked, resulting in an improvement of the

objective at each iteration. However, the designs are linked using sensitivity analysis

(how the solution changes in the neighborhood of the parameter) rather than para-

metric optimization (how the solution changes for any parameter value). Still, the

aim is related in the sense that the design process is improved (in terms of converging

to a more desirable solution with less effort or time) by knowing some information

about how the performance of a subsystem changes with the parameter value.

2.2.5 Sensitivity Analysis Based Techniques for Parametric Optimiza-

tion

In the literature, the most common technique approach to parametric optimiza-

tion is to combine traditional optimization techniques for mathematical optimization

of linear, quadratic, convex nonlinear, etc. with results in sensitivity analysis. Gen-

erally, sensitivity analysis aims at describing how the response of a model changes

with the perturbation of a parameter. Parametric optimization is concerned with

the optimum of a model changes for the full range of parametric variability.

In the literature, most sensitivity analysis based techniques for parametric op-

timization are limited to linear, quadratic problems, and mixed integer problems.

However, within this field there exists a diverse range of algorithms and general re-

sults. The purpose of this section is not to provide the reader with a broad survey

of the existing literature since several thorough surveys exist [13, 14, 15, 16, 17].

Instead the aim is to give the reader a general understanding of existing paramet-

ric optimization techniques and their limitations. To this end, we focus only on the

multi-parametric Quadratic Programming (mp-QP) algorithm (see [15] for a detailed

description).
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First, we consider the general multi-parametric optimization problem

min
x

f(x,θ)

subject to gi(x,θ) ≤ 0 ∀ i = 1, . . . , q

hi(x,θ) = 0 ∀ i = 1, . . . , r

θ ∈ Θ ⊆ Rp

x ∈ X ⊆ Rn

(2.10)

where f, g, and h are twice continuously differentiable in x and θ. The first-order

Karush-Kuhn-Tucker (KKT) conditions for optimality are

∇L = 0,

λigi(x,θ) = 0, λi ≥ 0, ∀i = 1, . . . , q,

hj(x,θ) = 0 ∀i = 1, . . . , r,

L = f(x,θ) +

p∑
i=1

λigi(x,θ) +
r∑
i=1

µihj(x,θ)

(2.11)

Theorem 1. Basic Sensitivity Theorem. Assume that (i) strict complementary

slackness holds, that is, only one variable in every complementary pair µihj(x,θ)

is zero (ii) linear independence constraint qualification, and (iii) second-order suffi-

ciency conditions (SOSC) hold. Let (x0,λ0,µ0) be a triple corresponding to the KKT

conditions that satisfy Eq. 2.11 and 2.10 for some parameter value θ0. In the neigh-

borhood of θ0, there exists a unique, differentiable function z(θ) = (x(θ),λ(θ),µ(θ))T
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that satisfies Eq. 2.11. at θ0, with an isolated minimizer of Eq. 2.10, and

M(θ0)


dx(θ0)
dθ

dλ(θ0)
dθ

dµ(θ0)
dθ

 = −N(θ0) (2.12)

where M and N are the Jacobian Matrix of Eq. 2.10 with respect to (x,λ,µ) and

θ, respectively

Proof of Theorem 1 can be found in [18]. The first order approximation of z(θ)

in some neighborhood of θ0 is

z(θ) = z(θ0) +M(θ0)
−1N(θ0) · θ (2.13)

With these general results in mind, we now consider a quadratic optimization

problem with parameterized linear constraints, where the parameters appear on the

RHS of the constraints.

y∗(θ) = min
x

cTx+
1

2
xTQx

subject to Ax ≤ b+ Fθ

θ ∈ Θ ⊆ Rp

x ∈ X ⊆ Rn

(2.14)

where c ∈ Rn, Q is an (n × n) symmetric positive definite matrix, A is a (q × n)

matrix, F is a (q × p) matrix, b ∈ Rq, and X ⊆ Rn and Θ ⊆ Rp are compact

polyhedral convex sets.
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From Theorem 1, in the neighborhood of a feasible parameter value θ0x0(θ)

λ0(θ)

 = −M(θ0)
−1N(θ0) · (θ − θ0) +

x(θ0)

λ(θ0)

 (2.15)

where 2.15, x0 is the optimum in the neighborhood of θ0. We define the space of

θ where Eq. 2.15 remains optimal as the critical region, denoted R0. The critical

region is defined by the inequalities in Eq. 2.14 and the optimality condition that

λ0(θ) ≥ 0. Let the initial given region Rig be defined by the linear inequalities in Eq.

2.14. The remaining region is Rrm = R0 − Rig. Another set of parametric solutions

is found in Rrm. The procedure is repeated until termination criteria are met or all

regions have been explored.

The mp-QP algorithm leverages sensitivity analysis techniques to solve a para-

metric optimization problem. The algorithm assumes linear constraints with the

parameters on the RHS. As a result, the parameters must be additive linear terms.

The mp-QP algorithm iteratively partitions the search space to find the set of op-

timal solutions as a function of the parameter. Ultimately, the solution is a set of

piece-wise linear functions over the parameter.

2.3 Multiobjective Optimization

As stated in Section 1.1.1, our focus is on the use of optimization in decision prob-

lems where some preference information is not known. Specifically, we are concerned

with the situation where no preference information is available about a parameter

that is relevant for decision making, i.e., parametric optimization. Multiobjective

optimization is related in the sense that it is concerned with the case where only

partial preference information is available. In the Multiobjective case, the decision

maker may know the preference ordering in each objective (e.g., to maximize or min-
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imize) but does not know how to trade-off among the competing objectives. Thus,

some preference information is missing in the decision problem.

Most real-world engineering optimization problems require that the designer si-

multaneously consider multiple objectives. Often, these engineering problems are

cast as a multiobjective optimization (MO) problems, where the objectives typically

conflict with one another. For example, for the design of an internal combustion

engine, designers must balance efficiency, emissions, power, cost, etc.

The overall aim may be to select the design that increases the overall value of the

project to the stakeholders. In the case of the design of an internal combustion engine,

the project may be the design, production, marketing, sale, etc. of a vehicle. In this

scenario, value may be increased by maximizing profit to the firm. For mathematical

optimization in this context, a profit model that correlates all objectives to project

value would be needed. However, correlation between objectives is often complex and

difficult and expensive to elicit from the stake holder(s). How would one elicit the

preferences of Toyota’s investors for the internal combustion engine design? Even the

simpler problem of expressing the system engineer’s preferences may be impractical.

As a result, so-called “a-posteriori” techniques for MO are common, where the aim

is to find all solutions that maximize the objectives.

2.3.1 Mathematical Formulation

Without loss of generality, the multiobjective optimization problem can be stated

as follows. Let X ⊆ Rn be the set of feasible decision vectors, denoted x. Let

f : X → Rm,f(x) = (f1(x), . . . , fm(x)) be the vector valued objective function.
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The multiobjective search problem is as follows [19]:

J∗ = min f(x)

subject to x ∈ X ⊆ Rn

where f(x) = (f1(x), f2(x), . . . , fm(x))

(2.16)

The optimization problem has multiple objectives, fj(x), for j = 1, 2, . . . ,m, that

must be minimized simultaneously. Like the PO problem, the MO problem has an

infinite number of solutions.

2.3.2 Pareto Dominance

In the non-trivial case, a MO problem has multiple solutions that simultaneously

optimize each objective. That is, no objective can be further improved without

worsening at least one other. These solutions are said to be Pareto efficient. The

concept of Pareto efficiency is named after Vilfredo Pareto (1848-1923), an engineer

and economist who used the concept to study income distribution, political systems,

resource allocation [20]. A Pareto efficient outcome is one where resources are allo-

cated in such a way that it is impossible to make any individual better off without

making at least one other individual worse off. Thus, a Pareto efficient outcome

provides a minimal notion of efficiency. Those outcomes that are not Pareto efficient

are said to be Pareto dominated. Thus, Pareto dominance is a mathematical deci-

sion rule for eliminating alternatives from consideration that could not be the most

preferred. In engineering, the concept can be used to restrict selection to the set of

alternatives to those that are Pareto efficient.

Consider a system with a vector function f : Rn → Rm that maps the feasible set

of alternatives X ⊆ Rn to the attribute space Rm. Let A = {y : y = f(x),x ∈ X}

be the set of feasible attribute vectors. Suppose preference direction is known for
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each attribute yi for i = 1, . . . , r. An alternative y′ is preferred to another y′′ is

denoted y′ < y′′. Pareto dominance (PD) is defined as follows [21]:

Definition 9. (Pareto Dominance) An alternative having attributes y′′ ∈ A is Pareto

dominated by one with attributes y′ ∈ Y if and only if, y′i < y′′i ∀i = 1, . . . ,m and

y′i � y′′i ∃i = 1, . . . ,m.

The set of all Pareto non-dominated solutions is termed the Pareto frontier (PF).

2.4 Algorithms for Multiobjective Optimization

2.4.1 Epsilon-Constrained Method

One of the most widely used approaches a-posteriori methods for MO, is the ε-

constraint method [22, 23]. In the ε-constraint method, the multiobjective problem

is reformulated as several single-objective problems. One of the multiple objectives

is arbitrarily selected to be the only objective and the remaining objectives are

constrained. By systematically varying the constraints, the ε-constraint method

achieves a relatively even distribution of points along the Pareto frontier.

Consider, the general multiobjective search problem in Section 2.3. Let fj(θ)

denote the primary objective, which is selected arbitrarily from the set of multiple

objectives. The ε-constraint subproblem is

min
x

fj(x)

subject to fi(x) ≤ εi ∀ i = 1, . . . ,m i 6= j

x ∈ X ⊆ Rn

(2.17)

The principal limitation of the ε-constraint method is a uniform distribution of

constraints does not guarantee a uniform distribution of Pareto-optimal solutions.
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To illustrate this limitation, consider the following simple MO problem

min
xx,xx

x1, x2

subject to
(x2 − 20

20

)8
+
(x1 − 1

1

)8
≤ 1

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 20

(2.18)

If we let x1 be the primary objective, the ε-constraint subproblems are

min
xx,xx

x1

subject to
(x2 − 20

20

)8
+
(x1 − 1

1

)8
≤ 1

0 ≤ x1 ≤ 1

x2 ≤ ε

(2.19)

For this case, an equidistant sampling of ε produces the results illustrated in

Figure 2.3.

2.4.2 Normal Boundary Intersection Method

The Normal Boundary Intersection Method (NBI) algorithm developed by Das

and Dennis [24] is based on a scalarizing scheme to achieve “good” diversity along

the solution frontier. The algorithm begins by establishing a utopia plane, which is

a plane that passes through the individual minimizers of each objective function. In

other words, one minimizes in each objective individually. The convex-hull of the

resulting minimizers is the utopia plane. Next, one finds evenly distributed points

along the utopia plane. Each of these points is minimized perpendicular to the utopia

plane. The result is a nearly uniform distribution of points along the Pareto frontier.
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2

Figure 2.3: Solution to Equation 2.18 found using ε-constraint method with equidis-
tant ε constraint values.

Figure 2.4 is an illustration of the NBI method in the 2 dimensional case.

Consider again the general multiobjective search problem in Section 2.3. Let

x∗ = (x∗1, x
∗
2, . . . , x

∗
n) be a vector of individual minimizers and f ∗ = (f ∗1 , f

∗
2 , . . . , f

∗
m)T

be the corresponding objective attribute vector. The origin is shifted such that f ∗

is non-negative. Next, the convex hull of f∗ is found, which can be expressed as

the simplex φβ, where φ = (f(x∗1),f(x∗2), . . . ,f(x∗m)) is an m × m matrix and

β = {(b1, b2, . . . , bm)T |
∑m

i=1 bi = 1}. Next, the β vectors are determined such that

they are uniformly distributed along the utopia plane. Let (β1, β2, . . . , βN) be the

uniformly distributed vectors. The NBI subproblem (NBIβi
) for a given vector βi is
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Figure 2.4: Illustration of the Normal Boundary Intersection Method. The blue
arrows are perpendicular to and evenly distributed along the utopia plane

max
x,t

t

subject to φβ + tn̂ = f(x)

x ∈ X ⊆ Rn

t ∈ R

(2.20)

where n̂ is the normal direction at φβ towards the origin. The principal difficulty

in the NBI method is that, unlike the ε-constraint method, solutions to the NBI

subproblems may not be Pareto-optimal. That is, the NBI method finds boundary

points rather than Pareto-optimal ones. As a result, the NBI subproblem solutions

must be filtered, typically using Pareto dominance.

2.4.3 Multiobjective Genetic Algorithms

In the MO literature, genetic algorithms are the most widely used to solve prob-

lems with complex objective functions [19]. Genetic algorithms (GAs) are population

based meta-heuristic optimization algorithms. A GA uses concepts inspired by bi-
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ological evolution, such as selection, reproduction, mutation, and recombination. A

fitness function determines the quality of the solutions (i.e., the current population).

The aim is to bias the subsequent generation towards the desirable region of the

search space. In a multiobjective genetic algorithm (MOGA), the fitness value is

assigned relative to two meta-objectives

1. Find a set of solutions close to the PF.

2. Maintain diversity in the solution set.

The advantage of the GA approach to multiobjective optimization is that by

iterating over a population of solutions rather than a single point, an GA is able find

a set of solutions in a single run [25]. Furthermore, via the recombination operator,

a type of “knowledge sharing” among solutions is achieved by combining promising

features to create new solutions in unexplored parts of the space.

Importantly, most MOGAs rely on the concept of dominance to assign higher

fitness values to members closer to the PF. In these algorithms, two members are

compared on the basis of whether one dominates the other or not. The nondominated

member is closer to the PF and is assigned a higher fitness value. The most commonly

used dominance rule is PD, but other dominance rules are possible.

The second goal is typically achieved through the use of diversity preservation

operator. Then a termination condition is checked. If the termination criterion is

not satisfied three main operators modify the population: selection, crossover, and

mutation. Each new population is termed a generation. The following is a high-level

description of a typical MOGA

1. Randomly initialize population.

2. Assign fitness based on dominance and a diversity operator.
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3. If termination criteria have not been met, use selection, crossover, and muta-

tion, operators to generate offspring and combine with parents. Else, terminate.

4. Return to step 2.

Several researchers have successfully approximated the set of solutions to MO

problems using MOGAs [26, 27, 28, 29, 30, 31, 32, 33, 34]. A drawback of many

MOGAs however, is that their performance deteriorates with the number of objec-

tives. The principal cause of this loss in performance is that the fraction of the

population that is Pareto non-dominated increases with the dimensionality of the

objective space [35]. In order to better understand the ability of Pareto dominance

to order solutions in terms of objective function values, we randomly generate 200

designs in an M -dimensional unit hyper-cube for M = 2, 6, . . . , 30. The average

percentage of non-dominated designs over 10 runs is presented in Figure 2.5. The

percentage of non-dominated solutions increases with the number of objectives. For

dimensions greater than 10, nearly all solutions are non-dominated. The high num-

ber of non-dominated solutions weakens the selection bias towards the true Pareto

frontier. In the following subsection is a brief review of alternative dominance crite-

ria.

Several alternative dominance criteria have been proposed to order to address the

limitations of Pareto dominance. Alternative dominance criteria typically involve

some modification of Pareto dominance intended to increase selection bias towards

the Pareto frontier. For example, Pareto dominance may be modified as shown

in Figure 2.6. Using (a) Pareto dominance all the alternatives are non-dominated.

Using (b) modified dominance, alternative c is dominated. The modified dominance

approach increases solution bias towards the true frontier but at the cost of losing

diversity in the solution set [37].
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Figure 2.5: Mean fraction of predictive Pareto non-dominated designs from a set of
200 uniformly distributed designs in an M -dimensional unit hyper-cube. [36]
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(a) Pareto dominance

f1

f2

a
c
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(b) Alternative dominance.

Figure 2.6: Illustration of (a) Pareto dominance, and an (b) modified dominance. In
each case, preferences are to minimize in each objective. The shaded region indicates
the space dominated by the corresponding alternative. Alternative c is dominated
only in (b). [38]
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Again consider a system with a vector function f : Rn → Rm that maps the

feasible set of alternatives X ⊆ Rn to the attribute space Rm. Let A = {y : y =

f(x),x ∈ X} be the set of feasible attribute vectors. Without loss of generality,

assume preference direction is to minimize each attribute yi for i = 1, ...,m.

Under α-dominance lower and upper bounds are set for trade-off rates between

two objectives such that solutions characterized by only small improvements in some

objectives are rejected. This approach requires that the designer provide n2 operating

parameters that define the trade-off rate between the objectives, where n is the

number of objectives. Another alternative, ε-dominance is a relaxation of strict

dominance. There are several different versions of ε-dominance. Under additive ε-

dominance, an alternative y′ ∈ Y is ε-dominated by y′′ ∈ Y if and only if, y′
i−ε ≤ y′′i

for all i = 1, . . .m. As a result of their superior ordering ability, these dominance

criteria have been shown to be more appropriate than Pareto dominance for many-

objective problems [39]. However, the performance of the dominance criteria depends

on values of several operating parameters specified by the designer.

The relation favour is based on the number of objectives for which one solution

is better than another. An alternative y′ ∈ Y is dominated by y′′ ∈ Y if and only if

the following relation holds
∣∣{j : y′′j < y′i

}
, 1 ≤ j ≤ m

∣∣ < |{i : y′i < y′i} , 1 ≤ i ≤ m|.

This dominance criteria introduces different ranks to the non-dominated solutions

leading to increased selection bias towards the true Pareto frontier. However, it also

results in a decrease in solution diversity, sometimes converging to very few solutions

[40].

2.4.4 Quality Measure Directed Approaches

There exist in the literature a number of quality measures for the set of non-

dominated solutions [41]. Several approaches form many-objective problems pro-
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posed in the literature directly optimize the quality measure. The hyper-volume

indicator is a quality measure that is often used to assign fitness values to the mem-

bers of the population. The hypervolume indicator is hypervolume of the space

dominated by a solution set bounded by a reference point. Optimizing the hyper-

volume indicator is an attractive approach since: (1) it is a comprehensive search

metric that captures convergence to the Pareto frontier and diversity in the solution

set, and (2) it is the only known strictly monotonic quality measure with respect

to the Pareto frontier. The hypervolume indicator of solution set S is larger than

that of solution set S ′ if and only if S is better than S ′ [42]. Several hypervol-

ume indicator based MOGAs have been proposed [43, 44, 45, 46]. The principal

drawback of hypervolume indicator based approaches is the high computational ex-

pense for the hypervolume calculation; most algorithms are not feasible for problems

with greater than 6 objectives. The HypE algorithm developed by Bader and Zitzler

addresses this limitation by approximating the hypervolume using Monte Carlo sam-

pling [47]. By approximating the hypervolume rather than computing it directly, the

many-objective problems become feasible with hypervolume indicator based search

algorithms.

2.5 Parametric Pareto Dominance

As discussed in the previous section, Pareto dominance (PD) criteria and can

be applied to cases where partial preference information is available. Specifically,

PD can be applied to decision problems with multiple competing objectives, i.e., the

multiobjective case. A key benefit of the notion of PD is that one is guaranteed,

from a decision-theoretic basis, not to eliminate any designs that could potentially

be the most preferred. A limitation is that one must have a well-defined preference

order over each objective attribute. As a result, PD cannot be applied in the case
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where one or more attributes is a parameter.

The parameterized Pareto dominance (PPD) rule is intended to address this lim-

itation and is derived from a decision-theoretic basis and is mathematically sound

in the sense that, like Pareto dominance, it will never eliminate an alternative that

could be the most preferred solution. Thus, it captures all the potentially desirable

alternatives [48, 4]. The relevant subset, termed the parameterized Pareto frontier

(PPF), contains all points that potentially could be the most-preferred option in an

engineered system.

2.5.1 Mathematical Definition

Again, we consider a system with a vector function f : Rn → Rm. Let Θ ⊆ Rp

be the set of parameter vectors, denoted θ. In the parametric case, we define the

attribute space more generally as the space of combined objective and parameter

attributes A = {(y,θ) : y = f(x,θ),x ∈ X,θ ∈ Θ}. Suppose preference direction is

known for each objective attribute yi for i = 1, . . . ,m. The mathematical formulation

of parameterized Pareto dominance (PPD) is as follows [48]:

Definition 10. (parametric Pareto dominance) An alternative having attributes

(y′′,θ′′) ∈ A is parametrically Pareto dominated by one with attributes (y′,θ′) ∈ A if

and only if θ′i = θ′′i ∀i = 1, . . . , p, y′j < y′′j ∀j = 1, . . . ,m and y′j � y′′j ∃j = 1, . . . ,m.

This definition can be considered an extension of PD to the case involving param-

eters, which are those attributes over which the designer does not have preference

over. The Pareto frontier is the set of feasible alternatives that are not Pareto dom-

inated. The Pareto frontier is the set of solution to the multiobjective optimization

problem. Similarly, the solution to a parametric optimization problem is those that

are not parametrically Pareto dominated.

Figure 2.7 is a comparison of PD and PPD. In Figure 2.7a preferences are to
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Figure 2.7: Comparison between (a) PD and (b) PPD. In this example, there are
m = 2 attributes; the feasible attribute set A ⊂ R2.b

minimize both attributes (both are objectives) resulting in a PF. In Figure 2.7b

preference is to minimize in y1 (dominator attribute) but the preference order in θ1

is unknown (parameter attribute). In this case, one can use PPD to identify inferior

alternatives. The result is a PPF, which can be used as an efficient representation

(not containing irrelevant alternatives) of the capabilities of a subsystem.

It is important to note that PPD is not an alternative dominance criterion

such as α-dominance, ε-dominance, or favour, [49, 50, 25]. Alternative dominance

criteria typically involve some modification of PD and are not derived from a decision-

theoretic foundation. As a result, “dominated” solution under an alternative dom-

inance criterion may actually be the most preferred. On the other hand, any al-

ternative dominated under PPD provably cannot be the most preferred solution.

Additionally, for any non-dominated alternative there exists some aggregating func-
bReprinted with permission from “P3GA: An Algorithm for Technology Characterization”, Gal-

van, E., Malak, R.J., 2016 J. Mech. Des. 137(1) Copyright 2015 by ASME.
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tion for which it is the most preferred solution.

2.5.1.1 Parametric Pareto Dominance for Capability Modeling

It is important for engineers to understand the capabilities and limitations of the

technologies they consider for use in their systems. Failure to appreciate what is

achievable (or not achievable) by subsystem technologies can result in the selection

of poor concepts, the derivation of poor design requirements (that are either un-

achievable or overly conservative), and excessive design iteration. However, it can be

challenging for engineers to navigate the many competing considerations that arise

in the development of large systems that have many interacting subsystems.

Several researchers have investigated approaches for modeling the capabilities of

a technology quantitatively with the aim of supporting technology selection, design

space exploration, and trade-off analyses. A common thread among these works is

that in order to model the capabilities of a technology, one abstracts away information

about its physical form. Mathematically, the result is a model defined in the attribute

space for a given system. With these models, designers can represent the abstracted

capabilities, performance traits, or metrics of a component or system.

It can be advantageous for engineers to use abstract models of competing tech-

nologies. Abstract models help engineers focus on the part of a problem most ger-

mane to decision making (i.e., what a subsystem can or cannot achieve rather than

how it achieves it). Abstract models can also provide engineers with the capacity to

consider multiple physically heterogeneous technologies in the same variable space.

For example, although batteries and fuel cells are very different physically, engineers

can consider them both as energy storage technologies with the same attributes

such as power density, energy density, and efficiency. Furthermore, abstract mod-

els can be desirable in a multi-organizational collaborative design setting. Because
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they abstract away low-level implementation details, they tend to hide proprietary

information that collaborating organizations may not want to share.

Several approaches have been proposed in the literature for capturing and mod-

eling the capabilities of a component or system. Under set-based design approaches

to capability modeling, one uses a mathematical representation of the set of perfor-

mance attributes that are technically feasible [51, 52]. Initially, designers catalog

components or designs into a hierarchical structure. Then, designers abstract the

performance attributes of the feasible set of designs to form descriptions for use in

higher-levels in the hierarchy. The union of the basic sets represents the achievable

performance characteristics of the system. Designs are eliminated from consideration

through propagation of interval constraints in the performance space [53]. Taking

an engine design example, the constraints may be design specifications for airflow

rate, horsepower, torque, and so on. Finally, designers use some cost function to

select one of the remaining designs. A drawback of this approach is that designers

must make restrictive assumptions about what is desirable in the performance space.

When design is done by this approach, many degrees of freedom are removed from

the design problem. This can potentially result in eliminating the most preferred

design from consideration [54]. Furthermore, as the constraints are made more com-

plex, the inherent computational complexity of propagating the constraints increases

rapidly [53].

Another approach involves the use of the PD. One models the capabilities of

a system constructs as the subset of alternatives that are Pareto non-dominated

[55, 56, 57, 58, 59, 60, 61]. The benefits of this approach are that the dominance

analysis step is relatively computationally inexpensive and will not eliminate the

most preferred design [62]. A limitation, for the purposes of capability modeling,

is that designers must have a preference order over each attribute, e.g., prefer to
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maximize or minimize.

Although such a formulation is likely at the system-level, it is unlikely at the

discipline-level due to the presence of parameter attributes. For example, consider

the problem of modeling the capabilities of a spring damper subsystem that is to be a

part of some larger system. An important attribute of the design of a spring damper

subsystem is the spring constant. The most preferred spring constant will depend

on the details of the larger system. In this scenario, it is insufficient to optimize

for cost, mass, reliability, etc. without considering spring constant. Thus, at the

discipline-level, designers often wish to represent a system in terms of parameters,

e.g., system-level specifics, variables shared between designers, etc. In such cases,

PPD is a more appropriate dominance rule.

In [48, 4], Malak and Paredis show that PPD is sound from a decision making

perspective; that is, it does not eliminate any designs that may be the most pre-

ferred. Parameterized Pareto dominance requires fewer assumptions than PD, which

results in capability models that are more widely reusable and that can be com-

posed to model a larger system. These benefits have been demonstrated on various

mechanical, power generation, and fluid power system design studies [48, 4, 63, 64].

2.6 Conclusions and Chapter Summary

In this chapter, we have defined the parametric optimization problem and com-

pared it to the single and multi-objective cases. The principal difference between a

traditional single objective optimization (SO) problem and a parametric one (PO)

is the condition that a parametric problem is solved as a function of the variable

(potentially a vector) θ.

We provide Table 2.1 to help the reader better understand POs in the context of

more familiar search problems: MOs and SOs. In SO, all preference information is
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Table 2.1: Comparison of the information required for the formulation of POs, MOs,
and SOs as well as their solutions.

Available Information Search Problem Solution

M
o
r
e
I
n
f
o
r
m
a
ti
o
n

←
−−
−−
−−
−−
−−
−−
−−

Preference is unknown in at least
one attribute (parameter) and
known in others (dominators)

PO PPF

Preference ordering is known in
all attributes MO PF

All preference information is
known and well defined SO Point Solution

available and each alternative can be ranked. In MO, some preference information

is missing, specifically how to trade-off between some attributes relevant to decision

making (multiple conflicting objectives). The solution to a MO problem is the PF.

Finally, PO can be thought of as the most general case where no preference order-

ing ordering is available for at least one attribute. The solution to the PO is the

parameterized Pareto frontier (PPF).

The general notion of parametric optimization has been applied in fields such as

economics and process optimization. Existing techniques for parametric optimization

are exact but limited to problems with specific mathematical structures: linear,

quadratic, convex nonlinear. This is a significant limitation for engineering design

challenges where the models are often highly nonlinear (dynamical systems) or non-

analytical (finite element analysis, simulations involving conditionals).

We also introduced MO and some common MO algorithms, since the problem of

finding the Pareto frontier (MO) is analogous to the problem of finding the para-

metric Pareto frontier (PO). Specifically we explored the ε-constraint method and
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the Normal Boundary Intersect Method, a genetic approach and a quality directed

approach.
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3. PARAMETRIC OPTIMIZATION FOR SYSTEMS DESIGN

The first step in this research is to define useful parametric problem formulations

motivated by systems design. Once the problem is formally defined, an algorithmic

solution approach can be developed to exploit the parametric structure and specific

features of the problem.

In this chapter, we will demonstrate the use of PO to compute the Expected

Value of Information (EVI). We will recast the EVI problem as a PO with the aim

of reducing computational expense. Next, we extend the definition of PO to the

case with multiple objectives. We term this formulation multiobjective parametric

optimization (MPO). The motivation for this formulation is capability modeling,

since many technologies cannot be fully characterized by a single attribute.

Th MPO form is a novel formulation and cannot be expressed using the paramet-

ric optimization formulations from economics, process optimization, or fuzzy opti-

mization. We will show that the MPO formulation is necessary if we are to describe

the capabilities of a subsystem or technology in terms of it responses.

3.1 Single Objective Parametric Optimization

3.1.1 Mathematical Formulation

The Single-objective Parameterized optimization problem can be stated as

y∗(θ) = min
x

f(x,θ)

subject to x ∈ X ⊆ Rn

θ ∈ Θ ⊂ Rp

(3.1)
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where p is the number of parameters, and q and r are the number of inequality

and equality constraints, respectively. Note that minimization is used in the general

SPO formulation since maximizing f(x) is equivalent to minimizing −f(x). The p

parameter(s) are denoted θ and Θ is the parameter space. The objective function is

optimized as a function of the parameters. In other words, the solution to Eq. 3.1

is the maximum of f(x,θ) for every value of θ in the parameter space. Thus, the

solution rather than being a single point is a (potentially infinite) set, denoted y∗(θ).

3.1.2 Engineering Relevance: Expected Value of Information

The design of complex engineered systems requires decision making under un-

certainty. In this context, good decisions are characterized careful management of

that uncertainty. The systems engineer should account for all available and relevant

information to deduce which decision alternative is “best.” A class of alternatives

that is often overlooked is information activities to reduce the uncertainty. Informa-

tion gathering activities might include prototype development, increasing the sample

size of an experiment, conducting more expensive tests, etc. Thus, the first step in

deciding whether or not to perform an information gathering action is to compute its

value. Engineering firms must be able to assess the benefit of performing information-

gathering actions. For example, an automobile manufacturer may use a computer

simulation of a hydraulic motor and pump in the design of a new vehicle. The model

may contain random variables that can be more accurately determined through ex-

pensive experiments (information-gathering actions). The designer must choose to

either design the transmission given the current state of information or perform an

information-gathering action to reduce uncertainty at a cost. The designer must

determine whether the benefit of gathering information is greater than the cost of

gathering that information. Standard decision making approaches tend to neglect
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the information-gathering aspects of the decision making process, instead focusing

exclusively on decision making with current information. Good engineering practice

must take a broader view of decision making and consider the value of gathering

information.

A framework for considering the resources involved in gathering information with

how it improves decision making is Expected Value of Perfect Information (EVPI)

[65, 66]. The EVPI is the price one is willing to pay for perfect information. One

examines how much the expected reward would improve if the uncertain information

were perfectly accurate. The expected increased reward is compared to the cost

of gathering that information to determine whether gathering the information is

worthwhile. Thus, the primary decision in an EVPI problem is choosing whether to

gather information. For clarity, choosing what information to gather will be called

the information decision while choosing which alternative based on that information

will be called the design decision. In these types of problems, the information decision

is made before the design decision, since the design decision depends on the outcome

of the information decision.

Expected Value of Partial Perfect Information (EVPPI) is an extension that

considers multiple random variables. Under EVPPI, the engineer chooses the set

of parameters for which to gather perfect information that maximizes the engineer’s

expected reward. However, many sources of information are not perfect, but can have

uncertainty themselves. This may be due to the information-gathering method itself

or with its predictive power on the parameter(s) of interest. Additionally, the cost of

information-gathering typically increases dramatically with experimental accuracy,

thus in practice uncertainty is typically not reduced to zero. Instead, the amount of

uncertainty reduced is traded off against the cost of reducing the uncertainty. EVPI

does not account for this. Instead, as a practical matter, the value for having perfect
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information sets an upper bound on the value of gathering information.

In contrast to EVPI, the Expected Value of Sample Information (EVSI) frame-

work does account for a reduction in the uncertainty based on an imperfect source

of information. Each information-bearing test or sample gives information about

a parameter of interest, but does not reveal the parameter directly. The designer

takes this uncertainty into account in calculating the expected value of information.

A deeply related problem is deciding not just whether or not to collect a sample,

but how many samples to collect as a batch. This approach is used in applications

such as medical clinical trials, whether the number of subjects needed to test an

experimental drug is decided in advance of the actual trials.

Although the EVPI framework has been extensively studied, a practical chal-

lenge to is that the cost of computing the expected value of information (through

optimization, Monte Carlo sampling, etc.) grows exponentially with the amount of

information that is to be gathered and can often exceed the cost of actually gather-

ing the information. One might suggest that rigor requires a decision method that

accounts for this cost, that is, an “expected value” of computing the expected value

of information gathering. This view leads to a type of an infinite regress, where to

evaluate the alternatives one must factor in a “meta” analysis of the benefit of evalu-

ating the alternatives, and so on. A practical resolution to this problem is to assume

that the cost of computing the expected value of information is negligible. Thus,

if information decisions are to be addressed algorithmically, there exists a need for

novel algorithmic approaches to reduce the computational expense associated with

computing the expected value of gathering information.

The contribution of this section is a novel algorithmic approach for approximating

the expected value of perfect information (EVPI) for engineering design problems. In

this research, we propose to recast the EVPI as a “parametric” problem. The value of
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recasting the problem is an exponential reduction in the computational complexity.

The proposed approach is validated against a Monte Carlo sampling based ap-

proach, the traditional approach for solving EVPIs, on an engineering problem. The

engineering problem is to compute the expected value of performing physical ex-

periments to gather information about random variables in a computational model

the efficiency of an engine and transmission. The results are compared in terms of

computational expense and solution accuracy. The results indicate that by recasting

the EVPI as a parametric problem the computational expense is reduced drastically

while maintaining solution accuracy.

3.1.3 Engineering Application: Expected Value of Perfect Information

In this research, information is considered to be perfect, and thus falls under the

EVPI framework rather than the EVSI framework. However, it should be noted that

this is simply to simplify the exposition; the concepts described herein can be readily

extended to more complex frameworks. We demonstrate one such extension to the

Expected Value of Partial Perfect Information in the following section.

We begin with some notation. Let x be a vector denoting the design variables

(those which the designer can control), which must belong to the nonempty feasible

region (set) X. Let θ be a vector of parameters with probability distribution p(θ)

that are outside of the control of the designer. Let Θ be the feasible subset of

parameter vectors in the parameter space.

The value (or profit, benefit, etc.) model f : X × Θ → R maps the Cartesian

product of the decision space and parameter space to the payoff (profitability) of

the design. In other words, the value function relates design details and random

variables to value of the design. Again, we note that in a typical EVPI problem, the

set of information gathering alternatives is discrete. Equation 3.2 is an extension to
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the case with an continuous range of alternatives.

If the designer chooses not to gather information, she will chose x such that

expected value is maximized

max
x∈X

∫
f(x,θ)p(θ)dθ (3.2)

The solution to Eq. 3.2 is the expected value of designing the artifact without

gathering information. The argument that maximizes Eq. 3.2 is an instance of x, i.e.,

a design concept. If instead, she chooses to gather information, she will optimize the

design (make the design decision) with respect to the revealed value of the random

parameter, denoted θR.

max
x∈X

f(x,θR) (3.3)

The optimal solution to the design problem (choice of x) in this case is dependent

on θ. Thus, the expected reward if the uncertain parameter were revealed is

∫ (
max
x∈X

f(x,θ)
)
p(θ)dθ − C (3.4)

where C is the cost of gathering information. The EVPI is how much the expected

reward improves if the uncertain information were known perfectly accurately. n

EV PI =

∫ (
max
x∈X

f(x,θ)
)
p(θ)dθ −max

x∈X

(∫
f(x,θ)p(θ)dθ

)
− C (3.5)

Unlike in the decision problem, the outcome of Eq. 3.5 is not a design concept

(choice of x). Instead, the aim is to approximate the value of gathering perfect

information. If EV PI > 0, the decision that maximizes value to the firm is to

gather information. In that case, the optimal x will depend on the outcome of

46



ID

Random Var.
θ Revealed

DD
known θ

f(x, θ)− C

x

θ

Gather
Information

f(x, θ)

θ

Random Var.
θ Revealed

x

DD
uncertain θ

NOT Gather
Information

Figure 3.1: Decision Tree for information decision (ID). The arcs represent branches
where a continuum of outcomes or actions are available. Decision nodes represent
design decisions (DD) and are filled for emphasis.

the information gathering action, which is unknown at this stage. Figure 3.1 is an

illustration of the information decision (ID) problem as a decision tree.

Traditional methods of optimization under uncertainty can be used to numerically

approximate Eq. 3.5

EV PI ≈ 1

N

N∑
i=1

(
max
x∈X

f(x,θi)
)
−max

x∈X

( 1

N

N∑
i=1

f(x,θi)
)
− C (3.6)

where θi ∼ P (θ) and N is the number of samples to draw to approximate the ex-

pectation. Note that the first term, in Eq. 3.6 involves an optimization for each of

the N instances of θi [67]. Many algorithmic approaches for solving EVI problems

are aimed at scenarios where X is a discrete set [68, 69]. In this dissertation, we
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are instead focused on the case more relevant to engineering design where X is a

continuous set with infinitely many alternatives. If each optimization is costly, a

simple Monte-Carlo approach for approximating EV PI may be prohibitively expen-

sive. Consider the following. Let k be the number of iterations required to solve each

optimization problem. The number of evaluations of f(x,θ) required to solve Eq.

3.5 would be 2kN . Even with relatively inexpensive engineering models and parallel

computing, the cost of analyzing the decision problem may even exceed the cost of

actually gathering the information (physical experiments, surveys, etc.). Thus, if

information decisions are to be addressed algorithmically, there exists a need for a

novel algorithmic approach to reduce the computational expense.

In this research, we propose that the iterated optimization in the approximation

of EV PI can be eliminated if recast as a parametric optimization problem as

y∗(θ) = max
x∈X

f(x,θ)

subject to θ ∈ Θ

(3.7)

The aim is to find a solution, denoted y∗, that maximizes the objective function f ,

for every θ ∈ Θ. We can then substitute y∗(θ) into Equation 3.6

EV PI ≈ 1

N

N∑
i=1

y∗(θi)−max
x∈X

( 1

N

N∑
i=1

f(x,θi)
)
− C (3.8)

eliminating the “nested” optimization in the first term on the RHS. Recasting the

problem in such a way eliminates the need to perform optimization within a Monte

Carlo simulation. Instead of solving N optimization problems (where N is the num-

ber of Monte Carlo samples), we need only solve a single parametric optimization

problem.
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3.1.4 Engineering Application: Expected Value of Partial Perfect Infor-

mation

In the previous section, information is considered to be perfect, and thus falls

under the EVPI framework. However, the concepts described in this paper can

be readily extended to account for Expected Value of Partial Perfect Information

(EVPPI). Expected Value of Partial Perfect Information is an extension that consid-

ers gathering information on multiple random variables. Under EVPPI, the engineer

chooses the set of parameters for which to gather perfect information that maximizes

the engineer’s expected reward.

The primary decision in an EVPPI problem is to determine for which random

variables to gather information. This is in contrast to the EVPI problem, where the

only information-gathering alternative is to gather information on a specific set of

random variables.

To consider the information that may be gathered, let the subscript O (as in

observation) denote the set of the random variables about which the engineer gath-

ers perfect information, while the subscript C denote its complement, the set of

uncertain parameters about which information is not gathered. Also, let the un-

certain parameters for these sets be denoted respectively as θO and θC , such that

θO ∪ θC = y and θO ∩ θC = ∅. Thus, O denotes the set or indices of the uncertain

parameters, while θO denotes the parameters themselves. Let the cost of gathering

information about that set of parameters be denoted as CO. For simplicity, assume

that the uncertain parameters are independent, although they need not be. It is

straightforward to extend this theory to the case where they are not, although the

computation becomes more challenging.

In order to evaluate the value of gathering information on some set of parameters
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O, the engineer must consider the possible outcomes of that information-gathering.

Then, for each of those possible outcomes, choose x such that the expected value

across the remaining uncertain parameters is maximized. The expected value of

gathering perfect information on parameters O is formulated as follows

∫
max
x∈X

(∫
f(x,θ)p(θC)dθC

)
p(θO)dθO − CO (3.9)

An exhaustive approach for approximating Eq. 3.9 involves many nested search prob-

lems. For each possible value of θO that can be received from gathering information,

one must search for the x that maximizes the engineer’s expected value across the

remaining uncertain parameters θC , the optimization problem in the brackets. As

a result, determining the expected value involves a nested Monte Carlo simulation.

The “outer” simulation is for the different possible values of θO that the designer may

learn. The “inner” simulation is for, given that particular value of θO, the possible

values of θC that the engineer considers in selecting x. This computation may be

prohibitively expensive even for a small number of variables. Furthermore, the engi-

neer must decide across all the possible combinations of parameters O that he can

gather information about, since the choice is about which combination of parameters

to select. Therefore, the full EVPPI decision problem is

max
O

(∫
max
x∈X

(∫
f(x,θ)p(θC)dθC

)
p(θO)dθO − CO

)
(3.10)

If O were the empty set , then this problem reduces to the traditional design decision

from Eq. 3.5. Figure 3.2 shows the decision tree for this problem. In the figure,

O1 and O2 represent different subsets of parameters about which information can

be gathered. The total number of branches depends on the number of observable
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parameters.

Let N be the number of Monte Carlo samples necessary to obtain the parame-

ter distribution, M be the number of available experiments (information-gathering

alternatives), and K be the number of steps required to solve the search problem.

The number of evaluations of f (x, θ) required to solve Eq. 3.10 using a Monte

Carlo Method would be MK(N2 + 1). Applying the parametric approach described

in this paper eliminates the nested Monte Carlo simulation reducing the number of

required function evaluations exponentially to MK(N + 1), an exponential decrease

in computation.

This nested structure exists in many EVI formulations, beyond EVPI. For ex-

ample, Ling et al. [70] note that the nested Monte Carlo simulation in their p-box

approach for EVI problems may become prohibitively expensive for more complex

problems.

3.2 Multiobjective Parametric Optimization

3.2.1 Mathematical Formulation

The Multiobjective Parametric Optimization (MPO) problem is stated as

y∗(θ) = min
x

f(x,θ)

subject to gi(x,θ) ≤ 0 ∀ i = 1, . . . , q

hj(x,θ) = 0 ∀ j = 1, . . . , r

x ∈ X ⊆ Rn

θ ∈ Θ ⊂ Rp

where f(x,θ) = (f1(x,θ), f2(x,θ), . . . , fm(x,θ))

(3.11)
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Figure 3.2: Decision Tree for information decision (ID) with partial perfect infor-
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available. Decision nodes represent design decisions (DD) and are filled for emphasis.
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where p and r are the number of inequality and equality constraints between the

parameters and design variables, respectively. The MPO formulation can be thought

of as an extension of the typical Parametric Optimization (PO) problem that allows

for the consideration of multiple objectives.

To the best knowledge of the author, the MPO formulation is new to the literature

and thus there exist no algorithmic approaches to solve this class of problem.

3.2.2 Engineering Relevance: Subsystem Capability Modeling

It is widely understood that a system composed of independently optimized sub-

systems is not itself likely to be optimal. Yet, many times it is important to build

knowledge about the capabilities of a subsystem independent of system-level specifics.

For example, this is true during initial research and development efforts or in sen-

sitive military and competitive industrial design environments. In these scenarios

compartmentalization of information is common and necessary.

Even within a specific systems development project, the need for concurrency

often requires subsystem designers to make progress in the absence of full information

about other interfacing subsystems. Multidisciplinary design optimization (MDO)

methods are capable of coordinating disciplines and/or subsystem design efforts in

a system-wide optimization scheme [71, 72, 73, 74, 75, 76, 77, 78]. However, these

methods require all subsystems and their models to be defined. The MDO methods

do not provide a ready pathway for characterizing individual subsystems independent

of the system wide optimization process.

Finally, key requirements can change during a design project, potentially requir-

ing redesign and repeated optimization of affected subsystems. These changes can

be due to many factors, both external (e.g., customer change requests) and internal

(e.g., one subsystem is unable to achieve targeted properties and other subsystems
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must adjust). A better understanding of the limits and capabilities of subsystems

with respect to changes in requirements is needed.

One way to improve the communication of technical capabilities is to use formal-

ized capability descriptions that are unambiguous and have well-defined semantics.

In this research, we use the term capability modeling to describe the process of gen-

erating such a description.

The goal of capability modeling is to facilitate efficient communication between

systems engineers and discipline engineers. Figure 3.3 is an illustration of the proto-

typical communication scenario between a systems engineer and discipline engineers

during the systems definition and design phases of a project [79].

Systems engineers make decisions that require information about the capabilities

of available technologies. As illustrated in Figure 3.3, discipline engineers should

provide input about technical capabilities to systems engineers. In this work, we refer

to the characteristics systems engineers need to know about to make decisions as the

attributes of the subsystem. These can consist of, among other things, information

about performance, cost, reliability, and relevant aspects of physical form (geometry,

mass, etc.).

Of interest in this article is the case in which discipline engineers are able to use

models to evaluate the attributes of a given technology. Figure 3.4 is a notional il-

lustration of this scenario. Discipline engineers use a model to relate low-level design

details to technology attributes, f : X → Y . In practice, f may be a composite

of several individual models and simulation codes. Every feasible implementation

of the technology in question is described by a vector of design variables, denoted

x, and the set of all physically realizable implementations is referred to as the fea-

sible set, denoted X. The attributes of each design, x ∈ X, are represented as

a vector, denoted y, and the set of attribute vectors corresponding to all feasible
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Figure 3.3: Idealized interaction between system-level and discipline-level engineers.
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implementations is referred to as the feasible attribute set, denoted A.

In this context, the goal of capability modeling is to generate a compact represen-

tation (not containing irrelevant information) of the feasible attribute set. Discipline

engineers can identify the relevant subset of the feasible attribute set using dominance

analysis.

Conceptually, the most straightforward representation of the a subsystem would

be to describe the set of all feasible realizations. However, in principle, this set can

be unbounded and, more practically, many members of the set may be demonstrably

inferior to others. A more effective approach would be to focus only on the subset of

realizations that are potentially desirable to the decision maker, i.e., the systems

engineer. The concept of parameterized Pareto dominance (PPD) provides a means
cReprinted with permission from “P3GA: An Algorithm for Technology Characterization”, Gal-

van, E., Malak, R.J., 2016 J. Mech. Des. 137(1) Copyright 2015 by ASME.
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for identifying such potentially desirable members, collectively referred to as the

parameterized Pareto frontier (PPF) [48] The criterion is a generalization of the

classical Pareto dominance (PD) rule to handle situations in which some attributes

have an unknown rank ordering. An unknown rank ordering means that one cannot

determine which values of the attribute are most preferred based on the available

information. Complete information (from system and subsystem levels) may reveal

that the attribute value should be minimized, maximized or follows a non-monotonic

ordering (e.g., the best value is somewhere in the middle of its range, with both

lower and higher values being less desirable). Discipline engineers need to be able to

perform dominance reasoning despite having attributes with unknown rank ordering

if they are to generate practical capability models of their subsystem.

3.2.3 Engineering Application: Design of a Liquid Metal Magnetohydro-

dynamic Pump

In this section we motivate the use of parametric optimization for modeling the

capabilities of a structural cooling subsystem. The design incorporates a liquid metal

(LM) working fluid and driven by a magnetohydrodynamic (MHD) pump [80, 81, 82,
dReprinted with permission from “P3GA: An Algorithm for Technology Characterization”, Gal-

van, E., Malak, R.J., 2016 J. Mech. Des. 137(1) Copyright 2015 by ASME.
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83, 84]. In this scenario, the LM-MHD circuit is integrated into a larger structure and

used to transport thermal energy from a heat source to a heat sink. The configuration

of the cooling system is depicted in Figure 3.5.

A fluid circuit fully filled with a liquid metal is used to transport thermal energy

from a hot reservoir, into which heat is transferred at some defined power Phot, to a

cold reservoir, which conducts heat out to a heat sink maintained at a temperature

Tcold. The design objectives are to maximize the temperature of the hot reservoir,

Thot, while simultaneously minimizing channel mass of the circuit, denoted mchan.

Ultimately, the best subsystem design will depend on the amount of heat being

transferred to the hot reservoir, Phot. In this scenario, the details of the larger

system into which it will incorporated have not been revealed. Specifically, the

discipline engineer does have any information about Phot. the subsystem cannot be

meaningfully optimized. Although a number of representative “reference systems”

could be considered to enable local optimization, such an approach only provides a

limited understanding regarding the performance capabilities and limitations of the

MHD-driven LM subsystem.

In this scenario, Phot is a parameter from the perspective of the cooling subsystem

designer since it influences the optimal design yet the designer does not have direct

control over it (it is to be determined by the systems engineer).

Let x be the design variables controlled by the cooling subsystem designer. The

cooling subsystem designer knows that, all else being equal, a lower hot reservoir

temperature, denoted Thot(x, Phot), and cooling subsystem channel mass, denoted
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mchan(x), are preferred. The parameterized optimization problem is formulated as

y∗(Phot) = min
x

(Thot(x, Phot),m(x))

subject to PL
hot ≤ Phot ≤ PU

hot

x ∈ X

(3.12)

where the L and U superscripts denote the upper and lower bounds of the corre-

sponding variable, respectively. The result of this optimization, y∗(Phot), is a rela-

tion between the parameter variables and the best achievable values of the objectives,

Thot and mchan. A systems designer can use this relation to explore how system-level

decisions affect the cooling subsystem performance.

3.2.4 Engineering Application: Design of a Liquid Magnetohydrody-

namic Pump Continued

In Eq. 3.12 the parameter space is defined simply by upper and lower bounds.

In many engineering applications, it may be useful consider more complicated con-
eReprinted with permission from “Parameterized Design Optimization of a Magnetohydrody-

namic Liquid Metal Active Cooling Concept”, Hartl, D.J., Galvan, E., Malak, R.J., Baur, J.W.,
2016 J. Mech. Des. 138(3) Copyright 2015 by ASME.
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straints, such as those involving both design variables and parameters. Consider

the scenario where the parameter is actually a response of the design variables

θ(x) : X → Θ. This formulation may be useful when two or more subsystems

must agree on a response.

Consider, for example, a scenario where the LM-MHD is being used for thermal

management rather than simply cooling. In this case, it is not preferred to minimize

Thot, but rather should be some yet unknown set point determined though system-

level considerations. In this case, the problem would be stated as

y∗(Thot, Phot, lchan) = min
x∈X

m(x, Phot, lchan)

subject to Thot = Thot(x, Phot, lcan)

P lb
hot ≤ Phot ≤ P ub

hot

llbchan ≤ lchan ≤ lubchan

(3.13)

In this formulation, the parameter Thot is a system response, and the solution y∗

maps the parameters to the optimum achievable m.

3.3 Conclusions and Chapter Summary

In this dissertation, we define demonstrate how some common systems design

challenges can be modeled as parametric optimization problems. Specifically, the

parametric optimization problems will be motivated by (1) the problem of computing

the expected value of information, and (2) capability modeling. The aim in modeling

the problem this way is to allow for the development of tailored solution techniques

that can exploit the parametric structure of the problem.

In this chapter, we demonstrated the use of PO to compute the Expected Value of

Information (EVI). Under the EVI framework, one considers how much one is willing

to pay to have access to some information. Specifically we considered the Expected
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Value of Perfect Information (EVPI), where one is able to pay for “clairvoyance,”

that is, to know the uncertain parameters perfectly. We demonstrated how the

computational expense of computing EVPI may exceed the cost of actually gathering

information. In the extension to partial perfect information (EVPPI), the cost of

gathering information grows exponentially with the amount of information that may

be gathered. We demonstrated how, by recasting the EVI type problems, one can

reduce the complexity of the calculation, in the case of EVPPI, the result is an

exponential decrease.

Next, we extend the traditional definition of PO to the case with multiple objec-

tives. We term this formulation multiobjective parametric optimization (MPO). To

the best knowledge of the author, the MPO formulation is new to the literature and

no algorithms exist for this class of problem.

The motivation for the MPO formulation is capability modeling. Engineering

projects typically involve many discipline engineers, each with specialized knowledge

about the system under development. The systems engineers must make decisions

about system architecture definition, resource and requirement allocation, etc., de-

spite not being an expert in each relevant discipline. Thus, the accurate communi-

cation of technical capabilities from discipline engineers to systems engineers can be

an important factor in the success of a systems engineering project. We demonstrate

how the solution to an MPO is the parametric Pareto frontier, which serves as a min-

imal representation of the capabilities of a subsystem. We provide an engineering

example: the Liquid Metal Magnetohydrodynamic Pump (LM-MHD).

We demonstrated how the LM-MHD subsystem cannot be optimized independent

of the subsystem into which it will be incorporated, since the optimal LM-MHD

depends on the properties of the system (these properties are parameter attributes).

The MPO formulation allows the designer to optimize the system, while remaining
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agnostic about the overall system. This can lead to a better understanding of the

underlying physics in the model and a model of the capabilities of the LM-MHD.
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4. PERFORMANCE ASSESSMENT OF APPROXIMATION ALGORITHMS

FOR PARAMETRIC OPTIMIZATION

4.1 Considerations

It is important in any optimization field to be able to quantitative evaluate and

compare different optimization algorithms. The performance assessment of algo-

rithms allows us to simplify judgment between algorithms and helps us better under-

stand the algorithm’s behavior. The appropriate framework for comparison depends

on the nature of the algorithms of interest and the problems which those algorithms

aim to solve.

Broadly, there are two approaches for assessing algorithmic performance (ii) an-

alytically, and (ii) empirically. In analytical approaches, it is common to estimate

the performance in an asymptotic sense, in other words, how does the algorithm

behave with arbitrarily large inputs? This is referred to as algorithm complexity.

In optimization, analytical techniques can be used to develop solution quality and

complexity guarantees. However, the results of analytical analysis are often lim-

ited to the “worst” case scenario. Sometimes, we are interested in the “average”

case. Another limitation is that many algorithms, especially heuristic algorithms,

are inaccessible to analytical analysis. Empirical analysis of algorithms, on the other

hand, considers the “average” performance of the algorithm and can be used to ob-

tain insights into any algorithm, including heuristic algorithms. Rather than using

mathematical reasoning to assess performance, empirical analysis takes a scientific

approach. Particularly, repeated experiments and statistical methods are used to

establish confidence in the performance of an algorithm. Table 4.1 is a summary of

the difference in the analytical and empirical approaches to performance assessment.
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Because the algorithms presented in this dissertation (P3GA and p-NSGAII) are

heuristic, we must rely on an empirical approach to performance assessment. How-

ever, the performance methods herein can be applied to any parametric optimization

algorithm.

Table 4.1: Comparison between analytical and empirical approaches to performance
assessment.

Analytical Empirical

Mathematical Reasoning Scientific Reasoning
Performance Guarantees Detailed Analysis
Limited Application Universal Application

The empirical analysis of algorithms requires a carefully chosen test set. Close

attention must be paid to the size, difficulty, and structural properties, and relevance

of the problem. Real wold problems are likely to be the most relevant; however, they

tend to be expensive to evaluate (limiting the number of experiments that can be per-

formed) and the true solution may not be known (limiting the assessment of solution

quality). In this research, we develop artificial test problems that have similar char-

acteristics (multi-modality, discontinuity, etc.) as many engineering problems. The

artificial problems are cheap to evaluate, allowing us to conduct a detailed repeated

analysis, and the true solution is known.

For optimization algorithms, the notion of performance of involves the quality

of the solution found and the effort it takes to find it. Computational effort is

typically measured as run-time (wallclock or CPU-time) or using the number of

function evaluations (NFE). For single-objective optimization algorithms, comparing

solution quality is straightforward: one only needs to consider the objective value,
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smaller or larger is better. This however is not the case for parametric optimization.

Given two solutions to a PO problem S and S ′, how can the solutions be compared

with respect to the objectives and parameters? One possibility is that is every point

in S is parametrically dominated by some point in S ′. If this is the case, we can say

that S ′ dominates S. If this is not the case, however, the solutions are incomparable

using parameterized dominance analysis.

Intuitively, one might suggest a measure of quality that captures how useful

the approximation is to the designer. However, this indicator would necessarily be

subjective and problem dependent since it must depend on the preferences of the

designer and on how the data will be used. Thus, it is unclear what objective quality

means with respect to parametric solutions.

This challenge is not unique to parametric optimization. It is discussed exten-

sively in the multiobjective optimization literature [42, 41]. The approach taken

in the MO literature is to focus on what statements can be made about the solu-

tion, without assuming any additional decision maker preferences. In this section,

we leverage many of the results in the MO community to develop a useful quality

measure for solutions to PO. Because, we are interested in the general PO problem,

which may contain multiple objectives and multiple parameters, we will focus on the

problem of assessing the quality of an approximation of the global parametric Pareto

frontier (PPF).

4.1.1 Approximation Sets

In parametric optimization (single or multiobjective), a range of solutions is

sought. From a decision perspective, each solution to the PO problem is mutu-

ally incomparable, meaning we cannot determine which solution is better without

further preference information. The full set of solutions to the PO problem is the
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parameterized Pareto frontier (PPF). Herein, we will refer to approximations of the

PPF as approximation sets.

It is important to note the distinction between term approximation sets as we

have defined them here and function approximation. The problem of approximating

function arises in many branches of math, computer science, engineering, etc. and is

the process of determining a function that closely matches a target function (a rela-

tion between inputs and outputs). The approximation set is of the non-dominated

designs rather than a relation. Thus, rather than explicit there is an implicit rela-

tionship between the attribute values. Consider again the notional example in Figure

3.4. One may find a function approximation of f(x). However, we are interested in

the approximation set of the non-dominated set of the feasible attribute set A.

Consider a system with a vector function f : Rn → Rm that maps the feasible

set of alternatives X ⊆ Rn to the attribute space Rm. Let Θ ⊆ Rp be the set

of parameter vectors, denoted θ. The attribute space is the combined space of

objective and parameter attributes A = {(y,θ) : y = f(x,θ),x ∈ X,θ ∈ Θ}.

Suppose preference direction is known for each attribute yi for i = 1, . . . , r. Given

two attribute vectors a′,a′′ ∈ A, we say a′ Strictly dominates a′ �� a′′ If a′ is better

in all objective attributes and equal in all parameter attributes, weakly dominates

a′ � a′′, if a′ is not worse in all objectives, better in at least one, and equal in all

parameter attributes, incomparable a′ ∦ a′′ neither weakly dominates.

Definition 11. (Approximation Set) Let S ⊂ A be a set of attribute vectors. S is

an approximation set if no solution in S weakly dominates another. Let Ω be the set

of all approximation sets to a parametric optimization problem.

Generally, we make no assumptions about the mathematical form of the approxi-

mation set; it may be a continuous or discrete representation. Given these definitions,
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the general results and theorems presented in [42] hold for the parametric case. The

proofs can be carried out in the same way.

4.1.2 Unary Quality Indicators

The aim in this section is to investigate the use of unary quality indicators, de-

noted I(, for PO approximation sets. A unary quality indicator is a mapping from the

approximation set to the set of real numbers. Finding a satisfactory unary indicator

would allow us to leverage tradition empirical performance evaluation techniques for

the parametric case.

Given the definitions in , the general results regarding unary indicators devel-

oped in the MO literature also apply to the parametric case. Specifically, given two

approximation sets S and S ′ in Ω

(a) There exists no unary quality measure that can indicate whether S is better

than S ′

(b) A unary quality measure may exist that can indicate that S is better than S ′

See [42] for a rigorous definition of these statements and mathematical proof. In

other words, if S is better than S ′, that is every member in S ′ is weakly dominated

by some member in S, there may exists a unary indicator such that I(S) � I(S ′).

However, there cannot exist a unary indicator such that I(S) � I(S ′) only if S is

better than S ′.

This limitation of unary indicators is significant but it gives us a useful metric

for evaluating the usefulness different indicators. Our aim in selecting a unary in-

dicator for PO solutions should be that it is able to detect that S is better than

S ′. There exist in the literature several unary quality indicators for Pareto frontier

approximation sets such as generational distance and inverse generational distance,
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spread, distance from reference set, etc. [41, 62, 26, 85, 86, 87, 88, 89]. However,

very few satisfy the condition that they be able to indicate that one solution is better

than another. Specifically, only the hypervolume indicator [90] and mean Hausdorff

distance [91] have been shown to have this property. We will discuss the applicability

of these indicators to the problem at hand.

4.1.2.1 Hypervolume Indicator

The hypervolume indicator is widely used approach for measuring the quality of

Pareto frontiers approximation sets. The hypervolume indicator is defined as follows

Definition 12. (Hypervolume Indicator) The hypervolume indicator measures the

volume of the dominated space of all solutions in the approximate space, truncated

by a reference point.

Several authors have used this metric to measure the quality of discrete Pareto

frontier approximations [92, 93, 94]. This approach is well suited for comparing. If the

true solution is known (as is the case for test problems in Section 4.3), quality can be

measured relative to the hypervolume dominated by the true frontier. Figure 4.1 is an

illustration of the hypervolume measure of two incomparable Pareto approximation

sets S and S ′.

Applying the hypervolume indicator to the case with parameters is problem-

atic. Consider that the hypervolume indicator is truncated by a reference point.

In the parametric case, it is unlikely that a single reference point can truncate an

approximation set. Instead, the space dominated by the approximation set must be

truncated by a p−dimensional surface, where p is the number of parameters. Figure

4.2 is an illustration of the hypervolume indicator in (a) the Pareto case, and (b)

the parametric case. Notice that in the parametric case, it is necessary to bound the

space dominated by the approximation set with a surface.
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Figure 4.1: Illustration of hypervolume measure on two Pareto approximation sets
S and S ′. The approximation sets have equal hypervolume measures but are incom-
parable.

Another more considerable difficulty arises when the approximation set is not

continuous. In Figure 4.3, we illustrate the hypervolume indicator, in (a) the Pareto

case, and (b) the parametric case when the approximation sets are discrete. In case

(a) the hypervolume indicator captures the space dominated by the approximation

set. We can see that an additional member in the dominated space (shaded area)

would not improve the hypervolume measure. On the other hand, adding a member

in the non-dominated pace would. Furthermore, it has the desirable characteristic

of increasing with spread of solutions and closeness to the true solution.

In case (b), one of the attributes is now a parameter. The space dominated by

the approximation set is now 1-dimensional (a line). Again, an additional member in

the dominated space (the dotted line) would not improve the hypervolume measure.

However, the hypervolume measure is no longer a good indicator of spread among

solutions. In Figure 4.3, the solutions could be moved arbitrarily closer (as long as
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Figure 4.2: Application of the definition of hypervolume indicator for continuous sets
in the case of (a) Pareto dominance and (b) parameterized Pareto dominance.

they do not overlap) or further away without changing the hypervolume measure.

4.1.2.2 Mean Hausdorff Distance Quality Indicator

The hypervolume indicator has the desirable property that one need not know

the global solution to compare two approximation sets. However, in the case where

the true solution is known, one way to measure the quality of an approximation

set is by some measure of the distance to the true solution. Mathematically, this

is task falls under shape comparison. Shape comparison is a common area of study

in the computer graphics community, specifically in the task of shape comparison

or shape matching [95, 96, 97]. There are several approaches for shape comparison

in the literature focusing on different types of dissimilarity between the surfaces. In

shape matching (classifying 3D objects), most comparison metrics consider invariant

properties to characterize (compare) objects since operations such as translation and

rotation do not fundamentally change the shape of an object [98, 99]. Many methods
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Figure 4.3: Application of the definition of hypervolume indicator for discrete sets
in the case of (a) Pareto dominance and (b) parameterized Pareto dominance

are additionally scale invariant, which enables a size independent classification of an

object. Intuitively, invariant comparison methods are not well suited for comparing

Pareto surfaces since we are typically concerned with differences in scaling, rotation,

translation, etc.

A more appropriate shape comparison metric for our aim is the geometrical dis-

tance between the shapes (i.e., surfaces). To this end, we introduce two generic

metrics commonly used to measure the distance between two surfaces: (1) the Haus-

dorff distance and (2) the mean Hausdorff distance. The Hausdorff distance is a

measure of the distance between two subsets of a metric space [100]. Conceptually,

the Hausdorff distance between two sets is the largest of all the distances between

points on the sets where one of the points is the closest point to the other set. The

mean Hausdorff distance is the integral of the Hausdorff distance of an entire surface,

normalized by the hypervolume of the surface. Figure 4.4 is an illustration of the
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Figure 4.4: Illustration of the Hausdorff distances between the surfaces S and S′ in
R2.

Hausdorff distance between two surfaces S and S ′ in R2.

The Hausdorff distance is the maximum expected error of the approximation set

while the mean Hausdorff error gives the average error over the entire surface. The

Hausdorff distance and mean Hausdorff distance have been used to measure the error

associated with the simplification of 3-dimensional triangular meshes [101, 102].

Recently, the mean Hausdorff distance indicator ∆p has been proposed as a robust

quality indicator in the Pareto frontier approximation sets [91]. The ∆p indicator

satisfies the condition that if S is better than S ′ then ∆p(S) � ∆p(S
′). Importantly,

the ∆p indicator is also compatible with the notion of parametric optimization. That

is, it improves with solution spread. In this research, we propose the use of mean

Hausdorff distance as a robust quality indicator for approximation sets for parametric

optimization.

To define the two-sided mean Hausdorff distance, it is useful to first define the

Hausdorff distance. Given a point p and a surface S, the distance e(p, S) is defined
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as

e(p, S) = min
p′∈S

d(p, p′) (4.1)

where d(·) is the Euclidean distance between two points in En and n is the number

of dimensions. The Hausdorff distance between surfaces S1 and S2 is then

E(S1, S2) = max
p∈S1

e(p, S2) (4.2)

The mean Hausdorff distance is the surface integral of the Hausdorff distance divided

by the area of S1

Em(S1, S2) =
1

|S1|

∫
S1

e(p, S2)ds (4.3)

where |S| denotes the total hypervolume of the surface S. The Hausdorff distance

is not guaranteed to be symmetrical, i.e., dS, S ′) 6= d(S ′, S). The two-sided mean

Hausdorff distance is the maximum of Em(S, S ′) and Em(S ′, S). Note that this

definition is applicable to continuous and/or discrete data sets (surfaces). The δp

indicator is the two-sided mean Hausdorff distance between the true solution and

the approximation.

4.2 Approximating Mean Hausdorff Distance

In this section we present an algorithm for measuring the geometric distance

between two n-dimensional surfaces represented using simplices. This type of repre-

sentation desirable since any generic n-dimensional surface can be represented using

simplices. Therefore, the concepts described in this paper can be applied to other

surface representations. For example, it is trivial to apply the techniques here in to

surfaces that are continuous, discontinuous, discrete, or a mix. In the case of con-

tinuous frontiers, the simplex approach described herein can be used for numerical

integration along the continuous function.
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A surface (mesh) S will be represented by a point cloud P in Rn and by the set

T of simplices describing how the vertices of P form the surface. Each simplex in

surface S is of dimension n − 1, therefore, a surface in R3 would be represented by

triangles, in R4 we would use tetrahedrons, etc. We denote the two surfaces that we

will be comparing S and S ′.

The implementation of the algorithm relies on the definitions in the previous

section. We will focus on the computation of the one sided mean Hausdorff distance,

i.e., dm(S, S ′), since the two sided mean Hausdorff distance is simply the maximum

of dm(S, S ′) and dm(S ′, S). The algorithm outlined in the following sections is an

extension to the general n-dimensional case of the algorithms concepts presented in

[101, 102].

4.2.1 Point to Surface Distance

The minimum distance between some point p belonging to surface S (note that p

may not belong to the point cloud P ) to and the surface S ′ is the minimum distance

between p and all of the simplices T ∈ T ′. The minimum distance between p and

some simplex is calculated using the approach presented in [103].

We first simplify the problem by shifting the point p and simplex T such that

p is at the origin. The resulting n − 1 simplex T in Rn is defined has vertices

V = (V1, V2 . . . , Vn). The smallest set containing V is called the convex hull

C(V ) =

{
X : X =

n∑
i=1

Viwi,

n∑
i=1

wi = 1, w ≥ 0

}
. (4.4)

In both cases the vector w = (w1, w2, . . . , wn) are the barycentric coordinates of the

pointX in V . The simplex T is the convex hull of its vertices, i.e., C(V ). The interior

of T is the set of points whose weights in V are all positive. We can easily minimize
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|X|, the Euclidean distance between the origin and the simplex T , as follows

min ‖X‖2 = wTCTV w

subject to
n∑
i=1

wi = 1,

w ≥ 0.

(4.5)

4.2.2 Hausdorff Distance Evaluation

Although e(p, S ′) can be computed for any point p, it is necessary to resort to

sampling to obtain the maximum for p ∈ S. Each simplex T ∈ T is sampled,

and the minimum distance between each sample and the surface S ′ is computed.

Surface sampling is achieved using the abacus model of a simplex which is used to

subdivide an n−simplex into kn n−simplices, all with the same volume and shape

characteristics [104].

Using the notation from the previous section, a point X in a n − 1−simplex in

Rncan be represented by a sequence of n numbers wi in a unit interval, where wi

are the barycentric coordinates of X. The barycentric coordinates can be viewed

graphically by drawing the interval as a rectangle with regions colored from 0 to

n − 1. Figure 4.5 illustrates this for a point in R5, w = (0.15, 0.12, 0.2, 0.27, 0.27).

The dividing lines are the cumulative sums of the barycentric coordinates, (B0 =

0, B1, , Bn, Bn+1 = 1).

Next we divide the rectangle in Figure 4.5 into k rectangles of equal size and

stack them one on top of the other expanding each rectangle by a factor of k in the

horizontal direction (see Figure 4.6. The coordinates of the dividing lines are found

by multiplying the dividing lines from Figure 4.5 by k and discarding the integer

portion. Then we extend the lines vertically and cut each rectangle into equally
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Figure 4.5: Representation of the unit interval with colored sections. The coordinates
of the dividing lines are displayed above the rectangle.
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Figure 4.6: The rectangles are divided into equal regions. Each region keeps the
color of the original divided lines multiplied by k.

many regions (see Figure 4.6).

If the number of regions in each row is j + 1, the dividing lines are the numbers

(C0 = 0, C1, , Cj, Cj+1 = 1). The widths of the resulting stacks are ci = Ci+1 −

Ci, for 0 ≤ i ≤ j. The resulting numbers form the following matrix called the color

scheme

χ =


χ1,0 · · · χ1,j

... . . . ...

χ1,0 · · · χ1,j

 (4.6)

The numbers ci can be used as barycentric coordinates for the point X in our original
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simplex. Define the notation

Vχ1χ2···χk
, (Vχ1 + Vχ2 + · · ·+ Vχk

)/k (4.7)

Defining points this way results in barycentric coordinates that are integer multiples

of 1/k. The ith column in χ is the point Vχ1χ2···χk
of the new simplex. This approach

takes a point X in T and produces a smaller simplex within it that contains the

point. In order to obtain all of the k(n−1) color schemes corresponding to the desired

subdivided simplices, the approach developed by Goncalves was used [105].

The desired sampling density for a simplex T ∈ T is determined by the user

defined step size δ, which is a percentage of the diagonal bounding box of the surfaces

S and S ′. The number of samples that result from subdividing an n− 1 simplex in

Rn into k′n−1 smaller simplices is (n+k′−1)!/(k′−1)!. The desired sampling density

(samples per hypervolume) is

1

δn
=

(n+ k′ − 1)!

|T |(k′ − 1)!n!
(4.8)

Rewriting so that the k′ terms are on the LHS

n−1∏
i=0

k′ + i =
n!|T |
δd

(4.9)

Equation 4.9 can be solved using Newton’s method. Since the sampling frequency k′

found in Equation 4.9 is not typically an integer, we choose k = bk′c or k = bk′c+ 1

for each simplex, with probability ρ and 1 − ρ, respectively. The probabilities are
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chosen such that the expected value of the resulting sampling density

E

(
(n+ k′ − 1)!

|T |(k′ − 1)!n!

)
=

1

δn
(4.10)

Solving for ρ

ρ =
bk′c
n

+ 1− (n− 1)!|T |bk′c!
δn(bk′c+ n− 1)!

(4.11)

4.2.3 Mean Hausdorff Distance

The computation of the mean Hausdorff error is straightforward given that the

distances (errors) at each sample have been computed. The integral of the error

over the entire surface is computed by summing the contributions of all of the sim-

plices formed by n samples in Rn. Denote the simplex t = (x1, x2, . . . , xn) where

x1, x2, . . . , xn are samples inside of a simplex T ∈ T and (e1, e2, . . . , en) are the er-

rors (distances) associated with each sample. The error over T can be approximated

by linearly interpolating the values between the errors. The value of the integral is
|t|
n

∑n
i=1 ei, where |t| is the hypervolume of t. Figure 5 depicts the approximation in

the 2-dimensional case. As a result of the sampling method described in the previous

section, the samples form smaller simplices with the same hypervolume |T | /kn−1.

The hypervolume of T with vertices V = (V1, V2 . . . , Vn) is computed by first

translating the simplex so that one of the vertices is at the origin, then finding the

vector V0 which is orthogonal to the remaining vectors (V1, V2 . . . , Vn−1), and then

normalize such that |V0| = 1. The volume of V is then

|T | = det(V1 − V0, V2 − V0 . . . , Vn−1 − V0)
(n− 1)!

(4.12)
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Figure 4.7: Approximation of the integral of the error in the 2 dimensional case.

4.2.4 Uniform Grid

The algorithm, if implemented naively, can become prohibitively computationally

expensive even for small, low dimensional models. For each sample point p we would

have to measure the point to simplex distance to every simplex in the surface S ′. A

sensible approach to reducing the computational burden is to attempt to reduce the

number of required point to simplex computations. In the proposed algorithm, we

extend the uniform grid approach used in [101, 102] to the n-dimensional case.

A uniform n-dimensional grid, D, is created around the joint bounding box of the

surfaces S and S ′. Each hyper-cube cell in the grid has side length ∆ set by the user

as a fraction of the side length of the average regular simplex T̄ ′. The simplex T̄ ′

is defined as the regular simplex having hypervolume equal to the average simplex

T ′ ∈ T ′. Let C̄ be the cell containing p and Dl(C̄), l ∈ N be the set of cells that are

a distance l∆ from p. See Figure 4.8 for an illustration for the 2-dimensional case

where the cells D1(C) are shaded. First, the distance from p to all simplices that
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Figure 4.8: Unit grid in R2 with side length ∆. The cells D1(C) are shaded. Note
that the surface M ′ in R2 is composed of 1-simplices (lines).

intersect the cellsDl(C) for l = 0 is computed and the minimum, ep, is retained. This

process is repeated for increasing integer values of l (updating ep at each iteration),

until l∆ is larger than the current value of ep since the remaining simplices in M ′

must be further away than ep.

Consider again the simplex T with vertices V = (V1, V2 . . . , Vn). The constraint

lb ≤ x ≤ ub defining the cell C ∈ D can be converted to barycentric coordinates as
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lb ≤ xV ≤ ub. The intersection of the cell and the simplex is then the set

X =

{
x :, lb ≤ xV ≤ ub,

n∑
i=1

xi = 1, x ≥ 0

}
(4.13)

The feasibility (whether the set is empty or not) of the set can be easily determined

using linear programming techniques.

A straightforward approach leads to the complexity O(NcN
′
T ) where Nc and NT ′

are the number of cells in grid D and the number of simplices in surface S ′, re-

spectively. Since Nc grows exponentially with the number of dimensions, even this

procedure can become very complex if implemented naively. To reduce the com-

plexity of the approach we first reduce the memory requirement of storing the cell

grid. Rather than storing 2nNc points (where 2n is the number of vertices a hyper-

cube in Rn) in memory to define the grid, we only store the axis values of the grid,

A = (A1, A2, . . . , An). The values along the ith axis are Ai = (ai,1, ai,2, . . . , ai,m),

∆ = ai,j − ai,j−1, for 1 ≤ j ≤ m. Note that, in general, m is not the same for all

dimensions 1 ≤ i ≤ n. Now we can index the cells in D from 1 to m along each

dimension. Figure 4.9 is an example in the 2-dimensional case.

To reduce the number of times we check for feasibility (i.e., the intersection

between a cell and a simplex as in Equation 4.13) we first solve a much simpler

feasibility problem by taking advantage of the grid-indexing scheme. The cell C

can only intersect the simplex T if it also intersects the bounding box of T . Let the

bounding box of T beB = (Bu, Bl), whereBu andBl are the upper and lower bounds,

respectively. Next we find the axis indices Ji = {j : ai,j ≤ Bu,i, ai,j−1 ≥ Bu,i}, for

1 ≤ i ≤ n. The indices of the set of the cells D that intersect B are then all of the

combinations of the indices in J = (J1, J2, . . . , Jn), call this set R. The number of

cells in R is typically very small compared to Nc. Finally, we determine whether the
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Figure 4.9: Grid indexing in the 2−dimensional case.
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intersection between each cell in R and T is empty by solving Equation 4.13.

4.3 Parametric Test Problem Builder

In the case of approximation algorithms, it is particularly important to evaluate

algorithmic performance relative to test problems. The test problems allow useful

evaluation of characteristics such as convergence and precision. However, because

parametric optimization is not a common problem in the literature, there does not

exist a standard suite of test problems.

A critical part of this research is the development of problems that exhibit that

are likely to cause difficulty to the optimizer in converging to the true solution, such

as [106, 107]

• convexity or non-convexity in the non-dominated frontier,

• discontinuity in the non-dominated frontier,

• non-uniform distribution of solutions,

• multi-modality, and

• deception.

Test suites based on these factors, such as the DTLZ and ZDT problem suites,

are widely used to evaluate the effectiveness of multiobjective algorithms [108, 90,

109, 110]. These factors are intended to cause difficulty in converging to the frontier

and to reflect the difficulties encountered in real-world problems. In this research,

parametric test problems are developed to exhibit a combination of the difficulty

factors using the bottom-up approach described in [111]. Let X ⊆ Rn be the set of

feasible decision vectors, denoted x. Let f : X → Rm,f(x) = (f1(x), . . . , fm(x)) be

the vector valued objective function. Further, let the parameters be a response of the
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design variables θ : Rn → Rp,θ(x) = (θ1(x), . . . , θp(x)). The general mathematical

form of the benchmark problems developed in this section is

y∗(θ) = min
x

f(x)

subject to θ = θ(x)

xLi ≤ xi ≤ xUi ∀i = 1, . . . , n

(4.14)

For m objectives and p parameters, let

x ≡ (x1,x2, . . . ,xm−1,xm,xm+1, . . . ,xm+p) (4.15)

be a complete decision variable vector partitioned into m+p non-overlapping groups.

That is xi for i = 1, . . . ,m + p are independent vectors.. The test problems are

generated as

y∗(θ) = min
x

(f1(x1), f2(x2), . . . , fm−1(xm−1), fm(x))

subject to xi ∈ R|xi|

where fm(x) = g(xm)h(f1(x1), f2(x2), . . . , fm−1(xm−1), g(xm),θ)

θ = (θ1(xm+1), θ2(xm+2), . . . , θp(xm+p))

(4.16)

The parametric Pareto-optimal front is described by solutions which are global

minimum of g(xm), denoted g∗. The so called “difficulty function” g(xm) involves

features that make it difficult for a search algorithm to converge to the global mini-

mum. The difficulty of the problem is associated with the difficulty factor k = |xm|.

The parametric Pareto-optimal front is described as

fm = g∗h(f1, f2, . . . , fm−1,θ) (4.17)
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Since g∗ is a constant number, the h function describes the parametric Pareto-optimal

surface. Also, note that in the case without parameters, Eq. 4.16 simplifies to the

test problem generator in [111].

4.3.1 Test Problem A

fi(xi) =
1

2
sin(20xi) ∀ i = 1, . . . ,m− 1

θj(xm+j) =
1

2
sin(20xm+j) ∀ j = 1, 2, . . . , p

fm(x) = (1 + g(xm))h(x1, x2, . . . , xm−1, θ)

g(xm) =
∑
xi∈xm

(xi − 1/2)2

h(f1, f2, . . . , fm−1, θ) = 3(m+ p)−
∑m−1

i=1 2fi + sin(3πfi)−
∑p

j=1 2θj + sin(3πθj)

g(xm)

0 ≤ xi ≤ π ∀ i
(4.18)

Test problem A is developed to have variable density along f1, f2, . . . , fm−1. The

parameter value is a non-linear response of the design variables. Difficulty function

in test problem A is from DTLZ2 in [111]. This test problem will test the ability

of the algorithm to converge to a non-convex frontier. The parameter is constrained

only by upper and lower bounds. Figure 4.10 is an illustration of test problem A in

3 dimensions for 0-2 parameters. Notice that whether the solution is discontinuous

depends on the number of parameters.
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Figure 4.10: Parametric Pareto frontier for test problem A with 3 dimensions

4.3.2 Test Problem B

fi(xi) = 1/2 + sin(2π cos(5πxi)) ∀ i = 1, . . . ,m− 1

θj(xm+j) = 1/2 + sin(2π cos(5πxm+j)) ∀ j = 1, 2, . . . , p

fm(x) = (1 + g(xm))h(x1, x2, . . . , xm−1, θ)

g(xm) = 1 +m+ p+
∑
xi∈xm

cos(iπxi)

h(f1, f2, . . . , fm−1, θ) = m+ p+
m−1∑
i=1

f 2
i + cos

(
π(1− fi)

)2
+

p∑
j=1

θ2j + cos
(
π(1− θj)

)2
0 ≤ xi ≤ 1 ∀ i

(4.19)

Test problem B is developed to have more challenging characteristics than test prob-

lem A. Test problem B features variable density along f1, f2, . . . , fm−1. The pa-

rameter value is a non-linear response of the design variables. The difficulty and

h functions are novel. The difficulty function is multimodal resulting in many lo-

cal solutions to this problem. Figure 4.11 is an illustration of test problem A in 3
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dimensions for 0-2 parameters. The difficulty function g also features local Pareto

attractors.
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Figure 4.11: Parametric Pareto frontier for test problem B with 3 dimensions

4.3.3 Test Problem C

fi(xi) =
1

2
sin(20xi) ∀ i = 1, . . . ,m− 1

θj(xm+j) =
1

2
sin(20xm+j) ∀ j = 1, 2, . . . , p

fm(x) = (1 + g(xm))h(x1, x2, . . . , xm−1, θ)

g(xm) = 1 +
9

k

∑
xi∈xm

xi

h(f1, f2, . . . , fm−1, θ) = 3(m+ p)−
m−1∑
i=1

2fi + sin(3πfi)−
p∑
j=1

2θj + sin(3πθj)

0 ≤ xi ≤ 1 ∀ i
(4.20)

Test problem C is a variation of test problem A. The difference is the difficulty

function g and the h function has been simplified. The difficulty function is from
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DTLZ7 in [111]. Figure 4.12 is an illustration of test problem B in 3 dimensions for

0-2 parameters.
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Figure 4.12: Parametric Pareto frontier for test problem C with 3 dimensions

4.3.4 Test Problem D

fi(xi) =
1

2
sin(20xi) ∀ i = 1, . . . ,m− 1

θj(xm+j) =
1

2
sin(20xm+j) ∀ j = 1, 2, . . . , p

fm(x) = (1 + g(xm))h(x1, x2, . . . , xm−1, θ)

g(xm) =
∑
xi∈xm

x
1/4
i

h(f1, f2, . . . , fm−1, θ) = 10
m−1∑
i=2

fi

0 ≤ xi ≤ 1 ∀ i

(4.21)

Test problem D is developed to test the ability of the algorithm to generate

evenly spaced parametric Pareto optimal solutions. Test problem D features variable

density along f1, f2, . . . , fm−1. The difficulty function is the same as for test problem
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C. Figure 4.13 is an illustration of test problem B in 3 dimensions for 0-2 parameters.
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Figure 4.13: Parametric Pareto frontier for test problem D with 3 dimensions: 1
objective and 2 parameters.

4.4 Conclusions and Chapter Summary

In this chapter, we have presented an approach for quantitative evaluation and

comparison of algorithms for parametric optimization. Because the algorithms to be

presented in this dissertation are heuristic, we focused on an empirical approach to

performance evaluation. An empirical approach uses scientific reasoning and detailed

analysis to evaluate and compare algorithms. Key challenges are the selection of

suitable test problems and performance metrics.

We developed test problems for which we can arbitrarily scale the number of

objectives and parameters and even the difficulty of the problems. The solutions to

the test problems are known with certainty, which simplifies performance assessment.

The test problems allow useful evaluation of characteristics such as convergence and
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precision. The problems were carefully developed to exhibit features that are likely

to cause difficulty to the optimizer and are common to many engineering problems,

e.g., non-convexity, discontinuity, multi-modality, etc.

The selection of a suitable performance metric is also a critical step in algorithm

evaluation. From an analysis perspective, a unary indicator of quality is desirable

since it allows for the determination of out-performance: determining with statisti-

cal significance whether one technique outperforms the other. We showed how some

general results on unary indicators hold for the parametric case. Finally, we consid-

ered two unary indicators: hypervolume indicator and the mean Hausdorff distance.

We showed, that in the case of discrete approximation sets involving parameters, the

hypervolume metric is not able to reflect the solution “spread.” We suggest the use of

mean Hausdorff distance for performance assessment of approximation sets involv-

ing parameters. The mean Hausdorff distance has desirable properties in that it can

indicate that one approximation is better than another and it can reflect solution

“spread,” even in the case with parameters.
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5. ALGORITHMS FOR PARAMETRIC OPTIMIZATION

5.1 Heuristic Algorithms for Engineering Design

In optimization, is not generally possible to develop algorithms that (1) find

truly optimal solutions (2) quickly (3) for any instance. For engineering problems in

particularly, we typically must sacrifice one of these three. Possibly the most common

approach is to relax condition (1), and instead find solutions that are “good enough.”

This relaxation is the justification for many types of heuristics and meta-heuristics:

genetic algorithms, simulated annealing, etc.

At the cost of solution accuracy, the benefit of a heuristic approach is (1) they are

easy to implement since they require little knowledge about the mathematical struc-

ture of the problem (2) and can be applied to a wide range of problems. This makes

them attractive as a first step in introducing parametric optimization to systems

design.

5.1.1 Adapting Multiobjective Techniques for Parametric Optimization

The examples used in this section involve one objective and one parameter. How-

ever, the results herein also apply to the multi-parametric multiobjective case.

5.1.1.1 Method of Alternating Preference Directions

Perhaps an intuitive approach to solving parametric optimization is to assume a

preference direction for the parameter attributes, and solve as usual using multiobjec-

tive techniques. Then, repeat this procedure with alternating preference directions.

However, the result of this approach would not in general capture the full PPF.

It should be clear from Figure 2.7 (where we compare PF and PPF) that PPF is

not a union of PFs with alternating preference directions. However, in the interest
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of completeness and clarity, we address the issue directly as follows. Consider a

nonempty set of alternatives A where a = (a1, a2, . . . , aM) denotes a vector of M

attributes. Let D denote the nonempty set of indices for the objective attributes

and P denote the set of indices corresponding to the parameter attributes such that

D ∪ P = {1, 2, . . . ,m} and D ∩ P = ∅. We assume minimization in the objective

attributes without loss of generality.

An alternative a∗ ∈ A lies on the PPF if and only if there does not exist another

alternative a′ ∈ A such that a′i ≤ a∗i ∀i ∈ D and a′i < a∗i ∃i ∈ D and a′i = a∗i ∀i ∈ P .

Consider three alternatives on the PPF a∗, a∗∗, and a∗∗∗ such that a∗i = a∗∗i = a∗∗∗i

∀i ∈ D, and a∗k < a∗∗k < a∗∗∗k k ∈ P and a∗i = a∗∗i = a∗∗∗i ∀i ∈ {P\k}.

From the definition of PD, an alternative a∗ ∈ A lies on the PF if and only if

there does not exist a vector a′ ∈ A such that a′
i ≤ a∗i ∀i ∈ D ∪ P and a

′
i < a∗i

∃i ∈ D ∪ P .

If we apply PD to the alternatives, then a∗∗ and a∗∗∗ would be dominated since

a∗i ≤ a∗∗i , a
∗∗∗
i ∀i ∈ {D ∪ P} and a∗k < a∗∗k , a

∗∗∗
k . If we reverse the preference direction

in the jth objective, alternatives a∗ and a∗∗ would be dominated. Reversing the

preference direction in any other objective would have no effect on dominance since

a∗i = a∗∗i = a∗∗∗i ∀i ∈ {D ∪ P\k}.

Thus, any combination of preference direction for PD will always dominate al-

ternative a∗∗. If the preference order in the kth objective is unknown, a∗∗ may

ultimately be the most preferred alternative As a result, straightforward multiobjec-

tive optimization techniques such as such as the weighted sum method, ε-constrained

method [112], or MOGAs such as NSGAII cannot in general solve a parametric prob-

lem by simply alternating the preference directions.
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5.1.1.2 Method of Iterating over Constrained Parameters

Another intuitive approach is to solve the parametric optimization problem by

constraining the parameter to a specific value, then solving the resulting search prob-

lem. One could iterate over many different parameter (or combinations of parameter)

values to approximate the parametric Pareto frontier. This would be an iterative ap-

proach to parametric optimization. However, many questions naturally arise: How

do we select the parameter combinations? Once we have constrained the param-

eter value, what algorithm should be used to solve the resulting search problem?

Would the resulting solutions be parametric Pareto optimal? Can we leverage the

information gained during each iteration?

The most straightforward iterative approach is to select equidistant values. This

approach is not guaranteed to result in a well-distributed spread of solutions. For

example, consider the simple parametric optimization problem

y∗(θ) = min
x

x

subject to
(θ − 20

20

)8
+
(x− 1

1

)8
≤ 1

0 ≤ θ ≤ 20

(5.1)

Sampling θ equidistantly and solve using single-objective optimization techniques

produces the results illustrated in Figure 5.1.

The problem of evenly distributing points along the solution frontier is also com-

mon in multiobjective optimization. Note the similarity between Figures and , which

is an illustration of the ε-constraint method for MO optimization. Methods such as

the Normal Boundary Intersect (NBI) method by Das and Dennis [24] or the normal

constraint method [113] have been created to address the problem. Unfortunately,
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Figure 5.1: Solution to Equation 5.1 by sampling θ equidistantly.

applying such methods to the case with parameters is problematic.

Consider the illustrative example in Figure 5.2, which has one objective attribute

y and one parameter θ. The true non-dominated frontier (parametric Pareto frontier)

is depicted as the bold line. To apply NBI to the parametric case, we create further

problems where the preference direction of the parameter value attributes. These

subproblems are denoted NBImin θ and NBImax θ in the figure. Recall from Section

2.4.2 that the NBI method places points on the boundary of the search space rather

than the Pareto frontier. As a result, an NBI approach to parametric problems may

contain irrelevant solutions (not truly parametric Pareto optimal) if the search space

is non-convex, see Figure 5.2.

In the Pareto case, the non-optimal solutions are typically filtered using the

Pareto dominance rule. This is problematic in the case with parameters since it

is unlikely that any of the solutions will have equal parameter values, a necessary
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Figure 5.2: Application of NBI to a parametric optimization problem. Two NBI sub-
problems are created NBImin θ and NBImax θ where the parameter value is minimized
and maximized, respectively. The solid line represents the true parametric Pareto
frontier for the example problem. For this example problem, the NBI method would
find solutions not on the optimal frontier.

condition for parametric dominance. A NBI approach to parametric optimization

would resolve the issue of unequally spaced solutions but would create a new issue

of finding non-optimal solutions.

5.2 Parametric NSGAII

In the previous section, we saw that there is no obvious way to extend tradi-

tional techniques for multiobjective optimization to the case with parameters. As a

first step, we developed an extension to Nondominated Sorting Genetic Algorithm II

(NSGAII) for the parametric case, which we call parametric NSGAII (p-NSGAII).

In p-NSGAII, the parametric problem is solved by constraining the parameter value,

then solving the resulting multiobjective problem with NSGAII. We elected to use

NSGAII to solve the multiobjective subproblems because of its performance, flexibil-

ity, and because it is widely used as a standard for comparison in the multiobjective

community.
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A practical consideration is that genetic algorithms are known to converge con-

siderably slowly in the when such constraints are present [114]. Thus, if we include

a nonlinear equality constraint at each application of NSGAII, we should expect a

considerable loss in performance. We instead constrain each application of NSGAII

to ranges of parameter values instead. The p-NSGAII subproblem is

min
x

f(x,θ)

s.t. εLi ≤ θi ≤ εUi ∀ i = 1, . . . , p

gi(x,θ) ≤ 0 ∀ i = 1, . . . , q

hi(x,θ) = 0 ∀ i = 1, . . . , r

x ∈ X ⊆ Rn

(5.2)

where f(x,θ) = (f1(x,θ), f2(x,θ), . . . , fm(x,θ)). Another benefit of this approach

is that we are able to find solutions at arbitrary parameter values, improving spread

in the approximation set. The subproblem in Equation 5.2 is a multiobjective opti-

mization problem, which can be solved with NSGAII.

Genetic algorithms such as NSGAII can be seeded (initialized with a “good”

population) to improve performance. In p-NSGAII, we seed each subproblem with

the results from a previous search. It was found anecdotally that the p-NSGAII

algorithm performance greatly improved when seeded with the final generation of

neighboring subproblem. The details of NSGAII are provided in the following section.

5.2.1 Non-dominated Sorting Genetic Algorithm II

The multiobjective subproblem in p-NSGAII is solved using Non-dominated Sort-

ing Genetic Algorithm II (NSGAII) [26]. NSGAII is a general-purpose multiobjective

genetic algorithm for locating solutions on the Pareto frontier. A high-level flow-chart
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of the NSGAII algorithm is presented in Figure 5.3.

In order to assign fitness to the population members, NSGAII incorporates the

Nondominated Sorting method. In this method, before the selection operator is

performed, the population is ranked on the basis of a member’s “non-domination”.

Let NonDominated(·) be a function that finds the non-dominated members of a set.

The pseudo code for the non-dominated sorting procedure is presented in Algorithm

1.

Algorithm 1 Nondominated Sorting
1: procedure (P )
2: j ← 1
3: Pj ← ∅
4: while P 6= ∅ do
5: P ′ ←NonDominated(P )
6: Pj ← P ′

7: P ← P\P ′
8: j ← j + 1

The non-dominated sorting technique is widely used and has been shown to

promote population diversity and improve convergence [26, 86, 115]. In addition

to being converged closely to the non-dominated frontier, solutions must also be

sparsely spaced along the non-dominated frontier. The diversity preservation op-

erator assigns higher fitness to members that lie in less “crowded” regions of the

space. Several crowding distance metrics have been proposed in the literature. The

crowding-distance technique used in NSGA-II sorts the set of solutions according

to each objective function. The solutions are assigned distance values equal to the

absolute difference of the objective values of the two adjacent solutions; an example

is illustrated in Figure 5.4.
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Figure 5.3: Flowchart of the NSGA-II algorithm
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Figure 5.4: An example of NSGA-II crowding distance metric. Objectives are to
minimize y1 and y2 [38].

Once the population has been sorted into non-dominated ranks, each rank is

arranged in descending order of magnitude of the crowding distance values. Then

the Crowded Tournament Selection operator proposed by Deb is used to determine

the parents for the offspring [62]. The Crowded Tournament Selection operator is

defined as follows. A solution i wins a tournament with another solution j if any of

the following conditions are true:

• If solution i has higher rank than j.

• If solution i and j have equal rank but solution i has better crowding distance

than j.

The first condition ensures that the chosen solution lies on the better non-dominated

frontier. The second condition resolves the tie that occurs when both solutions are on

the same non-dominated frontier. The solution in the less crowded area wins. Once

the parents have been selected, the usual recombination and mutation operators are

used to create offspring.
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5.3 Predictive Parametric Pareto Genetic Algorithm (P3GA)

Although in p-NSGAII we seed each application of NSGAII, due to its sequential

iterative nature “knowledge sharing” is limited to previous neighboring subproblems.

That is, knowledge about the search space can only be shared unidirectionally by

neighboring members. A more efficient algorithm would eliminate the need for iter-

ation and would share knowledge of all solution found along the frontier.

Most MOGAs rely on the concept of dominance to assign higher fitness values

to members closer to the PF. In these algorithms, two members are compared on

the basis of whether one dominates the other or not. We adapt the MOGA scheme

to the case with parameters by replacing the concept of Pareto dominance with pa-

rameterized Pareto dominance (PPD). Recall from Section 2.5 that under the PPD

rule, a dominated alternative is one for which there exists an alternative with a

more preferred objective value and equal parameter value. Under the PPD rule a

non-dominated alternative will be necessarily closer to the solution of the paramet-

ric optimization problem. Thus, the PPD definition is compatible with the MPO

problem formulation.

However, the complicating factor is that alternatives must have equal pa-

rameter values for dominance to occur. Because genetic algorithms are variants

of randomized search algorithms, this is unlikely to occur. In other words, a straight-

forward application of PPD to the population members is unlikely to dominate any

members. Figure 5.5 is an illustration of this difficulty. Fig. 5.5a depicts PD analysis

in the case where preferences are monotonically decreasing for attributes y1 and y2.

The space dominated by each member is shaded and outlined by the dashed lines.

In the PD case in Figure 5a, member a is dominated by b while members c and b

are mutually non-dominating. Fig. 5.5b depicts PPD in the case where the designer
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Figure 5.5: Illustration of dominance analysis on randomly generated data using (a)
the Pareto dominance rule and (b) the parameterized Pareto rule. f

has monotonically decreasing preference for attribute y1 but has not established a

preference order in y2 (parameter). In b, none of the members can be said to be

dominated since PPD can only occur along the dashed lines (parameter value equal-

ity). If no members are classified as dominated, there is no selection bias towards

the frontier, which would result in poor search performance.

To overcome this difficulty, we instead perform dominance analysis using points

that are predicted to be feasible rather than current members of the population. In

the proposed algorithm, we use a machine learning technique to make this prediction

using the current population as training data. A non-dominated member is one that

is not parametrically Pareto dominated by any point that is predicted to be feasible.

The following section contains a high-level description of the proposed algorithm and

a more detailed explanation of the predicted dominance concept.
fReprinted with permission from “P3GA: An Algorithm for Technology Characterization”, Gal-

van, E., Malak, R.J., 2016 J. Mech. Des. 137(1) Copyright 2015 by ASME.
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Because of the reliance on predicted PPD, the proposed algorithm is called, Pre-

dictive Parameterized Pareto Genetic Algorithm (P3GA). In P3GA, we take the

attribute space image of the current members of the population as training data

for a machine learning algorithm: support vector domain description (SVDD). The

resulting SVDD is then the predicted feasible set, i.e., the shaded region illustrated

in Fig. 5.6. Using the SVDD approach, the p-nondominated members are those that

are not dominated by a predicted feasible site, the blue shaded region in the figure.
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Figure 5.6: Illustration of p-dominance. Objective is to minimize f2 and f1 is a
parameter. g

Figure 5.7 is a flow chart of the proposed algorithm. The algorithm closely

parallels the general procedure of many MOGAs in the literature. In fact, P3GA

draws extensively from the Nondominated Sorting Genetic Algorithm II (NSGAII)

developed by K. Deb [26], i.e., the concepts of nondominated sorting and Crowded

Tournament Selection. The novelty of P3GA is in the use of PPD as the dominance

criterion and the concept of predicted dominance. Because many aspects of the
gReprinted with permission from “P3GA: An Algorithm for Technology Characterization”, Gal-

van, E., Malak, R.J., 2016 J. Mech. Des. 137(1) Copyright 2015 by ASME.
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algorithm are well documented in the MOGA literature, the following subsections

detail only the novel portions of the algorithm: (1) determining the predicted feasible

set and (2) predicted PPD dominance. These correspond to the shaded processes in

Figure 5.7.

5.3.1 Predicting the Feasible Set using Support Vector Domain Descrip-

tion

The Support Vector Domain Description (SVDD) [116] is used to approximate the

solution based on observed data. The SVDD method is a non-probabilistic machine

learning technique for predicting the boundary of a data set in a Euclidean space.

The SVDD method bears close resemblance to Support Vector Machines (SVMs)

[117, 118]. The principal difference being that SVDD is a one-class classifier while

SVMs are two-class classifiers. For a detailed description of the SVDD, see [116, 4].

Under the SVDD method, one finds the minimum-radius hyper-sphere that contains

a set of training data. Let xi denote a vector in the design variable space X—the

input space. Given n data points, X = {xi|i = 1, 2, . . . , n}, the minimum radius

hyper-sphere containing every data point with centroid a and radius r

Minimize
r,a

r2 + c
∑
i

ξi

subject to ‖xi − a‖2 ≤ r2 + ξi, ξi ≥ 0 ∀i
(5.3)

where ξi are slack variables that allow for the possibility of outliers in the training

set. The parameter c defines how to trade-off between hyper-sphere volume and

errors. Any point at a distance equal to or less than r from the hyper-sphere center

is inside of the domain description. However, because a hyper-sphere is typically a

poor representation of the domain, a kernel function is used to non-linearly remap

the training data into a higher-dimensional feature space where a hyper-sphere is a
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Figure 5.7: Flow chart of the Predictive Parameterized Pareto Genetic Algorithm
(P3GA). The shaded processes correspond to the novel concepts implemented in
P3GA. i

iReprinted with permission from “P3GA: An Algorithm for Technology Characterization”, Gal-
van, E., Malak, R.J., 2016 J. Mech. Des. 137(1) Copyright 2015 by ASME.
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good model. Through the so-called kernel trick, the data points are mapped to the

feature space, without computing the mapping explicitly. The result is an implicit

mapping to a feature space of unknown, and possibly infinite, dimensionality. There

are several valid kernel functions common in the literature [119]. The proposed

algorithm uses the Gaussian kernel function

KG(xi,xj) = Φ(xi) · Φ(xj) = e−q‖xi−xj‖2 , (5.4)

where Φ(·) is the nonlinear mapping from the data space to the feature space. The q

parameter determines how “tightly” or “loosely” the domain description is fit around

the training data. The constraint in Eq.5.3 then becomes

‖Φ(xi)− b‖2 ≤ r2 + ξi ∀i, (5.5)

where b is the centroid of the feature space hyper-sphere. Rewriting in terms of the

kernel function, the Wolfe dual problem can be developed from Eq. 5.5 as

Maximize
βi

∑
i

βiK(xi,xj)−
∑
i,j

βiβjK(xi,xj)

subject to 0 ≤ βi ≤ c ∀i∑
i

βi = 1

(5.6)

For a detailed description of the method for formulating the Wolfe dual problem see

[120]. For each data point, xi for i = 1, 2, . . . , n, are three possible classifications:

• It is inside the hyper-sphere, which is indicated by βi = 0,

• It is on the boundary of the hyper-sphere, which is indicated by 0 < βi < c,

• It is an outlier outside of the hyper-sphere, which is indicated by βi = c.
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Data on the boundary of the hyper-sphere are called support vectors and are essential

to the domain description representation. The outliers are not part of the domain

description. Choosing c ≥ 1 yields no outliers since
∑

i β1 = 1 and 0 < βi < c ∃i,

and therefore βi 6= c ∀i. The squared distance of the feature space image of a point,

z, to the centroid of the hyper-sphere is

r2(z) = K(z, z)− 2
∑
i

βiK(xi, z)−
∑
i,j

βiβjK(xi,xj), (5.7)

A new test point, z, is inside the domain description if the distance from the feature

space image of test point to the hyper-sphere centroid and is less than the radius

of the hyper-sphere. The expression for classification, En.5.7, is a simple algebraic

expression that is fast to evaluate. In fact for the Gaussian kernel function, the first

term is equal to 1, and the last term can be pre-computed since it is independent of

z.

A final consideration is the SVDD method is able to tighten the description by

using negative examples—labeled outliers. The aim in this case is to find the min-

imum radius hyper-sphere that includes the positive examples (target-data) while

excluding the negative examples (outlier-data). Consider that target-data are enu-

merated by indices i, j and the outlier-data by l,m. Further, the target-data are

labeled yi = 1 and outlier-data are yl = −1. The search problem becomes

Minimize
r,a

r2 + c1
∑
i

ξi + c2
∑
l

ξl

subject to ‖xi − b‖2 ≤ r2 + ξi,

‖xl − b‖2 ≥ r2 + ξl,

ξi, ξl ≥ 0 ∀i, l.

(5.8)
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Again, by the method of Lagrange multipliers, we can obtain

L =
∑
i

β′iK(xi,xj)−
∑
l

β′lK(xl,xl)−
∑
i,j

β′iβ
′
jK(xi,xj)

+ 2
∑
l,j

β′lβ
′
jK(xl,xj)−

∑
l,m

β′lβ
′
mK(xl,xm)

(5.9)

where β′i = yiβi (the index i again enumerates both target and outlier-data). See

[121] for a detailed exposition of the SVDD method with negative examples.

To prevent weighting variables with large magnitudes more than those with lower

ones in this comparison, the training data is centralizing (scale all data to a −1 to

1 range), which improves the SVDD model. An important benefit of the SVDD

method is that it can be constructed incrementally and decrementally [122]. This

allows for a relatively inexpensive update procedure to be used when new members

are added or removed from the SVDD. Figure 5.8 is an illustration of the SVDD

method on a 2-dimensional data set in the thermodynamic conditions space.
jReprinted with permission from “P3GA: An Algorithm for Technology Characterization”, Gal-

van, E., Malak, R.J., 2016 J. Mech. Des. 137(1) Copyright 2015 by ASME.
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5.3.2 Predicted Dominance

In the proposed algorithm, the first step is to initialize the population by randomly

selecting design alternatives in the feasible design space. These are mapped to the

attribute space by an analysis function(s), see Figure 5.9. In Figure 5.9b, the feasible

attribute space (shaded region) and true PPF (solid line) are unknown to the designer

at this point, i.e., before solving the PMO problem. The next step is to use dominance

analysis to identify designs that are likely closer to the true PPF, the bold line in

Figure 5.9b. Next, we perform dominance analysis using points that are predicted to

be feasible (p-dominance) rather than current members of the population.

Under the concept of predicted PPD, a non-dominated member is one that is not

parametrically Pareto dominated by any member that is predicted to be feasible.

For the remainder of this article, we will refer to this concept as p-dominance.

In the proposed algorithm, we take the attribute space image of the current

members of the population (the points in Figure 5.9b) as training data for the SVDD.
kReprinted with permission from “P3GA: An Algorithm for Technology Characterization”, Gal-

van, E., Malak, R.J., 2016 J. Mech. Des. 137(1) Copyright 2015 by ASME.
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The resulting SVDD is then the predicted feasible set: the shaded region illustrated

in Figure 5.10a. Any population member in the interior of the SVDD must be p-

dominated. If every population member is part of the domain description, (C ≥ 1),

only members on the boundary of the SVDD (support vectors) can potentially be

p-nondominated. Thus, the non-support vectors can be ignored when performing

dominance analysis. This is significant since for most data sets only a small portion

of the data will lie on the hyper-sphere boundary and be classified as support vectors.

Using the SVDD approach, the p-nondominated members are the support vectors

that are not dominated by a predicted feasible site. To test this, we sample the

SVDD in the space that dominates each support vector. Figure 5.10a is an illustration

of this sampling procedure for two support vectors in the population. These test sites

are in the space that dominates the support vectors. For each test point, we compute

the distance from the point to centroid in the feature space image using Eq. (7). If

the distance for any site is less than or equal to the radius of the hyper-sphere, i.e.,
lReprinted with permission from “P3GA: An Algorithm for Technology Characterization”, Gal-

van, E., Malak, R.J., 2016 J. Mech. Des. 137(1) Copyright 2015 by ASME.
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predicted to be feasible, the support vector is classified as p-dominated. The test

space is bounded by the minimum bounding hyper-rectangle (the envelope containing

the training data). In the illustrative case, the result would be the non-dominated

members in Figure 5.10b.

It is important to note that without the use of p-dominance, none of the mem-

bers shown in Figure 5.10 would be dominated. This is because, as defined

earlier, PPD requires that members have equal parameter values in order for dom-

inance to occur; none of the members in the illustrated population have equal pa-

rameter values.

One approach to finding the p-nondominated members is to simply sample the

space that dominates each support vector. If a any of the samples is inside of the

SVDD, the support vector is classified as p-dominated. Under this approach, if there

are n support vectors, u dominator attributes, and v samples along each dominator

attribute, determining the non-dominated members requires at most nvu evaluations

of Eq. 5.7. In practice the number of evaluations required is much lower than this

upper limit since many of the support vectors are classified as dominated after the

first sample, see the dominated member in Figure 5.10a. However, this approach

may still become prohibitively expensive for many dimensional problems.

Rather than densely sampling the (potentially many dimensional) space that

dominates a point, we can instead leverage gradient information about the SVDD.

Let zk be the population member of interest. The direction of largest decrease in

Eq. 5.7, the squared distance of the feature space, is

∇k = −2
∑
i

βi
∂K(xi, zk)

∂zi
(5.10)

If ∇k < 0 in each objective direction, zk must be p-dominated since there exists
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predicted feasible members in the space that dominates zk. However, we cannot yet

be confident that zk is not p-dominated by disjoint region of the SVDD. Because the

SVDD method allows disjoint regions and non-convexity, zk may be p-dominated

by a non-neighboring region. As a result, we must search the space that dominates

zk for predicted feasible sites. Let D be the set of indices corresponding to the

objectives. The general outline of the method is

zk+1 = zk − αkD∇k, k ≥ 0, (5.11)

where αk ≥ 0, and D = (dij) is a diagonal matrix such that di,j = 1 if i = j ∀i, j ∈ D,

and di,j = 0 otherwise. The matrix D ensures that we only step in the direction that

parametrically dominates zk. In the method of gradient descent, αk is chosen so that

the descent property is satisfied:

R2(zk+1) < R2(zk) (5.12)

Because the purpose of the search is not to find an extreme of the function, this

approach is not suitable. For P3GA, we take a fixed step size. A step size of

αk =
√
m ∗ 0.05, where m is the number of objectives, was found to be produces

very similar results to densely sampling the dominating space. The procedure is

repeated until the member is found to be p-dominated or the search steps outside of

the population bounding box.

5.4 Conclusions and Chapter Summary

In this chapter, we adapted multiobjective techniques for the general mutltiob-

jective parametric case. First, we considered some challenges in a straightforward

application. We proved that the method alternating preference directions cannot,
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in general, find all solutions to an MPO problem. Next, we considered an iterative

approach, where the MPO problem is decomposed into several MO subproblems with

fixed parameters. We showed how constraining the subproblems to equidistant pa-

rameter values might lead to an uneven spread in solutions. Because an even spread

of solutions is an important consideration in MO algorithms, we considered taking

an approach similar to the Normal Boundary Intersect (NBI) method. We showed

how an adaptation of the NBI method to PO could result in non-optimal solutions

that cannot be filtered.

We developed an extension of the Nondominated Sorting Genetic Algorithm II

(NSGAII) for the parametric case, which we call parametric NSGAII (p-NSGAII).

In this iterative approach to MPO, the parameters are constrained to ranges rather

than fixed values of the parameters. As a result, the algorithm is able to find solu-

tions at arbitrary values of the parameter. To improve algorithm performance, each

application of NSGAII is seeded with the results from the previous application. This

allows each new application to “learn” from its predecessor. However, because of the

sequential nature of p-NSGAII, this knowledge sharing is limited to neighbors and

is unidirectional.

The predictive parametric Pareto genetic algorithm (P3GA) resolves this lim-

itation by replacing the notion of dominance in the general genetic MO strategy

with parametric Pareto dominance. Because it is unlikely that randomly generated

alternatives will be parametrically dominated, P3GA instead relies on the concept

of predicted dominance. By eliminating iteration, In P3GA, knowledge about one

region of the search space can be communicated to any other solution, improving

algorithm performance.
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6. COMPARISON OF NOVEL ALGORITHMS

6.1 Experimental Setup

In this section, we compare p-NSGAII and P3GA on several test problems that

exhibit features likely to cause difficulty in converging to the true PPF. We use the

test problems developed in Section 4.3 and measure quality using the mean Hausdorff

distance, described in Section 4.1.2.2.

Recall that the test problems were developed to allow the number of objectives

and parameters to be scaled arbitrarily. This allows us to investigate how the per-

formance of each algorithm changes with dimensionality. The number of decision

variables is fixed at n = 5 + m + p, where m and p are the number of objective at-

tributes and parameters, respectively. We compare the algorithms on test problems

up to m+ p = 6.

For each test problem, 30 runs are performed using either algorithm. The P3GA

algorithm is run with the following

Generations: G = 200

Population Size: P = 100

Crossover Rate: 0.08

Mutation Rate: 0.01

Kernel function parameter: q = 15

Max Num. of Training Data: 500

Thus, each P3GA run involves PG = 2, 000 function evaluations. Recall that p-

NSGAII involves solving a number of subproblems with NSGAII. For pd discretiza-

tions along each parameter attribute, the number of subproblems is ppd. The to-
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Table 6.1: p-NSGAII parameter settings as a function of the number of parameters
p. The number of function evaluations (NFE) is greater than or equal to 20, 000, the
NFE used in P3GA.

p Pop. Size P Num. Gen. G pd NFE

0 100 200 N/A 20,000
1 23 58 16 21,344
2 23 58 4 21,344
3 32 80 2 20,480
4 23 58 2 21,344
5 16 40 2 20,480

tal number of function evaluations (NFE) for the p-NSGAII approach is PGppd.

To maintain a similar level of computational effort across algorithms, each appli-

cation of NSGAII must about 20, 000 function evaluations. For this comparison,

we let the number of subproblems be dependent on the number of parameters ac-

cording to pd = b161/pc. The population size is set to the smallest size such that

2.5P 2b201/pcp ≥ 20,000
ppd

. The rule results in parameter settings in Table 6.1. We made

no attempt to determine the best parameter settings. In both algorithms a crossover

rate of 0.8 and mutation rate of 0.01 is used.

The p-NSGAII algorithm was implemented in C. The underlying NSGAII algo-

rithm is original implementation of NSGAII with constraint handling by K. Deb [26].

The principal difference between NSGAII and P3GA is predicted parametric Dom-

inance. To improve the quality of the comparison, we replaced Pareto dominance

in the original implementation of NSGAII with predicted parametric Dominance in

Section 5.3.2.

6.2 Results and Discussion

Figure 6.1 to 6.3 show a comparison between the performance of p-NSGAII and

P3GA using the test problems developed in 4.3. The ∆p values are normalized
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using the best and worst ∆p values (lower is better) found in any test. Each figure

corresponds to one of the scalable test problems A-C. For each test problem, the

numbers of objective and parameter attributes were varied, with each of variations

corresponding to a subplot. For example, in Figure 6.1, the top left subplot represents

an experiment on test problem A with m = 6 objectives and p = 0 parameters. The

top right subplot is another experiment where with m = 1 objective and p = 5

parameters. Note that the case with no parameters p = 0, is the multiobjective

problem and p-NSGAII behaves as NSGAII. The aim is to show how the performance

of each algorithm varies with the number of objective and parameters.

The boxplot indicates the average ∆p for each method, p-NSGAII and P3GA.

The notch indicates the 95% confidence interval. The whiskers indicate the upper

and lower quantiles. Outliers are depicted as red crosses. For ease of visualization,

the subplots corresponding to experiments where P3GA significantly (.95 confidence)

outperformed p-NSGA2 are shaded green and outlined in bold. Those shaded in blue

correspond to cases where p-NSGA2 significantly outperformed P3GA. The unshaded

subplots correspond to the cases where there was no statistically significant difference.

The aim of test problem A is to test the ability of the algorithm to converge

to a non-convex frontier, see Figure 4.10. The problem has uniform density along

f1, f2, . . . , fm−1 and the parameter is constrained only by upper and lower bounds.

Test problem A is a relatively straightforward MPO. In this test, p-NSGAII out-

performs P3GA in the non-parametric case with 4 or less objectives. P3GA out-

performed p-NSGAII in all parametric cases with more than 2 objectives and 2

parameters.

Test problem B is developed to have more challenging characteristics than test

problem A. Test problem B features variable density along f1, f2, . . . , fm−1. The pa-

rameter value is a non-linear response of the design variables. The difficulty function
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Figure 6.1: Comparison between p-NSGAII and P3GA on test problem A with vary-
ing numbers of objectives and parameters, each variation corresponds to a subplot.
p-NSGAII outperforms P3GA in the non-parametric case with 4 or less objectives.
P3GA outperformed p-NSGAII in all parametric cases with more than 2 objectives
and 2 parameters.

is multi-modal, resulting in a number of local parametric Pareto frontiers. This test

problem will test the ability of the algorithm to converge to a discontinuous frontier.

For these tests, P3GA outperforms p-NSGAII for every parametric problem.

Test problem C is a variation of test problem B. The difference is the difficulty

function g creates a “flatter” search region, which is often challenging for genetic

algorithms. The problem does not feature local parametric Pareto attractors. In

this case, p-NSGAII outperforms P3GA in the non-parametric case with 4 or less

objectives. P3GA outperformed p-NSGAII in all parametric cases with more than 2

objectives and 1 parameter.
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Figure 6.2: Comparison between p-NSGAII and P3GA on test problem B with vary-
ing numbers of objectives and parameters, each variation corresponds to a subplot.p-
NSGAII only outperforms P3GA in the non-parametric case with 6 objectives.

The final problem considered in this study is test problem D. The aim of the

problem is to test the ability of the algorithm to generate evenly spaced parametric

Pareto optimal solutions in the case where the true frontier is a steep curve. The test

problem features variable density along f1, f2, . . . , fm−1 and the difficulty function is

the same as for test problem C. The purpose of this study is to gain an understanding

of understanding of the issues that may arise in a constraint based approach to

parametric problems, such as p-NSGAII. The p-NSGAII approach performs poorly

in cases where the frontier is steep along the parameter attribute. This issue can be

seen in Figure 6.5, which is an illustration of the solutions found by (a) p-NSGAII

and (b) P3GA for one trial on test problem D. For p-NSGAII to more accurately

(in terms of ∆p) capture the true frontier, the number of discretizations along the
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Figure 6.3: Comparison between p-NSGAII and P3GA on test problem C with vary-
ing numbers of objectives and parameters, each variation corresponds to a subplot.
p-NSGAII outperforms P3GA in the non-parametric case with 4 or less objectives.
P3GA outperformed p-NSGAII in all parametric cases with more than 2 objectives
and 1 parameter.

parameter dimension, pd, must be increased. However, this would increase the total

number of function evaluations (NFE) dramatically since for p-NSGAII the NFE is

PGppd, where p is the number of parameters.

The results in Figures 6.1 to 6.3 indicate that P3GA generally performs better

than p-NSGAII as the number of parameters and/or objectives increases. This is

perhaps unsurprising since the performance of NSGAII is known to decrease dramat-

ically with the number of objectives [37]. The method of p-dominance used in P3GA

mitigates this effect to some degree. To better understand the ability of p-dominance

to order solutions in terms of objective function values, we perform the same exper-
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Figure 6.4: Comparison between p-NSGAII and P3GA on test problem D with one
objective and two parameters. P3GA outperforms p-NSGAII.
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Figure 6.5: Illustration of Test Problem D.
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Figure 6.6: Mean fraction of predictive Pareto non-dominated designs from a set of
200 uniformly distributed designs in an M -dimensional unit hypercube.

iment reported in Figure 2.5 using p-dominance. We randomly generate 200 designs

in an M -dimensional unit hyper-cube for M = 2, 6, . . . , 30. The average percentage

of non-dominated designs over 10 runs is presented in Figure 6.6. The results show

that using p-dominance, only a small fraction of solutions are non-dominated, even

in very high dimensions.

The ability of p-dominance to better order solutions in many objective problems

does not explain why P3GA outperforms p-NSGAII for the parametric problems with

low number of objectives, e.g., m = 3 and p = 3. The advantage of P3GA on para-

metric problems is likely a result of a combination of several factors: (i) improved

ability to dominate solutions in many objective spaces (ii) improved knowledge shar-

ing among solutions throughout the search space, and (iii) ability to maintain a more

even spread of solutions along the parameter dimensions.
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The results presented in Figures 6.1 to 6.4 are normalized to improve visualization.

However, some performance information is lost when the data is normalized. We

present the data without normalization in Tables 6.2 to 6.4. For all test problems

and either algorithm, performance overall performance (as measured by ∆P ) tends

to decrease with the dimensionality of the problem, i.e., m+ p. This is unsurprising

since as the dimensionality of the frontier increases, the search problem becomes

more difficult. However, we should not interpret increasing values of m+ p at higher

dimensions to mean that neither algorithm is able to converge to the true solution

when dimensionality is increased. To illustrate this point, we repeated the some

experiments with increased number of function evaluations. The results of these

experiments are reported in Table 6.5. The total number of function evaluations

(NFE) is increased to 40,000. The results presented are for test problems A-C, with

p = 5 and m+ p = 6. Doubling the NFE results in about a doubling in performance

for P3GA. The p-NSGAII method sees some increase in performance for test problem

C but none for A and B.

The most significant trend that can be seen in the data is that the performance of

p-NSGAII decreases with the number of parameters. This result is to be expected

due to the iterative nature of the p-NSGAII approach. A less intuitive trend is that

the performance of P3GA improves with the number of parameters. The results

in Figure 6.2 for test problem B provide some deep insight into the performance

of P3GA and p-NSGAII in this respect. Test problem B is the only case where

p-NSGAII outperforms P3GA for a high (more than 4) dimensional problem. To

gain a better understanding of the issue at hand we provide an illustration of the

solutions found by p-NSGAII and P3GA for test problem B in Figures 6.2 and

6.2, respectively. As expected, the performance of p-NSGAII decreases with the

number of parameters. In essence, the ε constrained subproblems partition the search
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Table 6.2: Comparison between p-NSGAII and P3GA on test problem A with vary-
ing numbers of objectives and parameters. Total number of function evaluations is
NFE=20,000.

m+ p p P3GA p-NSGAII

3 0 0.41 ± 0.002 0.10 ± 0.000
3 1 0.18 ± 0.000 0.06 ± 0.000
3 2 0.16 ± 0.000 0.16 ± 0.002

4 0 1.62 ± 0.006 0.75 ± 0.006
4 1 0.67 ± 0.002 0.74 ± 0.005
4 2 0.38 ± 0.000 1.21 ± 0.008
4 3 0.32 ± 0.000 0.62 ± 0.003

5 0 2.34 ± 0.009 6.75 ± 0.030
5 1 1.34 ± 0.005 2.83 ± 0.010
5 2 0.72 ± 0.001 4.93 ± 0.018
5 3 0.53 ± 0.000 2.90 ± 0.011
5 4 0.46 ± 0.000 10.23 ± 0.028

6 0 2.56 ± 0.013 15.47 ± 0.044
6 1 1.72 ± 0.008 7.00 ± 0.035
6 2 1.18 ± 0.003 10.16 ± 0.050
6 3 0.80 ± 0.001 8.42 ± 0.044
6 4 0.70 ± 0.002 17.43 ± 0.031
6 5 1.52 ± 0.019 15.18 ± 0.030
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Table 6.3: Comparison between p-NSGAII and P3GA on test problem B with vary-
ing numbers of objectives and parameters. Total number of function evaluations is
NFE=20,000.

m+ p p P3GA p-NSGAII

3 0 1.45 ± 0.005 1.51 ± 0.003
3 1 1.15 ± 0.004 3.09 ± 0.014
3 2 0.99 ± 0.003 3.09 ± 0.010

4 0 3.38 ± 0.009 3.20 ± 0.009
4 1 2.25 ± 0.008 9.17 ± 0.030
4 2 1.91 ± 0.009 7.60 ± 0.022
4 3 1.64 ± 0.009 4.09 ± 0.021

5 0 6.49 ± 0.012 9.55 ± 0.019
5 1 3.87 ± 0.010 16.63 ± 0.004
5 2 2.97 ± 0.013 14.56 ± 0.003
5 3 2.84 ± 0.020 9.35 ± 0.035
5 4 3.83 ± 0.040 10.17 ± 0.002

6 0 26.10 ± 0.013 21.73 ± 0.004
6 1 13.09 ± 0.011 24.91 ± 0.006
6 2 8.68 ± 0.054 23.22 ± 0.002
6 3 8.98 ± 0.050 18.50 ± 0.006
6 4 9.95 ± 0.046 20.26 ± 0.005
6 5 10.29 ± 0.005 16.27 ± 0.005

space. Then, the algorithm finds the PF for each partitioned subspace. This creates

degenerate solutions in some of the ε constrained subproblems, that is, the PF within

an ε constraint subproblem may be a point. These degenerate solutions create the

“clusters” around the ε constraint values in Figure 6.2c.

To better understand why the performance of P3GA may increase with the num-

ber of parameters, it is useful to consider the notional scenario illustrated in Figure

6.9. The scenario depicts a situation where predicted dominance fails to accurately

identify the non-dominated members. In the scenario, both attributes are to be

minimized. We consider the case without parameters to simplify exposition. When
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Figure 6.7: Illustration of the solutions found by p-NSGAII for test problem B
for a single trial . The performance of p-NSGAII decreases with the number of
generations.
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Figure 6.8: Illustration of the solutions found by P3GA for test problem B for a
single trial. The performance of P3GA improves with the number of generations.
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Table 6.4: Comparison between p-NSGAII and P3GA on test problem C with vary-
ing numbers of objectives and parameters. Total number of function evaluations is
NFE=20,000.

m+ p p P3GA p-NSGAII

3 0 0.62 ± 0.002 0.10 ± 0.000
3 1 0.37 ± 0.002 0.18 ± 0.001
3 2 0.20 ± 0.000 0.24 ± 0.004

4 0 1.87 ± 0.006 0.85 ± 0.011
4 1 0.78 ± 0.003 1.32 ± 0.007
4 2 0.56 ± 0.007 1.59 ± 0.009
4 3 0.35 ± 0.000 0.74 ± 0.006

5 0 2.53 ± 0.011 13.23 ± 0.035
5 1 1.53 ± 0.005 3.93 ± 0.018
5 2 0.87 ± 0.006 4.87 ± 0.017
5 3 0.55 ± 0.000 4.15 ± 0.018
5 4 0.49 ± 0.000 7.05 ± 0.027

6 0 9.68 ± 0.145 28.16 ± 0.059
6 1 1.88 ± 0.008 10.89 ± 0.069
6 2 1.50 ± 0.012 12.07 ± 0.048
6 3 0.98 ± 0.008 10.11 ± 0.052
6 4 0.68 ± 0.001 15.09 ± 0.054
6 5 2.22 ± 0.046 26.53 ± 0.051

Table 6.5: Comparison between p-NSGAII and P3GA on test problem A to C with
p = 5 and m+ p = 6 Total number of function evaluations is NFE=40,000.

Test Problem P3GA p-NSGAII

A 0.65 ± 0.001 19.37 ± 0.032
B 5.90 ± 0.021 16.50 ± 0.029
C 0.67 ± 0.001 12.57 ± 0.031

the domain description is generated around the initial population, the boundary

members (support vectors) are even more widely spaced in the objective space. As

a result, predictive Pareto dominance fails to rank the solutions, since almost all

124



solutions are classified as dominated.

In other words, in cases where the solution space is small relative to the search

space, the SVDD technique may generate a poor prediction near the true solution.

See [123] for another example of this phenomenon. In the notional example in 6.9,

the prediction is too “loose” near the solution and as a result, few of the population

members are identified as non-dominated (highlighted in red). If we were to “zoom”

into the predicted frontier, we can see how this may result in incorrectly labeling

population members.

This limitation of the P3GA is relevant to test problem B, but only in the case

with few parameters. As can be seen in Figures and , the size of the solution relative

to the search space increases with the number of parameters. Conversely, the size of

the search space sometimes decreases with the number of objectives, as is the case

with test problem B. This drawback could potentially be addressed by introduction

an approach for eliminating population members that are far from the non-dominated

frontier from the domain description. This is left to future work.

Another important consideration in assessing the performance of a search algo-

rithm is the internal wallclock time. The internal wallclock time of an algorithm is

the human perception of time required for the internal computations involved in the

search, that is those computations other than function evaluations. Internal compu-

tation time is typically not reported for genetic algorithms since it tends to be small

relative to the external computation time (the time required to perform the function

evaluations). The internal wallclock time of the p-NSGAII is on the order of minutes

(many of the runs were completed in less than one minute). However, because P3GA

involves a machine learning step, the computation time is not negligible.

The internal wallclock of P3GA is reported in Figures 6.10 to 6.12. The mean 

wallclock time is reported in minutes with varying numbers of objective and pa-
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Figure 6.9: Situation where predicted Dominance fails to identify non-dominated
members. The predicted non-dominated member lies on the predicted frontier and
is highlighted in red. If we focus near the predicted frontier, we can see that any
members near that predicted non-dominated member (in red) would be incorrectly
labeled as dominated.

rameters. Each symbol corresponds to a fixed number of parameters. The x-axis

corresponds to the total number of objectives and parameters, i.e., the dimension-

ality of the solution space. For test problem A, most problems are solved in about

10 minutes but no clear trend can be seen with varying number of objective and

parameters. For test problems B and C, however, the wallclock time increases with

the number of objectives. An interesting trend is that wallclock time decreases if one

objective becomes instead a parameter. Because the time to build the SVDD should

not be affected by whether a dimension is a parameter or not, we speculate that

computation savings are in the computation of p-dominance. When one objective

becomes a parameter, the search space when performing p-dominance, Eq. 5.3.2,

decreases in dimensionality, leading to computational savings.

6.3 Conclusions and Chapter Summary

In this chapter, we compare p-NSGAII and P3GA on several test problems that

exhibit features likely to cause difficulty in converging to the true frontier. We
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Figure 6.10: Mean wall-clock time in minutes of the P3GA algorithm on test problem
A with varying numbers of parameters and objectives. Each symbol corresponds to a
fixed number of parameters. The x-axis corresponds to the total number of objectives
and parameters, i.e., the dimensionality of the solution space.

use the test problems intended to cause difficulty in converting to the true frontier,

especially for genetic algorithms. The performance was measured in terms of solution

quality (measured using mean Hausdorff distance), number of function evaluations,

and wallclock time.

The p-NSGAII algorithm was implemented in C, leveraging the original imple-

mentation of NSGAII by K. Deb [26]. To improve the quality of the comparison,

P3GA was implemented by replacing Pareto dominance in the original implementa-

tion of NSGAII with predicted parametric Dominance in Section 5.3.2.

The results indicate that P3GA generally performs better than p-NSGAII (in

terms of ∆p) as the number of parameters and/or objectives increases. For low di-

mensional cases without parameters (i.e., traditional multiobjective problems) the
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Figure 6.11: Mean wall-clock time in minutes of the P3GA algorithm on test problem
B with varying numbers of parameters and objectives. Each symbol corresponds to a
fixed number of parameters. The x-axis corresponds to the total number of objectives
and parameters, i.e., the dimensionality of the solution space.
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Figure 6.12: Mean wall-clock time in minutes of the P3GA algorithm on test problem
C with varying numbers of parameters and objectives. Each symbol corresponds to a
fixed number of parameters. The x-axis corresponds to the total number of objectives
and parameters, i.e., the dimensionality of the solution space.
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p-NSGAII method tended to outperform P3GA. This is expected since without pa-

rameters, p-NSGAII reduces to the original NSGAII, which is developed to solve mul-

tiobjective problems. For those problems that included parameters, P3GA tended

to outperform.

Some of the performance gain for P3GA can be explained by the a ability of

p-dominance to better order solutions in many objective. However, this would not

explain why P3GA outperforms p-NSGAII for the parametric problems with low

number of objectives. The advantage of P3GA on parametric problems is likely a

result of a combination of several factors: (i) improved ability to dominate solutions

in many objective spaces (ii) improved knowledge sharing among solutions through-

out the search space, and (iii) ability to maintain a more even spread of solutions

along the parameter dimensions.

A drawback of P3GA is an increase in internal wallclock time. The computation

time of genetic algorithms is typically negligible. However, because P3GA imple-

ments a machine learning technique, computation time is significantly increased.

For the test problems considered in this study, the internal wallclock time increased

with the number of objectives but decreased if an objective attribute becomes a

parameter.
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7. INFORMATION GATHERING CASE STUDY

7.1 Multi-ratio Transmission Model

To illustrate the use of parametric optimization for the information gathering

problem, we consider the design of a vehicle’s multi-ratio transmission with uncertain

information on its engine characteristics. Aside from transmitting power from the

engine to wheels, an important function of a multi-ratio transmission is to allow the

engine to run at a more efficient state, thus improving fuel economy. Therefore,

at a high level, we wish to design a multi-ratio transmission that maximizes engine

efficiency.

The engineering problem is to compute the expected value of performing physical

experiments to gather information about the uncertain information in a computa-

tional model the efficiency of an engine and transmission. In Section 3.1 we developed

a method of using parametric optimization to reduce the computational expense of

computing the expected value of perfect information. In this chapter, we compare

the proposed approach against a “naive approach:” simple Monte Carlo.

The engineering models in this chapter are from [124], developed by Vermillion.

Engine efficiency is modeled as the ratio of brake power to fuel power such that

ηe =
Πe

ṁf∆H0
c

(7.1)

where ṁf is the fuel mass flow rate into the engine and ∆H0
c is the lower heating

value of the fuel [125]. The ratio of fuel mass flow rate, ṁf , and brake power, Πe, is
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called the Brake Specific Fuel Consumption (BSFC) such that

ge =
ṁf

Πe

(7.2)

The BSFC is a measure of fuel economy and is determined experimentally. Using

Eq. 7.2, engine efficiency is redefined as

ηe =
1

ge∆H0
c

(7.3)

and since ∆H0
c is constant for a given fuel type, an expression for ge is needed. In

[126], Golverk models the BSFC map using a second order polynomial:

ge(ωe, Te) = K1 +K2ωe +K3Te +K4ω
2
e +K5ωeTe +K6T

2
e (7.4)

where Ki for i = 1, . . . , 6 are experimentally determined coefficients, and Te and ωe

are the engine torque and speed outputs, respectively; these coefficients vary with

engine type and model.

The conveyance of power through the transmission can be written as

2T + ΞtξdTe = 0 and − Ξtξdω + ωe = 0 (7.5)

where T and ω are the torque and speed demanded by a single wheel. Manring et

al. model the torque demand at a single wheel as the following [27]

T =
1

2
mR2dω

dt
+

(
ρCdA

4
R3

)
ω2 +

1

2
CrmgR (7.6)

wherem is vehicle mass, R is tire radius ρ, is the density of air, Cd is the dimensionless
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Table 7.1: Fixed simulation parameters.

Symbol Description Value Units

A Frontal area 2.00 m2

Cd Drag coefficient 0.40 dimensionless
Cr Rolling resistance coefficient 0.01 dimensionless
m Vehicle mass 1347 kg
R Tire radius 0.305 m
ξd Differential speed ratio 3.55 dimensionless

drag coefficient for the vehicle, A is the effective frontal areal of the vehicle, Cr is the

dimensionless rolling-resistance coefficient, and g is the gravitational constant. Tire

angular speed and acceleration are assumed known a priori from a driving schedule.

Working from Eq. 7.6 back to Eq. 7.3, engine efficiency is indeed dependent on

the adjustable gear ratio Ξt, as the parameters in 7.1, which are assumed to be fixed.

In the design of the multi-ratio transmission, we assume it is to be a five speed

transmission that has the following shifting schedule:

Ξt =



ξ1 : 0.0 ≤ ω̂ < 0.4

ξ2 : 0.4 ≤ ω̂ < 0.6

ξ3 : 0.6 ≤ ω̂ < 0.8

ξ4 : 0.8 ≤ ω̂ < 1.0

ξ5 : 1.0 ≤ ω̂ <∞

where ω̂ = ω/73.3. Our figure of merit for the quality of a set of gear ratios is the

average engine efficiency when put through a driving schedule characterized by the

following angular speed and acceleration profiles:

ω = 18.325 + 0.733t and
dω

dt
= 0.733 (7.7)
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where t ∈ (0, 100). As mentioned earlier, the coefficients of the BSFC map in Eq.

7.3 are determined experimentally, so a meta-level decision must be made as whether

to design the transmission given some belief on what these parameters may be or to

conduct a series of physical experiments to calculate them.

7.2 Single-Objective Parametric Optimization Problem

As mentioned in the previous section, the coefficients of the BSFC map in Eq.

7.3 are determined experimentally, so a meta-level decision must be made as whether

to design the transmission given some belief on what these parameters may be or to

conduct a series of physical experiments to calculate them. To compute the EVPI

on these coefficients, we must solve

E
k

[ f (x,k)]− C (7.8)

=

∫ kU

kL

(
max
x∈X

f (x,k)

)
p (k) dk − C (7.9)

where k = (k1, k2, k3, k4, k5)
T , is a vector corresponding to the random coefficients

that can be determined experimentally, p (k) is the probability density function corre-

sponding to the random vector k, f (x,k) is a profit model, x = (x1, x2, x3, x4, x5)
T is

a vector corresponding to the design of the transmission, specifically, the gear ratios,

and C is the cost of conducting the experiment.

7.3 Frontier Sampling

Once the parametric optimization problem has been solved, the next step is to

sample the solution y∗(k) according to the distribution P (K) to recover the solution

to Equation 3.5.

If the solution to Equation 7.2 is continuous, such as would be the case for the mp-

133



QP algorithm presented in Section 2.2.5. Sampling the solution is straightforward.

However, if the solution to Equation 7.2 is an approximation setas is the case for

p-NSGAII and P3GA, sampling becomes more challenging.

Consider the notional example illustrated in Figure 7.1. The feasible range of the

function f(x,k) is the shaded region, the true solution to the parametric problem is

the dashed line. The output of an approximation such as P3GA would be a set of

points distributed along the true solution.

There are a number of potential techniques to address this challenge. For exam-

ple, importance sampling can be used to estimate the expected value of the desired

distribution. Using importance sampling, we can estimate the properties of the de-

sired distribution, Equation 3.5, with the samples generated from a different distribu-

tion, such as the samples generated by P3GA [127]. However, importance sampling

requires that we know the original distribution. Since P3GA is a randomized search,

there are no guarantees on the distribution of the sample set. As an initial step

in this research, we interpolated between the non-dominated points using Kriging

interpolation. The Kriging model then serves as a surrogate of maxx∈Xf
f (x, y) in

Equation 3.5.

Interpolation is a curve-fitting method in which the model passes through all the

data points. The model uses the relative location of the data points to each other

in its fitting process. Interpolation assumes that the closer the input data points

are to each other, the more positively correlated their outputs are. Kriging is a

geostatistical interpolation method that predicts unknown values from the observed

input/output relationships [128, 129]. Kriging is intended for spatially distributed

data and considers both the distance and the degree of variation between the observed

data points to predict unknown values. Kriging can be interpreted as a Gaussian

process where, given the observed samples, one takes a multivariate Gaussian with
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Figure 7.1: Notional illustration of P3GA output for a parametric optimization prob-
lem.m

some desired kernel and samples from that Gaussian. Then, the unknown points are

predicted by combining the Gaussian prior with the Gaussian likelihood function.

Kriging interpolation is accomplished using different methods depending on the as-

sumptions made about the sample distributions. In this research, we use “Ordinary

Kriging” throughout [130]. Using this Kriging method, the predicted value of a new

unobserved input is a weighted linear combination of all the previously observed

outputs. The following equations describe the Ordinary Kriging model:

Ŷ (xn+1) =
n∑
i=1

λi · Y (xi) = λT · Y (7.10)

where λ = (λ1, . . . , λn)T ,
∑n

i=1 λi = 1,Y = (Y (xi), . . . , Y (xn))T , and xn+1 denotes

the unobserved input, Ŷ (xn+1) denotes the predictor for the input, xi are the n

previously observed output, λi are called the Kriging weights and capital letters

denote random variables that are determined through a fitting process. For more a
mReprinted with permission from “A Parallel Approach for Computing the Expected Value of

Gathering Information”, Galvan, E., Hsiao, C., Vermillion, S., & Malak, R., 2015. SAE Int. J.
Mater. Manf., 8(2):271-282, Copyright 2015 by SAE International.
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more detailed description and analysis of ordinary Kriging see [130].

We use the DACE Kriging tool developed for MATLAB by Lophaven et al. to

model the data sets in the example [131]. We use the linear correlation function

and a 1st order polynomial regression function in all cases. The interpolation model

predicts the value of one attribute given the values of the others. Thus, the model

predicts the value of maxx∈X f (x,k) for a given k, using the P3GA solution as a

training data.

With the Kriging model in place, it is straightforward to sample the model accord-

ing to P (K) to approximate the solution to Equation 3.5. This sampling procedure

is computationally inexpensive since it does not involve evaluating the engineering

analysis function.

7.4 Experimental Setup

To evaluate the effectiveness of the proposed approach, we measure its perfor-

mance against a “naive approach.” Under the naive approach we approximate the

EVPI as

1

N

N∑
i=1

(
max
x∈X

f (x,ki)

)
− C (7.11)

where N is the number of Monte Carlo samples, and ki ∼ P (K). We use N = 10,

20, 40, 60, 90, and 100 to capture the effect of increased Monte Carlo samples on

solution quality and computational expense. To solve each search problem in the

Monte Carlo simulation, we used Matlab’s build in gradient optimizer fmincon with

default options. Each search is terminated when the default termination criteria

was met. For completeness, we also conducted a similar experiment with Matlab’s

single objective genetic algorithm, ga. Since Monte Carlo simulations are stochastic,

each experiment was conducted 40 times to gather statistical information on the
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performance of the approach.

For the parametric approach, we executed P3GA 40 times. Each run was con-

ducted using the following parameters

Population Size: P = 100

Crossover Rate: 0.08

Mutation Rate: 0.01

Kernel function parameter: q = 15

Max Num. of Training Data: 500

We made no attempt to determine the best parameter settings. To measure the

effect of increased function evaluations, the experiments were repeated for Gener-

ations G =20, 40, 60, 80, 100, 120, 140, 150. For P3GA, the number of function

evaluations for each run is PG.

The results, of both the proposed approach and the naive approaches are com-

pared to the results of a brute force approach. For the brute force approach, Eq.

7.11 was solved N = 5000 using fmincon. For each sample, 50 random restarts were

performed to mitigate the effects of any local optima. This result was used as a

baseline to which we compare all other results. Note that this baseline is in terms

of “value or profit” to the designer and is not associated with any particular gear

design. Error is measured as the absolute difference between the calculated EVPI

using either approach and this baseline.

7.5 Results and Discussion

For visualization purposes, the error is normalized against the highest error ob-

served in any experiment. Figures 7.2 and 7.3 depict the results of the experiment.

Figure 7.2 is a comparison between the Parametric approach and the Naive approach
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Figure 7.2: Comparison between the Parametric approach and the Naive approach
using gradient based optimization. The parametric approach converges to a solution
with less error. n

using gradient based optimization. The parametric approach converges significantly

faster and has lower variance.

It is possible that the faster convergence of the parametric approach is due to the

genetic nature of the algorithm, since genetic algorithms are known to outperform

gradient based algorithms on specific classes of problems. In these experiments this is

unlikely to be the case since fmincon converged in an average of 25 steps, a relatively

low number. For completeness however, we also compare the parametric approach

against a naive approach using a genetic algorithm: MATLAB’s ga function with

default settings. The results are depicted in Figure 7.3.

In this comparison the parametric approach drastically outperforms the naive
nReprinted with permission from “A Parallel Approach for Computing the Expected Value of

Gathering Information”, Galvan, E., Hsiao, C., Vermillion, S., & Malak, R., 2015. SAE Int. J.
Mater. Manf., 8(2):271-282, Copyright 2015 by SAE International.
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Figure 7.3: Comparison between the Parametric approach and the Naive approach
using single objective genetic optimization. The parametric approach converges dra-
matically faster to a solution with less error. o

genetic approach. This result indicates that even though a genetic algorithm is not

particularly well suited to solve the search problem maxx∈X f (x,k). The parametric

approach still shows computational advantages.

Our focus in this study is on the methods and their comparisons rather than the

design results per se. However, it is beneficial to discuss the design results to verify

the models. For this simulation, if the designer would chose not to gain information,

the optimal gear ratio, maxx∈X E [f (x,k)], is x = (2.17, 1.40, 1.00, 0.78, 0.61). If

the designer would choose to gather information, the optimal gear ratio would then

depend on the outcome of the information gathering action.
oReprinted with permission from “A Parallel Approach for Computing the Expected Value of

Gathering Information”, Galvan, E., Hsiao, C., Vermillion, S., & Malak, R., 2015. SAE Int. J.
Mater. Manf., 8(2):271-282, Copyright 2015 by SAE International.
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7.6 Conclusions and Chapter Summary

In this chapter, we have presented an approach for reducing the computational

expense in approximating the EVPI. The proposed parametric approach the EVPI

problem is decomposed into two problems. In the first, we approximate the solution

of the design decision for several values of the random parameter. Then we sample

the solution according to the distribution of the random parameter to approximate

the EVPI.

We demonstrated the performance of the parametric approach on engineering

example. We consider the design of a vehicle’s multi-ratio transmission with uncer-

tain information on its engine characteristics. Aside from transmitting power from

the engine to wheels, an important function of a multi-ratio transmission is to allow

the engine to run at a more efficient state, thus improving fuel economy. Therefore,

at a high level, we wish to design a multi-ratio transmission that maximizes engine

efficiency.

The engineering problem is to compute the expected value of performing physical

experiments to gather information about the uncertain information in a computa-

tional model the efficiency of an engine and transmission. In Section 3.1 we developed

a method of using parametric optimization to reduce the computational expense of

computing the expected value of perfect information. In this chapter, we compared

the proposed approach against a “naive approach:” simple Monte Carlo.

The results from the engineering cast study indicate that, in this case, we were

able to generate an accurate approximation of the EVPI significantly faster than

the naive approach. The results also indicate that the parametric approach is likely

beneficial even in problems where genetic algorithms tend to perform poorly. The

parametric approach proposed in this study can easily be extended to apply to EVPPI
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problems.

For this case study we used P3GA to solve the parametric optimization problem.

However, the output of P3GA is unlikely to reflect the probability distribution P (k).

As a first step in this research, we fit a Kriging model to the output. This Kriging

model was sampled according to P (k) to approximate Equation 3.5. No investigation

was performed to determine whether this is the best approach.
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8. CAPABILITIES REPRESENTATION CASE STUDY

8.1 Magnetohydrodynamic Active Cooling Subsystem Model

In this section, we demonstrate the use of multiobjective parametric optimization

for the purpose of capability modeling. We revisit the the design of a of a structural

cooling subsystem incorporating in Section 3.2.4. The structurally embedded cooling

subsystem considered herein was largely inspired by the industrial research develop-

ments of [81]. The engineering models are based on the models developed in [132]

by Hartl.

A fluid circuit fully filled with a liquid metal is used to transport thermal energy

from a hot reservoir, into which heat is transferred at some defined power Phot, to a

cold reservoir, which conducts heat out to a heat sink maintained at a temperature

Tcold. The aim is to regulate the temperature of the hot reservoir, Thot. Ultimately,

the best subsystem design will depend on the desired Thot and the amount of heat

being transferred to the hot reservoir, Phot.

The longer and less wide transport channels have common length and width lchan

and wchan, respectively. Both the channels and reservoirs are assumed to have a

common depth dchan = dres. The channel aspect ratio rchan is a key dimensionless

design variable in this work and is simply expressed as rchan = wchan/dchan.

Both transport channels pass through a DC-driven MHD pump, illustrated in

Fig. 8.1. The pumps consist of two aligned permanent magnets sandwiched between

two thin ferromagnetic plates. Two electrodes spanning the depth of the channel

allow DC current to pass through the conductive fluid, where the highest current

density exists between the two electrode plates. A critical dimension is the length

of the electrodes in the direction of the channel, lelec. A volumetric Lorentz force is
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Figure 8.1: MHD-driven cooling subsystem considered in the analysis-driven design
studies of the current work; inset illustrates detail of the DC MHD pump. p

generated by the interaction of the current and the magnetic field, driving the fluid

in a direction orthogonal to both (i.e., in the direction of the channel). This effect

is illustrated in Fig. 8.1b, where realistic in-plane Lorentz force rotations induced by

the nonuniform nature of the current density are shown.

8.1.1 Coupled Algebraic Model

The general multiphysical mathematical model has been described in detail [132,

133]. For this cases study we consider only the reduced fidelity coupled algebraic

model. In this reduced-fidelity algebraic model, spatial homogeneity in the elec-

tromagnetic fields in the region of the MHD pump (i.e., between the electrodes) is

assumed. It is assumed that all current flows directly and uniformly between the two

electrodes and that the magnetic field is both vertically aligned perpendicular to the

current flux and is also spatially constant between the electrodes. This results in a
pReprinted with permission from “Parameterized Design Optimization of a Magnetohydrody-

namic Liquid Metal Active Cooling Concept”, Hartl, D.J., Galvan, E., Malak, R.J., Baur, J.W.,
2016 J. Mech. Des. 138(3) Copyright 2015 by ASME.
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constant and unidirectional Lorentz force of

fL =
−B Iapp
Aelec

(8.1)

between the electrodes while fL = 0 elsewhere. Here B is the local magnetic flux

aligned in the out-of-plane direction and Iapp is the total current traveling between

two electrodes. Each electrode is assumed to have a square face exposed to the

channel with the area Aelec = dchanlelec. The local magnetic flux vector B outside

of a rectangular permanent magnet and in its poled direction can be approximated

knowing the unidirectional remnant magnetic flux Br and the dimensions of the

magnet [134, 135]

B =
2Br

π

[
arctan

(
lmagwmag

2x
√

4x2 + l2mag + w2
mag

)

− arctan

 lmagwmag

2(dmag + x)
√

4(dmag + x)2 + l2mag + w2
mag

], (8.2)

where the combined effects of the two aligned magnets (see Fig. 8.1) is assumed to be

additive in the region between them. Here x is one half the distance between the two

magnet faces, which we take to be one half the channel depth such that x = dchan/2.

It has been shown that the Lorentz volumetric force of Equation (8.1), if uniform

and aligned with the direction of axial flow in a fluid channel, will act to drive the

fluid as if it were a localized pressure gradient [136]. Such a flow field can be idealized

as steady, unidirectional, and fully developed. Given the low velocities considered

herein, it can also be assumed strictly laminar.

To model the relationship between the Lorentz force, channel configuration, pres-

sures, and mass flow rate, the rectangular liquid metal fluid circuit is divided into
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six regions of constant cross-section. Assuming linear pressure variations, constant

or null Lorentz forces, the absence of transition effects between regions, and a known

reference pressure pref at some point allows us to write the following system of alge-

braic equations:

Q =

(
−pi+1 − pi

Li
+ f iL

)
g(wi, di, µ) ∀ i = 1 . . . 6, (8.3)

where

p1 = p7 = pref , f iL = 0 ∀ i 6= 1.

This yields six linear equations (8.3) for the following six unknowns:

{p2, p3, p4, p5, p6, Q}.

The function g(w, d, µ) captures the geometry of a channel, in this case rectangular

with width w and depth d and is given in [137] as

g(w, d, µ) =
wd3

12µ

[
1− 6

d

w

∞∑
n=1

1

a5n
tanh(an

w

d
)

]
, (8.4)

where µ is the dynamic viscosity, an = (n− 1
2
)π and the Fourier series converges by

n ∼ 5. Note that fL = 0 in all regions except in between the parallel electrodes (i.e.,

Region 1). The fluid circuit model is graphically described in Fig. 8.2.

For the modeling of cooling, all conductivity except through the two reservoir

walls is neglected and only advective heat transfer is considered. Assuming perfect

mixing in the reservoirs, it is straightforward to consider a simple lumped thermal

model to describe the couplings between power, temperature, and fluid flow in the

system. Noting that the volumetric flow rate Q is identical for all sections and that
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Figure 8.2: Graphical description of the reduced-fidelity fluid-thermal engineering
model considered herein. q

all power into the hot reservoir is assumed to be moved to the cold reservoir, we have

simply

Thot = Phot/(ρQcp) + Tcold (8.5)

where ρ and cp are the density and heat capacity, respectively, of the working fluid

and Tcold and Phot are application-defined inputs. The hot reservoir temperature

Thot represents one of the most important response variables associated with the

considered system. Throughout this work, we will consider only Tcold = 300K,

though this environmental variable represents the kind of uncontrolled input intended

for consideration as a parameter.

Finally, other key design/response relationships should be defined. The applied

current Iapp that generates the driving Lorentz force via (8.1) can be approximated

in terms of the applied voltage Vapp via

Iapp = Vapp/RMHD = Vapp σ lelec/rchan, (8.6)
qReprinted with permission from “Parameterized Design Optimization of a Magnetohydrody-

namic Liquid Metal Active Cooling Concept”, Hartl, D.J., Galvan, E., Malak, R.J., Baur, J.W.,
2016 J. Mech. Des. 138(3) Copyright 2015 by ASME.
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where RMHD is the resistance across the electrodes expressed in terms of the electrical

conductivity of the working fluid σ and geometric parameters. The electrical power

PMHD needed to drive the MHD pump is then

PMHD = Iapp Vapp = V 2
app σ lelec/rchan. (8.7)

The efficiency of the MHD-driven cooling subsystem is quantified via the MHD

power-specific effective thermal conductivity k̂, defined here as

k̂ = Phot/(PMHD ∆T ), (8.8)

where ∆T is simply the difference in hot and cold reservoir temperatures (∆T =

Thot − Tcold). Assuming the reservoirs to be of fixed configuration (i.e., determined

by external agents), the mass of the designed system is expressed only in terms of

the channel mass mchan, given as

mchan = 2ρ(lchan dchanwchan) = 2ρ(lchan rchan d
2
chan). (8.9)

8.1.2 Model Calibration

For this case study, a number of potential design variables are held fixed to sim-

plify the problem. The geometric design parameters assigned fixed values throughout

this work are listed in Table 8.1. Note that, as per Fig. 8.2, the reservoir depth and

channel depth are taken to be equal. The magnet and working fluid (i.e., liquid

metal) materials are also taken to be pre-defined and their problem-essential prop-

erties known. The appropriate values are given in Table 8.2.
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Table 8.1: Fixed geometric design parameters used for all MHD-driven cooling sub-
system analyses.

Fixed Parameter Value Fixed Parameter Value
lmag 10mm lres 70mm
wmag 10mm wres 20mm
dmag 1.0mm lelec 2.0mm

lchan 200mm

Table 8.2: Relevant material properties used for MHD-driven thermal transfer anal-
ysis case.

Property Value Property Value

(Galinstan)
ρ 6440 kg/m3 µ 2.40E-3Pa-s
cp 300 J/kg/K σ 3.57E6 S/m

(Magnet)
Br 1.2T

8.2 Multiobjective Parameterized Design Optimization Problem

We presume the designer of the LM-MDH active cooling subsystem has control

over three design variables: fluid channel depth, dchan), fluid channel aspect ratio,

rchan, and the voltage applied across the MHD electrodes, Vapp. The vector of design

variables is

x = (dchan, rchan, Vapp) (8.10)

We distinguish between x, which describes the geometry of thermal transport sub-

system and x, the vector of design variables. The model parameters that are outside

of the control of the subsystem designer are the power provided by the heat source
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Phot, and the goal temperature of the hot reservoir Thot. The vector of parameters is

θ = (Phot, Thot) (8.11)

In this subsystem, Phot is in input to the cooling subsystem to be determined by an

external agent (e.g., the systems engineer). On the other hand, Thot is a response

of the subsystem model; that is, different designs result in different values of Thot.

The design objectives are to minimize the channel mass, mchan(x), and maximize

the effective thermal conductivity, k̂(x,θ). The aim of the design problem is to

find optimal (multiobjective) design for the cooling subsystem as a function of the

multiple parameters.

The design of the cooling system must satisfy two constraints: the current applied

to the MHD electrodes must be below an allowable maximum (Iapp(x) ≤ Imaxapp ), and

the hot reservoir temperature, while defined as a parameter to be explored, must

remain below an allowable maximum (Thot(x, Phot) ≤ Tmaxhot ).

Given the above description and the relationships of Section 8.1.1, the parame-

terized optimization problem for capability modeling of the cooling system is

y∗(Thot, Phot) = min
x

(
mchan(x), −k̂(x, Thot, Phot)

)
subject to Iapp(x) ≤ IUapp

Thot(x, Phot) ≤ TUhot

PL
hot ≤ Phot ≤ PU

hot

xLi ≤ xi ≤ xUi i = 1, . . . , 4

(8.12)

where again x = (dchan, rchan, Vapp), and the parameter attributes are θ = (Phot, Thot).

The superscripts L and U denote the upper and lower bounds of the variables,
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respectively. The particular limits for the optimization cases described are:

xL = (0.1 mm, 1, 0.001 V),xU = (1.0 mm, 10, 0.01 V)

PL
hot = 1.0 W, PU

hot = 10.0 W, IUapp = 10 A, TUhot = 498 K.

8.3 Building a Continuous Model of Subsystem Capabilities

While the problem in Equation 8.12 is to approximate the set of all solutions

to a multiobjective parametric optimization (MPO) problem, the purpose of doing

so is to characterize the capabilities of the cooling subsystem. The solution to the

MPO problem is a set of discrete points that lie on the global parametric Pareto

frontier. Here in, we use the term parametric Pareto frontier (PPF) to refer to the

approximation of the global PPF.

The PPF could potentially be used in a number of different ways to aid system

design. For example, the PPF could be used in “design by shopping” [138] where

the decision maker forms his or her preferences by viewing a set of “good” solutions.

Because the PPF is composed of parametrically Pareto efficient solutions, it serves

as a minimal notion of goodness.

Another possibility is to use the PPF to enable real-time design negotiation.

One can envision a scenario where the PPF is used a low order approximation of

what alternatives are possible. The PPF could be used in design meeting between

system and subsystems engineers to quickly evaluate the feasibility or quality of

design alternatives.

Investigating the different use cases of the capability model is beyond the scope

of this dissertation. In this section we explore one possibility: visualizing the capa-

bility models to improve the requirements. The discrete points that comprise the
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capability model are analogous to the Pareto frontier data generated when solving

a multiobjective (MO) problem. In the MO case, it is often desirable to generalize

beyond the discrete Pareto frontier data and create a continuous approximation of

the frontier [55, 56, 139]; that is, one is motivated to find solutions not represented

in the discrete set. Such generalization is likewise desirable in the parametric case;

presently, to improve visualization.

In this work, we generalize the data using Ordinary Kriging interpolation [130] to

fit a model of the parameterized Pareto frontier in the attribute space, i.e., the com-

bined space of design objectives and parameter attributes. Other fitting approaches

are possible, but care must be taken to ensure the fitted model captures key fea-

tures of the data. Linear regression models, which presume the data contains noise

that should be averaged out, tend to perform poorly on frontier data [139]. Thus,

the fitting model must be of appropriate order and mathematical form or should be

an interpolating relationship as is the case with Kriging. The details of Ordinary

Kriging are discussed in Section . In this section we again use the DACEfit toolbox

Kriging model [131] to interpolate between the data. We use the linear correlation

function and a second order polynomial regression function. Let ak = (yk1 , . . . y
k
m,θ

k)

for k = 1, . . . , N be vectors on the parameterized Pareto frontier, where y1, . . . , ym

denotes objective attribute values and θ ∈ Rp denotes the vector of p parameter

values. We fit the Kriging model such that

ŷkj = fKrig(y
k
1 , . . . , y

k
j−1, y

k
j+1, . . . , y

k
m,θ

k) (8.13)

where the choice of j is arbitrary. Given a specific instance of the parameter vector θ,

one can use the Kriging model as a constraining relationship that implicitly defines

a Pareto frontier. Several variations on this technique are possible. See [139] for a
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detailed description and comparison of methods. Model accuracy should be assessed

via cross-validation [140], residual error analysis [141], mean absolute squared pre-

diction Error [142], R2, or similar. In this article, we assess the accuracy of the model

using leave one out cross-validation with error measured as mean absolute percent

deviation

LOOCV =
1

N

N∑
i=1

∣∣∣∣∣ ŷkj − ykjykj

∣∣∣∣∣ (8.14)

where ŷkj is the response of the Kriging model fit with all N data points except p.

8.4 Experimental Setup

For this case study, we solved Equation 8.12 using P3GA and p-NSGAII. In the

case of P3GA, the following parameters were used

Generations: G = 100

Population Size: P = 100

Crossover Rate: 0.08

Mutation Rate: 0.01

Kernel function parameter: q = 10

Max Num. of Training Data: ∞

The total number of function evaluations for the P3GA is PG = 10, 000. Recall that

the p-NSGAII requires that the user specify the number of discretizations, pd along

each parameter attribute. This parameter may be critical to the performance of the

algorithm in terms of solution quality and computation (as measured by number

of function evaluations). Since selecting the appropriate pd value is critical to the

performance of p-NSGAII, we performed this case study with two different parameter

settings. The following parameters were used in the initial case study, here in referred

to as p-NSGAII-A
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Generations: G = 100

Population Size: P = 100

Crossover Rate: 0.08

Mutation Rate: 0.01

Discretizations : pd = 4

Because Equation 8.12 has p = 2 parameters, the total number of function evalua-

tions the p-NSGAII-A case is GPp2d = 160, 000 (considerably more than for P3GA).

A second attempt was made with increased number of discretizations

Generations: G = 100

Population Size: P = 20

Crossover Rate: 0.08

Mutation Rate: 0.01

Discretizations : pd = 10

The total number of function evaluations for the p-NSGAII-B approach is GPp2d =

200, 000. Note that the population size was decreased in this case to maintain a

similar order of magnitude in the total number of function evaluations. Another

consideration is that increasing the number of discretizations decreases the solution

space for each p-NSGAII subproblem. As a result, we can reasonably expect that a

smaller population is needed to represent the search space.

Unlike test problems A-D, the true solution to Equation 8.12 is unknown. As

a result, the performance assessment techniques presented in Chapter 4 cannot be

used to evaluate the solution quality. Furthermore, since the data is 4 dimensional

(2 objectives and 2 parameters), visualizing the data is also challenging.
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Table 8.3: Kiging Model LOOCV values corresponding to each algorithm. The low
LOCCV values give confidence in the predictive performance of the model.

Algorithm LOOCV [%]

p-NSGAII-A 0.033
p-NSGAII-B 0.247
P3GA 0.865

8.5 Results and Discussion

The results from a single run of each case, P3GA, p-NSGAII-A, and p-NSGAII-B,

are illustrated in Figures 8.3 to 8.5. The matrix of subplots contains scatter plots of

the data. The axes along the diagonal are a histogram of the data corresponding each

dimension of the data. The P3GA appears to generate a more even (less clustered and

more wide spread) set of points that p-NSGAII. While P3GA is able to find points

evenly throughout the search space, the p-NSGAII approach clusters the solutions

around the ε constraint values. As can be seen in comparing Figures 8.4 and 8.5,

increasing the number of discretizations along the parameter increases the number

of clusters.

A Kriging model was fit to each data set; the LOOCV percentages are reported

in Table 8.3. The cross-validation error values in each model are less that 1 percent.

The low error gives us confidence in the predictive performance of the Kriging models.

Figure 8.6 is a plot of the Kriging models fit to the P3GA and p-NSGAII-B data

sets. To allow visualization of the 4 dimensional plot in 2 dimensions, we took “slices”

along the parameter dimensions. The “slices” are taken along the parameter values.

For example, the bottom column in Figure 8.6 corresponds to the parameter value

Phot = 10.
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Figure 8.3: Scatter plot matrix of the parametric Pareto frontier data generated
using P3GA for the LM-MHD cooling subsystem. The data appears fairly evenly
spread throughout the space.
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Figure 8.4: Scatter plot matrix of the parametric Pareto frontier data generated
using p-NSGAII-A for the LM-MHD cooling subsystem. The data appears to cluster
at the ε constraint values.
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Figure 8.5: Scatter plot matrix of the parametric Pareto frontier data generated
using p-NSGAII-B for the LM-MHD cooling subsystem. The data appears to cluster
at the ε constraint values.
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Figure 8.6: Plot matrix of “slices” of the Kriging models fit to the PPF data generated
by P3GA and p-NSGAII. The Kriging model fit to the P3GA PPF data appears to
predict a wider range of solutions.
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8.6 Conclusions and Chapter Summary

In this chapter we have demonstrated the use of parametric optimization in the

process of modeling the capabilities of a subsystem. The use of parametric optimiza-

tion allows designers to build knowledge about the capabilities and limitations of a

subsystem without requiring knowledge about the system-level considerations. The

parametric problem is to find the optimum of a function (with one or several objec-

tives) as a function of some parameters. These parameters may be unknown (at least

to the subsystem designer) system level specifics or interface parameters (e.g., shared

variables) between different subsystems. Using the parametric techniques presented

in this dissertation, the solution to the parametric optimization problem is a discrete

set of solutions that lie on the parametric Pareto frontier (PPF).

The motivating problem in this case study is the design of a novel Magnetohydro-

dynamic active cooling subsystem. A fluid circuit fully filled with a liquid metal is

used to transport thermal energy from a hot reservoir, into which heat is transferred

at some defined power Phot, to a cold reservoir, which conducts heat out to a heat

sink maintained at a temperature Tcold. The aim is to regulate the temperature of

the hot reservoir, Thot. However, Phot and Thot are not yet known to the designer.

The parametric problem is to find the designs, x, that simultaneously minimize chan-

nel mass mchan(x) and maximizes effective thermal conductivity x̂(x, Thot, Phot) as a

function of the parameters.

The parametric problem is solved using P3GA and p-NSGAII. For this case study,

P3GA appears to generate a more even (less clustered and more wide spread) set

of points that p-NSGAII. The p-NSGAII approach clusters the solutions around the

ε constraint values. Increasing the number of discretizations (ε constraint values)

increases the number of clusters. A Kriging model was fit to the data generated using
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either approach. Using LOOCV, the Kriging model was determined to be a “good”

fit, less than a mean of 1% prediction error for each model. To allow visualization

of the 4 dimensional Kriging models (2 objectives and 2 parameters), we took 2

dimensional “slices” of the model at evenly spaced parameter values. The Kriging

model fit to the P3GA PPF data appears to predict a wider range of solutions.
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9. SUMMARY OF CONTRIBUTIONS AND LIMITATIONS

9.1 Review of Research

We define parametric optimization as the process of finding the optimal solution

as a function of one or more parameters. From a decision perspective the differ-

ence between parametric optimization the single and multi-objective is the available

preference information. In SO, all preference information is available and each al-

ternative can be ranked. In MO, some preference information is missing, specifically

how to trade-off between some attributes relevant to decision making (multiple con-

flicting objectives. Finally, PO can be thought of as the most general case where no

preference ordering is available for at least one attribute.

The general notion of parametric optimization, as we have described it, has been

used in several fields, including economics and more recently model based controls

engineering. The aim of this research is to introduce the concept of parametric op-

timization as a useful approach for systems design challenges. Specifically, the use

of parametric optimization in systems design is motivated by (1) the problem of

computing the expected value of information (EVI), and (2) capability modeling.

The design of engineered systems requires careful management of uncertainty. A

class of alternatives that is often overlooked, is information activities to reduce the

uncertainty, e.g., prototype development, increasing the sample size of an experiment,

conducting more expensive tests, etc. These information gathering alternatives can

be performed at a cost. The first step in deciding whether or not to perform an

information gathering action is to compute its value. The Expected Value of In-

formation (EVI) framework provides a rigorous decision theoretic approach for such

“information decisions.” The EVI is value one is willing to pay to gain access to some
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information. A practical challenge in EVI is the computational expense in approxi-

mating its value. The approximation of EVI can involve many nested optimizations,

which may grow exponentially with the amount of information to be gathered, such

that the cost of computing EVI may even exceed the cost gathering information.

Consequently, techniques for reducing the computational burden in EVI are of prime

concern. In this research, we proposed to model the EVI problem using parametric

optimization. The value of recasting the problem EVI problem this way is a potential

reduction in computational complexity.

The second motivating application is capability modeling. Engineering projects

typically involve many individuals, each of who contributes knowledge to the project

and none of whom has complete knowledge about the system under development. Al-

though this specialization of knowledge is necessary and even desirable from certain

perspectives, it can create challenges for system-level decision making. The systems

engineers must make decisions such as to define the system architecture and to allo-

cate resources or requirements despite not being an expert in each relevant discipline.

Thus, the accurate communication of technical capabilities from discipline engineers

to systems engineers can be an important factor in the success of a systems engi-

neering project. The attributes subsystem attributes that are relevant for decision

making are the objective attributes (those with an application independent defined

preference relation, e.g., minimize cost, mass, power consumed etc.) and parameter

attributes (those where the preference relation depends on the application, e.g., in a

suspension subsystem, the best value of spring constant depends on the application).

The efficient set of alternatives (the subset of alternatives that could possibly be

most preferred) is the parametric Pareto frontier (PPF). We demonstrate how the

solution to the MPO formulation is the PPF.

Existing techniques for parametric optimization are exact but limited to problems
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with specific mathematical structures: linear, quadratic, convex nonlinear. This is

a significant limitation for engineering design challenges where the models are often

highly nonlinear (dynamical systems) or non-analytical (finite element analysis, sim-

ulations involving conditionals). If parametric optimization is to be used in general

systems design problems, there is a need for optimization techniques that can handle

a wide range of mathematical forms. As a first step towards this end, we investigate

the development of heuristic algorithms for parametric optimization. The solution

generated by a heuristic algorithm is an approximation of the true solution. An

appropriate performance evaluation strategy is needed.

We developed empirical approach for quantitative evaluation and comparison of

algorithms for parametric optimization. Key challenges in the development of an

empirical approach for performance assessment are the (1) development of suitable

test problems and (2) performance metrics. We developed test problems for which

we can arbitrarily scale the number of objectives and parameters and even the dif-

ficulty of the problems. The problems were carefully developed to exhibit features

that are likely to cause difficulty to the optimizer and are common to many engi-

neering problems, e.g., non-convexity, discontinuity, multi-modality, etc. Towards

(3), the selection of a suitable performance metric, we consider unary indicators.

From an analysis perspective, unary indicators are desirable since it allows for the

statistical analysis over performance. We suggest the use of mean Hausdorff distance

for performance assessment of approximation sets involving parameters. The mean

Hausdorff distance has desirable properties in that it can indicate that one approx-

imation is better than another and it can reflect solution “spread,” even in the case

with parameters.

For the algorithm development, we considered the adaptation of multiobjective

techniques to the parametric case. We proved that the method alternating prefer-
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ence directions cannot, in general, find all solutions to an MPO problem. Taking

an iterative approach to MPO, we developed an extension of the Nondominated

Sorting Genetic Algorithm II (NSGAII) for the parametric case, which we call para-

metric NSGAII (p-NSGAII). In this iterative approach to MPO, the parameters are

constrained to ranges rather than fixed values of the parameters. As a result, the

algorithm is able to find solutions at arbitrary values of the parameter. To improve

algorithm performance, each application of NSGAII is seeded with the results from

the previous application. This allows each new application to “learn” from its pre-

decessor. However, because of the sequential nature of p-NSGAII, this knowledge

sharing is limited to neighbors and is unidirectional.

The predictive parametric Pareto genetic algorithm (P3GA) resolves this lim-

itation by replacing the notion of dominance in the general genetic MO strategy

with parametric Pareto dominance. Because it is unlikely that randomly generated

alternatives will be parametrically dominated, P3GA instead relies on the concept

of predicted dominance. By eliminating iteration, In P3GA, knowledge about one

region of the search space can be communicated to any other solution, improving

algorithm performance.

To assess the performance if the proposed algorithms, p-NSGAII and P3GA were

compared on the proposed test problems and performance was measured in terms of

solution quality (measured using mean Hausdorff distance), the number of function

evaluations (NFE), and wallclock time. The results indicate that P3GA generally

performs better than p-NSGAII (in terms of ∆p) as the number of parameters and/or

objectives increases. For low dimensional cases without parameters (i.e., traditional

multiobjective problems) the p-NSGAII method tended to outperform P3GA. This is

expected since without parameters, p-NSGAII reduces to the original NSGAII, which

is developed to solve multiobjective problems. For those problems that included
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parameters, P3GA tended to outperform.

We demonstrated the performance of the parametric approach on engineering

example. We consider the design of a vehicle’s multi-ratio transmission with uncer-

tain information on its engine characteristics. Aside from transmitting power from

the engine to wheels, an important function of a multi-ratio transmission is to allow

the engine to run at a more efficient state, thus improving fuel economy. Therefore,

at a high level, we wish to design a multi-ratio transmission that maximizes engine

efficiency.

The engineering problem is to compute the expected value of performing physical

experiments to gather information about the uncertain information in a computa-

tional model the efficiency of an engine and transmission. We compared the proposed

parametric approach against a “naive approach:” simple Monte Carlo.

The results from the engineering cast study indicate that, in this case, we were

able to generate an accurate approximation of the EVPI significantly faster than

the naive approach. The results also indicate that the parametric approach is likely

beneficial even in problems where genetic algorithms tend to perform poorly. The

parametric approach proposed in this study can easily be extended to apply to EVPPI

problems.

Finally, we demonstrated how the use of MPO capability modeling using a real

world engineering example: a Liquid Metal Magnetohydrodynamic Pump (LM-

MHD). We demonstrated how the LM-MHD subsystem cannot be optimized in-

dependent of the subsystem into which it will be incorporated, since the optimal

LM-MHD depends on the properties of the system (these properties are parameter

attributes). The MPO formulation allows the designer to optimize the system, while

remaining agnostic about the overall system. This can lead to a better understand-

ing of the underlying physics in the model and a model of the capabilities of the
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LM-MHD.

The LM-MHD parametric problem is solved using P3GA and p-NSGAII. For this

case study, P3GA appears to generate a more even (less clustered and more wide

spread) set of points that p-NSGAII. The p-NSGAII approach clusters the solutions

around the ε constraint values. For visualization, a Kriging model was fit to the data

generated using either approach. Using LOOCV, the Kriging model was determined

to be a “good” fit, less than a mean of 1% prediction error for each model. Visually,

the Kriging model fit to the P3GA data appear to predict a wider range of solutions.

9.2 Limitations and Future Work

A limitation of this research is in the breadth of engineering problems investi-

gated. Although we attempted to draw from a variety of engineering disciplines to

investigate the performance of the possessed approaches, the investigation is prac-

tically limited. Whether or not parametric optimization is truly useful in systems

engineering, future work should include repeated real-world applications in a wide

range of disciplines.

Existing techniques for parametric optimization are limited to problems with

specific mathematical structures (linear, quadratic, convex nonlinear, etc). However,

many models in engineering design are considerably more complex, e.g, dynamical

systems, Finite Element Analysis, process simulations, etc. As a result, we were mo-

tivated to develop a general purpose heuristic algorithms for parametric optimization

since (1) they are easy to implement, requiring little knowledge about the problems

mathematical structure, and (2) can be applied to a wide range of problems. A

drawback however, is they are limited in their performance generally finding only an

approximation of the true optimal.

In approximating the solution rather than finding it exactly, a number of new
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problems arise with were not rigorously addressed in this dissertation: (1) how to

best use the approximation and (2) what is the penalty we pay for using an approxi-

mation? Future work may include (i) a development of exact solution techniques for

the MPO case, (ii) extensions of exact PO techniques to more general mathematical

forms, and (iii) an investigation into how to best use approximation sets. Such an

investigation would likely be dependent on the application. For example, the case of

approximating EVI, it may be desirable to develop an approximation such that the

distribution along the parameter attribute reflects the distribution of interest. This

approach, would not be useful for capability modeling.

In terms of capability modeling, we discussed at length its development but did

not focus much on its use. Clearly, an accurate unambiguous (having well-defined

semantics) model of the capabilities of a subsystem is desirable. Such a model can

inform the mental model of designers, improving decision making throughout the

design process. However, we do not investigate the possibility of directly making

design decisions form the capability model. For example, once the system-level con-

siderations have been determined (establishing a preference order over the parameter

attributes), can the capability model be used to “retrieve” the optimal design? In

our discussion of parametric optimization, we concerned ourselves with the approx-

imation of y∗(θ), the optimal objective values as a function of the parameters. To

retrieve the optimal design from a capability model, we must have x∗(θ), the optimal

design variables as a function of the parameters. Future work may include techniques

for finding x∗(θ) for engineering design problems.

Another possible use of capability models is at the system-level. One can imag-

ine a scenario where the systems engineer has available capability models for every

relevant subsystem. How can the systems engineer search these combined models for

the optimal system architecture, design requirements, etc.
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