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ABSTRACT

Quantum optical memory implies the storage of quantum state of light in an atomic

ensemble and its retrieval at the later moment of time on demand. It is one of the key

elements of both quantum communication and quantum computing. Two types of quantum

optical memory techniques have been developed in the last decade. The first one is based

on an optimal temporal shaping of the amplitude of a strong coherent control field, forming

along with the quantum field a three-level configuration in atomic medium (such as EIT

and Raman quantum memories). The second one is based on photon echo mechanism

[such as atomic frequency comb (AFC) and gradient echo memory (GEM)]. Each method

has its advantages and disadvantages, but in general, an experiment-friendly, reliable, high

speed, low loss, broad band quantum storage of a single-photon wave packet with large

efficiency and fidelity remains a very challenging task.

Here we propose two new quantum optical storage techniques to resolve some of the

difficulties and to introduce more controllability over the single-photon processing. The

first method is based on phase matching control in Raman configuration (via the modu-

lation in time of the control field's refractive index, propagation direction, and/or carrier

frequency chirp). The second method is based on (continues or discrete) spatial frequency

chirp of a control field. In order to overcome some general problems inherent to light-atoms

interfaces, we propose also a new quantum interface based on γ-ray-nuclear transitions,

which looks promising for quantum information processing.
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NOMENCLATURE

AFC Atomic Frequency Comb

CRIB Controlled Reversible Inhomogeneous Broadening

EIT Electromagnetic Induced Transparency

FWHM Full-width-half-maximum

GEM Gradient Echo Memory

NV Nitrogen-vacancy

NVD Nitrogen-vacancy Centers in Diamond

PMC Phase Matching Control

SiV Silicon-vacancy

SNR Signal-to-noise Ratio
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CHAPTER I

INTRODUCTION

Quantum information processing [1], suggested by Feynman and other pioneers [2, 3]

in 1980s, has been one of the primary driving forces for a wide scope of studies in quan-

tum physics. This is not only because of its close connection to the fundamental test of the

quantummechanics theory [4, 5], but also due to its revolutionary change of the real-world

application of information science (e.g., Refs. [6--8]). One essential element of quantum

information processing is quantummemory [9--14]. It lies in the heart of quantum commu-

nications [15] and quantum computations [16], and provides away to realize the linear logic

gates [17], on demand single-photon sources and single-photon detectors [18, 19], preci-

sion measurements [20--22], etc. The quantum memory techniques being developed in the

course can also be transferred to other applications, such as, ultrasound detection [23], etc.

A quantum bit, or qubit, is en elementary unit of quantum information, which is es-

sentially a two-state quantum mechanical system possessing superposition principle. At a

very basic level of architecture, qubit can be classified by its functionality into stationary

qubit which is used for local quantum gate operation, and "flying qubit" that is used for

long-distance information transmission [1, 16, 24]. Single photon is considered to be the

ideal "flying qubit" for quantum information processing because of its fast propagation

speed. An immediate choice of the realization of a photonic qubit is its two independent

polarization states. Unfortunately, such natural internal degree of freedom is quite un-
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stable in an actual environment such as optical fiber, where inevitable birefringence and

random polarization-mode coupling [25] constantly deteriorate the fidelity of the qubit. A

much better choice of the encoding scheme in this regard is a time-bin qubit [26], which

is produced easily by passing a single photon through an unbalanced Mach-Zehnder in-

terferometer. The resulted state of the single photon then becomes |ψ⟩ = α|e⟩+βeiφ |l⟩,

where |e⟩ (|l⟩) is the state of the photon taking the short (long) arm of the interferometer,

thus arriving early (late) in time. Such time-bin qubit encodes information using the wave-

form of a single photon, which is much more robust against the environmental fluctuations

during a long-distance propagation. Further investigation of time-bin qubit shows that it

is not only a promising stable flying qubit, but also an important candidate for operational

qubit without resorting to spatial mode multiplexing [27]. Thus, it is crucially important to

store, manipulate, and retrieve the waveform of a single photon with high efficiency and

fidelity. In this dissertation, by quantum memory or quantum storage of a single photon,

we always refer to the capability of recovering not only its quantum state in Fock space,

but also its wave packet shape in time domain.

Since photons practically do not interact with each other, their storage and manipula-

tion have to be based on the light-matter interaction on various quantum interfaces. Single

atom is naturally considered to deal with single photon due to its conceptual simplicity.

However, because of the rather weak interaction strength, the probability of successful op-

eration in such a system is too small. In order to increase the light-matter interaction, one

resorts to either cavity-assisted or ensemble-assisted enhancements. The former approach
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is proposed [28] in late 90's and realized thereafter [29, 30]. But generally speaking, the

use of cavity greatly complicates the experimental setup. The latter one [31], on the other

hand, is much easier to be implemented in free space.

In free space, quantum memory of a single photon can be achieved in a number of

ways. The major techniques can be divided into two groups. The first one uses an opti-

mized shaped-in-time control field to convert a single photon into collective spin waves.

This includes electromagnetically induced transparency (EIT) [32--37] and off-resonant

Raman scheme [38--42]. Quantum memory based on EIT can be understood in a simple

way via a concept of "slow light". That is to say, the group velocity of the coupled signal

field-spin excitation (so called dark state polariton) as well as the ratio of the two compo-

nents of the polariton strongly depends on the intensity of the control field. By adiabatically

tuning off (on) the control beam, it is possible to freeze (release) the signal photon into (out

from) the collective spin excitation in the medium. But this immediately brings a problem.

In order to reach the synchronization between the control and signal fields and the opti-

mization of the control field temporal shape, a prior knowledge of the exact arrival time

and waveform of the single photon is required. Sometimes this is inconvenient, or even

impossible, especially in the case when the information is encoded in a very complicated

temporal wave packet [43]. The same problem is inherent to quantum memory based on

off-resonant Raman interaction.

The second category of free-space quantum memory schemes, such as gradient echo

memory (GEM) [44--46] and atomic frequency comb (AFC) [47], are free of this problem.
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They take advantage of photon-echo mechanism, and do not require a modulated control

field amplitude tomatch an input signal field. Specifically, GEMuses a gradient of external

electric or magnetic field along the propagation direction to produce an artificial control-

lable inhomogeneous broadening during the photon storage process, which can be reversed

by switching the sign of that gradient to implement a retrieval process. This technique re-

lies on the existence of Stark or Zeeman effect in the storage medium, and often implies

also a selection of an initially homogenous subensemble from the originally naturally in-

homogenously broadened transition via the process of optical pumping, which, in its turn,

implies a presence of the appropriate hyperfine structure in the ground atomic state. It has

been realized in rare-earth-doped crystals [48--50], warm [51--55] and cold [56] atoms.

While AFC uses a discrete, isotropic absorption structure, its preparation requires delicate

spectral tailoring on a very broad inhomogeneous broadening via optical pumping with a

sequence of pulses. Up to now, it has been implemented in only rare-earth-doped crystals

under cryogenic temperature [57--84]. Such requirements on photon-echo-based quantum

memory schemes can become limiting factors for the actual implementation in different

light-atom interfaces under various scenarios. So it is important to design new schemes to

overcome the above disadvantages.

Therefore, after almost two decades of development, optical quantum memory is

still challenging researchers with a lot of practical problems that has yet to be resolved

by designing novel schemes. We want these new schemes to demonstrate the ability of

(including but not limited to):
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• Recovering not only the Fock state of a single photon but also its temporal waveform

with high efficiency and fidelity;

• On-demand retrieval, and other single-photon processing functionalities, such as

time sequencing, waveform shaping, etc;

• Standby operation that requires no synchronization, nor any prior knowledge of the

signal photon;

• Being implementable in as many physical systems as possible, including atomic

gases, rare-earth-doped-crystals, color centers, molecular ensembles, etc;

• Being realized easily, preferably at room temperature, without resorting to compli-

cated spectral tailoring techniques, etc.

The current techniques, as discussed above, only satisfy either some of these requirements

or other. In this dissertation, we propose several schemes demonstrating the above advan-

tages.

The first new scheme we suggest is quantum storage based on phase matching con-

trol (PMC). It maps different temporal parts of the single-photon wave packet into the spin

coherence waves by controlling the phase matching condition. In doing so, quantum stor-

age and retrieval can be realized without using inhomogeneous broadening of the atomic

transitions nor manipulating the amplitude of the control field. The second new scheme

we suggest is quantum storage based on control field spatial chirp. In this method, the fre-

quency chirp across the control beam propagating in the direction orthogonal to the signal

photon propagation direction provides a direct all-optical analogue of the frequency gra-
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dient in GEM scheme. However, it dose not require either linear Stark or Zeeman effect,

thus can be implemented inmaterials demonstrating no such effect and/or placed in specific

external fields. Both the above two schemes are proven to be mathematically equivalent

to GEM scheme, which promises high efficiency and fidelity without backward retrieval.

The exact analytical solution describing the processes of storage and retrieval in GEM is

also found, which is important for understanding the dynamics of the field-atom evolu-

tion in all these schemes. The third scheme we suggest is a discrete spatial chirp memory,

which uses a set of control beams with fixed different frequencies propagating across the

signal photon propagation direction. This scheme possesses some properties of both AFC

and GEM as well as some new favorable features. It not only allows high efficiency quan-

tum storage, but also can be used for temporal sequencing of a single photon. Finally, the

extension of the last scheme operating in the γ-ray regime is suggested to be implemented

in nuclear transitions via Doppler frequency comb. This scheme aims at the control of a

single photon's temporal mode. We also proposed a fast switch of a γ-ray photon's Bragg

mode. These methods help to broaden the concept of quantum information processing to

more energetic photons, therefore may benefit relative subjects in various aspects.

I.1 Quantum storage based on phase matching control

It is usually assumed that to store and recall optical photon waveform one needs ei-

ther an inhomogeneous broadened atomic transition (tailored or controlled) or a modulated

control field amplitude matched an input pulse. In Chap. II we propose another approach
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which requires neither inhomogeneous broadening nor temporal modulation of the control

field amplitude, but takes advantages of continuous phase matching control (PMC) in an

extended three-level resonant Raman medium. The basic idea of PMC is to regulate the

excited spin wave vectors (i.e., spatial mode of the spin wave) in time by manipulating the

control field wave vector. The one-to-one mapping between the temporal mode of the sig-

nal field and the spatial mode of the spin wave then allows the storage of the information

encoded into the input photon's waveform.

Depending on the concrete way how the control field wave vector is manipulated

with time, PMC memory may be implemented via three different schemes, namely, the

refractive index control [85--87], the control field propagation direction angular scan-

ning [88, 89], and the control field frequency chirp [90]. The angular manipulation of

the control field is more simple and promising for experimental implementation than the

other two. PMC via control field angular scanning can be realized in color centers in di-

amond, rare-earth-doped crystals and cold atoms. The mathematical description of PMC

is equivalent to the GEM scheme and hence it possesses all its advantages, including high

efficiency and high fidelity. But contrary to GEM, the angular scanning PMC is an all-

optical scheme, which does not use external dc electric or magnetic field. In particular, it

can be realized even in the materials for which the using of external dc field is difficult

or impossible. For example, in nitrogen-vacancy centers in diamond, the external dc field

strongly affects the Λ-level structure, so that traditional GEM scheme is not feasible. But

with the angular scan of the control field, one can achieve the same storage performance
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as GEM without using gradient dc field.

I.2 Quantum storage based on spatial chirp of the control field

PMC quantum memory schemes typically use the Raman configuration, but unlike

EIT or Raman scheme they do not require exact synchronization of the control and signal

fields, and can operate with control field of a constant amplitude. However they still imply

a manipulation with time of the refractive index or control field propagation direction.

In order to remove all the time-dependent manipulations, in Chap. III we propose

an all-optical quantum storage based on spatial chirp of the control field [91]. It does not

require any inhomogeneous broadening of the resonant medium, and in principle, is free

of any temporal modulation of the control field. In a transverse excitation setup, the signal

field experiences a longitudinal inhomogeneity of the Raman interaction with the control

field that is spatially chirped along the z axis. The spatial chirp leads to a varying two-

photon detuning across the beam, which exactly mimics the role of gradient absorption

structure in GEM. However, contrary to GEM and similar to PMC angular scanning, the

spatial chirp scheme can be realized without additional electric or magnetic field. More-

over, a phase modulation of the control field will allow the output pulses to be shifted in

time without their temporal squeezing or stretching.

I.3 The exact analytical solution for gradient echo memory scheme

Both PMC and control field spatial chirp quantum memory schemes demonstrate

the same performance as GEM scheme. In GEM scheme, an external electric or magnetic
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field with gradient along the longitudinal direction is applied to the medium of very narrow

linewidth. This produces a position dependent resonant absorption condition for different

frequency components of the input photon. After absorption, the field gradient is reversed

to the opposite. The polarizations in the medium then evolve backward until reaching their

original status, upon which a photon echo emerges. While most of the forward photon-

echo quantummemory schemes demonstrate a maximally 54% efficiency, GEM can recall

almost 100% of the input field energy. This rather peculiar property results from its highly

non-trivial field-atomic evolution, which is described by the equations as follows:

∂
∂ z

a(z, t) = g∗NS(z, t), (I.1)

∂
∂ t

S(z, t) =−(γ − iβ z)S(z, t)−ga(z, t), (I.2)

where a(z, t) is the slowly varying amplitude of the single-photon annihilation operator

and S(z, t) is the slowly varying part of the atomic coherence operator, g is the field-atom

coupling constant, N is the atomic density, γ is the decoherence rate and β is the frequency

gradient.

In Chap. IV we derive the exact solution of GEM Eqs. (I.1) and (I.2) for storage and

retrieval for arbitrary linear gradient without any additional approximations. The response

of storage process is proportional to the Kummer confluent hypergeometric function 1F1,

and the kernel of the gradient echo solution after retrieval is proportional to the Humbert

double hypergeometric seriesΦ2. The solution is written in its final form, i.e., in terms of a

response to the input signal. In such a way, how the medium subjecting to the a switchable

frequency gradient manage to generate the gradient echo becomes clear. Moreover, the

9



gradient absorption of a single photon is closely related to the single-photon superradiance

process [92--97]. So the solution and mathematical treatment presented in this paper can

also provide insights, for example, into the problem of the preparation and control of the

timed Dicke state [98, 99].

I.4 Quantum storage based on discrete spatial chirp: gradient frequency comb and

stepwise gradient echo memories

Amuch easier, and also more interesting, realization of spatial-chirp-based quantum

memory is to use, instead of one beam with a spatially varied frequency, a set of coherent

control beams propagating across the signal field, each having different fixed frequency

with the same frequency spacing between the neighboring beams. This is discussed in

Chap. V.

Such discrete spatial chirp quantum memory presents itself a hybrid of AFC and

GEM memories, possessing some unique properties. Indeed, the presence of the discrete

equidistant spectral components in the control field leads to a comb structure in resonant

absorption profile of the incoming signal photon, similar to AFC memory. However, con-

trary to the usual AFC, where the whole structure is formed at any point in space, here

each comb tooth is present in different layer of the medium, forming a frequency gradient

along the propagation direction of signal field. For this reason it can be called a gradient

frequency comb (GFC). On the other hand, presence of the frequency gradient along the

propagation direction leads to some similarities of our scheme to the GEM scheme. But
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unlike the usual GEM, where frequency of an atomic transition is continuously changed

along the propagation direction, in our scheme it is changed in a stepwise manner. For

this reason it may be called stepwise gradient echo memory (SGEM). So, if the frequency

gradient is not changed, the scheme operates in the regime similar to AFC. If it is reversed

before the appearance of the fist GFC echo, it operates in the regime similar to GEM.

A unique combination of two different memory mechanisms within one all-optical

scheme along with the possibility of independent control over the phases of the control

beams leads not only to a high performance of this scheme for quantum storage, but also

to a wide spectrum of single photon operations, including an arbitrary time sequencing of

peaks in the waveform of a single photon (time reversing of a time-bin qubit, permutation

of qutrit, etc.).

I.5 Nuclear quantum memory and time sequencing of a single γ-ray photon

In the last decade optical-atomic interfaces [31] have been developed as one of the

basic building blocks for quantum information processing [1]. However, optical photons

(∼ 1 eV) have both some practical and fundamental limitations, such as a lack of reli-

able, economical single-photon sources, low efficiency and high dark-count rate of single-

photon detectors, and diffraction limit set by a wavelength∼ 1 µm on the size of informa-

tion processing devices. These problems can be resolved in the γ-ray range (10 - 100 keV),

where single-photon detectors have nearly 100% efficiency with almost no false detection,

radioactive decay in a cascade scheme produces heralded single γ photon, and the sub-
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angstrom wavelength does not impose any practical limit on the size of a photonic circuit.

In this frequency regime, the nuclear transitions in Mösbauer solid may naturally provide

almost perfect platform with its extremely high Q factor and strong coupling between a

single γ photon and nuclear ensemble. For example, the 14.4 keV transition in 57Fe has

a room temperature recoilless fraction 75% and linewidth 1.1 MHz, with an absorption

coefficient as high as 10 µm−1 for 98%-enriched stainless-steel film.

However, up to now there is not yet a feasible scheme to faithfully store and retrieve a

γ photon. All the existing techniques have different kinds of difficulties in the γ-ray range.

In Chap. VI we propose a method for the implementation of γ-ray quantum memory via

a Doppler frequency comb, produced by a set of resonantly absorbing nuclear Mössbauer

targets each moving at different velocities. The upper bound of the efficiency is 54%.

However, much higher efficiency can be achieved by reversing the moving directions of

all the targets. Moreover, the single γ-photon processing, such as holding, delaying and/or

advancing, and permuting the time bins of a γ photon, can be realized simply bymodulating

the speed of the Mössbauer targets.

The Doppler frequency comb scheme manipulates the temporal mode of a single

γ-ray wave packet. Meanwhile, the control of the spatial mode of a γ photon is as well

important. In order to do this, we suggest a picosecond switch of the propagation direction

of γ-ray wave using optically controlled vibrating nuclear lattice. Namely, if the incident

γ wave is detuned from the nuclear transition, it passes through a static nuclear array.

However, if the nuclei vibrate with frequency matching the γ-ray detuning, parametric
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resonance can yield energy transfer into a Bragg deflected beam on the superradiant time

scale.

The combination of γ-ray optics, quantummemory, and superradiant control of prop-

agation direction may provide novel solutions for advancing information technology on an

unexplored level.
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CHAPTER II

QUANTUM STORAGE BASED ON PHASE MATCHING

CONTROL*

II.1 Introduction

Developing optical quantum memory [9--14, 31] is considered to be one of the es-

sential steps to build quantum repeaters that provide a way of implementing long distance

fiber-based quantum communication. Quantum repeater protocols involve creating entan-

gled photons, storing them in quantummemories, and swapping their entangled states [12].

Thus it is important to develop effective methods of storage and retrieval of single-photon

wave packets. Several promising schemes for efficient quantum storage have been exper-

imentally demonstrated, including electromagnetically induced transparency (EIT) [32--

37], Raman interaction [38--42], controlled reversible inhomogeneous broadening (CRIB)

or gradient echo memory (GEM) in rare-earth-doped crystals [48--50] and warm and/or

cold atomic gases [51--56], and atomic frequency comb (AFC) [57--84].

In EIT and Raman schemes, the storage is based on temporal variation of the control

field amplitude. An optimal temporal shape of the control field and a control-signal fields

synchronization are needed to efficiently store and recall the signal pulse. Consequently,

before the storage one needs to know the shape and arrival time of the signal field, which
*Reprinted with permissions from "Quantummemory based on phase matching control'' by X.-W. Zhang,

A. Kalachev, P. Hemmer, M. Scully, and O. Kocharovskaya, 2014, Laser Physics vol. 24, pp. 094016, Copy-
right [2014] by Laser Physics Journal, and from "Quantum storage based on control field angular scanning''
by X. Zhang, A. Kalachev, and O. Kocharovskaya, 2013, Phys. Rev. A, vol. 87, pp. 013811, Copyright
[2013] by the American Physical Society.
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inevitably limits the real applications of quantum memory. In GEM scheme, the storage

of the signal relies on the creation of a resonance absorption frequency gradient by Stark

or Zeeman effect. This confines the materials for implementation to those demonstrating

these effects. In AFC scheme, a tailored inhomogeneous broadening (frequency comb)

is created before storing the signal. In order to achieve good memory efficiency, a high

quality frequency comb should be prepared via optical pumping. Such preparation requires

a presence of the fine structure in the ground state and usually takes long time.

Bearing in mind the above limitations, we study the possibility of a quantum stor-

age scheme based on phase matching control (PMC), which does not require manipulation

with the inhomogeneous broadening or amplitude variation in time of the control field

and its synchronization with the signal field. Specifically we consider the PMC quantum

memory protocol based on Raman interaction of the quantum signal field and classical

control field with the medium, i.e. under two-photon resonance condition, when the fre-

quency difference of these fields coincides with the spin transition frequency. The benefit

of using the Raman interaction is the possibility to achieve wide-bandwidth, low-noise and

inhomogeneous-broadening-insensitive storage [38]. The pay-off is a relatively low cou-

pling constant, which however can be overcome by using a strong transition, large driving

power, and/or placing the medium into a cavity.

Phase matching is a widely used concept in optics, especially in nonlinear optics.

It stems from the conservation of momentum, meaning that the optical process is most

efficient when the wave vectors match each other. In the context of quantum memory
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protocol, the phase matching condition in the case of Raman interaction means that the

established spin coherence wave should have the wave vector matching the combination

of the wave vectors of the signal and control fields. As a result, a manipulation on the

control field wave vector eventually acts as a modulation of the spin wave vector. The

idea of quantum storage scheme based on PMC is to map the different temporal parts of

the signal field into the spin coherence waves with different wave vectors by exciting them

selectively and subsequently via continues temporal variation of the wave vector of the

control field. By the end of this mapping process the coherence grating is formed in the

medium which stores the information about the signal field within the life time of the spin

coherence. During the read out process, the control field wave vector is manipulated as a

time reversal of the storage one. This allows the control field to pick up the wave-vector-

matched spin wave in time ordered manner and to retrieve the signal field from the spin

grating.

Depending on how the control field wave vector is manipulated with time, there are

three different schemes of the Raman PMC quantum memory, namely, quantum storage

based on (i) the refractive index control [85--87], (ii) the control field propagation direction

angular scanning [88, 89], and (iii) the control field frequency chirp [90].

In this chapter, we develop the general model of the Raman PMC quantum memory,

discuss and compare the basic conditions and requirements for all three PMC quantum

memory schemes. Specifically, we propose the experimental realization of PMC quantum

storage based on control field angular scanning in nitrogen vacancy centers in diamond
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and in rare-earth-doped crystals.

II.2 The general model and basic equations for the Raman PMC quantum memory

In this section we introduce the general model of the quantummemory scheme based

on PMC. As shown in Fig. 2.1 (a), we consider the interaction of a single-photon wave

packetEs(r, t) of duration∆t throughRaman interactionwith a strong classical fieldEc(r, t)

in a three-level atomic medium with a Λ-type level structure. The signal (control) field has

a carrier angular frequency ωs (ωc), a wavelength λs (λc) and a wave vector ks (kc). The

atoms are assumed to be distributed uniformly in a cylindrical geometry of length L, and

remain mostly on their ground states. The coordinate system is originated at the center of

the sample. The time windows of storage and retrieval processes are both equal to T . Dur-

ing the storage, t ∈ [−T,0], the signal field (single photon) and the wave-vector-modulated

control field together create spin-wave excitations in the medium, as shown in Fig. 2.1 (b,

c). During retrieval, t ∈ [0,T ], the spin-wave excitations and the anti-modulated control

field together produce (recall) the signal field of the same (or temporally reversed) wave-

form as the input. Since the two ground states on which the spin wave lives are usually very

long-lived (e.g., longer than ∼ microseconds), for the sake of simplicity, unless otherwise

indicated, we will neglect the natural decoherence of the spin wave between the end of the

storage and the beginning of the retrieval in this dissertation. Such decoherence can be

taken into account simply by multiplying an exponential decay factor onto the efficiency.

The signal field (single-photon wave packet) propagating along the ẑ direction can
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Figure 2.1: (a) Energy diagram of the Raman interaction in a three-level Λ system, where
ωs,c ( ks,c) is the angular frequencies (wave vectors) of the signal and control fields, respec-
tively, and ∆ (δ ) is the one-photon (two-photon) frequency detuning. (b) Phase matching
diagram among the signal, control, and spin wave vectors. (c) Schematic illustration of
the principle of quantum storage based on off-resonant Raman phase matching control. By
manipulating the control field wave vector as a function of time, the temporal profile of the
signal field is mapped into (storage) or out from (retrieval) the spin waves with different
wave vectors. For illustration purpose, discrete spin wave vectors are sketched.

be written as

Es(r, t) = i

√
h̄ωs

2ε0nsc
a(r, t)ei(ksz−ωst)+H.c., (II.1)

where ns is the refractive index on the frequency of the signal field taking into account the

contributions from the host material and the resonant atoms, and c is the speed of light in

vacuum, a(z, t) is the slowly varying part of the photon annihilation operator.

The classical control field contains a wave vector modulation, which is described by

the phase factor ϕ(r, t):

Ec(r, t) = E0ei[k̄cr−ωct+ϕ(r,t)]+ c.c. , (II.2)

where E0 is a constant amplitude, and k̄c is the average wave vector of the control field.

The collective atomic operators are defined as the mean values of the single-atom
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operators

σmn(r, t) =
1
N ∑

j

∣∣m j⟩⟨n j
∣∣ δ (3)(r− r j) , (II.3)

where N is the constant atomic number density, and |n j⟩ is the nth state (n = 1,2,3) of

jth atom with the energy h̄ωn (set ω1 = 0). The collective spin coherence operator can

be expressed into a slowly varying amplitude of coherence on the Raman transition s(z, t)

multiplied by a fast oscillating factor:

σ13(r, t) = s(r, t)e−i[(ωs−ωc)t−(ks−k̄c)r] . (II.4)

We assume here and thereafter a large Fresnel number F = A/(Lλ ) of the signal field

in the medium to neglect the transverse diffraction, where A and λ are the characteristic

transverse size and wavelength of the field, respectively. We consider all the atoms initially

in the ground state |1⟩ so that Langevin noise atomic operators are not present [100, 101],

then the off-resonant Raman interaction can be described by the following equations (see

Appendix A): (
∂
∂ z

+
1

vsg

∂
∂ t

)
a(r, t) =−g∗Ns(r, t)eiϕ(r,t) , (II.5)

∂
∂ t

s(r, t) = (−γ + iδ )s(r, t)+ga(r, t)e−iϕ(r,t) , (II.6)

where the decoherence rate between level |2⟩ and |1⟩ is neglected comparing with one-

photon detuning∆=ωs−ω2, vsg is the group velocity of the signal field inside themedium,

g = (d21Ω∗/∆)
√

ωs/(2h̄ε0nsc) is the coupling constant between the atoms and the weak

quantized field, and Ω = d23E0/h̄ is the Rabi frequency of the classical control field, di j

is the dipole matrix element of the transition between |i⟩ and | j⟩, γ is the decoherence rate
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the spin wave excitation, and δ = ωs −ωc −ω3 is the two-photon detuning. For the sake

of simplicity, the Raman transition frequency shift |Ω|2/∆ is included in the control field

frequency ωc. Equation (II.5) and (II.6) can be reduced to the equations describing the

GEM scheme1 if the incoming signal pulse duration is much longer than the propagation

time inside the medium and the phase factor ϕ(z, t) is linearly dependent on time and space.

Such equivalence can be understood by regarding the phase factor ϕ(z, t) as a result of either

a time dependent wave vector or a spatial dependent frequency of the control field. This

analogy provides a useful interpretation of the considered approach in frequency domain.

The two major figures of merit we consider for the quantum storage are total effi-

ciency η and fidelity F . The total efficiency characterizes how much photon energy is

retrieved from the medium out of the input field, which can be defined as

η =
Nout
Nin

, (II.7)

where

Nin =
∫ 0

−∞
dt⟨a†

in(t)ain(t)⟩ , (II.8)

Nout

∫ ∞

0
dt⟨a†

out(t)aout(t)⟩ , (II.9)

since we assume that the storage process terminates at the moment t = 0, while retrieval

process begins at this moment of time (by neglecting the decoherence in between). Here

we use ain,out to denote the slowly varying part of the input or output field.

The fidelity, on the other hand, indicates the waveform preservability of a memory
1For the analytical discussion of GEM system, please refer to Chap. IV of this dissertation.
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scheme by comparing the output field with the input, which is defined as

F =

∣∣∣∫ ∞
0 dt⟨a†

out(t)ain(t̄ ± t)⟩
∣∣∣2

NinNout
. (II.10)

Here t̄ is the delay that maximizes the fidelity F , and "±" takes into account the fact

that the retrieved field may or may not be a time-reversal (or quasi time-reversal) of the

input field, depending on the scheme. The definitions of η and F can also be done

in a similar way in terms of the spatial variables ain(r, t) and aout(r, t). In real space

Nin =
∫

d2ρ
∫ 0
−∞ dt ⟨a†

in(ρρρ , t)ain(ρρρ , t)⟩, and Nout =
∫ ∞

0 dt
∫

d2ρ ⟨a†
out(ρρρ , t)aout(ρρρ , t)⟩, while

F =
∣∣∣∫ ∞

0 dt
∫

d2ρ ⟨a†
in(ρρρ, t̄ − t)aout(ρρρ, t)⟩

∣∣∣2/(NinNout). For the sake of simplicity, in this

dissertation we will consider (most of the time) only a single spatial mode, thus the defi-

nitions (II.7) and (II.10) are enough. The detailed discussion of the spatial multiplexing of

our scheme can be found in Ref. [89].

It is sometimes also very useful, especially for forward GEM scheme, to introduce a

parameter characterizing the retrieval field amplitude preservation, which is defined as

A =

∫ ∞
0 dt

∣∣∣⟨a†
out(t)ain(t̄ ± t)⟩

∣∣∣2
NinNout

. (II.11)

The amplitude preservationA completely neglects the phase distortion of the input photon

due to complicated field-atom evolution in the medium. It is the accessible parameter in an

experiment of photon energy measurement. A theoretical benefit of introducing A lies in

the quantification of the additional phase modulation on the retrieved signal by comparing

A with F . This is especially important for the GEM-like scheme, where such phase

modulation commonly exists (see discussions in Chap. IV).
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In our scheme, the essential idea is to manipulate the wave vector of the control

field such that its phase factor ϕ(r, t) in Eq. (II.2) becomes a time-dependent externally

controllable parameter that provides accessibility to the internal field-atom evolution. In

such a case, we will be able to enforce a time reversal of the in-medium dynamics by

switching the controllable parameter. Since a wave vector is k = k̂nω/c, it immediately

becomes obvious that there are three different ways to manipulate the control field wave

vector, each corresponding to the modulation of n, k̂, and ω . Accordingly, there are three

different methods to realize the Raman PMC quantum memory scheme: by modulating (i)

the refractive index2, (ii) the propagation direction, and (iii) the control field frequency.

These schemes are discussed below.

II.3 Quantum storage via variation of refractive index

Let us consider a linearly changed-in-time refractive index n= n(t)= ṅ(t)t of thema-

terial in an off-resonant Raman interaction between the collinear signal and control fields.

Generally speaking, this refractive index can be different for the two fields in the presence

of a weak dispersion such that ks − kc ̸= 0. Otherwise we arrange a counter-propagating

setup to make sure the created spin wave vector K = ks −kc does not constantly vanish.

Then the magnitude of the wave vector K also becomes a linear function of time so that

during storage the single-photon wave packet is mapped into a superposition of spin waves
2It is worth noting that PMC quantum memory in general and, it's particular scheme based on refractive

index modulation, does not necessary require a three-level system or additional control laser. A two-level
version of PMC quantum memory based on refractive index change was developed in LiNbO3 doped by
Tm3+ ions [87].
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with different magnitudes of the wave vector [see Fig. 2.1 (c)]. In doing so the amplitude

of the signal pulse as a function of time, Ein(t), is imprinted in the amplitude of the spin

wave as a function of the wave vector S(K). Retrieval is achieved by interaction of the

atomic system with the control field as the same values of refractive index are scanned

back. If they are scanned in the reversed order as that during storage, the output pulse

Eout(t) becomes a time-reversed replica of the input one, while in the case of scanning in

the same order, the output pulse reconstructs the input signal [85]. Such retrieval without

reversal is possible in a cavity with an optically thin medium.

The number of the spin wave mode in the medium is simply equal to KL, where L is

the medium length. For a single pulse to be stored or retrieved, the spin wave mode has to

be swept over by several number, i.e., ∆K = ∆n2π/λ & 1. Suppose we only manipulate

the control field refractive index, then the total change of such refractive index modulation

needs to be on the order of λc/L, where λc is the control field wavelength [85], which gives

∆nmin ∼ 10−5 under typical experimental conditions. The ratio between the total accessible

range ∆n and this minimum value determines the number of pulses that can be stored in a

series.

While the underlying principle is easy for the quantum storage via variation of re-

fractive index, its experimental realization still remains challenging because, in general,

it is rather difficult to achieve a modulation of refractive index without modulations of

atomic levels. For example, in a doped nonlinear crystal, the refractive index can be con-

veniently modulated by the linear electro-optic effect. However, the linear Stark effect on
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all energy levels imposes a serious constraint on such system, because one needs to select

a specific class of impurity ions with a definite relative orientation between the ground and

excited states' permanent dipole moments. A possible candidate is LiNbO3 crystal doped

by rare-earth ions, which provides maximum value of index change ∼ 10−3 [86, 102].

II.4 Quantum storage via angular scanning of the control field

As mentioned above, the realization of quantum storage via refractive index control

requires rather special properties of the material. This departs from our original require-

ment on the new-designed schemes about their implementations in different systems. In

the last section, by continuously changing refractive index we project the input pulse shape

onto a subsystem of modes which differ in magnitudes of their wave vectors. In this sec-

tion we store the input pulse in the modes with different directions of the wave vectors

[Fig. 2.1 (c)] by changing the direction of propagation of the control field. However, in

order to maintain the single spatial-mode property, we deliberately avoid the usage of the

transverse spin-wave mode and project the two-dimensional spin-wave vector onto the lon-

gitudinal direction for storage in a first-order approximation. This is exactly what happens

in the quantum storage via refractive index modulation in the last section. So we expect

this scheme to perform the same as the previous one in terms of efficiency and fidelity, but

to be more easily implemented experimentally.

Let us suppose that the control field propagates at a non-vanishing angle θ0 with re-

spect to the signal field (of duration ∆t), and the wave vector of the control field is rotated
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Figure 2.2: Illustration of quantum storage via angular scanning of the control field. (a)
During storage, the temporal profile of the signal field is mapped into the spin wave dis-
tributed over different spin wave vectors; (b) During forward retrieval, the spin wave pro-
file is mapped back into the output signal field.

continuously around this average direction θ0 in a small angular range 2∆θ (see Fig. 2.2).

As a result, the projection of the spin wave vectors along the signal field propagation di-

rection changes its length as a function of time [Fig. 2.1 (c)], thereby mapping the signal

pulse shape at different moment of time into different longitudinal modes of the spin wave.

In order to write down the evolution equations, the phase factor ϕ(r, t) in Eq. (II.2)

needs to be specified. This induced phase shift due to the control field sweeping may be

considered as a linear function of the rotation angle. In such linear regime we have

ϕ(r, t) = βx(x− x0)t +βy(y− y0)t +βz(z− z0)t +ϕ0(r), (II.12)

where βi is the rate of change of the component kc along the i axis (i = x,y,z), and the

coordinate (x0,y0,z0) corresponds to a phase stationary point where the phase ϕ(t) of the

control field remains constant during the rotation. ϕ0(r) is a time-independent phase fac-

tor which can be incorporated into s(r, t). For the sake of simplicity, we assume in the
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following that the wave vector of the control field is rotated in (x,z)-plane around the

average polar angle θ0, as shown in Fig. 2.2, so that the average control wave vector

k̄c = kc sinθ0x̂+ kc cosθ0ẑ, where kc = ωc/c. Such a configuration also ensures that the

control field polarization is unchanged during the interaction. This is particularly important

if different polarization selection rules are involved in the two optical transitions of Raman

interaction for the purpose of noise suppression. In this case, we have βx = β cosθ0, βy = 0

and βz =−β sinθ0. The total angle of rotation 2∆θ during the storage or retrieval process

is 2∆θ = βT/kc = βT λc/2π ≪ 1.

II.4.1 Transverse excitation

The simplest scenario of the setup is a transverse excitation, where the control field

propagates perpendicular to the signal field, i.e., θ0 = π/2. Generally speaking, the signal

field has lots of transverse spatial modes which are inherently coupled to each other through

diffraction as well as scattering on a spin wave grating. This corresponds to a cross talk

when the spatial mode of a quantum storage is of concern. In order to stay within a single

transverse mode, the mode sweeping along x̂ direction kc − kc sin(π/2+∆t∆θ/T ) should

be much smaller than 2π/Lx, where Lx is the x-dimension of the medium and ∆t is the

duration of the signal field. Since ∆θ ≪ 1, the Taylor expansion of the above relation

gives the condition ∆θ ≪ T/(∆t)
√

2λc/Lx. In this single transverse mode regime, after

defining

S(z, t) = s(z, t)eiβz(z−z0)t , (II.13)
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we obtain the evolution equations:

∂
∂ z

a(z, t) =−g∗NS(z, t) , (II.14)

∂
∂ t

S(z, t) = [−γ + iδ − iβ (z− z0)]S(z, t)+ga(z, t) . (II.15)

In Eq. (II.14), the time derivative on the left hand side is neglected because we consider

only a long pulse with its duration ∆t ≫ L/c. In such regime, the retardation effect is

vanishingly small since the whole medium feels almost a uniform field at all time.

Equations (II.14) and (II.15) are exactly the evolution equations (I.1) and (I.2) de-

scribing the GEM system. In GEM scheme, a space dependent absorption line along the

medium is created by an external dc electric or magnetic longitudinal gradient field. While

the signal field propagates through the medium, different frequency components get ab-

sorbed at different positions, resulting in a space-dependent coherence in the sample. Such

coherence or medium polarization can be read out into reemitted field by reversing the

external gradient field during retrieval. The reason why our scheme is mathematically

equivalent to the GEM scheme can be understood as follows: The angular scanning of

the control field yields an additional phase factor eiϕ(r,t) = eiβzt(z−z0) of the field. This

phase factor will be imposed onto the spin wave created by the Raman interaction. This

spin wave excitation in an off-resonant Raman interaction is essentially playing the role

of the optical polarization in a two-level system. So this time dependent wave vector β t

multiplied by spacial variable z can be viewed as a space dependent resonant absorption

frequency β z multiplied by temporal variable t, which in a two-level system is nothing

else but a longitudinal distributed absorption line. The total bandwidth of the absorption
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window is |β |L.

From the above analysis, the absorption of the central frequency of the signal field

happens at a place zp where the frequency offset in Eq. (II.15) equal to zero: δ −β (zp −

z0) = 0, which gives zp = z0 + δ/β . For a good quantum memory, it is necessary for

zp to be inside the medium (−L/2 < zp < L/2), and better at the middle of the sample3.

This means that if z0 = 0, i.e. the longitudinal position of the phase stationary point of the

control field corresponds to the center of the interaction volume, the two-photon detuning

δ should be equal to zero. Otherwise, one can take advantage of the two-photon detuning

to shift the phase stationary point longitudinally to the medium center.

II.4.2 Oblique excitation

In a more general scenario, the control field makes an average polar angle θ0 ̸= π/2

with respect to the input signal field, as shown in Fig. 2.2. Actually, the transverse

excitation discussed above is a special case which experimentally requires more control

power because of the large control beam cross section. So now we consider a control

field propagating at an arbitrary angle with respect to the z axis. Throughout our discus-

sion we assume the Fresnel number F of the signal field to be much bigger than unity.

This approximation ensures a neglect of the second order transverse derivative in Maxwell

equations, i.e., the spatial diffraction of the signal field in the medium. Indeed, the trans-

verse derivative term in the reciprocal space is of the form −i[k2
⊥/(2ks)]a(z, t), which

3A zp deviating from the center of the medium simply introduces additional phase and frequency shift
onto the retrieval field. This maybe useful for frequency multiplexing information processing. The analytical
treatment of this situation is discussed in Chap. IV.
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describes a phase shift due to the transverse momentum. This term can be omitted if

[(2π)2/(LxLy)]/[(2π)/λs]≪ 2π/L, which reduces to the conditionF =A/(Lλs)≫ 1. This

means a one-dimensional model of Maxwell equation can be adopted, so that each point

in the transverse plane (x,y) can be considered independently. In addition, the transverse

profile of the signal field is assumed to be smooth enough and treated as featurelessness

within each Fresnel zone.

Although the transverse evolution is neglected for large Fresnel interaction volume,

when the control field is rotated and different spin waves are created in the medium during

the Raman interaction, the signal beam can be subject to spreading in transverse direction

due to the scattering of the control field on the spin waves with different wave vectors.

Therefore, we need not only F ≫ 1, but also sufficiently small angle of control field rota-

tion ∆θ . The upper limit of ∆θ can be estimated in the following way: While kc(t) changes

from kc(t1) (at an angle θ0−∆θ ) to kc(t2) (at an angle θ0+∆θ ), it continuously creates a set

of spin wave vectors ks−kc(t). As a result the signal wave vector can spread over an angle

φ . We require the additional phase on the longitudinal dimension due to this signal spread-

ing to be smaller than π , i.e.,
(
∆q2

x +∆q2
y
)

L/(2ks) ≪ π . Since ∆qx ∼ ks sinφ 6 2∆θks,

∆qy = 0, we obtain the limit of the rotation angle: ∆θ ≪ ∆θmax =
√

λs/L/2 ≈
√

Fθd/2,

where θd is the diffraction angle satisfying sinθd = 1.22λ/D, D is the diameter of the

aperture. It should be noticed that this inequality is a sufficient condition for neglecting

the transverse derivatives in Maxwell equation in our theoretical treatment, but not neces-

sarily required for the general Raman PMC quantum storage protocol.

29



Now, by defining a new variable S′(r, t) = s(r, t)ei[βx(x−x0)t+βz(z−z0)t], we have the

following equations in the long-pulse regime:

∂
∂ z

a(r, t) =−g∗NS′(r, t) , (II.16)

∂
∂ t

S′(r, t) = {−γ + iδ + i[β cosθ0(x− x0)−β sinθ0(z− z0)]}S′(r, t)+ga(r, t) . (II.17)

Since the proposed scheme is mathematically similar to GEM, the condition for good

efficiency and fidelity can be analyzed in the same way as for GEM. On the one hand,

the absorption window width |βz|L should cover the input pulse spectrum width: |βz|L >

2π/∆t. Since βz = −β sinθ0, β = (2∆θ/T )(2π/λc), we have 2∆θ sinθ0 > T λc/(∆tL).

This condition is the same as that resulted from switching between different longitudinal

modes during the storage of the signal pulse. On the other hand, it is known that the "optical

thickness'' for each spectral component of the signal field in Fourier space for GEM [103]

is 2π |g|2 N/|βz|. This quantity needs to be larger than unity, so 2∆θ sinθ0 < T λc|g|2N.

Combining these two conditions, we have the optimal condition of the quantum storage

based on control field angular scanning:

T
∆t

λc

L
. 2∆θ sinθ0 . T λc |g|2 N . (II.18)

The optimization of the parameter is achieved by keeping a balance between the absorp-

tion window width and the "optical thickness''. The bigger β is, the wider the absorption

window opens while the smaller the "optical thickness'' becomes, and vice versa.

Apart from the optimization condition (II.18) and the above mentioned F ≫ 1 and

∆θ ≪ ∆θmax =
√

λs/L/2 ≈
√

Fθd/2, we also derive the requirement on the the average

polar angle θ0. The central frequency component of the input signal field gets absorbed
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at the position zp = δ/(β sinθ0)+ z0 + cotθ0(x− x0), which should be inside the medium

(−L/2 < zp < L/2). Again, one can engineer the control field to make the location of

the phase stationary point (x0,z0) = (0,0) and set two-photon detuning δ = 0. But more

generally, the frequency shift introduced by z0 can be canceled by the shift introduced by

x0 and δ , namely, z0 − x0 cotθ0 +δ/(β sinθ0) = 0. So the phase stationary point does not

need to be exactly at the center of the sample, but may be situated anywhere on the line

x0 = z0 tanθ0 +δ/(β cosθ0) . (II.19)

When δ = 0, this is just the bisector of the rotation. Experimentally a nonvanishing δ can

be used to move the phase stationary point (x0,z0) around according to Eq. (II.19). In the

followingwewill assumeEq. (II.19) is fulfilled. Then the requirement of−L/2< zp <L/2

gives −L/2 < xcotθ0 < L/2. Replacing x by the radius of the excitation volume R, we

have |cotθ0|< L/(2R). So the condition on the average polar angle θ0 can be written as

θ0 > θg = arctan
2R
L

, (II.20)

where θg is a geometry angle of the interaction volume. If Eq. (II.19) is not fulfilled, the

angle θ0 needs to be even bigger. It is worth noting that, since θg ≈ Fθd and ∆θmax ≈
√

Fθd/2, for Fresnel number F ≫ 1 condition (II.20) automatically ensures that θ0 ≫ ∆θ ,

which is an assumption we have made throughout this section.

Under the condition (II.19), Eqs. (II.16) and (II.17) become

∂
∂ z

a(r, t) =−g∗NS′(r, t) , (II.21)

∂
∂ t

S′(r, t) = [−γ + iβ (xcosθ0 − zsinθ0)]S′(r, t)+ga(r, t) . (II.22)

31



The retrieval of the signal is done by switching the sign of wave vector rotational rate

β , corresponding to a reversal scan of the control field. As in GEM scheme, the retrieval

field demonstrate high efficiency, but may experience a phase modulation [104], which

could significantly decrease the fidelity defined as in Eq. (II.10). Generally speaking, the

higher the optical thickness is, the stronger the phase modulation becomes. The amplitude

preservation A defined in Eq. (II.11), on the other hand, does not decrease as quick as

the fidelity F . Discussions about this phase modulation can be found in Sec. III.2, and in

Chap. IV with more detail. In Fig. 2.3 we plot the amplitudes of the retrieval fields for

an input single-photon wave packet of Gaussian temporal waveform under both transverse

excitation and oblique excitation.

In order to minimize the transverse scattering of the signal field by the spin grating,

we store the information by the longitudinal component of the spin wave. So the term

βxcosθ0s′(r, t) in Eq. (II.22) appears as a side effect due to the change of kc on x̂ direction.

For forward retrieval, this term could introduce some transversal space dependent time shift

(ahead or behind) of the forward retrieved signal, as seen in Fig. 2.3 (b, d).

The reason of the time delay can be explained as follows: the signal field in the

medium excites spin wave and evolves in the form of polariton, which is the combina-

tion of the signal field and the excited spin wave [44]. During storage, the control field

transforms the signal field into the polariton which stays inside the medium at the lo-

cation of central absorption position zp = xcotθ0. During forward retrieval, the control

field picks up the polariton at zp which then turns into retrieval signal at z = L/2. So the
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Figure 2.3: Forward retrieval fields of (e) a single-photon wave packet of Gaussian
temporal waveform based on control field angular scanning using (a, c) transverse ex-
citation (θ0 = π/2) and (b, d) oblique excitation (θ0 = π/9). (a, b) Retrieval fields
for constant ∆θ . The field is distorted for small θ0 because (i): the absolute value of
βz =−β sinθ0 becomes smaller such that it approaches the lower limit of Eq. (II.18);
(ii): βx = β cosθ0 becomes large enough to lead a spacial-temporal distortion; (c, d) Re-
trieval fields for constant ∆θ sinθ0. There is transverse distortion of the retrieval field
due to the non-vanishing βx. The figures are generated under the following parame-
ters: λs ≈ λc = 1550 nm (fiber-optic communication band), |g|2N = 8.3×1010 s−1m−1,
∆t/T = 1/20, T = 1000 ns, 2R/Lx = 1/6, where R is considered to be the transverse spa-
tial half width of the input signal and Lx is its normalization factor (which can be taken as
the total medium transverse size), Lx = 0.6 cm, L = 1 cm, ∆θ = 8× 10−3 rad in (a) and
(b), = 8×10−3/sinθ0 rad in (c) and (d).
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group velocity of the signal field reduces from c to 0 while z =−L/2 → zp, and recovers

from 0 to c while z = zp → L/2. As a result, if zp ̸= 0, the storage-retrieval dynamics

will introduce a time shift onto the forward recalled signal. This time shift can be elimi-

nated in the transverse excitation (θ0 = π/2) because there zp is independent on x (trans-

versely homogeneous). However, for oblique excitation (θ0 ̸= π/2), at x ̸= 0 this time

shift is unavoidable for forward retrieval. Moreover, since it is transversely inhomoge-

neous, there must be a transverse distortion of the signal. For zp not deviating much from

0 and 4c |g|2 N/(β 2L2 sin2 θ0)≫ 1, the group velocity of the signal field near the ends of

the medium is calculated in Ref. [104], which is vg(z)||z±L/2|≪L/2 ∼ β 2 (z− zp)
2 /(|g|2 N).

Since the delay is due to the propagation between z = L/2 + 2zp and z = L/2, from

dz = vg(z)dt, the delay time can be estimated as

td ∼ |g|2 N
β 2 sin2 θ0

(
1

L/2+ zp
− 1

L/2− zp

)
. (II.23)

Taking zp =±Rcotθ0, one can estimate the temporal broadening of the forward retrieved

signal with respect to the input signal:

∆tbr ∼
|g|2 N

β 2 sin2 θ0

4Rcotθ0

(L/2)2 −R2 cot2 θ0
, (II.24)

which is finite and positive under the condition (II.20).

In Fig. 2.4 we show the efficiency and fidelity dependence on θ0. As can be seen,

although a smaller θ0 requires less control field power (because of the reduce of the cross

section of the control beam on the interaction volume), it gives less fidelity due to the

transversal distortion for a given ∆θ . Alteratively, it is necessary to increase ∆θ when θ0

approaches θg from above, in order to maintain high fidelity of quantum storage, as shown
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Figure 2.4: Forward retrieval efficiency η and fidelityF as functions of the average polar
angle θ0 for quantum memory based on control field angular scanning. (a, b) Efficiency
(a) and fidelity (b) for forward retrieval with ∆θ kept as constant; (c, d) Efficiency (c) and
fidelity (d) for forward retrieval with ∆θ sinθ0 kept as constant. The parameters are the
same as described in Fig. 2.3.

in Fig. 2.4 (c, d).

The fundamental reason of the transverse distortion and additional phase modulation

(see discussions in Chap. IV) lies in the lack of time-reversal symmetry of the forward

retrieval scheme. These problems can be avoided in a backward retrieval, wherein the

time shift at each transverse point is exactly compensated during backward propagation.

As a result, the fidelity remains high for all average angles θ0 of interest.

However, due to the phase matching condition, it is not enough to merely switch the

propagation direction of the control field to the opposite. In general, the symmetry of the

system in backward retrieval requires a phase conjugation of the spin wave. Within the

approximations discussed above, to achieve such a phase conjugation, we can just flip the
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direction of the spin wave vector along direction K = ks −kc(t = 0) before the retrieval.

This can be done by applying two non-colinearly propagating π pulses one followed by

another [45, 105], both on resonance with level |3⟩ and another energy level, say, |4⟩.

The transition frequency ω34 needs to be bigger than cK. The directions of the two π

pulses are arranged in such a way that the wave vectors difference between them is along

−K. Another possibility is to generate spin wave vectors perpendicular to the signal wave

vector [106]. In this case, kc and ks need to differ from each other significantly.

II.4.3 Experimental issues

The advantage of this PMC quantum memory scheme lies in its experimental con-

venience in many systems. For a single pulse to be stored or recalled in the free space,

the minimum increment |∆kc/kc| (or the rotation angle) of the control field wave vector kc

should be on the order of 10λc/L. In other words, the ratio between the minimum angle of

rotation and the beam diffraction angle (resolvable spot number) should be equal to ∼ 10.

This is confirmed by the numerical simulation, which shows that a single Gaussian pulse

at 700 nm of duration ∆t = T/20 with T = 500 ns can be stored and recalled with high

efficiency and fidelity using transverse control field (θ0 = π/2) if ∆θ/T ∼ 103 rad/s for

L = 1 cm (in accordance with 2∆θ ∼ 10λ/L). Such rate of beam deviation can be achieved

by commercial equipment, and such wavelength can be implemented in nitrogen-vacancy

centers in diamond (NVD) [107, 108].

In NVD system, the existence of lambda type optical transitions was demonstrated

via EIT[109] and coherent population trapping [110]. The large inhomogeneous broaden-
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ing can be reduced by optical pumping technique [111], and the interaction between spin

excitation and the local environment can be untangled using dynamic decoupling [112--

114]. The transfer of quantum states between the electron spins and nuclear spins is pos-

sible [115], which in combination with dissipative decoupling schemes allows long-lived

quantum storage [116]. A more detailed discussion of the quantum memory implemen-

tation in NVD is given in Chap. III. Another promising system is cold atoms trapped in

an optical lattice[117, 118]. The influence of regular atomic structure on the efficiency

of quantum memory in such a system was analyzed in Ref. [119]. In principle, any spa-

tially stationary atomic ensemble demonstrating off-resonant Raman interaction with rel-

atively strong optical transitions (preferable possessing polarization selection rules to in-

crease signal-to-noise ratio) is suitable for the implementation of the quantum memory

based on control field angular scanning.

This scheme can be implemented also in a cavity [89]. Enclosing an atomic ensemble

in a cavity makes it possible to achieve high efficiency of quantum storage with optically

thin materials, which is typical for Raman transitions. This is especially important for the

materials with relatively small dipole transition elements, such as rare-earth-doped crys-

tals. A three-dimensional theory, which allows almost a perfect multimode storage for

transverse excitation, was developed in Ref. [89]. The spatial multimode storage is cru-

cially important for multiplexing in quantum repeaters, which can significantly increase

the rate of quantum communication in possession of short-time quantum storage, and for

holographic quantum computers. It was experimentally demonstrated using EIT [120--
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123] and GEM [54, 55], but only in free space. As shown in Ref. [89], for a confocal

cavity with Fresnel number 10, the total number of accessible transverse modes T EMmn

approaches 1000. Storage of such a multimode transverse field can be combined with that

of the multimode longitudinal profile, i.e., with storage of a complicated pulse shape or a

sequence of pulses. The minimum angle of rotation per pulse proves to be∼ 10λc/L, while

accessible angular scanning range around transverse direction is about ≈ 20◦ for typical

values of experimental parameters. Therefore, one can store about 100 of the spatially mul-

timode pulses in a sequence. Thus we can predict a large storage capacity for the proposed

memory scheme.

In this section we discussed a PMC quantum memory based on control field angular

scanning. Thismethod stores and retrievesweak pulses such as single-photonwave packets

based on off-resonant Raman interaction. By changing the propagation direction of the

strong classical control field, the temporal profile of the signal field is mapped into the

spatial grating of Raman coherence. This specific realization of PMC quantum memory

is easier to be experimentally realized than the PMC scheme based on refractive index

manipulation. It has the advantage of GEM in that high efficiency can be achieved without

backward retrieval. But unlike in GEM, this scheme can be implemented in resonant media

which do not allow linear Stark or Zeeman effects.
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II.5 Quantum storage via frequency chirp of the control field

The third method for PMC-based quantummemory is quantum storage via frequency

chirp of the control field. Although this method is much more difficult to be realized due to

the reason that will be explained in this section, we will provide theoretical discussion for

the general interest and for the completion of the investigation on PMC quantum memory.

Our model is outlined in Fig. 2.5. We consider a single-photon signal field Es(z, t)

and a strong classical control field Ec(z, t) propagating collinearly along ẑ direction with

orthogonal polarizations. The two fields interact with each other through off-resonant Ra-

man interaction [Fig. 2.1 (a)]. The control field has a frequency chirp, meaning that its

frequency changes with time. Such a frequency chirp leads to a time dependent wave

vector, which is used to achieve phase matching control in the process of quantum stor-

age. It is worth noting that frequency chirped control field has been considered in an AFC

scheme [124], where the chirp as an aide helps to increase the control filed bandwidth and

thus reduce the requirement of the intensities. In present proposal, the chirp plays a princi-

pal role, leading to a time dependent excited spin wave vector, which records the temporal

shape of the single-photon wave packet.

During storage, the Raman interaction between the signal and control fields creates

spin coherence, and the temporal information of the signal field is recorded into the spin

wave with difference wave vectors, as shown in Fig. 2.5 (a). During retrieval, the fre-

quency chirp of the control field is reversed, resulting in an oppositely modulated control

wave vector. Such a control field will read the spin wave into the signal field in a time-
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Figure 2.5: Model of quantum storage based on control field frequency chirp in a off-
resonance Raman interaction. (a) During storage, the temporal profile of the signal field is
mapped into the spin wave distributed over different spin wave vectors; (b) During forward
retrieval, the spin wave profile is mapped back into the output signal field.

ordered manner, as illustrated in Fig. 2.5 (b).

The signal field is given by Eq. (II.1) with plain wave approximation, and the clas-

sical control field contains a frequency chirp:

Ec(z, t) = E0ei[kc0z−ωc0t+ϕ(z,t)]+ c.c. , (II.25)

in which ωc0 is the angular frequency of the control field at t = 0, and kc0 = ωc0/vc, where

vc is the phase velocity of the control field in the medium. We consider only the case of a

linear chirp, so that the phase factor reads

ϕ(z, t) =−1
2

αt2 +
α
vcg

(z− z0)t −
1
2

α
(z− z0)

2

v2
cg

, (II.26)

where α is the chirp parameter and vcg is the group velocity of the control field. The

first term on the right hand side of Eq. (II.26) is a time dependent phase from the fre-

quency chirp. The second term is a time and space dependent phase coming from the
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chirp-leaded wave vector modulation. z = z0 is a phase stationary plane in which wave-

vector-modulation part of the phase remains constant during storage or retrieval. In the

long pulse regime, the higher spatial order term−1
2α(z−z0)

2/v2
cg may be neglected in Eq.

(II.26).

Defining the slowly varying collective spin coherence operator as

s(z, t) = σ13(z, t)e
i
[
(ωs−ωc0)t− 1

2 αt2− α
vcg z0t−(ks−kc0)z

]
, (II.27)

the quantum storage process can be described by the following equations:(
∂
∂ z

+
1

vsg

∂
∂ t

)
a(z, t) =−g∗Ns(z, t)ei α

vcg zt
, (II.28)

∂
∂ t

s(z, t) = [−γ + iδ (t)]s(z, t)+ga(z, t)e−i α
vcg zt

. (II.29)

Denoting δ0 = ωs −ωc0 −ω3 − |Ω|2/∆− (α/vcg)z0 (where ω3 is the Raman transition

frequency), then δ (t) = δ0 −αt is the time dependent two-photon detuning. The time

dependent part originates from the changing of the control field frequency. Namely, the

frequency chirp of the control field provides the phase matching control phase factor, but

simultaneously introduces a shift of the resonant frequency.

Equations (II.28) and (II.29) are similar to the equations describing GEM scheme

except for a presence of an inherent time dependent two-photon detuning. The term

i(α/vcg)zt in Eqs. (II.28) and (II.29) is responsible for the creation and erasure of the spin

grating (leading to quantum storage), while iδ (t), on the other hand, destroys the quantum

storage by detuning the system away from two-photon resonance. In order to store a single

photon wave packet, this time-dependent two-photon detuning has to be compensated. As-
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suming it is compensated and defining new variable S(z, t) = s(z, t)ei α
vcg zt , in the long-pulse

regime Eqs. (II.28) and (II.29) become:

∂
∂ z

a(z, t) =−g∗NS(z, t), (II.30)

∂
∂ t

S(z, t) =
(
− γ + i

α
vcg

z
)

S(z, t)+ga(z, t) , (II.31)

These equations are equivalent to those describing other PMC quantum memory schemes

(namely, via refractive index modulation and/or angular scanning). It is convenient to

introduce the "chirp depth'' ∆d = αT , which shows the amount of chirp during the storage

or retrieval time T . Similar as before, high efficiency and field amplitude correlation can

be achieved when

vcg

L
T
∆t

. ∆d

2π
. vcg|g|2NT . (II.32)

Let us go back to consider how to compensate the time-dependent two-photon de-

tuning in order to physically realize the evolution equations (II.30) and (II.31). To do that,

one needs to modulate the atomic energy level |3⟩ simultaneously with the chirp in a way

to make two-photon detuning δ (t) = 0, namely,

ω3(t) = ωs −ωc0 −
|Ω|2

∆
− α

vcg
z0 −αt . (II.33)

At the retrieval stage the sign of the frequency chirp parameter should be changed (so that

the equivalent "inhomogeneous broadening'' would be reversed), while the modulation of

the atomic level should be switched simultaneously to compensate the two-photon detuning

introduced by this chirp and to ensure keeping of the two-photon resonance.

One way to achieve linearly shift of the ground state |3⟩ is to use dc Stark or Zeeman
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effect. The shift of the latter is proportional to µB/2π h̄ = 14 GHz/T, where µB is the

Bohr magneton. In the presence of polarization selection rules, the control field acts only

on the transition of |2⟩-|3⟩ levels, which are essentially almost empty. So the medium is

dispersionless for the control field. As a result, its group velocity vcg is equal to phase

velocity vc, which is typically on the order of the speed of light in the vacuum. Then

according to (II.32), for medium length L = 2 cm and signal field T/∆t = 20, the chirp

depth ∆d/2π should be on the order of 286 GHz. Numerical calculation shows that a chirp

depth ∆d/2π = 80 GHz can store and recall such a signal pulse with high efficiency and

fidelity in a medium with |g|2NT ∼ 2000 m−1. A linear time dependent magnetic field up

to ∼ 1 T is able to compensate a chirp depth ∆d/2π ∼ 30 GHz. Such a magnetic field can

be modulated as fast as with 10 µs [125] time period. If the g-factors for the ground and

excited state are the same, the levels |1⟩ and |2⟩ can be shifted roughly by the same amount,

while the level |3⟩ can be shifted substantially by different amount. As an example, in Fig.

2.6, a single photon wave packet of Gaussian temporal shape ∆t/T = 1/20 is stored and

retrieved with a chirp depth ∆d/2π = 95 GHz in a 2 cm medium with |g|2NT ∼ 2650 m−1

with high efficiency and fidelity. The lifetime of the spin wave is assumed to be much

longer than the signal pulse duration.

Alternatively, another way to shift the ground state |3⟩ is to take advantage of ac

Stark effect, where a second coherent external control field (Stark field) with time-varying

amplitude, propagating in the transverse direction with respect to the signal and the first

control fields, is used for compensation of the time-dependent frequency shift. However,
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Figure 2.6: Incoming signal field ain = a(−L/2,τ < 0) and forward retrieved field
aout = a(L/2,τ > 0) via Raman PMC quantum memory based on control field frequency
chirp. The corresponding parameters are: λs ≈ λc = 700 nm, |g|2NT = 2650 m−1,
∆t/T = 1/20, L = 2 cm, ∆d = 6×1011 rad/s. The efficiency η and fidelity F are 96%.
The quantity A , which describes the preservation of the pulse amplitude without taking
into account possible phase modulation, is 98.6%.

it is not easy either, because the Stark laser's scattering at spin coherence would introduce

a noise that decreases the fidelity. Its frequency should be carefully selected to provide,

on one hand a large detuning to other levels to minimize a scattering rate, on the other

hand small enough detuning sufficient for compensation of time-dependent two-photon

detuning. The ac Stark gradient echo quantum memory scheme was suggested in [126],

where a MHz shift can be obtained with 10 W Stark laser power (with 1 cm by 10 µm

medium) in 87Rb.

The next question is how to generate a long chirped control beam. Experimentally,

sub-nanosecond chirp pulses at joule energy level can be produced using the ultra-fast

optics technology [127, 128]. But first, the spectrum width (and thus chirp depth) of such a
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pulse is too large for the compensation of the frequency shift induced by the chirp. Second,

it becomes difficult to achieve a longer than nanosecond chirp pulse, which is required from

the speed perspective, in order to provide a compensation of frequency shift via linear

Stark or Zeeman effect as it was discussed above. In other words, if a slowly modulated

control field allows to reduce chirp depth ∆d , a long chirp pulse with narrow bandwidth is

needed. By optical means such a chirp pulse would require an extraordinarily dispersive

system which is very difficult to be achieved in conventional grating or prism pair. One

possible solution to unravel the above difficulty is to stay in the narrow bandwidth regime

and generate long chirp control field by electronic means. In this case, frequency chirp

is added on top of a long control pulse by electronic modulation. Such technique is used,

e.g., in high resolution lidar systems. The chirp depth ∆d is determined by the RF-signal

frequency tuning range, which can be as high as gigahertz. Using different techniques,

1-10 GHz chirp depth with pulse duration 0.1-0.5 µs [129--131] were demonstrated.

From the above discussion, it can be seen that the compensation of the two-photon-

detuning drift due to spatial chirp is fairly difficult because of the mismatch of the param-

eter space between two techniques: On the one hand, the dc or ac Stark shift favors low

bandwidth operation; On the other hand, the storage medium does not permit a ultra-low

bandwidth because of its limited lifetime, and many techniques for frequency chirp operate

on a picosecond time scale which is contradict with low bandwidth requirement. So such

quantum memory scheme based on control field frequency chirp is not experimentally fa-

vorable comparing with the other two PMC schemes. But it is worth noting that another
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type of quantum memory scheme based on control field spatial chirp, which is discussed

in Chap. III, is free of such problem.

II.6 Conclusion

In this chapter, we propose a general method to realize quantum memory for a weak

signal pulse (single photon wave packet) based on phase matching control (PMC). De-

pending on different wave vector manipulation methods, there are three different imple-

mentations, namely, via refractive index modulation, control field angular scanning, and

control field frequency chirp. We analyze and compare these three PMC quantum memory

schemes.

Specifically, we focus on PMC quantummemory based on control field angular scan-

ning in a Raman configuration. The sweeping of the control field during storage is used

to create a continuous set of spin waves with different spatial modes, which will record

the temporal profile of the signal pulse. Later on, the same information can be read out by

sweeping back. This scheme has very nice capability to deal with multiple spatial mode,

and demonstrates very high efficiency and fidelity without relying on a backward retrieval

in an all-optical manner. It can be experimentally implemented in cold atom, nitrogen-

vacancy centers in diamond, or rare-earth-doped crystals (in a cavity-assisted set up to

enhance the optical density).

We also discuss the PMC quantum memory based on frequency chirp of the control

field. In such a case, to stay on two-photon resonance, the atomic level should be mod-
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ulated in time through a dc or ac external field to compensate the two-photon detuning

drift. In a dispersive medium the control field frequency chirp scheme involves also the

refractive index modulation so that we actually have a combination of both approaches.

This enhances the control field wave vector scanning rate and makes it easier for the sake

of chirp-leaded two-photon detuning compensation.

Among the three PMC quantummemory schemes, the first and second ones aremuch

easier to be implemented since there is no two-photon detuning drift. While the second one

seems to be the easiest in the sense that no direct manipulation of the material is involved.

The phase matching control quantum memory demonstrates high efficiency and fi-

delity with the same performance as gradient echo memory. However the former (in cases

of refractive index modulation and control field angular scanning schemes) does not re-

quire Stark or Zeeman effect, and no synchronization between signal and control fields is

needed.
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CHAPTER III

ALL OPTICAL QUANTUM STORAGE BASED ON SPATIAL

CHIRP OF THE CONTROL FIELD*

III.1 Introduction

Quantum memory schemes based on phase matching control (PMC) [85, 87--90]

were discussed in Chap. II. PMC schemes get rid of the requirement of exact synchroniza-

tion between signal and control fields, but still demand a manipulation with time of the

refractive index or control field propagation direction.

In this chapter, we discuss a quantum storage method which also employs the Raman

configuration as schemes discussed in Chap. II, but in principle requires neither the syn-

chronization of the fields, nor the use of inhomogeneous broadening, nor the time variation

of the control field amplitude or any other parameters of the system. The key element of

this scheme is a spatial chirp on the control field, which means a varying frequency dis-

tributed across the laser beam. The result is very similar to the PMC quantum memory

schemes, but it does not involve any temporal manipulation of the control field and, thus,

is more robust to a time jitter.

It is interesting to compare the currently proposed quantum memory scheme with

that based on control field frequency chirp, which was discussed in Sec. II.5. In the latter,
*Reprinted with permission from "All optical quantum storage based on spatial chirp of the control field''

by X. Zhang, A. Kalachev, and O. Kocharovskaya, 2013, Phys. Rev. A, vol. 90, pp. 052322, Copyright
[2014] by the American Physical Society, and from "Quantum memory based on phase matching control'' by
X.-W. Zhang, A. Kalachev, P. Hemmer, M. Scully, and O. Kocharovskaya, 2014, Laser Physics vol. 24, pp.
094016, Copyright [2014] by Laser Physics Journal.
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a time-dependent detuning drives the signal out of the two-photon Raman resonance. The

compensation of this frequency shift creates a big experimental problem for implementa-

tion. In this chapter, we discuss the quantum memory based on the control field spatial

chirp. We show that this scheme demonstrates a stationary two-photon detuning, thus is

free of the above experimental difficulty. The effect of such a spatial chirp is analogous

to the effect of frequency gradient in GEM. However, unlike GEM, the proposed scheme

does not involve any direct operation on the medium itself. It does not require temporal

modulation of the control field or the atomic levels, and can be realized without additional

electric or magnetic fields. It means that materials demonstrating neither linear Stark nor

Zeeman effects can be used and/or materials which are placed in specific external fields

remain undisturbed.

III.2 The theoretical model and numerical simulation

We consider the off-resonant Raman interaction between a signal field Es of full-

width-half-maximum (FWHM) duration ∆t and a three-level atomic ensemble under the

control of a strong classical field Ec [Fig. 3.1 (a)]. The signal and control fields have an-

gular carrier frequencies ωs and ωc, respectively. The corresponding one- (two-) photon

frequency detuning is ∆ (δ ). The atoms are assumed to be stationary and uniformly dis-

tributed in space over a cylindrical excitation volume of length L and radius R (satisfying

πR2/(Lλs)≫ 1). We assume the intensities of the signal and control fields to be constant

across the dimensions transverse to their propagation directions, and their polarizations to
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Figure 3.1: Illustration of quantummemory based on control field spatial chirp. (a) Energy
diagram of the off-resonant Raman interaction in a three-level Λ system. The control field
spectrum width is given by the spatial chirp, which is |β |L for the transverse excitation
setup. During storage (b), the temporal profile of the signal field is mapped into a pattern of
the spin wave distribution due to the Raman interaction of the signal with the longitudinally
chirped control field. During retrieval (c), the stored spin wave generates the output signal
field and the spin wave spatial pattern is mapped back into the output signal's temporal
profile.

be orthogonal so that they are coupled to the different atomic transitions due to polarization

selection rules. The effect of the lack of such polarization selection rules is discussed in

Sec. III.3. The control field frequencyωc has a linear transverse spatial chirp, meaning that

the frequency at different positions on the phase front varies as a function of space. The

storage of the single-photon wave packet takes place during an interval of time t ∈ [−T,0],

and the retrieval happens during t ∈ [0,T ].

In the transverse excitation regime [Fig. 3.1 (b, c)], the signal field propagates along

ẑ (the axis of the cylindrical medium) and the control field propagates perpendicularly to

it. The signal experiences the inhomogeneity only along the longitudinal direction in the
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Raman interaction with the control field that is spatially chirped along ẑ. The spatial chirp

of the control field creates an effective inhomogeneous broadening βL [Fig. 3.1 (a)] on

which the spectrum of the signal field is converted into the spatial spectrum of the spinwave

(Raman coherence) during the storage process and back during the retrieval process. The

storage time is defined by the Raman coherence decay time. But for the sake of simplicity,

a free decay of the spin wave between the end of the storage and the beginning of the

retrieval will be omitted.

The signal field of wave vector ks = ωs/c is given by Eq. (II.1), and the classical

control field with a large Fresnel number for the interaction volume is written as a plain

wave with a spatial chirp across the beam:

Ec(r, t) = E0ei[kc(r⊥)·r−ωc(r⊥)t−φ0c(r⊥)]+ c.c.. (III.1)

We will consider a linear transverse spatial chirp ωc(r⊥) = ωc0+βββ ·r⊥, where the radius-

vector r⊥ is perpendicular to the propagation direction of the control field, ωc0 = ωc(r⊥ =

0), βββ is a frequency gradient. A transverse pattern of the wave vector of the control field

is described by a vector function kc(r⊥) ⊥ r⊥, |kc(r⊥)| = ωc(r⊥)/c, and a phase shift

φ0c(r⊥) = kc(r⊥) ·r0−ωc(r⊥)t0 specifies the position r0 and time t0 of the constant phase

plane. We assume the amplitude of the control field is constant in time and space, and the

switching of the field is instantaneous. For switching rate faster than 1/∆, nonadiabatic

excitation of optical coherence may contribute to additional loss to the quantum memory

scheme. However, for a sufficiently large one-photon detuning compared with the Rabi

frequency, such influence is negligible [132].
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The collective atomic operators are defined by Eq. (II.3), and the corresponding

slowly varying part of the spin wave operator is

s(r, t) = σ13(r, t)e−i(ks−kc0)·r+i(ωs−ωc0)t . (III.2)

Then the evolution equations are reduced to the same form of Eqs. (II.5) and (II.6), where

δ is replaced with its averaged value δ0 = ωs −ωc0 −ω3, and the phase factor ϕ is of the

following form:

ϕ(r, t) = [kc(r⊥)−kc0] · r− [ωc(r⊥)−ωc0]t −φ0c(r⊥). (III.3)

In obtaining Eqs. (II.5) and (II.6), we incorporated the Raman transition frequency shift

|Ω|2/∆ in the average control field frequency ωc0. For a control field of Gaussian spatial

profile, this can not be done since the corresponding ac Stark shift is inhomogeneous in

space. Its practical influence is discussed in Sec. III.3 as well as in Sec. V.2.

In transverse excitation regime of the proposed scheme, the frequency gradient of the

control field lies along the longitudinal direction ẑ and provides the spatial chirp ωc(z) =

ωc0 +β z, z ∈ [−L/2,L/2]. Choosing for convenience x0 = t0 = 0, the phase factor in Eq.

(III.3) becomes the following:

ϕ(r, t) =−β z(t − x/c) , (III.4)

where x ∈ [−R,R] and R < L. We assume a short propagation time of the pulse through

the medium compared to the inverse spectral broadening via spatial chirp, which, in its

turn, is shorter than the pulse duration (L/c < 2π/(βL) . ∆t). This allows us to neglect

the retardation of the signal field, as well as the transverse dependent phase factor β zx/c.
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Then the evolution equations describing the transverse excitation regime take the following

form

∂
∂ z

a(r, t) =−g∗Ns(r, t)e−iβ zt , (III.5)

∂
∂ t

s(r, t) =−γs(r, t)+ga(r, t)eiβ zt , (III.6)

where g is the Raman coupling constant, N is the constant atomic number density, γ is the

decoherence rate of spin excitation, z ∈ [−L/2,L/2]. These equations can be reduced to

the same form of GEM evolution equations. Therefore, we prove that the performance of

the transverse excitation regime of the spatial-chirp quantum memory scheme is the same

as that of GEM. Indeed, the essential part of GEM scheme is to create a non-uniformly

distributed inhomogeneous broadening. Usually the translational symmetric is broken by

external dc [44, 55] or ac [126] field which is used to introduce a level shift of the storage

medium. In our scheme, the inhomogeneity is created by a spatial dependent dynamical

phase of the control beam. So eventually we realize the GEM action with a completely

different physical implementation.

Taking the analogy to the GEM scheme, the necessary condition for large efficiency

(II.7) and fidelity (II.10) in the transverse excitation regime of the proposed scheme is (see

discussions in Chap. II and references therein):

1 . βL∆t
2π

< |g|2NL∆t . (III.7)

The forward retrieval is done by switching the frequency gradient to the opposite

β →−β and keeping the same control beam propagation direction. Numerical simulations

presented in Fig. 3.2 confirm that high efficiency and fidelity can be achieved following the
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optimization condition Eq. (III.7). Although high efficiency is possible, there could be a

strong phase modulation of the forward retrieval signal of the proposed scheme, especially

at the large optical thickness. This is the reason that in Fig. 3.2 (f) the fidelity is only 75%

although the retrieved pulse shape looks almost the same as the input [Fig. 3.2 (e)]. In Fig.

3.2 it can be seen that the fidelity in (f) is lower than that in (c) in despite of the same optical

thickness. This is because a longer pulse duration experiences more phase modulation.

The backward retrieval can be achieved by keeping the same frequency gradient β → β

but with opposite control beam propagation direction. Because of the phase matching

condition, a conjugate spin coherence should be prepared before backward retrieval by, for

example, two successive non-collinearly-propagating π pulses as discussed in Sec. II.4.

The backward retrieval signal field is free of phase modulation.

In a more general case, the propagating directions of the control and signal fields

can make an arbitrary angle θ . We make the spatial chirp centered at control beam center,

thenωc(x,z) =ωc0+β zsinθ −βxcosθ , with x∈ [−R,R], z∈ [−L/2,L/2]. Without losing

generality, we take z0 = x0 = t0 = 0. The phase factor in Eq. (III.3) is the following function

of the coordinates and time:

ϕ(r, t) =−β (zsinθ − xcosθ)
(

t − zcosθ + xsinθ
c

)
. (III.8)

Consider kc ≈ ks, ∆t ≫ L/c, ∆ksx ∼ ∆kcx ∼ β∆t, βR < βL ∼ 2π/∆t, the transverse evolu-

tion of the signal field can be neglected for large signal field Fresnel number F ≫ 1. Under

the same assumption made above, L/c < 2π/(βL) < ∆t, the (zcosθ + xsinθ)/c term in

Eq. (III.8) can be neglected and we are able to approximate the phase shift in Eq. (III.3) by
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Figure 3.2: Forward retrieval of quantum memory based on control field spatial chirp.
(a-d) Signal amplitude |aout(t)| (phase modulation is not shown in the figure but taken
into account in the fidelity F ) as a function of time in the transverse excitation regime
for different values of the spatial chirp βL across the control beam [(b) 2π

√
2ln2/∆t, (c)

4π
√

2ln2/∆t, (d) 8π
√

2ln2/∆t] for the depicted in (a) Gaussian temporal shape input
signal field ain(t) with a FWHM duration ∆t = (

√
2ln2/15)T , where T is the duration of

the writing process. (e, f) A double-peak Gaussian temporal shape input signal field (e) and
its forward retrieval signal amplitude (f) for βL = 4π

√
2ln2/∆t. The graphs are plotted

for the parameter |g|2NL∆t = 13.78.
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ϕ(r, t) =−β (zsinθ −xcosθ) t. Defining a variable S(r, t) = s(r, t)e−iβ (zsinθ−xcosθ)t , then

we get the evolution equations describing the oblique excitation regime, which are the same

as Eqs. (II.21) and (II.22). Therefore the performance of the oblique excitation regime can

be fully analyzed in the same way as for quantum storage based on control field angular

scanning in Sec. II.4. The forward and backward retrieval can be realized in the same

manner as in the above transverse excitation. Other possibilities, such as retrieving at the

control field angle equal to−θ or π −θ (θ ̸= 0), require external spin wave vector rotation

before retrieval. Decreasing the angle θ to below the critical one, βLsin(θ)∆t/(2π)< 1,

reduces the longitudinal absorption window, making it too small to accommodate the full

Fourier components of the signal.

It is worth noting that the proposed all-optical GEM-like scheme provides some ad-

ditional possibilities for manipulating the pulses, which are not available in the case of

usual GEM implementation. For example, a transverse phase modulation of the read-out

control field such as exp(iβ zt ′) leads to the temporal shift of the output pulse on t ′ without

its temporal squeezing or stretching. In other words, it is known that a temporal advance or

delay in GEM scheme can be achieved by increasing or decreasing the retrieval gradient at

the expense of compressing or stretching the temporal shape of the retrieved signal, while

we can shift the pulse in time without changing the frequency gradient meanwhile keep the

original duration of the input photon's wave packet. More advantages are demonstrated in

the discrete version of our scheme, which is discussed in Chap. V.
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III.3 The experimental implementation issues

Quantum memory based on control field spatial chirp requires en ensemble of atoms

stationarily distributed in space. The Raman configuration calls for a rather strong optical

transition. Based on these two requirements, nitrogen-vacancy (NV) centers in diamond

(NVD) is a promising material for the realization of the suggested scheme. NVD has much

stronger electric dipole Raman transitions compared with the commonly used rare-earth

ions in quantum storage experiments. Different Λ-level structures in NV ensemble have

been employed in the experimental demonstrations of EIT [109, 133], and also in the recent

theoretical proposal for the traditional Raman quantum memory [134].

It is worth noting that quantum memories of a single-photon wave packet were not

demonstrated yet in NVD. The scheme based on control field angular scanning and control

field spatial chirp have important advantages compared with other methods for realization

of NVD quantum memory [90]. Indeed, EIT technique requires rather high EIT contrast,

while GEM and AFC based on optical transition require long life time of the excited state.

Both are hardly achievable in NVD. EIT contrast in NVD is only ∼ 6% [133], and AFC

absorption peaks within inhomogeneous profile are strongly affected by the spectral dif-

fusion inherent to NVD. An AFC comb structure in a Λ system will be limited by the

small inhomogeneous broadening of the spin transition (e.g., ∼ 200 kHz in Ref. [133]),

and three-level GEM is difficult because the external electric or magnetic field strongly af-

fects the excited spin state, which in turn affects the required Λ level structure (explained

in the following). Besides, g factors of the excited [135] and ground [136] states in NV
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are nearly equal to each other, which makes it difficult to introduce controllable inhomo-

geneous broadening via gradient magnetic field. So Raman scheme combined with PMC

and/or control field spatial chirp approaches for quantum memory application is naturally

suitable for NVD, especially for the realization of GEM-like memory performance.

Another candidate for our proposed quantum memory is silicon-vacancy (SiV) in

diamond. It has similar oscillator strength as NV center [137] but larger Debye-Waller

factor at 738 nm [138]. However, its spin coherence lifetime is not yet sufficiently long.

III.3.1 Nitrogen-vacancy centers in diamond

Nitrogen-vacancy centers in diamond (NVD) [139] consists of a carbon-vacancy in

the diamond lattice with one of the neighboring carbon atoms substituted by a nitrogen

atom [90]. This vacancy can be thought of as a carbon atom with zero nuclear charge.

The effective energy level scheme of electronic transitions of NVD can be found in, for

example, Refs. [140, 141].

NVD has some unique features such as strong coupling of light with an individual

vacancy (2-4 orders of magnitude stronger transition than in rare-earth-doped crystals),

room-temperature optical initialization of the electronic spin, long-lived electron spin co-

herence (∼ 1 ms at the room temperature [108]), etc. The spin coherence time up to 0.6 s

was demonstrated using decoupling techniques at temperatures below 100 K [142].

Quite a number of remarkable results dealing with interaction of light with the

individual NV center in diamond [107] was demonstrated, including realization of the

single photon emitter [143], individual electronic-13C nuclear spins coherent interac-
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Figure 3.3: Energy level diagram of a nitrogen-vacancy center in diamond. (a) Three
differentΛ-level structures in NV. The yellow color with circulating arrow indicates a level
mixing under external field or strain. (b) Λ-level structure suggested in Ref. [134].

tion [115, 144], electronic-electronic spins quantum register [145], spin-photon entangle-

ment [146], etc., which proved that quantum information application can be realized in

single NVD. Recently some important experimental works have been done in ensembles

of NVD, including EIT [133], spin-superconducting resonator coupling [147], quantum

correlation between phonon mediated Stokes/anti-Stokes pulses [148], etc. These results

show the potential of bulk NVD for realization of quantum memory.

NVD is a spin S= 1 systemwith zero phonon line at 637 nm (containing∼ 3% of total

fluorescence) between spin-triplet ground state 3A2 and spin-triplet, orbit-doublet excited

state 3E [Fig. 3.3 (a)]. There is a 2.88 GHz zero-field splitting at ground state between

ms = 0 andms =±1 due to spin-spin interaction [140]. The excited state 3Eundergoes spin-

orbit and spin-spin interactions, and is highly affected by the diamond strain and external

59



electric and/or magnetic field [142, 149]. Raman-based quantum memory requires the

realization of theΛ scheme. Since the ground states have a zero orbital angular momentum

projection mL = 0, each of them has a different spin projection ms. So in order to have a Λ-

level structure there has to be a spin-flip allowed transition. Spin flip is allowed by excited

state spin-orbit interaction under very low strain and by strain-induced spin mixing under

high strain. As a result different Λ-level structures can be realized in NVD between the

spin triplet ground states manifold 3A2 and excited 3E under different transverse strain or

electric field conditions.

A Λ system in the case of arbitrary strain was used in pioneering demonstration of

EIT in NV-diamond [109] by using magnetic fields to tune to a ground state spin-level

anti-crossing [level scheme (i) in Fig. 3.3 (a)]. The advantage of strain independence

greatly releases the requirement of the sample preparation. However, since polarization

selection rules are missing, a close spacing of the ground state spin levels could introduce

additional noise due to allowed |1⟩-|2⟩ transition [Fig. 3.1 (a)] excited by the control field.

In principle, a spin mixing of the excited state under magnetic field is also possible to

achieve Λ-level structure. In such a case, the ground states spacing can be much larger.

AΛ system in the case ofmoderate transverse strain was used in the experiment of co-

herent population trapping [111] and in a recent demonstration of EIT in NV-diamond [133]

[level scheme (iii) in Fig. 3.3 (a)]. In this scheme, the transverse strain lifts the orbital dou-

blet of the excited state into Ex and Ey, each consists of three spin statesms=0 andms =±1.

The upper branch Ex sublevels maintain uncrossed under strain thus result in optical spin-
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conserving transitions, while the lower branch Ey experiences a spin mixing as a function

of nonaxial strain [140] and results in optical spin-flip transitions. The Λ system based

on such excited state Ey spin mixing can also be induced by external transverse electric

field [149], which gives great flexibility for the realization of the level scheme. All orien-

tations of the color centers can be involved by choosing the strain's direction [111].

A Λ-level structure also exists in the case of very low strain. In this situation, the

axial spin-orbit interaction lifts the excited state into three twofold degenerate levels E1,2,

Ex,y and A1,2. The states A1,2, which can be lifted by spin-spin interaction, has opposite

orbital and spin quantum numbers. Consequently, optical transition is allowed between

ground statesms =±1 and excited state A1 or A2 with polarization selection rules σ± [141]

[level scheme (ii) in Fig. 3.3 (a)]. This Λ system has been used for spin-photon entangle-

ment [146]. However, because it requires very low strain, sample preparation will be very

difficult especially when high NV− density is needed for Raman-based quantum memory

in free space. Quite recently, very similar Λ system with polarization selection rules under

external electric field and low magnetic field due to mixing of the ground states ms =±1

was theoretically suggested for Raman scheme quantum storage [134] [Fig. 3.3 (b)]. The

initialization of the population is achieved by a narrow microwave π pulse.

In addition to the above Λ systems, a principally different type of Raman transitions

in room temperature diamond caused by excitation of optical phonons (in 40 THz range

of phonon energy living for about 7 ps) was demonstrated in [148]. Potentially, any of the

described Raman transitions can be used for the realization of PMC and/or control field
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spatial chirp quantum memories.

III.3.2 Silicon-vacancy centers in diamond

Negatively charged silicon-vacancy (SiV) in diamond (Fig. 3.4 inset) caused a lot

of attention in the field of quantum information due to some of its remarkable features.

It has similar oscillator strength as NV center [137], but more than 70% of single SiV

center fluorescence falls in zero phonon line at 738 nm [138], comparing with a small

fraction of 3% in NV center [150]. This makes SiV a very promising candidate for room

temperature bright single-photon source. Each of the ground 2Eg and excited 2Eu state

has a twofold orbital and a twofold spin degeneracy [ Fig. 3.4 (a)]. The orbital degener-

acy is lifted by spin-orbit coupling and Jahn-Teller effect into double fine structure with

∆2Eg = 50 GHz and ∆2Eu = 260 GHz [137, 151]. This gives rise to 4 lines in the fluores-

cence spectrum with polarization selection rules [152], and in total makes Λ systems for

Raman-based quantum memory schemes. Optical access to electronic spin shows a spin

purity approaching unity in the excited state [153]. Small inhomogeneous broadening can

be achieved to bring the linewidth of individual fine structure component of SiV ensemble

to 9 GHz [154], and down to 1 GHz in recent experiment where much better crystal is pro-

duced [155, 156]. There is no spectral diffusion (only ±4 MHz during 7 hours) which has

been always a problem for NVD. There are also polarization selective EIT transitions that

do not depend on getting the perfect crystal strain. However, its spin coherence lifetime,

currently reported ∼ 35 ns [155] at 4.5 K for Zeeman levels, has yet to be increased for

longer storage time. The orbital spin population lifetime and coherence lifetime is of the

62



Figure 3.4: Energy level diagram of a silicon-vacancy center in diamond. (a) Different Λ-
level structures in SiV with polarization selection rules. (b) Raman-based quantum mem-
ory energy scheme. The inset is the illustration of the molecular configuration of SiV in
diamond.

same order, that is ∼ 38 ns. There is no inhomogeneous broadening of the spin transition.

Since the spin coherence time is limited by single-phonon processes at 47 GHz, cooling

down the temperature or reducing the size of the sample into nanodiamond smaller than

phonon wavelength ∼ 250 nm will cease the phonon coupling decay and increase the spin

coherence lifetime substantially. On the other hand, even with ∼ 38 ns lifetime one can

still do a proof-of-principle experiment demonstrating the storage of the signal field of du-

ration ∼ 10 ns via PMC and spatial chirp schemes. Such experiment requires almost no

additional effort compared with that in NVD, and will be fully beneficial from the clean Λ

system with polarization selection rules of SiV.

Since at 4 K 71% of the total zero-phonon-line fluorescence is contained in the tran-
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sition of lower to lower orbital branch [which is denoted as transition C in Fig. 3.4 (a)], we

can use transitions C and D as the Λ level structure [Fig. 3.4 (b)]. The effective dipole mo-

ment is about 5 times larger than that for NV. In Fig. 3.4 (a), transition C is ẑ-polarization

allowed and transition D is x̂ŷ-polarization allowed, where ẑ is the SiV quantization axis

along ⟨111⟩. In the recent experiment of coherent population transfer in SiV [155], the den-

sity of the color centers is estimated as N ∼ 2×1017 cm−3. The homogeneous broadening

is on the order of 100 MHz, and the inhomogeneous broadening is on the order of 1 GHz.

With such parameters there is no need to do hole burning to the sample. The spin coher-

ence lifetime is limited by, and almost the same as, the orbital spin T1, which is 38 ns. So

we assume the signal field duration ∆t = 5 ns, which requires |g|2N ∼ 1.2×1011s−1m−1.

The polarization selection rule and fairly large ground state splitting (50 GHz) and even

much larger excited states splitting (250 GHz) essentially eliminate the possible sponta-

neous scattering noise within the spin coherence lifetime.

III.3.3 Adding spatial chirp to a control beam

Optical fields with a spatial chirp across the beam have been widely used in Fourier

synthesis pulse shaping [157], multiphoton microscopy [158, 159], micromachining [160],

etc. They commonly exist in the inhomogeneous dispersive medium, and can be produced

by means of prism or grating diffraction [161], pulse spatial modulation [162], etc. De-

pending on the spectrumwidth of the chirp and control beam duration, the proposed scheme

operates at different regimes.

Let us first consider the specific implementation of the spatial chirp via a spatial

64



dispersion of the Gaussian control beam [163]. Taking the transverse excitation regime as

an example, and assuming the higher order chirp is absent [164], then the control beam

with Gaussian spectrum and Gaussian transverse profile can be written in the frequency

domain as

Ec(z,ω) = E0e−
(

ω−ωc0
∆ωc

)2

e−
(

z−ζ (ω−ωc0)
∆w

)2

, (III.9)

in which 2
√

ln2∆ωc is the FWHM spectrum bandwidth, 2
√

ln2∆w is the FWHM spatial

width of each spectrum component, ζ is the spatial dispersion, and the propagation (along

x̂) effect is neglected. The inverse Fourier transform of (III.9) gives the control beam in

time domain:

Ec(z, t) =
∆ωcE0√

2κ
e−

∆ω2
c t2

4κ2 e−
z2

κ2∆w2 e−i ∆ω2
c ζ

κ2∆w2 zte−iωc0t , (III.10)

where the control beam is both transversely expanded and temporally stretched by a factor

κ =
√

∆w2 +ζ 2∆ω2
c /∆w comparing with a beam without spatial dispersion (ζ = 0), and

the frequency gradient is β = ∆ω2
c ζ/(κ2∆w2). The term e−iβ zt indicates that the control

beam phase front rotates while the field is propagating.

For the quantum memory application, at least three conditions should be fulfilled:

(i) spatial coverage: 2
√

ln2κ∆w > L; (ii) temporal coverage: 4
√

ln2κ/∆ωc > ∆t; and

(iii) spectral coverage: βL = ∆ω2
c ζ L/(κ2∆w2) > 2π/∆t, where L is the medium length,

∆t is the signal field duration. Besides, as discussed in Sec. III.2, the z-dependence of

the control field amplitude introduces a spatial variation of the induced frequency detun-

ing. In our case, since the control beam has a Gaussian spatial profile, the corresponding

Raman frequency shift (after incorporating a constant value into the definition of ωc) is
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(|Ω0|2/∆){1− exp[−2z2/(κ2∆w2)]}, where Ω0 = Ω(z = 0). The control intensity's spa-

tial variation should be sufficiently smooth so that this Raman frequency shift would be

negligible compared with the spatial chirp |β z|. Indeed, since κ∆w≫ L > z, taking into

account condition (III.7) we get the ratio of the Raman shift and |β z| approximately equal

to |Ω0|2
β∆

2|z|
κ2∆w2 ≪

2|z|
κ∆w

|Ω2
0|

∆

/
2π
∆t ≪ 1.

As one of the simplest schemes to generate control beam of the form Eq. (III.10)

fulfilling the conditions (i) - (iii), let us consider a grating-lens pair with the grating and

the medium placed at the back and front focal planes of the lens [165] [Fig. 3.5 (a)].

The switching of the spatial dispersion can be achieved by adding two additional lenses

in a 6-F configuration. We take λc0 = 700 nm and the focal length f = 8 m and assume

the angular dispersion of the grating is dθ/dλ = 2.5×10−3 nm−1, the spatial dispersion

ζ =− λ 2
c0

2πc f dθ
dλ
∣∣
λc0

=−5.2×10−15 sm. For a 29 ps seed Gaussian pulse and ∆w= 10 µm

focal spot size of each individual frequency component, we get the frequency gradient

β =−1.9×1014 m−1rad/s, and the stretching factor κ = 100which expands the transverse

size of the control beam to 1 mm and stretches the duration to 2.9 ns. This corresponds

to a sub-nanosecond-pulse quantum storage with signal field duration in between of 29 ps

and 2.9 ns. The medium length L < 1 mm makes sure that the scheme operates at the

long pulse regime. The difficulty of sub-nanosecond-pulse quantum storage is that a high

optical depth is required. In the present example, the medium has to demonstrate |g|2N >

|β/2π|= 3×1013 s−1m−1. Such coupling constant and atomic number density are not yet

feasible in typical NV, but in principle are achievable in SiV.
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Figure 3.5: Adding spatial chirp to a control laser beam by using (a) grating-lens pair, and
(b) a spinning reticle.

In the regime of sub-microsecond-pulse quantum storage, the spatial chirped beam

has to be prepared by othermeans, for example, through frequencymodulated reticles [166]

[Fig. 3.5 (b)]. In this technique the bandwidth of the control beamwill be determined by the

pattern, size and the spinning speed of the reticle. For intensity modulation, one of the two

side bands should be blocked for the current application. Assuming the pattern has a recip-

rocal wave vector ∆k = 1000mm−1, input beam size (or the radius of the reticle, whichever

is smaller) 1 cm, and spinning speed 500 Hz [162], we have β = 3.14×109 m−1rad/s.

In principle, the gap between the above two regimes can be filled by generating

chirped beam with ∼gigahertz spectrum width through, e.g., acousto-optic modulator

(AOM). In such a case, a number of sub-beams are split from the original one, each with

different central frequency due to AOM modulation, and aligned side-by-side to form a

spatial-chirp control beam. A significant difference is that, if the number of the sub-beams

is small, the frequency gradient becomes discrete, thereby forming an optical frequency

comb. Contrary to AFC, such an optical comb is not limited by the inhomogeneous broad-

ening of the atomic levels, and can be created and modified afterward without background
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absorption. These features make the proposed scheme promising from the viewpoint of

experimental realization, and will be discussed in Chap. V.

III.3.4 Specific example

Suppose we produce spatial chirp parameter β = 3.14× 109 m−1rad/s using spin-

ning reticles mentioned above. According to condition (III.7), a medium with |g|2N =

3 × 109 s−1m−1 can store and retrieve ∼ 200 ns signal pulse with high efficiency and

fidelity. This can be fulfilled if NV diamond is used as storage medium. The inhomoge-

neous broadening of the optical transition in the whole ensemble of NV centers can be on

the order of 10 GHz [111] at the NV density 8×1015 cm−3 [134]. The dipole moment cor-

responding to zero phonon line can be estimated as ∼ 2.3×10−30 Cm based on oscillator

strength ∼ 0.1 and Debye-Waller factor 0.035. As an example, we take the Λ-level con-

figuration recently suggested in [134] for realization of the traditional protocol of Raman

quantum memory based on modulation of control field amplitude. The energy diagram is

shown in Fig. 3.3 (b). Following Ref. [134], let us consider a sub-ensemble of NV with

an effective inhomogeneous broadening 0.2 GHz with density N = 2× 1013 cm−3. Such

sub-ensemble is to be produced by the hole burning and repumping technique. The spectral

hole is characterized by sharp edges and small background absorption. Particularly, in con-

sidered scheme [134] a spectral hole of the width 2.87 GHz can be created by making |+⟩

and |−⟩ states empty (all NV centers are transferred into the |0⟩ state). Then the |+⟩ state

is re-populated, which produces an inhomogeneously broadened optical transition with a

narrow linewidth (limited from below by the homogeneous width of the optical transition)
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inside the spectral hole. This can be done, for example, by optical pumping via two ŷ-

polarized narrow-band lasers on-resonantly driving |0⟩-|k = 4⟩ and |k = 4⟩-|+⟩. Since the

dipole moment of |k = 4⟩-|−⟩ transition is 1000 times weaker, such noise is negligible.

The effective reduction of the inhomogeneous linewidth leads to proportional reduction of

the effective density to the required value (so that the spectral density remains about the

same). The produced narrow absorption line does not need to be Gaussian and may have

the sharp edges, which allows us to use rather small one-photon detuning, 0.5 GHz. In its

turn, as it is shown below, using such small detuning helps to suppress noise originating in

the considered Λ-level scheme [134] from the off-resonant scattering of the control field

via closely lying (separated by 1.5 GHz) excited state (due to the specific selection rules).

The required |g|2N is fulfilled with control field intensity ∼ 140 W/cm2. The intensity up

to 280 W/cm2 was used for demonstrating EIT in NV ensemble [109], and much higher

intensities are used in single NV experiments. It should be noted that the noise can also be

reduced by frequency filtering. In doing so, larger values of ∆ are possible.

The rate of spontaneous Raman scattering of the control field into a specific spa-

tial mode (corresponding to the signal field) can be estimated as |g′|2NL [167], which is

equivalent to |g|2NL(∆/∆′)2|d′
21/d21|2|d′

32/d32|2, where ∆, d21, d32 are the control field

one-photon detuning and dipole moments in the working Λ scheme, and g′, ∆′, d′
21, d′

32

are the corresponding quantities in the noise channel. The total number of scattered pho-

tons during storage and retrieval processes each of duration T is consequently equal to

2|g|2NLT (∆/∆′)2|d′
21/d21|2|d′

32/d32|2, which should be made smaller than 1 to neglect

69



spontaneous Raman scattering noise. In the considered case of the NV diamond Raman

configuration [134], substituting the values of the corresponding parameters (|g|2NL =

3×107 s−1, ∆′/2π = ∆/2π +1.5 GHz, taking for simplicity d′
32 = d32 and d′

21 = 0.75d21),

we find the last condition fulfilled by ∆/2π < 0.6 GHz, proving that signal-to-noise ratio

remains greater than 1 for storage and retrieval of a single photon in a total time window

> 700 ns.

III.4 Conclusion

In the photon echo based quantum memory schemes, the essential part is to produce

a rephase of the dipole moments. The classical photon echo, for example, the two-pulse

photon echo, uses the strong π pulses to produce the rephase, thus introducing a noise due

to spontaneous emission and amplification originated from a population inversion, which

makes it not suitable for the quantum field storage [168], unless techniques such as silent

echo [169] is used. Instead, the controlled reversible inhomogeneous broadening (CRIB),

and in particular the GEM schemes, create the rephase by manipulating an effective inho-

mogeneous broadening and introduces no population inversion. In order to achieve this,

dc Stark or Zeeman effect should be used. In order to avoid complications due to required

manipulations with the medium for the creation of the inhomogeneous spectral broadening

structures, for example, by applying the external electric or magnetic fields with the spatial

gradient, and for the material systems which do not demonstrate the dc-Stark or Zeeman

effects, the alternative ways of creating effective controllable inhomogeneous broadening
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should be adopted.

In the present scheme, we create an effective controllable inhomogeneous broad-

ening of the Raman transition by a spatially inhomogeneous control field pattern with a

frequency gradient across the control beam, that is the so-called spatial chirp. Since the

control field wave pattern mimics the longitudinal inhomogeneous broadening, the atomic

medium acts like a recorder which stores the spectrum components of the input signal as in

GEM scheme. Meanwhile in terms of the phase matching control, a time dependent trans-

verse wave vector β t created by the control field wave front rotation continuously records

the signal field by the corresponding phase-matched spin wave components. Eventually

the temporal shape of the signal field maps into the spatial distribution of the spin wave.

In forward retrieval, reversing the frequency gradient of the control field has similar ef-

fect as reversing the dc-field gradient in the GEM scheme or reversing the phase matching

sweeping in the PMC scheme.

By combining the basic ideas of the GEM scheme and the off-resonant Raman inter-

action based scheme in the proposed spatial-chirp scheme, we naturally come to the new

memory scheme which contains the advantages of both, while, unlike the three-level GEM

scheme, any direct manipulation of the resonant medium is avoided. As far as a practical

implementation is concerned, any material demonstrating strong Raman transitions and

long Raman coherence time can be employed. In particular, nitrogen-vacancy centers and

silicon-vacancy centers in diamond seem to be very promising systems.

In summary, in this chapter we propose an all-optical quantum memory scheme
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based on the off-resonant Raman interaction of the signal quantum field with a homoge-

neous atomic medium illuminated by a constant-in-time control field with a spatial chirp

of frequency across its beam. Its mathematical model is similar to the GEM scheme.

However, physically the proposed scheme is completely different and has very impor-

tant experimental and implementation advantages compared to the controllable-reversible-

inhomogeneous-broadening based and other schemes. These advantages originate from

its all-optical nature. Unlike the Raman or phase-matching-control schemes, the proposed

spatial-chirp one does not require, in principle, any synchronization or temporal manipu-

lation of the control field and the atomic medium. Unlike the GEM scheme, it does not

require the atomic medium possessing the Stark or Zeeman effect and the use of the exter-

nal electric or magnetic fields.
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CHAPTER IV

EXACT SOLUTION OF GRADIENT ECHOMEMORY*

IV.1 Introduction

In Chaps. II and III we proposed quantum storage schemes via phase matching con-

trol and control field spatial chirp. We proved that in free space they demonstrate the same

performance as gradient echo memory. So essentially, from mathematical point of view,

the analysis of all these schemes are reduced to the solution of the GEM evolution equa-

tions.

In GEM, an external dc electric or magnetic field with gradient along the longitudi-

nal direction is applied to a medium with narrow transition linewidth (see Fig. 4.1). Due

to Stark or Zeeman effect, the atomic transition frequency is shifted, acquiring a spatial

dependence along photon propagation direction. This is equivalent to an artificial inho-

mogeneous broadening. As a result, different frequency components of the input photon

are resonantly absorbed at different longitudinal locations of the medium, and the excited

polarizations quickly get out of phase, suppressing reemission processes of the field. The

on-demand retrieval is achieved by reversing the gradient of the external electric or mag-

netic field, which corresponds to an inverse of the inhomogeneous broadening. This will

enforce a rewinding of the phase of the polarizations back to its original status, upon which
*The preprint of the related work "Exact solution of gradient echo memory and analytical treatment of

gradient frequency comb'' by Xiwen Zhang is available on arXiv:1602.05115 (2016), and will be submitted
to journal publication soon.
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a photon echo emerges from the medium. GEM scheme can be implemented in both two-

level and three-level [51] systems, and has been realized in many materials, including rare-

earth-doped crystals [48--50], warm [51--55] and cold [56] atoms.

The evolution equation of GEM can be reduced from Maxwell-Bloch equation to

Eqs. (I.1) and (I.2). Although the mechanism of GEM scheme is conceptually simple, its

field-atom dynamics described by Eqs. (I.1) and (I.2) is highly nontrivial. The longitudi-

nal distribution of the inhomogeneous broadening, i.e., the z-dependence of the resonant

condition, is essential for GEM. For a uniformly distributed inhomogeneous broadening,

after reversing the resonant condition, the forward retrieval efficiency is limited to 54% by

reabsorption process [170]. But in GEM, since the resonant condition is assigned along

the path of photon propagation, the reabsorption of the field during forward retrieval does

not strongly confine the efficiency of the echo, allowing nearly 100% of the input energy

to be recalled with high fidelity. In this process a phase matching plays a crucial role, as

will be shown in this chapter. However, such inhomogeneity along propagation leads to a

complicated field and atomic evolution. Theoretically, some analytical treatments of GEM

have been done, including generalized investigation of time-reversible atom-light interac-

tion [171], analytical calculation for narrow-band input signal [103, 104], analysis of GEM

equation in spatial-Fourier space [44], and general GEM solution in terms of a response to

the excited coherence [172].

In this chapter, we start from the derivation of the exact solution of GEM evolution

equations (I.1) and (I.2) during storage and retrieval for an arbitrary linear gradient without
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approximations [173]. The solution will be written in its final form, i.e., in terms of a

response to the input signal. This solution describes not only GEM, but also quantum

memory schemes based on phase matching control (PMC) [85, 87--90] and control field

spatial chirp [91]. Moreover, the gradient absorption of a single photon is closely related

to the single-photon superradiance [92--97]. So the solution and mathematical treatment

presented here can also provide insights, for example, into the problem of the preparation

and control of the timed Dicke state [98, 99].

IV.2 The exact solution of gradient echo: Storage

In a GEMexperiment, a single-photon (or weak signal field) wave packet with slowly

varying amplitude ain(t) and full-width-half-maximum (FWHM) field duration ∆t propa-

gating along the longitudinal direction ẑ enters a resonant two-level (three-level) medium

of length L. All the atoms in themedium initially stay in the ground state andmainly remain

unexcited during the whole storage and retrieval processes. An external gradient electric

or magnetic field is applied to the medium to create a photon detuning varying linearly as a

function of position: ∆ = β z, where β is the frequency gradient along the photon propaga-

tion direction [see Fig. 4.1 (a)]. During retrieval, the gradient switches to a different value

β → β ′, as shown in Fig. 4.1 (b). Very often β ′ =−β is chosen to symmetrically reverse

the photon detuning. Denoting the slowly varying amplitude of the single-photon annihi-

lation operator as a(z, t) and slowly varying amplitude of the collective atomic coherence

operator as S(z, t), the evolution equation for the field and atom within z ∈ [−L/2,L/2] in
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Figure 4.1: Illustration of gradient echo memory. (a) Storage process (t ∈ [−T,0]). (b)
Retrieval process (t ∈ [0,T ]).

the long-pulse regime (c∆t ≫ L, c is the speed of light in vacuum) is given by Eqs. (I.1)

and (I.2).

In this section, the storage and retrieval processes are in time intervals t ∈ [−T,0]

and t ∈ [0,T ] respectively (Fig. 4.1), where T is the duration of the storage or retrieval

time window. The relevant parameters are defined as follows: γ is the single-atom deco-

herence rate of the optical transition in the two-level system, L is the medium length, β

is the frequency gradient, g is the field-atom coupling constant, N is the atomic density,

2|g|2NL/γ is the optical thickness of the two-level medium, µ = |g|2N/β , ωm is an ad-

ditional frequency shift on top of the frequency gradient. The parameters β ′, g′, µ ′ and

ω ′ carrying "′" indicate that they are quantities specifically for retrieval. The subscript "s''

("r'') of a function denotes the storage (retrieval) process.

A general mathematical description of the problem we are solving in this chapter is
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to find the exact analytical solution of the following differential equations:

∂
∂ z

a(z, t) = g∗Ns(z, t)eiϕ(z,t), (IV.1)

∂
∂ t

s(z, t) =−γs(z, t)−ga(z, t)e−iϕ(z,t), (IV.2)

where

ϕ(z, t) =
∫ t

dτ∆(z,τ)+ϕ0(z), (IV.3)

s(z, t) = S(z, t)e−iϕ(z,t), (IV.4)

subjecting to different initial and boundary conditions and the following change of the

system's parameters for storage and retrieval, respectively.

{β (t),g(t),N(t),µ(t),ωm(t)}=


{β ,g,N,µ,ωm}, if t 6 0

{β ′,g′,N′,µ ′,ω ′
m}, if t > 0

(IV.5)

Here z ∈ [−L/2,L/2], and ϕ or ∆ can be various functions of z and t. For example, a

stepwise-in-space ϕ (along with corresponding discrete interaction volume) reduces the

system to gradient frequency comb scheme, which will be discussed in Chaps. V and VI.

In this chapter we will restrict ourselves to a linear phase in space and time:

ϕ(z, t) = β zt +ωmt, (IV.6)

i.e., ∆ = β z+ωm. Here ωm is a frequency shift in addition to the space dependent detuning

β z, which will shift the echo central frequency as discussed in Ref. [174] and experimen-

tally demonstrated in Refs. [53, 175].

In order to solve Eqs. (IV.1) and (IV.2), let us first change the spatial domain into
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z ∈ [0,L]:

∂
∂ z

a(z, t) = g∗Ns(z, t)eiβ zte−i(βL/2−ωm)t , (IV.7)

∂
∂ t

s(z, t) =−γs(z, t)−ga(z, t)e−iβ ztei(βL/2−ωm)t , (IV.8)

and then apply Laplace transformation method1 over z. The solution of Eqs. (IV.7) and

(IV.8) in Laplace domain is given by Eqs. (B.15) and (B.16) in Appendix B.

The storage time window is t ∈ [−T,0]. Before storage, there is no collective atomic

coherence in the medium, so the initial condition is ss(z,−T ) = 0. The boundary condition

is given by the incoming signal field: as(z = 0, t) = ain(t). With the initial and boundary

conditions, the exact solution of Eqs. (IV.7) and (IV.8) during the storage process is ob-

tained in Appendix B by the inverse Laplace transformation of Eqs. (B.15) and (B.16) as

follows:

as(z, t 6 0) = ain(t)−µβ z
∫ t

−T
dτain(τ)e−i(β L

2−ωm)(t−τ)e−γ(t−τ)×

1F1(iµ +1;2; iβ z(t − τ)) , (IV.9)

ss(z, t 6 0) =−ge−iβ zt
∫ t

−T
dτain(τ)ei(β L

2−ωm)τe−γ(t−τ)
1F1(iµ +1;1; iβ z(t − τ)) ,

(IV.10)

where z ∈ [0,L].

In Eqs. (IV.9) and (IV.10), 1F1 is the Kummer confluent hypergeometric function.

The second term of Eq. (IV.9) on the right hand side tells how a weak input field gets

absorbed by amediumwith longitudinally distributed, linear, gradient transition frequency.
1Equations (I.1) and (I.2) are easily solved in frequency domain using Fourier transformation method

over t. However, this method proves to be easy only for the storage process, and becomes difficult for the
retrieval process. By Laplace transformation method over z, we obtain a general solution for both storage
and retrieval processes.
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In Fourier domain, such absorption of the input spectrum is equal to

ain(ω)

[(
ω +ωm −βL/2+ iγ

ω +ωm +β (z−L/2)+ iγ

)iµ
−1

]
, (IV.11)

which can also be obtained by solving Eqs. (I.1) and (I.2) using Fourier transformation on

t.

In Fig. 4.2 we plot the gradient absorption process of an input photon (with Gaussian

waveform) of duration∆t in amedium of length Lwhenωm = 0. It shows that the analytical

solution (IV.9) - (IV.10) and numerical simulation agree with each other. From Fig. 4.2

(a-d, g-h), for fixed |g|2N the gradient absorption experiences more amplitude and phase

modulation in the case of small storage bandwidth βL due to the cutoff of the absorbed

frequency components [Fig. 4.2 (a, b)], and for fixed µ a large storage bandwidth βL

compresses the collective coherence distribution into a narrow region corresponding to

the spectrum of the input field [Fig. 4.2 (h)]. So β determines the spatial width of the

polarization distribution in the medium. Since 2|g|2NL/γ is the optical thickness of a two-

level system, for enough storage bandwidth a larger |g|2N indicates a faster absorption of

the input field, as shown in Fig. 4.2 (c, e). Comparing Fig. 4.2 (d, f, h), we see that for

sufficient absorption bandwidth and optical density, µ determines the central position of

the polarization distribution in the medium. Indeed, if we divide the medium into a number

of spectrally resolved units according to βL/(2γ), µ is proportional to the optical thickness

of each of such units. In an optically dense medium, the absorption width is broadened by

optical thickness compared with the single-atom absorption linewidth, so the input field

gets absorbed near the entrance (rather than in the center) of the medium even though the
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Figure 4.2: Analytical solution (dotted) based on Eqs. (IV.9)-(IV.10) and numerical sim-
ulation (solid) of Eqs. (I.1)-(I.2) for GEM storage process. The input single photon has
a Gaussian waveform (red curves in the left panels) of duration ∆t/T = 0.25 peaked at
tin/T = −0.5. Spatial variable z is converted to the interval [−L/2,L/2]. (a, c, e, g)
Absolute value of the field |as(z, t)| as a function of time at different locations of the
medium. The colors of red, orange, dark green, cyan, blue and purple represent z/L =
−0.5,−0.3,−0.1,0.1,0.3,0.5 respectively. (b, d, f, h) Absolute value of the collective co-
herence |g∗Nss(z, t)eiβ zt | as a function of space at different times. The colors of red, orange,
dark green, cyan, blue and purple represent t/T = −5/6,−2/3,−1/2,−1/3,−1/6,0 re-
spectively. The insets show the corresponding real values at the end of the storage, i.e., t/T
= 0. The figures are obtained under γ = 0 and ωm = 0. The value of µ is 1.6 in (a, b), 0.8
in (c, d), (g, h), and 4.8 in (e, f).
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resonant absorption frequency in this region does not exactly match the input spectrum

[Fig. 4.2 (f)]. But when µ gets smaller, this central position of the polarization distribution

is pushed back to the center of the medium because the optical density of each spectrally

resolved unit is "diluted'' by large storage bandwidth [Fig. 4.2 (h)].

IV.3 The exact solution of gradient echo: Retrieval

The retrieval time window is t ∈ [0,T ]. Let us assume that right after storage, at

t = 0, the parameters of the system are switched in the following way: the frequency

gradient β → β ′, coupling constant g → g′, atomic density N → N′, µ → µ ′ = |g′|2 N′/β ′,

and the additional frequency shiftωm →ω ′
m. The initial condition is given by the collective

coherence distribution determined by the result of the storage process. In usual GEM, this

is sr(z,0) = ss(z,0) where the subscript "r'' denotes the retrieval process. Since there is no

input field during retrieval, the boundary condition is ar(z = 0, t) = 0.

In Appendix Bwe derive the general retrieval solution (B.35) and (B.36) for arbitrary

parameters. In a typical GEM experiment, only the frequency gradient is switched to the

opposite during retrieval, meaning that g′ = g, N′ = N, β ′ =−β , µ ′ =−µ . In such a case,

the solution reduces to:

ar,out(t > 0) =
∫ 0

−T
dτain(τ)K(t,τ), (IV.12)

K(t,τ) =−µβLeiβ L
2 (t+τ)ei(ω ′

mt−ωmτ)e−γ(t−τ)Φ2 (iµ +1,−2iµ;2;−iβL(t + τ) ,−iβLt) ,

(IV.13)

where t ∈ [0,T ]. Here the essential part of the integral kernelK isΦ2, which is the Humbert
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Figure 4.3: Analytical solution (dotted) based on Eq. (IV.12) and numerical simulation
(solid) for the output gradient echo ar,out(t) for different parameters shown in the figure.
The incoming photon has a Gaussian temporal shape peaked at tin/T =−0.5 with ∆t/T =
0.25.

double hypergeometric series. Some of this special function's properties are discussed in

Appendix B. Some examples of the output field are plotted in Fig. 4.3.

As shown in Fig. 4.4 (a1), the absolute values of the integral kernel |K| behave like

dirac delta functions that peak at τ = −t to select the corresponding moments from the

input photon wave packet ain(τ) in the integral (IV.12), which recovers the signal field in a

Figure 4.4: The absolute value (a1 and b1) and real part (a2 and b2) of the integral kernel
K at the output of the medium. (a1, a2) are plotted for the parameters corresponding to
Fig. 4.3 (a), and (b1, b2) are plotted for the parameters corresponding to Fig. 4.3 (f).
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time-reversed order. This is governed by the argument iβ z(t + τ) in Φ2, which is the total

phase carried by the polarization as a function of time t during retrieval. From the time

when the gradient is reversed (t = 0), this phase starts to regress back towards its original

value zero. The complete rephasing happens at t =−τ , which determines the moment of

a constructive interference and manifests itself as the moment at which |K| is maximized.

However, the rephasing itself is not enough for understanding GEM, and the longitudinal

dependence of the resonant condition plays a crucial role in the field evolution. Without

this z-dependence, for a system with longitudinal-uniformly distributed inhomogeneous

broadening, the forward echo due to the reverse of this broadening contains at most 54%

of the input energy because of the reabsorption on its path during propagation [170]. But

in GEM, since iβ (t + τ)z is valid for all space in the medium, we can treat ks = βτ and

kr = β ′t =−β t as thewave vectors characterizing the spatial mode of the polarization in the

medium during storage and retrieval, respectively. This spatial mode of the polarization

is caused simply by the free evolution of the phase due to position-dependent transition

frequency. The gradient echo is mapped out from the collective excitation in the medium

in a way that the retrieval procedure finds its correct spatial mode of the polarization in

time according to the phase matching condition kr = ks. In this manner the echo can avoid

the strong reabsorption during its evolution.

On the other hand, when the optical thickness becomes too high, as shown in Fig. 4.4

(b1), the integral kernel |K| loses its dirac-delta property. This is because in an optically

thick medium, the linewidth of each transition frequency is broadened by an amount of
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optical thickness, which eventually smears out the phase matching condition. As result,

the peak of the echo is delayed and the temporal shape becomes deformed. This waveform

deformation is quantified by the amplitude preservation A defined by Eq. (II.11).

Comparing the Fig. 4.3 (c) and (d), for fixed µ , the smaller bandwidth βL corre-

sponds to a wider peak width of the kernel |K|, which decrease the retrieval field ampli-

tude preservation A . This is expected from Eqs. (IV.12) and (IV.13), since βL (or β z in

a general case inside medium) enters Φ2 as a scaling factor in from of time variable.

Comparing Fig. 4.3 (a-b, d-f), for fixed bandwidth βL that covers the input spectrum,

for example here βL = 4π/∆t, if µ ≪ 1, the optical thickness is too thin to retain the input

energy as determined by the factor µ in front ofΦ2 in Eq. (IV.13). This is the reason in Fig.

4.3 (a) the memory efficiency is only 22%. On the other hand, for large µ ≫ 1, the peak

of the integral kernel |K| becomes wide for the reason explained before. As can be seem

from Fig. 4.3 (f), for large µ , the gradient echo of an input Gaussian wave packet peaked

at tin = −0.5T becomes right-shifted in time and asymmetric in shape, which reduces A

down to 40%. Moreover, from Fig. 4.4 (a2, b2), it is seen that a large optical thickness also

introduces a phase modulation. So the strong light-matter interaction not only drags and

distorts the echo waveform, but also intensely modulate its phase. This phase modulation

on the echo, shown in the insets of the left panels of Fig. 4.3, will rapidly decrease the

memory fidelity F . In order to keep high fidelity, µ should be kept small enough such

that the phase variation of K on the scale of input photon duration ∆t is small, such as in

Fig. 4.3 (a) and (b).

84



From the above analysis, in order to optimize the gradient echo, i.e., to maximize

both efficiency and fidelity, the bandwidth βL should cover the input bandwidth, and the

parameter µ should be on the order of 1:

βL & 2π/∆t, (IV.14)

µ ∼ 1. (IV.15)

Too small µ results in small efficiency, and too large µ results in small fidelity (as well as

efficiency and amplitude preservation A ). An example of high efficiency and fidelity is

shown in Fig. 4.3 (b), with η = 99% and F = 95%.

Although we mainly focus on the output field at the end of the retrieval process, we

mention here that in Appendix B the retrieval coherence in the medium as a function of

time and space is also derived:

sr(z, t > 0) =−g
∫ 0

−T
dτain(τ)ei(β L

2−ωm)τe−γ(t−τ)Φ2 (iµ +1, iµ;1;−iβ zτ, iβ zt) ,

(IV.16)

where z ∈ [0,L], t ∈ [0,T ].

IV.4 Conclusion

Gradient echo memory evolution equations (I.1) and (I.2) are important because they

do not only describe the GEM scheme but also the PMC scheme and quantum storage based

on control field spatial chirp. In this chapter we derive the exact analytical solution for

GEM scheme under arbitrary optical thicknesses and frequency gradient for both storage

and retrieval process. This is important for the understanding the field-atom dynamics of
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GEM and GEM-like schemes.

The analytical solution shows the reason why GEM can achieve high efficiency and

fidelity in forward retrieval, and identify the optimal regime for good quantum memory.

These optimal conditions (IV.14) and (IV.15) agrees with the previous conditions (II.18)

for control field angular scanning, (II.32) for control field frequency chirp, and (III.7) for

control field spatial chirp. However here the analysis is based on the exact analytical so-

lution rather than some rough arguments.
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CHAPTER V

QUANTUM STORAGE BASED ON DISCRETE SPATIAL CHIRP:

GRADIENT FREQUENCY COMB AND STEPWISE GRADIENT

ECHOMEMORIES*

V.1 Introduction

As explained in Chap. I, the major techniques for the storage and retrieval of a

time-bin single-photon wave packet [26] in atomic ensembles, such as EIT, Raman, GEM

and AFC, divide into two groups, and both of them have some fundamental and practical

limitations. Since the concept of quantum information is rather broad and its applications

are versatile, a quantum memory scheme should be implementable in as many quantum

interfaces as possible to be integrated into different information processing devices, and

had better to be able to store incoming photon without knowing its information. So the

specific requirements of each of the above mentioned quantummemory methods may limit

its applications in different cases.

In this chapter, we propose a method combining these two types of techniques, which

overcomes the above hassles and demonstrates many other interesting advantages. We

suggest an all-optical scheme for the storage, retrieval and sequencing of a single-photon

wave packet through its off-resonant Raman interaction with a series of coherent control
*The preprint of the related work "Quantum storage based on controllable frequency comb'' by Xiwen

Zhang, AlexeyKalachev, Philip Hemmer, andOlgaKocharovskaya is available on arXiv:1602.02322 (2016),
and will be submitted to journal publication soon.
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beams [176]. These control beams, each with distinct carrier frequency, are distributed

along the way of single-photon propagation, thus effectively forming a gradient absorp-

tion structure which can be controlled in various ways to achieve different single-photon

processing functionalities. Such a controllable frequency comb is a hybrid of Raman, GEM

and AFC methods, therefore demonstrates many of their advantages all together in one.

V.2 Gradient frequency comb

Consider a single photon wave packet Es(r, t) of carrier frequency ωs and duration

∆t passing through a three-level atomic ensemble along the longitudinal direction ẑ with

one-photon detuning ∆ = ωs −ω21, where ωi j is the transition frequency between levels

|i⟩ and | j⟩ [Fig. 5.1 (a)]. The control field propagates perpendicularly to the signal field's

propagation direction, and has a spatial chirp across the beams. The interaction volume

consists of discrete sections distributed along ẑ, due to either disconnected pieces of en-

sembles or spatially separated individual controlling beams [Fig. 5.1 (b)]. Because of the

spatial chirp, each section sees different frequency of the control field, resulting in an over-

all comb structure in the photon's absorption spectrum. But unlike AFC, the comb teeth

are distributed linearly on the path of photon propagation, therefore forming a gradient

frequency comb (GFC). This gradient frequency comb, determined by the two-photon res-

onance condition δ (r, t) = ωs −ωc(r, t)−ω31 = 0 [Fig. 5.1 (a)], will be used to store the

input single-photon wave packet.
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Figure 5.1: Scheme of quantum memory based on discrete spatial chirp. (a) In a Λ-level
structure, the control field consists of a number of spatially separated beams each with dif-
ferent frequencies. (b) Illustration of a implementation of the proposed quantum memory
scheme. (c) Different regimes of the scheme, including gradient frequency comb (GFC),
stepwise gradient echo memory (SGEM) and that with additional phase modulation.

V.2.1 Theoretical model of gradient frequency comb quantum memory

Let us write the signal field Es(z, t) and control field Ec(r, t) as [177]:

Es (z, t) = ϵ̂s
i

nbg
Esa(z, t)e−i(ωst−ksz)+H.c., (V.1)

Ec (r, t) = ϵ̂cE0(z)ei[kc(z)x−ωc(z)t−φ0c(z)]+ c.c., (V.2)

in which ϵ̂s,c are the polarization vectors of the signal and control fields, a(z, t) is the slowly

varying amplitude of the signal field, Es =
√

h̄ωs/(2ε0V ), φ0c is a stationary phase on the

control beam, ks = nωs/c, kc = nbgωc/c, n = nbgnint is the refractive index taking into

account the atom-environment interaction (background) nbg and the Raman interaction nint,

and c is the speed of light in vacuum. We assume each control beam has a duration much

longer than ∆t, so that the time dependence of E0 can be neglected. The control field

spatial chirp is characterized by its position-dependent frequency: ωc(z)−ωc0 =m(z)δωc,

where ωc0 = ωc(z = 0), m is the sequence of the control beams, and δωc is their adjacent
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frequency spacing.

Let us define the slowly varying part of the spin wave operator as

S (r, t) ∝ g∗Nσ13ei(ωs−ωc)tei[kc(z)−ks]·re−iφ0c , (V.3)

where σnn′(r, t) = 1
N ∑ j |n⟩ j,0 ⟨n′|δ (r−r j) is the collective atomic operator for the nth state

of atom j with velocity 0, N is the atomic density, g =
√

ωs/(2h̄ε0cnbgnint)[d21Ωc(z)/∆],

Ωc(r, t) is the control field Rabi frequency. As shown by Eqs. (C.43a) and (C.43b) of

Appendix C, in long-pulse and far off-resonant regime, the evolution equations read

∂
∂ z

a(z, t) =−S(z, t)exp
(
− t2

2t2
d

)
, (V.4)

∂
∂ t

S(z, t) =− [γ − iδ (z)]S (z, t)+ |g(z)|2Na(z, t), (V.5)

where γ is the decoherence rate of the spin coherence. Let us choose the control field central

frequency as ωc0 = ωs −ω31 −|Ωc(z = 0)|2/∆, then the two-photon detuning becomes

δ (z, t) =−
M0

∑
m=−M0

mδωc(Θm
−−Θm

+)−δAC, (V.6)

where δAC(z, t) = [|Ωc(z, t)|2 −|Ωc(z = 0, t)|2]/∆ is the uncompensated ac-Stark shift due

to the spatial inhomogeneity of the individual control beams, and Θm
∓ = Θ(z−mL0 ±d/2)

are the Heaviside step functions. The Gaussian factor in Eq. (V.4) describes the spin wave

Doppler dephasing along the longitudinal frequency gradient due to the atomicmotion with

Maxwellian velocity distribution [178]. In general, a transverse atomic motion also leads

to similar dephasing of the spin wave, which will be neglected for the sake of simplicity.

So, as discussed in Appendix C, the dephasing time is td = 1
/(√

kBT/maks
)
, where kB is

the Boltzmann constant, T is the gas temperature and ma is the atomic mass.
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Due to the periodicity of the two-photon resonance condition, the spin waves get

recurrently inphase after each T0 = 2π/δωc. If the Doppler dephasing and control beam

spatial inhomogeneity are neglected, approximate analytical solution of Eqs. (V.4) and

(V.5) can be obtained in the high comb finesse F = δωc/(2γ) regime. This solution up to

t = T0 is expressed as follows [173] (see Appendix D)

aout(t)≈ e−
π
4 ζ 0

effain(t)−
πζ 0

eff
2

e−
πζ 0
eff
4 e−

π
F ain(t −T0), (V.7)

where ζ 0
eff = 4|g|2Nd/δωc is the individual effective optical thickness. Since for spin

transitions the docoherence rate γ usually is very small, we will assume that F ≫ 1 is

always satisfied. The first term of Eq. (V.7) is the leakage field that did not interact with

the medium, and the second term is the first GFC echo. In this dissertation we mainly

focus on the first echo. We use efficiency η [Eq. (II.7)] to describe the ratio of retrieved

energy out of the input signal, and fidelity F [Eq. (II.10)] to characterize the waveform

preservation. So Eq. (V.7) tells that the maximum efficiency for the forward GFC echo is

54%, and the corresponding optimization conditions are:

F ≫ 1, (V.8)

ζ 0
eff = 4/π, (V.9)

∆t < T0 < M∆t. (V.10)

V.2.2 Experimental example of gradient frequency comb quantum memory

From Eq. (V.7), we see that in the high finesse regime, our method demonstrates

the same action as AFC scheme. But unlike AFC, our scheme can be implemented in
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Figure 5.2: (a) Λ-level scheme consisting of |F = 1,mF = 1⟩-|F ′ = 2,mF ′ = 2⟩-
|F = 2,mF = 2⟩ of rubidium 87 D1 line. The signal photon excites σ+ transition and
the control field works on the π transition. The shaded area shows the major noise
channels. (b) The noise scattering rate as a function of one-photon detuning for fixed
|g|2NL = 4.5× 107 s−1. The scattering rate is estimated using the treatment introduced
in Sec. III.3.4, which is valid only under off-resonant Raman condition. So the values
near resonances should not be read form this figure. In addition, ∆ → ∞ indicates infinite
control power which is not realistic either.

materials without inhomogeneous broadening, such as cold atom. Let us consider the Λ-

level scheme of cold 87Rb shown in Fig. 5.2 (a). Typically the temperature of such system

is 100 µK and the atomic density can reach 1011 cm−3 [56]. Under this temperature, the

dephasing time due to Doppler broadening is td = 1 µs, and the atom loss time due to

the atomic migration out of interaction volume is 77.7 µs. These limit the storage time

to a microseconds level. This storage time, in turn, determines a minimum bound of the

storage bandwidth. Let us consider a storage time T0 = 400 ns, which is smaller than

the dephasing time. The signal duration must be further smaller than the echo rephasing

time (or the storage time) T0, say, ∆t = 50 ns. This FWHM duration of the signal field

eventually determines a combination of one-photon detuning, control power, and atomic
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density through required storage bandwidth of the medium, which is optimized via Eqs.

(V.8) - (V.10).

The one-photon detuning is further limited by spontaneous Raman noise. As shown

in Fig. 5.2 (a), the control field can act on the first ground state, promoting the population to

the second ground state through spontaneous scattering with a noise photon. Such process

can be eliminated or alleviated by using polarization and frequency filters. Without these

filters, one has to carefully choose the one-photon detuning in order to increase signal-

to-noise ratio (SNR). In our case, there are 10 major such noise channels. The scattering

rate as a function of frequency detuning is plotted in Fig. 5.2 (b) by the solid line. By

considering the polarization of the scattered photon, a simple polarization filter can exclude

six channels of the ten, and the resulted scattering rate versus one-photon detuning is shown

by the dashed line of Fig. 5.2 (b). In order to keep the SNR larger than 1, the inverse of

the scattering rate should be larger than the storage time. So a one-photon detuning should

be chosen on the one hand to keep reasonably small noise, on the other hand to satisfy off-

resonant Raman condition. Let us consider a one-photon detuning ∆ =−0.7 GHz, which

will allow an operation window < 1.21 µs to keep SNR greater than one if no filtering is

performed, in accordance with the spin wave dephasing time∼ 1 µs. A simple polarization

filter will enlarge this time window from < 1.21 µs to 3 µs.

According to Eqs. (V.9) and (V.10), for a ∆t = 50 ns signal photon, the required

|g|2N is 9× 109 s−1m−1. This can be achieved with a control power of 0.18 W under a

one-photon detuning ∆ = −0.7 GHz. The control beams can be generated, for example,
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Figure 5.3: GFC and SGEM echoes in a cold 87Rb ensemble. The medium is divided into
M = 9 sections each of length d = 0.56 mm. The σ+-polarized signal photon (∆t = 50 ns,
width 50 µm) is frequency detuned by −0.7 GHz from the excited state. The nine π-
polarized control beams of total power 0.18 W are assigned to a frequency spacing such
that T0 = 400 ns, giving ζ 0

eff = 1.28. In SGEM regime, Tsw = 130 ns, where Tsw is the
time interval between the arrival of the signal photon and the switch of the control beam
frequencies.

by passing phase-locked short laser pulse train through an Acousto-optic modulator and

arbitrary wave generator, which permits a bandwidth ∼ 100 MHz [see Fig. 5.1 (b)].

The result is shown in Fig. 5.3. Notice that here we assume δAC = 0. Otherwise the

efficiency will be strongly decreased since δAC/(2π) = 46.2 MHz, larger than the 20 MHz

input bandwidth. Thus we should prepare a flat-topped control beam profile to keep the

efficiency. In the following we assume this is always the case.

V.3 Stepwise gradient echo memory and photon processing

The GFC regime of the proposed quantum storage scheme has upper bound effi-

ciency 54%, and the memory is on pseudo-demand since the storage time is adjustable
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but pre-determined before the retrieval. On-demand retrieval is an essential requirement

of quantum memory. Otherwise the application of multichannel synchronization becomes

difficult, and very often there is no need to resort to light-mater interaction since a sim-

ple low-loss fiber delay line can achieve a time delay of a photon. In AFC scheme, this

is done through transferring the atomic excitation down to another ground state by a π

pulse [47, 60], or changing the comb teeth spacing by external field [72]. In our case we

can simply shut down the control beams, or in practice take advantage of the finite duration

of the control field, to achieve arbitrary storage time allowed by the spin-wave lifetime.

Meanwhile, the π-pulse technique can also be used in our scheme for the purpose of back-

ward retrieval [88], which in principle promises perfect efficiency and fidelity.

Another way to achieve on-demand retrieval is through the second regime of the

proposed scheme, where we switch the two-photon frequency detuning to the opposite

before the emergence of the first echo. In such a case, the spin wave starts to dephase

immediately after the storage process. Before the phases of the spin wave evolve into the

constructive interference status, the switch of the control field frequency enforce them to

regress back. When the spin waves rewind to their starting state, an echo is emitted. The

total storage time consists of the dephasing and rewinding time [see Fig. 5.1 (c)]. So

depending on the moment of the frequency switching, one can control the echo emergence

time. Since our comb has a discrete frequency gradient along ẑ, which means by reversing

the control beam sequence we realize a GEM scheme in a discrete manner. We call this

regime stepwise gradient echo memory (SGEM).
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The advantage of SGEM regime does not only lies in its on-demand retrieval, but

also lies in its higher theoretical upper bound of efficiency. As we discussed in Chap. IV,

the GEM demonstrates almost 100% efficiency in a forward retrieval. For similar reason,

we expect that the efficiency of SGEM can also become as close to 100% as possible

when the scheme approaches its continuous limit. In Fig. 5.3 (dashed blue line) we show a

simple example of SGEM echo with efficiency 55.7%, larger than the upper bound of GFC

regime 54%. Higher efficiency can be achieved with larger amount of discrete sections.

The SGEM regime also allows a read out of reversed sequence of the input photon without

multiple stages of phase modulation (as discussed below). More discussions on SGEM are

given in Chap. VI.

In AFC, since the absorption structure can not be much manipulated once created,

the signal processing has to be achieved via multiple combs made in advance, and a fre-

quency modulation has to be applied to the single photon to determine which storage chan-

nel to go [80]. This technique is also readily applicable in our scheme, but in general the

multi-comb configuration consumes the storage bandwidth, and a direct manipulation to

the fragile single photon may not be feasible in some real applications.

The fact that our frequency comb is implemented through two-photon detuning by

external control beams gives us two additional degrees of freedom for the manipulation

of the single-photon wave packet. The first is the ability of switching the frequencies of

control beams, which leads to SGEM regime of the scheme as discussed above. Second,

the control beam can each be imposed on a different phase at any moment of time, which is
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Figure 5.4: Single-photon processing. The black solid lines (t < 0 ns) are input three-peak
single-photon intensities, and the blue solid lines ( t > 0) are retrieved signals of different
sequences. The brown solid lines show adjacent phased difference ∆ϕ introduced by addi-
tional modulation as a function of time. (a, b): Retrieved signal with circular permutation.
(c, d): Retrieved signal with non-circular permutation. Common parameters: ∆t = 50 ns,
T0 = 450 ns, M = 9, ζ 0

eff = 4/π . Parameters for material are the same as in Fig. 5.3.

shown in Fig. 5.1 (b, c). FromEq. (V.3) we see that the phase of the control beamsmodifies

the collective operator S. Without additional phase modulation, the echo emission time T0

is determined by the discreteness of ωs−ωc, namely, when δωcT0 = 2π . If we add phases

to the control field such that between two adjacent beams ∆ϕ = δωcτ , meaning that the

phases of the spin waves are advanced by a time τ , the echo will instead emerge at T0 − τ ,

where 0 ≤ τ ≤ T0. This can be used to achieve single photon processing, as shown in Fig.

5.4.

V.4 Conclusion

In this chapter, we suggest an all-optical scheme for the storage, retrieval and se-

quencing of a single-photon wave packet through its off-resonant Raman interaction with

97



a sequence of coherent control beams. Compared with EIT and Raman scheme, it does not

require a prior knowledge of the signal photon's waveform, neither the synchronization

of the signal and control fields. Compared with AFC, it demonstrates lots of advantages

in its implementation and its controllability over the single photon wave packet, includ-

ing on-demand retrieval and photon processing. Compared with GEM, it does not relay

on the existence of Zeeman and/or Stark effect. Such a controllable frequency comb is a

hybrid of Raman, gradient echo memory and atomic frequency comb methods, therefore

demonstrates many of their advantages all together in one.
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CHAPTER VI

NUCLEAR QUANTUMMEMORY AND CONTROL OF A SINGLE

γ-RAY PHOTON*

VI.1 Introduction

Quantum information has been developed for thirty years from many aspects of dif-

ferent branches of physics. Specifically, from optical point of view, so far the related

research mainly focuses on infrared, visible and nearby frequency regime because of the

richness of the tool box and variousness of the interaction media. However, there are

both practical and fundamental limitations on optical single-photon qubit, such as the lack

of reliable, economical single-photon sources, low efficiency and high dark-count rate of

single-photon detectors [179], diffraction limit of the size (down to ∼ 1 µm) of quantum

photonic circuits, etc.

In γ-ray range (10 -100 keV), on the other hand, these problems are resolved. The

single photon detector has nearly 100% detection efficiency with almost no false detection,

and radioactive decay in a cascade scheme can be used as the natural heralded single γ-ray

source. Realization of quantum memory, as will be discussed in this paper, would provide

single γ photons on demand. The small wavelength of the γ photon allows nano-scale

or even smaller photonic circuit. Moreover, the Mösbauer solid provides almost perfect
*The related work "Nuclear quantummemory and time sequencing of a single γ photon'' by Xiwen Zhang,

Wen-Te Liao, Alexey Kalachev, Rustem Shakhmuratov, Marlan Scully, and Olga Kocharovskaya will be
published soon. Reprinted with permission from "Superradiant control of γ-ray propagation by vibrating
nuclear arrays'' by X. Zhang, and A. A. Svidzinsky, 2013, Phys. Rev. A, vol. 88, pp. 033854, Copyright
[2013] by the American Physical Society.
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nuclear-resonantmedium for quantum information application in γ-ray range: even at room

temperature, it may have several orders of magnitude higher density with several orders

of magnitude smaller linewidth compared with resonant media in optical range at cryo-

genic temperature based on electronic transitions. Thus higher optical density and longer

coherence time can be simultaneously achieved, providing strong light-matter interaction

for information processing while leaving sufficient lifetime of qubit for gate operation,

nearby entanglement preparation, etc. The downside of γ-ray quantum information is also

obvious: it is rather difficult to control γ photons because of the absence of bright coherent

sources and high finesse cavities. In fact, most of the tools for controlling optical photons

become difficult, inefficient or even missing in γ-ray regime.

However, the situation has been substantially improved by recent works, including

coherent sources up to 849 eV via stimulated emission of core-excited state [180], 1.6 keV

via high-harmonic generation [181], 9 keV via self-seeding x-ray free-electron laser [182],

etc. As for γ-ray cavities, over 99% back Bragg reflectivity of hard x rays is demon-

strated in perfect diamond [183], and four-mirror resonator is built out of mosaic graphite

crystals at 5 keV [184]. In addition, coherent effects, such as level-mixing-induced trans-

parency [185], electromagnetically induced transparency (EIT) [186], γ echo [187, 188]

and its complement position-induced phase modulation [189, 190], nuclear lighthouse

effect [191], spontaneously generated coherence [192], x-ray parametric down conver-

sion [193] and second harmonic generation [194], nuclear coherent population trans-

fer [195], single photon entanglement [196], etc, can be adopted to control γ-ray photon.
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Recently, coherent control of the waveforms of recoilless single γ-ray photon is

demonstrated by tuning the Mösbauer absorber into different vibrational sidebands [197].

Shaping of single photon can be as well achieved by abrupt change of the excited nu-

clear state [198]. The ability to shape single γ-ray photon allows the information to be

encoded in time-bin qubit [26] or more complicated temporal wave packet [43] out of

qusi-monochromatic γ-ray radiation, thus lays the foundation of γ-ray quantum informa-

tion. In particular, in the first part of this chapter we discuss one of the main building

blocks of quantum information processing, namely, quantum memory and time processing

of a photon's waveform using Doppler frequency comb.

Apart from the manipulation of the temporal mode of a single γ photon, it is as well

important to demonstrate the controllability of its spatial mode, such as γ-ray switch. The

development of a fast switch of γ photons could be important for extending the time resolu-

tion of γ-ray sources and for increasing the operating speed of γ-ray quantum information

processing. Nanosecond γ-ray switching has been realized by magnetically manipulating

nuclear excitation based on quantum beat in the nuclear Bragg scattering [199]. Picosec-

ond x-ray Bragg switch utilizing laser generated phonons was proposed [200] and later

demonstrated experimentally [201, 202]. In the second part of this chapter we investigate

an all-optical way to control the propagation direction (Bragg mode) of a γ-ray beam using

a vibrating Mössbauer crystal.
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VI.2 Storage and processing of a γ photon's temporal mode

Quantummemory is considered to be condicio sine qua non of the definition of quan-

tum computing device [16], and lies in the heart of the realization of long-distance quantum

communication [12]. However, a direct transfer of the quantum memory technology from

optical frequency range to γ-ray range is rather challenging, sometimes impossible. For

example, quantum memory based on EIT [32] and off-resonant Raman interaction [39]

require Λ-level system and shaped strong control field, thus are too far from being imple-

mented in γ-ray frequency range inMösbauer solids. Among two-level photon-echo-based

quantum memory schemes, atomic frequency comb (AFC) [47, 59, 60] is achieved by del-

icate preparation of an absorption comb in the wide inhomogeneous broadening profile

of the excited state, while in Mösbauer solids such inhomogeneous broadening, as well

as strong lasers for hole-burning are not available. Another echo scheme is gradient echo

memory (GEM) [44, 50] where an switchable artificial position-dependent inhomogeneous

broadening is created by external gradient field. For nuclear transition, nuclear magneton

is three orders of magnitude smaller than Bohr magneton. Taking one of the most widely

studied Mösbauer isotope, 57Fe for example, in order to store a photon, a much broader ar-

tificial inhomogeneous broadening compared to the life-time broadening (1.1MHz) should

be prepared. This requires tens of tesla external magnetic field which should be switched

within ∼ 10 ns, thus would be challenging for current technology. In principle, nuclear

Zeeman levels could be used as natural frequency comb, and such comb can be switched

within several nanoseconds in antiferromagnetic material such as iron borate FeBO3 by
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tens of tesla internal hyperfine magnetic field [203, 204]. But due to selection rules no

more than three comb teeth can be used per ground state, and there is not much tunability

of the comb either. Such scheme can be used to store nuclear excitation energy [205, 206]

but not a time-bin state of a single photon yet. To the best of our knowledge, up to date

there is no feasible quantum memory scheme to faithfully store a single γ-ray photon yet.

In this section, we propose to store and process a single γ-ray waveform using

Doppler frequency comb, which will be explained in the following.

VI.2.1 Theoretical description of Doppler frequency comb: gradient frequency

comb (GFC) and stepwise gradient echo memory (SGEM)

We consider the storage of a single γ-ray wave packet of carrier frequency ω0 and

wave vector k0 = ω0/c in a two-level resonant medium (ωab = ω0) [207]. The resonant

medium is composed of M = 2M0 + 1 identical Mösbauer targets, stainless steel for ex-

ample, each of which has thickness d and moves with different velocities vm with equal

velocity spacing ∆v: vm = m∆v, m = 0,±1,±2, · · ·±M0 [Fig. 6.1 (a)]. Such velocity spec-

trum forms a frequency comb due to Doppler effect, which we name as Doppler frequency

comb. Since the comb teeth are distributed along the γ photon propagation direction, it is

also a gradient frequency comb (GFC) which was discussed in Chap. V. In this comb, the

one-photon detuning of the γ-ray field with respect to the nuclear transition frequency is

∆m = mβω0 where1 β = ∆v/c. Echoes are produced because of the beating of different

frequency components of the excited polarization in the medium, which are represented by
1In this chapter, β is used to denote a dimensionless velocity, which is different from a changing rate of

wave vector in Chap. II or a frequency gradient in Chaps. III and IV.
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Figure 6.1: Illustration of the proposed γ-ray quantummemory scheme. (a) InGFC regime,
the input single γ-photon wave packet is absorbed by the Doppler frequency comb formed
by a number of Mösbauer targets moving with velocities m∆v, m = 0,±1,±2, · · · ±M0.
The periodic beating of the comb teeth generates echo signals. (b) In SGEM regime, after
absorbing the input photon, the Mösbauer targets switch their moving directions to the
opposite, and the echo is generated after twice of the switching time Tsw. (c) The effective
energy level scheme of the quantum memory method.

these spectrum teeth of GFC.

The evolution equation of the light-matter interaction in a one dimensional model is

derived from Maxwell equation in the laboratory frame F(
∂ 2

∂ z2 −
1
c2

∂ 2

∂ t2

)
E(z, t) = µ0℘ba

∂ 2

∂ t2 ∑
j

[
ρ ′ j

ab(t)+ c.c.
]

δ (z− z j(t))
1
A
, (VI.1)

and Schrödinger equation of the nuclei in mth target in its moving frame F ′
m

∂
∂ t ′

ρ ′ j
ab(t

′) =−iωabρ ′ j
ab(t

′)+ i
℘ab

h̄
E(z j, t), (VI.2)

where E(z, t) is the corresponding electric field of the γ-ray quanta in the laboratory frame

F , ρ ′ j
ab(t

′) is the off-diagonal element of the density matrix of jth nucleus in its moving

frame F ′
m with laboratory position z j(t), ℘ab is the dipole matrix element of the two-

level nuclear system, A is the transverse cross section of the input γ-ray field. Assum-
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ing each Mössbauer target has thickness d and initial central position lm, then the rela-

tions between the laboratory frame (F) variables and the moving frame (F ′
m) variables are

z= z′+ lm+vmt ′, t = t ′, with z′ ∈ [−d/2,d/2]. Notice that in 57Fe it is the magnetic compo-

nent that actually interacts with the nuclei, while the above equations are written for electric

component of electromagnetic field. However, they are still valid for magnetic transition

after rescaling the interaction constants. The number density distribution is N(Θm
−−Θm

+)

where N is the nuclear number density and Θm
± = Θ(z− lm ∓ d/2) is the Heaviside step

function.

Let us define the collective operator ρ ′m
ab of the mth Mössbauer target in its moving

frame F ′
m as:

ρ ′m
ab (z

′, t ′) =
1

NAdz′
NAdz′

∑
j′=1

ρ ′ j
ab(t

′), (VI.3)

where NAdz′ is the number of nuclei in a small slice dz′ of the mth target at position z′. We

can write the γ-ray field and the nuclear coherence in the laboratory frame F into the form

of

E(z, t) = E(z, t)e−i(ω0t−k0z)+ c.c., (VI.4)

ρ ′m
ab (z− lm − vmt, t) =−i

℘ab

h̄|g|2N
P ′m(z− lm − vmt, t)e−i(ω0t−k0z), (VI.5)

where ω0 is the central frequency of the incoming γ photon, k0 = ω0/c, g =

℘ab
√

ω0/(2h̄ε0c) is the coupling constant of the γ-ray-nucleus interaction, E(z, t) is the

slowly varying amplitude of the γ-ray field in the laboratory frame and P ′m(z′, t ′) is pro-

portional to the slowly varying amplitude of the medium polarization of mth target in its

moving frame.
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To proceed, we adopt slowly varying amplitude approximation and rotating wave

approximation, and apply the transformation ∂
∂ z′ =

∂
∂ z ,

∂
∂ t ′ =

∂
∂ t +vm

∂
∂ z . Moreover, in order

to simplify the evolution equations, two additional approximations will be used: In the

slow-motion regime, vm∆t ≪ d, we neglect vmt with respect to z− lm and vm∂/∂ z with

respect to ∂/∂ t; while in the long-pulse regime, L ≪ c∆t, we neglect the term ∂/∂ (ct)

with respect to ∂/∂ z. Here L is the length of the whole medium. In this chapter we have

the target velocity vm ∼ 1-10 mm/s, input field duration ∆t ∼ 1-10 ns, and 57Fe thickness

d ∼ 10 µm, so these conditions are fulfilled. Thus in the regime

vm∆t ≪ d < L ≪ c∆t, (VI.6)

adding the nuclear decoherence rate Γ by hand, one derives the evolution equation as fol-

lows:

∂
∂ z

E(z, t) =
M0

∑
m=−M0

Pm(z, t)
[

Θ
(

z− lm +
d
2

)
−Θ

(
z− lm − d

2

)]
, (VI.7)

∂
∂ t

Pm(z, t) = (−Γ− i∆m)Pm(z, t)−|g|2NE(z, t), (VI.8)

where ∆m = βmω0−δ is the input photon detuning inmth Mössbauer target, δ = ω0−ωab,

ωm = βmω0, βm = vm/c. The initial condition is the absence of the nuclear coherence

Pm(z,0) = 0 and the boundary condition is the input signal field E(0, t) = Ein(t). We

consider equally spacingDoppler frequency comb and assume resonant interaction (δ = 0),

so the photon detuning ∆m = mβω0 where β = ∆v/c.

The output field will be determined by some important characteristic parameters of

the medium and the comb: the rephasing time T0 = 2π/(βω0), the individual optical thick-
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ness of each Mössbauer target ζ 0 = 2|g|2Nd/Γ = |℘ab|2ω0Nd/(ch̄ε0Γ), the total optical

thickness for the whole medium ζ = Mζ 0, and the individual effective optical thickness

ζ 0
eff = ζ 0/F where F = βω0/(2Γ) is the finesse of the comb.

The efficiency ηi and fidelityFi of ith echo signal are defined as follows: Efficiency

ηi =
Ni
out

Nin
, (VI.9)

where Nin =
∫ tin+τ

tin−τ dtE†
in(t)Ein(t) and Ni

out =
∫ t i

ec+τ
t i
ec−τ dtE†

out(t)Eout(t), and fidelity

Fi =
1

NinNi
out

∣∣∣∣∫ tin+τ

tin−τ
dtE†

in(t)Eout (±(t − tin)+ t i
ec)

∣∣∣∣2 , (VI.10)

in which tin and t i
ec are the single photon's arrival time and ith echo's emergence time (for

numerical simulation t i
ec is determined by the local maximum of the echo signal). In GFC

regime τ = T0/2 and "+'' sign is chosen in Eq. (VI.10), while in SGEM2 regime τ =

min{Tsw,T0/2} and "−'' sign is used. In all cases we assume the integrate interval τ >∆t/2

is very well satisfied.

From Eqs. (VI.7) and (VI.8), it can be seen that the periodic spectrum of the polar-

ization will tailor the evolution of the γ-ray field via a spatial interference of the re-emitted

wave, leading to a series of GFC echoes. The analytical solution of the first GFC echo is

derived in Appendix D, which reads the following:

Eout(t) = e−
π
4 ζ 0

effEin(t)−
πζ 0

eff
2

e−
πζ 0
eff
4 e−

π
F Ein(t −T0). (VI.11)

The first term of Eq. (VI.11) is the leakage field without interaction with medium. The sec-

ond term represents the first GFC echo. Its efficiency can be extracted from the analytical
2SGEM stands for stepwise gradient echo memory, which is explained in the following of this section.
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solution as:

ηG1 =

(
πζ 0

eff
2

e−
πζ 0
eff
4 e−

π
F

)2

. (VI.12)

This efficiency demonstrate maximum value 54%. The corresponding optimization con-

dition derived from Eq. (VI.12) reads:

ζ 0 ≈ 4
π
F ≫ 1, (VI.13)

π
M∆tΓ

< F <
π

∆tΓ
. (VI.14)

From the left-hand-side of Eq. (VI.13) we see, for given input signal bandwidth, it is

the individual effective optical thickness ζ 0
eff = ζ 0/F , instead of total optical thickness

ζ = Mζ 0, that plays an important role in GFC method3. It represents the portion of the

individual optical thickness covered by the frequency comb, and has an optimized value

approximately equal to 4/π . The right-hand-side of Eq. (VI.13) requires a large finesse,

which means that the efficient storage and retrieval of the signal demand a clean, sharp

frequency comb. But this indicates a weak covering of the signal spectrum by the discrete

absorption structure, making it difficult to retain the input energy and leading to a very low

efficiency. Thus, correspondingly, a certain amount of the individual optical thickness ζ 0

has to be attained in order to make each comb tooth effectively wide enough to fill out the

comb bandwidth, which all together translates into an optimized value of ζ 0
eff.

On the other hand, indeed the total optical thickness ζ eventually matters because

it determines the storage bandwidth: If a shorter input photon is to be stored, in order to
3For SGEM regime, which is explained in the following of the text, in the context of its analogy to

GEM method, ζ 0
eff = 4|g|2N/α , where α = Mβω0/(Md) is the frequency gradient. In GEM scheme this

combination is the key parameter determining the action of the quantum memory [88, 91].
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ensure spectrum coverage and echo's temporal resolvability, F has to be increased accord-

ingly to satisfy Eq. (VI.14). Then Eq. (VI.13) requires a larger individual and/or total

optical thickness. From this point of view, using an optical denser medium can help to

improve the efficiency because it accommodates a shorter input signal, which allows less

storage time without loosing temporal resolvability. This means the storage suffers less

incoherent decay, consequently manifesting higher efficiency.

Based on Eq. (VI.11), we plot in Fig. 6.2 the efficiency of the first GFC echo as a

function of different parameters. From these plots it can be seen that the analytical solution

and numerical simulation agree with each other very well.

Suppose now after absorption of the input γ-ray signal all Mössbauer targets switch

their velocities at a switching time tsw = tin + Tsw (tin is the signal arrival time) to the

opposite directions, as shown in Fig. 6.1 (b). Since the moving targets form a gradient

absorption spectrum, the switching of the targets' moving directions corresponds to an

inversion of an effective "artificial inhomogeneous broadening''. Therefore, this scheme

is resembling the GEM scheme, but in a discrete way. So similar to Chap. V, we call it

stepwise gradient echo memory (SGEM). If Tsw > T0, GFC echo will appear before SGEM

echo. Otherwise SGEM signal appear first at time t = tin+2Tsw. In such way, the retrieval

time of the signal can be completely controlled (up to 2T0), which leads to an on-demand

single γ-ray photon source. In addition, as compared to GFC regime, a series of input γ-ray

signals can be retrieved in a reversed order of the input signals. Numerical simulation of

the efficiency and fidelity in SGEM regime is shown in Fig. 6.3.
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Figure 6.2: Numerical simulation (background contour plot) and analytical calculation
[based on Eq. (VI.11)] (dashed line) of the efficiency of GFC first revival signal as function
of different parameters. (a) Retrieval efficiency vs. total optical density ζ and velocity
spacing β (multiplied by 1012) for fixed number of targets M = 5. (b) Retrieval efficiency
vs. individual effective optical thickness ζ 0

eff and comb finesse F for fixed M = 5. (c)
Retrieval efficiency vs. M and comb finesse F for fixed total optical thickness ζ = 60. (d)
Retrieval efficiency vs. M and comb bandwidth BW (in units of the input signal's FWHM
bandwidth ∆ω ) for fixed individual optical thickness ζ 0 = 12. Common parameters: the
FWHM duration of the input signal is ∆t = 23.3 ns, and the decoherence rate is Γ/(2π) =
0.55 MHz.
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Figure 6.3: Numerical simulation of the efficiency and fidelity of the SGEM echo as a
function of ζ 0

eff and number of targets M. The red, dashed line in (a) shows the efficiency
as a function of ζ 0

eff in the continuous limit M → ∞. In all cases ∆t = 7 ns, Tsw = 21 ns and
comb bandwidth is fixed as Mβω0 = 2π/∆t.

The SGEM regime does not only allow an on-demand retrieval, but also demonstrates

higher possible memory efficiency. From Fig. 6.3 (a), we see that the efficiency can be

larger than the upper bound 54% of GFC regime. Indeed, as a discrete version of GEM,

SGEM should achieve the same 100% efficiency in its continuous limit. This is confirmed

by comparing the efficiency of GEM (red dashed line) with that of SGEM (contour plot)

of Fig. 6.3 (a). We see that in this particular example by using 29 targets one can already

achieve the GEM performance, which demonstrates 66% efficiency. Similar to GEM, by

increasing the optical thickness, the fidelity drops because of the phase modulation and

amplitude deformation (see Chap. IV for relevant discussions). The relatively low effi-

ciency (66%) is mainly due to the decoherence effect in 57Fe, which might be resolved by

using some other much longer lived Mössbauer isotopes (see discussions in Sec. VI.2.2).
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VI.2.2 Experimental consideration of Doppler frequency comb: GFC, SGEM, and

γ photon time processing

The experimental demonstration of our quantum memory is straightforward. Here

we show an example to illustrate the physical phenomena, where the parameters are chosen

to facilitate the experimental requirements while still demonstrating significant quantum

memory effect. Let us consider to store a single γ-photon of field duration ∆t = 23.3 ns

(intensity duration 16.5 ns) with central frequency on resonance with the 14.4 keV nuclear

transition of 57Fe. In Ref. [197], by tuning the Mössbauer absorber into proper vibrational

sideband, a γ-ray waveform of a pulse train, each with intensity duration 18 ns, is produced

out of a qusi-monochromatic γ-ray radiation from radioactive decay of 57Co. Much shorter

pulses can be prepared by increasing the absorber vibration amplitude and/or frequency.

The single photon arrives at tin = 0 ns, and we store it in M = 5 57Fe-enriched

stainless-steel foils with velocity spacing ∆v = 0.9 mm/s (i.e., v−2,−1,0,1,2 =−1.8, −0.9,

0, 0.9, 1.8 mm/s). The polarization decay rate is Γ/(2π) = 0.55 MHz, corresponding to

141 ns excited state lifetime. This gives a comb finesse of F = 9.5. The total optical

density is chosen to be ζ = 60.45, so that each stainless-steel foil has individual optical

density ζ 0 = 12.1. The rephasing time of the GFC signal is T0 = 95.7 ns. The output inten-

sity is plotted in Fig. 6.4. The peakG0 corresponds to the leakage field passing through the

medium directly without any interaction with the nuclei, taking away 15.3% of the single

photon energy. This is because the optical density of each target covered by the frequency

comb is only ζ 0/F = 1.27, not enough to absorb the entire input photon. However, notice
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Figure 6.4: Input (black solid, cyan filled) and output GFC (red solid, yellow filled) and
SGEM (blue dashed) echo intensities. The input field centers at tin = 0 ns and has FWHM
field duration 23.3 ns. The resonant medium consists of 5 identical 57Fe-enriched stainless-
steel foils, each with optical density ζ 0 = 12.1. The rephasing time is T0 = 95.7 ns, and
the switching time is tsw = 60 ns.

that from the retrieval optimization point of view, higher optical density is not beneficial for

GFC scheme, although it helps to reduce the direct leakage. The peak G1 is the first GFC

echo, which contains 28.5% of the input energy. This retrieval signal preserves 96.9% of

the input Gaussian shape and its phase.

In SGEM regime, the velocities are switched to the opposite at Tsw = 60 ns after tin.

Tsw is chosen to be larger than half of the input signal duration (11.7 ns) but smaller than

the GFC rephasing time (95.7 ns), so that the SGEM echo is well separated in time from

the input signal, and released before GFC echo can possibly be. As shown by the blue

dashed line of Fig. 6.4, for SGEM scheme the leakage field is the same as in GFC scheme,

while the first echo (peak S1) emerges at the moment of time 2Tsw = 120 ns after tin. It

contains 18.5% of the input energy, and preserves 94.4% of the original Gaussian shape
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Figure 6.5: Single γ-photon processing. The solid gray (blue) lines are the multi-peak
input (output) signals (leakage at t < 0 ns not plotted). The filled colors on top are the
corresponding single-peak input (output) signals. The insets show the velocity modulation.
Common parameters: ∆t = 7 ns, T0 = 75 ns, ζ = 200.6 and M = 13. (a, b) GFC and SGEM
echoes. (c) The echo is held by freezing the motion of all targets for 170 ns (> 141 ns
excited state lifetime). (d) The targets' velocities are sinusoidally modulated during t ∈
(0,3) ns, producing a phase difference ∆ϕ/(2π) = 0.5. This switches the pulse order and
acts as a NOT operation of a time-bin qubit. The narrow peak at t ∈ (0,3) ns is the loss
during the modulation. (e) The modulation time Tmod is increased to 30 ns, during which
the field is under destructive interference to suppress the loss. (f) Circular permutations of
the input pulses.

and its phase.

Our scheme does not only store a single γ photon, but also perform a single-photon

temporal processing. In Fig. 6.5, we show some of the photon processing functionalities

with different parameters from Fig. 6.4. For instance, in SGEM regime a series of γ-ray

signals is retrieved in a reversed order of the input [Fig. 6.5 (b)], which corresponds to

a NOT operation of a time-bin qubit. In addition, more single-photon processing func-

tionalities, such as a delayed and/or advanced signal retrieval, relative amplitude manip-

ulation, signal temporal permutation, etc, can be achieved by a modulation of the targets'

velocities before the emergence of the echo. For example, via freezing the motion of all
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targets after absorption, we are able to hold the echo for arbitrary time allowed by the nat-

ural decoherence [Fig. 6.5 (c)]. By boosting the velocities of all the targets by the same

ratio (vm = m∆v → m∆v′ → m∆v) during a time interval t ∈ (t ′i , t
′
f ), we can impose addi-

tional phase difference of the polarizations between two adjacent targets compared with

the absence of such modulation: ∆ϕ = (β ′−β )ω0T ′
mod, where T ′

mod = t ′f − t ′i is the mod-

ulation time. As a result, the signal's first echo time is shifted to tin+
(

p− ∆ϕ
2π
)
T0, where

p =

⌈
t ′f−tin

T0
+ ∆ϕ

2π

⌉
, ⌈x⌉ represents the smallest integer greater than or equal to x. In this

way we can address any individual signal peak among a series of them as we want. In

fact, as long as the desired phase shift is produced, such modulation does not need to be

square-shape [Fig. 6.5 (d, e-f)], neither necessarily to be of very high speed [Fig. 6.5 (e)].

Our scheme makes quantum information processing possible in the γ-ray regime, and can

also be used for generating single γ photon on demand.

The above example are all based on 57Fe. Longer photons with duration over a few

nanoseconds can be efficiently stored in targets with longer lived Mössbauer nuclear tran-

sitions, such as 93.3 keV transition in 67Zn with coherence time 13.6 µs [208]. Mössbauer

transitions with lifetimes much longer than tens of microseconds, such as 12.4 keV transi-

tion in 45Sc with lifetime 0.46 s and 88.0 keV transition in 109Agwith lifetime 57.1 s [208],

are typically inhomogeneously broadened due tomagnetic dipole-dipole interactions [209].

Potentially, these interactions may be suppressed using techniques similar to those devel-

oped in nuclear magnetic resonance (see Ref. [210] and references therein), providing ex-

traordinarily long storage time.
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VI.3 Fast control of a γ photon's Bragg mode

We have suggested a way to manipulate the temporal mode of a single γ photon by a

Doppler frequency comb. Next we discuss an all-optical method to control the Bragg mode

of a γ-ray beam by nuclear vibration [211]. The fundamental principle of this method lies in

the collective behavior of nuclear ensembles and a parametric coupling between different

Bragg modes of the γ-ray field.

Collective spontaneous emission from atomic ensembles has been a subject of long

standing interest since 1954 pioneering work of Dicke [92]. Collective nature of light

interaction yields fascinating effects such as superradiance and radiation trapping even at

the single-photon level. Recent studies focus on collective, virtual and nonlocal effects in

such systems [93, 96, 98, 212--224].

Interaction of light with ordered arrays of nuclei in crystals offers new perspectives.

For example, a photon collectively absorbed by a random medium (e.g. gas) will be

reeimitted in the same direction as the incident photon [98]. However, in the case of a

crystal lattice, collective reemission can occur in several directions at Bragg angles.

Parametric process is a fascinating phenomenon which has been widely applied to

nonlinear optical systems for the development of coherent light sources ranging from in-

frared to ultraviolet frequency regimes [225--227], especially at the spectral regions that

lasers are difficult to operate. A typical example is optical parametric oscillator [228],

which transfers energy from a driving optical electromagnetic wave to two other waves

named as signal and idler. The frequency of these three waves are νd , ωs and ωi, respec-
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tively, satisfying νd = ωs +ωi. This is called sum combination resonance. Another type

of two-mode parametric phenomenon is called difference combination resonance, where

νd = |ωs −ωi|. This is the mechanism of the recently proposed quantum amplification

by superradiant emission of radiation [229], and parametric generation of high frequency

coherent light in negative index materials and materials with strong anomalous disper-

sion [230]. All the above parametric resonances aim at reaching an instability of the sys-

tem for the amplification of a signal wave. This is achieved with a symmetric coupling in

the sum combination resonance or anti-symmetric coupling in the difference combination

resonance. In the case when the symmetries of the coupling is reversed in these two types

of parametric resonance, no instabilities can be developed. However, the time evolution of

the system is dramatically changed because of the parametric processes. Here, in our case,

we implement the difference combination resonance which does not amplify the input γ-

ray wave but instead only modifies its time evolution of coupled spatial (Bragg) modes.

This is suitable for quantum information application, where the amplification of an input

photon is not permitted at the first place.

All these underlying physics are implemented by vibrating nuclearMössbauer lattice.

Nuclear vibrations can be generated by a driving laser field and can be turned on and off

on a short time scale. γ-ray redirection, produced by parametric resonance, occurs on a

time scale determined by the collective nuclear frequency Ωa which typically lies in the

terahertz region. This mechanism allows us to control propagation of high frequency γ

photons by driving the system, e.g., with infrared laser.
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Figure 6.6: Illustration of superradiant control of a γ photon's propagation direction. (a)
Energy diagram of the two-level nuclear system. (b) An incident γ-ray plane wave interacts
collectively with a recoilless nuclear array, while the strong optical laser field produces
coherent oscillations of the nuclei with amplitude d and frequency νd .

VI.3.1 Theoretical model for the interaction between γ ray and vibrating nuclear

lattice

We consider a perfect crystal composed of two-level (|a⟩ and |b⟩) nuclei with tran-

sition frequency ωab as shown in Fig. 6.6 (a). Nuclear transition frequency ωab typically

lies in the hard x-ray or γ-ray region. Nuclei are located at positions r j and form a peri-

odic lattice, where the index j labels different nuclei. In the high frequency region of γ

transition, the inter nuclei spacing is much larger than the nuclear radiation wave length

λab = 2πc/ωab.

We assume that lattice is coherently excited so that nuclei oscillate along the direction

given by a unit vector n̂ around their equilibrium positions r0
j . Oscillation frequency νd

118



lies in the infrared or visible region. In ionic crystals4 such oscillations can be produced,

e.g., by a strong linearly polarized driving laser with frequency νd . The motion of each

nucleus j involved in the γ-ray-nuclei interaction is assumed to be

r j(t) = r0
j + n̂ f (t), (VI.15)

where f (t) = d sin(νdt). Here νd ≪ ωab and d . λab is the amplitude of the laser induced

nuclei oscillations.

In our model a weak plane linearly polarized γ-ray wave with the wave vector k1

and frequency ω0 = ck1 detuned from the nuclear transition frequency ωab by an amount

∆ ≪ ωab enters the crystal and collectively interacts with the oscillating recoilless nuclei

[see Fig. 6.6 (b)]. For the sake of simplicity, we only consider the interaction of the wave

with the nuclei and disregard its interaction with electrons. Processes such as internal

conversion, photoelectric effect [232], electron Rayleigh scattering [233, 234], etc., are

neglected.

We treat the problem in semiclassical formalism. Namely, electromagnetic field

E(t,r) of the γ-ray is described by classical Maxwell's equation:(
c2∇2 − ∂ 2

∂ t2

)
Ωγ(t,r) =

c2µ0|dab|2

h̄
∂ 2

∂ t2 ∑
j

(
ρ j

ab + c.c.
)

δ (r− r j(t)) , (VI.16)

where µ0 is the vacuum permeability, ρ j
ab is the off-diagonal elements of the nuclear density

matrix, dab is the nuclear transition matrix element, Ωγ(t,r) = dabE(t,r)/h̄ is the Rabi
4One example is potassium iodide KI crystal which has face-centered cubic unit cell of iodide ions with

potassium ions in octahedral holes. By applying an external driving field one can make ions K+ and I− move
in the opposite directions such that nuclei of the same species will oscillate in unison. Both K and I have
Mössbauer isotopes. Namely, 40K has Mössbauer transition with energy 29.4 keV and half lifetime 4.26 ns,
while 127I has transition with energy 57.6 keV and half lifetime 1.9 ns [231].
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frequency of the γ-ray field. Eq. (VI.16) must be supplemented by the evolution equation

for the nuclear density matrix

∂ρ j
ab(t)
∂ t

=−iωabρ j
ab(t)+ iΩγ(t,r j(t))(1−2ρ j

aa) . (VI.17)

We assume that nuclear excitation remains weak so that population of the excited state ρ j
aa

can be neglected. We look for solution in the form

Ωγ(t,r) = Ω(t,r)e−iωabt + c.c., (VI.18)

ρ j
ab(t) = ρ j(t)e−iωabt , (VI.19)

whereΩ(t,r) and ρ j(t) are slowly varying functions of t as compared to the fast oscillating

exponentials. In the slowly varying amplitude approximation, Eqs. (VI.16) and (VI.17)

reduce to(
∂
∂ t

+
c2

2iωab

[(ωab

c

)2
+∇2

])
Ω(t,r) = i

Ω2
a

N ∑
j

ρ j(t)δ (r− r j(t)) , (VI.20)

∂ρ j(t)
∂ t

= iΩ(t,r j(t)) , (VI.21)

where Ωa =
√

c2µ0|dab|2ωabN/(2h̄) is collective nuclei frequency proportional to the

square root of the average nuclei density N. Physically, Ωa determines the time scale

of the collective resonant absorption of the incident photon by the medium [93, 224, 235]

and typically is of the order of terahertz. For example, for the 29.4 keV transition of 40K

Mössbauer isotope with nuclei density N = 8×1021 cm−3, the collective nuclei frequency

is Ωa ∼ 3×1011 s−1.

In a crystal, the periodic arrangement of atoms (Bravais lattice) makes

∑ j δ
(
r− r j(t)

)
a periodic function of r. As a result, we have the following Fourier se-
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ries:

∑
j

eik1·r0
j δ (r− r j(t)) = N ∑

m
ei(k1+Km)·[r−n̂ f (t)]. (VI.22)

If we look for ρ j(t) in the form

ρ j(t) = ρ(t)eik1·r0
j , (VI.23)

Eq. (VI.22) then enters the right hand side of Eq. (VI.20). In the Fourier series (VI.22)

we are interested in terms that are in resonance with the left hand side of Eq. (VI.20). For

simplicity we assume that only two vectors, namely, k1 and k2 = k1 +Kb have absolute

values close toωab/c, whereKb is a reciprocal lattice vector (see Fig. 6.7). The other terms

in (VI.22) are off-resonant and, thus, can be disregarded. Therefore, one can approximately

write

∑
j

eik1·r0
j δ
(
r− r j(t)

)
≈ Ne−ik1·n̂ f (t)eik1·r +Ne−ik2·n̂ f (t)eik2·r . (VI.24)

This approximation implies that the incident wave k1 is coupled only with one Bragg wave

k2.

Equation (VI.24) suggests to look for solution for Ω(t,r) in the form of a superposi-

tion of these coupled waves

Ω(t,r) = Ω1(t)eik1·r +Ω2(t)eik2·r. (VI.25)

Then Eqs. (VI.20) and (VI.21) yield the following equations after eliminating the variable

ρ(t): (
∂
∂ t

+ ik1 · n̂ ḟ
)(

∂
∂ t

+ i∆
)

Ω1 +Ω2
a

[
Ω1 +Ω2e−i(k1−k2)·n̂ f (t)

]
= 0 , (VI.26)(

∂
∂ t

+ ik2 · n̂ ḟ
)(

∂
∂ t

+ i∆
)

Ω2 +Ω2
a

[
Ω2 +Ω1ei(k1−k2)·n̂ f (t)

]
= 0 . (VI.27)
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Figure 6.7: Two dimensional reciprocal lattice of the crystal is shown by dots. The incident
γ-ray beam with the wave vector k1 is detuned from the nuclear transition frequency ωab.
The incident wave is coupled with the Bragg wave that has wave vector k2 = k1 +Kb,
where Kb is a reciprocal lattice vector.

where ∆ = c2k2
1,2 −ω2

ab/(2ωab) ≈ ω0 −ωab are detunings of the two coupled waves Ω1,2

from the nuclear transition frequency ωab.

Equations (VI.26) and (VI.27) describe two coupled harmonic oscillators whose

parameters periodically change in time. The variation of the parameters sitting in f (t)

drives the system dynamically. Namely, nuclei vibrations modulate the coupling (which

is Ω2
ae±i(k1−k2)·n̂ f (t)) between two oscillators, and, in addition change their frequencies by

means of the Doppler shift (described by ik1,2 · n̂ ḟ ). The presence of modulations on both

coupling constant and eigen frequencies ensures an energy conservation of the γ-ray-nuclei

system, prohibiting a power flow coming from the lattice vibration [211]. The energy con-

version between the two Bragg modes of the γ-ray field [or the two harmonic oscillators

as seen from Eqs. (VI.26) and (VI.27)], however, constantly happens with its dynamics
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modified by the parametric driving. This allows a fast switch of γ-ray propagation.

VI.3.2 γ-ray beam deflection by coherent nuclear lattice vibration

From now on we consider the system with initial condition Ω1(0) = A, Ω2(0) = 0

and ρ(0) = 0. Then it is straightforward to find the analytical solution of Eqs. (VI.26) and

(VI.27) in the case of static lattice ( f = 0), which is reads:

Ω1(t) =
Ae−i∆t

2

[
ω+eiω−t −ω−eiω+t√

∆2 +8Ω2
a

+1

]
, (VI.28)

Ω2(t) =
Ae−i∆t

2

[
ω+eiω−t −ω−eiω+t√

∆2 +8Ω2
a

−1

]
, (VI.29)

where ω± =
(

∆±
√

∆2 +8Ω2
a

)/
2.

The solution (VI.28) - (VI.29) shows that the input energy is periodically transferred

back and forth between two coupled waves on a time scale determined by the collective

nuclear frequency Ωa and photon detuning ∆. Specifically, let us consider an off-resonant

interaction ∆ ≪ Ωa, then this energy transformation between beams Ω1 and Ω2 occurs

during a time

t0
tr =

π
|ω−|

≈ π|∆|
2Ω2

a
. (VI.30)

If we turn on the driving laser to vibrate the lattice, this transformation time changes.

We assume that nuclei vibrate with amplitude d along the direction n̂ perpendicular to

k1 −k2, so that k1 · n̂ = k2 · n̂, as indicated in Fig. 6.7. In the following we introduce a
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dimensionless modulation amplitude5

κ = dk1 · n̂. (VI.31)

In the case of when driving frequency matches the γ-ray photon detuning νd = ∆, Eqs.

(VI.26) and (VI.27) can be approximately solved as (see Appendix E):

Ω1 = Ae−i∆t cos2
(

J1(κ)√
2

Ωat
)
, (VI.32)

Ω2 =−Ae−i∆t sin2
(

J1(κ)√
2

Ωat
)
. (VI.33)

Equations (E.15) and (E.16) show that the rate of energy transfer between two cou-

pled waves depends on the amplitude of the nuclear vibrations. The optimum value of the

modulation amplitude κ corresponds to maximum of J1(κ), that is κ = 1.841 which gives

J1(κ)/
√

2 = 0.411. For larger κ the transfer rate oscillates following J1(κ).

For κ ≪ 1 one can use expansion J1(κ) ≈ κ/2. Then from Eq. (E.16), the energy

transfer time between two waves becomes

ttr =

√
2π

κΩa
. (VI.34)

Comparing Eq. (VI.30) with Eq. (VI.34), it is seen that when the incident γ-ray

wave Ω1 is off-resonant with the nuclear transition, the time it takes for the energy to

transfer from Ω1 into the deflected wave Ω2 can substantially vary with or without nuclear

vibrations. In the regime κ∆ ≫ Ωa and νd = ∆, this realizes a fast switching of the wave

propagation.

As an example, in Fig. 6.8 we demonstrate the switching effect for a medium with
5In practical implantation, the amplitude of the nuclei vibrations d is much smaller than spacing a between

nuclei. However, since the wave length of the nuclear transition is also small compared to a the modulation
amplitude κ could be of the order of 1.
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Figure 6.8: Illustration of the fast γ-ray switch operation. The incident γ-ray mode Ω1
is detuned from the nuclear transition by ∆ = 250Ωa. Dash lines show transformation of
mode Ω1 into Ω2 in a static crystal, while solid lines show such transformation in a nuclear
array vibrating with frequency νd = ∆ and modulation amplitude κ = 0.21.

Ωa = 0.8 THz assuming that the incident wave is detuned from the nuclear transition by

∆ = 250Ωa. For a static crystal the amplitude of γ-ray modes Ω1 and Ω2 are plotted by

dash lines in the figure. Without nuclear vibrations it takes t0
tr = 491 ps for the wave Ω1 to

convert intoΩ2. This means that if the crystal size is smaller than ct0
tr = 15 cm, the incident

wave passes through. However, if the nuclear array vibrates with modulation frequency

νd = ∆ and amplitude κ = 0.21, the transformation time becomes ttr = 26 ps, therefore the

wave will be deflected at a length of 0.8 cm (shown by solid lines in Fig. 6.8). In the case

of 40K, such modulation strength corresponds to an amplitude d = 1.3×10−3 nm.

Thus we show that one can redirect a γ-ray beam by making the crystal lattice co-

herently vibrate with frequency ∆ which lies, e.g., in the infrared region. Such lattice vi-
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brations are in the parametric resonance with the frequency difference between two eigen-

modes of the coupled γ-ray-nuclei system, and modify the fields' collective absorption and

reemission among many nuclei. This results in a resonant energy transfer from the inci-

dent γ-ray field to the wave propagating at the Bragg angle. Our findings could be used

for manipulation of the propagation direction of γ photons on a picosecond time scale.

VI.4 Conclusion

In this chapter, we first propose a scheme to achieve quantum storage and time pro-

cessing of a single γ photon by using Doppler frequency comb, and then suggest a method

to realize the fast control of the propagation direction of input γ-ray field using vibrating

nuclear lattice. These schemes are important for quantum information processing in the

γ-ray regime.

With this we can envision some quantum computing applications based on the re-

cent studies on time-bin qubit and quantum memory. Quantum memory can be used for

building logical gates [17], where the required frequency-multiplexing might be realized

by a velocity offset of the Mössbauer targets in γ-ray regime. Also, the single-spatial mode

time-bin qubit can be used to perform linear optical quantum computing [27], in which the

ingredient of polarization manipulation may be achieved in Mössbauer solid of iron borate

(instead of the present two-level system in stainless steel) controlled by weak magnetic

field [196, 205, 236].

For direct applications, our storage scheme can be used as a way to prepare and pro-
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cess on-demand single photons, or synchronize multiple photons in γ-ray regime. The fast

switching scheme further adds more controllability to these functionalities. The coherence

of these photons depends on the source. If radioactive source is used, these photons will

be inchoerent. The coherent sources are still being developed. The x-ray parametric down

conversion [193] is experimentally demonstrated but currently still operated at very low ef-

ficiency. A tabletop creation of entangled keV photon pairs is theoretically suggested [237]

using Unruh effect. In principle, the γ-ray source by x-ray free electron laser that is deliv-

ering ∼ 10 coherent γ photons within the absorption bandwidth of 57Fe may facilitate the

development of entangled γ photons.

Doppler frequency comb can also prepare a single-peak γ photon into a time-bin

waveforms by optimizing the leakage field and the first echo (though does not explore

the whole Bloch sphere due to fixed phase relation between different peaks of the output

waveform). As in AFC, a double gradient frequency comb can be used to implement an in-

medium interferometer, which, in general, could be very useful since γ-ray interferometer

is more difficult to build than in optical range. Vibrating nuclear array, on the other hand,

combines rich physical phenomena of Dicke superradiance, Bragg diffraction and para-

metric resonance. It holds promise for being engineered into an interesting and important

tool for γ photon manipulation.
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CHAPTER VII

CONCLUSIONS

Quantum information, such as quantum computing and quantum communication, has

attracted lots of attention since being suggested in the 1980s, andwas vastly developed over

the last twenty years. Many different architectures and quantum interfaces were intensively

studied in different areas of physics, including ion trap, superconducting qubit, nuclear

magnetic resonance, quantum dots, etc. Optical system is one of the major promising

candidates for the implementation of quantum information processing, ranging from long-

distance quantum key distribution to local quantum calculation. In such a system, optical

quantum memory plays a crucial role in a quantum computing or quantum communicating

machine.

In the optical realization of quantum memory, the study of light-matter-ensemble

interface is essential for the development of building blocks of quantum information pro-

cessing devices. From this point of view, there are several important theoretical tasks one

needs to consider, including: Deriving mathematical formulism that easily treats such a

complicated full-quantum-mechanical single-photon problem; developing new quantum

interface that resolves many disadvantages of the existing ones; designing new schemes

based on these interfaces for different functionalities in the real-world quantum informa-

tion applications.

The mathematical formulation was developed for ensemble-based quantum memo-
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ries and various related problems in many literatures, such as Refs. [101, 238]. Recently

we showed that the full quantum mechanical problem of single-photon superradiance can

be treated in the semi-classical approach of Maxwell-bloch formulism [97]. In this disser-

tation we primarily adopt Maxwell-bloch equation to describe our system.

The quantum interfaces we treated and proposed fall into two categories: optical-

electronic interface and γ-ray-nuclear interface. The theoretical treatments are analogous,

but the physical features are substantially different. The discussion of the former includes

cold rubidium gas system and solid state system such as nitrogen-vacancy centers in dia-

mond, silicon-vacancy centers in diamond, and rare-earth-doped crystals. The correspond-

ing photons is at ∼ 1 eV level. Current studies of optical quantum information all belong

to this optical frequency regime. In order to resolve some of the difficulties in the optical-

electronic platform, we propose the latter interface for quantum information operating at

∼ 10 - 100 keV. The discussion of this interface focuses on Mösbauer solid, in pedicular,

57Fe enriched stainless-steel foils [207]. In addition to the quantum memory and process-

ing of the γ photon's temporal mode, we also proposed a laser-controlled picosecond switch

of its Bragg mode using superradiant and parametric effect [211]. Each of the atomic and

nuclear systems demonstrates its own advantages for quantum information.

On the proposed quantum interfaces, we designed new schemes for optical quantum

memory based on the collective interaction between a single photon and an atomic ensem-

ble. Generally speaking, we are seeking for quantum storage methods that on-demand and

standby recover and processe single-photon temporal waveform with high efficiency and
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fidelity, which are implementable in as many systems as possible without relying on com-

plicated preparation techniques. So we proposed several schemes satisfying these require-

ments, including quantummemories based on phasematching control [88, 90], control field

spatial chirp [91] and its discrete version [173, 176], and Doppler frequency comb [207]

in nuclear system. We also discovered that the natural decay of atomic excitation due to its

interaction with the environment could be completely suppressed in atomic shell configu-

ration [239], which leads to a radiation trapping in such a system and, in principle, could

allow an extraordinarily long storage time of a photon.

We hope these quantum memory schemes will facilitate the advancing of optical

quantum information science and technology, and the corresponding theoretical treatment

can help the understanding of light-matter interaction in general.
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APPENDIX A

EVOLUTION EQUATIONS OF QUANTUMMEMORY BASED ON

PHASE MATCHING CONTROL*

In this appendix1, we provide the derivation of the equations of motion (II.5), (II.6).

Let us start with the one-dimensional Maxwell equation for the signal field(
∂ 2

∂ z2 −
1
c2

∂ 2

∂ t2

)
Es(r, t) = µ0

∂ 2P(r, t)
∂ t2 , (A.1)

where µ0 is the vacuum permeability, and define slow varying amplitudes of the electric

field, E(r, t), and atomic polarization density, p(r, t), via relations

Es(r, t) = E(r, t)eiksz−iωst + c.c., (A.2)

P(r, t) = Nd12 p(r, t)eiksz−iωst + c.c. (A.3)

Then inserting (A.2), (A.3) into (A.1), and neglecting second derivatives of the slowly

varying amplitudes, we obtain(
∂
∂ z

+
ωs

c2ks

∂
∂ t

+
ω2

s /c2 − k2
s

2iks

)
E(r, t) = iω2

s Nd12

2ε0c2ks
p(r, t)− ωsNd12

ε0c2ks

∂ p(r, t)
∂ t

. (A.4)

If we take ks =ωs/c and neglect the first derivative of polarization, we come to the standard

propagation equation, where dispersive effects are not present explicitly. To reveal themwe

take into account the equations of motion for the slowly varying amplitudes of polarization
*Reprinted with permissions from "Quantummemory based on phase matching control'' by X.-W. Zhang,

A. Kalachev, P. Hemmer, M. Scully, and O. Kocharovskaya, 2014, Laser Physics vol. 24, pp. 094016,
Copyright [2014] by Laser Physics Journal.

1Some notations in this appendix, such as the optical coherence dephasing rate Γ, functions of F and η ,
are different from that in the main text of Chaps. II - VI. The validity of these notations stay only in this
appendix.
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and spin coherence densities, which describe interaction of three-level atoms with the weak

signal and strong control fields:

d
dt

p(r, t) = (−Γ+ i∆)p(r, t)+
id21

h̄
E(r, t)+ iΩs(r, t)eiϕ(r,t), (A.5)

d
dt

s(r, t) = (−γ + iδ )s(r, t)+ iΩ∗p(r, t)e−iϕ(r,t). (A.6)

where ∆ = ωs −ω2, δ = ωs −ωc −ω3, Γ and γ are dephasing rates for optical and spin

transitions, respectively, Ω = d23E0/h̄ is the Rabi frequency of the control field, and ϕ(r, t)

is the phase shift due to the angular or frequency manipulation with the control field. When

considering off-resonance Raman interaction (|∆| ≫ Γ) and doing adiabatic elimination of

the polarization, we usually set time derivative ṗ(z, t) equal to zero and then express the

polarization amplitude through the field one. But this procedure does not take into account

dispersion. To do this we can take advantage of the frequency domain:

− iω p(r,ω) = (−Γ+ i∆)p(r,ω)+
id21

h̄
E(r,ω)+ iΩF(r,ω), (A.7)

where F(r,ω) stands for the Fourier transform of s(r, t)eiϕ(r,t). Then

p(r,ω) =
1

(Γ− i∆− iω)

id21

h̄
E(r,ω)+

iΩF(r,ω)

(Γ− i∆− iω)
(A.8)

≡ ε0χ̄(ωs +ω)E(r,ω)+η(ωs +ω)F(r,ω). (A.9)

Now we expand χ̄(ωs +ω) and η(ωs +ω) in a series around the point ωs:

χ̄(ωs +ω) = χ̄(ωs)+
∂ χ̄
∂ω

∣∣∣∣
ωs

ω + . . . , (A.10)

η(ωs +ω) = η(ωs)+
∂η
∂ω

∣∣∣∣
ωs

ω + . . . , (A.11)
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and return to the time domain:

p(r, t) = ε0χ̄(ωs)E(r, t)+ iε0
∂ χ̄
∂ω

∣∣∣∣
ωs

∂E(r, t)
∂ t

+η(ωs)s(r, t)eiϕ(r,t)+ . . . (A.12)

Then from (A.4) and (A.6) we have(
∂
∂ z

+
1

vgs

∂
∂ t

)
E(r, t) = iωsNd12

2ε0cns
η(ωs)s(r, t)eiϕ(r,t), (A.13)

d
dt

s(r, t) = (−γ + iδ )s(r, t)+ iΩ∗
[
ε0χ̄(ωs)E(r, t)e−iϕ(r,t)+η(ωs)s(r, t)

]
, (A.14)

provided that ks = nsωs/c, where ns =
√

1+χ(ωs) is the refractive index and χ = Nd12χ̄

is the linear susceptibility of the atomic system, and

1
vgs

=
ns

c
+

ωs

2cns

∂ χ
∂ω

∣∣∣∣
ωs

(A.15)

is the reciprocal of group velocity. Taking into account that

ε0χ̄(ωs) =
id21

h̄(Γ− i∆)
, η(ωs) =

iΩ
Γ− i∆

, (A.16)

ε0
∂ χ̄
∂ω

∣∣∣∣
ωs

=− d21

h̄(Γ− i∆)2 , (A.17)

and considering the limit |∆| ≫ Γ, we obtain(
∂
∂ z

+
1

vgs

∂
∂ t

)
E(r, t) =− ih̄ωsN

2ε0cns

d12Ω
h̄∆

s(r, t)eiϕ(r,t), (A.18)

d
dt

s(r, t) =
(
−γ − |Ω|2Γ

∆2 + i
[

δ − |Ω|2

∆

])
s(r, t)− i

d21Ω∗

h̄∆
E(r, t)e−iϕ(r,t), (A.19)

where

1
vgs

=
ns

c
+

ωs

2ε0h̄cns

N|d|2

∆2 . (A.20)

Finally, in terms of the slowly varying annihilation operator we have

E(r, t) = i

√
h̄ωs

2ε0cns
a(r, t), (A.21)
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which gives (
∂
∂ z

+
1

vgs

∂
∂ t

)
a(r, t) =−g∗N s(r, t)eiϕ(r,t), (A.22)

∂
∂ t

s(r, t) = (−γ + iδ )s(r, t)+ga(r, t)e−iϕ(r,t), (A.23)

where

g =
d21Ω∗

∆

√
ωs

2ε0h̄cns
, (A.24)

the dephasing rate γ is redefined so that it includes |Ω|2Γ/∆2, while excitation induced

frequency shift |Ω|2/∆ is compensated by tuning the coupling field frequency. The anni-

hilation operator is normalized so that a†(r, t)a(r, t) corresponds to the photon flux density

in the dispersive medium.
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APPENDIX B

ANALYTICAL SOLUTION OF GRADIENT ECHOMEMORY*

The equations we are solving in this appendix are Eqs. (IV.7) and (IV.8) in Chap.

IV:

∂
∂ z

a(z, t) = g∗Ns(z, t)eiβ tze−i(β L
2−ωm)t , (B.1)

∂
∂ t

s(z, t) =−γs(z, t)−ga(z, t)e−iβ tzei(β L
2−ωm)t . (B.2)

with t ∈ [−T,0] for storage, t ∈ [0,T ] for retrieval, and z ∈ [0,L]. Eqs. (B.1) and (B.2)

describe the field-atom evolution of quantum memory based on GEM, PMC and control

field spatial chirp with continuous frequency gradient in space. These evolution equations

can be solved exactly without assumptions on the parameters, not only for storage but

also for retrieval. The exact solution of Eqs. (B.1) and (B.2) for t ∈ [ti, t f ] is derived in the

following in Laplace domain of space variable z, with boundary condition a(0, t) and initial

condition s(z, ti). Here ti (t f ) represents the initial (final) time with meaning depending on

the context.

B.1 General solution of GEM in Laplace domain

First let us take the spatial derivative of Eq. (B.2):

∂
∂ z

∂
∂ t

s(z, t) =− γ
∂
∂ z

s(z, t)−|g|2Ns(z, t)− iβ t
[

∂
∂ t

s(z, t)+ γs(z, t)
]
. (B.3)

*The preprint of the related work "Exact solution of gradient echo memory and analytical treatment of
gradient frequency comb'' by Xiwen Zhang is available on arXiv:1602.05115 (2016), and will be submitted
to journal publication soon.
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So Eqs. (B.1) and (B.2) become

∂
∂ z

a(z, t) = g∗Ns(z, t)eiβ tze−i(β L
2−ωm)t , (B.4)(

∂
∂ z

+ iβ t
)

∂
∂ t

s(z,t) =−γ
∂
∂ z

s(z, t)−
(
|g|2N + iβ tγ

)
s(z, t), (B.5)

with boundary condition built in through Eq. (B.2):

∂
∂ t

s(0, t) =−γs(0, t)−ga(0, t)ei(β L
2−ωm)t . (B.6)

After taking the Laplace transformation of Eqs. (B.4) and (B.5) and substituting the bound-

ary condition (B.6), we have:

pa(p, t)−a(0, t) = g∗Ns(p− iβ t, t)e−i(β L
2−ωm)t , (B.7)

(p+ iβ t)
∂
∂ t

s(p, t)+
(
|g|2N + pγ + iβ tγ

)
s(p, t) =−ga(0, t)ei(β L

2−ωm)t . (B.8)

Solving Eq. (B.8) with the initial condition s(p, ti) in Laplace domain, one has

s(p, t) = s(p, ti)exp
[
−
∫ t

ti
dτ
(

|g|2N
p+ iβτ

+ γ
)]

+
∫ t

ti
dτ

−g
p+ iβτ

a(0,τ)ei(β L
2−ωm)τ×

exp

[
−
∫ t

dτ ′′
(

|g|2 N
p+ iβτ ′′

+ γ

)]
exp

[∫ τ
dτ ′′

(
|g|2 N

p+ iβτ ′′
+ γ

)]
. (B.9)

Up to Eq. (B.9), s(p, t) is valid for arbitrary time dependent frequency gradient β = β (t).

Explicit solution is possible as long as the inverse Laplace transformation can be calcu-

lated. In general this is difficult, but for a constant frequency gradient β (during storage

or retrieval), the exact solution can be found. In such a case, substituting the result of Eq.

(B.9) into Eq. (B.7), we have the solution for non-vanishing frequency gradient β ̸= 0

given by Eqs. (B.15) and (B.16).

For a flat single-frequency absorption, the frequency gradient β = 0. The corre-
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sponding evolution equation is simpler:

∂
∂ z

a(z, t) = g∗Ns(z, t)eiωmt , (B.10)

∂
∂ t

s(z, t) =−γs(z, t)−ga(z, t)e−iωmt . (B.11)

The Laplace transformation of Eqs. (B.10) and (B.11) are:

a(p, t) =
1
p

a(0, t)+
g∗N

p
s(p, t)eiωmt , (B.12)

∂
∂ t

s(p, t) =−γs(p, t)−ga(p, t)e−iωmt . (B.13)

Equations (B.12) and (B.13) are reduced to

∂
∂ t

s(p, t)+
(

γ +
|g|2N

p

)
s(p, t) =−1

p
a(0, t)ge−iωmt . (B.14)

Solving for Eq. (B.14) with initial condition s(p, ti) and boundary condition a(0, t), and

substituting the result into Eq. (B.12), we obtain the solution (B.17) and (B.18) of a flat

single-frequency absorption.

The solution of Eqs. (B.1) and (B.2) in Laplace domain are summarized as follows:

a(β ̸=0)(p, t) =
1
p

a(0, t)−|g|2N
∫ t

ti
dτa(0,τ)e−i(β L

2−ωm)(t−τ)e−γ(t−τ)×

piµ−1

[p− iβ (t − τ)]iµ+1 +g∗Ns(p− iβ t, ti)
piµ−1

[p− iβ (t − ti)]
iµ e−γ(t−ti)e−i(β L

2−ωm)t ,

(B.15)

s(β ̸=0)(p, t) =s(p, ti)
(

p+ iβ t
p+ iβ ti

)iµ
e−γ(t−ti)−

g
∫ t

ti
dτa(0,τ)ei(β L

2−ωm)τe−γ(t−τ) (p+ iβ t)iµ

(p+ iβτ)iµ+1 , (B.16)
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and for β = 0:

a(β=0)(p, t) =
1
p

a(0, t)−|g|2N
∫ t

ti
dτa(0,τ)eiωm(t−τ)e−γ(t−τ) 1

p2 exp
[
−|g|2N

p
(t − τ)

]
+

g∗Ns(p, ti)
1
p

exp
[
−|g|2N

p
(t − ti)

]
e−γ(t−ti)eiωmt , (B.17)

s(β=0)(p, t) =s(p, ti)exp
[
−|g|2N

p
(t − ti)

]
e−γ(t−ti)−g

∫ t

ti
dτa(0,τ)e−iωmτe−γ(t−τ) 1

p

exp
[
−|g|2N

p
(t − τ)

]
, (B.18)

where µ = |g|2 N/β , t ∈ [ti, t f ].

B.2 Derivation of the exact analytical solution for GEM: Storage

The time and space evolution of the field and the collective coherence during storage

is given by the inverse Laplace transformation of Eqs. (B.15) - (B.18) with ti = −T and

t f = 0, subjecting to the initial condition ss(z,−T ) = 0 and boundary condition as(z =

0, t) = ain(t). Here the arrival time tin of ain(t) is smaller than zero, and the subscript ''s"

denotes the storage process. The spatial variable z ∈ [0,L].

From Eqs. (B.15) and (B.16) we have the solution of a gradient absorption in Laplace

domain

a(β ̸=0)
s (p, t 6 0) =

1
p

ain(t)−|g|2N
∫ t

−T
dτain(τ)×

e−i(β L
2−ωm)(t−τ)e−γ(t−τ) piµ−1

[p− iβ (t − τ)]iµ+1 , (B.19)

s(β ̸=0)
s (p, t 6 0) =−g

∫ t

−T
dτain(τ)ei(β L

2−ωm)τe−γ(t−τ) (p+ iβ t)iµ

(p+ iβτ)iµ+1 . (B.20)

Similar result can be obtained for a flat single-frequency absorption out of Eqs. (B.17) and
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(B.18).

The following inverse Laplace transformation [240] will be used:

L−1
{

piµ−1 [p− iβ (t − τ)]−iµ−1
}
= z 1F1(iµ +1;2; iβ (t − τ)z) , (B.21)

L−1
{
(p+ iβ t)iµ (p+ iβτ)−iµ−1

}
= e−iβ tz

1F1(iµ +1;1; iβ (t − τ)z) , (B.22)

and

L−1
{

1
p2 exp

[
−|g|2N (t − τ)

p

]}
= z

J1(2
√
|g|2N (t − τ)z)√

|g|2N (t − τ)z
, (B.23)

L−1
{

1
p

exp
[
−|g|2N (t − τ)

p

]}
= J0(2

√
|g|2N (t − τ)z), (B.24)

where 1F1 is the Kummer confluent hypergeometric function and Jν is the ν th order Bessel

function. Substituting Eqs. (B.21), (B.22) back into Eqs. (B.19), (B.20), and Eqs. (B.23),

(B.24) back into Eqs. (B.17), (B.18), and making use of L−1{p−1} = 1, we obtain the

exact solution during storage process:

a(β ̸=0)
s (z, t 6 0) = ain(t)−µβ z

∫ t

−T
dτain(τ)e−i(β L

2−ωm)(t−τ)e−γ(t−τ)×

1F1(iµ +1;2; iβ z(t − τ)) , (B.25)

s(β ̸=0)
s (z, t 6 0) =−ge−iβ zt

∫ t

−T
dτain(τ)ei(β L

2−ωm)τe−γ(t−τ)
1F1(iµ +1;1; iβ z(t − τ)) ,

(B.26)

a(β=0)
s (z, t 6 0) = ain(t)−|g|2Nz

∫ t

−T
dτain(τ)eiωm(t−τ)e−γ(t−τ) J1(2

√
|g|2Nz(t − τ))√

|g|2Nz(t − τ)
,

(B.27)

s(β=0)
s (z, t 6 0) =−g

∫ t

−T
dτain(τ)e−iωmτe−γ(t−τ)J0(2

√
|g|2Nz(t − τ)). (B.28)
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Figure B.1: The functions of e−iβLt/2
1F1(iµ +1;2; iβLt) (solid lines of various colors)

and J̃1(|g|2NLt) (dashed lines of purple color), where J̃1(x) = J1(2
√

x)/
√

x. The solid
lines are plotted under |g|2NL = 10 a.u., among which the red, orange, green and blue
colors represent βL = π,4π,10π,40π a.u. respectively.

Comparing Eqs. (B.25) and (B.27), it is seen that the difference between a gradi-

ent absorption and flat single-frequency absorption lies in e−iβ tL/2
1F1(iµ +1;2; iβ zt) and

J1(2
√

|g|2Nzt)√
|g|2Nzt

. In Fig. B.1 we plot these two functions for different parameters.

B.3 Derivation of the exact analytical solution for GEM: Retrieval

The exact solution of gradient echo is calculated based on Eqs. (B.15) and (B.16)

in retrieval time window t ∈ [ti, t f ] = [0,T ] with parameters β ′, g′, N′, µ ′, and ω ′
m. The

boundary condition is

ar(z = 0, t) = 0, (B.29)
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where the subscript ''r" denotes retrieval. In the usual GEM method, sr(z,0) = ss(z,0). So

from Eq. (B.20), we have

sr(p,0) = ss(p,0) =−g
∫ 0

−T
dτain(τ)ei(β L

2−ωm)τeγτ piµ

(p+ iβτ)iµ+1 . (B.30)

Substituting the boundary and initial conditions (B.29) and (B.30) into Eqs. (B.15) and

(B.16), we obtain the GEM echo and retrieval collective coherence in the Laplace domain:

ar(p, t > 0)

=−gg′∗N′
∫ 0

−T
dτain(τ)e−i(β ′t−βτ) L

2 ei(ω ′
mt−ωmτ)e−γ(t−τ) piµ ′−1 (p− iβ ′t)i(µ−µ ′)

[p− i(β ′t −βτ)]iµ+1 , (B.31)

sr(p, t > 0) =−g
∫ 0

−T
dτain(τ)ei(β L

2−ωm)τe−γ(t−τ) pi(µ−µ ′) (p+ iβ ′t)iµ ′

(p+ iβτ)iµ+1 . (B.32)

We will use the following inverse Laplace transformation [240]:

L−1

{
piµ ′−1 (p− iβ ′t)i(µ−µ ′)

[p− i(β ′t −βτ)]iµ+1

}
= zΦ2

(
iµ +1, iµ ′− iµ;2; i

(
β ′t −βτ

)
z, iβ ′tz

)
, (B.33)

and

L−1

{
pi(µ−µ ′) (p+ iβ ′t)iµ ′

(p+ iβτ)iµ+1

}
= Φ2

(
iµ +1,−iµ ′;1;−iβτz,−iβ ′tz

)
, (B.34)

where Φ2 is the Humbert double hypergeometric series.

Substituting Eqs. (B.33) and (B.34) back to the inverse Laplace transformation of

Eqs. (B.31) and (B.32), we obtain the exact analytical expression of the field and atomic
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collective coherence during retrieval:

ar(z, t > 0) =−gg′∗N′z
∫ 0

−T
dτain(τ)e−i(β ′t−βτ) L

2 ei(ω ′
mt−ωmτ)e−γ(t−τ)×

Φ2
(
iµ +1, iµ ′− iµ;2; i

(
β ′t −βτ

)
z, iβ ′zt

)
, (B.35)

sr(z, t > 0) =−g
∫ 0

−T
dτain(τ)ei(β L

2−ωm)τe−γ(t−τ)Φ2
(
iµ +1,−iµ ′;1;−iβ zτ,−iβ ′zt

)
,

(B.36)

where z ∈ [0,L], t ∈ [0,T ].

If g′ = g, N′ = N, β ′ = β , µ ′ = µ , and ω ′
m = ωm, we recover the storage solution. If

g′ = g, N′ = N, β ′ =−β , and µ ′ =−µ , from Eqs. (B.35) and (B.36) we obtain the exact

GEM solution:

ar(z, t > 0) =−µβ z
∫ 0

−T
dτain(τ)eiβ L

2 (t+τ)ei(ω ′
mt−ωmτ)e−γ(t−τ)×

Φ2 (iµ +1,−2iµ;2;−iβ z(t + τ) ,−iβ zt) , (B.37)

sr(z, t > 0) =−g
∫ 0

−T
dτain(τ)ei(β L

2−ωm)τe−γ(t−τ)Φ2 (iµ +1, iµ;1;−iβ zτ, iβ zt) ,

(B.38)

where z ∈ [0,L], t ∈ [0,T ]. From this solution, the GEM output echo (i.e., at z = L) can be

expanded into the following form by using Eq. (B.48):

ar,out(t > 0) =−µβL
∞

∑
n=0

(−2iµ)n

(n+1)!
(−iβLt)n

n!

∫ 0

−T
dτain(τ)eiβ L

2 (t+τ)ei(ω ′
mt−ωmτ)e−γ(t−τ)

× 2F1

(
−n, iµ +1;2iµ +1−n;1+

τ
t

)
. (B.39)

B.4 Some properties for the Humbert double hypergeometric series Φ2

It is seen from Eq. (B.35) that the GEM echo is mainly determined by Humbert

double hypergeometric function Φ2. Some of the remarks of this relatively complicated
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special function can be found in recent studies [241--244]. The function Φ2(α,α ′;ν ;x,y)

satisfies the following partial differential equation:

x
∂ 2Φ2

∂x2 + y
∂ 2Φ2

∂x∂y
+(ν − x)

∂Φ2

∂x
−αΦ2 = 0, (B.40)

y
∂ 2Φ2

∂y2 + x
∂ 2Φ2

∂x∂y
+(ν − y)

∂Φ2

∂y
−α ′Φ2 = 0. (B.41)

It has an integral representation

Φ2(α,α ′;ν ;x,y) =
Γ(ν)

Γ(α)Γ(α ′)Γ(ν −α −α ′)

∫ 1

0

∫ 1

0
dξ dηexξ+y(1−ξ )ηξ α−1ηα ′−1×

(1−ξ )ν−α−1(1−η)ν−α−α ′−1. (B.42)

Two useful relations in special cases between Φ2 and Kummer confluent hypergeo-

metric function 1F1 are:

Φ2(α ,ν −α;ν ;x,y) = ey
1F1(α;ν ;x− y) , (B.43)

Φ2(α,α ′;ν ;x,x) = 1F1
(
α +α ′;ν ;x

)
. (B.44)

The function Φ2(α ,α ′;ν ;x,y) can also be defined through a double series as:

Φ2(α ,α ′;ν ;x,y) =
∞

∑
m,n=0

(α)m(α ′)n

(ν)m+nm!n!
xmyn, (B.45)

where (α)m = α(α +1) · · ·(α +m−1) = Γ(α +m)/Γ(α), (α)0 = 1. Another expansion

in terms of Gauss hypergeometric function 2F1 is [243]

Φ2(α,α ′;ν ;x,y) =
∞

∑
m=0

(α)m

(ν)m
2F1

(
−m,α ′;1−α −m;

y
x

) xm

m!
. (B.46)
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So in the case of usual gradient echo in Eq. (B.37),

Φ2(iµ +1,−2iµ;2;−iβ z(t + τ),−iβ zt)

=
1

Γ(iµ +1)Γ(−2iµ)

∞

∑
m,n=0

Γ(iµ +1+m)Γ(−2iµ +n)
(m+n+1)!m!n!

(−iβ zt)n[−iβ z(t + τ)]m (B.47)

=
1

Γ(−2iµ)

∞

∑
m=0

Γ(−2iµ +m)

(m+1)!
(−iβ zt)m

m! 2F1

(
−m, iµ +1;2iµ +1−m;1+

τ
t

)
. (B.48)

Eq. (B.48) provides a series to Eq. (B.37) that illustrates how the gradient echo is con-

structed.

One should be careful when evaluating Φ2 using expansions (B.47) and/or (B.48),

since for larger argument β zT they become numerically unstable. Also it is useful to check

Eqs. (B.47) and/or (B.48) with its special values ofΦ2 by, for example, the following cases:

Φ2 =


1F1(−2iµ;2;−iβ zt), if τ =−t,

1F1(iµ +1;2;−iβ zτ), if t = 0,

1F1(−iµ +1;2;−iβ zt), if τ = 0.

Sometimes Φ2 can be numerically evaluated more easily with inverse Laplace transforma-

tion algorithm [245, 246] directly from Eq. (B.31).
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APPENDIX C

EVOLUTION EQUATIONS OF QUANTUMMEMORY BASED ON

CONTROL FIELD DISCRETE SPATIAL CHIRP*

In this appendix1, we derive the evolution equations for the quantum storage scheme

based on control field discrete spatial chirp. Very similar methods can be used to derive the

evolution equations for the quantum memories based on PMC in Chap. II and/or control

field spatial chirp in Chap. III.

C.1 Hamiltonian of the system

First of all we write the signal field Es(r, t) and control field Ec(r, t) in the laboratory

frame F in SI unit as:

Es (r, t) = ϵ̂s
i

nbg
Esâ(r, t)ei(ks·r−φ0s)+H.c., (C.1a)

Ec (r, t) = ϵ̂cE0(r, t)ei[kc(r)·r−ωc(r)t−φ0c(r)]+ c.c., (C.1b)

in which ϵ̂s,c are the polarization vectors of the signal and control fields [in the exam-

ple of 87Rb provided in Chap. V, ϵ̂s = σ̂+, ϵ̂c = (0,0,1)], Es =
√

h̄ωs/(2ε0V ) ∈ R,

Ec =Const∈ R, ε0 is the vacuum permittivity, φ0s = ks · r0 − ωst0, φ0c = kc(r0) · r0 −

ωc(r0)t0, kc = nbgωc/c, ks = nωs/c. Here n is the refractive index taking into account

*The preprint of the related work "Quantum storage based on controllable frequency comb'' by Xiwen
Zhang, AlexeyKalachev, Philip Hemmer, andOlgaKocharovskaya is available on arXiv:1602.02322 (2016),
and will be submitted to journal publication soon.

1Some notations in this appendix, such as the slowly varying part of the signal field ã(z, t), are different
from that in the main text of Chaps. II - VI. The validity of these notations stay only in this appendix.
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the atom-environment interaction (background) and the atom-atom Raman interaction:

n = nbgnint, c is the speed of light in vacuum. The control field feels the background re-

fractive index nbg, while the signal field feels total one n. The expression of Es is obtained

following Ref. [177], which derives the quantization amplitude of a photon in a medium

with refractive index n as (i/n)
√

h̄ωs/(2ε0V ) upon the neglect of dispersion (assuming

c/vg is equal to n). Here nbg is used in the quantization amplitude because we have in

mind a quantized field under the background interaction, and the additional modification

of the refractive index imposed by the Raman interaction, nint, is thereafter calculated via

treating Maxwell equation in a uniform, isotropic background, which is consistent with the

field quantization.

The level scheme we are considering is shown in Fig. 5.1 (a). We define the one-

photon frequency detuning as ∆ = ωs −ω21, and two-photon frequency detuning as

δ (r, t) = ωs −ωc(r, t)−ω31 −
|Ωc(r, t)|2

(ωs −ω21)+ iγ21
, (C.2)

with its central value δ0 = ωs −ωc0 −ω31, where ωc0 = ωc(r = 0), γ21 is the decoherence

rate between the excited state |2⟩ and ground state |1⟩. In addition, the control field an-

gular frequency distribution satisfies ωc(r)−ωc0(r = 0) = m(r)δωc, m(r) is a position

dependent integer. Since we consider an off-resonant interaction, γ21 will be neglected

with respect to ωs −ω21.

In general, the atoms in the medium can move with finite speeds subjecting some

velocity distributions. So we start from the distribution of an atom in its moving frame,

and change to laboratory frame later on. The Hamiltonian of such a system in the atomic
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moving frame F ′ then can be written as

Ĥ = h̄ω1 |1⟩⟨1|+ h̄ω2 |2⟩⟨2|+ h̄ω3(t) |3⟩⟨3|− eR12 ·E′
s
(
r′, t
)
− eR23 ·E′

c
(
r′, t
)
, (C.3)

where Ri j are the internal coordinates of the electronic transitions, E′
s and E′

c are the fields'

variable names in the moving frame. From the relation between the laboratory frame F

and moving frame F ′: r = r′+vt ′, t = t ′, we have

Es (r, t) = Es
(
r′+vt ′, t ′

)
, E′

s
(
r′, t ′;v

)
= ϵ̂s

i
nbg

Esâ′
(
r′, t ′;v

)
ei[ks·(r′+vt ′)−φ0s]+H.c.,

(C.4a)

Ec (r, t) = Ec
(
r′+vt ′, t ′

)
, E′

c
(
r′, t ′;v

)
= ϵ̂cE ′

0(r
′, t ′;v)ei[kc[r′+vt ′]·(r′+vt ′)−ωc(r′+vt ′)t ′−φ0c(r′+vt ′)]+ c.c., (C.4b)

where kc[r′+vt ′] denotes the time and space dependence of kc. Using

er ·E′
s
(
r′, t ′;v

)
≈ih̄ḡ |2⟩⟨1| â′

(
r′, t ′;v

)
ei[ks·(r′+vt ′)−φ0s]

−ih̄ḡ∗ |1⟩⟨2| â
′† (r′, t ′;v

)
e−i[ks·(r′+vt ′)−φ0s], (C.5a)

er ·E′
c
(
r′, t ′;v

)
≈h̄Ω

′∗
c (r

′, t ′;v) |2⟩⟨3|ei[kc[r′+vt ′]·(r′+vt ′)−ωc(r′+vt ′)t ′−φ0c(r′+vt ′)]

+h̄Ω′
c(r

′, t ′;v) |3⟩⟨2|e−i[kc[r′+vt ′]·(r′+vt ′)−ωc(r′+vt ′)t ′−φ0c(r′+vt ′)], (C.5b)

in which

ḡ =
d21Es

nbgh̄
=

e⟨2|r · εs |1⟩
h̄

1
nbg

√
h̄ωs

2ε0V
, (C.6)

Ω′
c(r

′, t ′;v) =
d32E

′∗
0 (r′, t ′;v)

h̄
, (C.7)

and d21 = e⟨2|R12 · ϵ̂s |1⟩, d23 = e⟨2|R23 · ϵ̂c |3⟩, and denoting
∣∣m j
⟩⟨

n j
∣∣= σ̂ j

mn, the Hamil-
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tonian for jth atom in its moving frame is written into:

Ĥ j =h̄ω21σ̂ j
22(r

j′, t ′)+ h̄ω31σ̂ j
33(r

j′, t ′)− ih̄ḡσ̂ j
21(r

j′, t ′)â
(
r j, t
)

ei(ks·r j−φ0s)+

ih̄ḡ∗σ̂ j
12(r

j′, t ′)â† (r j, t
)

e−i(ks·r j−φ0s)− h̄Ω∗
c(r

j, t)σ̂ j
23(r

j′, t ′)e−iωc(r j)t×

eikc[r j]·r j−iφ0c(r j)− h̄Ωc(r j, t)σ̂ j
32(r

j′, t ′)eiωc(r j)te−ikc(r j)·r j+iφ0c(r j), (C.8)

where â(r j, t) = â′(r j′, t ′;v), and r j = r j′+vt ′ on the phase factors. Here ωmn = ωm −ωn

(m,n = 1,2,3), and ω1 is set to be zero. We use r (in laboratory frame F) and r′ (in moving

frame F ′) to denote time-independent frame coordinates, and r j and r j′ to denote specific

time-dependent atomic positions, where r j = r j
0 +v jt and r j

0 = r j′.

C.2 Atomic equation

In the following we derive the equation for the atomic evolution. For convenience

the constant phase of the signal field propagating along ẑ will be set to zero: φ0s = 0. We

consider weak excitation and vacuum noise, where the fluctuation has no influence to the

system for quantum memory. From Heisenberg equation ∂ σ̂ j
mn

∂ t = i
h̄

[
Ĥ, σ̂ j

mn

]
, adding decay

terms by hand, one obtains the following equations in the moving frame F ′:

∂ σ̂ j
11

∂ t ′
= Γ2→1σ̂ j

22 + ḡσ̂ j
21âeiksz j

+ ḡ∗σ̂ j
12â†e−iksz j

, (C.9a)

∂ σ̂ j
22

∂ t ′
=−Γ2σ̂ j

22 − ḡσ̂ j
21âeiksz j

− ḡ∗σ̂ j
12â†e−iksz j

+ iΩ∗
cσ̂ j

23e−iωc(r j)t×

eikc[r j]·r j−iφ0c(r j)− iΩcσ̂ j
32eiωc(r j)te−ikc[r j]·r j+iφ0c(r j), (C.9b)

∂ σ̂ j
33

∂ t ′
= Γ2→3σ̂ j

22 − iΩ∗
cσ̂ j

23e−iωc(r j)teikc[r j]·r j−iφ0c(r j)+ iΩcσ̂ j
32eiωc(r j)te−ikc[r j]·r j+iφ0c(r j),

(C.9c)
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∂ σ̂ j
13

∂ t ′
=−

[
γ31 + iω31(t ′)

]
σ̂ j

13 + ḡσ̂ j
23âeiksz j

+ iΩcσ̂ j
12eiωc(r j)te−ikc[r j]·r j+iφ0c(r j), (C.9d)

∂ σ̂ j
12

∂ t ′
=− (γ21 + iω21) σ̂ j

12 + ḡ
(

σ̂ j
22 − σ̂ j

11

)
â
(
z j, t
)

eiksz j
+

iΩ∗
cσ̂ j

13e−iωc(r j)teikc[r j]·r j−iφ0c(r j), (C.9e)

∂ σ̂ j
23

∂ t ′
=−

[
γ23 − iω23(t ′)

]
σ̂ j

23 + iΩc

(
σ̂ j

22 − σ̂ j
33

)
eiωc(r j)te−ikc[r j]·r j+iφ0c(r j)−

ḡ∗σ̂ j
13â†e−iksz j

, (C.9f)

in which σ̂ j
mn denotes σ̂ j

mn(r j′, t ′;v j), v j implicitly sits in r j of the fields, â denotes â
(
z j, t
)
,

Ωc denotes Ωc
(
r j, t
)
, and we assume in a general case that level |3⟩ is modulated in time

[so that we have ω31(t) and ω23(t) ] to incorporate the discussions of quantum memory

based on control field frequency chirp in Chap. II, Γi→ j is the population decay rate from

state |i⟩ to | j⟩, Γi is the total population loss rate for |i⟩, γi j = γ ji is the decoherence rete

between |i⟩ and | j⟩.

Let us define a collective atomic operator with respect to a constant velocity v0:

1
N ∑

j

∫
dv j′σ̂ j

mn(r
j′, t ′;v j)δ (r′− r j′)δ (v0 −v j′)

≈
∫

dr j′σ̂mn(r j′, t ′;v0)δ (r′− r j′) = σ̂mn(r′, t ′;v0), (C.10)

Here the summation of spacial variable is performed with respect to the moving frame

variable r j′, which is equal to r j
0 (we assume each moving frame of different atoms has the

same origin that overlaps with the corresponding laboratory frame origin). After similar
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treatment to Eqs. (C.9a) - (C.9f), and using

∂
∂ z′

=
∂
∂ z

, (C.11a)

∂
∂ t ′

=
∂
∂ t

+v · ∂
∂r

, (C.11b)

the equations in the laboratory frame become(
∂
∂ t

+v0 ·
∂
∂r

)
σ̂11(r, t;v0) = Γ2→1σ̂22 + ḡσ̂21âeiksz + ḡ∗σ̂12â†e−iksz, (C.12a)(

∂
∂ t

+v0 ·
∂
∂r

)
σ̂22 (r, t;v0) =−Γ2σ̂22 − ḡσ̂21âeiksz − ḡ∗σ̂12â†e−iksz+

iΩ∗
cσ̂23e−iωc(r)teikc[r]·r−iφ0c(r)− iΩcσ̂32eiωc(r)te−ikc[r]·r+iφ0c(r), (C.12b)(

∂
∂ t

+v0 ·
∂
∂r

)
σ̂33 (r, t;v0) = Γ2→3σ̂22 − iΩ∗

cσ̂23e−iωc(r)teikc[r]·r−iφ0c(r)+

iΩcσ̂32eiωc(r)te−ikc[r]·r+iφ0c(r), (C.12c)(
∂
∂ t

+v0 ·
∂
∂r

)
σ̂13 (r, t;v0) =−

[
γ31 + iω31(t ′)

]
σ̂13 + ḡσ̂23âeiksz+

iΩcσ̂12eiωc(r)te−ikc[r]·r+iφ0c(r), (C.12d)(
∂
∂ t

+v0 ·
∂
∂r

)
σ̂12 (r, t;v0) =−(γ21 + iω21) σ̂12 + ḡ(σ̂22 − σ̂11) â(z, t)eiksz+

iΩ∗
cσ̂13e−iωc(r)teikc[r]·r−iφ0c(r), (C.12e)(

∂
∂ t

+v0 ·
∂
∂r

)
σ̂23 (r, t;v0) =−

[
γ23 − iω23(t ′)

]
σ̂23 + iΩc (σ̂22 − σ̂33)×

eiωc(r)te−ikc[r]·r+iφ0c(r)− ḡ∗σ̂13â†e−iksz, (C.12f)

where σ̂mn (r, t;v0) is the new variable name in the laboratory frame:

σ̂mn
(
r′, t ′;v0

)
= σ̂mn (r− v0t, t;v0) re-denoted as−−−−−−−−−→σ̂mn (r, t;v0) .
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Defining the slow varying operators as

σ̂12 (r, t;v0) = σ̃12 (r, t;v0)e−i(ωst−k12·r), (C.13a)

σ̂23 (r, t;v0) = σ̃23 (r, t;v0)ei(ωct−k23·r), (C.13b)

σ̂13 (r, t;v0) = σ̃13 (r, t;v0)e−i(ωst−ωct−k13·r), (C.13c)

and

â(z, t) = ã(z, t)e−iωst , (C.14a)

Es (r, t) = ϵ̂s
i

nbg
Esã(z, t)e−i(ωst−ks·r)+H.c., (C.14b)

we can write down the new evolution equations for these operators. In these equations,

the term v0 · (∂/∂r) can be neglected for slow motion of the atom, and the term v0 ·kmn

(with k13 = k12 −k23) describing the Doppler effect can be incorporated into ωs and ωc.

Without loss of generality, we can choose the arbitrary constant velocity v0 = 0. Since we

are considering a weak excitation limit, we can take σ̂11 ≈ 1, σ̂22 ≈ 0, σ̂33 ≈ 0, σ̃23 ≈ 0,

∂ σ̃12/∂ t ≈ 0, then the equations become

σ̃12 (r, t;0) =
−iḡ

(ωs −ω21)+ iγ21
ã(z, t)ei(ksz−k12·r)−

Ω∗
c (r, t)

(ωs −ω21)+ iγ21
σ̃13 (r, t)ei(k13·r−k12·r+kc(r)·r)e−iφ0c(r), (C.15a)

∂
∂ t

σ̃13 (r, t;0) =−{γ31 − i[ωs −ω31(t)−ωc(r)]} σ̃13+

iΩcσ̃12e−i(k13·r+kc(r)·r−k12·r)eiφ0c(r). (C.15b)
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Substituting Eq. (C.15a) into (C.15b), we have

∂
∂ t

σ̃13 (r, t;0) =−
{

γ31 − i
[

ωs −ω31 −ωc(r)−
|Ωc (r) |2

(ωs −ω21)+ iγ21

]}
σ̃13

+
Ωc (r) ḡ

(ωs −ω21)+ iγ21
ã(z, t)e−i(k13·r+kc(r)·r−ksz)eiφ0c(r), (C.16)

where the temporal modulations on level |3⟩ and control field amplitudes are dropped to

focus on the discussion of quantum memory based on control field spatial chirp (where the

atomic transition frequencyω31 and control field Rabi frequencyΩc are time independent).

Recalling the definitions of one-photon detuning ∆ = ωs −ω21 and two-photon de-

tuning δ in Eq. (C.2), we define the central two-photon detuning δ0 and ac Stark shift

induced in Raman interaction δAC as:

δ0 = ωs −ω31 −
[

ωc0 +
|Ωc(r = 0)|2

∆+ iγ21

]
≈ ωs −ω31 −

(
ωc0 +

|Ωc(r = 0)|2

∆

)
, (C.17)

δAC(r) =
|Ωc(r)|2

∆+ iγ21
− |Ωc(r = 0)|2

∆+ iγ21
≈ |Ωc(r)|2

∆
− |Ωc(r = 0)|2

∆
, (C.18)

where ωc0 = ωc0(r = 0), and the far off-resonant condition ∆ ≫ ζγ21 (with ζ denoting the

collective broadening) is used . Then the two-photon detuning is written into

δ (r) = δ0 − [ωc(r)−ωc0]−δAC(r). (C.19)

Now we consider a control field propagating along x̂ direction, so that Eqs. (C.15a)

and (C.16) in far off-resonant Raman regime become

σ̃12 (r, t;0) =− iḡ
∆

ã(z, t)ei(ksz−k12·r)− Ω∗
c(z)
∆

σ̃13 (r, t)ei(k13·r−k12·r+kc[z]x)e−iφ0c(r),

(C.20a)

∂
∂ t

σ̃13 (r, t;0) =− [γ31 − iδ (z)] σ̃13 +
Ωc(z)ḡ

∆
ã(z, t)e−i[k13·r+kc[z]x−ksz]eiφ0c(r), (C.20b)

where ḡ = d21Es/(h̄nbg) = d21
√

h̄ωs/(2ε0V )/(h̄nbg).
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In the case of discrete spacial chirp, as mentioned before:

ωc(z)−ωc0(z = 0) = m(z)δωc, (C.21)

m(z) =
M0

∑
m=−M0

mδωc(Θm
−−Θm

+) (C.22)

in which δωc is the frequency spacing of the spacial chirp, Θm
∓ = Θ(z−mL0 ±d/2), Θ is

the Heaviside step function. If we chooseωc0 in such a way to make δ0 = 0, namely, ωc0 =

ωs −|Ωc(z = 0)|2/∆−ω31 where ωs = ∆+ω21, then we obtain a two-photon detuning as

follows:

δ (z) =−
M0

∑
m=−M0

mδωc(Θm
−−Θm

+)−δAC. (C.23)

C.3 Field equation

The signal field evolvement is described by Maxwell equation, which is

∇ ·D = 0, ∇×E =−∂B
∂ t

,

∇ ·B = 0, ∇×H = J+
∂D
∂ t

,

(C.24)

where D = ε0E + P, B = µ0H+ µ0M, J = σE. Here let us assume the presence of a

uniform, isotropic background, which modifies the constitutive equation as follows:

D = εbgE+P, B = µbgH+µbgM, J = σbgE, (C.25)

where εbg = εbgrε0, µbg = µbgrµ0, c2 = 1/(ε0µ0), µ0 is the vacuum permeability, and func-

tions εbgr and µbgr go to 1 as the background atoms number density Nbg approaches zero.
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The propagation equation of optical fields is derived as follows. First, we have

∇× (∇×E) = ∇×
(
−∂B

∂ t

)
=− ∂

∂ t

(
µbg∇×H+µbg∇×M

)
=−εbgµbg

∂ 2

∂ t2 E−µbg
∂ 2

∂ t2 P−µbgσbg
∂
∂ t

E−µbg
∂
∂ t

∇×M. (C.26)

By using∇×(∇×E)=∇(∇ ·E)−∇2E=−∇2E, and further taking into account εbgµbg=

εbgrµbgrε0µ0 = n2
bg/c2, we obtain

∇2E−
n2
bg

c2
∂ 2

∂ t2 E−µbgσbg
∂
∂ t

E = µbg
∂ 2

∂ t2 P+µbg
∂
∂ t

∇×M. (C.27)

Assuming non-magnetic, non-conducting atoms in a non-magnetic, non-conducting back-

ground material, where σbg = 0, µbg = µ0 and M = 0, Eq. (C.27) becomes

∇2E−
n2
bg

c2
∂ 2

∂ t2 E = µ0
∂ 2

∂ t2 P =
1

ε0c2
∂ 2

∂ t2 P. (C.28)

C.3.1 Polarization

From Eq. (C.20a), the single atom polarization operator can be written as

p̂ j (r j, t;v j)=d12σ̂ j
12
(
r j, t;v j)+d32σ̂ j

32
(
r j, t;v j)+H.c.

≈− id12ḡ
∆+ iγ21

ã
(
z j, t;0

)
e−i(ωst−ksz j)e−ik12·v jt − d12Ω∗

c(z)
∆+ iγ21

×

σ̃ j
13
(
r j, t;0

)
e−iωstei(k13+kc[z j])·r j

e−iφ0c(r j)e−ik12·v jt +H.c.. (C.29)

The macroscopic polarization can be obtained by averaging the single atom polarization

operators:

P̂(z, t) =
∫

f (v j)dv j ∑
j

p̂
(

r j
0, t;v j

)
δ
(

r−
(

r j
0 +v jt

))
≈ N

∫
dr j

0

∫
dv j f (v j)p̂

(
r j

0, t;v j
)

δ
(

r−
(

r j
0 + v jt

))
= N

∫
dv j f (v j)p̂

(
r, t;v j)= N

∫
dv f (v)p̂(r, t;v) (C.30)
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where we used ∑ j ≈ N
∫

dr j, N is the number density of the atoms in the sample. The

function f is the Maxwell distribution function:

f (v)dv =
√

m
2πkBT

exp
(
− mv2

2kBT

)
dv, (C.31)

which comes from aBoltzmann distribution of kinetic energy: f (ε)∝ exp [−ε/(kBT )], ε =

mv2/2, =⇒ fp = (2πmkBT )−3/2 exp
[
−(p2

x + p2
y + p2

z )/(2mkBT )
]
, =⇒ fEdE = fpdp =

2
√

E/π(kBT )−3/2 exp [−E/(kBT )]dE.

Since σ̂12 is excited by the signal field with carrier frequency ωs, k12 should take the

value of ks. Taking into account the integral of the velocity distribution:∫
dv f (v)e−iksvzt = exp

[
− (kst)

2

2m/(kBT )

]
= exp

(
− t2

2t2
d

)
, (C.32a)

∫
dv f (v)e−i[k13+kc(z)]·vt = exp

(
− t2

2t2
d

)
, (C.32b)

and the phase matching condition k13 +kc(z) = ks, we have:

P̂(z, t) =− iNd12ḡe−t2/(2t2
d )

∆+ iγ21
ã(z, t)e−i(ωst−ksz)− Nd12Ω∗

c (z)
∆+ iγ21

σ̃13 (r, t;0)×

e−iωste−iφ0cei[k13+kc(z)]·r exp
(
− t2

2t2
d

)
+H.c.. (C.33)

where td = 1/(
√

kBT/mks) is the Doppler dephasing time constant. From the expression

of td , we identify a dephasing velocity vs =
√

kBT/m. For T = 100K, m = 58.4678u, we

have vs = 0.12 m/s. During the ∆t ∼ 100 ns duration of the signal field, the corresponding

distance is 12 nm, while the field propagates c∆t = 30mand themedium length is L∼ 1 cm.

So in such a case we are in the slow-motion regime. Here only the signal field dynamics is

considered, so the dephasing is along the longitudinal direction k̂s. In general, the control

field propagation direction could make arbitrary angle with respect to k̂s, leading to similar
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transversal dephasing effect, which will be neglected for the sake of simplicity.

If we define

P̂(z, t) = P̃(z, t)e−i(ωst−ksz)+H.c., (C.34)

the slowly varying part of the positive rotating component of the medium polarization can

be written into

P̃(z, t) =− iNd12ḡe−t2/(2t2
d )

∆+ iγ21
ã(z, t)−

Nd12Ω∗
c (z)

∆+ iγ21
σ̃13 (r, t)e−iφ0cei(k13+kc(z)−ks)·r exp

(
− t2

2t2
d

)
. (C.35)

C.3.2 Evolution equation of the signal field

We derive the field equation based on Eq. (C.28). Neglecting the transverse propaga-

tion of the signal field, one can replace ∇2 by ∂ 2/∂ z2 (see relative discussions in Chaps. II

and III). Since the signal field is Es(z, t) = ϵ̂s(i/nbg)Esã(z, t)e−i(ωst−ksz)+H.c., Eq. (C.28)

gives(
∂ 2

∂ z2 −
n2
bg

c2
∂ 2

∂ t2

)
Ês (z, t) =

{
i

nbg
Es

(
∂ 2

∂ z2 −
n2
bg

c2
∂ 2

∂ t2

)
ã(z, t)+2i

i
nbg

Es×(
ks

∂
∂ z

+
n2
bgωs

c2
∂
∂ t

)
ã(z, t)+

i
nbg

Es

[(nbgωs

c

)2
− (ks)

2
]

ã(z, t)

}
e−i(ωst−ksz)+H.c.

=− 1
ε0c2 ω2

s P̃(z, t)e−i(ωst−ksz), (C.36)
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Neglecting the second order derivatives, and substituting in Eq. (C.35), one obtains

2i
i

nbg
Es

(
ks

∂
∂ z

+
n2
bgωs

c2
∂
∂ t

)
ã(z, t)+

i
nbg

Es

[(nbgωs

c

)2
− (ks)

2
]

ã(z, t) =
ω2

s
ε0c2×

iNd12ḡe−t2/(2t2
d )

∆+ iγ21
ã(z, t)+

ω2
s

ε0c2
Nd12Ω∗

c (z)
∆+ iγ21

σ̃13 (r, t)e−iφ0cei(k13+kc(z)−ks)·r exp
(
− t2

2t2
d

)
.

(C.37)

Here we require the ã(z, t) terms on the left and right hand side of Eq. (C.37) to be canceled

by fixing ks, which will be satisfied by a the following equation:

ks =
ωs

c
nbg

√√√√1− N|d12|2e−t2/(2t2
d )

n2
bgε0h̄(∆+ iγ21)

= nbgnint
ωs

c
, (C.38a)

nint =

√√√√1− N|d12|2e−t2/(2t2
d )

n2
bgε0h̄(∆+ iγ21)

, (C.38b)

The refractive index nint appears due to signal-medium interaction. After neglecting γ21

with respect to ∆, the field equation then becomes(
∂
∂ z

+
nbg
nintc

∂
∂ t

)
ã(z, t)

=− ωs

2ε0cEsnint

Nd12Ω∗
c (z)

∆
σ̃13 (r, t;0)e−iφ0cei(k13+kc(z)−ks)·r exp

(
− t2

2t2
d

)
. (C.39)

C.4 Atomic and field evolution equations

The full set of evolution equations is given by Eqs. (C.39) and (C.20b). Let us re-

define the collective atomic operator as

S (r, t) =
ωs

2ε0cEsnint

Nd12Ω∗
c (z)

∆
σ̃13 (r, t;0)e−iφ0cei(k13+kc(z)−ks)·r, (C.40)
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so that Eqs. (C.39) and (C.20b) become(
∂
∂ z

+
nbg
nintc

∂
∂ t

)
ã(z, t) =−S (r, t)exp

(
− t2

2t2
d

)
, (C.41a)

∂
∂ t

S (r, t) =− [γ31 − iδ (z, t)]S (r, t)+
ωs

2h̄ε0cnbgnint

N|d12|2|Ωc (z) |2

∆2 ã(z, t) . (C.41b)

In the long-pulse regime, we neglect the [nbg/(nintc)]∂ ã/∂ t term. We can define a coupling

constant g as

g(z) =
√ ωs

2h̄ε0cnbgnint

d21Ωc (z)
∆

, (C.42)

so that the evolution equations become:

∂
∂ z

ã(z, t) =−S (z, t)exp
(
− t2

2t2
d

)
, (C.43a)

∂
∂ t

S (z, t) =− [γ31 − iδ (z)]S (z, t)+ |g(z)|2Nã(z, t) , (C.43b)

in which δ (z) is given by Eq. (C.23) with δAC given by Eq. (C.18).

In the estimation of control power, usually the intensity I is defined as I = cnε0|E|2/2.

Since in our definition of Ec, the field E is equal to 2E0, we should calculate intensity,

control Rabi frequency (Ωc = d32E∗
0/h̄), and coupling constant using

Ic = 2cnε0|E0|2, (C.44a)

Ωc =
d32

h̄

√
Ifree
2cε0

, (C.44b)

g =

√ ωs

2h̄ε0cnbgnint

d21d32

h̄∆

√
Ifree
2cε0

, (C.44c)

where Ifree is the control intensity in free space.
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APPENDIX D

ANALYTICAL SOLUTION OF THE ECHOES FROM A GRADIENT

FREQUENCY COMB*

In this appendix, we derive the analytical solution of Eqs. (V.4) - (V.5) (upon the

neglect of Doppler dephasing) and Eqs. (VI.7) - (VI.8) in the gradient frequency comb

regime.

In Fourier domain, Eqs. (VI.7) - (VI.8) or Eqs. (V.4) - (V.5) ( for td → ∞) can be

solved to get the output field spectrum:

Eout(ω)≈ Ein(ω)exp

(
−i|g|2Nd

∞

∑
m=−∞

1
ω −mβω0 + iΓ

)
, (D.1)

where we extend M0 to ∞. This extension is ensured by the finite bandwidth of the input

signal Ein(ω). Namely, in this work we always assume 2π/∆t . Mβω0, which is also part

of Eq. (VI.14) or Eq. (V.10). The real part of ∑∞
m=−∞(ω −mβω0 + iΓ)−1 is a periodic

function. The imaginary part is not, but can be approximately treated as periodic for a high

finesse comb. Under this condition, this summation term can be written into Fourier series,

which is substituted back into Eq. (D.1) and leads to:

Eout(ω)≈ Ein(ω)exp

[
−π|g|2Nd

βω0

(
1+2

∞

∑
n=1

e
− 2πn

βω0
Γ
e

i 2πn
βω0

ω
)]

= Ein(ω)e−
π
4 ζ 0

eff
∞

∏
n=1

∞

∑
q=0

(
−π

2
ζ 0
effe

− πn
F
)q einqωT0

q!
, (D.2)

where we define ζ 0
eff = 4|g|2Nd/(βω0), and used T0 = 2π/(βω0) (or βω0 replaced with

*The related work "Nuclear quantummemory and time sequencing of a single γ photon'' by Xiwen Zhang,
Wen-Te Liao, Alexey Kalachev, Rustem Shakhmuratov, Marlan Scully, and Olga Kocharovskaya will be
published soon.
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δωc in Chap. V). It is worth noting that in this derivation, the causality, which is built in

through the fact nq> 0, is obtained out of calculation rather than being empirically imposed

as a condition [58]. The leakage and the first echo signals are given by the first two terms

in Eq. (D.2) with n = 1. The inverse Fourier transformation of these two terms gives the

field in time and space domain:

Eout(t) = e−
π
4 ζ 0

effEin(t)−
πζ 0

eff
2

e−
πζ 0
eff
4 e−

π
F Ein(t −T0)+Higher sequence GFC echoes.

(D.3)

One can see from Eq. (D.2) that higher sequence GFC echoes will be important if ζ 0
eff

becomes large. If one takes a look at the whole sequence of echoes, for small or moderate

optical thickness, the echo signals are not only attenuated exponentially as e−πn/F due to

the decoherence rate Γ, but also are phase modulated by J1

(
2
√

πξ 0
effn/2

)/√
πξ 0

effn/2.

For the leakage and first echo signal this coincides with (D.3). However this is not true

if the individual effective optical thickness is large so that higher order interactions (re-

emission and re-absorption among different targets) become significant. In such a case,

Eq. (D.2) or (D.3) has to be used (under the condition F ≫ 1 ). Especially when ζ 0
eff is

large, higher sequence GFC echo can be stronger than lower ones, which might be useful

for longer-time storage, although the efficiency usually is much smaller. In this dissertation

we focus only on the first echo.
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APPENDIX E

ANALYTICAL SOLUTION OF THE γ-RAY BEAM DEFLECTED BY

A COHERENTLY VIBRATING NUCLEAR LATTICE*

Herewe derive the analytical solution of Eqs. (VI.26) and (VI.27) in Chap. VI. These

equations describe the dynamics of two coupled γ-ray waves with different propagation

directions along Bragg angles in a vibrating Mössbauer nuclear lattice.

Equations (VI.26) and (VI.27) can be reduced to

Ω̈1 + i(∆+Q)Ω̇1 +(Ω2
a −∆Q)Ω1 +Ω2

aΩ2 = 0 , (E.1)

Ω̈2 + i(∆+Q)Ω̇2 +(Ω2
a −∆Q)Ω2 +Ω2

aΩ1 = 0, (E.2)

where

Q(t) = κνd cos(νdt) (E.3)

is a function describing the modulation produced by nuclear motion.

The initial conditions for Eqs. (E.1) and (E.2) are Ω1(0) = A, Ω2(0) = 0, and ρ(0) =

0. In order to satisfy the evolution equations, these initial conditions yield the relations:

Ω̇1(0) =−i∆A and Ω̇2(0) = 0.

Equations (E.1) and (E.2) have the following integral of motion

Ω1 = Ω2 +Ae−i∆t . (E.4)
*Reprinted with permission from "Superradiant control of γ-ray propagation by vibrating nuclear arrays''

by X. Zhang, and A. A. Svidzinsky, 2013, Phys. Rev. A, vol. 88, pp. 033854, Copyright [2013] by the
American Physical Society.
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Substituting Eq. (E.4) into Eq. (E.2) and introducing Ω̃2 according to

Ω2 = e−i∆t
(

Ω̃2 −
A
2

)
(E.5)

we obtain the following equation for Ω̃2

d2Ω̃2

dt2 + i(Q−∆)
dΩ̃2

dt
+2Ω2

aΩ̃2 = 0 (E.6)

which is an equation of parametric oscillator. Equation (E.6) has a solution in terms of

special functions. However such solution is not very mathematically or physically insight-

ful. Instead, we derive an approximate solution which clearly shows the physics behind

parametric speed up of the energy transfer.

After introducing a function u(t):

dΩ̃2

dt
= e−i

∫ t
0(Q−∆)dt ′u, (E.7)

one can rewrite Eq. (E.6) as

du
dt

=−2Ω2
aei

∫ t
0(Q−∆)dt ′Ω̃2. (E.8)

The exponential factor can be expended into the Fourier series as follows:

exp
{

i
∫ t

0
[Q(t ′)−∆]dt ′

}
=e−i∆teiκ sin(νdt)

=e−i∆t [J0(κ)+2iJ1(κ)sin(νdt)+2J2(κ)cos(2νdt)+ . . .] ,

(E.9)

where Jn(κ) are the nth order Bessel functions. We assume that νd is close to ∆ while Ω̃2

and u are slowly varying functions of time on the scale 1/νd . Then in the Fourier expansion

(E.9) one can keep only the slowly varying term and approximately write

ei
∫ t

0(Q−∆)dt ′ ≈ J1(κ)ei(νd−∆)t . (E.10)
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As a result, Eqs. (E.7) and (E.8) reduce to

dΩ̃2

dt
= J1(κ)e−i(νd−∆)tu, (E.11)

du
dt

=−2J1(κ)Ω2
aei(νd−∆)tΩ̃2 (E.12)

which can be solved analytically. Substituting this solution into Eqs. (E.4) and (E.5) we

finally obtain

Ω1 =
Ae−i∆t

2

 ω+e−iω−t −ω−e−iω+t√
(νd −∆)2 +8J2

1(κ)Ω2
a

+1

 , (E.13)

Ω2 =
Ae−i∆t

2

 ω+e−iω−t −ω−e−iω+t√
(νd −∆)2 +8J2

1(κ)Ω2
a

−1

 , (E.14)

where ω± =
[
νd −∆±

√
(νd −∆)2 +8J2

1(κ)Ω2
a

]/
2.

When the nuclear vibration frequency matches the γ photon's frequency detuning

with respect to the nuclear transition frequency, i.e., νd = ∆, we find the following solution

of Eqs. (VI.26) and (VI.27):

Ω1 = Ae−i∆t cos2
(

J1(κ)√
2

Ωat
)
, (E.15)

Ω2 =−Ae−i∆t sin2
(

J1(κ)√
2

Ωat
)
. (E.16)
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