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ABSTRACT

Bolstered resubstitution is a simple and fast error estimation method that has

been shown to perform better than cross-validation and comparably with bootstrap

in small-sample settings. However, it has been observed that its performance can de-

teriorate in high-dimensional feature spaces. To overcome this issue, we propose here

a modification of bolstered error estimation based on the principle of Naive Bayes.

This estimator is simple to compute and is reducible under feature selection. In ex-

periments using popular classification rules applied to data from a well-known breast

cancer gene expression study, the new Naive-Bayes bolstered estimator outperformed

the old one, as well as cross-validation and resubstitution, in high-dimensional tar-

get feature spaces (after feature selection); it was superior to the 0.632 bootstrap

provided that the sample size was not too small.

Model selection is the task of choosing a model with optimal complexity for the

given data set. Most model selection criteria try to minimize the sum of a training

error term and a complexity control term, that is, minimize the complexity penalized

loss. We investigate replacing the training error with bolstered resubstitution in the

penalized loss to do model selection. Computer simulations indicate that the pro-

posed method improves the performance of the model selection in terms of choosing

the correct model complexity.

Besides applying novel error estimation to model selection in pattern recogni-

tion, we also apply it to assess the performance of classifiers designed on the banana

gene-expression data. Bananas are the world’s most important fruit; they are a vital

component of local diets in many countries. Diseases and drought are major threats

in banana production. To generate disease and drought tolerant bananas, we need
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to identify disease and drought responsive genes and pathways. Towards this goal,

we conducted RNA-Seq analysis with wild type and transgenic banana, with and

without inoculation/drought stress, and on different days after applying the stress.

By combining several state-of-the-art computational models, we identified stress re-

sponsive genes and pathways. The validation results of these genes in Arabidopsis

are promising.

iii



DEDICATION

To

my wife Qianru, my parents and brother

iv



ACKNOWLEDGEMENTS

Many people contributed to make this work possible. In what follows, I mention

just a few of them. The help of all those who should have been mentioned here but

were left out is gratefully acknowledged as well.

First, I thank my family. I thank my wife, Qianru Zhao, for her unconditional

love and support. I thank my father, Wenming Jiang, and my mother, Junying Guo,

for everything, and in particular their guidance and encouragement. I thank my late

grandparents for taking care of me and enlightening me. I thank my aunts Junling,

Junhua, Junkun Guo, and Shufang Gao for their love, and my uncle Bingzhong Fan

for his care. I also thank my brother Xingbo for being my loving elder sibling.

I thank my advisor, Dr. Ulisses Braga-Neto, for his constant encouragement and

friendship, and for generously supporting me financially throughout my doctorate

program. I thank Dr. Dougherty for his invaluable lectures on foundations of trans-

lational genomics and deep insights. I thank Dr. Serpedin and Dr. Zinn, for serving

on my defense committee and for providing useful suggestions that improved this

work. I also thank all the faculty and staff at the Center for Bioinformatics and Ge-

nomics Systems Engineering, especially Dr. Michael Bittner, Dr. Jianping Hua, Dr.

Chao Sima, Dr. Tao Hu, Dr. Aniruddha Datta, Dr. Charles Johnson, Dr. Xiaoning

Qian, Dr. Byung-Jun Yoon, for helpful discussions. I thank all students and research

scientists, past and current, at the Genomic Signal Processing Laboratory, especially

Dr. Ting Chen, Dr. Jason Knight, Dr. Amin Zollanvari, Priya Venkat, Osama Ar-

shad, Hyundoo Jeong, Shaogang Ren, Arghavan Bahadorinejad, for their help and

friendship.

I thank Dr. Martin Dickman and Dr. Yizhou Che, from Texas A&M AgriLife,

v



for the collaboration on the project: Identification of Drought and Disease Tolerance

Genes and Networks by Expression Profiling in Banana. I thank my former M.Sc.

advisor Dr. Panos Papamichalis from Southern Methodist University for introducing

me to research. I also thank Ting Li, Dr. Hui Liu, Dr. Guoying Wu, Zao Chen, Carol

Casey, John and Dalene Buhl and other friends who helped us settle down in Dallas.

I would like to thank all the faculty and staff at Texas A&M University, especially

for the administrative support provided by Ms. Tammy Carda, Ms. Jeanie Marshall,

Ms. Melissa Sheldon and Ms. Anni Brunker, and librarian Ms. Mellisa Superville.

Last, but not least, I greatly appreciate the generous financial support received

from the Chinese Government, by means of the CSC scholarship.

vi



NOMENCLATURE

LDA Linear Discriminant Analysis

SVM Support Vector Machine

LSVM Linear Support Vector Machine

RBF Radial Basis Function

CART Classification And Regression Tree

KNN K-Nearest Neighbors

RMS Root Mean Square

RNA Ribonucleic Acid

GO Gene Ontology

GLM Generalized Linear Model

KEGG Kyoto Encyclopedia of Genes and Genomes

ORA Over Representation Analysis

FCS Functional Class Scoring

PT Pathway Topology

MDS Multidimensional Scaling

STAR Spliced Transcripts Alignment to a Reference

EDA Exploratory Data Analysis

NB Negative Binomial

VC Vapnik Chervonenkis

SRM Structural Risk Minimization

vii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. NAIVE-BAYES BOLSTERED ERROR ESTIMATION . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Bolstered Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Bolstered Resubstitution Estimator . . . . . . . . . . . . . . . 7
2.2.3 Gaussian Bolstering . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Kernel Fitting Procedure . . . . . . . . . . . . . . . . . . . . . 9

2.3 Naive-Bayes Bolstered Resubstitution . . . . . . . . . . . . . . . . . . 11
2.4 Bolstering in the Presence of Feature Selection . . . . . . . . . . . . . 12
2.5 Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. MODEL SELECTION USING BOLSTERED ERROR ESTIMATION . . 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Why Bolstered Resubstitution Works Better . . . . . . . . . . . . . . 25
3.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Model Selection by Feature Selection . . . . . . . . . . . . . . 28

viii



3.3.2 Model Selection of Different Learning Models . . . . . . . . . 29
3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. IDENTIFICATION OF BIOTIC AND ABIOTIC STRESS INDUCED GENES
AND PATHWAYS IN BANANAS . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Statistical Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Differential Expression Analysis . . . . . . . . . . . . . . . . . 52
4.4.3 Identification of Classifier Genes . . . . . . . . . . . . . . . . . 55
4.4.4 Gene Set Analysis Overview . . . . . . . . . . . . . . . . . . . 61
4.4.5 Gene Set Analysis Results . . . . . . . . . . . . . . . . . . . . 64

4.5 Validation of Stress Induced Genes in Arabidopsis . . . . . . . . . . . 68
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



LIST OF FIGURES

FIGURE Page

2.1 Bolstered resubstitution for LDA classifier with elliptical bolstering
kernels. The area of each shaded region divided by the area of the
associated ellipse is the contribution to the error made by a sample
point. The bolstered error estimate is the sum of all contributions
divided by the number of points. . . . . . . . . . . . . . . . . . . . . 13

2.2 Bias, variance, and RMS as a function of dimensionality of selected
feature set for sample size n = 20 and different classification rules.
Classification rules: LDA (first row), 3NN (second row), Linear SVM
(third row), Radial-Basis Function SVM (fourth row). Error estima-
tors: resubstitution (red), 10-fold cross-validation estimator averaged
over 10 repetitions (black), 0.632 bootstrap (orange), bolstered resub-
stitution with spherical kernels (cyan), Naive-Bayes bolstered resub-
stitution (magenta). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Bias, variance, and RMS as a function of dimensionality of selected
feature set for sample size n = 40 and different classification rules. . . 20

2.4 Beta-fit plots and boxplots of deviation between true and estimated
errors, for sample size n = 20, d = 15 selected features, and different
classification rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Beta-fit plots and boxplots of deviation between true and estimated
errors, for sample size n = 40, d = 15 selected features, and different
classification rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 An toy example of model selection showing bolstered resubstitution
is better than resubstitution. Note that resubstitution errors for both
the red and blue linear classifiers are 2 samples. However, the bolstered
resubstitution errors are 1.6 and 1.75 samples, respectively. Therefore,
we turn an indistinguishable model selection problem to a distinguish-
able one by replacing resubstitution by bolstered resubstitution. . . . 26

x



3.2 An example of model selection comparison. It shows how the train-
ing error (blue curve), the model complexity (green curve), and the
complexity penalized error (red curve) change with respect to selected
feature size k. We compare two model selection methods with LDA
classifiers, sample size n = 50, feature size d = 20, marker size d0 = 3.
The upper part shows the proposed method, and the lower part shows
the classical method. The proposed method selects the correct model,
while the classical method does not. . . . . . . . . . . . . . . . . . . . 30

3.3 An example of model selection comparison. It shows how the train-
ing error (blue curve), the model complexity (green curve), and the
complexity penalized error (red curve) change with respect to selected
feature size k. We compare two model selection methods with 3NN
classifiers, sample size n = 50, feature size d = 20, marker size d0 = 3.
The upper part shows the proposed method, and the lower part shows
the classical method. The proposed method selects the correct model,
while the classical method does not. . . . . . . . . . . . . . . . . . . . 31

3.4 Histograms of selected model complexity for proposed and classical
methods with LDA classifiers. The true model complexity is 3. The
proposed method achieves a mean model complexity deviation of 0.38,
which is smaller than 1.4, the mean model complexity deviation of the
classical method. The proposed method improved the performance
from 8% to 65% in terms of choosing the correct model complexity on
average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Histograms of selected model complexity for proposed and classical
methods with 3NN classifiers. The true model complexity is 3. The
proposed method achieves a mean model complexity deviation of 0.37,
which is smaller than 1.58, the mean model complexity deviation of
the classical method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Classifier decision boundaries for model M1. For each classifier, we
calculate its resubstitution error and bolstered resubstitution error.
All classifiers perform well except SVM with polynomial kernels of
degrees 2 and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Classifier decision boundaries for model M2. All classifiers perform
well except SVM with polynomial kernels of degrees 2 and 4. . . . . . 37

3.8 Classifier decision boundaries for model M3. All classifiers perform
well except SVM with polynomial kernels of degrees 2 and 4. . . . . . 38

xi



3.9 Classifier decision boundaries for model M4. All classifiers perform
well except linear classifiers, SVM with polynomial kernels of degrees
3 and 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.10 Average errors of all classifiers for model M1. Linear classifiers, RBFSVM,
SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN
are all good classification rules. . . . . . . . . . . . . . . . . . . . . . 40

3.11 Average errors of all classifiers for model M2. Linear classifiers, RBFSVM,
SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN
are all good classification rules. . . . . . . . . . . . . . . . . . . . . . 41

3.12 Average errors of all classifiers for model M3. Linear classifiers, RBFSVM,
SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN
are all good classification rules. . . . . . . . . . . . . . . . . . . . . . 41

3.13 Average errors of all classifiers for model M4. For this difficult classi-
fication problem, linear classifiers and SVM with polynomial kernels
of degrees 3 and 5 are underfitting the data. . . . . . . . . . . . . . . 42

3.14 Penalized average errors of all classifiers for model M1. Linear clas-
sifiers, RBFSVM, SVM with polynomial kernels of degrees 3 and 5,
CART, and k-NN are all good classification rules. We will select linear
classifiers because of their simplicity. . . . . . . . . . . . . . . . . . . 42

3.15 Penalized average errors of all classifiers for model M2. Linear clas-
sifiers, RBFSVM, SVM with polynomial kernels of degrees 3 and 5,
CART, and k-NN are all good classification rules. We will select linear
classifiers because of their simplicity. . . . . . . . . . . . . . . . . . . 43

3.16 Penalized average errors of all classifiers for model M3. Linear clas-
sifiers, RBFSVM, SVM with polynomial kernels of degrees 3 and 5,
CART, and k-NN are all good classification rules. We will select linear
classifiers because of their simplicity. . . . . . . . . . . . . . . . . . . 43

3.17 Penalized average errors of all classifiers for model M4. For this diffi-
cult classification problem, linear classifiers and SVM with polynomial
kernels of degrees 3 and 5 are underfitting the data. We select SVM
with polynomial kernel of degree 2 and CART for proposed and clas-
sical methods, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 44

xii



4.1 Phenotypes of wild type and transgenic bananas on 2 and 30 days
post inoculation (dpi). On 2 dpi, there is no difference between wild
type and transgenic type. On 30 dpi, the wild type wilted whereas
transgenic one is still fresh. There are no phenotypical differences
between wild type and transgenic type banana on 14 dpi, and they
are not shown here. But from the analysis below, we find expression
profile differences at the molecular level. This implies that analysis
on genotype has the prediction power of showing differences between
bananas on different conditions, which is impossible through pheno-
typical visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Multidimensional scaling (MDS) plots. We can see that on day 2
samples from wild type Cavendish are not separated under control
and inoculated conditions, whereas samples of transgenic Bcl161 are
clearly separated under these conditions. All groups on day 14 are well
separated. We can also observe that the control group is very tightly
clustered, whereas the inoculated group is relatively heterogeneous. . 53

4.3 Sample distances cluster and heat map. We can see samples from
the same experimental condition are clustered together. On day 2
cultivar factor (wild type or transgenic) seems to be the dominate
factor; however, inoculation status (control or inoculated) becomes
important on day 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Heat maps for top 40 genes of the genotype and stress condition in-
teractions on Day 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Heat maps for top 40 genes of the genotype and stress condition in-
teractions on Day 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Classifier for the best pair of genes, GSMUA Achr9G20830 and
GSMUA Achr6G27580, in the discrimination of control and inocu-
lated stress conditions. Lower expression of both genes is a signature
for inoculated condition, whereas higher expression of both genes is a
signature for control condition. The estimated probability of error on
future data for this classifier is only about 1.81% . . . . . . . . . . . . 60

xiii



4.7 Gene set analysis methods. This figure first appears in [26]. While
ORA methods require that the input is a list of differentially expressed
genes, FCS methods use the entire data matrix as input. In addition
to functional annotations of a genome, PT-based methods utilize the
number and type of interactions between gene products, which may or
may not be a part of a pathway database. The result of every pathway
analysis method is a list of significant pathways in the condition under
study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Plant-Pathogen interaction pathway with highlighted DE genes. . . . 68

4.9 Plant hormone signal transduction pathway with highlighted DE genes. 69

4.10 Regulation of autophagy pathway with highlighted DE genes. . . . . 70

4.11 Sulfur relay system pathway with highlighted DE genes. . . . . . . . 70

4.12 SNARE interactions in vesicular transport with highlighted DE genes. 71

4.13 Protein processing in endoplasmic reticulum pathway with highlighted
DE genes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.14 Circadian rhythm pathway with highlighted DE genes. . . . . . . . . 72

4.15 Drought responsive gene validation in Arabidopsis. There is not much
difference between control Arabidopsis and mutant Arabidopsis (with
drought responsive gene homologue knocked out) with no treatment.
With drought stress applied, the control Arabidopsis wilted mildly,
whereas the mutant Arabidopsis wilted almost completely. . . . . . . 73

xiv



LIST OF TABLES

TABLE Page

3.1 Parameters used in the simulation study . . . . . . . . . . . . . . . . 28

4.1 The design table for drought experiment. “Cav” is Cavendish, the
wild type bananas; “Bcl” is Bcl161, the transgenic bananas. “Wtr”
denotes the watering control group (without drought stress); “Drt”
denotes drought (with drought stress). “D6” and “D8” are 6 and 8
days after applying drought stress. . . . . . . . . . . . . . . . . . . . 48

4.2 The design table for disease experiment. “Cav” is Cavendish, the
wild type bananas; “Bcl” is Bcl161, the transgenic bananas. “Ct”
denotes control group (without stress); “In” denotes inoculation (with
pathogen infection). “D2” and “D14” are 2 and 14 days after inoculation. 49

4.3 Gene functions of top 40 DE genes on day 2. Only those with anno-
tated functions are shown. . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Gene functions of top 40 DE genes on day 14. Only those with anno-
tated functions are shown. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Enriched gene sets and their descriptions for molecular functions (MF)
on day 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Enriched gene sets and their descriptions for molecular functions (MF)
on day 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Enriched gene sets and their descriptions for biological processes (BP)
on day 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Enriched gene sets and their descriptions for biological processes (BP)
on day 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Enriched gene sets and their descriptions for cellular components (CC)
on day 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Enriched gene sets and their descriptions for cellular components (CC)
on day 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xv



1. INTRODUCTION

1.1 Background

The classification error or simply the error rate is the ultimate measure of the

performance of a classifier [22]. Competing classifiers can also be evaluated based on

their error probabilities. While it is easy to define the probability of error in terms of

the feature-label distributions, it is very difficult to obtain a closed-form expression

except in simple cases. In practice, the error rate must be estimated from the avail-

able data. Researchers in pattern recognition have proposed several error estimation

methods. Resubstitution method is fast, but tends to be optimistically biased and

especially so when sample size is small. Cross-validation method has lower bias, but

is highly variable. By generate many bootstrap samples, 0.632 bootstrap method has

lower bias, but is very computationally demanding [6]. Bolstered resubstitution is a

simple and fast error estimation method that has been shown to perform better than

cross-validation and comparably with bootstrap in small-sample settings. However,

it has been observed that its performance can deteriorate in high-dimensional fea-

ture spaces. To overcome this issue, we propose here a modification of bolstered error

estimation based on the principle of Naive Bayes. We call it naive-Bayes bolstered

error estimator.

Model selection is the task of choosing a model that is expected to do the best

on the test data. It estimates the performance of different models in order to choose

the best one [19]. Typically the performance of models are characterized by their

error rate and model complexity. Specifically they try to achieve a trade-off between

minimal apparent error and minimal complexity by minimizing complexity penal-

ized loss, which is the sum of a resubstitution error term and a complexity control

1



term. If we are in a data-rich situation, we can randomly divide the dataset into

three parts: a training set, a validation set, and a test set. The training set is used

to fit the models; the validation set is used to estimate prediction error for model

selection; the test set is used for assessment of the generalization error of the final

chosen model. However, in practice, such as in genomics applications, we only have

small size datasets. We cannot afford to split the dataset into these three parts. The

methods machine learning researchers and practitioners typically used approximate

the validation step either analytically (AIC, BIC, MDL, SRM) or by efficient sample

re-use (cross-validation and the bootstrap). We know that any good error estimate

can be converted into a data-based penalty function and performance of the estimate

is governed by the quality of the error estimate [3]. Because bolstered resubstitu-

tion is a better error estimate than resubstitution in small-sample settings, in this

article we replace the resubstitution error with bolstered resubstitution to do model

selection. Computer simulations indicate that the proposed method improves the

performance of model selection in terms of choosing the correct model complexity.

Besides error estimation and model selection problems in small-sample settings,

we also work on a practical “big data” banana stress response project. Bananas

are the world’s most important fruit; they are a vital component of local diets in

many countries. More than 100 million metric tons are harvested annually, and

it is the fourth most valuable food after rice, wheat and milk. As global climate

changes become increasingly erratic, drought becomes a major threat in banana

production. Besides drought, a new strain of the pathogen causing Panama disease,

Fusarium oxysporum f.sp. cubense designated as Tropical Race 4 (TR4), threatens

global banana production as well, and could potentially wipe out all the bananas in

the world we are consuming right now. The industry is so worried about it that it

moved this year’s International Banana Congress (2016) from Costa Rica to Miami

2



at the last minute so that attendees wouldn’t transport the disease to the region

with the contaminated dirt on their shoes. Because important banana cultivars are

sterile and do not set seed, the conventional banana breeding methods have been

confronted with several significant hurdles. One of the viable alternatives to classical

breeding is the use of molecular-based approaches via DNA-mediated transformation.

To generate disease and drought tolerant bananas, we need to identify disease and

drought responsive genes and pathways. Towards this goal, we conducted RNA-Seq

analysis with wild type and transgenic banana, with and without inoculation/drought

stress, and on different days after applying the stress. We identified stress induced

genes and validated them in Arabidopsis. The promising results suggest that we

should test these genes in bananas.

1.2 Organization

This dissertation is organized as follows.

In Section 2, we introduce naive Bayes bolstered error estimation. We investigate

the properties of this error estimator in terms of bias, variance and RMS using real

breast cancer data and popular classification rules. Results show that this achieves

better performance than other error estimators.

In Section 3, we apply bolstered error estimate to model selection. We show that

it can choose the proper model given the data, but classical model selection method

cannot. It is especially useful in genomic applications.

In Section 4, we analyze banana RNA-Seq expression data and identify biotic

and abiotic responsive genes and pathways. These genes were tested in mutant

Arabidopsis, and the results are promising.

Finally, Section 5 contains concluding remarks and directions for future research.
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2. NAIVE-BAYES BOLSTERED ERROR ESTIMATION∗

Bolstered resubstitution is a simple and fast error estimation method that has

been shown to perform better than cross-validation and comparably with bootstrap

in small-sample settings. However, it has been observed that its performance can

deteriorate in high-dimensional feature spaces. To overcome this issue, we propose

here a modification of bolstered error estimation based on the principle of Naive

Bayes. While in ordinary bolstered error estimation a single variance parameter

is estimated for a spherical bolstering kernel, we employ here elliptical kernels and

estimate each univariate variance separately along each variable. This estimator is

simple to compute and is reducible under feature selection; i.e., it can be computed

directly on the reduced feature space. In experiments using popular classification

rules applied to data from a well-known breast cancer gene expression study, the

new bolstered estimator outperformed the old one, as well as cross-validation and

resubstitution, in high-dimensional target feature spaces (after feature selection); it

was superior to the 0.632 bootstrap provided that the sample size was not too small.

2.1 Introduction

The emergence of “big data” applications, where a very large number of measure-

ments are available, has created challenges in the application of pattern recognition

methods, due to the “curse of dimensionality” phenomenon. It has meant that pat-

tern recognition methods must face high-dimensional spaces under comparatively

small sample sizes. This is the case, for instance, of high-throughout measurements

∗Part of this section is reprinted with permission from “A Naive-Bayes approach to Bolstered error
estimation in high-dimensional spaces” by Xingde Jiang and Ulisses Braga-Neto, 2014, IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, December 3–5, 2014,
pp 1398–1401, c© 2014 IEEE.
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of molecular profiles in the field of Genomics [34].

With regards to error estimation for pattern recognition [7], which is our in-

terest in the present work, high-dimensionality and comparatively small sample

sizes make it hard for an error estimator to achieve small bias and small variance

simultaneously—for example, resubstitution generally has small variance but tends

to be quite optimistically biased, while cross-validation has small bias, but tends

to display high variance [6]. Bolstered error estimation [5] attempts to achieve a

compromise to this trade-off; it is based on the idea of modifying (“bolstering”) the

empirical distribution of the data by placing kernels at each data point and then

estimating classifier error by the error committed on this bolstered empirical dis-

tribution. Bolstered error estimation has shown good performance when compared

with popular error estimators in small-sample settings [5, 32].

A key aspect of the bolstering method is selecting the bolstering kernel and

estimating its variance. The original bolstering method proposed the use of spherical

kernels and a non-parametric estimator for a single variance parameter to scale the

kernels. This was found empirically to work well in low-dimensional feature spaces [5].

Unfortunately, performance was found to degrade under high dimensionality of the

feature vector [33]. A calibration method was proposed for addressing this problem

in [33], which derives empirically a kernel scaling factor to optimize performance.

In this paper, we propose a simpler and more direct approach to address this

issue. The new error estimator is based on the principle of Naive Bayes [12]: rather

than attempting to estimate a single variance parameter for a spherical bolstering

kernel in high-dimensional spaces from a small sample, we assume elliptical kernels

and estimate each univariate variance separately along each variable. In numerical

experiments with real gene-expression data from a breast cancer study, and several

commonly-used linear and nonlinear classification rules, the new bolstered estimator
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outperformed the old one, as well as cross-validation and resubstitution, in high-

dimensional target feature spaces (after feature selection); it was superior to the

0.632 bootstrap provided that the sample size was not too small. We remark that

part of this paper was previously published as an extended abstract in [23].

2.2 Bolstered Error Estimation

This section presents a summary of the definitions and results in [5] that are

relevant to the present discussion (see also [7]).

2.2.1 Basic Definitions

In two-group statistical pattern recognition, there is a feature vector denoted

by X = (X1, . . . , Xd) ∈ Rd and a label Y ∈ {0, 1}. The pair (X, Y ) has a joint

probability distribution F , which is unknown in practice. Hence, one has to resort to

designing classifiers from training data, which we assume here to consist of a random

sample Sn = {(X1, Y1), . . . , (Xn, Yn)} of vector-label pairs drawn from the feature-

label distribution, meaning that the pairs (Xi, Yi) are independent and identically

distributed according to F . Let ψn denote a classifier designed from the training

data Sn. The error rate committed by the classifier on future data is given by:

εn = EF [|Y − ψn(X)|] . (2.1)

In the absence of knowledge of F (and an absence of test data), the error rate εn

must be estimated from the training data. The simplest training-data error estimator

is the apparent error, or resubstitution [35], given by

ε̂ rn =
1

n

n∑
i=1

|Yi − ψn(Xi)|. (2.2)
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This is just the error rate committed by the classifier on the training data itself. An

alternative way to look at resubstitution is as the classification error according to

the empirical distribution F ∗ for the pair (X, Y ), which is given by the probability

mass function P (X = xi, Y = yi) = 1
n
, for i = 1, . . . , n. It is easy to see that the

resubstitution estimator is given by

ε̂ rn = EF ∗ [|Y − ψn(X)|] . (2.3)

2.2.2 Bolstered Resubstitution Estimator

The main concern with resubstitution is that it is generally, but not always,

optimistically biased; that is, typically, E[ε̂ rn− εn] < 0. This optimistic bias tends to

become unacceptably large in high-dimensional feature spaces under comparatively

small sample sizes. If one spreads out the probability mass put on each point by the

empirical distribution, bias is reduced because some of the points correctly classified,

but near the decision boundary, will have some of their mass go to the erroneous side

of the boundary, and so their contribution to the error will increase. To formalize

the idea of “spreading the probability mass”, consider a d-variate probability density

function f �i , called a bolstering kernel, for i = 1, . . . , n. The bolstered empirical

distribution F � places a bolstering kernel on each training point, yielding the mixture

probability density function

f �(x, y) =
1

n

n∑
i=1

f �i (x−Xi)IYi=y. (2.4)

The bolstered resubstitution error estimator [5] is obtained by replacing F ∗ by F �

in (2.3):

ε̂ br
n = EF � [ |Y − ψn(X)|] (2.5)
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The following result provides an equivalent computational expression for the bol-

stered resubstitution error estimator [7].

Theorem 1 Let Aj = {x ∈ Rd | ψn(x) = j}, for j = 0, 1, be the decision regions

for the designed classifier ψn. Then the bolstered resubstitution error estimator can

be written as

ε̂ br
n =

1

n

n∑
i=1

(∫
A1

f �i (x−Xi) dx IYi=0 +

∫
A0

f �i (x−Xi) dx IYi=1

)
. (2.6)

Equation (2.6) extends a similar expression proposed in [27] in the context of

Linear Discriminant Analysis (LDA). Computation of the integrals in (2.6) in general

requires a Monte-Carlo approach [5].

2.2.3 Gaussian Bolstering

Computation of the integrals in (2.6) can be performed exactly if the designed

classifier is linear,

ψn(x) =


1 , aTnx+ bn ≤ 0 ,

0 , otherwise,

(2.7)

where an ∈ Rd and bn ∈ R are sample-based coefficients (e.g., this is the case of

LDA, Perceptrons, Linear Support Vector Machines), and the bolstering kernels are

zero-mean multivariate Gaussian,

f �i (x) =
1√

(2π)d det(Ci)
exp

(
−1

2
xTC−1i x

)
, (2.8)

where the kernel covariance matrix Ci can in principle be distinct at each training

point Xi. This is shown by the following theorem [7].
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Theorem 2 Consider a linear design classifier ψn as in (2.7) and zero-mean mul-

tivariate Gaussian bolstering kernels as in (2.8). The bolstered resubstitution error

estimator in (2.6) can be written as

ε̂br
n =

1

n

n∑
i=1

(
Φ

(
−aTnXi + bn√

aTnCian

)
IYi=0 + Φ

(
aTnXi + bn√

aTnCian

)
IYi=1

)
, (2.9)

where Φ(x) is the cumulative distribution function of a standard N(0, 1) Gaussian

random variable.

2.2.4 Kernel Fitting Procedure

Selecting the correct amount of bolstering, that is, the “size” of the bolstering

kernels, is critical for estimator performance. We outline next a simple nonparametric

procedure for adjusting the kernel size using the sample data, which was proposed

in [5]. Let the kernels be given by zero-mean multivariate probability densities, not

necessarily Gaussian, with covariance matrices Ci for each training point Xi, for

i = 1, . . . , n. In order to estimate the covariance matrices Ci from small-sample

data, restrictions have to be imposed on them. First, a natural assumption is to

make all kernel densities, and thus covariance matrices, equal for training points

with the same class label: Ci = D0 if Yi = 0 or Ci = D1 if Yi = 1. This reduces the

number of parameters to be estimated to 2d(d+ 1).

In [5], it is assumed that D0 = σ2
0Id and D1 = σ2

1Id, which corresponds to

spherical kernels with variances σ2
0 and σ2

1, respectively. This reduces the problem

to estimating only two parameters, namely, σ2
0 and σ2

1, which proceeds as follows.

First, the true mean distance d0 and d1 among points from populations Π0 and

Π1, respectively, are estimated by the sample-based mean minimum distance among
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points from each population:

d̂j =
1

nj

n∑
i=1

 min
i′=1,...,n
i′ 6=i,Yi′=j

{||Xi −Xi′||}

 IYi=j , j = 0, 1. (2.10)

The basic idea is to let the kernel standard deviation σj be proportional to the

estimated mean distance d̂j, for j = 0, 1. This procedure is justified by a bias

argument: plain resubstitution is optimistically biased because the “test points”

in (2.2) are equal to the training points, so that they are at distance zero from the

training data. Setting the variance of the kernel as explained previously is an attempt

to reduce the bias to zero by placing the “test points” at a “correct distance” from

the training data. This is accomplished by setting

σj =
d̂j
ακd

, j = 0, 1 . (2.11)

where ακd = F−1R (κ) is the κ×100% percentile of the random variable R corresponding

to the distance of a point randomly selected from a unit spherical kernel density

D = Id to its origin. The parameter 0 < κ < 1 could be fine-tuned for optimal

performance; the fixed value κ = 1/2 is used in [5] and also adopted here. This choice

implies that half of the probability mass (i.e., half of the test points) of the bolstering

kernel will be farther from the center than the estimated mean distance and the other

half will be nearer. Notice that, as sample size increases, at a fixed dimensionality d

and parameter κ, d̂j, shrinks to zero (under minor smoothness conditions) and, from

(2.11), so does σj, for j = 0, 1. In other words, in the limit the kernels converge to

degenerate distributions of variance zero centered at each training point, so that the

bolstered resubstitution reverts to plain resubstitution. The rationale is that with a

larger sample size, resubstitution is less biased, in general, and thus less bolstering
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is necessary. In the limit, no bolstering is needed. Division by ακd in (2.11) can be

viewed as a type of “dimensionality correction”, which adjusts the estimated mean

distance to account for feature space dimensionality.

In the spherical Gaussian case, the distance random variable R is distributed as

a chi random variable with d degrees of freedom, with density given by [15]

fR(r) =
21−d/2rd−1e−r

2/2

Γ(d
2
)

, (2.12)

where Γ denotes the gamma function. For d = 2, this becomes the well-known

Rayleigh density. The cumulative distribution function FR can be computed by nu-

merical integration of (2.12) and the percentile ακd = F−1R (κ) can be found by a simple

binary search procedure (using the fact that cumulative distribution functions are

monotonically increasing). With κ = 1/2, the first few values of the dimensionality

constant are α
1/2
1 = 0.674, α

1/2
2 = 1.177, α

1/2
3 = 1.538, α

1/2
4 = 1.832, α

1/2
5 = 2.086.

2.3 Naive-Bayes Bolstered Resubstitution

The previous kernel fitting method based on spherical bolstering kernels was

found empirically to work very well at low dimensionality d, producing a nearly

unbiased, low-variance bolstered error estimator [5, 32]. However, with increasing

dimensionality d, it has been observed that the estimator quickly becomes biased [33].

The main contribution of the present paper is to address this problem by proposing a

novel kernel fitting procedure, which may render the bolstered estimator suitable for

both small sample sizes and high-dimensional feature spaces. The idea is to employ

elliptical kernels with diagonal covariance matrices D0 and D1 and the so-called

“Naive Bayes principle”, which decouples high-dimensional problems into a series

of univariate problems along each variable [13]. While having diagonal covariance

matrices appears to make the estimation problem more difficult by increasing the

11



number of parameters to be estimated to 2d, each variance along the diagonal of

the covariance matrices is estimated separately along its own direction, which makes

estimation more data-efficient in high-dimensional spaces; this is an application of

the Naive Bayes Principle.

To formalize the discussion, let σ2
01, . . ., σ

2
0d and σ2

11, . . . , σ
2
1d be the variances

along the diagonals of D0 and D1, respectively. We propose to estimate the kernel

variances σ2
0k and σ2

1k separately for each direction k, using the univariate data Snk =

{(X1k, Y1), . . ., (Xnk, Yn)}, for k = 1, . . . , d, where Xik is the kth feature (component)

in vector Xi. Following (2.10), the mean minimum distance along direction k is

d̂jk =
1

nj

n∑
i=1

 min
i′=1,...,n
i′ 6=i,Yi′=j

{||Xik −Xi′k‖|}

 IYi=j , j = 0, 1 . (2.13)

and, following (2.11), the kernel standard deviations are set to

σjk =
d̂jk
ακ1

, j = 0, 1 , k = 1, . . . , d . (2.14)

With κ = 1/2 and Gaussian bolstering kernels, this yields σjk = d̂jk/0.674, for

j = 0, 1, k = 1, . . . , d. See Figure 2.1 for an illustration of bolstering resubstitution

with elliptical kernels.

2.4 Bolstering in the Presence of Feature Selection

Using more features can achieve greater discrimination between the populations,

but too many features when designing a classifier from sample data may result in

an increase of the expected classification error—this is the well-known “curse of

dimensionality” or “peaking phenomenon” [20, 21]. This motivates the use of feature

selection, whereby among all D features, a subset of d < D features is selected as part
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Figure 2.1: Bolstered resubstitution for LDA classifier with elliptical bolstering ker-
nels. The area of each shaded region divided by the area of the associated ellipse is
the contribution to the error made by a sample point. The bolstered error estimate
is the sum of all contributions divided by the number of points.

of the classifier design process, and the final classifier is defined on these d features

only.

Since the process of feature selection is part of the classification design process,

error estimators must by default be applied in the original feature space RD, i.e.,

all D features must be preserved for error estimation. An error estimator is said to

be reducible if computing the error estimate using the d selected features produces

the same result as employing all D features [7]. This implies that a reducible error

estimator does not require knowledge about the features that are not chosen in the

feature selection step; if these unselected features were to be deleted, it would still

possible to apply a reducible error estimator to the reduced data, but it would not

be possible to apply a nonreducible one.

The simplest example of a reducible error estimator is resubstitution: computing
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the error committed on the training data by the designed classifier yields the same

result whether one uses the d selected features or all D features (in which case the

D − d extra features are simply ignored). The classical example of a nonreducible

error estimator is cross-validation. Take for example leave-one-out: at each iteration,

when a sample point is removed from the sample, a new classifier must be computed

on the remaining n − 1 sample points starting from the original feature space RD

and performing feature selection again (which is sometimes called “external cross-

validation”). Performing this process on the reduced feature space Rd is a mistake,

and introduces “selection bias” [1].

Let ε̂br,D
n and ε̂br,d

n denote the bolstered estimator computed in the original

and reduced feature spaces, respectively. The bolstered estimator is reducible if

ε̂br,D
n = ε̂br,d

n . We will show below that Naive-Bayes bolstered resubstitution with

elliptical Gaussian kernels is a reducible error estimator, whereas the original bol-

stered resubstitution estimator with spherical Gaussian kernels is not. First note

that in both cases, the kernel covariance matrices Ci are diagonal, so that the kernel

variables are independent and we can write

f♦,Di (x) = f♦,di (x)f♦,D−di (x) , for x ∈ RD, i = 1, . . . , n , (2.15)

where f♦,Di (x), f♦,di (x), and f♦,D−di (x) denote the densities in the original, reduced,

and difference feature spaces, respectively. For a given set of kernel densities satis-
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fying (2.15), we have

ε̂br,D
n =

1

n

n∑
i=1

(
Iyi=0

∫
A1

f♦,di (x−Xi)f
♦,D−d
i (x−Xi) dx

+ Iyi=1

∫
A0

f♦,di (x−Xi)f
♦,D−d
i (x−Xi) dx

)

=
1

n

n∑
i=1

(
Iyi=0

∫
Ad

1

f♦,di (x−Xi) dx

∫
RD−d

f♦,D−di (x−Xi) dx

+ Iyi=1

∫
Ad

0

f♦,di (x−Xi) dx

∫
RD−d

f♦,D−di (x−Xi) dx

)

=
1

n

n∑
i=1

(
Iyi=0

∫
Ad

1

f♦,di (x−Xi) dx + Iyi=1

∫
Ad

0

f♦,di (x−Xi) dx

)
.

(2.16)

that is, the integrals necessary for the computation of the bolstered resubstitution

estimator in the original space can be computed in the reduced space.

While (2.16) could provide an important computation-saving device, it does not

by itself imply that ε̂br,D
n = ε̂br,d

n . This additionally depends on the way that the

kernel densities are adjusted to the sample data. In the case of the usual method for

adjusting the variance of spherical kernel densities, both the mean distance estimate

and dimensional constant change between the original and reduced feature spaces,

rendering ε̂ br,D
n 6= ε̂br,d

n , in general. However, the “Naive Bayes” method of fitting

kernel densities produces the same kernel variances in both the original and reduced

feature spaces, so that ε̂br,D
n = ε̂br,d

n , and the estimator is reducible.

2.5 Numerical Experiment

We report in this section the results from a simulation study based on real data

from a breast cancer gene expression study [36], which retrospectively analyzed 295

tumor samples using gene-expression microarrays containing a total of 25760 tran-

scripts each. Filter-based feature selection was performed by the authors of the study
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resulting in a 70-gene prognosis profile, previously published in [37]. Classification

is between the log-ratio gene expression values in the good-prognosis class (115 sam-

ples), defined by survival over 5 years, and the poor-prognosis class (180 samples),

defined by survival under 5 years.

We evaluated the performance of the proposed Naive-Bayes bolstered resubsti-

tution estimator (BRnew) against that of the resubstitution estimator (resub), the

10-fold cross-validation estimator averaged over 10 repetitions (cv10) [6], the 0.632

bootstrap error estimator (bs632) [14], and the usual bolstered resubstitution with

spherical kernels (BRold). Four well-known classification rules are used in our ex-

periments: Linear Discriminant Analysis (LDA), the Linear Support Vector Machine

(LSVM), a nonlinear SVM with the radial-basis function kernel (RBFSVM), and the

3-nearest neighbor classifier (3NN)—see [? ] for the definition of these classification

rules.

The simulation was carried in a similar way as in [6]. A total of 1000 training sets

of sample size n = 20 and n = 40 were drawn independently and randomly from the

pool of 295 microarrays. For each training set, we used the 2-sample t-test statistic to

select a number of genes, varying from d = 2 to d = 15, out of the 70 original genes,

and designed each classifier on the selected features. The true error of each classifier

was approximated by means of a holdout estimator, whereby the 295 − n sample

points that are not part of the training set are used as the test set (this is a very

good approximation to the true error, given the large test sample). In addition, each

error estimation rule is applied on the training data set to produce an error estimate.

Therefore, for each combination of classification rule, error estimator, sample size,

and feature set size, one obtains a set of 1000 pairs of “true” and estimated errors

(ε1, ε̂1), . . . , (ε1000, ε̂1000). These are used to compute Monte-Carlo estimates of bias,
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root mean-square error (RMS), and (deviation) variance as follows:

Bias = E[ε̂− ε] ≈ 1

1000

1000∑
i=1

(ε̂i − εi)

RMS =
√
E[(ε̂− ε)2] ≈

√√√√ 1

1000

1000∑
i=1

(ε̂i − εi)2

Variance = Var(ε̂− ε) = RMS2 − Bias2

(2.17)

In addition, we obtained an approximation to the deviation distribution of each error

estimator, i.e., the distribution of the difference ε̂− ε [6], by computing Beta density

fits to the 1000 sample difference values. The deviation distribution is additionally

visualized by box plots of the 1000 sample difference values.

As remarked in [6], the 1000 simulated training data sets overlap and thus are not

truly independent samples, so that there is a degree of inaccuracy in the computation

of the metrics described above. However, for small sample sizes out of a pool of 295

sample points, the amount of overlap between samples is small with high likelihood;

for example, the probability that two samples of size n = 20 will overlap by 3 or

fewer points is over 95%, with a mean overlap of 1.425 points; while two samples

of size n = 40 will overlap by at most 9 points with probability 96%, with a mean

overlap of 5.701 points [6]. Hence, as long as n is small, the simulated training sets

are only weakly dependent, so that the resulting approximations can be considered

to be accurate enough for the purposes of comparison between the various error

estimators.

Figures 2.2 and 2.3 display the bias, variance, and RMS of the different error

estimators and classification rules as a function of dimensionality of selected feature

set, for sample sizes n = 20 and n = 40, respectively. Several facts become apparent.
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First, we notice that resubstitution is highly negatively biased and cross-validation

is highly variable at these small sample sizes, which is well-known and expected

behavior [6], while the bootstrap and bolstered error estimators tend to have much

better bias and variance properties. Regarding the comparison between the “old”

(classical) and “new” (Naive-Bayes) bolstered error estimators, we can see that the

new estimator outperforms the old one in RMS in all cases, especially when the

sample size is not too small (i.e. in the case n = 40). The difference in performance

between the two bolstered error estimators is highest for the SVM classifiers. As

for the comparison between bolstering and the bootstrap estimator, we verify the

statement made in [5] that bolstered resubstitution is competitive with the bootstrap

(though usually being much less computationally expensive), except in the case of the

LDA classification and small d; i.e., a low-dimensional target feature space, with more

constraint on the classification rules, when bootstrap does very well. But we observe

that the new Naive-Bayes bolstered resubstitution can significantly outperform the

bootstrap with large d, i.e., in high-dimensional target feature spaces, with less

constraint and thus more complexity in classifier design, and sample size that is

not too small (n = 40).

Figures 2.4 and 2.5 display the Beta-fit plots and boxplots of the deviation be-

tween true and estimated errors, for d = 15 selected features, when the Naive-Bayes

bolstering perform the best, and sample sizes n = 20 and n = 40, respectively. These

plots confirm the observations made previously about the large bias of resubstitution

and large variance of cross-validation, and the competitive performance of bolstering

and bootstrap, with a small but significant superiority of the former in terms of bias

and variance, except in the single instance of the LDA classification rule with n = 40.
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Figure 2.2: Bias, variance, and RMS as a function of dimensionality of selected fea-
ture set for sample size n = 20 and different classification rules. Classification rules:
LDA (first row), 3NN (second row), Linear SVM (third row), Radial-Basis Function
SVM (fourth row). Error estimators: resubstitution (red), 10-fold cross-validation
estimator averaged over 10 repetitions (black), 0.632 bootstrap (orange), bolstered
resubstitution with spherical kernels (cyan), Naive-Bayes bolstered resubstitution
(magenta).
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Figure 2.3: Bias, variance, and RMS as a function of dimensionality of selected
feature set for sample size n = 40 and different classification rules.
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Figure 2.4: Beta-fit plots and boxplots of deviation between true and estimated
errors, for sample size n = 20, d = 15 selected features, and different classification
rules.
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Figure 2.5: Beta-fit plots and boxplots of deviation between true and estimated
errors, for sample size n = 40, d = 15 selected features, and different classification
rules.
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2.6 Conclusions

There is no universal error estimator rule that performs the best for every data

set, since each data set follows a different feature-label distribution and also data

samples from it are quite variable, especially for small sample size n. What one tries

to do is to achieve a reasonable compromise between accuracy (bias and variance),

and computational complexity. Bolstered error estimation was previously found to

achieve such compromise, except that its performance was found to degrade under

a large dimensionality of the feature vector. In this paper, we proposed a new

family of bolstering kernels that follow the principle of Naive-Bayes: they replace

the problem of a difficult estimation in high-dimensional space by several easier

estimation problems in a low-dimensional one. Such an estimator is very fast and

has the advantage of being reducible under feature selection. Its performance was

tested on real data from a gene-expression study and found to be superior to that of

the original bolstered resubstitution estimator under large dimensionality, in terms

of bias, variance, and RMS, as well as the 0.632 bootstrap error estimator if sample

size is not too small.
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3. MODEL SELECTION USING BOLSTERED ERROR ESTIMATION

Model selection algorithms can figure out how to choose an appropriate model

for pattern recognition problems. Most model selection criteria try to achieve a

trade-off between minimal apparent error and minimal complexity by minimizing

complexity penalized loss, which is the sum of a resubstitution error term and a

complexity control term. We know that any good error estimate can be converted

into a data-based penalty function and performance of the estimate is governed by

the quality of the error estimate. Because bolstered resubstitution is a better error

estimate than resubstitution in small-sample settings, in this article we replace the

resubstitution error with bolstered resubstitution to do model selection. Computer

simulations indicate that the proposed method improves the performance of model

selection in terms of choosing the correct model complexity.

3.1 Introduction

Model selection is the task of choosing a model that is expected to do the best

on the test data. It estimates the performance of different models in order to choose

the best one [19]. After choosing a final model, we do model assessment, that is,

estimate its prediction error on new data. If we are in a data-rich situation, we can

randomly divide the dataset into three parts: a training set, a validation set, and

a test set. The training set is used to fit the models; the validation set is used to

estimate prediction error for model selection; the test set is used for assessment of

the generalization error of the final chosen model. However, in practice, such as in

genomic applications, we only have small size datasets. We cannot afford to split

the dataset into these three parts. The methods machine learning researchers and

practitioners typically used approximate the validation step either analytically (AIC,
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BIC, MDL, SRM) or by efficient sample re-use (cross-validation and the bootstrap).

The fundamental aspect of model selection is to balance the trade-off between bias

and variance. For a simple model, we have large bias and small variance. However, for

a complex model, we have small bias and large variance. Most model selection criteria

try to minimize the sum of an error term and a complexity control term, that is, the

penalized loss minimization. From [3], we know that any good error estimate can

be converted into a data-based penalty function and performance of the estimate is

governed by the quality of the error estimate. The error term is typically the training

error, that is, resubstitution error. Since the bolstered resubstitution is a better error

estimate [5, 7, 23], especially in small-sample settings, we replace the training error

with bolstered resubstitution in the penalized loss to do model selection. Computer

simulations indicate that the proposed method improves the performance of the

model selection in terms of choosing the correct model complexity.

In the following sections, we will refer to the model selection method using resub-

stitution error as the classical method, and the one using bolstered resubstitution as

the proposed method.

3.2 Why Bolstered Resubstitution Works Better

We first use a toy example to show why bolstered resubstitution is advantageous.

In Figure 3.1, the red and blue lines represent two linear classifiers. If we use resub-

stitution error, both classifiers classify 2 samples incorrectly. We can choose either

one as our final classifier. However, if we use bolstered resubstitution error estimate,

the red one commits 1.6 samples error, and the blue one commits 1.75 samples error

(To see how they are calculated, refer to Figure 2.1). We will choose the red one as

our final classifier. Therefore, we turn an indistinguishable model selection problem

to a distinguishable one by replacing resubstitution by bolstered resubstitution.
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Figure 3.1: An toy example of model selection showing bolstered resubstitution is
better than resubstitution. Note that resubstitution errors for both the red and
blue linear classifiers are 2 samples. However, the bolstered resubstitution errors are
1.6 and 1.75 samples, respectively. Therefore, we turn an indistinguishable model
selection problem to a distinguishable one by replacing resubstitution by bolstered
resubstitution.
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More formally, as in [3], the penalized loss is

Ln(f̂k) = Rn,k +
2 log k

n
, (3.1)

where Rn,k is an error estimate of the classifier f̂k from classification rule Fk. n is

the sample size. For linear classifiers, k is the number of parameters, which is the

same as the VC dimension VC of the model. For non-linear classifiers, k is the model

complexity, approximating VC dimension. For k-NN classification rule, VC = ∞.

Here, we use an empirical VC(k) = n
k

1

n
1
5

mentioned in [8]. For CART, VC = 2k, where

k is the number of levels of the tree. For RBFSVM, VC = ∞, and here we use n,

the sample size, as its empirical VC. For SVM with a polynomial kernel of degree p,

VC(p) =
(
d+p−1
p

)
+ 1 [7].

The penalized loss Ln(f̂k) is not usually of direct interest. But for a comparison

between models, it is convenient and can lead to effective model selection. The reason

is that the relative rather than absolute size of the error is what matters [19].

Rn,k can be resubstitution and bolstered resubstitution error estimates, as shown

in Figure 3.1. In the examples below we use synthetic data to compare the two model

selection methods.

3.3 Numerical Experiments

The numerical experiments consist of two parts. The first part is on model

selection through feature selection. Here, among the same learning models with

different complexities or parameters (selected feature size), we select the best one.

For linear classifiers, the classifier complexity is controlled by the number of features

we choose. Actually, the Vapnik Chervonenkis (VC) dimension of a linear classifier

in k dimensional space is k + 1 [9]. We also consider non-linear classifiers of fixed

complexity such as 3NN. While their VC dimension is typically infinite, we can still
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use them to do feature selection through which we control the complexity of the

classification problem. The second part is on model selection of different learning

models, and we choose the best learning model.

3.3.1 Model Selection by Feature Selection

We generate n synthetic data samples from a two-class Gaussian model in d = 20

dimensions with equally likely classes 0 and 1. The features of those data have two

parts. The first part is d0 real marker features. These markers have means −δ and

δ for class 0 and class 1, respectively. The second part is d − d0 noisy features.

They have zero means for both classes. The covariance matrix is an identity matrix,

Σ0 = Σ1 = I, and it is the same for both marker and noisy features.

We choose LDA, LSVM and 3NN as our classification rules. From the data, we

select k features to design the classifier, estimate the error using resubstitution and

bolstered resubstitution, and calculate the penalized loss by means of ( 3.1). We

enumerate the selected feature size k from 1 to d, and choose the one which results

in a minimum penalized loss. The detailed simulation parameters are displayed in

Table 3.1.

Table 3.1: Parameters used in the simulation study

sample size n 50

feature size d 20

marker size d0 3, 4

selected feature size k 1, 2, . . . , 20

classification rules LDA, LSVM, 3NN

error estimators resubstitution, bolstered resubstitution
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3.3.1.1 Experiment Results

In Figure 3.2, we compare the two model selection methods with LDA classifiers,

sample size n = 50, feature size d = 20, marker size d0 = 3. The proposed method

on the top selects the correct model complexity. The classical method on the bottom

does not select the correct model complexity. The advantage of the proposed method

in choosing the correct feature numbers also shows up in Figure 3.3 for 3NN classifiers.

Above, we have demonstrated the advantage of the proposed method, but that is

for one specific data set. Next, we try to get the average performance by repeating the

same experiment for 100 times. For each time, we generate a set of new independent

data. In Figure 3.4, we show the histogram of the selected model complexity for these

two methods. We also calculate the mean deviation of the chosen model complexity

from the true model complexity. The proposed method achieves a mean model

complexity deviation of 0.38, whereas the classical method gets 1.4. This shows that

the proposed method improved the performance from 8% to 65% in terms of choosing

the correct model complexity on average. For 3NN classifiers, the histogram is shown

in Figure 3.5, where the proposed method is better than classical method as well.

3.3.2 Model Selection of Different Learning Models

In last Section 3.3.1, we select models of the same class with different complexities

or parameters, specifically different numbers of selected features. In this section, we

fix the dimension of the data and compare the performance of different classifier

classes with different complexities. The performance is measured by resubstitution

and bolstered resubstitution error estimates. We choose the classifier which gives us

the least penalized error rate.
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Figure 3.2: An example of model selection comparison. It shows how the training
error (blue curve), the model complexity (green curve), and the complexity penalized
error (red curve) change with respect to selected feature size k. We compare two
model selection methods with LDA classifiers, sample size n = 50, feature size d = 20,
marker size d0 = 3. The upper part shows the proposed method, and the lower part
shows the classical method. The proposed method selects the correct model, while
the classical method does not.
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Figure 3.3: An example of model selection comparison. It shows how the training
error (blue curve), the model complexity (green curve), and the complexity penalized
error (red curve) change with respect to selected feature size k. We compare two
model selection methods with 3NN classifiers, sample size n = 50, feature size d = 20,
marker size d0 = 3. The upper part shows the proposed method, and the lower part
shows the classical method. The proposed method selects the correct model, while
the classical method does not.
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Figure 3.4: Histograms of selected model complexity for proposed and classical meth-
ods with LDA classifiers. The true model complexity is 3. The proposed method
achieves a mean model complexity deviation of 0.38, which is smaller than 1.4, the
mean model complexity deviation of the classical method. The proposed method
improved the performance from 8% to 65% in terms of choosing the correct model
complexity on average.
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Figure 3.5: Histograms of selected model complexity for proposed and classical meth-
ods with 3NN classifiers. The true model complexity is 3. The proposed method
achieves a mean model complexity deviation of 0.37, which is smaller than 1.58, the
mean model complexity deviation of the classical method.
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3.3.2.1 Data Models and Classifiers Compared

For genomic data the dimensionality is (much) larger than the training sample

size (d � n). Hall [17] analyzed asymptotic properties of high-dimensional data

for the binary classification setting, under the assumption that input variables are

“nearly independent”. This analysis suggests that samples from each class are the

vertices of a regular simplex in d-dimensional space. When applying linear classifiers,

we can expect that data are linearly separable. Therefore, out of the 4 data models

considered here, M1, M2, M3 are more or less linearly separable. To further inves-

tigate properties of the proposed method, we also consider a non-linearly separable

model M4.

In data model M1, we generate two-class Gaussian data in 2 dimensions. The

covariance matrices are equal, with Σ0 = Σ1 = I. In model M2, the covariance

matrices are different, with Σ0 = I and Σ1 = c × I, where c is a scaling factor. In

model M3, each class is comprised of two blobs, that is, it is a mixture of Gaussian.

But the class is more or less linearly separable. In model 4, it is a classical XOR

problem, which is not linearly separable at all.

As for classifiers, we have linear classifiers (LDA [29] and linear SVM [40]), SVM

classifiers with polynomial kernels of different degrees, an SVM classifier with a radial

basis function kernel, a decision tree classifier, k-nearest neighbor (k-NN) classifiers

with different ks.

3.3.2.2 Classifier Comparison Results

In general, linear classifiers, such as LDA and LSVM, work well for models M1,

M2, and M3. But they work poorly for M4, the XOR problem. Similarly for SVM

with polynomial kernels of degree 3 and 5. SVM with polynomial kernels of degree

2 and 4 work the opposite; they work well for M4 and poorly for M1, M2, and M3.
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Decision tree and RBFSVM and k-NN classifiers work well for all models.

We draw the decision boundaries of all the 16 classifiers mentioned above. Both

linear models have linear decision boundaries (intersecting hyperplanes) while the

non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear

decision boundaries with shapes that depend on the kind of kernel and its parameters.

For the decision tree classifier, we use CART (Classification And Regression Tree).

It produces linear boundaries that are parallel to the axes. For k-nearest neighbor

classifiers, the boundaries are more complicated. The shapes depend on the number

of neighbors we choose. We calculate the resubstitution and bolstered resubstitution

errors for each designed classifier. The decision boundaries for model M1 are shown in

Figure 3.6. All classifiers perform well except SVM with polynomial kernels of degrees

2 and 4. Similarly, it applies to models M2, M3, which is shown in Figures 3.7, 3.8.

But for model M4 (Figure 3.9), all classifiers perform well except linear classifiers,

SVM with polynomial kernels of degrees 3 and 5.

Above, it is just for one specific data set. Next, we try to get the average per-

formance by repeating the same experiment on independent data sets for 100 times.

We calculate the mean error for each classifier to assess their performance for the

4 models. In Figure 3.10 we show the average errors of all classifiers for model

M1. Similarly, average errors of classifiers for models M2, M3, and M4 are shown in

Figures 3.11, 3.12, and 3.13.

By observing the error rates and considering the complexities of these different

classifiers, we can select the accurate and simple model. For example, linear classi-

fiers, RBFSVM, SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN

are all good classification rules for models M1, M2, and M3, and we will choose linear

classifiers since they are simpler. For model M4, all classifiers perform well except

linear classifiers, SVM with polynomial kernels of degrees 3 and 5. We could select
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RBFSVM, SVM with polynomial kernels of degrees 2 and 4, CART, or k-NN.

Formally, we use penalized errors to perform model selection. The penalized

average errors of different classifiers for models M1, M2, M3, and M4 are shown in

Figures 3.14, 3.15, 3.16, and 3.17. As mentioned above, for models M1, M2, and M3,

we select linear classifiers. For model M4, we select SVM with polynomial kernel of

degree 2 and CART for proposed and classical methods, respectively.
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Figure 3.6: Classifier decision boundaries for model M1. For each classifier, we
calculate its resubstitution error and bolstered resubstitution error. All classifiers
perform well except SVM with polynomial kernels of degrees 2 and 4.
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Figure 3.7: Classifier decision boundaries for model M2. All classifiers perform well
except SVM with polynomial kernels of degrees 2 and 4.
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Figure 3.8: Classifier decision boundaries for model M3. All classifiers perform well
except SVM with polynomial kernels of degrees 2 and 4.
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Figure 3.9: Classifier decision boundaries for model M4. All classifiers perform well
except linear classifiers, SVM with polynomial kernels of degrees 3 and 5.
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Figure 3.10: Average errors of all classifiers for model M1. Linear classifiers,
RBFSVM, SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN are
all good classification rules.

3.4 Discussions

For genomic data the dimensionality is (much) larger than the training sample

size (d � n). We prefer simple classifiers to prevent overfitting. Furthermore, the

data is more or less linearly separable. So from the above discussion, M1, M2,

M3 are good models, and linear classifiers should be selected. They achieve similar

performance to more complex classifiers, such as RBFSVM, decision tree and k-NN

classifiers, but they are simpler.

3.5 Conclusions

We have proposed in this paper a model selection method that is accurate and

is particularly useful in small-sample settings. It improves the model selection per-

formance by replacing resubstitution with bolstered resubstitution error estimates.

This enables us to choose a model with proper complexity. Results from this simu-

lation study show that the proposed model selection method is a very attractive one

for various classification rules.
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Figure 3.11: Average errors of all classifiers for model M2. Linear classifiers,
RBFSVM, SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN are
all good classification rules.

LDA
LSVM RBF

POLY2
POLY3

POLY4
POLY5

CART
3NN

5NN
7NN

9NN
0.0

0.1

0.2

0.3

0.4

0.5
resub

bresub

resub and bresub error

Figure 3.12: Average errors of all classifiers for model M3. Linear classifiers,
RBFSVM, SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN are
all good classification rules.
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Figure 3.13: Average errors of all classifiers for model M4. For this difficult classifi-
cation problem, linear classifiers and SVM with polynomial kernels of degrees 3 and
5 are underfitting the data.
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Figure 3.14: Penalized average errors of all classifiers for model M1. Linear classifiers,
RBFSVM, SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN are all
good classification rules. We will select linear classifiers because of their simplicity.
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Figure 3.15: Penalized average errors of all classifiers for model M2. Linear classifiers,
RBFSVM, SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN are all
good classification rules. We will select linear classifiers because of their simplicity.

LDA
LSVM RBF

POLY2
POLY3

POLY4
POLY5

CART
3NN

5NN
7NN

9NN
0.0

0.1

0.2

0.3

0.4

0.5

resub

bresub

resub and bresub error

Figure 3.16: Penalized average errors of all classifiers for model M3. Linear classifiers,
RBFSVM, SVM with polynomial kernels of degrees 3 and 5, CART, and k-NN are all
good classification rules. We will select linear classifiers because of their simplicity.
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Figure 3.17: Penalized average errors of all classifiers for model M4. For this difficult
classification problem, linear classifiers and SVM with polynomial kernels of degrees
3 and 5 are underfitting the data. We select SVM with polynomial kernel of degree
2 and CART for proposed and classical methods, respectively.
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4. IDENTIFICATION OF BIOTIC AND ABIOTIC STRESS INDUCED GENES

AND PATHWAYS IN BANANAS

Bananas are the world’s most important fruit; they are an important component

of local diets in many countries. Diseases and drought (biotic and abiotic) are major

threats in banana production. Conventional banana breeding methods have been

confronted with several significant hurdles. The most notable is that important

cultivars are essentially sterile and do not set seed. Thus traditional breeding in

general is not feasible. To generate disease and drought tolerant bananas, we need

to identify disease and drought responsive genes and pathways. Towards this goal,

we conducted RNA-Seq analysis with wild type and transgenic banana, with and

without inoculation/drought stress, and on different days after applying the stress.

We filter out low expressed genes and then we perform exploratory data analysis

to visualize and compare banana expression profiles differences. In order to find

the genes that contribute to the differences, we apply differential gene expression

analysis using the Wald test and the likelihood ratio test (LRT) with generalized

linear models (GLM). After finding those individual genes, we perform gene set

analysis using over-representation analysis (ORA), functional class scoring (FCS)

and pathway topology (PT) methods. The gene sets include Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways. In the

end, we identify enriched GO terms and important pathways responsive for disease

and drought stress. They are validated in mutant Arabidopsis, and validation results

are promising. The work has the potential for a profound impact on humanitarian

efforts to improve banana production. Also the techniques discussed here are general

and can be modified and applied to other crop plants.
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4.1 Introduction

Bananas are the world’s most important fruit. More than 100 million metric

tons are harvested annually, and it is the fourth most valuable food after rice, wheat

and milk. Although international commerce is noteworthy (approximately 5 billion

dollars annually), local commerce in the fruit is far more significant; about 85% of all

bananas are sold in local or regional markets as staple foods. As such, bananas are a

vital component of local diets in many developing countries and are often produced

by resource-poor, small-holder farmers.

Drought and disease stresses in particular have emerged as major constraints

in banana production. As global climate changes become increasingly erratic, the

lack of alternatives in terms of breeding for drought tolerance/improved water use

efficiency, has resulted in starvation and even death in countries where banana is a

staple (e.g. Uganda). Furthermore, a new strain of the pathogen causing Panama

disease, Fusarium oxysporum f.sp. cubense designated as Tropical Race 4 (TR4),

threatens global banana production. The industry is so worried about it that it

moved this year’s International Banana Congress from Costa Rica to Miami at the

last minute so that attendees wouldn’t transport the disease to the region with the

contaminated dirt on their shoes.

Despite the long history of conventional banana breeding programs, limited progress

has been made towards developing drought and disease resistant cultivars. Unfortu-

nately, banana breeders have been confronted with several significant hurdles. Key to

this problem is important cultivars are sterile and essentially do not set seed. Thus

traditional breeding in general, is not feasible. One of the few viable alternatives

to classical breeding is the use of molecular-based approaches via DNA-mediated

transformation. In order to do that, we need to identify drought and disease re-
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sponsive genes and pathways of bananas using gene expression profiles through next

generation sequencing.

RNA-Seq is a recently developed high-throughput sequencing technology for pro-

filing the entire transcriptome in any organism and digitally recording how frequently

each transcript is represented in a sequence sample; it has several major advantages

over hybridization-based approaches such as microarrays [38, 39]. It is more sensitive,

more robust, and can be more cost effective.

We conduct RNA-Seq analysis with wild type and transgenic banana, with and

without drought/disease stress. We combine several state-of-the-art computational

models to determine how transcriptomic genes and pathways in bananas act to reg-

ulate drought/disease resistance.

4.2 Experimental Design

We run a 2×2×2 balanced factorial design where the factors are genotype (wild

type vs. transgenic), stress condition (present vs. absent) and two time points. Each

experimental cell contains 3 replicates, for a total of 3 × 2 × 2 × 2 = 24 specimens

(note that only 12 plants are used, since the same plant is used at both time points).

The experiment design of the drought study can be seen in Table 4.1. The one for

pathogen disease study can be seen in Table 4.2. In the following sections, we will

mainly show disease data unless otherwise stated.

4.3 Preprocessing

Total RNA is extracted from 24 fresh, frozen tissue samples. Then, total RNA is

purified and fragmented, and cDNA libraries are created for sequencing on two lanes

in an Illumina sequencer. After demultiplexing, we get about 460 million paired-end

reads of length 125 base pairs in FastQ format. We check the quality of the reads

with FastQC, and they all have high Phred scores.
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SampleName condition cell day replicate

A1 Wtr Cav D6 S1
A2 Wtr Cav D8 S1
A3 Wtr Bcl D6 S1
A4 Wtr Bcl D8 S1
A5 Drt Cav D6 S1
A6 Drt Cav D8 S1
A7 Drt Bcl D6 S1
A8 Drt Bcl D8 S1
B1 Wtr Cav D6 S2
B2 Wtr Cav D8 S2
B3 Wtr Bcl D6 S2
B4 Wtr Bcl D8 S2
B5 Drt Cav D6 S2
B6 Drt Cav D8 S2
B7 Drt Bcl D6 S2
B8 Drt Bcl D8 S2
C1 Wtr Cav D6 S3
C2 Wtr Cav D8 S3
C3 Wtr Bcl D6 S3
C4 Wtr Bcl D8 S3
C5 Drt Cav D6 S3
C6 Drt Cav D8 S3
C7 Drt Bcl D6 S3
C8 Drt Bcl D8 S3

Table 4.1: The design table for drought experiment. “Cav” is Cavendish, the wild
type bananas; “Bcl” is Bcl161, the transgenic bananas. “Wtr” denotes the watering
control group (without drought stress); “Drt” denotes drought (with drought stress).
“D6” and “D8” are 6 and 8 days after applying drought stress.
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SampleName condition cell day replicate

A1 Ct Cav D2 S1
A2 Ct Cav D14 S1
A3 Ct Bcl D2 S1
A4 Ct Bcl D14 S1
A5 In Cav D2 S1
A6 In Cav D14 S1
A7 In Bcl D2 S1
A8 In Bcl D14 S1
B1 Ct Cav D2 S2
B2 Ct Cav D14 S2
B3 Ct Bcl D2 S2
B4 Ct Bcl D14 S2
B5 In Cav D2 S2
B6 In Cav D14 S2
B7 In Bcl D2 S2
B8 In Bcl D14 S2
C1 Ct Cav D2 S3
C2 Ct Cav D14 S3
C3 Ct Bcl D2 S3
C4 Ct Bcl D14 S3
C5 In Cav D2 S3
C6 In Cav D14 S3
C7 In Bcl D2 S3
C8 In Bcl D14 S3

Table 4.2: The design table for disease experiment. “Cav” is Cavendish, the wild type
bananas; “Bcl” is Bcl161, the transgenic bananas. “Ct” denotes control group (with-
out stress); “In” denotes inoculation (with pathogen infection). “D2” and “D14” are
2 and 14 days after inoculation.

49



We align the quality controlled reads to the recently assembled banana genome

reference. This genome is hosted and maintained in the banana genome hub [11]. The

read aligner we choose is STAR [10], which is an ultrafast universal RNA-Seq aligner.

We summarize the read counts from the output of the alignment, and construct a

count table for all the samples. They are ready for statistical analyses.

4.4 Statistical Analyses

In this section, we will perform exploratory data analysis, differential gene ex-

pression analysis, identification of classifier genes, and gene set analysis.

Before conducting any statistical analysis, we observe how the phenotypes look.

In Figure 4.1, we show the pictures taken on 2 and 30 days post inoculation (dpi)

for wild type and transgenic bananas. There are no visual differences between wild

type and transgenic bananas on 2 and 14 (not shown here) dpi, but on 30 dpi

we observe the wild type banana becomes wilted and transgenic one is still fresh.

The transgenic banana shows stress resistance. From the analysis below, we find

expression profile differences at the molecular level on 2 and 14 dpi. This implies that

analysis on genotype has the prediction power of showing differences between bananas

on different conditions, which is impossible through phenotypical visualization.

4.4.1 Exploratory Data Analysis

We filter out low counts data, which have relatively large variance and will cause

more false positives. In order to view our data, we conduct multidimensional scaling

(MDS) analysis [18]. It gives us the ability to view data of high dimensions in 2 or 3

dimensional space. 2D MDS plots for the two time points are shown in Figure 4.2.

We can see that on day 2 samples from wild type Cavendish are not separated under

control and inoculated conditions, whereas samples of transgenic Bcl161 are clearly

separated under these conditions. All groups on day 14 are well separated. We can
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Figure 4.1: Phenotypes of wild type and transgenic bananas on 2 and 30 days post
inoculation (dpi). On 2 dpi, there is no difference between wild type and transgenic
type. On 30 dpi, the wild type wilted whereas transgenic one is still fresh. There
are no phenotypical differences between wild type and transgenic type banana on 14
dpi, and they are not shown here. But from the analysis below, we find expression
profile differences at the molecular level. This implies that analysis on genotype has
the prediction power of showing differences between bananas on different conditions,
which is impossible through phenotypical visualization.
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also observe that the control group is very tightly clustered, whereas the inoculated

group is relatively heterogeneous.

We also employ heat maps to visualize the clustering of the expression profiles

across the various experimental conditions [25]. The Euclidean distances between

expression profiles on 2 and 14 dpi can be seen in Figure 4.3. We can see samples

from the same experimental condition are clustered together. On day 2 the cultivar

factor (wild type or transgenic) seems to be the dominate factor; however, inoculation

status (control or inoculated) becomes important on day 14.

Next, in order to identify the genes that have significantly different responses

among the different experimental conditions, we will perform differential gene ex-

pression analysis.

4.4.2 Differential Expression Analysis

We use Wald test to assess the significance of factor coefficients in a negative

binomial generalized linear model (GLM) using the DESeq2 package [28]. The GLM

has the following form:

Kij ∼ NB(µij, αi)

µij = sj × qij

log2(qij) = xj. × βi

where counts Kij for gene i, sample j are modeled using a negative binomial distri-

bution with fitted mean µij and a gene-specific dispersion parameter αi. The fitted

mean is composed of a sample-specific size factor sj and a parameter qij proportional

to the expected true concentration of fragments for sample j. The coefficients βi give

the log2 fold changes for gene i for each column of the model matrix X.
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Figure 4.2: Multidimensional scaling (MDS) plots. We can see that on day 2 samples
from wild type Cavendish are not separated under control and inoculated conditions,
whereas samples of transgenic Bcl161 are clearly separated under these conditions.
All groups on day 14 are well separated. We can also observe that the control group
is very tightly clustered, whereas the inoculated group is relatively heterogeneous.
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Figure 4.3: Sample distances cluster and heat map. We can see samples from the
same experimental condition are clustered together. On day 2 cultivar factor (wild
type or transgenic) seems to be the dominate factor; however, inoculation status
(control or inoculated) becomes important on day 14.
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The factors are genotype (wild type vs. transgenic Bcl161), stress condition (in-

oculated vs. control), and time (2 vs. 14 dpi), as well as their interactions, employing

a standard multifactorial analysis of variance procedure [30]. This analysis will rank

the differentially expressed (DE) genes according to significant differences among

the groups. There are several questions we can ask, such as which genes respond to

stress in wild type banana, which genes respond to stress in transgenic banana and

which genes respond differently to stress in transgenic and wild type banana. Among

all the questions, we will focus on the last one since this is of the most interest to

biologists.

Instead of using p values to rank those DE genes, we correct them for multiple

testing. Here, we use the Benjamini-Hochberg (BH) adjusted p value, which is also

called q value or FDR (false discovery rate) [4]. Among all the genes with FDR

less than 0.05, we gather the top 40 genes in the following heat maps. Figures 4.4

and 4.5 display the top 40 DE genes of the genotype and stress condition interactions

on day 2 and 14, respectively. Those genes with function annotations are displayed

in Table 4.3 and in Table 4.4.

4.4.3 Identification of Classifier Genes

In addition to univariate gene selection using t-test in the previous Section 4.4.2,

we did exhaustive feature selection (all possible combinations) of pairs of genes out of

the DE genes [31], using Linear Discriminant Analysis [29] as the classification rule,

and bolstered resubstitution as the error estimator (presented in Section 2). Feature

selection with two genes has the potential of “fetching” genes that cannot otherwise

be found by using univariate methods (such as t-tests). Figure 4.6 displays the

plot of the best 2-gene classifier found by exhaustive feature selection, consisting of

the pair of genes GSMUA Achr9G20830 and GSMUA Achr6G27580. The estimated
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Figure 4.4: Heat maps for top 40 genes of the genotype and stress condition inter-
actions on Day 2.
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Top 40 genes heatmap
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Figure 4.5: Heat maps for top 40 genes of the genotype and stress condition inter-
actions on Day 14.
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Gene.Uniquename Product

GSMUA Achr5G21730 001 Putative Transformation/transcription domain
GSMUA Achr6G10170 001 splicing factor, arginine/serine-rich 16, putative
GSMUA Achr4G01160 001 Hypothetical protein
GSMUA Achr4G10020 001 Hypothetical protein
GSMUA Achr4G27400 001 Putative Transcription factor HBP-1a
GSMUA Achr1G15040 001 Callose synthase 3
GSMUA Achr1G27940 001 ternary complex factor MIP1, putative, expressed
GSMUA Achr1G19140 001 BIG, putative, expressed
GSMUA Achr3G04130 001 Putative Sec14 cytosolic factor
GSMUA Achr10G02090 001 DNA methyltransferase protein, putative
GSMUA Achr10G25330 001 hydrolase, alpha/beta fold family domain
GSMUA Achr3G28250 001 Putative Probable LRR receptor-like serine
GSMUA Achr1G24600 001 lymphoid organ expressed yellow head virus
GSMUA Achr2G03420 001 Putative Linalool synthase, chloroplastic
GSMUA Achr2G11860 001 Putative Angustifolia
GSMUA Achr5G24660 001 MYB family transcription factor, putative, express
GSMUA Achr10G00410 001 Putative uncharacterized protein
GSMUA Achr1G09310 001 Hypothetical protein
GSMUA Achr10G12870 001 Putative uncharacterized protein
GSMUA Achr1G20870 001 2-hydroxyacyl-CoA lyase

Table 4.3: Gene functions of top 40 DE genes on day 2. Only those with annotated
functions are shown.
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Gene.Uniquename Product

GSMUA Achr10G18410 001 Hypothetical protein
GSMUA Achr5G12760 001 Putative E3 ubiquitin-protein ligase RHA1B
GSMUA Achr6G15590 001 60S ribosomal protein L13a-4
GSMUA Achr4G13970 001 Putative Probable WRKY transcription factor 20
GSMUA Achr4G27630 001 Putative Protein SYM1
GSMUA Achr1G20470 001 Phosphate transporter PHO1–2
GSMUA Achr5G13730 001 Probable aminotransferase ACS12
GSMUA Achr4G10610 001 Probable receptor-like protein kinase At2g42960
GSMUA Achr5G05290 001 Aldehyde dehydrogenase family 2 member B7
GSMUA Achr5G28860 001 Putative Uncharacterized protein C757.02c
GSMUA Achr1G28140 001 Vacuolar-processing enzyme
GSMUA Achr5G19820 001 ABC transporter G family member 11
GSMUA Achr10G05870 001 tonneau 1b, putative, expressed
GSMUA Achr5G12810 001 Putative Scarecrow-like protein 8
GSMUA Achr3G09580 001 Probable leucine-rich repeat receptor-like protein
GSMUA Achr5G17450 001 30S ribosomal protein S5, chloroplastic
GSMUA Achr6G05190 001 Putative Heme oxygenase
GSMUA Achr10G10830 001 Putative UPF0580 protein C15orf58 homolog
GSMUA Achr3G20750 001 Peroxidase 72
GSMUA Achr1G02500 001 Auxin-induced protein 15A
GSMUA Achr4G23280 001 Putative Predicted protein
GSMUA Achr5G06180 001 Putative pleiotropic drug resistance protein 7
GSMUA Achr1G22490 001 ADP-ribosylation factor-like protein 8B

Table 4.4: Gene functions of top 40 DE genes on day 14. Only those with annotated
functions are shown.
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probability of error on future data for this classifier, as determined by bolstered

resubstitution, is only about 1.81%. In this case, lower expression of both genes is

a signature for inoculated condition, whereas higher expression of both genes is a

signature for control condition.
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Figure 4.6: Classifier for the best pair of genes, GSMUA Achr9G20830 and
GSMUA Achr6G27580, in the discrimination of control and inoculated stress condi-
tions. Lower expression of both genes is a signature for inoculated condition, whereas
higher expression of both genes is a signature for control condition. The estimated
probability of error on future data for this classifier is only about 1.81%
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4.4.4 Gene Set Analysis Overview

The list of DE genes and classifier genes are extremely useful in identifying genes

that may have roles in a given phenotype. However, they fail to provide mechanistic

insights into the underlying biology of the conditions being studied. One approach

to this problem is to simplify analysis by grouping long list of individual genes into

smaller sets of related genes or proteins [26]. This approach reduces the complex-

ity and has increase explanatory power [16]. Researchers have developed a large

number of knowledge bases to help with this task. The knowledge bases describe bi-

ological processes, components, or structures in which individual genes and proteins

are known to be involved, as well as how and where gene products interact with each

other.

There are mainly three levels of gene set analysis: over-representation analysis

(ORA), functional class scoring (FCS) and pathway topology (PT). They are dis-

played in Figure 4.7. In the following sections, we will show results when applying

FCS to GO knowledge base and PT to KEGG knowledge base.

4.4.4.1 Over-Representation Analysis

ORA statistically evaluates the fraction of genes in a particular pathway found

among the set of genes showing changes in expression. First, an input list is created

using a certain threshold or criteria. For example, a researcher may choose genes that

are differentially over- or under-expressed in a given condition at a false discovery

rate (FDR) of 5%. Then, for each pathway, input genes that are part of the pathway

are counted. This process is repeated for an appropriate background list of genes

(e.g., all genes measured in RNA-Seq). Next, every pathway is tested for over- or

under-representation in the list of input genes. The most commonly used tests are

based on the hypergeometric, chi-square, or binomial distribution.
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Figure 4.7: Gene set analysis methods. This figure first appears in [26]. While
ORA methods require that the input is a list of differentially expressed genes, FCS
methods use the entire data matrix as input. In addition to functional annotations
of a genome, PT-based methods utilize the number and type of interactions between
gene products, which may or may not be a part of a pathway database. The result
of every pathway analysis method is a list of significant pathways in the condition
under study.

Despite the availability of a large number of tools and their widespread usage,

ORA has a number of limitations. First, the different statistics used by ORA (e.g.,

hypergeometric distribution, binomial distribution, chi-square distribution, etc.) are

independent of the measured changes (e.g., fold-changes, significance of a change,

etc.). Second, ORA typically uses only the most significant genes and discards

the others. Third, by treating each gene equally, ORA assumes that each gene

is independent of the other genes. Fourth, ORA assumes that each pathway is

independent of other pathways, which is erroneous.

4.4.4.2 Functional Class Scoring

The hypothesis of FCS is that although large changes in individual genes can have

significant effects on pathways, weaker but coordinated changes in sets of function-

ally related genes (i.e., pathways) can also have significant effects. First, a gene-level
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statistic is computed using the molecular measurements from an experiment. This

involves computing differential expression of individual genes or proteins. Statistics

currently used at gene-level include correlation of molecular measurements with phe-

notype, t-test and fold changes, etc. Second, the gene-level statistics for all genes

in a pathway are aggregated into a single pathway-level statistic (e.g., Kolmogorov-

Smirnov statistic, sum, mean, or median of gene-level statistic, and the Wilcoxon

rank sum). The final step in FCS is assessing the statistical significance of the

pathway-level statistic.

FCS methods address three limitations of ORA mentioned above. First, they

do not require an arbitrary threshold for dividing expression data into significant

and non-significant pools. Rather, FCS methods use all available molecular mea-

surements for pathway analysis. Second, while ORA completely ignores molecular

measurements when identifying significant pathways, FCS methods use this infor-

mation in order to detect coordinated changes in the expression of genes in the same

pathway. Finally, by considering the coordinated changes in gene expression, FCS

methods account for dependence between genes in a pathway, which ORA does not.

Although FCS is an improvement over ORA, it also has several limitations. First,

similar to ORA, FCS analyzes each pathway independently. Second, many FCS

methods use changes in gene expression to rank genes in a given pathway, and discard

the changes from further analysis.

4.4.4.3 Pathway Topology

ORA and FCS methods consider only the number of genes in a pathway or gene

coexpression to identify significant pathways, and ignore the additional information

available from knowledge bases where gene products interact with each other. PT-

based methods are essentially the same as FCS methods in that they perform the
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same three steps as FCS methods. The key difference between the two is the use of

pathway topology to compute gene-level statistics.

PT-based methods also have several common limitations. One obvious problem is

that true pathway topology is dependent on the type of cell due to cell-specific gene

expression profiles and condition being studied. However, this information is rarely

available and is fragmented in knowledge bases, even if it is fully understood. As

annotations improve, these approaches are expected to become more useful. Other

limitations of PT-based methods include the inability to model dynamic states of

a system and the inability to consider interactions between pathways due to weak

inter-pathway links to account for interdependence between pathways.

4.4.5 Gene Set Analysis Results

Among those knowledge bases, we employ GO terms (Gene Ontology) [2] and

KEGG pathways (Kyoto Encyclopedia of Genes and Genomes) [24] in this section.

4.4.5.1 Gene Ontology Analysis

Here we employ Gene Ontology (GO) terms to group genes into gene sets, and we

used mean of gene level statistics as our gene set level statistic. The enriched gene

sets and their descriptions for molecular functions (MF) are listed in Table 4.5 and

Table 4.6 for day 2 and 14, respectively. For biological processes (BP), see Table 4.7

and Table 4.8; for cellular components (CC), see Table 4.9 and Table 4.10.

4.4.5.2 KEGG Pathway Analysis

Here we use Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with

PT-based method. One of the involved pathways is about the plant-pathogen inter-

action. This pathway with highlighted DE genes is shown in Figure 4.8. Other sig-

nificant pathways involve plant hormone signal transduction (Figure 4.9), regulation
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GO.Term Description

GO:0046914 transition metal ion binding
GO:0004497 monooxygenase activity
GO:0030170 pyridoxal phosphate binding
GO:0005507 copper ion binding
GO:0004857 enzyme inhibitor activity
GO:0004190 aspartic-type endopeptidase activity
GO:0004664 prephenate dehydratase activity
GO:0050661 NADP binding
GO:0004607 phosphatidylcholine-sterol O-acyltransferase activity
GO:0008483 transaminase activity

Table 4.5: Enriched gene sets and their descriptions for molecular functions (MF)
on day 2.

GO.Term Description

GO:0005506 iron ion binding
GO:0020037 heme binding
GO:0046983 protein dimerization activity
GO:0046872 metal ion binding
GO:0004497 monooxygenase activity
GO:0009055 electron carrier activity
GO:0004722 protein serine/threonine phosphatase activity
GO:0004857 enzyme inhibitor activity
GO:0016165 lipoxygenase activity
GO:0004500 dopamine beta-monooxygenase activity

Table 4.6: Enriched gene sets and their descriptions for molecular functions (MF)
on day 14.
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GO.Term Description

GO:0006887 exocytosis
GO:0006979 response to oxidative stress
GO:0055085 transmembrane transport
GO:0005975 carbohydrate metabolic process
GO:0006281 DNA repair
GO:0015992 proton transport
GO:0006633 fatty acid biosynthetic process
GO:0008610 lipid biosynthetic process
GO:0009072 aromatic amino acid family metabolic process
GO:0009094 L-phenylalanine biosynthetic process

Table 4.7: Enriched gene sets and their descriptions for biological processes (BP) on
day 2.

GO.Term Description

GO:0015979 photosynthesis
GO:0006810 transport
GO:0055085 transmembrane transport
GO:0009116 nucleoside metabolic process
GO:0005975 carbohydrate metabolic process
GO:0016114 terpenoid biosynthetic process
GO:0006071 glycerol metabolic process
GO:0006694 steroid biosynthetic process
GO:0006779 porphyrin-containing compound biosynthetic process
GO:0006465 signal peptide processing

Table 4.8: Enriched gene sets and their descriptions for biological processes (BP) on
day 14.
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GO.Term Description

GO:0015935 small ribosomal subunit
GO:0031461 cullin-RING ubiquitin ligase complex
GO:0016469 proton-transporting two-sector ATPase complex
GO:0030132 clathrin coat of coated pit
GO:0000145 exocyst
GO:0016459 myosin complex
GO:0005669 transcription factor TFIID complex
GO:0005643 nuclear pore
GO:0030127 COPII vesicle coat

Table 4.9: Enriched gene sets and their descriptions for cellular components (CC)
on day 2.

GO.Term Description

GO:0005783 endoplasmic reticulum
GO:0009654 oxygen evolving complex
GO:0019898 extrinsic to membrane
GO:0008287 protein serine/threonine phosphatase complex
GO:0005618 cell wall
GO:0009360 DNA polymerase III complex

Table 4.10: Enriched gene sets and their descriptions for cellular components (CC)
on day 14.
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of autophagy (Figure 4.10), sulfur relay system (Figure 4.11), SNARE interactions

in vesicular transport (Figure 4.12), protein processing in endoplasmic reticulum

(Figure 4.13) and circadian rhythm (Figure 4.14).

Figure 4.8: Plant-Pathogen interaction pathway with highlighted DE genes.

4.5 Validation of Stress Induced Genes in Arabidopsis

Out of those stress induced pathways we found in Section 4.4.5.2, we select several

genes which are important in the pathways, such as upstream regulators and hub
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Figure 4.9: Plant hormone signal transduction pathway with highlighted DE genes.
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Figure 4.10: Regulation of autophagy pathway with highlighted DE genes.

Figure 4.11: Sulfur relay system pathway with highlighted DE genes.
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Figure 4.12: SNARE interactions in vesicular transport with highlighted DE genes.
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Figure 4.13: Protein processing in endoplasmic reticulum pathway with highlighted
DE genes.

Figure 4.14: Circadian rhythm pathway with highlighted DE genes.
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genes. Then we test in Arabidopsis homologue genes of those important genes in ba-

nanas to validate our hypothesis that those genes are stress responsive. For example,

we knock out one drought responsive gene in mutant Arabidopsis, and the pheno-

types of those plants are shown in Figure 4.15. There is not much difference between

control and mutant Arabidopsis (with drought responsive gene homologue knocked

out) with no stress treatment. With drought stress applied, the control Arabidopsis

wilted mildly, whereas the mutant Arabidopsis wilted almost completely. This im-

plies that the gene we found is drought responsive and that Arabidopsis and banana

share some common drought response mechanisms. Validation of other genes we

found responsive for drought and disease stress are under way. In the future, we will

test those stress responsive genes directly in bananas.

Figure 4.15: Drought responsive gene validation in Arabidopsis. There is not much
difference between control Arabidopsis and mutant Arabidopsis (with drought re-
sponsive gene homologue knocked out) with no treatment. With drought stress ap-
plied, the control Arabidopsis wilted mildly, whereas the mutant Arabidopsis wilted
almost completely.
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4.6 Conclusions

We analyzed expression profiles of bananas under drought and disease stresses,

developed computational models for the transcriptomic pathways, identified biotic

and abiotic induced genes, and validated them in Arabidopsis. The promising val-

idation results suggest that we test them in bananas in the future. The work has

the potential for a profound impact on humanitarian efforts to improve banana pro-

duction. Also all the techniques discussed here are general and can be modified and

applied to other important crop plants.
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5. CONCLUSIONS

In this dissertation, we have presented a naive Bayes bolstered error estimation

method and its application in model selection; we also identify biotic and abiotic

stress induced genes and pathways in bananas. We believe that this dissertation

makes a significant contribution to the state of the art on bolstered error estimation

and its application in model selection and that it has the potential for a profound

impact on humanitarian efforts to improve banana production.

We have provided a thorough review of several existing error estimation methods,

and compared their performance on popular classification rules. Besides reviewing

and comparing existing error estimators, we have proposed a new naive Bayes bol-

stered error estimator and demonstrated its usefulness in real breast cancer data.

We have also applied the error estimator to model selection, demonstrated its

better performance than classical methods.

Besides error estimation and model selection problems in small-sample settings,

we also work on a practical “big data” banana stress response project. The stress

responsive genes and pathways we found have been validated in Arabidopsis, and

show promising potential in increasing banana production and stress resistance.

Several issues remain to be addressed, which may constitute topics for future

research. A few of them are listed in the following.

• Several interesting theoretical questions are still open. For instance, it would

be desirable to develop a classification rule optimized for bolstered error. As

a matter of fact, an SVM like classification rule would be quite useful since

bolstered error shares some geometric similarity with the hinge loss used in

SVM classification rule.

75



• More model selection methods based on data need to be developed, since the-

oretical model-free error bounds perhaps are too loose in real applications.

• Though we have promising validation results on stress responsive genes in Ara-

bidopsis, we would like to test them in bananas. By doing that, we will be

one step closer to increasing banana production and to solving food crisis in

countries where banana is a staple.

• We also would like to apply the techniques here to RNA-Seq data of other

organisms to solve important practical problems.

• We would like to develop easy-to-use and customizable pipelines and web por-

tals so that collaborations between biologists and data analysts will be made

easier.
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