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ABSTRACT

This dissertation describes an on-line, non-intrusive, classification system for

identifying and reporting normal and abnormal power system events occurring

on a distribution feeder based on their underlying cause, using signals acquired at

the distribution substation. The event classification system extracts features from

acquired signals using signal processing and shape analysis techniques. It then

analyzes features and classifies events based on their cause using a fuzzy logic

expert system based classifier. The classification system also extracts and reports

parameters to assist utilities in locating faulty components. A detailed illustration

of the classifier design process is presented.

Power distribution system event classification problem is shown to be a large

scale classification problem. The reasoning behind the choice of a fuzzy logic

based hierarchical expert system classifier to solve this problem is explained in

detail. The fuzzy logic based expert system classifier uses generic features, shape

based features and event specific features extracted from acquired signals. The

design of feature extractors for each of these feature categories is explained. A

new, fuzzy logic based, modified Dynamic Time Warping (DTW) algorithm was

developed for extracting shape based features. Design of event specific feature

extractors for capacitor problems, arcing and overcurrent events are discussed in

detail. The fuzzy logic based hierarchical expert system classifier required a new

fuzzy inference engine that could efficiently handle a large number of rules and

rule chaining. A new fuzzy inference engine was designed for this purpose and

the design process is explained in detail. To avoid information overload, an intelli-

gent reporting framework that processes raw classification information generated

ii



by the fuzzy classifier and reports events of interest in a timely and user friendly

manner was developed.

Finally, performance studies were carried out to validate the performance of

the designed fuzzy logic based expert system classifier and the intelligent report-

ing system. The data needed to design and validate the classification system were

obtained through the Distribution Fault Anticipation (DFA) data collection plat-

form developed by Power System Automation Laboratory (PSAL) at Texas A&M

University, sponsored by the Electric Power Research Institute (EPRI) and multi-

ple partner utilities.
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1. INTRODUCTION

1.1 Introduction

The primary aim of any electricity supply system is to meet all customers’ de-

mand for energy. With increasing dependence on electricity supply, the need to

achieve the highest possible reliability as economically as possible has becomes

more important to customers. The large geographic areas spanned by power dis-

tribution feeders make them susceptible to factors such as: weather, disturbances

caused by animals and human activity. The components of a power system in-

clude, but are not limited to, overhead lines, cables, transformers, insulators, ca-

pacitors, protective devices and the loads utilizing the power supplied. These

components are susceptible to overloading, aging or defects, and damage.

Components of a power system that are either in the process of failing or that

have already failed cause abnormal conditions measurable as electrical transients

on the power system [1]. In some cases, a failing component may trigger the op-

eration of a protective device, isolating that component from the system, but also

creating an interruption or sustained outage. In other cases, a faulty component

will continue to misoperate causing disturbances and hazardous conditions on

the power system. In the former case, when a protective device operates, portions

of the feeder may lose their supply of power. Such outage situations are unde-

sirable and utilities make efforts to locate the problem and restore the supply to

those parts in the shortest possible time. In the later case, a failed or misoperating

component, when not isolated, may cause transients, unbalanced conditions or

other power quality problems. Such disturbances may interfere with the normal

operation of other components in the power system. In such situations, it is de-
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sirable to detect the faulty component and rectify or replace it before it causes any

further damage to the system.

Utility companies do their utmost to keep customers served by providing them

with uninterrupted supply of high quality power at competitive prices through

careful planning and operation of distribution systems. Utility companies do

scheduled maintenance and inspection to monitor the health of feeders. Never-

theless, failure or degradation of power system components are inevitable. Com-

ponents may degrade or fail between maintenance cycles. Faulty components

may have been overlooked during maintenance or healthy components may fail

as a result of an operator error during a maintenance cycle. Consequently, certain

situations arise and result in abnormal operating conditions. When such abnor-

mal conditions arise, it is important to identify the cause of the problem and take

measures to fix the problematic component in a timely and cost effective manner.

Today, electric utilities have no automated diagnostic systems to assist in identi-

fying, finding, and correcting degraded or failed components.

Developing a system that monitors health of feeders, detects abnormal condi-

tions and provides information about misoperating components would provide

significant benefit to the utility industry. Such system would require advanced

continuous on-line monitoring to keep a utility company updated about the health

of its feeders. This monitoring system, in addition to providing information about

the cause of abnormal conditions, should also provide relevant parameters that

will help narrow the search for the problem. Some of the advantages of such a

system include:

• Utilities can resort to condition based maintenance and fix only components

that have failed or started to degrade. This will allow the utility industry to
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save hundreds of millions of dollars in maintenance costs.

• Detecting failing components will help utility companies to fix problems be-

fore they escalate to catastrophic failures. This approach would have signif-

icant benefit to system reliability, as well as allowing utilities to fix compo-

nents under optimal conditions (e.g. not in the middle of the night after an

explosion, causing a large outage).

• Some components may go to failure rapidly or may not exhibit any de-

tectable signatures during the period leading to failure. In such situations,

any information about the failed component may still reduce the amount of

time needed to locate the faulty component and replace it. In the absence of

this information, utility companies have to manually inspect feeders based

on customer calls. This is often sub-optimal, and can be expensive, time

consuming, and error prone.

It is possible to monitor activity on a feeder by analyzing signals such as cur-

rent and voltage waveforms corresponding to that feeder. These signals can be

acquired using a data acquisition platform located at the distribution substation.

Both normal and abnormal operations of power system components exhibit char-

acteristic signatures that may be detected by analyzing the acquired signals. This

analysis is quite complex and involves analyzing large volumes of data. Such

analysis is expensive, time-intensive, and error prone if done manually. Devel-

oping an automated system for monitoring feeder health, that automatically re-

ports problems in a timely and user friendly manner, is necessary. Other than the

methodology presented in this dissertation, currently no other such system exists.
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1.2 Research Objectives

This dissertation describes a new, on-line, non-intrusive, classification system

for identifying and reporting normal and abnormal power system events occur-

ring on a distribution feeder based on their underlying cause, using signals ac-

quired at the distribution substation. In this research context, an event is any nor-

mal or abnormal observable activity on the power distribution feeder that mani-

fests itself through measurable changes in electrical signals. Such an event classi-

fication system needs to extract features from acquired signals using signal pro-

cessing and shape analysis techniques. It then must analyze features and classify

events based on their cause. Ideally, the classification system should also extract

and report parameters to assist utilities in locating the faulty component. The

following paragraphs present key steps needed to accomplish the above goal:

Developing a fuzzy logic based expert system: The primary objective of this re-

search is the development of a fuzzy logic based expert system for classifying

power system event data. A scalable and modular fuzzy hierarchical classifier

is proposed. A fuzzy inference engine that supports a hierarchical structure best

suited for power system event classification is needed to accomplish above objec-

tive.

Identifying characteristic event signatures: Characteristic features correspond-

ing to power system components that are either in the process of failing or have

already failed must be identified. These features are needed by the fuzzy logic

based expert system classifier. Some failure signatures are well understood, while

others must be documented for the first time. Data should be acquired, where

possible, from operational distribution feeders where events ave occured under

normal operating conditions. Specialized algorithms for extracting event-specific
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features are needed.

Developing RMS shape analysis algorithm: Manually classifying power system

events primarily involves visual analysis of root mean square (RMS) current, volt-

age and power waveforms by a human expert. To mimic this analysis, shape

recognition and segmentation algorithms are needed. A Dynamic Time Warping

(DTW) based RMS shape analysis algorithm is proposed for this purpose.

Identifying and computing important parameters: Once the underlying cause of

a power system event is identified, appropriate parameters corresponding to the

event of interest should be determined and calculated. Different power system

events require different parameters to be calculated in order to estimate the phys-

ical location of the event. For example, in the case of an unbalanced capacitor

operation, VAR step size and the phase involved can help determine which of

several capacitor banks on a feeder are failing. In the case of a repetitive overcur-

rent fault, the magnitude and duration of the fault, what phases are involved, and

information on any protective devices that may have operated can assist utility

personnel in significantly reducing their search area. Algorithms to extract the

parameters corresponding to different power system events are needed for iden-

tifying and reporting event-specific parameters.

Intelligent reporting to avoid information overload: For the classification system

to be usable, it cannot report every event that is classified. This is because, a major-

ity of monitored power system transients are normal day-to-day system operation

that are of little interest to utility personnel. If all these events are reported, utility

personnel will be overloaded with data. They may miss the relatively few and

important abnormal events (i.e. important information) that get buried among a

larger number of normal events. It is important that only events of interest are

presented to utility personnel along with parameters required to locate the event
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source. Hence, an intelligent reporting framework to process raw classification

information generated by the fuzzy classifier and report events of interest in a

timely and user friendly manner is also needed.

Design of efficient classification algorithms: In order to report problems on dis-

tribution feeder to utility personnel in a timely fashion, all components of the

expert system classifier needs to be very efficient and operate in soft real time.

This design constraint is complicated by the reality that processing power avail-

able in remote monitoring units is generally quite limited. As a result, a scheme in

which the fuzzy logic rule base is precompiled will be preferable, as it will reduce

the time and memory complexity of all sub-components used by the classification

system.

1.3 Dissertation Outline

This dissertation is organized as follows. Chapter 1 presents overall industry

problem, the objectives of this research work, and organization of this disserta-

tion. Chapter 2 provides a literature review of methodologies used to classify

power distribution system events. Chapter 3 describes the problem of classify-

ing power distribution system events in detail and outlines an approach used to

solve the problem. Chapter 4 details shape analysis methods used for RMS shape

identification. Chapter 5 identifies signatures needed to classify specific power

system events and describes algorithms used to extract these signatures. Chapter

6 describes the fuzzy hierarchical classifier architecture and outlines an intelligent

reporting framework. Chapter 7 describes an Intelligent Power System Event Re-

porting System (IPSERS) implemented based on the proposed methodology and

analyzes the classification accuracy of IPSERS. Chapter 7 also provides real world

examples where the proposed methodology has assisted utility personnel in lo-
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cating sources of abnormal events. Chapter 8 draws conclusions and discusses

possible future directions and improvements to this research.
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2. LITERATURE REVIEW

2.1 Introduction

Considerable research has been done in the application of classification

methods to identifying problems on power distribution systems. Most of the re-

search falls under two categories: classifying Power Quality (PQ) disturbances

and detecting specific power system events. While prior research has either fo-

cused on detecting a specific event type or on classifying events based on their

nature without trying to identify their cause, this research focuses on classifying a

broad range of events based on their underlying cause.

Little prior work exists in the area of power distribution system event clas-

sification as described in this dissertation. This is largely due to diverse nature

of power distribution systems. The development of generalized classification al-

gorithms that work equally well on feeders operating under different conditions,

across multiple utilities, serving customers with varying needs is difficult. This

research attempts to fill that gap by developing a generalized fuzzy logic based

expert system architecture that is targeted towards power system event classifi-

cation problem. One significant reason for the lack of prior art is the absence of

field data that document the wide range of event signatures occurring on oper-

ational systems with the fidelity needed to design reliable classification routines.

This research uses data collected using advanced monitoring units developed as

a part of the Distribution Fault Anticipation (DFA) project sponsored by the Elec-

trical Power Research Institute (EPRI). DFA monitoring units have been installed

on sixty feeders belonging to eleven utilities across the North America and have

been gathering data for the past seven years. Data collected using these devices
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represents the largest known library of events and failure signatures on distribu-

tion feeders. Many of the events and failures documented in the DFA database

had not been documented before the DFA project began. Understanding gained

from analysis of this library of events has served as the basis for developing the

fuzzy logic based classification methodology put forth in this dissertation. In spite

of significant differences between the proposed research and currently available

techniques, it is worth reviewing PQ disturbance classification and specific event

identification methodologies. These methods provide valuable insight into exist-

ing power system signal analysis techniques and classification approaches.

Power quality may be defined as delivering electrical energy with characteris-

tics required for the proper operation of various components and loads that make

up the power system without significantly affecting their performance or reliabil-

ity. A PQ disturbance may be described as deviation of voltage signals from their

ideal values [2]. PQ disturbances include transients, long duration voltage varia-

tions (under-voltage, over-voltage, sustained interruptions), short duration volt-

age variations (swells, sags, oscillations), voltage imbalance, harmonic distortions

and power frequency variations [3]. PQ disturbance classification methods focus

on identifying the nature of disturbances and seldom try to identify the compo-

nent that caused the disturbance. Another drawback of PQ disturbance classifica-

tion methods is that they mostly restrict themselves to analysis of voltage signals.

These methods overlook critical information contained in current signals. For ex-

ample, an overcurrent fault will cause a dip in voltage signals irrespective of its

position relative to the measurement point. Based on observing voltage signals

alone, it is not possible to determine if a fault was caused by a problem upstream

or downstream of a measurement point. Similar arguments can be made for other

event types too. Knowing the position of a problematic component relative to
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the measurement point is essential to narrow down the location of the problem.

To accomplish this, voltage signals by themselves are not sufficient, and current

signals, along with values calculated from a combination of current and voltage,

such as real and reactive power, need to be analyzed. Methods for specific event

identification may do a better job of identifying event cause and position, but have

their drawbacks.

Specific event identification methods, as the name suggests, are designed to

detect and/or locate specific problems. Some examples of specific event identifi-

cation include overcurrent fault location, high-impedance fault detection, trans-

former fault detection, inrush detection, capacitor identification. The major draw-

back of these methods is that they do not provide a general framework for identi-

fying a broad range of events. It is not practical to combine these different meth-

ods to form a hybrid classification system since these specific event identification

methods often do not share a common input interface. Some specific event iden-

tification methods require that measurements be made at a close proximity or

even inside the equipment of interest. Such methods can be very expensive and

cumbersome if they have to be installed at a utility-wide level. For wide-scale

deployment, a classification method to determine the health of components and

equipment connected to a feeder based solely on measurements taken directly at

a distribution substation. The primary objectives of this research is to develop one

such method.

The following sections review and summarize existing approaches to power

system event classification with focus on PQ disturbance classification and spe-

cific event identification.
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Figure 2.1: General Structure of Disturbance Classifiers

2.2 Literature Review of PQ Disturbance Classification Methods

Power quality disturbance classification methods have a general struc-

ture as outlined in Figure 2.1. In the figure, Stage I represents the pre-processing

stage. During pre-processing, operations like signal denoising, computing sta-

tistical parameters and computing derived signals may be performed. Some ap-

proaches use segmentation during pre-processing to isolate data corresponding

to a disturbance and to extract pre-disturbance and post-disturbance parameters.

Stage II represents the feature extraction stage. Feature extraction is essential to

concisely and accurately present sufficient data to identify a disturbance without

overwhelming the classifier. The quality of the features to a large extent determine

accuracy of classification. Choice of features and feature extraction techniques are

influenced by the nature of the signal being analyzed, domain knowledge and the

processing power available. Features serve as inputs to Stage III, the classification

stage. This stage is responsible for analyzing features, discriminating different

disturbance types and assigning a class label that associates the data with a spe-

cific disturbance type. The choice of classifier is heavily influenced by the nature

of features used.

Several PQ disturbance classification methods have been proposed. These
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methods vary in their choice of feature extraction techniques and classification

techniques but conform to the general structure outlined above. Some of these

methods use real field data but most of them use simulated data as inputs. Each

of these methods have their own advantages and disadvantages, however there is

no empirical data or comparisons available in the literature that will help to prove

superiority of one method over the other. The following sections will discuss fea-

ture extraction techniques and classifiers that have been used for PQ disturbance

classification.

2.2.1 Feature Extraction Techniques

A variety of feature extraction techniques have been applied to PQ dis-

turbance analysis. These techniques can be broadly classified into time domain

analysis, state-space analysis, frequency domain analysis, time-frequency analy-

sis, and mutliresolution analysis.

2.2.1.1 Time domain analysis

Digital filters may be used extract information contained in certain fre-

quency bands by passing a time domain signal through the digital filter. More

than one such filter may be used to extract features corresponding to different fre-

quency bands. Chen [4] proposed a method that used a series of digital filters

to extract features from voltage signals. Digital filters were used to obtain sig-

nals corresponding to specific frequency bands. Then the deviation of the energy

content in these different frequency bands from their nominal values was used to

determine the type of PQ disturbance. Lu [5] proposed a different time domain

approach based on mathematical morphology [6]that uses shapes as probes to ex-

tract features from time domain signals. Lu claims that good performance under

noisy conditions and computational efficiency as the main advantages of this ap-
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proach. His analysis, however, is limited to voltage signals and does not provide

an automatic classification strategy.

2.2.1.2 State-space analysis

A widely used state-space approach in power quality is Kalman Filter.

Kalman filter is a recursive estimator that uses state estimates from a previous

time step and the measurements from the current time step to estimate the current

state values. Typically for power system signals, amplitude and phase of funda-

mental frequency, and the amplitude and phase for a set of harmonics serve as the

states. The estimated state values are compared with actual observed values and

this information is used for disturbance analysis. Styvaktakis [7] used Kalman

filter for disturbance detection, Styvaktakis also computed a disturbance index

based on the deviation of estimated values and actual voltage measurements.

These were used as inputs to an expert system based disturbance classifier. Since

Kalman filter assumes that the system being modeled is a linear dynamic system

and power system disturbances and transients are highly non-linear, Zhang [8]

proposed an approach based on unscented Kalman filter which is better suited

for non-linear systems. Zhang only outlined a method to detect power quality

problems but did not provide a means of classifying power quality disturbances.

2.2.1.3 Frequency domain analysis

Representing power system signals in the frequency domain by applying

a Discrete Fourier Transform (DFT) is a well established tool for feature extrac-

tion. Application of the DFT provides a means of estimating the amplitude and

phase angles of the fundamental component and its harmonics. Further, values

corresponding to a subset of these harmonics may be chosen to achieve feature re-

duction. The choice of the harmonics may be either based on expert knowledge, or
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general dimensionality reduction techniques such as Principal Component Anal-

ysis (PCA) or Independent Component Analysis (ICA) may be applied [9]. Am-

plitude and phase estimation may be improved by applying windowing such as

Hanning, Hamming, etc. The main disadvantages of DFT-based approaches is the

inverse relationship between the frequency resolution and window size. A single

window size may not be suited for analyzing both disturbances that manifest as

short duration transients that last a fraction of a cycle and those that manifest as

slow changes lasting several seconds.

Typically, Fast Fourier Transform (FFT) which is a computationally efficient

implementation of DFT is used. DFT-based features have been used with clas-

sifiers such as neural networks, Bayesian networks and rule based systems for

PQ disturbance classification. Chai [10] proposed a method that used amplitude

estimates of 20 spectral components obtained using FFTs. These features served

as inputs to a Bayes linear classifier. Chai limited the analysis to voltage signals.

Dash [11] outlined an approach that used Fourier coefficients obtained from volt-

age signals and a linear combiner based on Adaline neuron [12] to extract features.

These features were then processed by a fuzzy rule based system to classify dis-

turbances. Liao [13] described a method for voltage disturbance analysis that used

DFT based features and wavelet coefficients as inputs to a fuzzy rule based expert

system.

2.2.1.4 Time-frequency analysis

Time-frequency analysis have gained popularity in recent years because

they offer time localization of different frequency components present in the sig-

nal being analyzed. With DFTs no time domain information is provided. This is

especially useful when the component frequencies of the signal being analyzed
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change over time and for transient detection. Time-frequency analysis techniques

such as Short Term Fourier Transforms (STFT), Continuous Wavelet Transforms

(CWT), Gabor transforms and Wigner-ville distribution provide a way to com-

pute time-frequency distributions that helps to track different frequency compo-

nents over time [14]. Most of these techniques work by allowing the window over

which different frequency components are computed to be changed. One main

drawback of time-frequency based methods over DFTs is increased computational

complexity.

A time-frequency analysis technique that has often been used for PQ distur-

bance analysis is the S-Transform [15]. S-Transform is an extention of CWT. Reddy

[16] recommended the use of S-Transforms for PQ disturbance analysis and pro-

vided proof of their superiority over STFT and Wavelet Transforms based on vi-

sual analysis. Reddy, did not, however describe a method for automatic classifi-

cation. Chilukuri [17] proposed a method based on S-Transforms. Chilukuri used

features derived from time-frequency matrices obtained by applying a discrete

version of a S-Transform on voltage signals. These features were analyzed by a

fuzzy rule based classifier to automatically classify PQ disturbances. Shangwei

[18] presented an approach that used a S-Transform for feature extraction. Shang-

wei used Support Vector Machine (SVM) to analyze the features and classify PQ

disturbances.

2.2.1.5 Multiresolution analysis

Multiresolution analysis (MRA), as the name suggests, works by decom-

posing a signal into various levels of approximation or resolutions [19]. MRA

allows the signal to be studied at various resolutions without losing time domain

information. Rapid changes in the signal can be studied at higher resolutions
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while slow changes may be studied at lower resolutions. Wavelet decomposi-

tion is the primary tool used in MRA. An efficient implementation of wavelet

decomposition, Discrete Wavelet Transform (DWT) is used for practical applica-

tions. DWT uses filter banks and decimation to recursively decompose signals

into frequency bands. High frequency bands have higher resolution (i.e. sam-

pling rate) while lower frequency bands have lower resolution. Features obtained

from decomposed signals (also called coefficients) have been used as inputs to

PQ disturbances classifiers. The filter banks used in DWT are derived based on

a mother wavelet that will be used for analysis. One of the challenges in using

DWT is the choice of mother wavelet best suited for the problem at hand. A dan-

ger in this approach is the possibility of selecting a mother wavelet too specific to

a particular dataset.

Wavelet transforms have been used in combination with different classifica-

tion techniques for PQ disturbance classification. Wavelet transforms have been

found most successful in detecting transients and short duration PQ disturbances.

Santoso [20] showed that MRA can be used for PQ disturbance identification. He

used Daubechies wavelet for the analysis. Santoso’s work laid the foundation for

further research using DWT as a feature extraction technique for PQ disturbance

classification. Santoso [21, 22] also developed a classification approach that used

wavelets for feature extraction and neural networks [23] for classification. Santoso

used only voltage waveforms collected from monitoring units and restricted the

analysis to capacitor transients, impulse transients, sags and interruptions. Elmit-

wally [24] used wavelet based features as inputs to a neuro-fuzzy classifier [25].

He used simulated data for testing the classification scheme and restricted the

analysis to voltage signal. Chung [26] used wavelet packet based decomposition,

which is an extension of DWT [27] for feature extraction. Chung then used Hid-
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den Markov Modeling (HMM) [28] to determine the likelihood of a disturbance

type based on the features. Chung used, wavelet and HMM based classifier only

for capacitor and impulse transients. He used RMS features for sags and interrup-

tions. Abdel-Galil [29] also proposed a similar approach based on wavelets and

HMM. Zang [30] and Kocaman [31] proposed using DWT as feature extractors for

Support Vector Machine (SVM) based classifier. Intrestingly Kocaman restricted

the analysis to slow voltage changes such as sags and swells.

Recently, several methods that use wavelet-based features as inputs to fuzzy

rule based classifiers [32] have been proposed [13, 33, 34, 35]. All these methods

analyzed voltage signals, but differed in their choice of wavelets, how the wavelet

coefficients are processed to obtain features, and the rule base. In each case, the

rules were framed based on expert knowledge. Abdel-Galil [36], took a different

approach, using C4.5, a decision tree based inductive learning method to generate

rules. His analysis still used used wavelets to extract features and limited the

analysis to voltage signals.

It can be seen that a wide range of feature extraction techniques have been

applied for power disturbance classification. In most of these approaches, the

choice of features have been based on expert knowledge. Almost all the features

have been extracted from voltage signals. Different classification techniques have

been used with the above feature extraction techniques. Following section will

discuss these classification techniques.

2.2.2 Classification Techniques

Classification techniques that have been used for PQ disturbance analy-

sis fall under three broad categories; logic based methods (e.g., rule based ap-

proaches), probabilistic methods (e.g., naive Bayes classifier, hidden Markov mod-
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els) and statistical learning methods (neural networks, support vector machines,

decision trees). These methods try to mimic the human abilities of reasoning,

problem solving, learning and decision making.

2.2.2.1 Logic based methods

Logic based methods use If-Then rules to represent expert knowledge.

User inputs and/or features extracted from measurements serve as inputs. An

inference engine then classifies data based on rules and inputs. Such methods

are also called expert systems. Kazibwe [37] proposed an expert system based

on If-Then rules that diagnosed power quality problems using user inputs com-

bined with voltage and current measurements. Kazibwe’s method’s reliance on

human input represented a significant shortcoming. Styvaktakis [7] developed

an expert system to automatically classify power system events and offer infor-

mation in terms of power quality. The expert system used voltage measurements

only and was capable of distinguishing different types of voltage dips, voltage

steps and interruptions. Styvaktakis used Kalman filtering to detect and quantify

changes in the three-phase voltages by assigning a detection index. These detec-

tion indices served as inputs to a rule based classification module that classified

the event. Styvaktakis’s method was limited to analyzing voltage disturbances.

While this method could identify voltage disturbances caused by overcurrents,

inrushes, large motor starts, and voltage steps, it was not capable of detecting arc-

ing and capacitor related problems. Styvaktakis’s method did not provide event

specific information such as current magnitudes, load lost and VAR step sizes that

are needed to identify the source of the disturbance.

Recently, several methods of PQ disturbance classification based on fuzzy ex-

pert systems have been proposed [25, 11, 24, 17, 33, 13, 34, 35]. Fuzzy logic based
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expert system is a generalization of simple If-Then rule based systems that use

binary logic. In fuzzy logic, truth is not restricted to discrete true (1) and false (0)

values, but allows truth values to be in the closed interval [0,1]. Such expert sys-

tems help to better model expert knowledge and human approximate reasoning.

None of these methods try to classify power system events based on their under-

lying cause. Moreover, these methods employ a few simple fuzzy rules, and do

not provide the necessary foundation required to design a large scale classifier

such as the one proposed in this dissertation.

2.2.2.2 Probabilistic methods

Power system event analysis often requires reasoning under incomplete

or uncertain information. Incomplete information may be caused by faulty sen-

sors, or because some signals were not measured. Uncertainties can be introduced

by noise inherent to the power system and sensors or due to the dynamics of the

power system. Probabilistic methods are well suited for reasoning under uncer-

tainty [38]. Bayesian methods and hidden Markov models are probabilistic classi-

fication methods that have been used for PQ disturbance classification. Bayesian

methods use Bayes theorem to determine the probability with which an observed

event belongs to a disturbance category based on extracted features. Chai [10]

used Bayes theorem to generate a linear discrimination function for voltage dis-

turbance classification with features extracted using FFTs. Wang [39] designed

a classifier based on Bayes theorem and used wavelet packet decomposition for

extracting input features for the classifier. Wang assumed an underlying Gaus-

sian distribution and used only voltage signals. Unlike Bayesian networks, Bayes

methods do not allow causal relationship between the features and the distur-

bance categories to be explicitly specified. Bayes methods rely on empirical mea-
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surements made from training data to estimate conditional probabilities. For this

purpose they often assume an underlying probability distribution. Such assump-

tions may not always be correct or optimal.

Hidden Markov model (HMM) is another probabilistic classification method

that has been used for PQ disturbance analysis. HMMs have been proved to be

effective in temporal pattern classification [28]. HMMs assume the underlying

process to be a Markov process with hidden states and only the outputs that are

dependent on the hidden states are visible. Typically HMM based models are

constructed for each PQ disturbance class. Observed PQ measurements are com-

pared to those generated by the HMM based models. The PQ disturbances are

then assigned the class of the model that most accurately matches the measure-

ments. Abdel [29] proposed a HMM based approach for PQ disturbance classifi-

cation using FFT and DWT to extract features vectors. These feature vectors rep-

resented the observable outputs. Abdel used Vector Quantization (VQ) to map

the feature vectors into more manageable discrete output states, and constructed

HMM-based models based on the feature vectors during the training stage. Ab-

del then compared new observations those generated by the models and used the

model with closest match to label the PQ disturbance. Chung [26] used a simi-

lar approach based on Wavelet Packet (WP) coefficients and HMM. He used this

approach only for disturbances involving high frequencies, however. Both Abdel

and Chung restricted their analysis to voltage signals from simulated data and

did not try to classify the disturbances based on their cause.

2.2.2.3 Statistical learning methods

Statistical learning methods can be considered as supervised learning pro-

cedures that group observations based on one or more characteristic features of
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the observation. To accomplish this, they use a training set that comprised of

observations that have already been labeled as belonging to a group. Statisti-

cal learning methods such as neural networks, decision trees, and support vec-

tor machines have been used for PQ disturbance classification. Artificial neural

networks (ANN) are simple yet powerful tools for pattern classification. Feed-

forward neural networks can be used to model complex and non-linear input-

output relationships. This, combined with their relative ease of implementation

has made them a popular choice for pattern classification. Neural networks have

typically been combined with a feature extraction technique such as wavelets for

PQ disturbance identification. Santoso [21, 22] used a Learning Vector Quanti-

zation network (LVQ) as a pattern classifier for PQ disturbances. LVQs are a

supervised version of self organizing maps. Santoso used wavelets for feature

extraction, and these features served as inputs to the LVQ network. Reaz [34]

used DWT for feature extraction with a Univariate Randomly Optimized Neural

Network (URONN) and fuzzy logic for PQ disturbance classification. URONN is

a variation of an adaptive neural network that uses randomized weight selection

based on classification error. Reaz used URONN to tune membership parame-

ters of a fuzzy rule based system. Elmitwally [24] used a similar method for PQ

disturbance classification except that he used a backpropagation instead of ran-

domized weight selection for training the neural network. Even though neural

networks have been preferred for their ease of implementation, their black box na-

ture makes it very hard to either encode or infer knowledge from them. Another

big disadvantage of using neural networks is that they are prone to overfitting.

Considerable effort and a very large training set would be required to reliably use

them for large scale power system event classification. Support Vector Machines

(SVM) have been used for PQ disturbance classification to overcome some of the
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disadvantages of neural networks.

SVMs [40] are another supervised learning technique that are good at solving

classification problems that require non-linear decision boundaries. They project

features into higher dimensional feature spaces and construct linear decision bound-

aries in this higher dimensional feature space. This approach allows them to

achieve global optima as they are always searching a convex surface. Janik [41]

used DWT for feature extraction and constructed a Gaussian kernel based SVM

to classify simulated PQ disturbance signals. Zang [30] and Kocaman [31] also

proposed similar methods based on DWT and SVM for PQ disturbance classifi-

cation. While SVM based classifiers are good at handling non-linear classification

problems, they have been used primarily for classification problems with small

samples. Their computational complexity makes them difficult to use for large

scale classification problems [42]. SVMs also have the disadvantage of being a

black box approach, making it hard to decode knowledge from trained SVMs.

While ANN and SVM approaches employ a black box approach, decision trees

are a straightforward and easily understood alternative where decision trees are

constructed from training data. Decision trees have been used for pattern classifi-

cation for their simplicity and easy to interpret nature. Abdel-Galil [36] used C4.5,

a decision tree based algorithm for classification of PQ disturbance. Decision tree

algorithms are better suited for categorical data and are not very good for classi-

fying continuous data as often encountered in PQ domain. Decision trees are also

prone to instability and can produce widely varying trees based on the order in

which training samples are presented.

It is clear from prior literature that PQ disturbance classification systems sel-

dom try to identify the component or components that caused the PQ disturbance.

To address this issue, methods to identify a specific problematic component or

22



specific type of disturbance based on its cause have been proposed.

2.3 Literature Review of Specific Event Identification Methods

In contrast to PQ disturbance classification methods, specific event iden-

tification methods focus on a specific problematic component or a specific type

of disturbance. There are numerous power system components such as capaci-

tors, Load Tap Changers (LTCs), transformers, insulators, conductors etc. Multi-

ple methods to identify problems in these components can be found in literature.

It is not possible to review each of these methods. Since this research focuses on

non intrusive, substation based measurement and analysis of electrical signals,

only a subset of specific event identification methods that use non-intrusive sub-

station based electrical measurements are reviewed here. The following specific

event identification methods are discussed here:

• Overcurrent (OC) identification.

• Arcing and High Impedance Fault (HIF) identification.

• Capacitor switching identification.

The above specific event identification methods together make up the major-

ity of specific event identification methods for power distribution systems found

in the literature. Each of these methods are reviewed further in the following

paragraphs.

2.3.1 Overcurrent Identification

Out of all specific event identification methods, overcurrent fault (bolted

fault) identification has gained the most attention. One of the reasons for this is

that overcurrents identification algorithms are an integral part of protective re-

laying. Recently, research on overcurrent identification and location has gained
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traction from a reliability viewpoint. Timely detection and location of overcurrent

events help reduce outage duration and possibly avoid the recurrence of overcur-

rents if a faulty component can be identified. Since this research focuses on iden-

tifying events based on their cause and providing information that helps to locate

problematic components, overcurrent identification and location algorithms that

fit this profile, will be reviewed here.

Most fault location schemes assume that an event has already been identified

as overcurrent. To truly automate fault location and reporting, a classifier that can

differentiate overcurrent events from other power system events should also be

incorporated into the fault location scheme. Algorithms that can both determine

disturbances to be overcurrent and subsequently attempt to locate them are diffi-

cult to find in the literature. For example, impedance based fault location schemes

like the one proposed by Girgis [43] required the fault and the fault type to be

identified prior to being used for fault location. Girgis’s fault location scheme also

requires that the feeder topology, load and line impedances to be known. Use

of power quality monitors (PQ monitors) has gained popularity and hence meth-

ods that use the data collected from these monitors such as [44] have also been

proposed. Sabin [45] demonstrated a impedance based fault location method on

Consolidated Edison underground primary distribution system. Sabin differen-

tiated overcurrents from inrushes using harmonics. He used data from PQ mon-

itors and also built a detailed model of the distribution system. Obtaining and

maintaining feeder topology information and impedance information is big draw

back of impedance based fault location schemes. It is both tedious and expensive

to gather such data for large scale use of these algorithms.

Traveling wave based fault location schemes for distribution systems such as

the one proposed by Thomas [46] do not need feeder topology or impedance infor-
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mation. These methods use fault recorders that record voltage and current sam-

ples at a very high sampling rate (around 1.0Mhz). Then they use information con-

tained in the high frequency components of incident and reflected waves to deter-

mine fault location. Like the impedance based approach, these algorithms do not

try to distinguish between transients caused by faults and those caused by other

factors such as capacitor switching. Traveling wave based methods are more com-

mon in transmission systems that exhibit simple topologies and are harder to use

with distribution systems which exhibit a branching topology. Other than these

conventional approaches, expert system based methods [47, 48, 49], fuzzy logic

based methods [50, 51, 52, 53], probabilistic reasoning based methods [54, 55, 56]

and statistical learning based [57, 58, 59, 60] methods have also been proposed

for fault location. These methods also suffer the shortcomings of conventional

methods. The shortcomings being, they either assume that that an overcurrent

event has been detected or they rely on feeder specific information such as feeder

topology, line impedances or information from SCADA or AMR being available.

2.3.2 Arcing and High Impedance Fault (HIF) Identification

Arcing faults have always been a hard to detect problem on electrical

power systems. Unlike bolted overcurrent faults, arcing faults are often intermit-

tent, and seldom cause protective devices to operate. Arcing may continue indefi-

nitely without progressing to a sustained fault that draws high enough current to

operate a traditional protective device, or to be noticed by the public. Such incip-

ient arcing conditions are a safety hazard to utility crews and the public. Defini-

tive characterization of the nature of downed conductor arcing arcing faults on

medium voltage feeders was performed in the late 1970s through 1990s by Rus-

sell, et al. [61, 62, 63, 64, 65] . The extensive research performed to characterize
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and detect arcing faults on medium voltage systems has been summarized by

Sedighizadeh, et al [66]. One important distinction between these arcing fault de-

tection methodologies and the methodology outlined in this research [67] is that,

the methodology outlined in this research has a wider scope, and is capable of

detecting other abnormal conditions such as, but not limited to, recurrent over-

currents and capacitor related problems.

2.3.3 Capacitor Bank Switching Identification

Capacitors banks are used to provide voltage and VAR support on dis-

tribution system feeders, and are common devices in power distribution feeders.

Due to their ubiquitous nature, capacitor banks are also most prone to failures

[68]. Capacitor banks can exhibit a variety of abnormal conditions such as un-

balanced operations, restrikes, switch bounce, arcing and repeated cycling due

to faulty controllers. However, there is no single method available for detecting

all of these conditions. For example, Lee [69] and Santoso [70] provided meth-

ods for detecting unbalanced capacitor operations. However, these methods did

not detect any other abnormal condition. Socholuliakova [71] presented a method

for locating capacitor banks based on voltage transients. However, this method

did not differentiate transients caused by normal capacitor switching form those

caused by abnormal switching. Khani [72] proposed a method for location and

position position identification of capacitor banks based on current and voltage

measurements. However, this method did provide a mechanism for detecting ab-

normal switching of capacitor banks. This research proposes a methodology for

detecting various abnormal capacitor operations and also providing information

that may help in locating a problematic capacitor bank.
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2.4 Chapter Summary

In this chapter, the lack of prior art for identifying power system events

based on their underlying cause was shown. Existing power quality disturbance

classification methods were reviewed. In addition, the shortcomings of existing

PQ disturbance classification methods were pointed out. Existing methods for

identifying overcurrent, arcing and capacitor switching events were reviewed,

and their shortcomings were also discussed. This dissertation addresses the short-

comings of current methodologies and presents a new methodology to classify

and report a wide variety of power system events based on their underlying cause.
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3. PROBLEM FORMULATION

3.1 Introduction

The main objective of an electricity supply system is to to supply power that is

both reliable and economical, while keeping up with the ever increasing demand

for energy. Electrical power originates at a generation station and is transmitted

to a load by a system of conductors and other equipment that make up an electri-

cal power system. Transmission lines carry bulk power from generators to bulk

power, higher voltage substations.

The electric power distribution system is the part of an electric utility system

between the bulk power source and the consumers’ point of delivery [73]. Fig-

ure 3.1 shows a simplified diagram of a typical distribution system. Distribution

systems can be divided in various parts, namely, subtransmission circuits, dis-

tribution substations, distribution or primary feeders, distribution transformers,

secondary circuits and service drops. The subtransmission circuits deliver energy

from the bulk power sources to the various distribution substations located in the

load area. The subtransmission voltage is usually between 12.5 and 245 kV. The

distribution substation consists of one or more power transformer banks together

with the necessary equipment and switchgear to reduce the subtransmission volt-

age to a lower primary system voltage for local distribution.

Each distribution substation serves its own load area. The area served by the

distribution substation is subdivided and a primary feeder, usually operating in

the range of 4.6 to 34.5kV, supplies each subdivision. The primary feeder normally

consists of either a three-phase, three-wire or a three-phase, four-wire main that

runs from the substation to the load center where it branches into three-phase sub-
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Figure 3.1: One-line Diagram of a Typical Distribution System [73]
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feeders and single-phase laterals. The distribution transformers are connected to

the primary feeders, subfeeders, and laterals usually through fused cutouts, and

supply the radial secondary circuits to which the consumers’ services are con-

nected.

The equipment, components, and other apparatus that makes up a power dis-

tribution system includes wires, cables, switches, reclosers, insulators, capacitors,

etc. As the result of causes such as contact of a conductor by vegetation or due

to aging, apparatus can fail or cease to operate normally. Sometimes a failure of

apparatus causes an abnormally high current that can further damage the dis-

tribution system, injure members of the public or utility personnel, or damage

customer devices and equipment. In addition to physical damage, failures often

result in degraded power quality, or loss of electric service.

Distribution systems are designed with components, known as protective de-

vices, which interrupt high current flows, preventing damage to the system and

potential safety hazards. For example, a relay or recloser is a type of protective

device which monitors a circuit and opens a circuit breaker when the current mag-

nitude exceeds a specified threshold for a set duration. When the thresholds are

met, the device operates, and power is interrupted to end users.

In many cases, the device recloses to restore power after a predetermined time

period. If the failure is still present, power may be interrupted again. In this

manner, several power interruptions can result from the same cause. These inter-

ruptions may happen either in close succession or spread over an indeterminate

period of time. In other cases, failure of an apparatus may cause a power outage.

In some other cases, the faulty apparatus may continue to operate abnormally

fashion without causing any interruptions but may cause severe disturbances that

may affect other equipment present in the power distribution system.
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When an outage occurs, failing or failed apparatus often must be repaired or

replaced before normal, reliable operation can be restored. When sustained inter-

ruptions occur, electrical power system operators such as utility companies must

make repairs. Sustained interruptions often occur during “non-business hours,”

often increasing interruption duration and the expense of restoration. Repairs

made in this manner are often more troublesome and expensive than if they could

have been planned in advance. In addition, if repairs can be made before a power

outage occurs, overall service is more reliable and of higher quality, and inconve-

niences and economic losses to customers may be avoided. Therefore, it is prefer-

able to identify failures, incipient failures, and other improper or suboptimal oper-

ating conditions of power system apparatus before these conditions affect power

quality or cause momentary interruptions or sustained power outages.

Utilities may utilize a variety of methods to reduce the number of power in-

terruptions and outages that occur. Conventional methods vary by utility, but

generally fall into two categories: a) physically examining and/or testing individ-

ual apparatus periodically in an effort to determine whether they are likely to fail

and cause a power outage or power quality problems and b) replacing appara-

tus according to a predetermined schedule. Problems exist with both approaches.

One significant problem is that examining, testing, and/or replacing large number

of individual devices can be time-consuming, expensive, and difficult to sched-

ule without interruption power to the end users. Another problem with the sec-

ond approach is that, when apparatus are replaced according to a predetermined

schedule, they may be replaced when they are functioning normally, well before

any failure actually begins. Alternatively, they may not be replaced in sufficient

time to avoid an outage. Further periodic maintenance or replacements actually

can inadvertently introduce problems that did not previously exist. Clearly it
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would be preferable to know when apparatus are beginning to deteriorate or op-

erate improperly or sub-optimally, so repairs or replacements could be made prior

to actual failure.

In an effort to identify failing or failed devices, utilities monitor the operation

of distribution circuits by monitoring one or more signals, such as current and

voltages. However, as outlined in the previous chapter, most methods currently

used for monitoring distribution systems are unable to determine cause of a dis-

turbance. Hence, they are unable to identify the root-cause of the disturbance,

such as devices on a circuit that are failing or that have failed. One reason is that

majority of conventional methods rely on voltage measurements alone. Failing

apparatus often produce small changes in current waveforms, and virtually no

change in voltage waveforms. As such, the majority of methods for detecting

power system are not sensitive to the primary electrical evidence generated by

most failing apparatus.. Another problem with conventional monitoring methods

is that human experts skilled in the art of using measured quantities to identify

failed or failing devices must analyze real-time or near real-time data obtained

from a power system. These experts may not be available for analysis when

needed, and manual analysis can be expensive and prone to error. Yet another

problem with conventional methods is that much of the data collected may corre-

spond to normal day-to-day operations of the power system, while only a small

fraction of collected data corresponds to abnormal operations caused by failing

or failed apparatus. It is not feasible to manually analyze such huge amounts

of data in a timely and reliable fashion. This research attempts to address these

short comings of methods presently used in the utility industry for monitoring

the health of distribution systems.

This research work uses data collected by advanced monitoring units devel-
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oped as a part of Distribution Fault Anticipation (DFA) project, sponsored by the

Electrical Power Research Institute (EPRI). Classification algorithms developed

developed for this research are currently being utilized by the DFA project. The

DFA project and DFA data collection platform will be reviewed in the following

sections before proceeding to problem formulation.

3.2 Distribution Fault Anticipation Background

Over the past decade, Power System Automation Laboratory (PSAL) at Texas

A&M University has developed and applied intelligent systems for monitoring

and diagnosing failures and incipient failures of components on distribution sys-

tems, sponsored by the Electric Power Research Institute (EPRI) and multiple

partner utilities [74]. PSAL began its first formal EPRI-funded project in the area

of fault anticipation in 1997. This was Phase I of DFA project or proof-of-concept

phase. The goal of that project as stated by Dr. B. Don Russell was to determine

the validity of the initial, fundamental hypothesis:

“Equipment often degrades slowly over time. As it does, it produces measurable elec-

trical changes. Recognizing these changes provides the basis for ‘anticipating’ faults,

thereby avoiding full-blown failures, faults and outages.”

The project involved the design and installation of equipment to perform sub-

station-based monitoring of three feeders, one at each of three utility companies.

Data collection was done through continuous monitoring, to detect changes in a

variety of electrical parameters and record high-fidelity data when such changes

occurred. Dial-up modems were used to retrieve newly captured waveform data.

Each captured event waveform was manually analyzed to determine the likely

cause on the power system. The Phase I proof-of-concept project provided en-

couraging results [1]. Over a period of approximately two years, the project docu-
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mented several examples of line apparatus exhibiting detectable changes in elec-

trical parameters, often well before the utility company or its customers expe-

rienced problems. A primary limitation of this research was that its scope was

limited to three feeders. A further limitation was that the process of retrieving

and processing data was manual and time intensive. Additionally, the number

of incidents of incipient failures on three feeders over a nominal two-year period

was limited. The incidents that were discovered, however, encouraged EPRI and

its members to expand the scope in a Phase II project.

Phase II of DFA project was called ‘Field Data Collection and Algorithm De-

velopment’ phase. PSAL undertook the second phase of the DFA project in the

year 2000. This effort expanded the number of monitored feeders significantly,

increased the number of utility companies involved in data collection, and in-

creased the level of interaction between the research team and utility engineers.

PSAL designed a prototype data collection system with capabilities that were en-

hanced in comparison to the systems used in Phase I. This system made it fea-

sible for utility companies to purchase prototype systems and instrument more

feeders. Approximately eleven utility companies installed prototype monitoring

systems in fourteen substations across North America. Data retrieval and analy-

sis procedures were performed manually in Phase I. PSAL recognized that these

manpower-intensive procedures would not be feasible for the expanded number

of sites and feeders monitored in Phase II. Therefore the prototype system was

designed to automate many of these processes in this second phase. The sys-

tem took advantage of the availability of high-speed Internet for data retrieval.

Data retrieval was automated, with waveform files being automatically down-

loaded to utility owned master stations, and to a “Master Master” station at Texas

A&M.This made data collection more efficient and reduced manpower require-
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ments. After installing prototype equipment, participating utilities were respon-

sible for investigating interruptions, outages, and other abnormal occurrences.

They also were responsible for determining which recorded data was associated

with these events. The expanded effort resulted in a large volume of data and

the characterization of numerous normal and abnormal feeder events. At the out-

set of the project, there was little knowledge about apparatus failure modes and

even less knowledge about how progressive failures manifest themselves electri-

cally over time. Because incipient faults do not occur with great frequency, it was

important that detection thresholds be configured sensitively enough to capture

these infrequent events when they do occur. As a result of these sensitivity con-

siderations and tradeoff analysis a bias was maintained toward high sensitivity,

to avoid missing important events. This meant numerous, normal-system events

were captured, analyzed and archived. This resulted in considerable knowledge

about the signals that occur as various apparatus begin to deteriorate. Utility en-

gineers provided much-needed feedback to determine details about failures that

occurred. The expanded data-collection effort of Phase II documented numerous

failures and failure precursors [75].

The large-scale data collection activity of Phase II project demonstrated the

ability to detect, characterize, and many types of normal and abnormal behav-

ior on distribution feeders. The field devices served primarily as data-capture

devices. Master station computers at each host utility company and at PSAL re-

trieved captured event data from these field units for analysis and processing.

The author developed algorithms for characterizing captured events, and created

processes for running these algorithms on captured data automatically as they oc-

curred and were captured. Over time, the continued processing of new events

allowed the author to evaluate the efficacy of various algorithms and to refine
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them where appropriate. To facilitate a reasonable mechanism for developing,

testing, and refining algorithms for processing data coming from more than 70

feeders, algorithms initially were implemented in MatLabTM and were run on a

computer server system at PSAL. This required all recorded data to be retrieved

to PSAL’s server, via Internet connections to the substations. The volume of data

was immense, but manageable for a research project with more than 70 feeders.

While this approach was acceptable for a research project, it would not be feasible

to retrieve, store, process or archive this level of data on an ongoing basis, for the

hundreds of feeders system-wide deployment at a typical utility would require.

In addition, this processing hierarchy requires high-speed data transfer to transfer

all data back to a centralized location for processing. Phase II purposely relied on

centralized data retrieval, processing, and archiving, to facilitate learning for the

first time what kinds of electrical signals incipient failures produce, and to allow

development and testing of methods for characterizing these signals and signa-

tures. Some of the processes were not fully automated and would be unreason-

ably cumbersome in full deployment. Communications, storage, and processing

limitations dictated that a significantly different architecture would be needed to

make DFA technology practical. Considerable work was needed, to develop ap-

propriate architectures and determine requirements for system integration. That

work has been the focus of the Phase III project, which is the current phase of the

DFA project [76]. An obvious part of the solution is to move as much of the data

handling and processing burdens to the lowest possible level in the system hierar-

chy, which is the feeder device itself. This is the approach taken with the revised

platform that is being used for pilot demonstrations.
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Figure 3.2: DFA System Diagram

3.3 DFA Data Collection Platform Description

The DFA data acquisition platform was designed to measure electrical phe-

nomena occurring on 15-kV-class distribution feeders. Measurements are based

on passive monitoring of waveforms from the secondary terminals of conven-

tional substation-based current transformers (CTs) and potential transformers (PTs).

The DFA platform has evolved over the past decade and has gone through three

hardware revisions namely Phase I (proof of concept), Phase II (prototype), and

Phase III (system integration).

This research uses data from both Phase II and Phase III platforms collected

over the past five years. Both the prototype and commercial pilot platforms share

similar data acquisition circuitry, and can be considered to produce more-or-less

identical results when observing the same event. Figure 3.2 shows the system

diagram of the present DFA data collection platform.
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Figure 3.3: Field Unit

The DFA data collection platform consists of two main components: the DFA

Field Unit and the DFA Master Station. In order to avoid verbosity, the term DFA

Field Unit often is shortened to Field Unit (FU) and the term DFA Master Station

is shortened to Master Station (MS).

3.3.1 DFA Field Unit

Each field unit is designed to monitor the current and voltage signals for one

feeder. Each field unit provides four current inputs (five-amp nominal) and three

voltage inputs (120-volt nominal), for connection to the secondary windings of

conventional current and potential transformers (CTs and PTs). Field unit hard-

ware consists of two main components (Figure 3.3). The first is a custom-designed

signal-conditioning module (Figure 3.4) and the second is a Single Board Com-

puter (SBC).

The signal-conditioning module (SCM) is responsible for analog conditioning

of the feeder’s three voltage inputs and four current inputs and for converting

each of these inputs to digital format. The SCM interfaces with the CT and PT

inputs, provides appropriate signal conditioning, and converts the analog signals

to digital samples at a rate of 15,360 samples per channel per second (256 samples
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Figure 3.4: Analog Signal Conditioning

per cycle at 60 Hertz). SCM outputs a total of 15 sampled channels, as listed in

Table 3.1.

The analog processing of the voltages is significantly different than that of the

currents, but both types share the basic conditioning and conversion of the high

power inputs from the electric power system to electronic level signals and limit-

ing the signals’ frequencies appropriately.

Voltage Channels: The nominal input for each of the three voltage inputs is

120V AC (alternating current) volts. The input transformer for each voltage chan-

nel consists of a standard N:1 signal voltage transformer. The upper signal flow

path in Figure 3.4 shows the analog processing of one voltage channel. The SCM

scales each voltage input so that it uses at least 90 percent of the ADC’s range.

Each voltage channel has an anti-alias filter.

Current Channels: The nominal input for each of the four current channels is

5 AC amperes. Analog processing of the current channels is more complex than

that of the voltage channels. The lower signal flow path in Figure 3.4 illustrates the
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Table 3.1: List of high-speed SCM waveform channels

Signal Description
VA Voltage, Channel A
VB Voltage, Channel B
VC Voltage, Channel C
INormA Normal Current, Channel A
INormB Normal Current, Channel B
INormC Normal Current, Channel C
INormN Normal Current, Channel N
IFaultA Fault Current, Channel A
IFaultB Fault Current, Channel B
IFaultC Fault Current, Channel C
IFaultN Fault Current, Channel N
IHFA High Frequency Current, Channel A
IHFB High Frequency Current, Channel B
IHFC High Frequency Current, Channel C
IHFN High Frequency Current, Channel N

analog processing for one current channel. The initial stage for each current chan-

nel uses a transducer to create a voltage waveform signal proportional to the input

current waveform. After this conversion to a proportional voltage waveform, the

signal’s path is split into multiple paths and subsequent analog processing re-

sults in three distinct outputs, each providing particular frequency components,

dynamic ranges, and resolutions. These signal paths are described below.

1. Normal Current Channel: The intent of the Normal Current channel is to

provide the fundamental-frequency current and its harmonics during nor-

mal conditions (i.e., the majority of conditions, with the exception of over-

current faults). The SCM scales each Normal Current signal so that it uses at

least 90 percent of the ADC’s range when five RMS AC amperes are applied

to the corresponding input. Each Normal Current channel has an anti-alias

filter in its path before the ADC. The ADC converts this signal at a rate of

15,360 samples per second (i.e., 256 samples per fundamental-frequency cy-
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cle).

2. Fault Current Channel: The intent of the Fault Current channel is to provide

the fundamental-frequency current and its harmonics during overcurrent

conditions. Its processing is identical to that of the Normal Current channel,

except that its scaling is such that it uses at least 90 percent of the ADC’s

range when 100 RMS AC amperes are applied to the corresponding input.

Each Fault Current channel has an anti-alias filter in its path before the ADC.

The ADC converts this signal at a rate of 15,360 samples per second (i.e., 256

samples per fundamental-frequency cycle).

3. High-Frequency Current Channel: The intent of the High-Frequency Cur-

rent channel is to represent the level of energy for current signals in the fre-

quency range between 2,000 and 10,000 Hertz. The signal passes through

a high-pass filter with a corner frequency of 2,000 Hertz. The output of this

high pass filter then passes through a low-pass filter with a corner frequency

of 10,000 Hertz. The ADC converts this signal at a rate of 15,360 samples per

second (i.e., 256 samples per fundamental-frequency cycle). The low-pass

filter’s corner frequency specification violates the Nyquist criterion. This

was deemed acceptable because the primary purpose of this channel is to

measure the amount of energy in the current’s high-frequency range, not

necessarily to extract its frequency content with high precision.

The SCM interfaces with adjust single-board computer (SBC) via PCI-104

bus. The SBC has on board RAM and flash based storage. The feeder mod-

ule’s SBC communicates with its signal-conditioning module via PCI-104

bus. This allows the feeder module’s SBC to adjust various settings on the

signal-conditioning module and allows the signal-conditioning module to
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send its digitized samples to the field unit’s SBC for further processing.

The field unit’s SBC performs the following functions:

1. Performs real-time numerical operations on the data, including computation

of standard power system quantities, frequency components, etc.

2. Monitors electrical parameters based on real time computations, and trig-

gers high-speed waveform captures, storing them to waveform files.

3. Computes the following quantities from sampled channels and optionally

storing them to waveform files:

(a) The RMS of each of the sampled signals.

(b) The RMS of a point-by-point subtraction from previous cycle of normal

current, fault current, high-frequency current, and voltage waveforms.

(c) The individual components of a 2-cycle FFT of normal current, up to

960Hz.

(d) Cycle-by-cycle values of real power (P), reactive power (Q), complex

power (S), and power factor.

(e) Phase angles of the 60Hz component of for both voltage and normal

current waveforms.

4. Calculating various statistical values that are periodically recorded stored in

a database. These statistical values include maximum, minimum, average

and standard deviation computed for both electrical quantities and weather

data. In this dissertation, this statistical data will be referred to as ‘interval

data.’
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5. Managing data storage, and ensuring disk space availability for continued

data collection.

6. Optionally running classification algorithms to classify captured data. Clas-

sification results and a subset of extracted features are stored in a database

to aid further processing.

7. Optionally running clustering algorithms that use classification results and

features extracted by classification algorithms to group related data cap-

tures. Results of clustering algorithms are also written to a database.

8. Communicating with Master Station(s) for the following purposes:

(a) Obtaining software updates from Master Station.

(b) Obtaining settings information from Master Station.

(c) Transferring waveform data to Master Station.

(d) Synchronizing local database with Master Station database(s) to trans-

fer classification and aggregation results.

An optional component of the Field Unit is a weather station. The weather sta-

tion is a commercially available, off-the-shelf component. It provides a suite of

weather sensors that connect to a weather station console residing in the substa-

tion control house. This console provides a serial connection that allows the Field

Unit’s SBC to poll it for real-time weather values. Measured weather parameters

include temperature, relative humidity, wind speed and direction, and rainfall.

3.3.2 DFA Master Station

The master station became part of the DFA platform in the second phase of

DFA project. During the second phase, the prototype system was redesigned to
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automate data retrieval. Data was automatically retrieved to master stations. This

made data collection more efficient and reduced manpower requirements.

Each FU communicates with a master station. This communication is per-

formed over a TCP/IP connection.The master station is responsible for data re-

trieval and storage, as well as updating settings and firmware for the device in

the field. During each communication interval, the master station does the fol-

lowing:

1. Synchronizes database records on the field with those on the master station.

2. Retrieves all available waveform files.

3. Retrieves all interval data.

4. Updates any system settings that have changed (e.g. triggering thresholds,

CT/PT settings, etc),.

5. Performs software updates to the field device, if any are available.

The master station serves as a common collection point, maintaining a full database

of all events recorded and retrieved. Data contained at the master station can be

opened by custom software (DFAGui) which allows for visual analysis of large

numbers of waveform files retrieved from field, as well as viewing interval data.

DFAGui allows for viewing both classification results provided by automatic

classification algorithms, or manual classifications assigned by a user. DFAGui

also allows the user to view classifications that have been already assigned to

a waveform record. DFAGui allows for viewing both classification results pro-

vided by automatic classification algorithms, or manual classifications assigned

by a user. Manual classifications serve as a means for validating classification
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performance of automatic classification algorithms developed as a part of this re-

search work.

Since the master station at Texas A&M serves as a central repository of data

collected from field units across multiple utilities, it lends itself well to the follow-

ing functions:

1. Running automatic classification algorithms on waveform data collected from

all field units. Waveform data will further be discussed in the following sec-

tion 3.3.3.

2. Generate automatic reports and alerts based on the results of running au-

tomatic classification algorithms. These reports and alerts are then made

available through a web page.

3.3.3 Waveform Files

The main source of data for this research are waveform files. Waveform files

provide a snapshot of waveform data recorded during a power system distur-

bance. Each FU continually monitors both current and voltage waveforms looking

for power system disturbances. The majority of such disturbances or transients

are due to normal system events, and are not of any special interest.

Information written into the recorded waveform files is configurable. For this

research, FUs were configured to record all available channels. This included the

fifteen high-speed channels in Table 3.1, as well as all harmonic and other calcu-

lated parameters as described in Section 3.3.1.

3.4 Power Distribution System Event Classification Problem Formulation

The primary objective of this research is to develop a new on-line, non-intrusive

classification system for identifying and reporting normal and abnormal power
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system events on a distribution feeder based on their underlying cause. In this

research context, an event or disturbance is any observed activity on the power

distribution feeder that manifests itself as a measured changes in electrical sig-

nals.

Power distribution system event classification offers many challenges. For it

to be practical and to be used in the field, distribution power system classification

algorithms should be able to meet the following requirements:

1. Classify both normal and abnormal power system events accurately based

on their underlying cause. The majority of power system events are nor-

mal system operations. The classification algorithm should be able to iden-

tify normal system events (such as motor starts, load switching and normal

capacitor switching) so that they can safely be ignored. The classification

algorithm should also be able to detect abnormal system operations that

generally make up less than one percent of all power system events. Some

misclassifications within the normal event category may be acceptable (ex:

labeling a motor start as load switching). However, labeling a normal sys-

tem event as an abnormal system event or vice-versa is a more serious error.

This is because utility personnel are typically interested in abnormal sys-

tem events. Misclassifications of abnormal system events (i.e. false positives

or false negatives) will cause utility personnel not to trust the classification

system. This will undermine usefulness of the classification system.

2. Provide information about a problematic component to help locate the com-

ponent. When power system components misoperate or fail causing abnor-

mal system events, simply identifying the problem is not always sufficient.

If the classification algorithm provides details of the specific component, it
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helps utility personnel to quickly locate the source of the problem. For exam-

ple, consider an unbalanced capacitor operation. If the algorithm classifies

the event and reports it a unbalanced capacitor, then the utility personnel

may have to look at all the capacitor banks on the feeder for possible prob-

lem. However if the algorithm also reports the size of the capacitor and the

phase that did not switch, it may help narrow the search to a specific capac-

itor bank.

3. Classify events under varying operating conditions and noise levels. Power

disturbances signatures observed on these systems vary for many reasons,

such as the following:

(a) Distribution feeders have differing characteristics based on utility op-

erating procedures and the types of customers they serve. For exam-

ple, different utilities may operate their distribution systems at different

voltages (7KV, 24KV etc.).

(b) Distribution systems span different geographical regions and hence are

affected by environmental factors such as weather and vegetation.

(c) Components making up the distribution systems vary. For example

some utilities may decide to use ungrounded capacitor banks while

most use grounded capacitor banks.

(d) Sensors used to record power system disturbances may be different or

the sensors may be configured differently. For example, some utili-

ties may choose to connect potential transformers (PTs) phase-to-phase

voltage instead of phase-to-ground.

4. Classify events when one or more signals are missing. Based on utility pol-
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icy, utilities may decide to instrument only a subset of voltage or current

phases. Alternately, one or more channels may be missing because of faulty

sensors or they may have been intentionally removed from waveform files

to reduce disk space. Classification algorithm must be able to deal with such

missing data channels.

5. Classify in ‘soft’ real-time fashion. To help utility personnel quickly identify,

remediate and decrease outage times, the classification algorithm needs to

be online and provide classification results in a timely fashion. Utilities may

prefer certain activities such as overcurrent faults that caused an outage to

be reported as soon as possible (within a few minutes), while some abnormal

operations such as unbalanced capacitors may be reported once a day.

Designing a classifier that meets all the above requirements is challenging. It

is preferable to break down the power system event classification problem into

manageable tasks. To this end, the power system event classification problem is

presented as a collection of sub problems. Then, a fuzzy logic based classification

scheme is presented as a proposed solution.

3.4.1 Multi-phase Power System Event Classification Problem Statement

Power system event classification algorithms designed to work with power

distribution system data need to handle mutli-phase data. This is because most

distribution power systems are three phase in nature. Input signals to these al-

gorithms are three phase in nature and their outputs need to include phase in-

volvement and ground involvement as two attributes besides the class label. In

this research, it is also desired to provide some event specific information that

will help narrow the location of the component causing the event. As a result, the

power system event classification problem can be formulated as follows.
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Let x represent waveform data instance as shown in equation below:

x =
(
xsamp, xcyc

)
(3.1)

xsamp = (V, VPD, I, IPD, IHF) (3.2)

xcyc =
(
VRMS, VPDRMS, IRMS, IPDRMS, Pphasor, Qphasor

)
(3.3)

where:

xsamprepresents high speed data sampled at a rate of 15360 samples/second.

xcyc represents computed waveforms that have a sample rate of 60 samples/sec-

ond also referred to as per-cycle waveforms.

V represents three phase high speed voltage samples recorded over the du-

ration of the event.

I represents three phase current and neutral current samples recorded over

the duration of the event.

VPD represents three phase high speed phasor differenced1 voltage samples

computed after removing ambient load over the duration of the event.

IPD represents three phase phasor differenced current and neutral current

samples computed after removing ambient load over the duration of the

event.
1Phasor differencing is a technique developed at Texas A&M’s Power System Automation Lab-

oratory; it is used for removing an estimated steady-state load component from a sampled signal
in the presence of phase drifts introduced either due to sampling or due to changes in power
system frequency [77].
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IHF represents three phase high frequency current and high frequency neu-

tral current samples recorded over the duration of the event.

VRMS represents three phase RMS voltage computed over the duration of the

event.

IRMS represents three phase RMS current and RMS neutral current computed

over the duration of the event.

VPDRMS represents three phase RMS phasor differenced voltage computed

over the duration of the event.

IPDRMS represents three phase RMS phasor differenced current and neutral

current computed over the duration of the event.

Pphasor represents three phase real phasor power computed over the duration

of the event.

Qphasor represents three phase reactive phasor power computed over the du-

ration of the event.

Let y represent classifier output as shown in equation below:

y =
(
ye, yp, yGrnd, yPos

)
(3.4)

where ye ∈ {ye1, ..., yeL} represents power system event class labels, yp ∈ {A, B, C,

AB, BC, CA, ABC} represents phase labels and yGrnd ∈ {0, 1} represents whether

or not ground was involved and yPosition ∈ {0, 1}represents whether or not the

event was caused by an activity down stream of the monitoring unit.
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Let i represent event specific output information as shown in equation below:

i = (z1, · · · , zF) , F ∈N (3.5)

where i represents event specific information that can be used to locate a power

system component causing the event.

Then, the multi-phase power system event classification problem can be stated

as: Given a desired mapping g : X → Y × I that correctly maps waveform data

instances x ∈ X to output (y, i) , y ∈ Y, i ∈ I and given manually labeled data

DM = {(x (1) , y (1) , i (1)) , · · · , (x(m), y(m), i(m))}, design an algorithm that pro-

duces the mapping h : X → Y × I that closely approximates the correct mapping

g.

In the above formulation, the requirement ’h closely approximate the correct

mapping g’ needs further attention. Let h map waveform data instances x ∈ X

to output
(
ŷ, î
)

, ŷ ∈ Y, î ∈ I. Since g is unknown, let us assume that the de-

sired mapping g ∈ G, be a function in the hypothesis space G. Then g can be

represented in terms of a ’correctness’ function f : X×Y× I → R as

g (x) = arg max
(y,i)

{ f (x, y, i)} (3.6)

such that g always returns (y, i) that gives maximum correctness value as per-

ceived by an expert. The requirement “h closely approximate the correct mapping

g” can be interpreted to mean reducing perceived error (as seen by an expert)

between the output of h with respect to the output g. In the context of power sys-

tem event classification, it is more intuitive to interpret the requirement to mean

reducing a perceived cost (as seen by utility personnel) due to differences in the
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output of h and g . This is because, when a classification algorithm misclassifies

and reports incorrect information to utility personnel, it could potentially result in

wasted time and effort or it could undermine the usefulness of the algorithm. Let

J
(
(y, i) ,

(
ŷ, î
))

, J : X×Y× X×Y → R represent such a perceived cost function.

For notational simplicity, let J
(
(y, i) ,

(
ŷ, î
))

= Jg,h. Clearly, perceived cost of mis-

classification Jg,h is subjective and may even vary based on utility policies, it will

be hard to rigorously derive a mathematical expression for it. Without any loss of

generality, for the purpose of this research Jg,h is represented as:

Jg,h = j(Me, Mp, MGrnd, Mpos, Mi), j : R5 → R (3.7)

where:

Me = me (y, ŷ) , me : Y×Y → R≥0 represents the cost of misclassifying event

type ye as ŷe. me (y, ŷ) = 0 when ye = ŷe.

Mp = mp (y, ŷ) , mp : Y×Y → R≥0 represents the cost of misclassifying phase

type yp as ŷp. mp (y, ŷ) = 0 when yp = ŷp.

MGrnd = mGrnd (y, ŷ) , mGrnd : Y×Y → R≥0 represents the cost of misidenti-

fying ground involvement yGrnd as ŷGrnd. mGrnd (y, ŷ) = 0 when yGrnd =

ŷGrnd.

Mi = mi
(
(y, i) ,

(
ŷ, î
))

, mi : Y× I ×Y× I → R≥0 represents the cost of errors

in estimating event specific parameters i as î. mi
(
(y, i) ,

(
ŷ, î
))

= 0 when i = î.

Based on Equation 3.7, the multi-phase power system event classification

problem can be restated as: Given a desired mapping g : X → Y × I that cor-

rectly maps event data instances x ∈ X to output (y, i) , y ∈ Y, i ∈ I and given
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manually labeled data DM = {(x (1) , y (1) , i (1)) , · · · , (x(m), y(m), i(m))}, design

an algorithm that produce the mapping h : X → Y × I that minimizes total per-

ceived cost of misclassification C (DM):

C (DM) =
K

∑
k=1

j(Me,k, Mp,k, MGrnd,k, Mpos,k, Mi,k) (3.8)

where:

Me,k = me (y(k), ŷ(k)), Mp,k = mp (y(k), ŷ(k)), MGrnd,k = mGrnd (y(k), ŷ(k)) and

Mi,k = mi
(
(y(k), i(k)) ,

(
ŷ(k), î(k)

))
.

h (x(k)) = (y(k), i(k)) and g (x(k)) =
(
ŷ(k), î(k)

)
.

The above formulation looks very similar to a supervised learning problem.

However, the intention here is not to impose the requirement of h(x) being a su-

pervised learning algorithm. Parameters of h(x) need not be automatically tuned

using the objective function in Equation 3.8. Instead, it is possible to design h(x)

as a ‘handcrafted’ expert system based classifier. This is an appealing option for

the following reasons:

1. Years of experience gained by manually analyzing waveform data (Section

3.2) can be directly coded into the expert system instead of having to be

learned automatically.

2. It will be shown in Section D.5 that power system event classification prob-

lem is a large scale classification problem. Knowing that this is a large scale

classification problem, it will be both challenging and counter productive to

try and design a classifier based on machine learning techniques; especially

when expert knowledge can be used to simplify the problem [78].
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3. Using handcrafted expert system does not impose any constraints on the

type of objective function that can be used to evaluate classifier performance.

Machine learning techniques use cost functions to tune classifier parameters.

Using nonlinear, non smooth or complex logical reasoning within the cost

function may severely limit the tools that can be used to train the classifier.

For the above reasons, an expert system based classifier was chosen. For an ex-

pert system, the total perceived cost C (DM) may be implicit and can be used for

making initial adjustments to expert system as a part of designing the classifier.

Total perceived cost C (DM) may also be used for regression testing. For example,

let h(x) be modified either to accommodate new knowledge or to fix an existing

deficiency. Let h′(x) be the modified version. Then Equation 3.8 provides a way to

quantify the performance of h′(x) against h(x).

3.4.2 Segmentation - Problem of Detecting Sub-events

Waveform data instances x (Equation 3.1) may contain data corresponding to

one or more related or unrelated power system events. An expert looking at wave-

form data will be able to identify and process these distinguishable power sys-

tem activity. Such related or unrelated and distinguishable power system activity

within waveform data instances are called sub-events. The classification problem

formulated in the previous section does not explicitly account for the possibility

of sub-events, the problem formulation is modified to accommodate sub-events.

Let waveform data instance x be a vector of sub-event data as shown in equations

below:

x = (x1, · · · , xS) , S > 0 (3.9)

xs =
(
xsamp (s) , xcyc (s)

)
(3.10)
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where:

S is the number of sub-events in waveform data instance x.

xs represents sub-event data for sub-event s.

xsamp (s) represents high speed data within a sub-event s.

xcyc (s) represents computed 60 samples per second quantities within a sub-

event s.

When waveform data instance is broken in to sub-events, each sub-event s

can have its’ own output labels and event specific information. If there was only

one sub-event, or each of the sub-events were related and were caused by the

same power system component, then it would be possible to assign a single event

category to the whole waveform data instance. However if there were more than

one unrelated sub-events within a waveform data instance, there are two ways it

could be handled:

1. Allowing each waveform data instance to be assigned more than one event

category type.

2. Allowing each waveform data instance to be assigned only one event cate-

gory. This could be done by choosing an event category type that would be

perceived as the most beneficial to utility personnel.

For example, consider the scenario where a waveform data instance contained

two unrelated sub-events. Let one sub-event correspond to a motor start and a

second sub-event correspond to an arcing capacitor switch. It is then possible to

assign both motor start and arcing capacitor switch class labels to the waveform

data instance. Alternately, it is possible to assign only arcing capacitor switch
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label; as it will be perceived to be more important category. As a matter of prac-

ticality, and to keep the system simple, it is preferable to do the latter (i.e., assign

only arcing capacitor switch label). This is the approach taken in this research.

It is assumed that the desired mapping g (Equation 3.6) always returns a single

set of output class labels and event specific information (y, i) that correspond to a

sub-event which will be perceived as the most important to be reported.

Designing a segmentation algorithm to break waveform data instance to sub-

events is one of the sub-problems involved in designing a power system event

classification algorithm. Now, the segmentation problem can be stated as: De-

sign a segmentation algorithm TSeg as part of the algorithm that minimizes total

perceived cost (Equation 3.8), where:

TSeg(x) = (x1, · · · , xS) , S > 0 (3.11)

3.4.3 Feature Extraction - Problem of Extracting Event Characteristics

It will be difficult to design a classifier that directly uses raw waveform data x

(Equation 3.1). This is because the dimension of the input space for such a classi-

fier will be too large and non deterministic. It is common to transform raw data

into a more manageable feature space through a feature extraction process. Let

xFea = TFea (x), TFea : X → XFea, xFea ∈ XFea represent such a transformation.

where xFea represents feature vector and XFea represents a feature space which

has much reduced dimensionality, when compared to the input waveform data

space X. Choice of the feature space XFea is affected by many factors, most im-

portant of which is domain knowledge. Based on the knowledge obtained from

others skilled in this art and based on the author’s experience gained by manually

analyzing power system waveform data , the following representation is chosen
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for feature vector and feature space:

xFea =
(
xShape, xGeneric, xSpeci f ic

)
, XFea = XShape × XGeneric × XSpeci f ic (3.12)

where:

xShape ∈ XShape represents shape based features observed in per-cycle wave-

forms..

xGeneric ∈ XGeneric represent features derived using simple mathematical op-

erations on waveform data including, but not limited to, finding mean, max-

imum, minimum values.

xSpeci f ic ∈ XSpeci f ic represent characteristic signature of specific power sys-

tem event type. Dedicated algorithms are needed for extracting these event

specific features.

Section 3.4.6 will further explain the rationale behind choosing a feature space as

described above. Accounting for the possibility of the waveform data to be

segmented into sub-events, each of the three feature vectors xShape, xGeneric and

xSpeci f ic can be expressed as follows:

xShape =
(
xShape(1), · · · , xShape(S)

)
, S > 0 (3.13)

xGeneric = ((xGeneric(1), · · · , xGeneric(S)) , x̄Generic) , S > 0 (3.14)

xSpeci f ic =
((

xSpeci f ic(1), · · · , xSpeci f ic(S)
)

, x̄Speci f ic
)

, S > 0 (3.15)

where:

S is the number of sub-events in waveform data .
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xShape(s) represents shape based features extracted from sub-event data xs.

xGeneric(s) represents generic features extracted from sub-event data xs.

x̄Generic represents a sub-event independent component of the generic fea-

tures derived the whole of waveform data x.

xSpeci f ic(s) represents event specific features extracted from sub-event data

xs.

x̄Speci f ic represents a sub-event independent component of specific features

extracted from the whole of waveform data x.

Designing feature extractors TShape (x) = xShape, TGeneric (x) = xGeneric and

TSpeci f ic (x) = xSpeci f ic is one of the sub-problems involved in designing a power

system event classification algorithm. The next section discusses shape based fea-

ture extractors TShape and event specific feature extractors TSpeci f ic.

3.4.3.1 Shape based feature extractors

Shape based feature extracts, extract shape related information from waveform

data. Shape based feature extractors are required to do the following:

1. Detecting characteristic shapes including, but not limited to step changes,

dips, surges in per-cycle waveforms. In this sense it is a classifier by itself

and the class labels correspond to shapes seen in per-cycle waveforms.

2. Estimating parameters associated with the shapes. For example, if the fea-

ture extractor detects a step change, then it will also estimate the size of the

step change.
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Based on the above requirements, designing the feature extractor TShape is equiv-

alent to designing an underlying cycle-by-cycle waveform shape classifier CShape

and shape dependent parameter estimator Pshape as summarized below:

TShape (x) =
(
xShape(1), · · · , xShape(S)

)
, S > 0 (3.16)

xShape(s) =
(

LVRMS(s), LVPDRMS(s), LIRMS(s), LIPDRMS(s), LPphasor(s), LQphasor(s)

)
(3.17)

LSig(s) =
(

cSig(s), pSig(s)

)
, Sig ∈

{
VRMS, VPDRMS, IRMS, IPDRMS, Pphasor, Qphasor

}
(3.18)

cSig(s) = CShape (Sig (s)) , 1 ≤ s ≤ S, cSig(s) ∈ {Shape1, · · · , ShapeNs} (3.19)

pSig(s) = PShape

(
Sig (s) , cSig(s)

)
, 1 ≤ s ≤ S, pSig(s) ∈

{
p1, · · · , pNp

}
(3.20)

where:

TShape (x) is the shape based feature extractor that needs to be designed.

S is the number of sub-events in waveform data .

xShape(s) represents shape based features extracted from sub-event data xs

corresponding to sub-event s.

LSig(s) represents shape based features extracted from the signal data Sig (s)

within the sub-event s.

cSig(s) represents the shape detected in signal data Sig (s) within the sub-

event s.

pSig(s) represents the shape dependent parameters extracted for signal data

Sig (s) within the sub-event s.
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3.4.3.2 Event specific feature extractors

There are some features needed for power system event classification that are

not shape based features. They do not fall into the category of generic features

either.These features are grouped under event specific features. For example, con-

sider the following requirements:

1. Finding certain signature within the waveform data can sometimes have a

major influence on deciding whether or not the data belongs to a certain

event category. It is possible to design algorithms to detect the presence or

absence these features. These algorithms can be treated as two class classifier

whose output is either zero or one based on the presence or absence of a

signature.

2. Estimating certain features from waveform data, which by themselves may

not have a major influence on the classification result; but when used with

other features, may help to improve classification accuracy for some event

categories.

3. One of the requirements placed on the classification algorithm is to extract

event specific information or features î (Section 3.4.1). These features could

aid in locating the cause of an event. Some of these features need dedicated

algorithms for analyzing and extracting them from waveform data.

Based on the above two requirements, designing the specific feature extractor

TSpeci f ic is equivalent to designing a set of classifiers CSignature that detect the pres-

ence of a characteristic signature and a set of specific information extractors PSpeci f ic
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as summarized below:

TSpeci f ic (x) =
((

xSpeci f ic(1), · · · , xSpeci f ic(S)
)

, x̄Speci f ic
)

, S > 0 (3.21)

xSpeci f ic(s) =
((

cSignature1 (s) , · · · , cSignatureNs (s)
)

,
(

pspeci f ic1 (s) , · · · , pspeci f icNp (s)
))

(3.22)

x̄Speci f ic =
((

cSignature1 , · · · , cSignatureNs

)
,
(

pspeci f ic1
, · · · , pspeci f icNp

))
(3.23)

cSignaturen (s) = CSignaturen (xs) , cSignaturen (s) ∈ {0, 1} , 1 ≤ n ≤ Ns (3.24)

cSignaturen = CSignaturen (x) , cSignaturen ∈ {0, 1} , 1 ≤ n ≤ Ns (3.25)

pSpeci f icn (s) = PSpeci f icn (xs) , 1 ≤ n ≤ Np (3.26)

pSpeci f icn
= PSpeci f icn (x) , 1 ≤ n ≤ Np (3.27)

where:

TSpeci f ic (x) is the event specific feature extractor that needs to be designed.

S is the number of sub-events in waveform data .

xSpeci f ic(s) represents event specific features extracted from sub-event data

xs.

x̄Speci f ic represents a sub-event independent component of specific features

extracted from the whole of waveform data x.

cSignaturen (s) represents weather or not a Signaturen was detected within the

sub-event s.

CSignaturen (xs) represents a detector for Signaturen.
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cSignaturen(s) represents weather a sub-event independent signature Signaturen

was detected within the waveform data.

CSignaturen (xs) represents a detector for a sub-event independent signature

Signaturen.

pSpeci f icn (s) represents nth specific feature vector extracted using specific fea-

ture extractor PSpeci f icn (xs) from sub-event data xs.

pSpeci f icn
represents nth sub-event independent specific feature vector extracted

using specific feature extractor PSpeci f icn (x) from waveform data x.

Now, the feature extraction problem can be stated as: Design feature extractors

TShape (x) = xShape, TGeneric (x) = xGeneric and TSpeci f ic (x) = xSpeci f ic as part a of the

algorithm that minimizes total perceived cost (Equation 3.8).

3.4.4 Event Classification and Feature Analysis - Problem of Classifying Under

Uncertainties

Power distribution systems are diverse in terms of the different equipment

installed on the feeder, nature of the loads, utility operating policies etc. Hence

the nature of waveform data obtained from monitoring distribution feeders also

varies considerably. A classifier that uses features extracted power system wave-

form data should, therefore, be able to provide accurate results under these di-

verse conditions. This is especially challenging because of uncertainties intro-

duced in waveform data by various factors as elaborated below.

Uncertainties in describing event signatures:

One of the steps of designing the classifier is associating certain signatures or

features with an event category. Event signatures for the same event category can

vary across distribution systems or even within a distribution system. It is often
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not possible to describe event signatures or their relation to an event category, in

a precise manner. This introduces uncertainty in partitioning input feature space.

Uncertainties due to ambient data:

A Waveform data instance provides a snapshot of electrical signals for the

feeder being monitored when the waveform data was recorded. This snapshot

represents the net electrical activity of all components that make up the power

system as seen from the point of measurement during the period of measure-

ment. Hence waveform data may contain electrical signatures from component(s)

of interest superimposed over ambient signal representing the rest of the system.

Let the electrical signatures from component(s) of interest be called event data.

Power system event classification can be made much simpler if ambient signal

can be removed from the waveform data. This would leave only the electrical sig-

natures from components(s) of interest to be further analyzed and classified. This

is equivalent to measuring event data at the source of the disturbance instead of

the substation. In practice, it is not possible to remove ambient signal from event

data entirely. This is because of the time varying nature of power system signals

and the dynamic nature of power distribution system. Often, the component(s)

causing the power system even may effect changes in the behavior of the rest of

the system. Inability to fully discern event data from ambient data introduces

uncertainties in classifying waveform data.

Uncertainties in measurements:

Data channels contained in waveform data may sometime be missing. This is

because, the utility may opt not to measure some channels, or the sensor used for

measurement may be faulty. One or more data channels contained in waveforms

may be noisy because of faulty sensors. Missing or noisy measurements introduce

uncertainty in the input data. For it to be used in a wide spread fashion, the power
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system event classifier should be able to handle uncertainties in input data due to

noisy or missing data.

Uncertainties introduced during data processing:

Feature extraction process may be introduced uncertainties. Some features

used for power system event classification (as detailed in Section 3.4.3) require

complex algorithms or classifiers. Sometimes these algorithms may output erro-

neous estimates or wrong class labels. A power system event classifier using these

features should be able to handle situations where a subset of the features may be

erroneous or unreliable.

3.4.4.1 Tools for handling uncertainties

There are different interpretations for uncertainties. For example, in probabil-

ity theory, uncertainty refers to lack of certainty in determining the outcome of an

event when more than one outcome is possible. In this research context, uncer-

tainty refers to imprecision. Specifically, uncertainty refers to two types of impre-

cision [79]: 1. Quantitative imprecision associated with measurable data and 2.

Linguistic imprecision associated with capturing expert knowledge. Both fuzzy

logic and probability theory has been used to handle the above manifestations of

uncertainty. Fuzzy logic uses membership degrees and possibility distributions to

handle uncertainties [80], while probability theory uses probability distributions

and subjective probability to handle uncertainties [81, 82].

Then the following question arises: which of the two methods, fuzzy logic or

probability theory is better suited to for handling uncertainties? There are no clear

answers; this has long been a subject of debate among the probability theory and

fuzzy logic community. For example, Lindley [83] says:

“Our thesis is simply stated: the only satisfactory description of uncertainty is prob-
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ability. By this is meant that every uncertainty statement must be in the form of a

probability; that several uncertainties must be combined using the rules of prob-

ability; and that the calculus of probabilities is adequate to handle all situations

involving uncertainty. In particular, alternative descriptions of uncertainty are un-

necessary.”

Zadeh [84] formulated fuzzy logic and the theory of approximate reasoning. He

proposed the idea of imprecise probabilities. In Zadeh’s opinion, probability the-

ory is not adequate to represent imprecision associated with human perception

[85]. Zadeh contradicts Lindley by saying:

“It is a fundamental limitation to base probability theory on bivalent logic. Proba-

bility theory should be based on fuzzy logic.”

It is not the intention of this research to prove either fuzzy logic or probability

theory is better that the alternatives at handling imprecision. Existing literature

indicates both fuzzy logic and probability theory provide tools for handling uncer-

tainty associated with imprecision. Hence, the following assumptions are made:

1. Both fuzzy logic and probability based methods can handle imprecision in

capturing expert knowledge.

2. When implemented correctly, the results produced by the two methods will

not differ significantly.

Then, the choice between using fuzzy logic or probability based methods can be

based on other application specific factors, such as, ease of implementation, main-

tainability and scalability.
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3.4.4.2 Fuzzy expert system classifier vs. probabilistic expert system

The reason for choosing an expert system based classifier for this problem was

explained in Section 3.4.1. The expert system based classifier should be able to

deal with uncertainty, for reasons explained in the previous section. This leaves

two options for designing a classifier; fuzzy expert system based classifier or a

Bayesian network [78] based classifier. Both fuzzy logic and Bayesian network are

capable of representing complex logical reasoning involved in human decision

making. However, from an implementation point of view, Bayesian networks

have some disadvantages.

Bayesian networks require conditional probabilities to be defined at every node

in Bayesian network. An expert may form rules combining multiple variables us-

ing logical operators. In a Bayesian network, each of the logical operation will

become a node. Hence the number of parameters that need to be defined will in-

crease with the number of nodes. In comparison, fuzzy logic can capture expert

knowledge directly in the form of rules. Logical operators used by an expert can

be replaced by fuzzy operations. Fuzzy operators can be defined globally, and

they will not require extra parameters for every operation (node). This is a sig-

nificant advantage for fuzzy logic based exert system over Bayesian network. For

example, the current rule base uses a few hundred logical operations. When using

a Bayesian network, logical operations will translate to a few hundred nodes, each

requiring conditional probabilities to be defined. This would become clear with

an example. Consider the following sample ‘capacitor event rule’, that an expert

may use to determine if an event was caused by a capacitor:

“If a step change in reactive power (Q) is observed and the change is large and

no step change in real power (P) is observed or a step change in real power (P) is
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observed and the change is very small then the event was caused by a capacitor”

The above statement may be represented using a fuzzy rule as follows:

“If (Q SHAPE is STEP AND Q CHANGE is LARGE) AND (P SHAPE NOT

STEP OR (P SHAPE IS STEP AND P CHANGE IS VERY SMALL )) then

EVENT CAUSE is CAPACITOR”

Figure 3.5 shows the same ‘capacitor event rule’ represented in the form of a causal

graph that can be used for Bayesian inference. For comparison purposes, Figure

3.6 represents the ‘capacitor event rule’ as a tree using fuzzy operators. From

the ‘capacitor event rule’, it is possible to infer that the expert needs the follow-

ing input features to make a decision: shape observed in reactive power wave-

form (Q SHAPE), change in reactive power (Q CHANGE), shape observed in real

power waveform (P SHAPE), change in real power P CHANGE. These features

are inputs to both fuzzy rule and Bayesian network. Figures 3.5 and 3.6 show in-

put nodes as ellipses with solid lines. For the fuzzy rule and the Bayesian network

to be useful, all their required parameters need to be defined.

Parameters needed for sample fuzzy rule: In figure 3.6, no parameters are

needed for the input nodes ‘STEP P SHAPE’, ‘NOT STEP P SHAPE’ and ‘STEP

Q SHAPE’. These are crisp conditions. They return a 0 or 1 value depending on

the input shape features P SHAPE and Q SHAPE having a shape label that is

‘STEP’. The nodes that are highlighted (dashes) correspond to the logical connec-

tives fuzzy conjunction (AND) and fuzzy disjunction (OR) operators. These oper-

ators can be defined once for the whole expert system and do not require any extra

parameters at the node level. This leaves only two input more nodes to be defined,

‘VERY SMALL P CHANGE’ and ‘LARGE Q CHANGE’. These two nodes test for

an imprecise or ‘Fuzzy’ condition. These fuzzy nodes impose an elastic condi-
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Figure 3.5: Representing expert knowledge as a Bayesian network

Figure 3.6: Representing fuzzy rule as tree
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Figure 3.7: Membership functions µLARGE and µVERYSMALL

tion and return a value in the continuous interval [0, 1] representing the degree to

which the condition was satisfied. For example ‘LARGE Q CHANGE’ will return

the degree to which change in Q belongs to the fuzzy set LARGE as defined by

the membership function µLARGE shown in Figure 3.7 . Similarly, ‘VERY SMALL

P CHANGE’ will return the degree to which change in Q belongs to the fuzzy set

LARGE as defined by the membership function µVERYSMALL shown in Figure 3.7.

Both the membership functions µLARGE and µVERYSMALL need only two parame-

ters to be defined. Hence, a total of four parameters needs to be defined for the

fuzzy rule implementation.

Parameters needed for sample Bayesian network: In figure 3.5, every node

that has a parent node needs conditional probability to be defined. To keep the

analysis simple, all nodes used in the example are discrete, and take either yes

or no value. Then each node except the node ‘EVENT CAUSE CAPACITOR’ will

need four conditional probability values probability values to be defined (num-

ber of parent values times number of child values). The ‘EVENT CAUSE CA-

PACITOR’ node will need just two prior probabilities. This results in a total of

(2 + 8 ∗ 4) = 34 probability values. The number of parameters will increase further
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if the nodes with imprecise conditions ‘VERY SMALL P CHANGE’ and ‘LARGE

Q CHANGE’ were made to have a continuous distribution.

The above example clearly shows that assigning conditional probability val-

ues to Bayesian network nodes is a major drawback of using Bayesian networks.

Using Bayesian network would become more difficult when the rules become

more complex. There are other disadvantages of using Bayesian networks for

power system event classification. Many of the input features to the power sys-

tem event classifier are continuous. Bayesian networks typically use discrete input

variables. When using continuous variables in Bayesian networks, defining con-

ditional probabilities and inferring output probabilities can be challenging [86].

Fuzzy logic on the other hand, can easily deal with both continuous and discrete

variables without additional implementation issues.

From a maintainability and scalability point of view, Bayesian networks are

at a disadvantage. Fuzzy rule base can be modified easily by either adding new

rules or changing existing rules. New parameters will be needed only if new in-

put or output variables are defined. However, in Bayesian networks, new rules

or modifying existing rules may require changes to conditional probabilities at all

nodes that are affected by the changes. In a large system, manually adding or

modifying conditional probabilities at every node can be error prone. Bayesian

networks have been used to solve a number of real world problems [87]. How-

ever, for the power system event classification problem, a fuzzy logic based expert

system seems to be a good and better choice.

3.4.4.3 Overview of fuzzy logic and possibility theory

Humans reason effectively with fuzzy definitions. In order to capture impre-

cise and vague information, the theory of approximate reasoning: fuzzy logic was
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conceived by Zadeh [84]. Fuzzy logic allows Imprecise definitions to be formu-

lated mathematically and processed by computers using fuzzy sets. This was an

attempt to apply a more human like way of thinking, while programming com-

puters.

Classical set theory uses crisp sets. An element can either belong to a set or

not and there cannot be anything in between. Similarly, binary logic uses either

true or false (zero or one) there cannot be values in between. Let µA (x) represent

a function that tests the condition ‘x is in A’ or ‘is x an element of A’. For a crisp

µA (x) = 0 if x /∈ A and µA (x) = 1 if x ∈ A. It can be seen that crisp sets use binary

two-valued logic. The truth in the statement ‘x is an element of A’ can either be

one (true) or zero (false).

Fuzzy set theory is in strong contrast with classical set theory and binary logic.

Fuzzy sets can allow partial membership or ‘degree of membership’. A test for

membership can return a value in the continuous interval [0, 1], while crisp sets

can return binary values {0, 1} only. For example, if B is a fuzzy set, then a test ‘is

x an element of B’ may return a value in the continuous interval [0, 1] defined by

the fuzzy membership function µB (x).

The theory of approximate reasoning, as formulated by Zadeh, can be viewed

as an application of possibility theory [88]. It is essentially a methodology for rep-

resenting some available information (especially when it is vague and incomplete)

in terms of possibility distributions and for deducing from this information what

can be said about the values of variables of interest [23]. Dubois defines possibility

distribution as:

“Let U be the set that represents the range of a variable x. Usually x stands

for the unknown value taken by some single-valued attribute applied to an
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object under consideration. For instance x refers to the age of a man named

Peter. A possibility distribution πx on U is a mapping from U to the unit

interval[0, 1] attached to the single-valued variable x. The function πx repre-

sents a flexible restriction which constraints the possible values of x accord-

ing to the available information, with the following conventions: πx(u) = 0

means that x = u is definitely not possible, πx(u) = 1 means that absolutely

nothing prevents that x = u”

Thus, fuzzy logic generalizes the binary distinction between possible vs. impos-

sible to a matter of degree called the possibility [89]. For instance, there would

be some uncertainty in determining if a step change in reactive power Q wereq

caused by a capacitor switching. Expert knowledge requires the change in Q (∆Q)

to be ‘Large’ for it to be caused by a capacitor. Let the fuzzy set LARGE describe

the ‘largeness’ of ∆Q in the context of capacitor switching being the cause. Let

µLARGE (x) (Figure 3.7) represent the membership function associated with the

fuzzy set LARGE. Then, by assigning the fuzzy set LARGE to ∆Q (Equation 3.28),

the possibility distribution defining the possibility degree of ∆Q is obtained.

π∆Q(x) = µLARGE(x), x ∈ ∆Q (3.28)

In the assignment π∆Q(x) = µLARGE(x), π∆Q (x) denotes the possibility distri-

bution of ∆Q values for ‘largeness’. x is a variable that represents the magnitude of

change in reactive power. For example, for a large ∆Q caused by capacitor switch-

ing (µLARGE in the Figure 3.7), it is 50% possible for ∆Q value to be 60 kVARS, it

is impossible for ∆Q values to be less than 20 kVARS, and it is definitely possible

for ∆Q values to greater than 100 kVARS.

The use of fuzzy membership functions to describe possibility distributions
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Table 3.2: Fuzzy Set Operators

Table 3.3: Numerical examples of fuzzy set operations on possibility distributions

allows carrying out fuzzy set operations on the possibility distributions. This is

helpful in representing complex propositions as a combination of fuzzy operators

and possibility distribution. Table 3.2 describes a list of commonly used fuzzy

set operations, and Table 3.3 gives numerical examples of fuzzy set operations on

possibility distributions.

In the context of power distribution system event classification, possibility dis-

tributions can be used to describe uncertainties due to imprecision associated with

capturing expert knowledge and imprecision associated with extracted features.

A fuzzy expert system based classifier can process features extracted from wave-

form data using fuzzy rules; compute possibility values for different event causes;

and assign class labels based on event cause possibility values. Designing such a

classifier can be considered as one of the sub-problems involved in designing a

power system event classification algorithm. Now, the problem can be stated as:

Design a fuzzy logic based feature classifier hFuzzy as a part of the algorithm that
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minimizes total perceived cost of misclassification (Equation 3.8), where:

hFuzzy(xFea) = ŷ (3.29)

In the above equation, xFea represent extracted features (Equation 3.12) and ŷ rep-

resents output labels.

3.4.5 Power System Event Classification - A Large Scale Classification Problem

One of the reasons for choosing expert system based classifier for power sys-

tem event classification is because of its large scale. The dimensions of both input

feature space and output space are large. Feature extractors process a total of 36

signals (Equations 3.2, 3.3) and extract about 1000. To better aid in locating prob-

lematic components, the output classifications have four dimensions. 1) Event

type, 2) Event phase, 3) Event Position, and 4) Ground involvement (Table 3.4).

Each of these dimensions can take say Ne, Nph, Npos and Ng discrete values.

Then the total number of possible classifications resulting from the combination

of these four dimensions is Ne × Nph × Npos × Ng. Event types Ne is currently 24,

and increasing. As new event causes are identified, this number also increases.

Event phase Nph = 8, represent the different combinations of phases that could

be involved during an event. Event position Npos = 6 represents the location

of the event relative to the feeder being monitored. Ground involvement Nph = 4

represents if the event involved the neutral. Now Ne×Nph×Npos×Ng = 24× 8×

6× 3 = 3456, is the total number of possible distinct classifications. This number

will grow as Ne increases. Designing a classifier that uses 1000 features to assign

a possible combination of 3456 output labels is clearly a large scale classification

task.

If a supervised learning technique were to be used instead of an expert sys-
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Table 3.4: Output classification attributes and values
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tem based classifier, this should be modeled as a large scale optimization problem.

Then there are several algorithms and optimization toolboxes available for solving

large scale optimization problems. Some of the optimization methods available

for linear programming (LP) are Simplex, LIPSOL (Matlab), CPLEX (C based tool

box that uses Simplex and interior point methods). Some popular methods avail-

able for large scale non linear programming (NLP) problems are LOQO (based

on interior point method), KINTRO (trust region algorithm), SNOPT (quasi New-

ton algorithm) [90] . Most of these techniques involve minimizing a linear or

non-linear cost function subject to linear or nonlinear equality or inequality con-

straints using some variant of gradient descent techniques. A hierarchical rule

based fuzzy expert system classifier is preferable over using large scale paramet-

ric optimization (black-box approach) for the following reasons:

3.4.5.1 Ease of problem formulation:

When using the LP or NLP approaches, the multi-class, multi-variable classi-

fication problem has to be formulated as a linear or non-linear constrained op-

timization problem. In the case of LP problem, this will reduce to a ‘feasibility’

problem that checks for the existence of hyper-planes that partitions the input

feature space, but this approach will work only if the features are linearly separa-

ble. The non-linear nature of power system event classification problem preempts

the usage of LP techniques. There is a different issue when trying to use NLP

techniques for the classification problem. NLP techniques try to find optimal non-

linear hyper-surfaces that can partition the input feature space. NLP techniques

need a parametric model of the hyper-surface. However, no prior information

regarding the nature of this hyper-surface is known except for its dimensionality.

For example if a polynomial function is used to approximate this hyper-surface,
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a priori knowledge of the order of this polynomial is not available. If the order

is too small, then it may not have a feasible solution. If an arbitrarily large or-

der is chosen, then the number of parameters to be optimized will also increase,

and may lead to over fitting. This situation is analogues to the problem of choos-

ing the right number of hidden layer neurons when designing a multi-layered-

perceptron. Such NLP approaches are better suited for optimizing the parameters

of a system for which a model already exists, and are less suited for this classifi-

cation problem, where the objective is to discover the mapping. In a rule based

approach, there is a clear understanding of the relationship between the features

and classes. Hence, formulating this relationship in the form of rules or deci-

sion trees (if using tree based classifiers) is much easier, when compared to the

approach of trying to discover a model automatically.

3.4.5.2 Ability to use features of enumerated type

Most LP or NLP algorithms work well when trying to optimize functions that

are continuous and the feature space is also continuous. When some of these

features take discrete values, the classification problem becomes an integer pro-

gramming problems and gradient descent techniques have o be combined with

enumeration approach to tackle the discontinuities in the search space. Integer

programming problem is far less tractable and convergence times may become

far too large to be practical. The power system event classification problem has

a number of discrete features. For example shapes features like ‘Dip’, ‘Step’ take

discrete enumerated values. Rule based approach can easily handle both discrete

and continuous features.
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3.4.5.3 Scalability

A number of performance parameters related to a LP or NLP problem such

as convergence time, processing power and memory requirements are directly re-

lated to the number of variables involved in the problem. The number of variables

involved will be proportional (for LP) or a function of (dimension of feature space

+ number of classes + size of the training set). If one or more of these quanti-

ties increase, it may have an adverse effect on the performance parameters of the

LP or NLP algorithm. For example, the Simplex (LP) algorithm has a worst case

exponential time convergence, i.e., the time taken to converge to the optimum

solution may increase exponentially with the number of variables. A number of

NLP algorithms promise only a polynomial convergence, and no promises on the

polynomial coefficients are made. The rule based classifier does not suffer from

such issues. Addition of new features and classes can be made by adding more

rules. Training sets and convergence time are not applicable to the rule based

approach.

3.4.5.4 Insight and maintenance

In LP and NLP ‘black box’ approach, it is not easy to gain insight into the

nature of decision boundaries and relationship between the features and classes.

Some indirect methods such as, the branch and bound procedure, can be used for

selecting important features. In a rule based approach, this relationship is evident.

Further insight may not be necessary. From the point of view of maintenance,

if faced with a problem of false positives or false negatives when the ‘trained’

algorithm is used in the field, there are not many options available in the case

of LP or NLP approaches to fix the issue. A re-training maybe required with the

training set that includes the problematic cases or, penalty parameters may be
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introduced to discourage misclassification. In the case of a rule based system, it is

more transparent. The cause of misclassification may be tracked down to one or

more rules. These rules may be debugged and modified as needed.

3.4.5.5 Reducing dimensionality and incorporating structure

Expert knowledge available about the relationship between the features and

individual event types (classes) can easily be used in a rule based system to parti-

tion the feature space intuitively. I.e., not all the features are required for making

a decision on any given event type. Unlike a ‘black box’ approach where the

relationship between the features and event types needs to be learned through

training sets, this relationship can directly be coded in the form of rules in a rule

based system.

The proposed hierarchical classification system has multiple classification mod-

ules, each responsible for classifying certain categories of events. For example,

classification modules for classifying capacitor related events, overcurrent related

events, arcing related events, motor related events, load switching related events,

current transformer and potential transformer relate events. Each of these clas-

sifiers is responsible for classifying a subset of event types. For example, the ca-

pacitor event classifier will be responsible for classifying only normal capacitor

operations (switch on/off) and problems related to capacitor switching. Problems

related to capacitor switching include, unbalanced capacitor switching (when one

phase in a three phase capacitor bank fails to switch), capacitor switch bounce, etc.

The capacitor classification module will not need all the 1000 features for its clas-

sification. It will only use a subset of these features that are needed for capacitor

related event identification. The different classification modules may share some

features, but the number of features each of the classification modules use is re-
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duced from the total 1000 to a subset of may be a 100 features. These numbers are

provided for illustrative purposes only. The actual number of features used may

be different. Since each classification module is using only a subset of the total

features, the dimensionality of the feature space used by each classification mod-

ule would be reduced. This will help reduce (but not eliminate) the possibility of

overlap of the event subspaces.

Structural knowledge about three phase nature of the power system also helps

to simplify partitioning of the feature space related to some event types. For ex-

ample, consider the case of classifying an overcurrent event. An overcurrent can

involve one or more phases (phases A, B and C). For classification purposes, the

three phases may be processed independent of each other. Within an overcur-

rent classification module, the overcurrent classifier may process features of each

phase separately. A decision on whether or not that phase was involved in an

overcurrent can be made independent of other phases. This lower level classifier

(phase level classifier) uses approximately one third of the 100 features used by

the higher level overcurrent classification module. The dimensionality of the fea-

ture space used by the lower level classifier has further reduced and hence also

further reduced the possibility of an overlap of event space. A similar argument

may also be made for capacitors, motors and arcing classification modules.

From the above discussion, it is evident that the hierarchical design of the clas-

sification system (which is explained in Chapter 6) and expert knowledge about

the nature of the events contributes to simplifying the analysis and tackling prob-

lems associated with the high dimensionality of the input feature space. The prob-

lem of feature selection is also made easier because it is a rule based classifier, and

the expert’s prior experience in using features for manual classification is used to

select the right features for the classifier.
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Thus, in a hierarchical rule based classifier, ‘sub’ classifiers may analyze a sub-

set of the total number of features. High dimensional feature space may be broken

in to multiple lesser dimensional feature sub-spaces. This will simplify decision

boundaries. In the LP or NLP approaches, it may not be possible to incorporate

such structure to simplify the problem.

One of the sub-problems in designing a power system event classification algo-

rithm, is to design a hierarchical fuzzy logic based feature classifier hFuzzy as part a

of the algorithm that minimizes total perceived cost of misclassification (Equation

3.8), where:

hFuzzy(xFea) = ŷ (3.30)

In the above equation, xFea represent extracted features (Equation 3.12) and ŷ rep-

resents output labels. Next section presents the proposed overall classification

scheme for power system event classification. The hierarchical fuzzy logic based

classifier is a part of this scheme.

3.4.6 Classification System Overall Scheme

Block diagram shown in Figure 3.8 illustrates various components of the pro-

posed fuzzy logic based power distribution system event classification algorithm.

For simplicity, this algorithm will here on be referred to as fuzzy logic based clas-

sification algorithm (FLCA). Data flow through the classification algorithm can be

broken down into three stages: 1. Peprocessing stage, 2. Feature extraction stage

and 3. Classification stage. These three stages are typical of most classification

algorithms. What differentiates FLCA, and makes this research work novel, is

how the three stages were designed to solve the power distribution system event

classification problem.

DFA field units insert new waveform records into the database whenever they
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Figure 3.8: Block diagram of classification system

trigger new waveform files corresponding to power stem events. The FLCA is

an online classification system. It frequently polls waveform records database

for new waveform records. When a new waveform file is available, FLCA starts

the classification process. First it deserializes the waveform files and caches all

waveform data for further processing.

Figure 3.9 shows some of the waveforms recorded during a normal motor

start. Going from left to right and top to bottom, Figure 3.9 shows three RMS cur-

rents, Sampled currents, RMS voltage, sampled voltage, Real power and Reactive

power. Figure 3.9 also shows the multi-phase nature of a three phase motor start

event. The plots show observable changes and distinct shapes on multiple phases.

A human expert will be able to look at these plots and infer that the waveforms

correspond to a three phase motor start. The expert infers based on studying rel-

ative behavior of three phase signals and shapes observed in these signals. FLCA
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Figure 3.9: Waveforms recorded during a motor start event
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tries to emulate the decision making process of a human expert. It handles three

phase data at every stage of the classification process.

3.4.6.1 Preprocessing stage

In the preprocessing stage, FLCA converts the waveform data in a form suit-

able for further processing in feature extraction and classification stages. FLCA

first does signal processing operations on waveform data. These signal process-

ing operations are:

1. Detecting and substituting missing signals with estimated signals if possi-

ble.

2. Computing phasor differenced signals by removing steady state load com-

ponents from high speed current and voltage signals.

3. Normalizing to remove the effect of sensor configurations.

After the above signal processing step, FLCA optionally does edge detection and

segmentation. FLCA runs in two passes. In the first pass, FLCA assumes all the

data in a waveform file is from a single power stem event. If FLCA is not able

to assign classification in the first pass, FLCA uses segmentation break the event

data into possible sub-events in the second pass.

To segment event data, a context based segmentation approach is used. Edges

are detected using first order and second order difference on RMS waveforms.

Then, RMS shape detection is used to check for valid shapes between edges. If no

shapes are detected, then the edges are rejected. If valid shapes are detected, then

the edge is used to create a segment.

FLCA extracts features for each segment and the inference engine processes

each segment. If the segments are related, the inference engine pieces together
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Figure 3.10: Real and reactive power waveforms during a capacitor switching
event

information from each segment to assign a final classification. If the inference

engine determines that the segments were from unrelated events, then it treats

each segment independently and employs a conflict resolution strategy to assign

a single classification to the whole waveform file. This two step process is needed

because, a waveform file may contain data from one or more related or unrelated

sub-events. However, a majority of waveform files contain data from a single

event only. This is because, field units are typically configured to record waveform

files only a few seconds long. The possibility of recording more than one unrelated

event within a few seconds is low.

3.4.6.2 Feature extraction stage

A human expert visually scans waveform data for characteristic signatures

(features) associated with different power stem events. Based on observed fea-

tures, the expert associates the event with an underlying cause and then assigns a

classification label based on the underlying cause.
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For example, Figure 3.10 shows three phase real and reactive power wave-

forms observed during a capacitor switching on event. A human expert would

observe that the reactive power decreased by about 200 kVARS on all phases while

the real power did not show any step changes. Capacitors are typically used for

VAR support and a capacitor switching on causes a decrease in the reactive power.

Based on this knowledge, the expert would conclude that the event was caused

by a capacitor switching on. For an automatic classification system such as FLCA,

using the correct features is critical for classifier performance. Feature selection

is an art. Choice of features for FLCA is the result of the knowledge gained by

experts analyzing thousands of waveform files.

Features used by FLCA fall into three categories:

1. Generic features: These are features FLCA extracts from signals in a seg-

ment, irrespective of the type of signal. These features may provide some

statistical information about the signal such as maximum, minimum, mean

value. These features correspond to signal levels a human expert would look

for while analyzing event waveforms. For example, an expert would look

for maximum values of three phase RMS current waveforms in comparison

to load current to determine if a waveform corresponds to an overcurrent

event (Figure 3.11).

2. Shape based features: These are features FLCA extracts to represent shapes

observed in RMS waveforms. In a majority of cases, a human expert would

be able to determine the cause of a power system event based on the shapes

observed in RMS waveforms. For example, consider the three phase RMS

current plot (top left) in Figure 3.9. This is a characteristic shape associated

with a motor start which an expert would be able to recognize immediately.
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Figure 3.11: Using signal levels to determine event type

Figure 3.12: Motor start characteristic shape
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This shape can be defined by a precipitous increase in values followed by a

relatively flat region followed by a smooth decrease in values (Figure 3.12).

FLCA uses a modified version of Dynamic Time Warping algorithm [91],

specifically designed for recognizing shapes in RMS signals. Chapter 4 ex-

plains generic feature extraction and shape based feature extraction in more

detail.

3. Event specific feature: These are features required to ascertain if an event

was caused by a specific power system activity, such as, arcing or capaci-

tor switching. There are some cases where a human expert may not be able

to recognize the cause of an event just by looking at RMS waveform levels

and shapes. The expert may have to analyze high speed waveforms further,

to classify the event. For example, the top most plot in Figure 3.13 shows

RMS voltage waveforms caused by an arcing capacitor switch. An expert

analyzing the RMS voltage waveforms alone would not be able to tell, con-

clusively, they were caused by an arcing capacitor switch. This is because

local variations, as seen in the RMS voltage plots, can be caused by a num-

ber of factors such as noise or other forms of arcing (not necessarily an arcing

capacitor switch). An expert may look at phasor differenced voltage wave-

forms to clearly see what is causing the activity. Phasor differenced volt-

age waveforms are calculated by subtracting an estimated ambient (steady

state) voltage phasor from the voltage waveform. This would show tran-

sient activity in the signal. The second plot in Figure 3.13 shows phasor

differenced high speed voltage waveforms corresponding to the same event.

Phasor differenced voltage signal clearly shows large voltage transients with

peaks up to 6000V. Further zooming in (the third plot in Figure 3.13) the ex-
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Figure 3.13: RMS and high speed voltage waveforms from an capacitor switch
arcing event
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pert would be able to verify high frequency voltage transients. The expert

would also have to look at other features before diagnosing the cause of

the event as possibly due to capacitor switch arcing. These features include,

high frequency activity in current waveforms and the relative magnitudes of

voltage transients on each phase This example illustrates that some power

system event types need specialized features to determine the cause of the

event. There are other situations where an expert may easily recognize an

event, but would have to analyze further, to know more about the nature of

an event. For example, Figure 3.14 shows RMS current waveforms from a

multi-shot overcurrent event. An expert looking at these waveforms would

be able to recognize that this is a Phase B to ground fault with a fault magni-

tude of about 450A. However, if the expert analyzes the waveform further,

the expert would be able to provide more information that could help locat-

ing the fault quickly. On further analysis, an expert would be able to tell that

the fault was likely beyond a single phase recloser. The expert could also

tell that the recloser likely operated three times; twice on a fast curve and

once on a slow curve, before going to a lockout causing an outage (service

interruption). If the expert provides utility personnel with this information,

then they could narrow down the search to locations down stream of Phase

A single phase recloser that is set to operate three times. FLCA uses the

following list of algorithms to extract event specific features:

(a) Transient detection algorithm for identifying high frequency transients

associated with capacitor switching, capacitor restrike and capacitor

arcing.

(b) Zero crossing based waveform analysis algorithm for detecting arcing.
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Figure 3.14: RMS current waveforms from multi-shot overcurrent event

(c) Multi-shot overcurrent analysis algorithm.

Chapter 5 explains each of the above algorithms in detail.

3.4.6.3 Classification stage

Features extracted from waveform data serve as input to a fuzzy classifier.

The fuzzy rule based classifier is the final stage of FLCA. Features are the ‘evi-

dence’ based on which the classifier assigns a category to the waveform data be-

ing processed. This is analogous to an expert making diagnosis based on evidence

present in the signals and the expert’s prior knowledge. Fuzzy logic allows mim-

icking human approximate reasoning through the use of linguistic rules. FLCA

uses fuzzy rules and fuzzy membership functions to capture expert’s knowledge.

FLCA uses a fuzzy hierarchical classifier to assign possibility values for various

power system event categories. The fuzzy hierarchical classifier was specifically

designed for handling power system event features. The hierarchical classifier

processes features and possibility values on per phase basis then at a segment

level (when waveform data can be split into multiple segments) and finally at a
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global level considering the whole waveform file. The hierarchical classifier com-

putes possibility values for each power system event category after processing

the features. Finally, FLCA assigns a class label based on these possibility val-

ues. Chapter 6 explains the fuzzy hierarchical classifier in detail. FLCA writes

the output classifications and related attributes to database. Reporting algorithms

process these classifications and attributes and present them to utility personnel.

3.4.6.4 Intelligent reporting to prevent information overload

Automatic classification scheme such as the one outlined in the previous sec-

tion is essential for intelligent monitoring and diagnosing problems on feeders

being monitored. However, for it to be useful, the classification system cannot

reports every event it classified. A majority of events would be normal system

events such as, but not limited to, capacitor switching and motor starting. If all

these events are reported, utility personnel may be overloaded with data, and

they may miss abnormal events that were buried among normal system activity.

It is desirable that a higher level algorithm go through the classification results

and decide what information needs to be presented to utility personnel. Such in-

telligent reporting algorithms were also developed by the author as a part of DFA

project. Sample results produced by reporting algorithms are also presented in

Chapter 7.

3.5 Chapter Summary

In this chapter, the DFA platform used for acquiring waveform was intro-

duced. Then, the power system event classification problem was formulated as

a number of sub-problems. Each of these sub-problems including segmentation,

feature extraction and event classification, were described in detail. The rationale

for choosing a fuzzy expert system based classifier over a probabilistic expert sys-
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tem was explained. The power system event classification problem was shown

to be a large scale problem, and the need for fuzzy hierarchical classifier was ex-

plained. Finally, a classification scheme was proposed as a solution to the power

system event classification problem.
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4. RMS SHAPE ANALYSIS

4.1 Introduction

Majority of power system events (90-95%) can be classified by a human ex-

pert based on the shapes observed in cycle-by-cycle waveforms. Cycle-by-cycle

waveforms are computed from high-speed waveforms, using a non overlapping

window of length equivalent to one cycle of the power system frequency. Cycle-

by-cycle waveforms include, three-phase and neutral RMS (Root Mean Square)

currents, three-phase RMS voltages, three-phase and neutral RMS of phasor dif-

ferenced1 currents, three-phase RMS of phasor differenced voltages, three-phase

real and reactive phasor power. For data used in this research, high-speed wave-

forms were acquired at a rate of 15,360 samples/second. For a 60Hz power system

frequency, each cycle corresponds to 256 samples. When a non overlapping win-

dow of length 256 is used, a total of 15, 360/256 = 60 cycle-by-cycle values are

computed per second. For simplicity, from here on, all cycle-by-cycle waveforms

will be referred to as ‘RMS waveforms’.

Shapes that are commonly observed in RMS waveforms include, but are not

limited to, step changes, surges, dips, and exponential decay (Figure 4.1). On most

occasions, an expert associates the event with its root-cause based on shapes, and

some simple features associated with these shapes. Hence, RMS waveform shape

detection and shape parameter estimation are key factors in solving power system

event classification problem. The following sections discuss challenges associated

with RMS waveform shape detection and methods for solving this problem.

1Phasor differencing is a technique developed at Texas A&M’s Power System Automation Lab-
oratory; it is used for removing an estimated steady-state load component from a sampled signal
in the presence of phase drifts introduced either due to sampling or due to changes in power
system frequency [77].
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Figure 4.1: RMS waveform shape examples
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4.2 RMS Waveform Shape Detection Problem

Power system event shape detection is challenging because, power system

events are time-variant. Event data belonging to the same event category may

have different magnitudes, durations and frequency characteristics. These differ-

ences can be due to one or more of the following reasons:

1. Changes in the state of the power system: Events with the same root-cause

may have different characteristics depending on the state of the feeder when

the events were recorded.

2. Multiple components of the same type: Events belonging to the same event

category will have different characteristics if they were not caused by the

same component. For example, a distribution feeder can have more than one

capacitor bank. Each of these banks will have different characteristic based

on their rating and location. Hence, waveforms recorded during capacitor

switching events may differ in electrical characteristics as measured at the

substation if they were caused by different capacitor banks.

3. Changes in a component’s characteristic: Operating characteristics of a com-

ponent may change over time due factors such as a manual change in the

configuration of the component, weather and aging. As a result, events

caused by the component may differ in their characteristics from similar or

“identical” components, overtime.

Figure 4.2 shows real power (P) and reactive power (Q) waveform plots form three

events caused by motor starts. Plots a, b are from motor start events recorded on

the same feeder while plot c is a motor start event from another feeder. It can be

seen that the plots have similar shapes but exhibit the following differences:
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Figure 4.2: Real and reactive power plots from motor start events
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1. Translation: Within the plot, events do not start at the same time.

2. Scaling: Duration and magnitude of the motor start events are different.

3. Warping: Event shape appears stretched or shrunk in time.

The effect of translation may be removed by detecting event start time and ignor-

ing pre-event data. Scaling may be compensated by normalizing the data. How-

ever, warping is harder to remove or compensate for. Simple template matching

techniques that uses Euclidean distance (i.e. trying to match a template with ob-

served waveform on a point by point basis) will not work. Dynamic Time Warping

(DTW) is a tool that could be used to solve the above problem.

4.3 Shape Template Matching Using DTW

DTW is a technique that finds the optimal alignment between two time series

where one of the time series is warped (stretched or shrunk non-linearly) in time.

DTW has been used to determine similarity between spoken sounds in the field

of speech recognition [91]. In speech recognition, duration of sounds and pause

between sounds are allowed to vary, but the overall sound needs to be similar.

DTW and variations of DTW have become a widely used tools for time series

pattern analysis [92]. DTW has previously been used for classification of power

quality disturbances [93]. However, in the previous approach, DTW was not used

for RMS shape recognition.

Figure 4.3 shows an example shape template for warping a motor start shape to

a sample RMS waveform. Vertical lines connect each point in the shape template

to one or more similar points on the RMS waveform. If no warping is needed,

then each point in the shape template will be connected to a single point in the

RMS waveform. DTW uses warp path distance instead of Euclidean distance as a
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Figure 4.3: Warping a shape template to a RMS waveform

measure of similarity between the template and the signal of interest. The warp

path distance is the sum of the distances between each point in the template to one

or more corresponding points in the waveform. If the RMS waveform is identical

to the template except for localized warping (i.e if the template can be stretched

or shrunk to fit the RMS signal exactly) then the warp path distance will be zero.

4.3.1 Finding Optimal Warp Path

Before the warp path distance between a shape template and a RMS wave-

form can be computed, an optimal warping path needs to be found. The gen-

eral form of optimal time warping problem [94] was modified for use with RMS

waveform shape recognition. The problem of finding optimal time warp path

for RMS waveform shape matching can be stated as follows: Given a shape tem-

plate T = { t1, t2, · · · , ti, · · · , t|T| } of lengths |T| and a RMS waveform X = { x1, x2,

· · · , xj, · · · , x|X| } of length |X|, find the optimal path W? among all possible paths.
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Consider a warp path W.

W = w1, w2, · · · , wk, · · · , w|W| (4.1)

where:

|W| is length of the warping path, where |W|= max(|T|, |X|).

wk represents the kth element of warp path, where wk = (i, j), i represents the

ithelement in the shape template T and j represents corresponding jthelement

in the RMS waveform X.

T , X are both normalized and mapped to the interval [0, 1].

There are some constraints imposed on the warp path for all shape templates and

RMS waveforms. The warp path needs to start at the beginning of the shape

template, and finish at the end of shape template. The beginning and end of the

warp path should also coincide with the beginning and end of the RMS waveform.

This constraint can be stated as:

w1 = (1, 1) , w|W| = (|T|, |X|) (4.2)

The above constraint ensures that whole of the template and RMS waveforms are

traversed and matched. Another constraint requires the indices i and j to increase

monotonically in the warp path:

wk = (i, j) , wk+1 =
(
i′, j′

)
i 6 i′ < i + nT(i), j′ = j + 1 (4.3)

where:
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nT(i) is a template position dependent parameter that determines the number

of template points that may be skipped when the warping path is at index i

of template T.

The above constraint ensures that the warping path always moves forward in

time. It also ensures that a single point in the RMS waveform is not matched to

more than one point in the shape template. However, a single point on the shape

template may match more than one consecutive points on the RMS waveform.

This will allow stretching of the template waveform. Equation 4.3 also imposes

a template position dependent upper bound on i′. This is a local constraint that

allows warping paths to skip some points on the shape template. Skipping points

on shape template is equivalent to shrinking shape template to fit the RMS wave-

form. Two other local constraints are also introduced:

wk = (i, j) , wk+m =
(
i′, j′

)
, i = i′, 0 6 m 6 LbT(i), j′ = j + m (4.4)

wk = (i, j) , wk+m =
(
i′, j′

)
, i < i′, UbT(i) < m, j′ = j + m (4.5)

Equation 4.4 imposes a bound on the minimum duration LbT(i) for which the

warping path W has to stay at a template index i for the template T. This forces

the warping path to stay at certain key positions on the shape template for a min-

imum specified duration. Equation 4.5 imposes a bound on the maximum dura-

tion UbT(i) for which the warping path W can stay at a template index i for the

template T. This prevents the warping path from staying indefinitely at some po-

sitions on the shape template. This local upper bound is needed to prevent shape

distortion (Figure 4.4).
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Figure 4.4: Shape distortion when warp path stays at some template points for too
long

Optimal warp path W? is the best template match warp path that minimizes

the distance between shape template T and RMS waveform X over all possible

warp paths W:

W? = arg min
W
{Dist(W)} (4.6)

Dist(W) =
k=|W|

∑
k=1

Dist (T (iwk) , X (jwk)) (4.7)

Dist(W) is the total distance computed over the warp path W that satisfies the

constraints imposed by Equations (4.2-4.5). Dist (T (iwk) , X (jwk)) represents the

distance between shape template T and RMS waveform X at the kth position in the

warp path W. iwk and jwk represent shape template and RMS waveform indices

at the kth position in the warp path W. Since the warping path always traverses

RMS waveform at one sample increments (Equation 4.3), wk = (i, k) and jwk = k.
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Equation 4.7 can be simplified to:

Dist(W) =
k=|W|

∑
k=1

Dist (T (iwk) , X (k)) (4.8)

Dist (T (iwk) , X (k)) = |T (iwk)− X (k)| (4.9)

Dynamic programming [95] can be used to solve this optimization problem.

This is because, if all optimal warping paths till kth point in RMS waveform X

are known, then it is possible to compute all the optimal paths for a one point

increment (k + 1) on RMS waveform. In other words, if Wk
opt is a set of all optimal

warping paths till the kth point in RMS waveform X for a shape template T, it is

possible to find all optimal warping paths till (k + 1)th point by solving a simple

optimization problem for moving from kth point to (k + 1) as:

W?
k+1 = f (W?

k , X(k + 1), T) (4.10)

W?
k ∈

{
W?

k,T(i)

}
, i ∈ I, I ⊂ {1, 2, · · · , |T|} (4.11)

W?
k+1 ∈

{
W?

k+1,T(i′)

}
, i′ ∈ I′, I′ ⊂ {1, 2, · · · , |T|} (4.12)

where:

W?
k+1 is a set of all possible optimal warp paths at (k + 1)th point in RMS

waveform. There can at most be |T| optimal warp paths that end at (k + 1)th

point corresponding to each point i on shape template T. However, due to

constraints imposed by equations (4.2-4.5), in reality only a subset of opti-

mal warp paths exists (Equation 4.12). W?
k+1,T(i′) represents one such optimal

warp path that ends at (i′, k + 1) and i′ belongs to the set of allowable tem-

plate indices I′.
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W?
k is a set of all possible optimal warp paths at kth point in RMS waveform.

There can at most be |T| optimal warp paths that end at kth. However, due to

constraints imposed by equations (4.2-4.5), in reality only a subset of optimal

warp paths exists (Equation 4.11). W?
k,T(i) represents one such optimal warp

path that ends at (i, k) and i belongs to the set of allowable template indices

I.

The function f in Equation 4.10 can be used to find all optimal warp paths W?
k+1 at

(k + 1)th point X(k + 1) of RMS waveform using a shape template T, when all opti-

mal paths at kthpoint W?
k are known. The function f uses the following relations:

W?
k+1,T(i′) =

{
W?

k,T(n),
(
i′, k + 1

)}
, n ∈ I (4.13)

n = arg min
i

{
Dist(W?

k,T(i)) + Dist
(
T
(
i′
)

, X (k + 1)
)}

, i ∈ I (4.14)

The above equations can be used to find the optimal warp path incrementally.

This is because, (k + 1)th element of any optimal warp path W?
k+1,T(i′) that ends at

(i′, k + 1) is w?
k+1 = (i′, k + 1). The point (i′, k + 1) can only be reached from any

one of |I| points w?
k = (i, k) , i ∈ I from the previous step. If the optimal warp

path W?
k,T(i) to each of the previous points (i, k) is known, and the cost Dist(W?

k,T(i))

associated with each of these paths are also known; then the problem reduces to

determining the single optimal point (n, k) from which the point (i′, k + 1) can be

reached such that the total incremental cost (Equation 4.14) is minimized. Equa-

tion 4.10 shows recursive nature of the optimal warp path problem. Equation 4.14

shows how the problem can be broken into sub problem of minimizing warp path

cost of moving from kth point to (k + 1)th point. The ability to break the prob-

lem into sub problems that are smaller but similar is a requirement for applying
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dynamic programming technique [96].

4.3.2 DTW Based RMS Shape Classifier

Different shapes such as step changes, surges, dips etc., need to be detected

in RMS waveforms. Hence, multiple shape templates Ts, each to detect a spe-

cific shape Shapes are needed. A classifier may be designed to classify the RMS

waveform based on the shape observed in the waveform. To do this, for each Ts,

optimal warp paths W?
Ts

and minimum cost DTs = Dist
(

W?
Ts

)
are first computed

using the method outlined in Section 4.3.1. Then a simple DTW based classifier

CShape assigns the shape label Shapes to the RMS waveform X such that the Ts has

the least total warp path cost:

CShape (X) = arg min
s
{DTs} , 0 < s 6 Ns (4.15)

It is possible that none of the shape templates match the shape observed in RMS

waveform. However, equation 4.15 will assign a shape label even when none

of the shape templates match. To avoid this scenario, a shape label ‘Unknow’ is

assigned if min
s
{DTs} > ThU, where ThU is a threshold for warp path cost.

4.3.3 Time and Memory Complexity of Using DTW

The advantage of using dynamic programming technique is that it is guaran-

teed to construct the optimal warping path for the given constraints. It does not

impose any additional requirements on the nature of the cost function Dist or the

constraints that can be used. However, its’ main disadvantage is time and space

complexity due to the enumerative nature of search. For example, if no local con-

straints were imposed, optimal incremental warping paths need to be computed

for each point k on RMS waveform |T|. This results in a total of |X| ∗ |T| cost com-
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putations, which is O
(

N2) if N = |X| = |T|. In terms of memory requirements, a

matrix of size |X| ∗ |T| will be needed to store optimal warp paths at each point k.

Such quadratic time and memory complexity, will be prohibitive for large values

of N.

Time and memory complexity do not pose a problem for RMS waveform shape

matching proposed in this research. This is because, the size of shape templates

|T| used for RMS shape matching is very small in comparison to length of RMS

waveforms |X| . Also, using local constraints reduces the number of template in-

dices that need to be searched at each point. Hence, |T| � |X| and |X| ∗ |T|

becomes |X| ∗ |T| = c ∗ |X| where c is a small number, and c = |T|. This changes

the time and space complexity from being quadratic to being linear O (N). For ex-

ample, waveform data used for this research are typically few seconds long (about

five seconds), and for waveform data of length five seconds, |X| = 5 ∗ 60 = 300.

Shape templates used for this research have an average length of 12 points. How-

ever, due to local constraints that are imposed, at most 4 points on the shape tem-

plate are considered at each point in the warping path. Hence, only a total of

about 4 ∗ |X| = 1200 distance computations are required. Even when assuming

a worst case scenario of waveform data being 10 minutes long, this translates to

RMS waveforms of length |X| = 10 ∗ 60 ∗ 60 = 36, 000 samples. Hence a total

of about 4 ∗ |X| = 144, 000 distance computations may be required which is still

manageable by present day processors.

4.4 Fuzzy Shape Template Matching Using DTW

DTW based template matching outlined in Section 4.3 was initially used in

this research for recognizing shapes. However, there were some drawbacks of

using this approach. Shape templates do not account for the presence of local
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Figure 4.5: Motor start with local variations

variations or noise in RMS waveforms. Figure 4.5 shows one such example. Local

variations will add to the cost function as they will be viewed as deviations from

the reference template. When such deviations are aggregated over the warping

path, it may result in high overall cost. Such high warp path cost may cause a

shape template to be rejected even though the general shape of the event matched

the reference template.

Some ways of improving the classification performance are:

1. Increasing the number of sample points on the shape templates.

2. learning shape templates by regressing over sample shapes.

3. Using vector quantization technique to identify optimal sample points on

shape templates.

These approaches increase the possibility of ‘over-fitting’ the shape templates to
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Figure 4.6: Sample motor start shape template

the test data an increase in computational time.

4.4.1 Fuzzy Shape Templates

To overcome the uncertainty introduced due to local variations, shape tem-

plates can be fuzzified. This allows for ‘elastic’ matching in the presence of local

variations or noise. Based on this idea, a new DTW approach based on fuzzy

shape templates is proposed. This method will here on be referred to as Fuzzy

Dynamic Time Warping (FDTW).

Figure 4.6 shows a sample motor start shape template. The horizontal axis

corresponds to template index and the vertical axis corresponds to template val-

ues. A shape template is represented as a series of index, value pairs T, where

T =
{
(1, v1) , (2, v2), · · · , (|T| , v|T|)

}
. When trying to match kth point on RMS
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waveform X with ith point on template T, DTW technique uses the absolute dis-

tance |X(k)− T(i)|. When the RMS waveform has a shape that is very close to the

template but has some local variations, points on the RMS waveform may be rep-

resented as X(k) = T(i) + ∆L, ∆L < T(i). The absolute distance |X(k)− T(i)| = ∆L

will contribute to the cost computed over the warp path. When visually analyz-

ing RMS waveforms, an expert will ignore such local variations and will be able

to match the general shape. In an attempt to mimic this behavior, template T is

fuzzified by assigning a fuzzy membership function to each point in the template:

TFuzzy =
{
(1, µ1) , (2, µ2) , · · · , (i, µi) , · · · ,

(∣∣Tf uzzy
∣∣ , µ|TFuzzy|

)}
, 1 6 i 6

∣∣TFuzzy
∣∣

(4.16)

where TFuzzy is a fuzzy shape template represented as a sequence of (index, mem-

bership function) pairs. µi represents fuzzy membership function corresponding

to fuzzy sets such as ‘High’, ‘Medium’ and ‘Low’. Figure 4.7 shows how the ‘crisp’

motor start shape template in Figure 4.6 can be converted to a fuzzy shape tem-

plate using three fuzzy membership functions. Here, three fuzzy membership

functions µH, µL and µM corresponding to fuzzy sets High, Medium and Low are

used (shown in the far left side). Each template index 1, · · · , 14 (horizontal axis) is

assigned either of the three fuzzy membership functions µH, µL or µM instead of

numeric values (shown directly below template indices). To keep the illustration

simple, only three fuzzy sets are used for this example template. In reality, more

than three fuzzy sets may be used for increased granularity. The equation below

shows the indices and values of crisp motor start template TCrisp−Motor and fuzzy

motor start template TFuzzy−Motor. Here the templates are shown in a vector form

109



Figure 4.7: Sample fuzzy motor start shape template

without indices:

TCrisp−Motor = {0.0, 1.0, 1.0, 1.0, 1.0, 1.0, .95, .85, .75, 0.3, .15, .05, 0.0} (4.17)

TFuzzy−Motor = {µL, µH , µH , µH , µH , µH , µH , µH , µM, µM, µL, µL, µL} (4.18)

Fuzzy motor start shape template (Equation 4.18) can be interpreted as follows:

“Motor start shape starts with Low values, followed by at least seven High values,

followed by at least two Medium values and ends with at least three Low values”.

For matching kth point on RMS waveform X with ith point on template TFuzzy, the

fuzzy membership function µi assigned to the ith index of the fuzzy template can

be used:

Match
(
TFuzzy (i) , X (k)

)
= µi (X (k)) (4.19)
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Dist
(
TFuzzy (i) , X (k)

)
= ¬µi (X (k)) (4.20)

¬µi (X (k)) = 1− µi (X (k)) (4.21)

When µi (X (k)) is used directly (Equation 4.19), it returns a value in the interval

[0, 1] that represents the degree to which X (k) is in the fuzzy set assigned to the

template position i. For example, when using the fuzzy template TFuzzy−Motor, for

template index i = 1, µi = µL. Then, µL (X (k)) returns a value that represents

the degree to which X (k) is Low. The degree of match (Equation 4.19) can be

converted to a cost or distance measure by determining the degree of ‘not match’

using the fuzzy Not operator (4.20).

The main reason for using a fuzzy shape template is to make the shape tem-

plate less sensitive to local variations and noise. If the membership functions µi

are designed carefully, the distance measure (Equation 4.20) can be made less sen-

sitive to local variations. It is easier to demonstrate this with an example. Figure

4.8 shows RMS waveform of a noisy motor start (shown in blue) superimposed on

a fuzzy motor shape template. Points on the crisp motor shape template (shown

in black) are also shown for comparison. The RMS waveform (blue) shows a lot

of local variation at the top corresponding to the values in the range [0.7, 1.0].

When the fuzzy membership function µH corresponding to the fuzzy set High is

used to match these RMS values corresponding to template indices 2-8, all RMS

values in the interval [.75, 1.0] return a degree of match equal to 1.0 and the dis-

tance measure of 0.0. However, when the crisp template is used, none of points

corresponding to template indices 2-8 will return a non zero distance. Hence, the

crisp template will result in a higher warp path cost when compared to the fuzzy

template.
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Figure 4.8: Fuzzy template matching of a noisy motor start
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4.4.2 Computing Optimal Warp Path for Fuzzy Shape Templates

Similar to the method outlined in Section 4.3.1, before the warp path distance

or the degree of match between a fuzzy shape template and a RMS waveform can

be computed, an optimal warping path needs to be found. However, dynamic

programming approach outlined in Section 4.3.1 cannot be used directly for com-

puting the optimal warp path for fuzzy templates. This is because of the fuzzy

nature of template matching. The problem of finding the optimal warping path

for a fuzzy shape template can be formulated as a multistage fuzzy decision mak-

ing problem under Bellman and Zadeh’s framework [97, 98].

4.4.2.1 Review of multistage decision making under fuzziness

Bellman and Zadeh [97] proposed that any conventional decision making pro-

cess can be looked at as exploring a set of alternatives; taking into consideration

constraints imposed on the alternatives, and evaluate the alternatives based on

a performance function that evaluates the goodness of each alternative. Bellman

and Zadeh went on to generalize the conventional decision making process by

proposing a fuzzy decision making framework as follows:

If X is a set of all alternatives (choices) and if G is a fuzzy goal in X and C is

a fuzzy constraint in X, then a fuzzy decision D in X is the result of attaining the

fuzzy goal G while satisfying the fuzzy constraints C. Since G, C and D are all

fuzzy sets in X, there exists corresponding fuzzy membership functions µG, µC

and µD. Then for any alternative x ∈ X, the following relationship may be defined

[98] for a fuzzy decision involving x:

µD(x) = µC(x)∧ µG(x) (4.22)
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where ∧ is the fuzzy conjunction operator. In the above equation, µD(x) pro-

vides a measure of goodness of the alternative x based on the degree to which it

satisfies the fuzzy constraints (µC(x)), and the degree to which it attains the fuzzy

goal (µG(x)). The objective is to find the best alternative xopt, xopt ∈ X that meets

the fuzzy constraints C and attains the fuzzy goal G. Hence, this can be repre-

sented as an optimization problem that maximizes µD(x) as follows:

xopt = arg max
x∈X
{µD (x)} (4.23)

xopt = arg max
x∈X
{µC(x)∧ µG(x)} (4.24)

Bellman and Zadeh extended the above approach to the multistage decision mak-

ing under fuzziness. Consider a memory less fuzzy system whose next state sk+1

depends only on the system’s current state sk and new input xk. Then the system

can be described by the following state transition equation:

sk+1 = f (sk, xk) , k = 0, 1, 2, · · · , N − 1 (4.25)

In the context of multistage decision making, in the above equation, k can be con-

sidered as a specific stage. xk can be considered as a specific choice made at the

stage k where xk ∈ X and X is the set of all alternatives. The next state of the

system sk+1 can be considered as the output as a result of the choice xk, where

sk+1 ∈ S and S is the set of all valid states. Then a fuzzy goal Gk+1 can be imposed

on sk+1to evaluate the goodness of the output. Additionally, a fuzzy constraint Ck

may be imposed on the choice xk. Then, similar to Equation 4.22, the goodness of
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fuzzy decision Dk at stage k may be evaluated by:

µDk(xk) = µCk(xk)∧ µGK+1(sk+1) (4.26)

The above equation evaluates the performance of a choice xk for a single stage.

For a N stage decision making problem, assuming the initial state s0 is known,

the performance of a sequence of choices x0, x1, · · · xN−1 ∈ X × X · · · × X can be

viewed as a fuzzy decision D in X × X · · · × X, and can be evaluated as follows

[98]:

µD(x0, x1, · · · xN−1|s0)

= µC0(x0)∧ µG1(s1)∧ · · · ∧ µCk(xk)∧ µGK+1(sk+1)∧ · · · ∧ µCN−1(xN−1)∧ µGN (sN)

=
N−1∧
k=0

(
µCk(xk)∧ µGK+1(sk+1)

)
(4.27)

In a multistage decision making problem, the objective is to find the optimal se-

quence of choices x?0 , x?1 , · · · x?N−1 ∈ X×X · · · ×X that maximizes the goodness of

decision over all the stages. Then, the multistage decision optimization problem

is equivalent to finding x?0 , x?1 , · · · x?N−1 such that:

x?0 , x?1 , · · · x?N−1 = arg max
x0,x1,···xN−1

{µD(x0, x1, · · · xN−1|s0)} (4.28)

x?0 , x?1 , · · · x?N−1 = arg max
x0,x1,···xN−1

{
N−1∧
k=0

(
µCk(xk)∧ µGK+1(sk+1)

)}
(4.29)

or

µD
(
x?0 , x?1 , · · · x?N−1|s0

)
= max

x0,x1,···xN−1

{
N−1∧
k=0

(
µCk(xk)∧ µGK+1(sk+1)

)}
(4.30)
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4.4.2.2 Fuzzy template matching - a special case of multistage decision making under

fuzziness

Finding the optimal warp path for matching a fuzzy template to an RMS wave-

form can be considered as a special case of multistage decision making problem

outlined in the previous section. Let TFuzzy = {µ0, · · · , µM−1} be a fuzzy shape

template of length M. Let R = {r0, · · · , rk, · · · rN} be an RMS waveform contain-

ing N + 1 samples. Then the objective is to find the optimal path W?
N among all

possible paths. Consider a warp path WN ∈ U ×U, · · · , U.

WN = w0, · · · , wk, · · · , wN (4.31)

where:

wk represents the kth element of warp path, where wk = (ik, k) ≡
(
µik , R (k)

)
,

ik represents the ith
k element in the shape template TFuzzy and k represents

corresponding kthelement in the RMS waveform R.

R is assumed to be normalized and mapped to the interval [0, 1].

The general constraints described for the DTW technique regarding the beginning,

end states and time monotonicity (Equations 4.2,4.3) are applicable here too:

w0 = (0, 0) , w|W|−1 = wN = (M, N) (4.32)

wk = (ik, k) , wk+1 = (ik+1, k + 1) ik 6 ik+1 < ik + nT(i) (4.33)

where:

nT(i) is a template position dependent parameter that determines the number
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of template points that may be skipped when the warping path is at index ik

of template Tf uzzy.

Local constraints such as the ones described in Equations 4.4 and 4.5 are also ap-

plicable:

wk = (ik, k) , wk+m = (ik+1, k + m) , ik = ik+1, 0 6 m 6 LbT(ik) (4.34)

wk = (ik, k) , wk+m = (ik+1, k + m) , ik < ik+1, UbT(ik) < m (4.35)

Equation 4.34 imposes a bound on the minimum duration LbT(ik) for which the

warping path W has to stay at a template index ik for the template TFuzzy. Equation

4.35 imposes a bound on the maximum duration UbT(i) for which the warping

path W can stay at a template index ik for the template TFuzzy. Then, the optimal

warp path W? = w?
0 , · · · , w?

k , · · · , w?
N , W? ∈ U ×U, · · · , U is the fuzzy template

warp path that maximizes the degree of match of the fuzzy template TFuzzy and

RMS waveform R over the whole warp path:

W?
N = arg max

WN

{
µMatchN (WN)

}
(4.36)

w?
0 , · · · , w?

k , · · · , w?
N = arg max

w0,···,wk ,···,wN

{
µMatchN (w0, · · · , wk, · · · , wN)

}
(4.37)

where µMatchN is a fuzzy membership function that represents the degree of match

of fuzzy template warping path WN and MatchN is a fuzzy set in WN ∈ U ×

U, · · · , U. Since matching the fuzzy shape template over the whole warp path is

equivalent to matching the fuzzy template at every point in the RMS waveform,

using (4.19):

µMatchN (w0, · · · , wk, · · · , wN) =

(
N∧

k=0

µik (R (k))

)
(4.38)
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and

w?
0 , · · · , w?

k , · · · , w?
N = arg max

w0,···,wk ,···,wN

{
N∧

k=0

µik (R (k))

}
(4.39)

where ∧ is the fuzzy conjunction operator. Since the initial condition w0 = (0, 0)

is known, w0may be dropped from the above equation and be rewritten as:

w?
1 , · · · , w?

k , · · · , w?
N = arg max

w1,···,wk ,···,wN

{
N∧

k=1

µik (R (k))

}
(4.40)

Since kth point in warp path is wk = (ik, k) and k increments by exactly 1 at every

stage, finding the optimal w?
k for kth point is the same as finding the optimal fuzzy

shape template index i?k . Without loss of generality, µik (R (k)) can be represented

as µMatch (wk). This is because, for a given RMS waveform R, the kth point in the

warp path wk represents the pair
(
µik , R (k)

)
. Hence, the problem of finding the

optimal warping path may be redefined as the problem of finding the optimal

sequence of fuzzy template indices I?N = i?1 , · · · , i, · · · , i?N such that:

i?1 , · · · , i?k , · · · , i?N = arg max
i1,···,ik ,···,iN

{
N∧

k=1

µMatch (wk)

}
(4.41)

The problem finding the optimal sequence of fuzzy template indices I? =

i?1 , · · · , i?k , · · · , i?N may also be presented as a multistage decision making problem.

Then, at each stage k template index ik need to be incremented by a value xk > 0

such that ik+1 = ik + xk; subject to the constraints defined by 4.33-4.35. Then, for

any point wk = (ik, k) in the warp path W, the next point wk+1 = (ik+1, k + 1) can

be expressed as:

wk+1 = (ik+1, k + 1) = (ik + xk, k + 1) = f (wk, xk) (4.42)
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The above equation is very similar to the state transition equation (4.25). Now, the

problem finding the optimal sequence of fuzzy template indices I? = i?1 , · · · , i?k , · · · , i?N

may be redefined as follows: Finding the optimal sequence of choices or val-

ues X?
N−1 = x?0 , · · · , x?k , · · · , x?N−1 that will result in the optimal template indices

I? = i?1 , · · · , i?k , · · · , i?N given i0 = i?0 = 0 and subject to the constraints defined by

4.33-4.35. It is convenient to make the constraints, part of the cost or match func-

tion. For this, at each stage k, a crisp constraint ck (xk) can be introduced. ck (xk)

evaluates to 0 if any constraint is violated for a choice xkand ck (xk) evaluates to

1 if no constraints are violated. Also, at each stage k, a choice xk will induce a

template match µMatch (wk+1) at the next point in the warp path. Now, Equation

(4.41) can be rewritten as:

X?
N−1

= arg max
x0,···,xk ,···,xN−1

{(c0 (x0) ∧ µMatch(w1)) ∧ · · · ∧ (cN−1 (xN−1) ∧ µMatch(wN))}

= arg max
x0,···,xk ,···,xN−1

{
N∧

k=0

((ck(xk)) ∧ µMatch(wk+1))

}
(4.43)

or, expressing in terms of goodness of decision µD,

µD
(
x?0 , · · · , x?k , · · · , x?N−1|w0 = (0, 0) , wN = (M, N)

)
= max

x0,···,xk ,···,xN−1

{
N∧

k=0

(ck(xk)∧ µMatch(wk+1))

}
(4.44)

Comparing Equation (4.44) to Equation (4.30), it can be seen that the problem of

finding optimal warp path for a fuzzy template is a special case of multistage

decision making under Bellman and Zadeh framework. Here, fuzzy constraints(
µCk(xk)

)
are replaced by crisp constraints (ck(xk)) and a fuzzy goal is the same
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for each stage (i.e. µMatch(wk+1) ≡ µGK+1(sk+1)).

Making use of the constraint on the final point on warp path wN = (M, N),

equation (4.44) can be written as:

µD
(
x?0 , · · · , x?k , · · · , x?N−1|w0 = (0, 0) , wN = (M, N)

)
= max

x0,···,xk ,···,xN−1

{
N−1∧
k=0

(ck(xk)∧ µMatch(wk+1))

}

= max
x0,···,xk ,···,xN−1

{(
N−2∧
k=0

(ck(xk)∧ µMatch(wk+1))

)

∧ (cN−1 (xN−1) ∧ µMatch (wN = (iN−1 + xN−1, N)))

}

= max
x0,···,xk ,···,xN−2

{{
N−2∧
k=0

(ck(xk)∧ µMatch(wk+1))

}

∧max
xN−1
{cN−1 (xN−1) ∧ µMatch (wN = f (wN−1, xN−1))}

}

= max
xN−1

{
max

x0,···,xk ,···,xN−2

{
N−2∧
k=0

(ck(xk)∧ µMatch(wk+1))

}

∧ {cN−1 (xN−1) ∧ µMatch ( f (wN−1, xN−1))}
}

= max
xN−1

{
µD
(
x?0 , · · · , x?k , · · · , x?N−2|w0 = (0, 0) , wN−1 = f (wN−2, xN−2)

)
∧ {cN−1 (xN−1) ∧ µMatch ( f (wN−1, xN−1))}} (4.45)
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where,

µD
(
x?0 , · · · , x?k , · · · , x?N−2|w0 = (0, 0) , wN−1 = f (wN−2, xN−2)

)
= max

x0,···,xk ,···,xN−2

{
N−2∧
k=0

(ck(xk)∧ µMatch(wk+1))

}

= max
x0,···,xk ,···,xN−2

{(
N−3∧
k=0

(ck(xk)∧ µMatch(wk+1))

)

∧ (cN−2 (xN−2) ∧ µMatch (wN−1 = f (wN−2, xN−2)))

}
(4.46)

The above equation may be iterated backwards to derive the following recursive

relationship for any stage v:

µD (x?0 , · · · x?v |w0 = (0, 0) , wv+1 = f (wv, xv))

= max
xv

{
µD
(
x?0 , · · · , x?k , · · · , x?v−1|w0 = (0, 0) , wv = f (wv−1, xv−1)

)
∧ (cv (xv) ∧ µMatch ( f (wv, xv)))} (4.47)

Let X?
v = x?0 , · · · , x?k , · · · , x?v ; since wv+1 = (iv+1, v + 1), Let

µD (x?0 , · · · , x?k , · · · , x?v |w0 = (0, 0) , wv+1 = (iv+1, v + 1)) = µDv+1 (X?
v |iv+1)

Then Equation (4.47) can be rewritten as

µDv+1 (X?
v |iv+1)

= max
xv

{
µDv

(
X?

v−1|iv
)
∧ (cv (xv) ∧ µMatch (iv+1, v + 1))

}
= max

xv

{
µDv

(
X?

v−1|iv
)
∧
(
cv (xv) ∧ µiv+1 (R (v + 1))

)}
(4.48)
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Since iv+1 = iv + xv ⇒ iv = iv+1 − xv, µDv

(
X?

v−1|iv
)

= µDv

(
X?

v−1|(iv+1 − xv)
)
and

Equation (4.48) becomes:

µDv+1 (X?
v |iv+1) = max

xv

{
µDv

(
X?

v−1|(iv+1 − xv)
)
∧
(
cv (xv) ∧ µiv+1 (R (v + 1))

)}
(4.49)

The above equations can now be used to find the optimal warp path incremen-

tally by applying dynamic programming. This is because, at any stage v, the

above equation finds the optimal warp path that maximizes the degree of match

µDv+1 (Xv|wv+1) for a warp path that ends at wv+1 = (iv+1, v + 1). For this, it uses

the degrees of match µDv

(
X?

v−1|wv
)

for optimal paths ending in wv = (iv, v) com-

puted during the previous stage.

When starting at v = 0, using the initial condition w0 = (0, 0), the degree of

match of warp paths ending at w0 can be computed as µD0 (0) = µMatch (0, 0) =

µ0 (R(0)). Then for v = 0, the optimal warping paths that end at the next stage is:

µD1 (X?
0 |i1) = max

x0

{
µ0 (R(0)) ∧

(
c0 (x0) ∧ µi1 (R (1))

)}
(4.50)

Then, using (4.49), µD1 (X?
1 |i1) , · · · ,µDN (X?

1 |iN) can be found incrementally. Be-

cause of the end condition wN = (M, N), for v = N − 1, the only warp path of in-

terest is the one that ends at N, i.e. only µDN−1

(
X?

N−1|iN = M
)

needs to be found.

Once x?N−1 that maximizes µDN−1

(
X?

N−1|iN = M
)

is found, using the back track-

ing relation iv = iv+1 − xv, optimal warp path and optimal state transition choices

x?N−1, · · · , x?0 can be computed. The degree of match for the optimal warp path

µMatchN (W?) = µDN−1

(
X?

N−1|M
)

can be used as a measure of the degree to which

a fuzzy shape template matches an RMS waveform. Hence, the degree of match

for the optimal warp path can be used to assign shape labels to RMS waveforms.
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The optimal warp path W? can also be used to estimate shape parameters. This

will be explained in Section 4.5.

4.4.3 Fuzzy DTW Based RMS Shape Classifier

Similar to the DTW based RMS shape classifier (Section 4.3.2), a fuzzy DTW

based RMS shape classifier (FDTW classifier) can be designed. FDTW classifier

uses fuzzy shape templates TFuzzys to detect specific shapes Shapes. For each fuzzy

template TFuzzys , optimal warp paths W?
TFuzzys

and degree of match cost Matchs =

µMatchN

(
W?

TFuzzys

)
are first computed using the method outlined in Section 4.4.2.2.

Then, a simple FDTW based classifier CShape assigns the shape label Shapes to

the RMS waveform X such that, fuzzy shape template TFuzzys has the maximum

degree of match over the warp path:

CShape (X) = arg max
s
{Matchs} , 0 < s 6 Ns (4.51)

It is possible that none of the shape templates match the shape observed in RMS

waveform. However, equation 4.51 will assign a shape label even when none

of the shape templates match. To avoid this scenario, a shape label ‘Unknow’ is

assigned if max
s
{Matchs} < ThL, where ThL is a threshold for degree of match

over warp path.

4.4.4 Time and Space Complexity of Using FDTW

Time and memory complexity of using FDTW technique is similar to that of

DTW technique (Section 4.3.3). This is because, at each stage, the DTW technique

tries to compute a warp path with least incremental cost (Equation 4.14), while

FDTW tries to compute the warp path with the best incremental match (Equation

4.49). The number of choices are dependent on the size of shape templates |T| in
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Table 4.1: Generic features

Generic feature name Expression
Maximum pmax = max (X)
Minimum pmin = min (X)

Mean pmean =
1
N

N−1

∑
i=0

xi

Start value pstart = x0
End value pend = xN

Range prng = pmax − pmin

Percent change ppcnt =
prng

pmin

the case of DTW, and
∣∣TFuzzy

∣∣in the case of FDTW technique. Similar to the DTW

based shape template matching, Since
∣∣Tf uzzy

∣∣� |X|, |X| ∗ ∣∣TFuzzy
∣∣ ≈ c ∗ |X|, this

makes the time and memory complexity linear O (N).

4.5 RMS Waveform Feature Estimation

Shape labels assigned using DTW or FDTW techniques just by themselves are

not enough to identify the cause of power system event. Information such as mag-

nitude and duration of the event is needed to determine the cause of an event. For

example, a ‘dip’ shape in RMS voltage waveform can be caused by overcurrents,

arcing and loads switching on. Knowing that the size of the dip was large will

help to narrow down the possible cause (e.g. overcurrent event).

Two types of features are extracted from RMS waveforms: 1. Generic features

that do not depend on the shape of RMS waveform and 2. Shape features that are

specific to the shape detected in RMS waveform. Generic features are extracted

using basic operations on RMS waveforms. Table 4.1 lists all the generic features

extracted from an RMS waveform X = {x0, · · · , xN−1}. Shape feature extraction

is more involved, and is a two step process. First, the optimal warp path that
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Figure 4.9: Pivot points for sample motor start shape

was computed during shape detection is used to find ‘pivot’ points. Pivot points

correspond to points on RMS waveform where the warp path transitions from key

points on shape template to another. Then, shape features are computed using

these pivot points.

4.5.1 Identifying Pivot Points on RMS Waveforms

Pivot points are points on RMS waveform that show considerable changes in

the slope of RMS waveform. These help define the shape observed in the wave-

form. For example, Figures 4.9, 4.10 show a possible set of pivot points (repre-

sented as small circles) for a motor start shape and step-up shape respectively.

The number of pivot points needed to represent a shape, and the the location of

these pivot points depend on the shape observed in RMS waveform. The shape

of an RMS waveform is first determined using either DTW or FDTW technique.

Then, the shape template that best matched the shape observed in RMS waveform

and the corresponding optimal warp path are used to determine pivot points.
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Figure 4.10: Pivot points for sample step-up shape

For the power system event classification problem, a majority of the shapes ob-

served on RMS waveforms can be represented using either four or six pivot points.

For example, let X = {x0, · · · , xN} represent an RMS current waveform. A sample

motor start shape (Figures 4.9) can be described by the following sequence: “Flat

region between x0 and xstart1, precipitous upward step change between xstart1 and

xend1, flat region between xend1 and xstart2, slow downward step change between

xstart2 and xend2, finally a flat region between xend2 and xN−1”. Similarly, a sample

step-up change caused by load switching (Figures 4.10) can be described by the

following sequence: “Flat region between x0 and xstart1, precipitous upward step

change between xstart1 and xend1, finally a flat region between xend1 and xN−1”.

Similar sequences can be be constructed for other shapes such as dips, step down

and inrushes. These sequences illustrate how pivot points can be used to define

the shape observed in RMS waveform.

For a RMS waveform X = {x0, · · · , xN}, the start and end points x0, xN are

126



already known. Then, it suffices to determine the pivot points of the first step

(xstart1, xend1) for step up and step down shapes. For motor starts, inrushes, dips

and bumps, the pivot points of the first step (xstart1, xend1) and the pivot points of

the second step (xstart2, xend2) need to be determined. For a shape template T ={
t1, · · · , t|T|

}
, a template pivot point p can be defined in terms of state transition

p = (ts → te) or p′ = (ts → te). p = (ts → te) represents a point wp in the optimal

warp path W? = {w0, · · · , wN} where the warp path starts to transition from a

template point ts to te such that, wp =
(
ts, xp

)
and wp+1 =

(
te, xp+1

)
. Similarly,

p′ = (ts → te) represents a point wp′ in the optimal warp path W? = {w0, · · · , wN}

where the warp path finishes to transition from a template point ts to te such that,

wp′ =
(

te, xp′
)

and wp′−1 =
(

te, xp′−1

)
. Here, the template T =

{
t1, · · · , t|T|

}
is

used to represent both crisp and fuzzy shape templates. Without loss of generality,

T =
{

t1, · · · , t|T|
}

can be substituted by T =
{

µ1, · · · , µ|T|

}
.

Figure 4.11 shows an optimal warp path computed using a sample motor start

RMS waveform X = {x0, · · · , x14} for a fuzzy shape template:

Tmotor = {µ1 = µL, µ2 = µH , µ3 = µM, µ4 = µL}

Pivot points P for a shape template T are determined heuristically and do not

change. Let the motor start shape be described by the following pivot points:

P = {p0, pstart1, pend1, pstart2, pend2, pN}

where p0is the starting point, pN = p14 is the ending point, pstart1 = (µL → µH),

pend1 = (µL → µH), pstart2 = (µH → µM) and pend3 = (µM → µL). Based on this

state transition information, and an optimal warp path W? = {w0, · · · , w14} ( Table
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Figure 4.11: Computing pivot points using fuzzy motor start shape template

Table 4.2: Optimal warp path for sample RMS waveform in Figure 4.11

Warp path index Warp path point Computed pivot point Comments
w0 (µL, x0) x0 Start point
w1 (µL, x1)→ xstart1 First step start
w2 → (µH , x2) xend1 First step end
w3 (µH , x3) -
w4 (µH , x4) -
w5 (µH , x5) -
w6 (µH , x6) -
w7 (µH , x7) -
w8 (µH , x8)→ xstart2 Second step start
w9 (µM, x9) -
w10 (µM, x10) -
w11 → (µL, x11) xend2 Second step end
w12 (µL, x12) -
w13 (µL, x13) -
w14 (µL, x14) x14 End point
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Figure 4.12: Subset of shape features for a sample motor start shape

4.2), pivot points Xp on the RMS waveform X can be easily computed as:

Xp = {x0, xstart1 = x1, xend1 = x2, xstart2 = x8, xend2 = x11, x14}

Once pivot points on RMS waveform are identified, shape features can be com-

puted.

4.5.2 Computing Shape Features for RMS Waveforms

Shape features quantify important characteristics of shapes observed in RMS

waveform. These features help an expert classify the RMS waveform. Figure 4.12

shows how shape features can be used to describe a motor start shape. Table

4.3 shows how pivot points can be used to calculate shape features for different

shapes. These shape features were chosen based on experience gained by visually

analyzing RMS waveforms. RMS shape features, RMS shape labels and generic

features extracted from RMS waveforms serve as inputs to fuzzy expert system
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Table 4.3: Shape features (xShape)

Applicable shapes Shape feature name Expression Comment

All shapes Shape label cshape
Shape label assigned to RMS

waveform

Pre-event duration pdur−pre = start1 -

All shapes Pre-event magnitude ppre =
1

start1

start1−1

∑
i=0

xi Average pre-event magnitude

Pre-event slope psl−pre = x0−xstart1
start1 -

First step slope psl−step1 = xstart1−xend1
end1−start1 -

Event duration pdur−event = end2− end1 -

Shapes with Event magnitude pevent =
1

start2− end1

start2−1

∑
i=end1

xi Average event magnitude

two steps: Event slope psl−event = xend1−xstart2
start2−end1 -

motor start, inrush, Second step slope psl−step1 = xstart2−xend2
end2−start2 -

bump and dip Post-event duration pdur−post = N − end2 -

Post-event magnitude ppost =
1

N − end2

N−1

∑
i=end2

xi Average post-event magnitude

Post-event slope psl−post = xend2−xN
N−end2 -

Shapes with one step: Post-event duration pdur−pre = N − end1 -

step-up and Post-event magnitude ppost =
1

N − end1

N−1

∑
i=end1

xi Average post-event magnitude

step-down Post-event slope psl−post = xend1−xN
N−end1 -
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classifier.

Extracting RMS waveform shape features (xShape) and generic features (xGeenric)

is one of the sub-problems of power system event classification problem (explained

in Section 4.2 of Chapter 2). Waveform data instances may contain one or more

sub-events. Hence RMS waveform feature extraction is applied to RMS wave-

forms corresponding to each sub-event of a cycle-by-cycle waveform.

4.6 Chapter Summary

In this chapter, RMS waveform shape detection problem was introduced and

its relevance to power system event detection was explained. Then two meth-

ods, DTW based RMS waveform shape detection method and FDTW based RMS

waveform shape detection methods were derived. Finally, an RMS waveform fea-

ture extraction method was outlined using pivot points.
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5. EVENT SPECIFIC FEATURE EXTRACTION

5.1 Introduction

RMS waveform based shape features and generic features are sufficient for

identifying a majority of power system events. This is especially true for normal

power system operations. However, there are a number of abnormal power sys-

tem events where RMS waveform analysis alone is not sufficient:

1. Some event characteristics may not be observable on RMS waveforms and

may require analysis of high speed waveforms. It is possible to design algo-

rithms to detect the presence or absence these features. For example, Figure

5.1 shows RMS current waveform for phase C (plot (a)) and high speed dif-

ferenced current waveform [77] for phase C (plot (c)) captured during an

event caused by arcing. Just looking at the RMS waveform in plot (a), it

would be hard to determine the cause of the event. Only a small ‘bump’

is observed, and it could be caused by small loads. However, zooming in

on the differenced current waveform (plot (d)) clearly reveals arcing signa-

tures characterized by ‘flat’ regions near zero crossing of current waveforms

(dotted circle in plot (d)).

2. Certain event characteristics may be observable in RMS waveforms but, may

not fit into the general category of generic features or shape features. These

features may help improve the classification accuracy for some event cat-

egories. For example, Figure 5.2 shows waveforms from a three-phase ca-

pacitor switching on. Plots (c) and (d) show classic capacitor switching sig-

natures on phases B and C, characterized by large step decrease in reactive
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Figure 5.1: Example waveforms caused by arcing

Figure 5.2: Example waveforms caused by capacitor switch bounce

133



Figure 5.3: Waveforms from an overcurrent fault that caused a single-phase re-
closer to trip

power QB and QC. However, Plot (a) shows switch bounce on phase A, char-

acterized by one or more stepping up and down in reactive power QA. The

evidence of switch bounce is further supported by voltage transients seen on

phase A (plot (b)) as phase A switch makes and breaks contact during switch

bounce. Capacitor switch bounce is an abnormal condition and results in

voltage transients that degrade power quality. Switch bounce may also re-

sult in deterioration of switch contacts. This example shows that shape tem-

plates that look for step up or step down shapes may not be enough to de-

tect the switch bounce shape observed in plot (a). An algorithm specific to

detecting switch bounce pattern is needed to extract feature indicative of

switch bounce. A classifier can use switch bounce feature, and other evi-

dence such as the RMS shape features and voltage transients to identify the

cause of the event.

3. One of the requirements for the power system event classification algorithm
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is the ability to extract event specific features that aid in locating the cause

of an event. These features may or may not influence classification results.

These features may require dedicated algorithms for analyzing and extract-

ing them from high-speed or RMS waveform data. For example, Figure 5.3

shows RMS current waveforms corresponding to a Phase C to ground over-

current fault. A classification algorithm can label this event as an overcur-

rent fault on monitored feeder involving phase C and ground. However, this

classification information will not be of much help in locating the fault. This

is because, a utility personal will have to look for all feeder sections where

phase C is available. In some cases, this could be equivalent to searching

the entire feeder. Visual analysis of RMS waveform in Figure 5.3 indicates

that a single-phase recloser tripped and reclosed three times before finally

tripping and causing an outage (since the part of the feeder down stream of

the device would have been taken out of service). Providing utility person-

nel with extra information such as the device that operated, fault magnitude,

fault duration and load loss would help reduce the search area for fault loca-

tion [99]. This is because, utility personnel can limit their search to locations

downstream of a protective device. Further, phase and fault current infor-

mation can be used to further reduce the search area if a short circuit model

of the feeder is available. Dedicated algorithms are needed to extract such

event specific information.

The rest of this chapter focuses on extracting features specific to arcing events,

abnormal capacitor operations and overcurrent events.
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5.2 Features Specific to Arcing Events

Arcing events on power distribution system may have multiple causes, includ-

ing but not limited to, downed power lines, trees contacting the power lines, and

failing hardware on the power system. Arcing events are more difficult to detect

since they involve relatively low current magnitudes when compared to current

magnitudes measured during overcurrent faults. Arcing events may have current

magnitudes anywhere between a few tens of amps to a few hundred amps. Most

conventional overcurrent protection devices, such as fuses, reclosers, relays have

time delays that prevent a temporary fault from causing an outage. Such a pro-

tection device de-energizes the power line, only if the overcurrent fault persists.

Arcing faults seldom cause protective device operation, due to their low current

magnitudes. Such overcurrent protection devices cannot distinguish a fault cur-

rent from the levels of current ordinarily drawn by customers. Therefore, the line

may remain energized even though dangerous arcing exists on the power line.

Arcing events can be broadly classified into three categories: line-to-line arc-

ing, line-to-neutral arcing and series arcing. Some examples of line-to-line and

line-to-neutral arcing include those caused by trees contacting power lines and

broken power lines. Series arcing is caused by intermittent conductivity within a

line. Series arcing may be caused by, but are not limited to, a faulty series switch,

clamp or cutout. Electrical characteristics of line-to-line, line-to-ground and series

arcing are distinct. Hence, it is possible to extract features that help to identify

series and parallel arcing. Only line-to-line, line-to-ground arcing characteristics

will be discussed in this dissertation.
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5.2.1 Feature Extraction for Arcing Events

Line-to-line or line-to-ground arcing are caused by an electrical breakdown

of an otherwise non conducting medium such as air. The electrical break down

may be caused by a number of factors such as degradation of insulating material,

environmental factors such as ice, tree contact or animal contact. Arcing is typi-

cally characterized by sporadic, high energy, electrical discharges occurring near

voltage peaks when the voltage is maximum. The arcs tend to extinguish them-

selves near near zero crossing of voltage waveforms because the voltage is not

high enough to sustain an arc. It is possible to recognize parallel arcing signature

by visual analysis of event waveforms. Hence, it is also possible to extract features

that represent arcing signatures. Classification algorithms can use these features

to detect line-to-ground and line-to-line arcing [67].

5.2.1.1 Single line-to-ground arcing features

Figure 5.4 shows example waveforms recorded during a phase C to ground

arcing event. The following are the characteristic signatures of a single line-to-

ground arcing:

1. Peaks of arcing current are close to voltage peaks. Plot (a) shows phase C

differenced current (IPDC). IPDC is an estimate of the arc current on phase

C. The plot clearly shows the voltage peaks (VC) aligning with arc current

peaks (IPD).

2. Arc currents are close to zero near voltage zero crossing. Plot (a) shows flat

areas of discontinuity (dotted circles) near voltage zero crossing.

3. Neutral current closely follows phase current. Plot (b) shows differenced

neutral current (IPDN). Plots (a) and plot (b) are almost identical.
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Figure 5.4: Signature of a single line-to-ground arcing event
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Table 5.1: Event specific features pSpeci f icSLG−Arc for single line-to-ground arcing

Feature name Expression Comment

Mean current peak offset ∆tpeakph
, ph ∈ {A, B, C}

Calculates the average time offset between voltage and
current peaks

Mean period of discontinuity ∆tzeroph , ph ∈ {A, B, C}

Calculates the mean duration of the flat regions where arc
current is near zero

Peak arcing current

MaxAbsIPDPh =

Max (|IPDPh|) ,

ph ∈ {A, B, C}
Peak values of differenced currents

Percentage phase to neutral
difference

PcntDi f fph =
Max(|IPDPh+IPDN |)

MaxAbsIPDPh
,

ph ∈ {A, B, C}

Maximum of absolute sample by sample difference between
phase and neutral currents over maximum absolute phase
current

High frequency activity

BoolIsHFPresentph ,

ph ∈ {A, B, C}
Detects if high frequency activity was observed
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4. Arc current magnitudes tend to be low and involve high impedance. In the

example shown in Figure 5.4, arc current peaks are near 25 Amps, while the

voltage peaks are near 20kV, which is approximately equivalent to very high

impedance of 800 ohms.

5. High frequency (greater than 2kHz) activity is observed during an arcing

event, and such high frequency activity are predominantly observed near

areas of discontinuity. Plot (c) shows high frequency current (HFC) obtained

by high pass filtering phase C current. High frequency activity (dotted rect-

angles) can be seen during the arcing event.

Based on the above characteristics, an algorithm was designed to extract event

specific features for single line-to-ground arcing (Table 5.1). The pseudo code for

the algorithm is shown in Algorithm 1 (Figure 5.5). The algorithm extracts arc-

ing features are only if the waveforms pass an initial screening for arcing in order

to improve efficiency. First, the algorithm uses RMS shape features to eliminate

waveforms that do not contain arcing related shapes. Then, it uses peak arcing

current feature (MaxAbsIPDPh) to eliminate waveforms with peak current mag-

nitudes that are either too high or too low. The algorithm uses percentage phase

to neutral difference feature PcntDi f fph to eliminate waveforms further when the

phase current and neutral current do not track each other closely. Once a wave-

form passes these tests, the algorithm analyzes each cycle of current waveforms to

identify cycles that exhibited arcing characteristics. The algorithm computes the

following for each cycle:

1. Peak value of high frequency current (MaxAbsHFICyc).

2. Peak differenced current magnitude (MaxAbsIPDCyc).
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Algorithm 1 Extracting single line-to-ground arcing features

1 Using input f e a t u r e s RMS Shape IPD , RMS Shape I
2 I n i t i a l i z e output f e a t u r e s Max Abs IPD , P c n t D i f f
3 I n i t i a l i z e output f e a t u r e s Del ta t peak , d e l t a t z e r o
4 I n i t i a l i z e output f e a t u r e s Bool Is HF Present
5 For each phase ph {
6 i f ( RMS Shape IPD [ ph ] = ( ’Bump’ or ’UnKnown’ )
7 | | RMS Shape I [ ph ] = ( ’Bump’ or ’UnKnown’ ) ) {
8 Compute Max Abs IPD [ ph ] , P c n t D i f f [ ph ]
9 // For SLG arcing , P c n t D i f f should be small and

10 // Max Abs IPD should not be too high
11 I f ( P c n t D i f f [ ph ] < DiffThreshold &&
12 Max Abs IPD [ ph ] < OverCurrentThreshold &&
13 Max Abs IPD [ ph ] < ArcSens i tv i tyThreshold ) {
14 For each c y c l e cyc {
15 Compute MaxAbsIPDCyc [ cyc ]
16 // High frequency current peak
17 Compute MaxAbsHFICyc [ cyc ]
18 // Check i f the c y c l e could have been involved in arc ing
19 I f ( MaxAbsIPDCyc [ cyc ]/Max Abs IPD [ ph ] > Relat iveThreshold ) {
20 // Add i t to candidate arc ing c y c l e s
21 ArcCycles .Add( cyc )
22 // O f f s e t between current and vol tage peak
23 Compute DeltaTPeak [ cyc ]
24 // duration of current zero c r o s s i n g
25 Compute DeltaTZero [ cyc ]
26 }
27 e l s e
28 NonArcCycles .Add( cyc )
29 }
30 }
31 Compute D e l t a t p e a k [ ph ] = Mean( DeltaTPeak [ ArcCycles ] )
32 Compute d e l t a t z e r o [ ph ] = Mean( DeltaTZero [ ArcCycles ] )
33 Compute MaxArcHFI = Max( MaxAbsHFICyc [ ArcCycles ] )
34 Compute MeanNonArcHFI = Mean( MaxAbsHFI [ NonArcCycles ] )
35 // I f high frequency content increased during candidate arc ing c y c l e s
36 I f ( MeanNonArcHFI/MaxArcHFI < HFIRelativeThresh )
37 Bool Is HF Present [ ph ] = true
38 }
39 }

Figure 5.5: Extracting single line-to-ground event
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Figure 5.6: Signature of a line-to-line arcing event

The algorithm then chooses cycles with peak differenced current magnitudes close

to the maximum current magnitude computed for the entire waveform. For these

candidate arcing cycles, the algorithm computes the following:

1. The distance between the current peaks and voltage peaks (∆tpeakph
).

2. The duration of the flat region near current zero crossings (∆tzeroph).

Using ∆tpeakph
and ∆tzeroph values computed above; the algorithm computes the

mean time offset between voltage and current peaks ∆tpeakph
and the mean dura-

tion of flat regions near current zero crossings (∆tzeroph) for all candidate arcing

cycles. Then the algorithm computes the ratio of the mean peak high frequency

current during non-arcing cycles (MeanNonArcHFI) and the peak high frequency

current during candidate arcing cycle (MaxArcHFI). The algorithm compares this

ratio against a threshold, to verify if there were a significant increase in high fre-

quency current during candidate arcing cycles. If the algorithm determines that

there was an increase in high frequency current during arcing cycles, it sets the

value of high frequency activity feature BoolIsHFPresentph to true.
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Table 5.2: Event specific features pSpeci f icL2L−Arc for line-to-line arcing

Feature name Expression Comment

Mean current peak offset ∆tpeakph1
, ph1 ∈ {A, B, C}

Calculates the average time offset between
phase-to-phase voltage and current peaks

Mean period of discontinuity ∆tzeroph1 , ph1 ∈ {A, B, C}

Calculates the mean duration of the flat regions
where arc current is near zero

Peak arcing current

MaxAbsIPDPh1 = Max (|IPDPh1|) ,

ph1 ∈ {A, B, C} Peak values of differenced currents

Percentage phase-to-phase
difference

PcntDi f f(ph1,ph2) =
Max(|IPDph1−IPDph2|)

Max(MaxAbsIPDPh1 ,MaxAbsIPDPh2)

(ph1, ph2) ∈ {(A, B), (B, C), (C, A)}

Maximum of absolute sample by sample difference
between phase-to-phase currents over maximum
absolute phase currents

High frequency activity

BoolIsHFPresentph1 ,

ph1 ∈ {A, B, C}
Detects if high frequency activity was observed

5.2.1.2 Line-to-line arcing features

Figure 5.6 shows example waveforms recorded during a phase C to A arcing

event. The following are the characteristic signatures of a single line-to-line arcing:

1. Peaks of arcing current are close to phase-to-phase voltage peaks. Plot (b)

shows phase C differenced current (IPDC) which is an estimate of the arc

current on phase C. The plot clearly shows the phase-to-phase voltage peaks
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(VCA) aligning with arc current peaks (IPD). This is similar to a single line-

to-ground arcing event, except that the arc is sustained by the voltage across

two-phases. This causes the arc current to peak near phase-to-phase voltage

peaks.

2. Arc currents are close to zero near voltage zero crossing. Plot (b) shows flat

areas of discontinuity (dotted circles) near voltage zero crossing. Again, this

behavior is similar to a single line-to-ground arcing event.

3. Neutral current is near zero as one of the arcing phases provides the return

path for the arc current. Plot (a) shows differenced neutral current (IPDN),

and it is near zero.

4. Arc current magnitudes tend to be low and involve high impedance. In the

example shown in Figure 5.6, arc current peaks are near 50 Amps. How-

ever, the phase-to-phase voltage peaks are near 20kV. This is approximately

equivalent to a high impedance of 20kV/50 = 400Ω.

5. Arc current is seen on two-phases and they are out of phase with one an-

other. This is because, one of the phases provides a return path for arc cur-

rent. This behavior is different from single line-to-ground arc, but is ex-

pected.

Based on the above characteristics, an algorithm was designed to extract event

specific features for line-to-line arcing (Table 5.2). The pseudo code for the algo-

rithm (Algorithm 2, Figure 5.7) is similar to the algorithm used for single line-

to-ground arcing. This is because, single line-to-ground and line-to-line arcing

features are very similar. Calculations and the algorithm used to identify single

line-to-ground arcing can be reused for identifying line-to-line arcing. Consider
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Algorithm 2 Extracting single line-to-line arcing features

1 Using input s i g n a l s IPD , V, HFI
2 Using input f e a t u r e s RMS Shape IPD , RMS Shape I
3 I n i t i a l i z e output f e a t u r e s Max Abs IPD , P c n t D i f f
4 I n i t i a l i z e output f e a t u r e s Del ta t peak , d e l t a t z e r o
5 I n i t i a l i z e output f e a t u r e s Bool Is HF Present
6
7 For each phase ( ph1 , ph2 ) {
8 i f ( ( RMS Shape IPD [ ph1 ] = ( ’Bump’ or ’UnKnown’ )
9 | | RMS Shape I [ ph2 ] = ( ’Bump’ or ’UnKnown’ ) )

10 && RMS Shape IPD [ ph1]=RMS Shape IPD [ ph2 ] ) {
11 Compute Max Abs IPD [ ph1 ] , P c n t D i f f [ ph1 , ph2 ]
12 // For SLG arcing , P c n t D i f f should be small and
13 // Max Abs IPD should not be too high
14 I f ( P c n t D i f f [ ph1 , ph2 ] < DiffThreshold &&
15 Max Abs IPD [ ph1 ] < OverCurrentThreshold &&
16 Max Abs IPD [ ph1 ] < ArcSens i tv i tyThreshold &&
17 Max Abs IPD [ Neutral ]/Max Abs IPD [ ph1 ] < NeutralThreshold ) {
18 For each c y c l e cyc {
19 Compute MaxAbsIPDCyc [ cyc ]
20 // High frequency current peak
21 Compute MaxAbsHFICyc [ cyc ]
22 // Check i f the c y c l e could have been involved in arc ing
23 I f ( MaxAbsIPDCyc [ cyc ]/Max Abs IPD [ ph1 ] > Relat iveThreshold ) {
24 //compute phase to phase vol tage f o r t h i s c y c l e
25 Compute V[ ph1 , ph2 ] = V[ ph1 ] V[ ph2 ]
26 // Add i t to candidate arc ing c y c l e s
27 ArcCycles .Add( cyc )
28 // O f f s e t between current and vol tage peak
29 Compute DeltaTPeak [ cyc ]
30 // duration of current zero c r o s s i n g
31 Compute DeltaTZero [ cyc ]
32 }
33 e l s e
34 NonArcCycles .Add( cyc )
35 }
36 }
37 Compute D e l t a t p e a k [ ph1 ] = Mean( DeltaTPeak [ ArcCycles ] )
38 Compute d e l t a t z e r o [ ph1 ] = Mean( DeltaTZero [ ArcCycles ] )
39 Compute MaxArcHFI = Max( MaxAbsHFICyc [ ArcCycles ] )
40 Compute MeanNonArcHFI = Mean( MaxAbsHFI [ NonArcCycles ] )
41 // I f high frequency content increased during candidate arc ing c y c l e s
42 I f ( MeanNonArcHFI/MaxArcHFI < HFIRelativeThresh )
43 Bool Is HF Present [ ph1 ] = true
44 }
45 }

Figure 5.7: Extracting single line-to-line event
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a single line-to-ground arcing event involving a phase ph1 and neutral N. Also,

consider a line-to-line arcing event involving the phases ph1 and ph2. Algorithm

1 can be reused for extracting line-to-line arcing features after the following mod-

ifications:

1. Replacing the phase voltage Vph1 in the single line-to-ground arcing algo-

rithm with phase-to-phase voltage V(ph1,ph2) (Algorithm 2, line 24).

2. Replacing the neutral current IPDN with the negative of another phase cur-

rent −IPDph2 when computing percentage phase-to-phase difference fea-

ture PcntDi f f(ph1,ph2) (Table 5.2).

3. Verifying that the neutral current remained relatively low (Algorithm 2, line

16).

Except for the above difference, the algorithm used for extracting line-to-line arc-

ing features pSpeci f icL2L−Arc , is very similar to the algorithm used for extracting sin-

gle line-to-ground arcing features.

5.3 Features Specific to Abnormal Capacitor Operations

Capacitors banks are used to provide voltage and VAR support on distribution

system feeders. Capacitor bank terminals are connected to distribution feeders

through mechanical switches. These mechanical switches are operated by con-

trollers that connect or disconnect the capacitor banks based on factors such as

time, voltage levels and temperature [100]. Most utilities employ three-phase

switched capacitor banks with switches that connect or disconnect each phase. A

distribution feeder can have one or more capacitor banks. Capacitor bank switch-

ing operations are one of the most common, normal power system events ob-

served on the distribution feeder. Since capacitor banks are ubiquitous on power
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system feeders and they are also switched on and off on a regular basis; capacitor

banks and capacitor bank switches are prone to failures. Capacitor bank related

problems were also one of the most common abnormal power system events ob-

served in the data used for this research (collected using the DFA platform).

Manual analysis of data collected through the DFA platform indicated a va-

riety of problems or failure in capacitor banks and components associated with

switching of capacitor banks. Waveform data recorded during these problems

showed distinct electrical characteristics that can be recognized. These electrical

characteristics can be used to classify event data based on the underlying capac-

itor problem or failure mode [101]. Capacitor related problems that have been

observed and have identifiable signatures include, unbalanced capacitor, capaci-

tor VAR imbalance, capacitor switch restrike, capacitor switch bounce and arcing

inside capacitor, switch or connection. Each of these abnormal capacitor problems

will be discussed separately in the following subsections. For the purpose of fea-

ture extraction, abnormal capacitor operations are grouped in two categories: 1.

capacitor problems that cause reactive power imbalance and 2. capacitor prob-

lems that cause voltage transients.

5.3.1 Capacitor Problems that Cause Reactive Power Imbalance

During normal switching of three-phase capacitor banks, all three-phases switch

on or off within a short interval of time. This results in either a decrease in reactive

power (Q) on all three-phases after a capacitor switches on (Figure 5.8, plot (a)) or

an increase in reactive power after a capacitor switches off (Figure 5.8, plot (b)).

5.3.1.1 Unbalanced capacitor operation

Sometimes, due to factors such as faulty capacitor bank, faulty switch or a

blown fuse on one of the phases, not all of the three-phases of a capacitor bank
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Figure 5.8: Balanced capacitor bank switching

Figure 5.9: Unbalanced capacitor switching

may switch. This is an abnormal condition, and reactive power or voltage changes

are seen on only one or two-phases instead of all three-phases. The failed phase(s)

will not be able to provide the desired voltage or VAR support. This will lead

to voltage or reactive power imbalance and will cause the feeder to operate un-

der non optimal conditions. Figure 5.9, plots (a) and (b) show example reactive

power waveforms caused by unbalanced 300kVAR bank switching on and off re-

spectively. Step changes can be observed on phase B and C (QA and QC), but

phase A (QA) remains relatively unchanged. RMS shape features can be easily

used to identify the step changes or absence of step changes in reactive power

waveform. The classifier can then use RMS shape features to detect unbalanced

capacitor operations. However, there are scenarios where a small step change

may be observed even when a phase did not switch. It is not possible to identify
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Figure 5.10: Capacitor VAR imbalance

capacitor unbalanced operations based on RMS shape features alone. In order to

quantify the amount of unbalance between the three-phases, a percentage unbal-

ance feature pSpeci f icpcnt−unb
is extracted using a simple calculation:

pSpeci f icpcnt−unb
=

Max
(
∆Qph

)
−Min

(
∆Qph

)
Max

(
∆Qph

) , ph ∈ {A, B, C} (5.1)

where ∆Qph is the change in reactive power observed on phase ph.

5.3.1.2 Capacitor VAR imbalance

Capacitor VAR imbalance is caused when all phases of a capacitor bank switch,

but one or more phases do not exhibit the rated change in reactive power. This

may be caused by the failure of on or more capacitor cans within a phase. Un-

der normal operating conditions, capacitors are allowed 10-15% deviation [100]

from rated values. However, large deviations in VAR changes between phases

may not be acceptable. Figure 5.10 shows example waveforms recorded during

a capacitor switching off event,. It can be seen that all the three-phases switched

and showed significant change in VARS. However, the VAR change on phases A
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Figure 5.11: Transients caused by normal capacitor operation

(∆QA ≈ 310kVARS) and C (∆QC ≈ 275kVARS) are much smaller compared to the

change in phase B (∆QB ≈ 525kVARS). Similar to unbalanced capacitor identifica-

tion, RMS shape features and percentage unbalance feature pSpeci f icpcnt−unb
(Equa-

tion 5.1) can be used to identify capacitor VAR imbalance.

5.3.2 Capacitor Problems that Cause Voltage Transients

When a capacitor is connected to a distribution feeder or is disconnected from

distribution feeder, it causes the capacitor to energize or de-energize. Voltage and

current transients are produced during capacitor switching operations, due to the
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physics involved in charging and discharging a capacitor banks (i.e. voltage on

a capacitor cannot change instantaneously when switched). These are high fre-

quency transients since the capacitor tries to charge itself rapidly to bring the ca-

pacitor voltage closer to system voltage. Then, the transient quickly decays and

reaches system voltage. As a result, capacitor switching related transients look

like high frequency ‘ringing’. These high frequency transients can be seen on both

voltage and current waveforms. Depending on when the capacitor was switched

(relative to the voltage peak), and the initial charge in the capacitor bank, voltage

transients can have a peak value as high as twice the system voltage [100]. Figure

5.11 shows waveforms from a normal three-phase balanced capacitor switching

on. Plots (c) and (e) show high frequency transients on current and voltage wave-

forms. Plots (d) and (f) show zoomed in phase B voltage and current transients

along with phase B voltage for reference. High frequency ringing transients (dot-

ted box) can be seen on both voltage and current waveform.

Both capacitor switching on and switching off can cause voltage transients.

Voltage transients seen during capacitor switching off is called a restrike, and is

considered abnormal. Capacitor restrike will be described in the next section.

Voltage transients seen during capacitor switching on operations is considered

normal when such transients are caused by normal switching operations. Normal

capacitor switching operations cause at most one transient per phase. However,

if the switch contacts are faulty, multiple switching transients may be seen due to

switch bounce or due to arcing switch contacts. There are other situations where

the switches are healthy, but capacitor cans or connections may be faulty and may

cause voltage transients because of arcing inside the capacitor.

Capacitor switching transients are detrimental to power quality since they can

cause several power quality issues including, but not limited to over voltage, har-
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monics and ferroresonance [100]. Capacitor transients can also adversely affect

sensitive loads connected to the feeder or other power system components con-

nected to the feeder [102]. Hence, power utility companies try to minimize the

number of transients and the size of voltage transients caused by capacitor switch-

ing operations. Capacitor switching transients caused by normal or abnormal

capacitor operations on the feeder being monitored show unique characteristics.

These unique characteristics can be identified in the waveform data recorded at

the substation. These characteristics are:

1. Capacitor switching transient frequencies is a function of system frequency

and the voltage raise caused by the capacitor. This typically corresponds

to a frequency range of 300 to 1000 Hz [100]. Hence it is possible to use

a high pass or band pass filter to extract possible high frequency voltage

transients from recorded voltage waveforms. Then a simple peak or out-

lier detection algorithm can be used to detect voltage transients. However,

other system events such as inrushes and overcurrents can also cause high

frequency transients. RMS waveform shape analysis can be used to elim-

inate these other sources of high frequency transients and ascertain if the

transients were caused‘ by capacitor switching.

2. Relative behavior of voltage and current transients during capacitor switch-

ing can be used to further ascertain the location of the capacitor relative to

the monitoring device. Capacitor switching on the feeder being monitored

(downstream of the monitoring device) causes the voltage and current tran-

sients to initially change in opposite directions. This is because, when a

capacitor is switched on, the capacitor acts as a short circuit trying to charge

as fast as it can and as a result, causes the system voltage to decrease. How-
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Figure 5.12: Comparison of waveforms from capacitor switching as seen from
monitored feeder and adjacent feeder

153



Figure 5.13: Simplified one-line diagram of monitored circuits

ever, when a capacitor operates on a parallel feeder or an adjacent feeder

(upstream of the monitoring device), the direction of the current transient

will be reversed as the current will flow towards the capacitor on adjacent

feeder and away from the feeder being monitored. This will cause the volt-

age and current transients to have initial directions that are identical. Pro-

viding the position of a faulty capacitor bank relative to the motoring device

that observed the event will help utility personnel narrow down the location

of the problematic device. Figure 5.12 shows the same capacitor switching

on event recorded by two monitoring devices (Device 1, Device 2 in Figure

5.13). Plots (a), (c) and (e) are waveforms recorded by Device 1 monitoring

the feeder on which the capacitor switched. Plots (b), (d) and (f) are wave-

forms recorded by Device 2 monitoring an adjacent feeder tied to the same

bus. Plots (a), (b) show RMS step change in voltage waveforms. Both these

plots look almost identical even though they were recorded by two differ-

ent devices. This is expected as both the devices (Device 1 and Device 2)

are monitoring parallel feeders that are tied to the same bus. The voltage

transients (VPDA) seen in plots (c) and (d) are also almost identical for the

same reason. Plots (e) and (f) show the current transients (IPDA) seen by
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Figure 5.14: Relative magnitudes of voltage transients on three-phases during ca-
pacitor switching

Device 1 (monitored feeder) and Device 2 (adjacent feeder). It is clear that

the current transient seen on the monitored feeder has a larger magnitude,

and more importantly an opposite polarity when compared to the current

transient seen on adjacent feeder.

3. Relative magnitudes of voltage transients seen on the three-phases helps to

identify the phase that switched. Irrespective of the phase that switched,

voltage transients are generally seen on all three-phases. However, the phase
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Table 5.3: Event specific features pSpeci f icv−trans for capacitor related voltage tran-
sients

Feature name Expression Comment

Peak voltage transient
magnitude MaxAbsVTrans−ph

ph ∈ {A, B, C}
Uses high pass filtered voltage waveforms to estimate the
peak magnitude of voltage transient.

Number of voltage transients Nv−transph

ph ∈ {A, B, C}

Uses high pass filtered current and voltage waveforms to
detect voltage transients
possibly caused by capacitor operation on monitored feeder.

Number of voltage transients
non-step

Nv−trans−non−stepph

ph ∈ {A, B, C}

Uses high pass filtered current and voltage waveforms to
detect voltage transients possibly caused by capacitor
operation on monitored feeder. Excludes voltage transients
that were accompanied by a corresponding step change in
RMS voltage, current or power waveforms.

Time of first voltage transients
non-step

Tv−trans−non−stepph

ph ∈ {A, B, C}

The time relative to the beginning of event data when the
first transient caused by capacitor operation on monitored
feeder was seen. Excludes voltage transients that were
accompanied by a corresponding step change in RMS
voltage, current or power waveforms.

that switched tends to have the highest peak magnitude for the voltage tran-

sient when compared to the phases that did not switch. This is expected

because the voltage transients seen on others phases were caused by mu-

tual coupling among the three-phases. Identifying the phase that switched

also helps to identify the problematic phase if the transients were caused by

a abnormal capacitor operation. Figure 5.14 shows relative magnitudes of

voltage transients on the three-phases during a normal capacitor switching

operation. Plot (a) shows RMS voltage waveforms. It is clear from the plot

that the capacitor first switched on phase C followed by phase B and finally

phase A. Plot (b) shows the voltage transients observed on differenced high-

speed voltage waveforms coincident with the switching on phases C, B and

A. Plots (b), (d) and (f) show zoomed in versions of the plot corresponding

to the switching of phases C, B and A. It can be seen that, when phase B
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switched (plot (b)), phase B had the highest absolute peak transient magni-

tude. Same was true when phase A switched (plot (d)), and when phase C

switched (plot (f)).

Based on the above characteristics, an algorithm was designed to extract features

related to transients caused by capacitor operation (Table 5.3). The pseudo code

for the algorithm is shown in Algorithm 3 (Figure 5.15). The voltage transient

feature extraction algorithm works processes waveforms in three stages:

1. Initial screening: Analysis of high-speed waveforms for voltage transient

detection is an expensive operation. Hence, the algorithm does an initial

screening to eliminate waveforms that were caused by other events such as

inrushes or overcurrents.

2. Signal pre-processing: High-speed voltage and current waveforms need to

be pre-processed before voltage transient related features can be extracted.

The algorithm pre-processes current and voltage waveforms corresponding

to each phase.

(a) First, the algorithm filters high-speed voltage (V) and current (I) wave-

forms to remove frequency components below 300Hz, and obtains high-

pass filtered voltage (HPFV) and high-pass filtered current (HPFI) sig-

nals. The reason for high pass filtering will be clearer with an example.

Figure 5.16 shows voltage and current waveforms from a phase C ca-

pacitor switch arcing event. Plots (a) and (c) show high-speed current

and voltage waveforms from phase C. Plots (b) and (d) show corre-

sponding waveforms after applying a high-pass filter. Voltage and cur-

rent transients are clearly visible in plots (b) and (d).
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Algorithm 3 Extracting capacitor voltage transient features

1 Using input f e a t u r e s RMS Shape I , RMS Shape V
2 Using input f e a t u r e s RMS Pcnt change I , RMS Pcnt change V
3 I n i t i a l i z e output f e a t u r e s N v trans , N v Trans non step
4 I n i t i a l i z e output f e a t u r e s Max Abs V Trans , T v Trans non step
5 For each phase ph { // I n i t i a l screening
6 //Ignore p o s s i b l e inrush and overcurrents
7 i f ( RMS Shape I [ ph ] != ( ’ Inrush ’ ) && RMS Shape v [ ph ] != ( ’ Inrush ’ ) &&
8 RMS Pcnt change I [ ph ] < OCPcntThrehold &&
9 RMS Pcnt change V [ ph ] < OCVPcntThreshold ) {

10 return // e x i t algorithm
11 }
12 }
13 For each phase ph { // Est imate cycle by c y c l e high frequency peak magniudes
14 // High pass f i l t e r V and I to remove f r e q u e n c i e s below 300 Hz
15 Compute HPFI [ ph ] , HPFV[ ph ]
16 // For each cycle , compute the peak value and index of HPFV[ ph ]
17 Compute HPFV peak mag [ ph ] , HPFV peak indx [ ph ]
18 // Remove o u t l i e r s and es t imate average peak HPFV value f o r the whole event
19 // t h i s i s an es t imate of ambient High frequency content in vol tage s i g n a l
20 Compute Mean peak mag [ ph ]
21 // Compute d i f f e r e n c e d peak HPFV by removing ambient high frequency content
22 Compute Diff peak mag [ ph ] = HPFV peak mag [ ph ] Mean peak mag [ ph ]
23 // Reset Diff peak mag [ ph ] values l e s s than zero
24 Assign ( Diff peak mag [ ph ] = 0 , Where Diff peak mag [ ph ] < 0 )
25 Compute Max Abs V Trans [ ph ] = Max( Diff peak mag )
26 }
27 Fore each phase ph { // Trans ient d e t e c t i o n
28 For each c y c l e cyc {
29 // Check i f the peak value HF vol tage i s cons iderably l a r g e r than ambient HF

vol tage and i s not too small in comparison to l i n e vol tage
30 I f ( Diff peak mag [ ph , cyc ] > VTransAbsThreshold &&
31 Diff peak mag [ ph , cyc ]/Mean(VRMS[ ph ] ) > VTransPcntThreshold ) {
32 // check phase ph had the l a r g e s t t r a n s i e n t magnitude f o r c y c l e cyc
33 i f ( Diff peak mag [ ph , cyc ]/Max( Diff peak mag [ : , cyc ] ) >= 1 . 0 ) {
34 //Find r e l a t i v e d i r e c t i o n of current and vol tage t r a n s i e n t s
35 Compute HPFI Direct ion [ ph , cyc ] , HPFV Direction [ ph , cyc ]
36 //check f o r monitored feeder
37 i f ( HPFI Direct ion [ ph , cyc ] = HPFV Direction [ ph , cyc ] ) {
38 // Increment t r a n s i e n t s count
39 N v trans [ ph ] = N v trans [ ph ] + 1 ;
40 // Check f o r s tep change in s i g n a l s t h a t could have been caused by

c a p a c i t o r switching on or load switching
41 I f ( ! ( Step ( P , cyc ) | | Step Down (Q, cyc ) | | Step Up (V, cyc ) ) ) {
42 // Increment t r a n s i e n t s count t h a t did not co inc ide with step change
43 N v Trans non step [ ph ] = N v Trans non step [ ph ] + 1 ;
44 // Store the f i r s t c y c l e with t r a n s i e n t s not caused by step changes
45 i f ( N v Trans non step [ ph ] == 1)
46 T v Trans non step [ ph ] = cyc
47 }
48 }
49 }
50 }
51 }
52 }

Figure 5.15: Extracting capacitor voltage transient features
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Figure 5.16: High-pass filtered voltage and current signals from sample capacitor
arcing event

(b) The algorithm uses only cycle-by-cycle peak values of high-pass filtered

voltage, to improve computational efficiency. The algorithm calculates

cycle-by-cycle peak magnitudes (HPFV peak mag) from HPFV signals.

It uses a non-overlapping moving window of one cycle length, then

it calculates absolute maximum value of voltage samples within each

window. For example, in the Figure 5.17, plots (a), (c) and (e) show

cycle-by-cycle peak magnitudes values computed from high pass volt-

age signals obtained from a capacitor arcing event (same as the event

shown in figure 5.16). Voltage transients are clearly visible on phase C

(plot (e)) while transients are not seen on phases A and B (plots (c) and

(e)).

(c) The algorithm estimates an ambient high frequency level (Mean peak-

mag) to avoid false positives due to noisy voltage signals. It computes

159



Figure 5.17: Cycle-by-cycle peak values of high-pass filtered voltage waveforms
caused by arcing capacitor
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the ambient high frequency level by sorting HPFV peak mag values,

removing outliers, and then computing an average on the rest of val-

ues. The algorithm computes a differenced signal (Diff peak mag) by

removing the ambient high frequency level from HPFV peak mag val-

ues computed in the previous step (b). In the Figure 5.17, plots (b), (d)

and (f) show HPFV peak mag values after removing the ambient high

frequency level.

3. Transient detection: For each phase, the algorithm chooses candidate cy-

cles for further analysis. The algorithm uses the differenced high frequency

peak magnitude values (Diff peak mag) computed in the previous stage, to

accomplish this.

(a) First, the algorithm chooses cycles that have peak differenced magni-

tudes greater than an absolute threshold (VTransAbsThreshold) and

greater than relative threshold (VTransPcntThreshold) with respect to

the line voltage.

(b) Then, it compares the peak magnitude for a given cycle and phase to

the peak magnitudes on other phases for the same cycle. It does this

comparison to ensure that the voltage transient was caused by an oper-

ation on the phase being analyzed.

(c) The algorithm determines the relative directions of the current and volt-

age transients for each cycle. It does this to confirm if the transient were

caused by a normal or abnormal operation on the monitored feeder. If

the relative directions are opposite, it increments the transient count

feature N v trans (Nv−transph).
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(d) The algorithm further checks and ignores transients caused by normal

capacitor switching operations on either the monitored feeder or on an

adjacent feeder. It ignores transients that coincide with step changes in

RMS voltage and power waveforms. If it does not detect any such tran-

sients, then it increments a non-capacitor-switching-on related tran-

sient count N v Trans non step (Nv−trans−non−stepph). If the transient

happens to be first such transient, it stores the index of the correspond-

ing cycle as a feature T v Trans non step ( Tv−trans−non−stepph). This fea-

ture can be used to detect capacitor restrike and will be discussed in the

next section.

Transient count related features extracted using the above algorithm and RMS

waveform shape features together, can be used to detect abnormal capacitor switch-

ing operations on monitored feeder.

5.3.2.1 Capacitor switch restrike

Restrikes are caused by a dielectric breakdown between switch contacts when

a capacitor is being de-energized. Restrikes are more likely to happen after at

least half a cycle has passed since the capacitor switch contacts started to open.

At this point, the capacitor current is zero, the capacitor would be fully charged,

and the instantaneous voltage across the switch contacts may be twice as high

as the system voltage [100]. Restrikes not only cause high frequency transients,

they may also damage the equipment or switch contacts. This is because, unlike

transients caused by normal capacitor switching on; restrikes are preceded by a

high energy discharge across capacitor switch contact. It is possible to detect re-

strike by looking for high frequency voltage transients within a few cycles of a

capacitor switch opening. RMS shape features can be used to determine the time

162



Figure 5.18: Waveforms from capacitor restrike event

of switch contact opening (based on step change in reactive power). The time of

the first high frequency transient (Tv−trans−non−stepph) could then be used to deter-

mine if the transient was seen just after the switches started to open. Using this

evidence, an expert system based classifier can label event waveforms as possibly

being caused by a capacitor restrike. For example, Figure 5.18 shows waveforms

from a capacitor restrike event. Plot (a) shows reactive power step change caused

by a 400 KVAR three-phase capacitor switching off. However, analysis of high-

speed differenced voltage and current waveforms clearly show a transient caused

by restrike, about 1.25 cycles after capacitor switch contacts start to open (plot (b)).

If the time at which reactive power (Q) starts to step up and the time at which the

voltage transient is detected are known, then it is possible to associate the tran-

sient with a restrike.

5.3.2.2 Capacitor switch bounce

Switch bounce is a common phenomenon observed with any mechanical switch.

Mechanical switches do not make contact cleanly and often make and break con-

tact multiple times before closing. This is due to factors such as inertia, mechan-

ical design and aging. Capacitor switches are no exception; hence, they are also

subject to varying degrees of switch bounce. Switch bouncing is generally not a
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problem if the bounce lasts a fraction of a cycle. However, due to mechanical ag-

ing and/or damaged contacts, switch bounce can also last several cycles. In these

situations, the switch contacts making and breaking contact cause several voltage

transients further damaging the contacts. This not only causes the equipment to

degrade but also causes power quality issues. Capacitor switch bounce on moni-

tored feeder is readily recognizable by looking at reactive power waveforms. The

repeated step up and down seen in reactive power is a good indicator of capacitor

switch bounce (Figure 5.2, plot (a)). Voltage transients can also be used to confirm

this hypothesis (Figure 5.2, plot (b)). RMS shape analysis can be used to detect

step up and down seen on reactive power waveforms. Then, the transient count

feature Nv−transph can be used as another evidence to confirm capacitor switch

bounce.

5.3.2.3 Arcing inside capacitor can, switch or connection

Internal failure of a capacitor and faulty switch contacts or connections can

cause continuous or sporadic high frequency voltage and current transients [102].

This is because, faulty connections lead to intermittent connectivity of the capaci-

tor bank and will have characteristics similar to the transients caused by switching

capacitor banks. It is possible to detect arcing capacitor banks by looking for mul-

tiple voltage transients within the waveform data. RMS shape analysis can be

used to eliminate transients that were caused by normal capacitor banks switch-

ing on either monitored feeder or adjacent feeders. Non-capacitor-switching-on

related transient count feature (Nv−trans−non−stepph) is a good indicator of capaci-

tor arcing. It may be used as an input feature to detect events caused by arcing

capacitors. For example, Figure 5.19 shows reactive power waveforms (plot (a))

and differenced voltage waveforms (plot (b)). Plot (a) shows no noticeable step
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Figure 5.19: Reactive power and voltage waveforms from a capacitor arcing event

changes in reactive power Q on any of the three-phases. However, voltage tran-

sients can clearly be seen in plot (b).

5.3.2.4 Overactive capacitor

Voltage transients are caused by normal capacitor switching operations. It is

normal for capacitors to switch on and off automatically, few times a day. How-

ever, due to a faulty controller or a wrongly configured capacitor switch controller,

there have been documented instances [102] where a capacitor bank may switch

tens or hundreds of times a day. Such operations will not only quickly wear out

switch contacts but also affect other devices on the system. Unlike arcing capac-

itors, individual events waveforms will not show any abnormal activity as they

will look like normal capacitor switching. Classification algorithms developed for

this research typically look at few seconds of data only. When a capacitor switches

frequently, but successive operations are several seconds or minutes apart, they

will not show up in a single waveform file. Hence classification algorithm as de-

scribed in this research, just by itself will not be able to detect abnormal conditions

spanning large time intervals. This is limitation of the classification algorithm de-

scribed in research. However, the classification algorithm is capable of identifying

and labeling each of the switching operations. A higher level clustering algorithm

could analyze classification results over time and group the numerous capacitor
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switching events as belonging to an overactive capacitor.

5.4 Features Specific to Overcurrents

It is possible to analyze waveforms acquired during an overcurrent fault, and

obtain information such as the protective device that operated, protective device

configuration, fault magnitude, fault duration and load loss. This information

would help narrow down the possible location of fault to a smaller search area and

thus expedite fault location. Fault location in electric power distribution systems

has always been a major concern for utility companies. The expansiveness of

power distribution systems make them vulnerable to various factors like weather,

disturbances caused by animals or human activity, overloading of the system and

the aging of or defect in, the components of the power system. These hinder the

reliable supply of power to customers. Thus, accurate fault location is necessary

to expedite restoration of power to outaged areas. This gains more significance

in light of the cost and quality conscious utility business environment that exists

now.

5.4.1 Overcurrent Faults

An overcurrent fault is a random disturbance (which in most cases is a short

circuit to ground or between phases, often through some amount of impedance

in the fault path) that occurs on a power system and results in abnormal system

conditions. When overcurrents occur on any part of a power system, the appro-

priately located protective devices react rapidly to clear the fault and isolate or

limit damage to system components and minimize the effect on the remainder of

the system. As a result of the operation of a protective device, a portion of the

load on the power system may be disconnected. In order to restore supply to the

affected parts of the system, the faulted section must be located and then mainte-
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nance and repair must be carried out as quickly as possible to keep the duration

of the interruption of the service to the customers a minimum.

Circuit breakers configured for overcurrent tripping are used to connect the

primary feeders to the bus of the associated substation. When a short circuit fault

or an abnormal event occurs on a feeder, the faulted power system component

must be quickly isolated from the system. The designated circuit breakers or other

protective devices that operate to isolate the faulty component may also interrupt

service to some consumers supplied by the feeder. Sectionalizing switches are of-

ten installed at the junction of the subfeeders and the main feeders. When trouble

on a subfeeder has been located, opening the appropriate switch can isolate the

faulty section, and services can be restored to the rest of the feeder before repairs

are made. The subfeeders and laterals are sometimes fused to prevent the tripping

of the feeder at the substation and thus reduce the extent of outage when fault oc-

curs on one of them. The protective devices are properly coordinated so that the

circuit will be open at the proper point to keep the outage area to a minimum.

Experience with faults on open wired circuits has shown that the deenergizing

these circuits causes the temporary faults to clear themselves in most cases. For

this reason, automatic reclosers are installed at a number of points on the circuit to

reduce the amount of exposure of the substation equipments to faults. Automatic

reclosers trip and reclose a number of times to clear transient faults or to isolate

permanent faults

5.4.1.1 Overview of protective device characteristics

The most widely used protective devices in distribution systems are fuses, re-

closers and circuit breakers. The time current characteristics(TCCs) and time set-

tings of each device is based on their rating and manufacturer.
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Figure 5.20: TCCs of a 25A QA type fuse

• Fuses: Fuses are overcurrent devices with a circuit-opening fusible member

(fuse link) that is destroyed by the passage of overcurrent during a fault or

an overload. Fuses are designed to blow within a specified time for a given

value of fault current. When a fuse blows, it isolates the section it is protect-

ing until replaced. The time-current characteristics of fuses are represented

by two curves, the minimum melting curve and the total clearing curve. The

minimum melting curve is a plot of the minimum time vs. current required

to melt a fuse link. The total clearing curve is a plot of the maximum time vs.

the current required to melt a fuse link and extinguish the arc. Figure 5.20

shows the TCCs of a 25A QA type fuse. The total clearing curve is shown as
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a bold line, and the minimum melting curve is shown as a thin line. It can

be seen that the two curves together define the region of operation for a 25A

QA type fuse, i.e., a 25A QA fuse has a high possibility of operating if the

sub-event (RMS current, time values) lies within this region.

• Automatic circuit reclosers: An automatic circuit recloser is an overcurrent

protective device that automatically trips and recloses a preset number of

times to clear temporary faults and isolate permanent faults. Reclosers can

be set for various different operations such as, two instantaneous trips and

reclose operations followed by two time delay operations before a lockout,

one instantaneous trip plus three time-delay operations, or etc. The instan-

taneous and time-delay characteristics are functions of their ratings and are

set by the utility when placed in service. Figure 5.21 shows the TCCs of a

70A ‘4H’ type hydraulic recloser. The time-delay curve is shown in bold. It

can be observed that, for any given current level, the recloser operates faster

on the instantaneous curve when compared to the time-delay curve.

• Automatic circuit breakers: Circuit breakers are automatic interrupting de-

vices, which are capable of breaking and reclosing a circuit under all condi-

tions, faulted or normal. The operating characteristics of circuit breakers are

quite similar to that of reclosers except, unlike the reclosers, circuit break-

ers are not self-contained units. Also they are controlled by reclosing relays

located outside the circuit breaker.

5.4.2 Overcurrent Fault Categories

For the purpose of fault location, overcurrent faults may be categorized based

on different criteria such as phase and ground involvement, protective device that

operated, whether or not the fault resulted in an outage, fault duration and cause
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Figure 5.21: TCCs of a 70A ‘4H’ type hydraulic recloser
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Figure 5.22: Example waveforms caused by a single-phase B to ground overcur-
rent

of the fault. The objective of this research is not to develop a full fledged automatic

fault location algorithm. However, each of these categories can be considered as

different output features that aid a human operator in fault location. Algorithms

were designed to extract these overcurrent specific features:

1. Phase and ground involvement: One of the most common criteria used to

classify overcurrent faults is phase(s) and ground involvement during over-

current fault. The following are fault categories grouped based on phase and

ground involvement:

(a) Single-phase to ground faults are most common faults observed on a

distribution system. These include phase A to ground (AG), phase B

to ground (BG) and phase C to ground (CG) faults. Single-phase to

ground overcurrents are identified by comparing phase current and

neutral current waveforms during an overcurrent. The neutral current

will closely track the phase current that was involved in the overcur-

rent. Figure 5.22 shows RMS current and real power waveforms caused

by single a single-phase to ground overcurrent fault.

(b) phase-to-phase faults that do not involve ground. Phase-to-phase faults
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Figure 5.23: Example waveforms caused by phase A to phase B overcurrent fault

include Phase A to B (AB), phase B to C (BC) and phase C to A (CA)

faults. Phase-to-phase overcurrents are identified by comparing the

phase currents of the phases that were involved in the overcurrent.

During a phase-to-phase overcurrent, the involved phases will cause

the current waveforms samples to be equal in magnitude but out of

phase with each other. Figure 5.23 shows RMS current and differenced

current waveforms from a phase B to C overcurrent fault.

(c) Two-phase faults that involve ground. Two-phase faults that involve

ground include Phase A to B to ground (ABG), phase B to C to ground

(BCG) and phase C to A to ground (CAG) faults. Unlike phase-to-phase

faults, two-phase faults that involve ground do not result in equal fault

current magnitudes on the involved phases. Two-phase to ground faults

cause relatively high magnitudes of current to flow in two of the phases

and the neutral. Figure 5.24 shows RMS current and differenced current

waveforms from a phase A to B to ground fault.

(d) Three-phase faults that do not involve ground (ABC fault). These faults

are identified by looking for relatively high current magnitudes on all

three-phases without noticeable change in neutral current. Figure 5.25

shows RMS current and differenced current waveforms from a three-
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Figure 5.24: Example waveforms caused by a phase A to phase B to ground over-
current

Figure 5.25: Example waveforms caused by a three-phase overcurrent fault that
did not involve ground
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Figure 5.26: Example waveforms caused by a three-phase to ground overcurrent

phase overcurrent fault that did not involve ground.

(e) Three-phase faults that involve ground (ABCG fault). These faults are

identified by looking for relatively high current magnitudes on all three-

phases and neutral current. Figure 5.26 shows RMS current and dif-

ferenced current waveforms from a three-phase overcurrent fault that

involved ground.

(f) Evolving faults whose phase and ground involvement changes as the

fault progresses. While most overcurrent faults involve the same phases

and ground over the duration of the faults, there are some instances

where the phase and ground involvement change over the duration of

fault. This may be due to environmental factors or due to the changes

induced by the overcurrent fault. Evolving faults are mentioned here

for completeness. Identifying evolving faults are left as a future objec-

tive of this research. Figure 5.27 shows RMS current waveforms from

an overcurrent fault that starts as a BC fault then evolves into ABC fault

after about 30 cycles.

2. Protective device that operated: RMS current and real power waveforms can

be analyzed to determine if an overcurrent were interrupted by a protective

174



Figure 5.27: Example waveforms from an evolving fault

device. It is possible to determine the type of protective device that oper-

ated, and extract information about protective device settings (Figure 5.3,

Section 5.1). Fault magnitude information and information about the type

of protective device that operated, can be used by utility personal to narrow

down the location of the fault. The following are fault categories based on

protective device operations:

(a) Faults interrupted by single-phase automatic reclosers: These faults can

be recognized either by detecting a single-phase reclose transient after a

single-phase to ground fault that caused a loss in a single-phase (single-

phase trip). In the case where the fault did not clear and caused an

outage, more than one or more trips and recloses may be observed on

the same phase. Figure 5.28 shows a phase B to ground overcurrent

fault interrupted and cleared by a single-phase automatic recloser. A

reclose transient can clearly be seen 2.5 seconds after the fault.

(b) Faults interrupted by three-phase automatic reclosers: These faults can

be recognized either by detecting simultaneous reclose transients on

three-phases after a fault that caused a loss on all three-phases (three-
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Figure 5.28: Example waveforms from a single-phase overcurrent fault inter-
rupted by a single-phase automatic recloser

Figure 5.29: Example waveforms from a single-phase overcurrent fault inter-
rupted by a three-phase automatic recloser

phase trip). In the case where the fault did not clear and caused an

outage, one or more trips and recloses may be observed on all phases.

Figure 5.29 shows a phase C to ground overcurrent fault interrupted

and cleared by a three-phase automatic recloser. A three-phase reclose

transient can clearly be seen about 0.5 seconds after the fault.

(c) Faults interrupted by automatic circuit breakers: These faults can be

recognized by detecting 100% load loss on all phases after a substation

circuit breaker tripped. When the substation circuit breaker trips, the

whole feeder is taken out of service. Thus, resulting in the feeder cur-

rent measurements made at the substation go to zero. In reality, due

to noise in measurement and DC offset, the current measurement does

not truly go to zero. It is possible to remove the DC component from
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Figure 5.30: Example waveforms from a three-phase overcurrent fault interrupted
by a circuit breaker

current measurements and detect if the current measurements are close

to the noise floor. Figure 5.30 shows RMS current waveforms from a

three-phase overcurrent fault interrupted by a substation automatic cir-

cuit breaker. Circuit breaker operation is evident from 100% loss of load

(all currents go to zero) just after the three-phase fault.

(d) Faults interrupted by fuses: These faults can be recognized by a single-

phase faults that resulted in a load loss on a single-phase. Unlike faults

interrupted by automatic reclosers, faults interrupted by fuses are not

capable of reclosing. Only a single trip that results in a load loss can be

observed. It is not possible to distinguish an overcurrent interrupted by

a fuse from one interrupted by a single-phase recloser that tripped once

based on load loss. It may be possible to identify fuse operations based

on analysis of waveforms. Identification of overcurrents interrupted by

a fuse is left as a future objective.

3. Load loss: Real power and RMS current waveforms can be used to deter-

mine if a fault resulted in a load loss or outage. the following are fault cate-

gories based on load loss:
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Figure 5.31: Example waveforms from a three-phase overcurrent that was inter-
rupted by a three-phase recloser and resulted in an outage

(a) Faults that resulted in an outage: These are faults that caused a pro-

tective device to operate and resulted in sustained service interruption.

These faults need immediate attention as power needs to be restored to

the affected section of the feeder as soon as possible. Sustained service

interruptions affect the reliability indices of utility companies. Hence,

they make all efforts to restore power as soon as possible. Figure 5.31

shows RMS current waveforms from a three-phase fault interrupted by

a three-phase automatic recloser that tripped and caused an outage.

(b) Faults that resulted in momentary service interruption: These are faults

that caused an automatic recloser or a substation circuit breaker to trip

and reclose one or more times but did not result in permanent load loss

as the temporary fault cleared. Figure 5.29 shows a phase C to ground

overcurrent fault interrupted and cleared by a three-phase automatic

recloser. A three-phase reclose transient can clearly be seen about 0.5

seconds after the fault, causing a momentary loss of load for about half

a second.

(c) Faults that self clear: These are faults that are temporary in nature that

did not cause a protective device to operate, as they self cleared.

178



Figure 5.32: Example waveforms from a single-phase (BG) short-lived fault

4. Fault duration: High-speed current waveforms can be analyzed, and the

duration of overcurrent faults can be estimated accurately. Fault magnitude

and fault duration together can be used to match a specific protective de-

vice’s TCC. This information may help utility engineers to detect problems

with protective device coordination. Short lived faults that last less than or

equal to half a cycle are of special interest as they may be cable failure pre-

cursors. Figure 5.32 shows RMS current and differenced current waveforms

from a short-lived fault that lasted only 4 milliseconds (quarter cycle) before

self clearing.

Other than the above categories, it is possible to analyze RMS and high speed

waveforms to determine the cause of an overcurrent such as capacitor failure, ca-

ble failure, lightning arrester failure, vegetation and animal contact. Classification

of overcurrent faults based on cause is currently being researched and is left as a

future objective.

5.4.3 Overcurrent Feature Extraction Algorithm

Figure 5.33 shows the block diagram of overcurrent feature extraction algo-

rithm. The overcurrent feature extraction algorithm extracts overcurrent specific

features. These features serve as inputs to fuzzy power system event classifica-
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Figure 5.33: Overcurrent feature extraction algorithm
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Figure 5.34: High-speed current waveform from an overcurrent event showing
DC offset

tion algorithm. Overcurrent feature extraction algorithm also extracts overcurrent

specific parameters that serve as output features that aid in fault location. Over-

current feature extraction can be split into three stages: 1. Initial processing, 2.

Feature extraction and 3. Category assignment. Each of these stages will be dis-

cussed in following sections.

5.4.3.1 Initial processing

The initial processing stage prepares event data to aid estimating overcurrent

features in an efficient and accurate way. During this stage, the event data is

processed in a sequence of four steps:

1. Signal pre-processing: This is the very first step in overcurrent feature ex-

traction algorithm. Current waveforms measured during an overcurrent

event often contain a significant decaying DC component during the ini-

tial cycles (Figure 5.34). DC component can introduce error in estimating of

overcurrent magnitudes. Hence, during the signal pre-processing stage, the

DC component is estimated and removed from current waveforms. Another

source of error in estimating overcurrent magnitudes is computing RMS cur-

rent values. RMS quantities are typically calculated starting at the first sam-

ple of the event waveforms and using a non overlapping window of length
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Figure 5.35: Preferred alignment of RMS computation window

equivalent to once cycle of the power system frequency (60Hz). However,

the first sample may correspond to any point on the current waveform rela-

tive to the current zero crossing. If the RMS computation window is aligned

with current zero crossing prior to the inception of overcurrent, RMS over-

current magnitude estimates will be more accurate (Figure 5.35).

2. Initial screening for overcurrent: In order to improve computational effi-

ciency; only event waveforms that are likely to have been caused by over-

currents are processed further for extracting overcurrent specific features.

Event waveforms with current magnitudes that are below a certain thresh-

old are screened and are not processed any further.

3. Breaker operation detection: Overcurrent that were interrupted by substa-

tion circuit breaker are flagged and are processed differently. Circuit breaker

operations result in a total loss of load. The loss of load makes it easier to

detect trips and recloses when analyzing an overcurrent sequence involving

breaker. For an event waveform to be flagged as breaker operation, the fol-

lowing condition should be met: the event waveform should contain high

current magnitudes and there should be periods in the measurement when

the current magnitudes on all phases are near the measurement noise floor.
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4. Signal selection: One of the goals of overcurrent feature extraction algorithm

is to determine the operating sequence of a protective device that may have

interrupted the overcurrent. The overcurrent feature extraction algorithm

uses a state machine to track the sequence of operations over time. The op-

erating sequence may be tracked by analyzing real power or RMS currents.

Real power or RMS current waveforms can be used to detect load loss or

faulted conditions. As a part of analyzing operating sequence, reclose tran-

sients are also detected. Reclose transients are generally more visible in reac-

tive power or differenced current waveforms than on real power or current

waveforms. The choice of the signals depends on the following conditions:

(a) If power measurements are not available: Availability of real and re-

active power measurements are not guaranteed. A utility company

may not instrument voltages and only current measurements may be

available. Without voltage measurements, it is not possible to compute

real and reactive power. Under this scenario, RMS current waveforms

are used for overcurrent sequence analysis. Only differenced current is

used for detecting reclose transients.

(b) If the overcurrent involved a breaker: It is easier to detect if there was

a trip or reclose by looking for 100% in the case of breaker operations.

RMS current values can easily be compared to a threshold that repre-

sents a measurement noise floor. Values below the threshold represent

a tripped state, values that are above the noise floor represent a reclosed

state. Hence RMS currents are a good choice for tracking breaker oper-

ations.

(c) All other scenarios: For all other scenarios (excluding the previous two),
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Figure 5.36: Relation between overcurrent feature extraction algorithm and higher
level fuzzy classifier

real power waveforms are used for analyzing overcurrent sequence.

Both reactive power and differenced current are used for detecting re-

close transient.

5.4.3.2 Feature extraction

The overcurrent feature extraction algorithm can be considered as a lower level

classifier. This lower level classifier analyzes waveforms and assigns overcurrent

categories that are used as both inputs to a higher level fuzzy classifier. Figure

5.36 shows the overcurrent feature extraction algorithm (dotted box) in relation to
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Figure 5.37: Waveforms from an overcurrent fault that caused a single-phase re-
closer to trip and reclose

185



the higher level fuzzy classifier. Overcurrent feature extractor, being a lower level

classifier; extracts features that are used as input features for overcurrent category

assignment, higher level fuzzy classifier and as output parameters to aid in fault

location. During this feature extraction stage, data is processed in three steps:

State machine based overcurrent sequence analysis: Overcurrents that are inter-

rupted by line reclosers or substation breakers exhibit complex sequences com-

prised of one or more faults (high-current), trips and recloses. Figure 5.37 shows

one such example. For the purpose of analyzing an overcurrent sequence, each

fault, trip and reclose can be considered a state (i.e. ‘pre-fault’, ‘faulted state’,

‘tripped state’ and ‘reclosed state’). Once these states are identified in event wave-

forms, attributes specific to each of these states can be extracted. A state machine

(Figure 5.38) was designed to analyze waveforms and store a sequence of states

along with the duration (in cycles) of each state. The state machine analyzes wave-

forms corresponding to each phase. The state machine moves through the RMS

current or real power waveforms on a cycle by cycle basis (equivalent sample by

sample basis for RMS waveforms). State transitions are triggered by two events, a

movement to the next sample (when the sample index is incremented) and when

end of samples is reached. The following are the allowable states and state transi-

tions:

• Samples available: This is a generic state that encompasses all other states

and state transitions. This state is entered as soon as the sequence analysis

algorithm starts. The state machine remains in this state as long as there is

at least one more sample that needs to be processed. When end of samples

is reached, this state is exited. On existing, the final state for the overcurrent

sequence is registered before exiting the sequence analysis algorithm.
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• Pre-fault: This is a sub-state of the ‘samples available’ state. This is the first

state the sequence analysis algorithm enters, and it represents the initial state

of the overcurrent sequence. The conditions for state transition are as fol-

lows:

– If there was a large positive percentage change in RMS current or Real

power waveform, and if no reclose transient was detected, the algo-

rithm transitions to a ‘fault’ state. Before the state transition, the cur-

rent state is registered as ‘pre-fault’ along with the duration for which

the algorithm had stayed in the pre-fault state.

– If a reclose transient was detected, then the algorithm transitions into a

‘reclosed’ state. The current state is registered as ‘tripped’ along with

the duration for which the algorithm stayed in this state.

– If neither of the above condition was met, and there is at least one sam-

ple left for processing, the algorithm stays in this state, and the duration

of the state is increased by one.

– If the algorithm exits from this state for lack of new samples, the final

state is registered as ‘pre-fault’ along with the duration for which the

algorithm stayed in this state. This generally means that the waveforms

did not contain even a single overcurrent.

• Fault: This is also a sub-state of ‘samples available’ state. This state is en-

tered whenever there was a large positive percentage change in RMS cur-

rent or real power relative to pre-fault values, and if no reclose transient was

detected. The conditions for state transition are as follows:

– If RMS current or real power does not continue to be large relative to
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pre-fault values, then the algorithm transitions into a ‘post-fault’ state.

Before the state transition, the current sate is registered as ‘fault’ along

with the duration for which the algorithm had stayed in this state.

– If the above conditions were not met, and there was at least one sample

left for processing, the algorithm stays in this state, and the duration of

the state is increased by one.

– If the algorithm exits from this state for lack of new samples, the final

state is ignored and not registered as it means the waveform is incom-

plete.

• Post-fault: This is also a sub-state of ‘samples available’ state. This state

is entered whenever the algorithm exits a ‘fault’ state. This is a temporary

state, and this state is never registered. The algorithm stays in this state till

it can be determined if the fault that preceded this state caused a protective

device to trip. The conditions for state transition are as follows:

– If there was a large positive percentage change in RMS current or Real

power waveform, and if no reclose transient was detected, the algo-

rithm transitions to a ‘fault’ state. Before the state transition, the cur-

rent state is registered as ‘tripped’ along with the duration for which

the algorithm had stayed in the post-fault state.

– If a reclose transient was detected, then the algorithm transitions into a

‘reclosed’ state. The current state is registered as ‘tripped’ along with

the duration for which the algorithm stayed in this state.

– If the above conditions were not met and there was at least one sample

left for processing, the algorithm stays in this state and the duration of
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the state is increased by one.

– If the algorithm exits from this state for lack of new samples, the final

state is registered as ‘tripped’ if there was at least one reclosed state

or more than one fault state was registered; else the final state is regis-

tered as ‘pre-fault’. A final state of pre-fault implies that the overcurrent

event did not cause a protective device to operate. The duration of the

final state is also registered.

• Reclosed: This is also a sub-state of ‘samples available’ state. This state is

entered whenever there a reclose transient detected. The conditions for state

transition are as follows:

– If there was a large positive percentage change in RMS current or Real

power waveform and if no reclose transient was detected; the algorithm

transitions to a ‘fault’ state. Before the state transition, the current state

is registered as ‘reclosed’ along with the duration for which the algo-

rithm had stayed in the post-fault state.

– If the above conditions were not met, and there was at least one sample

left for processing, the algorithm stays in this state and the duration of

the state is increased by one.

– If the algorithm exits from this state for lack of new samples, the final

state is registered as ‘reclosed’. The duration of the final state is also

registered.

Table 5.4 shows the result of processing the waveforms from overcurrent event

shown in Figure 5.37 using state machine based overcurrent sequence analysis.
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Table 5.4: State sequence generated from overcurrent example in Figure 5.37

Phase A {(PREFAULT,1200)}

Phase B {(PREFAULT,120),(FAULT,3),(TRIPPED,120),(RECLOSED,198),(FAULT,14),}

(TRIPPED,126),(RECLOSED,38),(FAULT,14),(TRIPPED,138),(RECLOSED,429)

Phase C {(PREFAULT,1200)}

Merged {(PREFAULT,120),(FAULT,3),(TRIPPED,120),(RECLOSED,198),(FAULT,14),}

(TRIPPED,126),(RECLOSED,38),(FAULT,14),(TRIPPED,138),(RECLOSED,429)

The sequence corresponding to each phase is represented as comma separated set

of (state, duration in cycles) pair.

Three-phase sequence analysis: Overcurrent sequence analysis algorithm out-

lined in the previous section analyzes and generates state sequences on a per

phase basis. However, sequence information from all three-phases needs to be

considered together to provide accurate estimates of overcurrent fault parameters

and the nature of interrupting device. The per phase state sequences are merged

to form a single state sequence (Table 5.4, last column). The merging of per phase

sequences is done based on three conditions:

1. Multi phase faults: When an overcurrent fault involves more than one phase,

the duration of fault state needs to be changed so that it spans the faults

duration in each of the invoiced phases.

2. Multi phase load loss: When a fault is interrupted by three-phase protective

device, the trip will cause load loss on all three-phases. Information from

all the three-phases needs to be considered to determine if the interrupting

device was a three-phase device. Information from all the three-phases is

also used to refine the estimates of duration of tripped state.

3. Multi phase reclose transients: When a fault is interrupted by a three-phase

device and the device recloses, the reclose transient may sometimes not be
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Table 5.5: Overcurrent state specific features

State
Extracted
features

Sequence string format
Example

sequence string

Pre-fault
Mean pre-fault
load, duration

None -

Fault
Fault duration,

fault magnitude
faulted phase(s)

F-(duration cycles,magnitude amps,phase
and ground)

F-(3.0c,653A,BG)

Tripped
Load loss

percentage,
duration

T-(load loss A,load loss B,load loss C)%-
duration seconds or cycles

T-(0,37,0)%-2.1s

Reclosed Duration C-duration seconds or cycles C-3.3s

prominent on the faulted phase(s). If reclose transients are detected on non

faulted phases, they can be used to confirm that the device reclosed. In this

scenario, the merged state sequence is altered to include a reclosed state.

Presence of reclose transient on a non faulted phase or more than one phase,

can be used to confirm that the overcurrent was interrupted by a three-phase

automatic recloser.

Sequence generation and feature extraction: The merged state sequence gener-

ated during the previous stage is used to extract overcurrent features. Overcur-

rent specific features are used by the fuzzy classification algorithm, and for cluster

analysis to detect recurrent overcurrents. The merged state sequence is also used

to generate an overcurrent sequence string. The overcurrent sequence string is a

compact representation of the overcurrent event.

Each state in the merged state sequence represents a segment of the event

waveforms. From each of these segments, features that are relevant to the corre-

sponding state are extracted. Table 5.5 summarizes the features that are extracted

for each state along with a string representation for that state. The sequence

string can be used by utility personal for fault location. The sequence string can

also be used by utility personal to verify if protective devices coordinated and op-
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Table 5.6: Sequence string generated for overcurrent example in Figure 5.37

Sample overcurrent sequence string
F-(3.0c,675A,BG)-T-(0,37,0)%-2.1s-C-3.3s-
F-(13.5c,637A,BG)-T-(0,35,0)%-2.2s-C-38c-
F-(13.5c,645A,BG)-T-(0,35,0)%-2.3s-C

erated correctly. Table 5.6 shows a sequence string generated for the single-phase

multi-shot overcurrent fault example in Figure 5.37. The sequence string can be

interpreted as follows:

An initial phase B to ground fault of magnitude 675A was interrupted by a

recloser after 3 cycles. The recloser trip caused a 37% loss of load on phase B.

When the recloser closed after fault 2.1 seconds, the phase B to ground fault

reappeared with a magnitude of 6378A causing the recloser to trip after 13.5

cycles. The second trip caused a 35% loss of load on phase B. The recloser

reclosed for a second time after 2.2 seconds. The phase B to ground fault

reappeared after 38 cycles and lasted 13.5 cycles before the recloser tripped

for a third time and cleared the fault. The final trip caused a 35% loss of load.

The recloser closed back for a third time after 2.3 seconds.

5.4.3.3 Overcurrent category assignment

The final step in overcurrent specific feature extraction is overcurrent category

assignment. The category assignment is done based on the based on conditions

outlined in Section 5.4.2:

1. Phase and ground involvement: The overcurrent sequence string has phase

and ground information for individual faults in an over current sequence.

This information is extracted by analyzing current waveforms correspond-

ing to faulted state in the merged state sequence generated after three-phase
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Algorithm 4 Protective device type identification

1 // Conditions f o r ass igning p r o t e c t i v e device category
2 i f ( Min ( RMS current ) < NOISE FLOOR ) )
3 Device Type = BREAKER
4 e l s e i f ( Trip Count > 1 | | Reclose Count > 0){
5 //Automatic l i n e r e c l o s e r
6 I f ( Load Lost Phase Count > 1 | | Faulted Phases > 1)
7 Device Type = THREE PHASE RECLOSER
8 e l s e
9 Device Type = SINGLE PHASE RECLOSER

10 }
11 e l s e i f ( Trip Count == 1 ){
12 i f ( Faulted Phases > 1)
13 Device Type = THREE PHASE RECLOSER
14 e l s e
15 Device Type = SINGLE PHASE RECLOSER OR FUSE
16 }
17 e l s e {
18 // Poss ib ly s e l f c l eared
19 Device Type = UNKNOWN
20 }

Figure 5.39: Protective device type identification

sequence analysis. A phase and ground involvement category is assigned to

the entire overcurrent and is the same as the phase and ground involvement

for the first fault within a sequence.

2. Protective device that operated: It is possible to infer the nature of the pro-

tective device that interrupted the overcurrent based on estimated load loss,

phases that were involved in the fault, reclose transients and number of

trips. Algorithm 4 (Figure 5.39) shows the conditions used to assign pro-

tective device category.

3. Load loss: If the final state of the merged state sequence is ‘TRIPPED’ then

the overcurrent is assigned a tripped category, indicating a possible out-

age. If the final state of the merged state sequence is ‘RECLOSED’, then

the overcurrent is assigned a reclosed category. For all other final states, a

self-cleared category is assigned.
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Figure 5.40: Screen capture of overcurrent specific output information presented
to utility user

4. Fault duration: If the maximum duration of all the individual faults within

an overcurrent sequence is less than or equal to half cycle (˜0.8 ms), then a

short-lived fault category is assigned to the overcurrent event.

Figure 5.40 shows a screen capture of the overcurrent specific information pre-

sented to a utility user. The screen capture shows the information generated by

the algorithm after processing the overcurrent example in Figure 5.37. Location

and time information has been blurred for confidentiality purposes.

Based on information in Figure 5.40, utility personnel can narrow down the

location of fault to sections of the feeder that is protected by a single-phase recloser

on phase B. Knowing that the recloser servers about 35% of the load will help to

narrow down the the location further. Finally, the fault magnitude estimate of

675A when used in conjunction with available short circuit model of the feeder

can help reduce the search area further.

5.5 Chapter Summary

In this chapter, the need for event specific feature extraction was explained

with examples. Features specific to line-to-ground arcing ad line-to-line arcing

were identified, and algorithms to extract these features were described. Then,

features specific to abnormal capacitor operations were identified, and the algo-

rithms needed to extract these features were described. Finally, overcurrent spe-

cific feature extraction methodology was described in detail.
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6. FUZZY CLASSIFIER

6.1 Introduction

Classification of power system events is a challenging task even for experts.

This is due to the diverse nature of power distribution systems, and due to uncer-

tainties introduced by these diverse conditions. It was shown in Chapter III that a

fuzzy expert system based classifier is well suited for classifying power distribu-

tion system event data. The power distribution event classification problem has a

number of requirements that influence the architecture of the fuzzy classifier. The

major factors that influenced design of the fuzzy classifier are:

Hierarchical classifier: It was previously shown (Chapter III, Section 5) that the

power distribution system event classification problem is a large scale classifica-

tion problem due to the large dimensionality of input feature space and output

space. A hierarchical classifier was proposed to split the large input feature space

into more manageable sub-spaces. A hierarchical classifier design also helps to in-

corporate structure into the classifier that is better suited for handling three phase

features and multi-segment events [103].

Modularity: Over time, new types of failure signatures and incipient failure sig-

natures may be discovered and characterized. These new failure signatures need

to be added to the classification system on a regular basis. These changes should

not require changing the classifier architecture or significantly affect classification

performance of existing categories. A classifier architecture that allows the easy

addition of new event signature recognition modules without adversely affecting

classification performance of existing categories is desirable.

Inference engine: One of the major challenges of designing a hierarchical fuzzy
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expert system classifier for large scale classification problem is the dearth of fuzzy

inference engines that can handle large scale fuzzy inference [104]. Hierarchical

structure of the proposed fuzzy expert system requires rule chaining. In a hierar-

chical expert system, higher level rules that dependent on a particular linguistic

variable should not fire until all the lower level rules with the same linguistic vari-

able on the consequent side have been evaluated. Most of the existing fuzzy expert

system shells with the exception of FuzzyShell [105, 106] do not handle this con-

dition. A choice had to be made between designing an inference engine tailored

to the power system event classification problem or using an existing inference

engine.

Efficiency: The fuzzy classifier is part of the classification algorithm that is re-

quired to run on remote field hardware with limited memory and processing

power. The classification algorithm as a whole needs to be able efficient in terms

of CPU usage and memory usage. The large scale nature of the classification prob-

lem requires a large and a complex fuzzy rule base. The fuzzy inference engine

needs to perform fuzzy inference and assign class labels in an efficient manner.

Portability: For the power system event classification system to be practical, and

to allow wide spread deployment, all components of the classification system

should be easily portable. This requires that the fuzzy classifier implementation

to be platform independent to allow deployment on different hardware and oper-

ating system platforms.

Another important aspect of power distribution system event classification is

presenting classification information to utility personnel in an intelligent manner.

For the classification system to be usable, it cannot report every event that was

classified. This is because, a majority of power system events are normal system

events that are of little interest to utility personnel. If all these events are reported,
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utility personnel will be overloaded with data. Worse still, they may also miss the

relatively few but more important abnormal events that get buried among normal

system activity. It is desirable that only events of interest are presented to utility

personnel. Hence, an intelligent reporting framework was developed to process

the raw classification information generated by the fuzzy classifier. The reporting

framework is responsible for presenting abnormal system activity as action items

to utility personnel. These action items contain information about the nature of

the event. They also contain event specific parameters that may help to locate the

cause of the abnormal event.

The rest of this chapter describes the structure of fuzzy hierarchical classifier,

followed by the design of a custom fuzzy inference engine, and finally provides a

brief description of the intelligent reporting framework.

6.2 Hierarchical Classifier Architecture

Generic features, RMS shape based features (Chapter 3) and specific features

(Chapter 4) extracted from event data, are used as inputs to the fuzzy classifier.

Features are the ‘evidence’ based on which the classifier assigns a category to the

capture being processed. Fuzzy classifier is the final phase of FLCA algorithm

(Chapter 3, Section 6). Figure 6.1 shows detailed schematic of fuzzy hierarchical

classifier.

6.2.1 Modular Structure

A modular and hierarchical classifier was designed to handle the large dimen-

sionality of input feature space. Modular nature takes advantage of the fact that

only a sub-set of features are needed to classify an event into a specific category.

Each classifier module (dotted box, Figure 6.1) is responsible for assigning pos-

sibility values for a subset of event categories. Event categories that share a lot
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Figure 6.1: Fuzzy hierarchical classifier
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Table 6.1: Fuzzy classifier modules

Module name Event cause categories Other attributes
Capacitor reactive
power related

Capacitor bank switching on
Capacitor bank switching off
Unbalanced capacitor switching on
Unbalanced capacitor switching off
Capacitor On (VAR imbalance)
Capacitor Off (VAR imbalance)
.

Phase: Single phase or three
phase.
Ground: Grounded or un-
grounded.
Position: Monitored feeder or
non-monitored feeder
.

Capacitor transient
related

Capacitor bank restrike
Capacitor switch bounce
Arcing inside capacitor bank
.

Position: Monitored feeder or
non-monitored feeder
.

Arcing related Arcing (generic)
Arcing (generic; short burst)
Arcing (generic; long burst)
Probable failure of switch or clamp
.

Phase: Single phase, two phase or
three phase.
Position: Monitored feeder only
.

Overcurrent related Overcurrent fault (normal)
O/C ¡ 1 cycle
Capacitor-failure overcurrent
Inrush
.

Phase: Single phase, two phase or
three phase.
Ground: Yes or no.
Position: Monitored feeder,
non-monitored feeder or trans-
mission system
.

Step change related Load step up
Load step down
Voltage step up (normal)
Voltage step down (normal)
CT/PT switches opened
CT/PT switches closed
.

Position: Monitored feeder
.

Motor related Motor start Phase: Single phase, two phase or
three phase.
Ground: Yes or no.
Position: Monitored feeder or
non-monitored feeder
.
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of features, are grouped into the same module. For example, a capacitor module

is responsible for assigning possibility values for normal capacitor switching and

unbalanced capacitor operation categories. It was shown in Chapter 5, Section 3

that normal capacitor operations and reactive power imbalance can be identified

based on features extracted from real and reactive power. For this reason, both

normal and unbalanced capacitor operations were grouped into the same mod-

ule. Similarly, modules were designed for classifying overcurrent related events,

arcing related events, motor starts and load switching related events, etc. Table

6.1 shows the complete list of modules and the event categories assigned to each

module. Each of these modules uses only a subset of features. Hence, each mod-

ule uses a lower dimensional sub-space compared to the larger dimensional input

feature space. This design does allow some overlap in the feature sub-space used

by modules. This because some features may be shared by more than one module.

The overlap of input feature sub-space opens up the possibility of overlapping

event sub-space. A conflict resolution strategy is used to resolve scenarios where

an event data generates high possibility values for more than one event category.

Each module uses a subset of input features and processes features and possi-

bility values at three levels; phase level, segment level and event level. At each of

these levels, fuzzy inference is performed by lower level classifiers (solid white

blocks) using features and possibility values. These lower level classifiers are

called Basic Fuzzy Processing Modules (BFPM).

6.2.1.1 Basic Fuzzy Processing Module (BFPM), the building block

The hierarchical classifier was designed using BFPMs as building blocks at

different levels within each classification module. Figure 6.2 shows the block dia-

gram of BFPM. BFPM uses expert’s knowledge represented in the forms of fuzzy
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Figure 6.2: Basic Fuzzy Processing Module

rules, fuzzy membership functions to process its inputs. The inputs are either

features or possibility values from other BFPMs. The outputs of the BFPMs are

possibility values. BFPM can receive as inputs, possibility values from other BF-

PMs at the same level in the hierarchy or a lower level in the hierarchy. When

BFPM receives possibility values from a lower level BFPM, it is equivalent to ac-

cumulating or gathering the evidence collected from multiple sources (signals)

in support or against an argument. When the BFPM receives as inputs possibility

values from BFPMs from the same level in the hierarchy, it is equivalent to reusing

the evidence already collected by other BFPMs. This is helpful from an efficiency

point of view and allows the sharing of information among BFPMs.

BFPMs can also receive possibility values from itself with a delay of one pro-

cessing step (iteration). This would allow the BFPMs to act as a simple Fuzzy
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State Machine (FSM). The possibility values calculated in the previous processing

step would serve as the fuzzy states of the fuzzy state machine. The ability of the

BFPMs to act as FSMs is essential when the classifier has to go through multiple

iterations while processing data that have multiple segments. The BFPMs need

to remember the results of the previous segment(s) before making a decision on

the current segment. This would allow the classifier to make a classification by

combining the information obtained from multiple segments. The delay loop of

BFPM is an optional component, and is used at the segment level inference in

some modules.

The next three subsections will discuss how BFPMs are used for fuzzy infer-

ence at phase level, segment level and event level. To illustrate how fuzzy infer-

ence is used for classifying power distribution system events; an example applica-

tion that uses fuzzy inference at each level to detect three phase capacitor switch-

ing on event will be shown. The rules used in the example application have been

simplified for illustrative purposes. In the example application, it is assumed that

waveform data was generated by a three phase balanced capacitor switching on

operation. The example application will show fuzzy inference using a subset of

features used by capacitor reactive power module. Table 6.2 shows lists the fea-

tures used in the example application. Table 6.3 shows sample feature values for

a capacitor switching on operation. The inference engine used by the hierarchical

classifier allows the use of both fuzzy and crisp rules in tandem. In the following

sub-sections, the term ‘rule’ is used to represent both fuzzy and crisp rules.

6.2.1.2 Phase level inference

Phase level inference is the first level of feature processing within a module.

At the phase level, input features corresponding to each phase A, B and C are
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Table 6.2: Description of sample input features

Table 6.3: Sample feature values
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processed independently by a phase level classifier (represented by BFPMs A, B

and C in Figure 6.1). Phase level classifiers perform fuzzy inference using fuzzy

phase level rules corresponding to each module. For example, in a capacitor reac-

tive power module, a phase level classifier may detect whether or not a large step

change in reactive power was detected on phase A. The phase level classifiers do

not perform defuzzification. Instead, they output phase level possibility values

for each phase. Phase level classifiers use the same set of rules to process features

from each phase. This is possible because event signatures are not dependent

on phase labels. For example, a capacitor switching on phase A will have simi-

lar electrical characteristics to a capacitor switching on phase B or C. One of the

benefits of using phase level classifiers is that, they effectively partition the fea-

ture dimensions used by a module into three non overlapping sub-spaces. Hence,

each phase level classifier uses approximately one third of the features needed by

each module. It should be noted that each module may use some features that are

not phase dependent. These features are not processed by phase level classifiers,

but they are used by higher level classifiers. If multiple segments are detected

in an event, then features corresponding to each of these segments are processed

separately, and phase level possibility values are generated for each segment. An

example of phase level inference for three phase capacitor switching on event will

be shown next.

Phase level classifiers use inputs features extracted from signals of each phase

(phases A, B and C), and assign phase level possibilities for phase level classes.

The Table 6.4 shows a descriptive version of example rules used by phase level

classifiers. these rules are used to assign output possibility values for phase level

classes. Rules in Table 6.4 lists some observations that help to identify a capaci-

tor switching on event. A capacitor switching on event on the monitored feeder
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Table 6.4: Example phase level rules
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Table 6.5: Example phase level rules in FFML

is typically recognized by VARS (reactive power) stepping down, big change in

VARS, and small or no change in real power. The capacitor switching on event on

an adjacent feeder can be recognized by observing if a voltage transient was ob-

served, if there was a medium percentage change in voltage, if the voltage stepped

up and if there was not much change in VARS or real power. Table 6.5 shows the

same rules expressed using FFML. FFML (Fuzzy Feature Manipulation Language)

is a custom language that was developed for representing rules used by the fuzzy

hierarchical classifier. FFML will be described in Section 6.3. The inference engine

automatically evaluates all phase level rules for each phase and assigns phase

level possibilities for phases A, B and C. Rule 1 in Table 6.4 is expanded as fol-

lows:
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Figure 6.3: Example membership functions used by phase level rules

Rule 1PhaseA: IF there was a Reactive power step down observed on

Phase A THEN Class IS Q Step Down Phase A

Rule 1PhaseB: IF there was a Reactive power step down observed on

Phase B THEN Class IS Q Step Down Phase A

Rule 1PhaseB: IF there was a Reactive power step down observed on

Phase C THEN Class IS Q Step Down Phase A

In all examples used in this section, the possibility value for a class Cl is repre-

sented by πCl . Rule 1 computes phase level possibility values for classes Q Step-

Down Phase A, Q Step Down Phase B and Q Step Down Phase C by evaluating the

truth in the antecedent portion of the rule as follows:
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Table 6.6: Sample phase level membership functions

πQ Step down Phase A = µStep down (Q Shape[Phase A])

πQ Step down Phase B = µStep down (Q Shape[Phase B])

πQ Step down Phase C = µStep down (Q Shape[Phase C])

where:

µStep down (Shape) =


1 Shape = Step down

0 Otherwise

Rule 1 is a crisp rule that checks whether or not a downward step change in re-

active power (Q) was observed on a given phase using shape feature for Q cor-

responding to phases A, B and C. The possibility values computed by Rule 1 is

either 1 or 0. The rules 2, 4, 5 and 9 use linguistic descriptors like Big, Small and

Medium. Membership functions (Figure 6.3) are required to evaluate these rules.

Using feature values in Table 6.3 and the membership functions in Table 6.6, the

input phase level features are fuzzified for use in rules 2, 4, 5 and 9. The calculated

membership values are shown in Table 6.7.
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Table 6.7: Sample computed membership values

Table 6.8: Sample phase level possibility values
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Rule 2 in Table 6.4 computes phase level possibility values for classes BIG Q-

Change Phase A, BIG Q Change Phase B and BIG Q Change Phase C by evaluating

the truth in the antecedent portion of the rule as follows:

πBig Q Change Phase A = µQ Big (Delta Q[Phase A])

πBig Q Change Phase B = µQ Big (Delta Q[Phase B])

πBig Q Change Phase C = µQ Big (Delta Q[Phase C])

where:

µQ Big is a membership function (Figure 6.3(a)) used to

describe the degree to which change in Q is big

Rule 3 in Table 6.4 computes phase level possibility values for classes Cap On-

Q Behavior Phase A, Cap On Q Behavior Phase B and Cap On Q Behavior Phase C

by replacing ‘AND’ in Rule 3, Table 6.4 by fuzzy conjunction operator∧ as follows:

πCap On Q Behavior Phase A = πQ Step down Phase A ∧ πBig Q Change Phase A (6.1)

πCap On Q Behavior Phase B = πQ Step down Phase B ∧ πBig Q Change Phase B (6.2)

πCap On Q Behavior Phase C = πQ Step down Phase C ∧ πBig Q Change Phase C (6.3)

Table 6.8 lists phase level possibility values computed using rules 1-9 and mem-

bership values computed in Table 6.7. The fuzzy conjunction operator ‘Min’ is

used to evaluate the ‘AND’ condition in the rules. Phase level possibility values

are used as inputs to segment level inference.

6.2.1.3 Segment level inference

This is the second level of processing within a module. Segment level classi-

fiers use phase independent features, phase level possibility values and a subset of
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segment level possibility values from a previous segment as inputs. Unlike phase

level classifiers that process each phase independently, segment level classifiers

(represented by BFPMs Segment 1,. . . , Segment N) in Figure 6.1) do not process

each segment independently. This is because, some events such as overcurrents

can span multiple segments, and it is useful to track the event across multiple seg-

ments before a class label can be assigned. For each module, the number of output

possibility values generated by phase level classifiers is much less when com-

pared to the number of input features used by phase level classifiers. As a result,

the dimension of the input space for segment level classifiers (comprised mostly

of phase level possibility values) is also small. Segment level classifiers perform

fuzzy inference using fuzzy segment level rules corresponding to each module.

For example, in a capacitor reactive power module, a segment level classifier may

detect whether or not a large step change in reactive power was detected on all

phases within a segment. Segment level classifiers do not perform defuzzification.

Instead, they output segment level possibility values for each segment. Segment

level classifiers within a module use the same set of rules to process each seg-

ment. Each module may use some features that are independent of the segment

or phase. These features are not processed by segment level classifiers. Instead,

they are used by event level classifiers.

Example segment level inference for three phase capacitor switching on event

Each power system event may involve one or more phases. It is important to

analyze the relative behavior of different phases within a segment. For the sake

of simplicity, this example assumes that the data contains only a single segment.

This example is a continuation of the example discussed for phase level inference

in the previous subsection.
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Table 6.9: Example segment level rules

In the previous step, phase level possibility values were calculated for each

phase, independent of one another (Table 6.8). The segment level rules combine

phase level possibility values that were computed from different phases. They

may also use as inputs, features that are not associated with any single phase

(phase-independent features).

A descriptive version of sample segment level rules for the detecting three

phase capacitor switching on event is listed in Table 6.9. Table 6.10 shows segment

level rules represented using FFML.

Rule 1 in Table 6.9 requires computing membership degree of PInd Rel DeltaQ

(relative change in reactive power) using the membership function µQRel Small

(Small relative change in reactive power) shown in Figure 6.4 . The value for the

phase independent feature PInd Rel DeltaQ is 0.05 for this example (feature 7,

Table 6.3). PInd Rel DeltaQ is a measure of reactive power imbalance between all
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Table 6.10: Example segment level rules in FFML

Figure 6.4: Example segment level membership function
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phases and is computed using the following expression:

PInd Rel DeltaQ =
Max

ph
(Delta Q[ph])−Min

ph
(Delta Q[ph])

Min
ph

(Delta Q[ph])
,

ph ∈ {Phase A, Phase B, Phase C}

Rule 1 computes segment level possibility value for class Balanced Q Change as

follows:

πBalanced Q Change = µQRel Small (PInd Rel DeltaQ)

Rules 2, 3 and 4 in Table 6.9 use the phase level possibility values Capacitor On-

Q Behavior, No P Change and No Q Change that have already been calculated for

each phase in the previous level (Table 6.8). However, they also involve a con-

dition ‘on all phases’. This is equivalent to using ‘AND’ condition on individual

phases. For example, Rule 2 in Table 6.9 should be interpreted as:

Rule 2: IF there was Capacitor on Q behavior on phase A AND

there was Capacitor on Q behavior on phase B AND

there was Capacitor on Q behavior on phase C

THEN Class is 3Phase Cap On Q Behavior

The Boolean operator ‘AND’ is replaced by fuzzy conjunction operator ‘Min’, and

Rule 2 is evaluated as follows:

π3Phase Cap On Q Behavior = πCap On Q Behavior Phase A∧

πCap On Q Behavior Phase B∧

πCap On Q Behavior Phase C (6.4)
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π3Phase Cap On Q Behavior = Min
(
πCap On Q Behavior Phase A,

Min
(
πCap On Q Behavior Phase B

πCap On Q Behavior Phase C
) )

(6.5)

Rule 2 in Table 6.10 shows a more compact representation of the rule using a vec-

torized form of fuzzy conjunction operator ‘VectConj’. The fuzzy inference engine

used by BFPMs supports vectorized form of operators such as fuzzy conjunction

and disjunction that automatically combines possibility values from three phases

(Equation 6.7). This avoids verbosity in the rule base, and also reduce user errors.

Another advantage is that, vectorized operators help in reducing CPU and mem-

ory usage and hence improve efficiency. This is because a vectorized operator can

be represented as a single node in a parse tree composed of a unary operator tak-

ing a vector as input argument. This is in contrast to using two binary operators

to combine possibility values from three phases explicitly (Equation 6.5)

π3Phase Cap On Q Behavior = Min
(
πCap On Q Behavior Phase A,

πCap On Q Behavior Phase B,

πCap On Q Behavior Phase C
)

(6.6)

π3Phase Cap On Q Behavior = VectMin
(
πCap On Q Behavior

)
(6.7)

where:

VectMin (X) = Min
ph

(xph), ph ∈ {Phase A, Phase B, Phase C} ,

X = {xPhase A, xPhase B, xPhase C}
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and,

πCap On Q Behavior =


πCap On Q Behavior Phase A

πCap On Q Behavior Phase B

πCap On Q Behavior Phase C

 (6.8)

Phase level possibility values for Capacitor On Q Behavior were calculated using

Equations 6.1-6.3, as shown in in row 3 of Table 6.8. Using these example phase

level possibilities and equation 6.5, segment level possibility value for 3Phase Cap-

On Q Behavior can be computed as follows:

π3Phase Cap On Q Behavior = Min (1.0, 1.0, 1.0) = 1.0

In a similar fashion, No P Change and No P Q Change may also be calculated using

Rules 3 and 4. These values are shown in Table 6.8. Segment level rule, Rule 5 in

Table 6.9 is a more complex rule. Rule 5 combines three conditions using the

operator ‘AND’. Within each of these conditions, phase level possibility values

are used. The first condition ‘There was voltage transient observed in at least

one phase’, uses the phase level possibility values V Trans Present that has already

been computed for each phase in the previous step (feature 7, Table 6.8). However,

the condition ‘in at least one phase’ should be interpreted as follows:

“Voltage transient was observed on phase A OR voltage transient was ob-

served on phase B OR voltage transient was observed on phase C”

Here, the individual phase level possibility values using the Boolean ‘OR’ opera-

tor.The fuzzy disjunction operator ‘Max’ can be used to replace the OR operator.

Further, the vectorized version of Max operator ‘VectMax’ is used for computa-

tional efficiency. where:
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VectMax (X) = Max
ph

(xph), ph ∈ {Phase A, Phase B, Phase C} ,

X = {xPhase A, xPhase B, xPhase C}

Rule 5 can be evaluated using vectorized fuzzy conjunction (‘VectConj’) and fuzzy

disjunction operators (‘VectDisJunc’) as shown in row 5 of Table 6.10. VectConj

operator is implemented using vectorized Min operator VectMin, and VectDisjunc

operator is implemented using vectorized Max operator VectMax as follows:

π3Phase Cap On V Behavior = VectMax (πV Trans Present)∧

VectMin
(
πV Step Up

)
∧

VectMin
(
πMEDIUM V Change

)
(6.9)

π3Phase Cap On V Behavior = Min (VectMax (πV Trans Present) ,

VectMin
(
πV Step Up

)
VectMin

(
πMEDIUM V Change

))
(6.10)

where:

πV Trans Present =


πV Trans Present Phase A

πV Trans Present Phase B

πV Trans Present Phase C

 (6.11)

πV Step Up =


πV Step Up Phase A

πV Step Up Phase B

πV Step Up Phase C

 (6.12)
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Table 6.11: Sample segment level possibility values

πMEDIUM V Change =


πMEDIUM V Chang Phase A

πMEDIUM V Chang Phase b

πMEDIUM V Chang Phase C

 (6.13)

Using phase level possibility values from Table 6.8 and substituting these values in

Equation 6.10, the possibility value for 3Phase Cap On V behavior can be computed

as:

π3Phase Cap On V Behavior = Min (VectMax ([1.0, 0.0, 0.0]) ,

VectMin ([1.0, 1.0, 1.0])

VectMin ([1.0, 1.0, 0.25]))

= 0.25

The above example demonstrated how complex rules can be represented in com-

pact form, and be evaluated efficiently using vectorized operators. The inference

engine designed for the fuzzy hierarchical classifier automatically pareses and

evaluates rules. Segment level possibility values computed in Table 6.11 are used

as inputs to the event level of the inference engine.
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6.2.1.4 Event level inference

This is the final level of processing within a module. Event level classifiers use

segment independent features and segment level possibility values to compute

class possibility values for the whole event. The dimension of the input space for

event level classifiers is smaller in comparison to that of segment level classifiers.

Event level classifiers (represented by BFPM Class 1,. . . , Class 1’ in Figure 6.1) use

event level rules to perform fuzzy inference. Event level rules have fuzzy con-

fidence degrees such as Medium and High associated with them. There may be

multiple rules with the same class name on the consequent portion of the rule but

with different confidence degrees associated with them. These confident degrees

make the consequent portion of event level rules fuzzy. As a result, evaluating

the antecedent portion of event level rules results in an output possibility distri-

bution, instead of a single possibility value. Since event level rules have fuzzy

consequents, defuzzification [107] is needed to compute single event level possi-

bility value for each class. In order to calculate event level possibility values, the

following operations are done as a four step inference process:

1. Possibility value for antecedent portion of the rule is computed based on

input possibility values and fuzzified input features.

2. Possibility values computed using the antecedent portion of event level rules

are used to clip the membership function associated with the consequent

portion of the rule. This results in a possibility distribution for each event

level rule.

3. Multiple rules may have the same event level class at the consequent portion

of the rule. Possibility distributions corresponding to the same event level
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class are combined to create a single possibility distribution for each event

level class. Possibility distributions are combined using fuzzy disjunction

operator Max over the output variable which is the possibility of an event

level class.

4. Center of area defuzzification is then used to calculate a single possibility

value for each event level class.

Typically, numerical confidence values have been used with fuzzy if then rules to

convey an experts confidence in a rule [108]. In the second step of the inference

process, rules that have singleton consequent portion (i.e. discrete output variable

such as event category), result in single possibility value for each rule. Numeri-

cal confidence values are used to scale these possibility values. Using confidence

degrees instead of numerical confidence values result in clipped possibility distri-

butions, in the first step of inference. Combining the possibility distributions, and

applying center of area defuzzification on the combined possibility distribution,

provides a mechanism that allows all the event level rules to contribute to output

possibility value. This inference process will be illustrated with an example in the

next section.

Event level classifiers compute class possibilities for each segment, and then

combine these class possibilities using the fuzzy disjunction operator ‘Max’, to

output a single class possibility value for the whole event. The fuzzy disjunction

operator is equivalent to using an ‘OR’ to combine the possibility values gener-

ated for each segment. This is equivalent to using the following rule to combine

possibility values:

“If segment 1 shows evidence of the cause being Class A OR segment 2 shows ev-

idence of the cause being Class A OR ... segment N shows evidence of the cause
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being Class A Then cause is Class A”

One of the requirements placed on the classifier is the ability to assign phase,

ground and position labels, in addition to event category labels. This requirement

can potentially lead to rule explosion if every combination is enumerated. The

event level classifier does not evaluate possibility values on a per phase basis.

Depending on event category, possibility values are computed for single phase,

two phase or three phase. Rules are not enumerated for each phase combination.

This was done to reduce the number of rules. Similarly, not all ground and po-

sition categories are enumerated. The phase, ground and position attributes that

are enumerated are listed under ‘other attributes’ in Table 6.1. For example, for

‘Capacitor bank switching on’ category (abbreviated as CAP-On), the following

combinations are enumerated by using rules:

(CAP-On, Monitored feeder, Three phase, Grounded)

(CAP-On, Monitored feeder, Three phase, Ungrounded)

(CAP-On, Monitored feeder, single phase, Grounded)

(CAP-On, Non-monitored feeder, Three phase, Ground unknown)

(CAP-On, Non-monitored feeder, Single phase, Grounded)

Not all combinations of phase ground and position are enumerated for two

reasons: 1. Certain combinations are not feasible, for example, single phase ca-

pacitors cannot operate in an ungrounded configuration and 2. Lack of knowl-

edge to represent some combinations, for example, current implementation does

not have the features and rules required to detect an ungrounded capacitor bank

switching on a non-monitored feeder. Event possibility values for valid subset

of class, phase, position and ground combinations are output for each module.

These possibility values are used as inputs to the conflict resolution and class as-
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Table 6.12: Example event level rules

signment stage.

Example event level inference for three phase capacitor switching on event : The

truth values that were obtained from the segment level rules and features that are

independent of the segment (i.e., common to all segments), are used as inputs to

the event level rules. This example is a continuation of the three phase capacitor

switching on example discussed in the previous subsection.

In the previous step, segment level possibility values were calculated (Table

6.11). A descriptive version of sample segment level rules for the detecting three

phase capacitor switching on event are listed in Table 6.12 . Table 6.13

shows segment level rules represented using FFML. Event level rules may

have confidence degrees associated with them. Confidence degrees reflect ex-

pert’s confidence in the antecedent portion of a rule as being indicative of the

class in the consequent portion of the rule. For example, Rule 1 in Table 6.12 is

interpreted as follows:
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Table 6.13: Example event level rules in FFML

Figure 6.5: Confidence degree membership functions
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Rule 1: IF there was balanced change in Q AND

there was three phase capacitor on Q behavior AND

there was three phase capacitor on voltage behavior

THEN Class is ‘Three phase monitored feeder normal capacitor

switching on (3Ph Cap On Mon Fdr Normal)’ with

a Medium degree of confidence

FFML allows assigning confidence degrees in the form of fuzzy membership func-

tions to the consequent portion of the rule. This is done by specifying an out-

put variable ‘Event possibility’ (eventPossib) and a confidence degree membership

function (confMedium) as shown in table 6.13. In Table 6.12, the class identifier

is the same while the antecedent portion (evidence) used by the two rules dif-

fer. Rule 1 uses ‘3Phase Capacitor On V Behavior’, while rule 2 uses ‘No 3Phase P

change’. This is because of the expert’s belief that the evidence used by Rule 2 are

more indicative of three phase capacitor switching on than evidences used by Rule

1. Consequently, Rule 2 was assigned higher confidence degree than Rule 1. The

confidence degrees are static and are part of the rule. Confidence degrees are not

assigned during inference and are not dependent on the truth in the antecedent

portion of the rule. Figure 6.5 shows Medium and High fuzzy membership func-

tions for degree of confidence.

In order to evaluate event level rules, first antecedent possibility value is com-

puted using segment level possibility values (Table 6.11).Then, the antecedent

possibility value is used to clip degree of confidence membership function as-

sociated with that rule. This is shown in Table 6.14. Clipped degree of confidence

membership functions represent a possibility distribution. Before a possibility

value can be assigned to an event level class, consequent possibility distributions
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Table 6.14: Example clipping using computed antecedent possibility value
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Figure 6.6: Combined consequent possibility distribution

of all the rules referring to that event level class need to be combined. This is done

by superimposing the clipped degree of confidence membership functions using

a Max operator. The resulting combined possibility distribution µComb is shown

in Figure 6.6. However, a single possibility value is needed for every event level

class. Then, these event level class possibility values can easily be compared, a

single class label for the event data can be assigned. In this example, a single con-

fidence value needs to be calculated for ‘Three phase monitored feeder normal

capacitor switching on’ category. Center of Area (COA) defuzzification is used to

obtain final possibility value from combined membership function mComb as shown

below:

π3Ph Cap On Mon Fdr Normal =

i=0
∑

Nin f

µComb (yi)× yi

i=0
∑

Nin f−1

µComb (yi)

(6.14)

In the above equation, the combined possibility distribution µComb is sampled at

Nin f + 1 discrete points y0, . . . , yi, . . . , yNin f , where yi = i/Nin f . Then COA is com-

puted using these sample points yi. For the example rules used in Table 6.14,

the event level possibility value π3Ph Cap On Mon Fdr Normal computed using COA
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method of defuzzification was 0.8. Event level possibility values are computed

for all other classes (Table 6.1) in a similar fashion. These event level possibil-

ity values are then used to assign output class labels and to choose appropriate

output parameters.

6.2.2 Conflict Resolution and Class Assignment

Conflict resolution and class assignment are the final stage of fuzzy hierar-

chical classifier. This stage uses event level possibility values computed by all

modules. It uses these possibility values to assign a single combination of event

category, phase, position and ground label. The output label can be considered as

a point in four dimensional space spanned by the combination of event category,

phase, position and ground labels. Assigning a single label to the whole event

is challenging as power system event data can represent an arbitrary duration in

time. During this period, the data may contain waveforms caused by one or more

related or non related power system phenomenon. For example, event data may

contain waveforms that were caused by capacitor switching followed by a three

phase motor start. This will result in high possibility values from both the capaci-

tor module and motor module. This causes a conflict. One of the objectives of the

final stage is to assign a label that will be perceived as most important by an ex-

pert when event data contains waveforms corresponding to more than one power

system phenomenon.

Figure 6.7 shows the flow chart for conflict resolution and class assignment

stage. Candidate event cause vector is formed by screening event level possibil-

ity values and choosing values greater than a minimum qualification threshold.

Then, the chosen event causes are ranked based on their order of importance. The

order of importance is predefined and determined based on expert knowledge.
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Figure 6.7: Conflict resolution and class assignment
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Table 6.15: Hypothetical event level possibility values

Event cause category Event level possibility
(CAP-On, Monitored feeder, Three phase, Grounded) 0.7

(Motor start, Monitored feeder, Three phase) 0.8
(Load step up, Monitored feeder, Three phase) 0.7

Table 6.16: Sample order of importance

event category Position Phase Ground Rank
CAP-On Monitored feeder X X 10
CAP-On Non-Monitored feeder X X 25

Motor start Monitored feeder X X 23
Motor start Non-Monitored feeder X X 25

Load step up Monitored feeder X X 23

The candidate event cause with the highest importance is chosen and is used to

assign event category label, position label and ground label. It is possible for more

then one event cause to have the same level of importance. In this case, the event

with higher possibility value is chosen.

Consider the hypothetical scenario where event data contained waveforms

caused by the following sequence of events: three phase capacitor bank switching

on, followed by a motor start, followed by a large three phase load switching on.

Table 6.15 lists hypothetical possibility values generated by corresponding event

level classifiers. The possibility values have been ordered by importance first and

then by the possibility value. Table 6.16 shows a sample rank assignment for a

subset of event categories. The smaller the value of rank, higher the importance.

A ‘X’ indicates that the attribute is not used for determining the rank. For the

hypothetical set of possibility values listed in Table 6.15, the combination (CAP-

On, Monitored feeder, Three phase, Grounded) will be chosen as the event cause.

These also form the output attributes: (event category label = CAP-On, position

label = Monitored feeder, phase label = ABC, ground label = Yes, Confidence =
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Table 6.17: Mapping between possibility values and confidence label

Possibility value range Confidence label
[0.0, 0.15) Low

[0.15, 0.30) Medium Low
[0.30, 0.45) Medium
[0.45, 0.60) Medium High
[0.60, 0.75) High
[0.75, 1.0] Very High

Medium high). Table 6.17 shows the mapping between possibility values and

confidence label. Confidence labels provide a simple mechanism to inform users

of the confidence the algorithm has on it’s decision based on evidence found in

the data. .

In the above example, choice of phase label was simplified because the phase

attribute was three phase. Event level classifiers with phase attribute of single

phase or two phase may also output high possibility values. When the phase at-

tribute is single phase or two phase, then the specific phase combination should be

determined and used as output phase label. This is done by using phase level pos-

sibility values that have already been computed by phase level classifiers. Each

event category type has a predefined phase level classifier assigned to it for the

purpose of determining phase label. When the phase attribute is single phase, the

phase of the highest phase level possibility value is used to determine phase label.

When the phase attribute is two phase, the phase of the top two phase level possi-

bility values are used to determine phase label. For example, consider the scenario

where the highest event level possibility was generated by the following combi-

nation of attributes: (CAP-On, Monitored feeder, Single phase, Grounded). Single

phase implies, the phase label can be ‘Phase A’, ‘Phase B’ or ‘Phase C’. Clearly,

more information is needed to compute a phase label. Phase level possibilities
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that best represent capacitor switching on characteristics are used to accomplish

this. In this example, the phase level possibility values Cap On Q Behavior (Tables

6.4 and 6.8) computed for each phase can be used. Then, the phase with highest

possibility value can be used to choose the phase label.

6.3 Design of a Large Scale Fuzzy Inference Engine

Fuzzy hierarchical classifier, as described in the previous section, uses few

hundred rules distributed across different classifier modules and inference lev-

els within a module. The number of rules are likely to increase as new modules

are added. Further, rules at a higher level within the hierarchical classifier can-

not be evaluated until output possibilities have been computed for the lower level

classifiers. This is because, the antecedent portion of rules in higher level clas-

sifiers depend on the consequent portion of rules in lower level classifiers. This

introduces dependency between rules used by the hierarchical classifier. A depen-

dency relationship needs to be first established, and the rules need to be evaluated

in the correct order. For example, consider the following set of rules:

Rule H: IF expressionH(A1
H , ..., An

H) THEN C1

Rule L1: IF expressionL1(A1
L1, ..., An

L1) THEN A1
H

.

.

.

Rule Ln: IF expressionLn(A1
Ln, ..., An

Ln) THEN An
H

where, for a rule H, expressionH() on the antecedent portion of the rule, is a fuzzy

expression involving possibility values A1
H , ..., An

H and fuzzy operators. C1is the

possibility value computed as a result of evaluating the expression on the an-

tecedent portion of the rule H. Before Rule H can be evaluated, all possibility
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values A1
H , ..., An

H need to be known. This implies, all rules (L1, ..., Ln) that have

a consequent portion matching any of A1
H , ..., An

H have to be evaluated first. This

form of multi-level inferences requires inference engines that support rule chain-

ing. However, with the exception of FuzzyShell [105], there were no readily avail-

able, general purpose fuzzy inference engines that could handle large number of

rules and rule chaining.

6.3.1 FuzzyShell vs. Custom Inference Engine

FuzzyShell extended CLIPS [109], a widely used expert system shell to al-

low fuzzy inference. Similar to CLIPS, FuzzyShell uses production systems [110]

and Rete networks [111] to support rule chaining in a large scale expert system.

FuzzyShell met the requirements of an inference engine to be used with fuzzy

hierarchical classifier. However, it was not chosen for the following reasons:

1. While FuzzyShell is very effective as a stand alone expert system shell. How-

ever, integrating the shell with an existing application can be challenging.

Prior experience gained by working with a similar expert system shell, CLIPS

[52] showed that passing large amount of data from and to expert system

shells can be both tedious and inefficient. Using a custom inference engine

designed specifically for the fuzzy hierarchical classifier will help to over-

come this issue by providing greater flexibility for data transfer.

2. The fuzzy hierarchical classifier needs to work on embedded environments

where computational resources are limited. Computational efficiency and

memory usage are a primary concern. Parsing and evaluating a large rule

base during run-time is an expensive operation. General purpose expert

system shells are designed to be very flexible. They do not make any as-

sumptions about when and in what order inputs are available. Rules are
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fired when all the inputs to a rule are available. Hence, there is a significant

overhead in tracking input variables and order in which the rules need to be

executed. In contrast, the requirements for the inference engine used by the

fuzzy hierarchical classifier are far less stringent. For a given rule base, the

rules and the input features (not the feature values) used by the hierarchical

classifier are fixed and fully defined. This implies that the execution plan for

the rules is deterministic and fixed for the rule base. I.e., the order in which

the rules are executed, and the order in which input variables are consumed

can be defined prior to execution of the rules. If a custom inference engine is

used, it is then possible to parse the rules, and create an execution plan as a

sequence of operation on input variables. This execution plan is analogous

to using compiled code. The inference engine can then be replaced by a vir-

tual machine that runs the execution plan. This would result in improved

efficiency both in terms of memory and processor usage.

3. A custom fuzzy inference engine tailored for fuzzy hierarchical classifier

provides more flexibility in incorporating the hierarchical structure. An-

other advantage of a custom inference engine is that it can better exploit

the symmetry introduced by the three phase nature of power system feature

analysis. This would help to reduce redundancy in the rule base.

Based on the above considerations, a custom fuzzy inference engine, Fuzzy Fea-

ture Analysis Engine (FFAE) and a custom language for fuzzy rule base, Fuzzy

Feature Manipulation Language (FFML) were developed. With the exception of

conflict resolution and class assignment, all the other stages (phase level, segment

level and event level inference) of fuzzy hierarchical classifier described in the

Section 6.2 were functionally replaced by FFAE.
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6.4 Fuzzy Feature Analysis Engine (FFAE)

Figure 6.8 shows the schematic of FFAE. FFAE consists two modules; an of-

fline rule optimizer and compiler, and an online delayed fuzzy inference module.

The offline rule optimizer and compiler parses the FFML rule base and produces

a highly optimized compiled FFML code block. FFML code block contains a se-

ries of instructions to be performed on input features and computed possibility

values. As the rule optimizer and compiler is an offline module, it does not do

fuzzy inference using input features. Inference is delayed till the compiled FFML

code block is executed by the online delayed fuzzy inference module. The de-

layed fuzzy inference module uses a virtual machine that executes the compiled

FFML code block by plugging in input feature values. These two modules will be

described in the following subsections.

6.4.1 Offline Rule Optimizer and Compiler

Offline rule optimizer and compiler consists of three modules as seen in Fig-

ure 6.8. All the FFML rules used by fuzzy hierarchical classifier are first parsed

using Spirit parser [112]. A production system creates an execution plan using the

information generated by the parser. The execution plan is an ordering of rules

based on their dependency. For example, if the antecedent portion a rule A is de-

pendent on the consequent part of another rule B, then the rule A is defined to be

dependent on rule B. Hence, rule B will be added to the execution plan before rule

A. Finally, a FFML compiler compiles the rules in the same order as they appear

on the execution plan and generates a FFML code block. The code block contains

the sequence of operations to be performed on input features in order to compute

possibility values. Each of the three modules used by rule optimizer and compiler

will be explained further in the following paragraphs.
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Figure 6.8: Fuzzy Feature Analysis Engine (FFAE) overview
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6.4.1.1 FFML Spirit parser

FFAE is a domain specific expert system shell designed to process features

extracted from power system event data and to classify power system events. The

domain knowledge needed by FFAE is stored in the form of rules composed using

FFML.

FFML Language : FFML is a custom language that was developed to capture

expert knowledge required for classifying power system event data. FFML sup-

ports some unique features that greatly simplify constructing rules for the power

system domain and computing with possibility values:

1. FFML supports computing with possibility values. I.e, the consequent por-

tion of a rule can be a variable that simply holds the possibility value com-

puted using the antecedent portion of the rule. When the rule is executed, a

variable with the computed possibility value is asserted.

2. FFML supports both fuzzy and crisp consequents. However, FFML allows

only a single variable in the consequent portion.

3. FFML supports mixing both fuzzy and crisp variables to construct complex

expressions in the antecedent portion of the rules. These expressions sup-

port both fuzzy and boolean operators. For example, ‘MaxCurrent is High’

is a fuzzy expression that returns a value between zero and one depending

on the degree to which the value of MaxCurrent is High. The expression

‘bReclosed == true’ is a crisp comparison. It returns zero or one depend-

ing on whether or not the variable bReclosed is set to true. FFML supports

combining these two expressions using a fuzzy disjunction or conjunction

operator.
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4. FFML supports user defined functions.

5. FFML supports vectorized rules. When one or more features used by the

antecedent portion of the rule is three phase in nature, all operations are

vectorized. The rules are automatically evaluated for each phase, without

the explicitly enumerating rules for each phase. For example, consider the

following phase level FFML rule (Table 6.5, Rule 1):

(FFML) $VARS Step Down: ($Q Shape, % STEP DOWN) ¡@eq¿;

(Text)VARS Step Down=(Q Shape is STEP DOWN)

Q Shape is a three phase feature vector that represents the shape observed in

reactive power signals corresponding to each phase. When FFAE evaluates

this rule, Q Shape value corresponding to each phase A, B and C is com-

pared to the value STEP DOWN. The results of the comparisons are then

stored as a vector possibility values into the output variable VARS Step Down.

This is equivalent to the following:

VARS Step Down[Phase A]=(Q Shape[Phase A] is STEP DOWN)

VARS Step Down[Phase B]=(Q Shape[Phase B] is STEP DOWN)

VARS Step Down[Phase B]=(Q Shape[Phase C] is STEP DOWN)

Thus, a single FFML rule can be used instead of enumerating the same rule

for each phase. This greatly simplifies the rule base. It also reduces the pos-

sibility of errors introduced due to replicating the same rule for each phase.

Vectorized rules also help improve computational efficiency. FFML allows

the use of more than one three phase features in the antecedent portion of the

rules. Phase independent features may also be combined with three phase

features.
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6. FFML supports a special operator, fuzzy combination operator. This opera-

tor allows enumerating possibility values for different phase combinations.

For example, consider the following rule that computes the possibility of an

unbalanced capacitor operation:

(FFML) $Capacitor Two Phase Unbalanced On:

($Cap On Q Behavior, $Cap On Q Behavior,

$No P Q Behavior)

<@FuzzyComb, ’disjunc’, ’conj’>

(Text) Capacitor Two Phase Unbalanced On =

Capacitor on Q behavior on two phases AND

No P or Q change on third phase

The above rule can be expanded further to explicitly enumerate all phase

combinations as follows:

(Text) Capacitor Two Phase Unbalanced On =

(Capacitor on Q behavior on phase A AND

Capacitor on Q behavior on phase B AND

No P or Q change on third phase C)

OR

(No P or Q change on third phase A AND

Capacitor on Q behavior on phase B AND

Capacitor on Q behavior on phase C)

OR

(Capacitor on Q behavior on phase A AND
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No P or Q change on third phase B AND

Capacitor on Q behavior on phase C)

The fuzzy combination operator ‘<@FuzzyComb, ’disjunc’, ’conj’>’ used

in the example FFML rule, automatically enumerates the combinations across

phases and computes a single possibility. The combination operator accepts

three arguments for which combinations are to be generated. The combi-

nation operator also accepts two operators as arguments. The first opera-

tor is applied across different combinations and the second operator is used

within each combination. For example, the fuzzy combination operator of

the general form (Arg1, Arg2, Arg3)<@FuzzyComb, op1, op2> is evaluated

as follows:

(Arg1, Arg2, Arg3)<@FuzzyComb, Op1, Op2> =

(Arg1[Phase A] Op2 Arg2[Phase B] Op2 Arg3[Phase C] )

Op1

(Arg1[Phase A] Op2 Arg2[Phase C] Op2 Arg3[Phase B] )

Op1

(Arg1[Phase B] Op2 Arg2[Phase A] Op2 Arg3[Phase C] )

Op1

(Arg1[Phase B] Op2 Arg2[Phase C] Op2 Arg3[Phase A] )

Op1

(Arg1[Phase C] Op2 Arg2[Phase B] Op2 Arg3[Phase A] )

Op1

(Arg1[Phase C] Op2 Arg2[Phase A] Op2 Arg3[Phase B] )
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Thus, FFML provides a mechanism to compactly represent combinations of

three phase features and possibility values using fuzzy combination opera-

tor.

Before FFML rules can be used by the inference engine (FFAE), the rules need to

be parsed, and represented in memory, in a form that is usable by FFAE. Spirit

[112] library based parser was designed for this purpose.

Spirit parser : Spirit library was used to define the formal grammar for FFML in

EBNF (Extended Backus-Naur Form). Spirit library was also used to generate a

parser that reads the rules and create a parse tree. The parse tree is an in memory

representation of the rules in the form of a directed graph. A number of operations

on the rules (including inference) can then be performed by traversing the parse

tree. The Spirit library based parser together with the functions that operate on

the parse tree will here on be referred to as ‘Spirit parser’.

Figure 6.9 shows the detailed view of the Spirit parser. FFML rule base is only

input to the FFML parser. The modularity and hierarchy in the fuzzy hierarchi-

cal classifier is enforced through how rules are arranged in FFML rule base and

their dependency. The FFML base has multiple modules, each handling a sub-

set of event categories. Within each module, rules are arranged in three groups.

Phase level rules, segment level rules and event level rules. Phase level rules

only use input features as inputs. Segment level rules are dependent the output

of phase level rules and phase independent input features. Event level rules are

dependent on outputs from segment level rules and segment independent input

features. This dependency was explained in detail in Section 6.2. It is possible to

process rules in each module independently. However, doing so will not be able

to take advantage of any inherent similarities in rules across modules. I.e, cer-
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Figure 6.9: Detailed view of Spirit parser
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tain conditions in antecedent portion of rules could appear in multiple modules.

If these repetitive ‘patterns’ can be identified, then they can be evaluated once

and reused across modules. This would help improve computational efficiency

when rues are evaluated. For this reason, the rule base is preprocessed before it is

parsed. All phase level rules, segment level rules and event level rules are merged

across modules. The rule hierarchy is preserved by adding phase level rules from

all modules first, followed by segment level rules and event level rules. This is

shown as the block labeled ‘Ordered rules’ in Figure 6.9. It should be noted that

ordering rules according to the hierarchy is not a requirement. The offline rule op-

timizer and compiler is capable of automatically rearranging rules based on their

dependency. The reason the ordering was done is because of two reasons:

1. Dependency between the three levels in the hierarchy is explicit in the rule

base, and ordering the rules would help reduce processing time required

by the offline rule optimizer and compiler. This is because, the dependency

need not be inferred again.

2. Grouping phase level rules, segment level rules and event level rules allow

these three levels of rules to be independently optimized for recurring pat-

terns. This would help reduce the memory and computational complexity

of the rule optimizer. For example, antecedent portions of phase level rules

from different modules or within a module are more likely to show similar-

ities. It is unlikely that phase level rules have antecedent portions that are

similar to event level or segment level rules.

Ordered rules are then parsed, and a parse tree is generated. The parse tree

is an in memory representation of the rule base in the form of a graph. Figure 6.10

shows example rules 1 (R1), 2 (R2) and 3 (R3) from Table 6.5 as directed graphs
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Figure 6.10: Example rules represented as graphs
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generated by Spirit parser. Nodes in the graph fall into three broad categories; op-

erators, output variables and inputs. Operators are shown inside dotted ellipses

in Figure 6.10. Operators include Boolean operators, fuzzy operators, comparison

operators, functions, assignment operator and fuzzy membership functions. For

example, the upper most node in R1, R2 and R3 is the assignment operator ‘:’. The

portion of the graph to the right side of the assignment operator is the antecedent,

and the portion of the graph to the left side is the consequent. The graphs imply

that the quantity computed on the antecedent portion of the graph is assigned to

the output variables (Q Step Down, Big Q Change and Cap On Q Behavior) on the

consequent portion. The single leaf node (Terminal node) on the left side of the

assignment operator (consequent portion) is the output variable. The graph on

the right side of the assignment operator (antecedent portion) can however, have

multiple leaf nodes. Each of leaf on the antecedent portion of the graph represents

an input. Inputs can be of three types:

1. Input features: Input features are features extracted from processing event

data. In Figure 6.10, Delta Q and Q Shape represent input features.

2. Input constants: Input constants are values such as thresholds and other

parameters that are independent of event data. In Figure 6.10, STEP DOWN

represents an input constant which is a numerical representation (enum) for

RMS shape.

3. Computed values: These are values that were computed as a result of fir-

ing other rules. For example, Rule R3 in Figure 6.10 uses computed values

Q Step Down and Big Q Change as inputs. Q Step Down and Big Q Change

are output variables for rules R1 and R2 respectively. This dependency rela-

tionship is shown throw dotted arrows.
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In the case of a rule with a fuzzy consequent, the consequent portion cannot be

fully evaluated until the antecedent portion of all rules with the same variable

on the consequent portion are evaluated. A simple assignment operator will not

be sufficient to represent these rules. Instead, temporary variables are created to

hold the possibility values that are calculated from the antecedent portion of rules

with fuzzy consequent. A separate defuzzification node is then created that is

dependent on the antecedent portion of all rules with the same fuzzy consequent

variable. This is easily illustrated with an example. Consider the event level rules

1 and 2 from Table 6.10. Figure 6.11 shows the resultant graphs after being pro-

cessed by the parser. As a result of parsing rules 1 and 2, three assignment nodes

FR1, FR2 and DFR1 are generated. The right side of the nodes FR1 and FR2 rep-

resent the antecedent portion of rules 1 and 2 respectively. However, the fuzzy

consequents of these rules do not appear on the consequent portion (left side) of

the nodes FR1 and FR2. Instead, temporary variables are generated to hold the

possibility values generated by the antecedent portion of the rules 1 and 2. A sep-

arate defuzzification node DF1 is generated to compute the value of the output

variable 3Ph Cap On Mon Fdr Normal. The left side of the defuzzification node

represents the defuzzification operation needed to compute the output variable

3Ph Cap On Mon Fdr Normal. The leaf nodes on the antecedent portion of the

node DF2 are the computed temporary variables 3Ph Cap On Mon Fdr Normal 1

and 3Ph Cap On Mon Fdr Normal 2. These hold the possibility values from eval-

uating antecedent portion of rules 1 and 2 respectively. These possibility values

are used to clip the consequent membership functions confMedium and confHigh of

the rules 1 and 2 respectively. These clipping functions appear as the immediate

parent nodes. The outputs of the clipped membership functions are then superim-

posed and defuzzified using Center of Area (COA) defuzzification. Hence ‘COA
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Figure 6.11: Example rules with fuzzy consequent represented as graphs
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Defuzzification’ node appears as the immediate parent of clipped membership

functions. Finally, the output of the COA defuzzification is assigned to the output

variable 3Ph Cap On Mon Fdr Normal that appears on the right side of the DF1

node. The defuzzification node DFR1 serves a dual purpose:

1. It acts as an evidence aggregation node that accumulates possibility values

from antecedent portion of all rules that have the same output variable on

their consequent portion.

2. It acts as an extra rule that introduces a dependency between a fuzzy output

variable and all rules that have a consequent portion pointing to the same

variable. This dependency makes sure that a fuzzy output variable is not

computed until the inputs for all the dependent rules are available.

The parse tree is then traversed to generate other data structures that aid in

rule inference. These operations are shown in Figure 6.9:

1. Symbol table generation: Symbol tables represent a mapping between vari-

able names and the actual memory location in which the values for these

variables are stored. When rules are compiled, input and output variables

(including constants) are represented as memory offsets instead of using

string literals. This helps to improve computational efficiency.

2. Dependency analysis: This operation establishes the dependency between

the leaf nodes and a rule. A rule cannot be evaluated until all its leaf nodes

have been assigned a value. Dependency analysis creates a dependency list.

A dependency list consists of two components. A dependency table and a

dependency count tracker. The dependency table is a data structure that

subscribes a rule to all its input variables (identified through leaf nodes). It
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establishes a one-to-many relationship between an input and all the rules

that use that input. When a value is assigned to an input variable, it notifies

all the dependent rules that subscribe to it. When a rule is informed by one

of its input nodes, the dependency count for that rule is decreased by one in

the dependency count tracker. A rule becomes active when its dependency

count becomes zero. This is analogous to the pattern matching and join net-

work used in RETE networks [111]. However, this implementation is much

simpler.

3. Node optimization: This operation uses string comparison to detect repeat-

ing patterns in rules within a level (phase, segment or event). Then, nodes

corresponding to repeating patterns are marked so that they are computed

only once. Patterns are similarities observed in antecedent portion of rules

in the way input variables are combined to form expressions. For example,

consider two rules of the form ‘Rule1: If A1 AND (A2 OR A3) THEN C1’

and ‘Rule2: If A4 AND (A2 OR A3) THEN C2’. Clearly, the pattern ‘(A2 OR

A3)’ on the antecedent portion is common to both rules Rule1 and Rule2.

This is referred to as the repeating pattern. The pattern ‘(A2 OR A3)’ can

be computed once and then used in all locations (nodes) where this pattern

appears. This would help improve efficiency when evaluating rules. During

the parse tree creation, text identifiers are generated for each node. For leaf

nodes that are not dependent on other output nodes, these are automatically

generated by the parser. Figure 6.10 shows example text identifiers under

each input node (QSD, QS, etc.). The text identifiers shown in Figure 6.10

are provided for illustrative purposes only, and do not correspond to actual

text labels that are generated by the parser. For higher level nodes (nodes
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with one or more child nodes), text identifiers are computed as a combina-

tion of the text identifiers of the child nodes and the operation done by that

node. For example, in the Figure 6.10, the identifier ‘(QS eq SD)’ is gener-

ated for the node representing the equality comparison (== ‘eq’) in graph

R1. If the operator is commutative, then the child nodes appear in alpha-

betical order within the text identifier. This means, if the nodes QS and SD

are swapped, since equality comparison is commutative, the same identifier

‘(QS eq SD)’ will be generated. If the operator is not commutative, then the

child nodes appear in the order in which they are connected (from left to

right). During the node optimization stage, rules are traversed starting at

the assignment operator in a breath first fashion. Text identifiers for each

node that is traversed are added to a sorted list. Before the text identifier

is added, the sorted list is first searched for the existence of that text identi-

fier. If the text identifier exists, then the node is marked as being a repetitive

pattern in the parse tree. FFML compiler uses this modified parse tree to

generate optimized code. The optimized code block is then used by the on-

line component of FFAE for inference during run-time. However, before the

FFML compiler can compile the rules, the rules need to be ordered based on

their dependency. This is done by the production system.

6.4.1.2 Production System

The offline rule optimizer and compiler uses a production system to order

rules based on their dependency. This production system shares many of the

features of a production rule system used in traditional expert systems[113]. A

production system provides an automated mechanism to execute rules based on

matching antecedent portion of rules with available inputs (facts). Facts are analo-
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gous to input features in the case of an expert system based classifier. When rules

are executed, consequent portion of the rules may result in actions that create new

inputs (asserting new facts). These new facts in turn will cause other rules to exe-

cute. This process of using rules to infer new facts from existing facts is continued

till no new facts are discovered. Figure 6.12 shows the essential components of

a production system. A production system consists of a representation of parsed

rules in memory, a representation of data (facts) in memory and an inference en-

gine that consumes facts and uses rules to infer new facts. The inference engine of

a production system works by repeating the following sequence of steps:

1. When new facts are introduced into memory, a pattern matching mecha-

nism is used to match the facts needed by antecedent portion of rules. Brute

force pattern matching of rule antecedents to available facts can be a very

expensive process. It is not practical for use with large scale expert systems.

RETE networks [111] are commonly used as an efficient implementation of

the pattern matching mechanism. When all the facts required by the an-

tecedent portion of a rule are matched, the rule is placed on an agenda. This

is because, all the inputs required by the rule are available. Hence, the rule

can be executed. Multiple such rules can be placed on the agenda.

2. When more than one rule is placed on the agenda, the production system

needs to decide which rule to execute first. For this reason, the agenda is

also called a conflict set. This is because, a conflict resolution strategy may

be used to choose which rule needs to be fired first. The choice of the conflict

resolution strategy may be dependent on the application. In the second step,

a conflict resolution strategy used to select a single rule from the agenda for

execution.
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Figure 6.12: Schematic of a typical production systems

3. In the final step, inference engine executes the selected rule and performs

the action specified by the consequent portion of the rule. As a result of the

action, new facts may be introduced into the memory of the product. Actions

specified by the consequent portion of the rule may also affect components

that are external to the production system.

The production system used by the offline component of FFAE is much simpler

when compared to a traditional production system. This because of for two rea-

sons. The production system does not do any inference, its only function is to

order the rules based on their dependency. The second reason being, no conflict

resolution is needed, and all rules in the agenda are selected for execution. Figure

6.13 shows the schematic of the production system used by FFAE. Since the pro-

duction system operates in an offline fashion, all input features that are derived

from event data and all input parameters such as thresholds are assumed to be
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Figure 6.13: Production system used by FFAE

available. During the initialization, the identifiers corresponding to these input

features and parameters are introduced into memory as facts. works by repeating

the following sequence of steps:

1. When new facts are introduced into memory, these facts use the dependency

list to inform all the rules that subscribe to the fact (input variable). The

dependency counter for the dependent rules are then decremented. All rules

with a dependency count of zero are then placed on the agenda.

2. In the second step, rule execution is simulated for all rules placed on the

agenda. This is done by simply introducing the text identifier for the output

variable of all rules in the agenda into the facts memory. All rules on the

agenda are also appended to the rule execution plan. The rule execution plan

is n list that contains all the rules ordered according to their dependency.
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The rule execution plan, symbol tables and the parse tree are input to the FFML

compiler.

6.4.1.3 FFML Compiler

FFML compiler generates optimized code that represents rule inference as a

sequence of operations on memory locations. The code generated by the FFML

compiler is referred to as FFML code block. The FFML code block has two sec-

tions. A header containing symbol tables and the executable section that contain

a sequence of instructions to be executed by the virtual machine. FFML compiler

embeds the symbol tables generated by the Spirit parser as the header. The com-

piler then traverses the parse tree corresponding to each rule in the order in which

they appear in the execution list. Based on the type of node, instructions are gen-

erated as a sequence of operations on memory locations. These memory locations

hold values computed for the child nodes of a given node. This code is then ap-

pended to the execution section of FFML code block. Based on input features, and

using the code generated by the FFML compiler, event possibility values are com-

puted by the online delayed inference component of FFAE. The online delayed

inference uses a virtual machine to execute the FFML compiler generated code.

6.4.2 Online Delayed Fuzzy Inference

Online component of FFAE is responsible for processing input features ex-

tracted from event data and computing output event possibility values. Com-

puted event possibility values are then used to assign class labels for the event

data being processed. The online component of FFAE is called ‘online delayed

fuzzy inference’. This is because, the production system, which is traditionally

responsible for inference, is part of the offline component of FFAE. The produc-

tion system simulates the firing of rules without actually inferring. Inference is
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Figure 6.14: Schematic of online delayed fuzzy inference

delayed, and is done in the online component of FFAE using a virtual machine.

Figure 6.14 shows the detailed schematic of online delayed fuzzy inference en-

gine. Central to the online fuzzy inference engine is the virtual machine. The vir-

tual machine is initialized with compiled FFML rules that were produced by the

rule optimizer and compiler and input. Compiled FFML rules are analogous to

executable code, and the virtual machine is analogous to a processor that executes

instructions present in compiled FFML rules. The virtual machine uses symbol

tables to load input parameters in to working memory when the inference engine

is initialized. These input parameters include thresholds and fuzzy membership

parameters. Every time the inference engine is requested to process event data, it

does the following:

1. The virtual machine uses the symbol tables to request segment independent
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features. It then loads the features into working memory. This is done only

once for a given event.

2. For each segment i, i = 1, . . . , Ns, where Ns > 0 is the in the number of

segments detected in event data:

(a) The virtual machine requests for input features corresponding to seg-

ment i.

(b) If the rule base supports operation in a state machine mode, the virtual

machine also requests for a subset of possibility values computed for

the previous segment i− 1 when i > 1.

(c) The virtual machine executes the compiled FFML rules using the input

features. It computes event level possibility values using these features.

This is equivalent to evaluating phase level, segment level and event

level rules and inferring event level possibility values.

(d) Computed event level possibility values are stored for further process-

ing, and are not output.

3. For each segment, event level possibility values are combined using the

fuzzy disjunction operator Max. Then, a single event level possibility value

is output for each event category. The fuzzy disjunction operator is equiv-

alent to using an ’OR’ to combine the possibility values generated for each

segment. For example, for a hypothetical class ‘Class A’, the fuzzy disjunc-

tion operator is equivalent to using the following rule to combine possibility

values:

“If segment 1 shows evidence of the cause being Class A OR segment 2 shows evi-

dence of the cause being Class A OR ...segment N shows evidence of the cause
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being Class A Then cause is Class A”

Event level possibility values computed by the online fuzzy inference engine are

then used as inputs to the conflict resolution and class label assignment module.

This was as described in Section 6.2. Class label assignment and conflict resolution

module assigns classification attributes such as event type, event phase, ground

information and position information. Class labels are generated for most of the

events processed by FFAE. However, a majority of these events are normal system

events. It would be both difficult and error prone for a human operator to mine

through the classification information and find events of interest that need action.

A reporting framework is needed for processing the raw classification informa-

tion, and presenting events of interest in a user friendly manner

6.5 Intelligent Reporting Framework

Depending on the sensitivity of thresholds used to trigger capture of event

data, a DFA monitoring unit could record a few hundred event data files per day.

This would correspond to few tens to few hundred classifications generated by

the fuzzy hierarchical classifier for each feeder that is being monitored. Even for

a small sized utility, where a few ten feeders may require monitoring, the clas-

sification information can quickly become unmanageable for utility personnel to

handle . Hence an intelligent reporting framework was developed. The intelli-

gent reporting framework processes the raw classification information generated

by the fuzzy classifier. It then presents the information as actionable real-time

alerts and reports to utility personal. Only information that will be perceived as

being important is presented to the utility user. Since only a subset of abnormal

events is presented to the user, the number of events that require user’s attention

is greatly reduced. The reporting framework is composed of two layers:
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1. Reporting algorithms: Reporting algorithms process classification informa-

tion generated by the fuzzy hierarchical classifier in a soft real-time fashion.

Reporting algorithms use the classification information and output features

as inputs to look for a subset of reportable events. Reportable events fall into

three categories:

(a) Single occurrence abnormal events: These correspond to a single oc-

currence of an abnormal event that a utility user may perceive to be

important and hence needs to be reported. An example of a single oc-

currence abnormal event is a substation automatic circuit breaker lock-

out. A breaker lockout would take the whole feeder out of service, and

hence utility personnel need to be notified of the condition as soon as

possible. These events can be marked for reporting based on the classi-

fication information and output features from that event.

(b) Recurrent abnormal events: Sometimes a single occurrence of an ab-

normal event may not be of much interest to utility users. However,

repetitive occurrence of the same event within a relatively short dura-

tion may be perceived as being important. Some examples of recurrent

abnormal events are recurrent faults that have similar magnitudes and

durations, failure signatures of clamps or line switches, failure signa-

tures of underground cable. Detecting recurrent abnormal events re-

quires clustering algorithms. Clustering algorithms were designed to

process classification information and output parameters from multi-

ple events.

(c) Recurrent normal events: Normal system events are the least impor-

tant events and are mostly ignored. However, repetitive occurrence of
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a large number of normal system event within a short duration may

indicate a system abnormality. One such example is excessive capac-

itor switching operations. It is normal for capacitors to automatically

switch on and off, a few times a day. However, due to a faulty con-

troller or a wrongly configured capacitor switch controller, there have

been documented instances [102] where a capacitor bank may switch

tens or hundreds of times a day. Such operations will not only quickly

wear out switch contacts but also affect other devices on the system.

Clustering algorithms were designed to processes classification infor-

mation from multiple events, and to detect these abnormalities.

2. Presentation layer: Information generated by reporting algorithms are writ-

ten into a database in the form of reportable events, cluster related informa-

tion and reportable parameters or features. This information is not readily

usable by utility user. The presentation layer is responsible for delivering the

relevant information to utility users in a user friendly and timely fashion. It

also allows some level of customization so that users can decide how what

events are presented to them. Currently two forms of presentation are used.

A web based interface that presents reportable items and an email based in-

terface that emails users reportable events. Both the web based interface and

email interface provide two types of reportable items:

(a) Real time alerts: These correspond to event information that is pre-

sented to the users as soon as the corresponding event data is pro-

cessed. Real time alerts are generated for events that may require users’

immediate attention.

(b) Periodic reports: Periodic reports contain a report of all occurrences of
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a subset of event types during a period. A single report is generated for

all feeders within a utility. Periodic reports are generated on a regular

bases (once a day, once a week, etc.) based on user preference. Periodic

reports server the dual purpose. Periodic reports inform utility person-

nel about the general health of all the feeders. Periodic reports also help

draw the attention of utility personal to less urgent conditions such as

unbalanced capacitor operations.

Example results produced by the reporting algorithms will be explored further in

Chapter 7.

6.6 Chapter Summary

In this chapter, the challenges and factors that influenced the design of the

fuzzy power distribution system event classifier were outlined. The design of the

fuzzy hierarchical classifier was then described in detail. Examples were provided

to show how input features were processed at the phase level, the segment level

end the event level. The reasoning behind using a custom fuzzy inference en-

gine as a part of the fuzzy hierarchical was explained. FFML, a custom language

for representing expert knowledge, the offline and online component of the fuzzy

inference engine that uses FFML rules were described in detail. Finally, an intel-

ligent reporting framework that presents the classification information generated

by the fuzzy classifier was introduced.
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7. RESULTS AND CASE STUDIES

7.1 Introduction

This chapter presents a fuzzy logic based Intelligent Power System Event Re-

porting System (IPSERS) was implemented based on the methodologies proposed

in previous chapters. It then evaluates the effectiveness of IPSERS in accurately

classifying and reporting power system events. This chapter also presents case

studies of utility companies benefiting from IPSERS. IPSERS was developed as a

part of Distribution Fault Anticipation (DFA) project. IPSERS is currently online

and reporting events in a soft real-time fashion from nearly 100 feeders belonging

to 12 participating utilities. Throughout the rest of this chapter, the terms IPSERS

and DFA-IPSERS will be used interchangeably.

7.2 Overview of IPSERS

IPSERS is a new, on-line, non-intrusive, classification system for identifying

and reporting normal and abnormal power system events occurring on a distri-

bution feeder based on their underlying cause. IPSERS uses signals acquired at

the distribution substation. The following key steps were involved in the design

and implementation of IPSERS:

• A fuzzy logic based classification algorithm (FLCA) was designed and im-

plemented. FLCA uses a fuzzy hierarchical classifier that is both modular

and scalable.

• Feature extractors capable of extracting features corresponding to power

system components that are either in the process of failing or have already

failed were developed. FLCA uses these feature extractors to analyze cur-
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rent and voltage waveforms.

• A fuzzy dynamic time warping (FDTW) technique was developed and im-

plemented for extracting shape based features from RMS waveforms. FLCA

uses FDTW and shape based features for RMS waveform analysis.

• Feature extractors for estimating appropriate parameters corresponding to

events of interest were developed. These parameters are then reported to

users.

• Reporting algorithms and a presentation framework were developed for

identifying and reporting events of interest to utility users in a timely and

user friendly fashion.

• FLCA and reporting algorithms were optimized for efficient use of memory

and CPU. These two components of IPSERS run on remote DFA monitoring

units that have limited processing power.

Figure 7.1 presents the overall schematic of IPSERS. IPSERS is composed of

four layers:

1. Remote data acquisition: DFA monitoring units record current and voltage

waveforms from distribution feeders using as described in Chapter 3, Sec-

tion 3. Each monitoring unit then stores the recorded data in databases and

as waveform files on flash memory based storage devices. DFA monitoring

units run Windows CE operating system on an Intel Celeron based single

board computers with 512MB on board RAM.

2. Remote algorithmic processing: Fuzzy Logic Based Classification algorithm

(FLCA) process data collected by remote DFA monitoring units. Chapter

262



Figure 7.1: Schematic of IPSERS
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3, Section 4 provided an overview of FLCA algorithms. Chapters 4, 5 and

6, described the various components of FLCA algorithm in detail. FLCA

is responsible for generating class labels and extracting reportable parame-

ters from waveform data. FLCA implementation uses optimized C++ code.

FLCA runs on remote monitoring units and writes the results into the re-

mote database. In order to avoid overloading users with too much classifi-

cation data, reporting algorithms further process the classification informa-

tion generated by FLCA and find reportable events. Chapter 6, Section 5

discussed reporting algorithms. Reporting algorithms are database inten-

sive algorithms implemented in C++. They run on remote units and write

the result of processing into the remote database.

3. Presentation: Central storage located in TAMU synchronizes data with DFA

monitoring units using as synchronization software. The synchronization

software currently requires broad band internet connection between remote

monitoring units and server. Presentation services running on the central

server located at TAMU use the information generated by reporting algo-

rithms and create web-baed and email alerts and reports. These alerts and

reports present classified power system events in a user friendly manner.

Since the server collects data from all feeders belonging to a utility, data

could be aggregated at a utility level and then be presented to the appropri-

ate utility personnel.

4. Client: Users can log into DFA website and see the web-based alerts and

reports corresponding to their utility. Utility users can also subscribe to

DFA emails and choose to receive alerts and reports via email. These alerts

and reports provide utility users with increased situational awareness. They
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Table 7.1: Relationship between event labels used for reporting and information
generated by FLCA
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Table 7.2: Information contained in reported items
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also serve as diagnostic tools that help users identify existing problems on

their feeders. Since information presented through the web based interface

and emails are similar, this chapter shows examples from DFA web interface

only.

7.2.1 Details of Information Presented to Users

Table 7.1 lists all reportable event categories presented to users. The table also

shows the underlying class labels and features (output by FLCA) used by report-

ing algorithms to generate these reportable event items. Table 7.2 shows typical

information presented to the user for each reportable item. Information presented

to the user include the location of the device that recorded the event (substation

name, feeder name etc.), an event label that indicates possible cause of the event,

phases involved, comments that provide information specific to the event, the

event time and a link to the waveform file that contains the event data. The web

interface provides an expand button to allow users access the individual events

within the cluster of events. Most of the information presented to the user de-

pends on the reported event. Tables 7.3, 7.4 and 7.5 provide details of event spe-

cific information. In Tables 7.3, 7.4, 7.5 the ‘Alert Type’ column explains what

the event label represents. The next section shows examples of reported events

belonging to each of the categories listed in Tables 7.3, 7.4 and 7.5.

7.2.2 Real World Examples of Information Presented to Users

Figure 7.2 shows a screen capture of real world examples of non clustered

events reported through a web interface. Figure 7.2 shows one example each for

the event labels described in Table [tab:Event-specific-info-single]. The examples

use obfuscated substation names and feeder names for confidentiality security

reasons. The breaker close event example (third item in the screen capture) has
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Table 7.3: Event specific information for non clustered events. *Definition for sin-
gle, extended and clustered is provided in Table 7.2. ** Fault sequence information
was explained in detail in Chapter 4, Section D.

268



Table 7.4: Event specific information for capacitor problem related events
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Table 7.5: Event specific information for non capacitor related clustered events
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an extended list that spanned two waveform files, a breaker trip and a breaker re-

close. Breaker trip was recorded in one waveform file. Then the breaker reclosed

after 32.5 seconds, which was recorded in another waveform file. The reporting al-

gorithms are capable of piecing the breaker trip and breaker close events together

and reporting them as a single breaker reclose operation

Figure 7.3 shows a screen capture of real world examples of capacitor related

events reported through a web interface. Figure 7.3 shows one example each cor-

responding to the event labels described in Table 7.4. The last item in the screen

capture corresponds to an excessive capacitor operation cluster. The expanded

cluster shows individual occurrences. The individual items in the cluster show

excessive operation of an unbalanced capacitor bank that operated several thou-

sand times within a span of two weeks.

Figure 7.4 shows a screen capture of real world examples of clustered events

reported through a web interface excluding those related to capacitors. Figure 7.4

shows one example each corresponding to the event labels described in Table 7.5.

The last item in the screen capture corresponds to a switch or clamp failure cluster.

The expanded cluster shows individual occurrences.

Through event reports such as those shown in Figures 7.2, 7.3 and 7.4, IPSERS

provides utility users easy access to information regarding the health of their feed-

ers. This information can then be used by utility users to do a condition based

maintenance if the reported event corresponds to a failing component. In other

scenarios, event information can be used to diagnose an existing problem. How-

ever, the usefulness of a system such as IPSERS is dependent on the accuracy

of the reported events. The accuracy of IPSERS depends on the accuracy of the

underlying classification algorithm (FLCA) and the accuracy of reporting algo-

rithms. The following section will analyze classification performance of FLCA
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and reporting algorithms.

7.3 Classification Performance on Field Data

Fuzzy logic based classification algorithm (FLCA) and reporting algorithm

that are part of IPSERS process a large volume of data on a daily basis. IPSERS has

been online for a few years and has processed over a million records. Currently

IPSERS is processing data from about 100 feeders and underground networks be-

longing to twelve utilities. In the year 2011 alone, IPSERS processed about 373610

waveform files. To simplify the performance analysis, only results corresponding

to data acquired from substation based measurements of radial distribution feed-

ers will be considers. IPSERS currently analyzes data from other locations such as

non substation based locations on distribution feeders, transmission system and

low voltage networks. However, analysis data from these locations fall outside

the scope of this dissertation.

7.3.1 Classification Performance of FLCA

FLCA has been online and classifying waveform files for the past several years.

FLCA has also been evolving to accommodate new event signatures. Both the rule

base and feature extraction algorithms of FLCA are also continuously refined to

improve classification accuracy. FLCA has been exhibiting good classification ac-

curacy in spite of the complex nature of the classification problem. Because FLCA

is a rule based system, it does not require a training set. The rules, membership

parameters and feature extraction algorithms together embed expert knowledge.

Other than during the initial development stage, membership parameters and

thresholds used by the rule base rarely required changes. Using methods such as

cross-validation and bootstrapping [114] for evaluating performance of machine

learning techniques are not applicable here, due to the lack of a training set. Fur-
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ther, it is not possible to compare the classification performance of FLCA with any

existing algorithm. This is because, the power system event classification problem

as stated in this dissertation, has not been solved before.

FLCA classifies large volume of data on a continuous basis and generates a

large number of classifications. Verifying the accuracy of the large number of

classifications was one of the challenges in trying to evaluate the performance of

FLCA. For example, when considering waveform files acquired through substa-

tion based monitoring of non-network radial distribution feeders; the number of

waveform files processed by FLCA in the year 2011 alone was 199295. This is

too large a data set to manually verify classification accuracy and present results.

Hence, this classification accuracy evaluation uses only a subset of the data corre-

sponding to a continuous window of one week. The classification accuracy eval-

uation and results presented here use a data window of one week from December

2011. This data window was chosen because, the results would then correspond

to the most recent version of FLCA. During this period, FLCA processed a total

of 1609 waveform files acquired from substation based measurements of radial

distribution feeders. FLCA assigned class labels for 952 files. FLCA did not as-

sign classification to the rest of the 657 files. It should be noted that FLCA does

not always assign a class label to a waveform file. When FLCA does not gener-

ate high enough possibility for any of the event categories, it does not assign a

classification. The most common reasons for not assigning a classification are:

1. The waveform data correspond to normal or abnormal system events, but

the magnitude of these events were too small and hard to distinguish from

ambient noise. The FLCA uses sensitivity thresholds to avoid false posi-

tives on abnormal events. If the event magnitudes fall bellow the sensitivity
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threshold, FLCA does not assign a class label.

2. The waveform data contained normal system variations captured because

of sensitive triggering. In this case, the waveform data does not contain any

event signatures that can be recognized and labeled by FLCA.

3. The waveform data contained data from normal or abnormal system events

that have not been fully characterized and understood. Hence, FLCA lacks

the required knowledge to classify the data.

The classification results uses a color coded confusion matrix that weighs different

regions based on user perspective.

7.3.1.1 Color coded confusion matrix

Table 7.6 shows the result of classifying 1609 waveform files by FLCA during

the one week window in the form of a confusion matrix. Each column in the con-

fusion matrix represents classes labeled by FLCA while each row in the confusion

matrix represents the actual class (i.e., the class assigned manually based on visual

analysis of waveform data). Values along the diagonal (shown in shades of green)

represent the number of instances where manual analysis and FLCA concur. Val-

ues on off diagonal elements represent the number of instances where FLCA mis-

classified. The rightmost column with the column name ‘Not labeled’ represents

data processed but not labeled by FLCA for reasons mentioned previously. The

bottom most row manually labeled as labeled ‘Unk’, stands for unknown but nor-

mal events. This represents event data that the author is not able to label as but

believes to be normal system events. Multiple event labels were grouped together

into a single category to simplify their analysis. For example, the category ‘Cap’

in the confusion matrix represents both capacitor bank switching on and capacitor

277



Table 7.6: Confusion matrix of data labeled by FLCA using a one week window
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Table 7.7: Description of event category labels

bank switching off events labels. Event categories have also been abbreviated in

the confusion matrix. Table 7.7 describes each event category and the event labels

that were grouped into that event category. The bottom of 7.7 shows event labels

that FLCA is capable of assigning, but, did not appear in the confusion matrix.

These event labels do not appear in the confusion matrix because, the data win-

dow used to generate the confusion matrix did not contain waveform data from

these event classes.

In the confusion matrix, class labels have been grouped under two levels. First

by normality and then by position with respect to the point of measurement:

1. Normal vs. abnormal: Event data may represent either normal system events
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or abnormal events. It is useful to group events by normality. This is be-

cause, abnormal system events are most likely to be reported to users. Mis-

classification between normal and abnormal events can be expensive from

a user’s perspective. False positives (i.e., labeling normal events as abnor-

mal events) could cause the user to become desensitized and loose trust in

the system. False negatives (i.e., labeling abnormal events as normal events)

would cause the user to miss true abnormal events and could undermine

the value of the system. Misclassification within abnormal events could be

expensive too. This is because the user may be provided with a wrong cause

of the event and hence could cause delay in locating the source of the prob-

lem. Misclassification within normal event categories is much more tolera-

ble from the perspective of the user as IPSERS does not report normal nor-

mal events to the user. However, certain normal events such as those caused

by capacitor switching and inrushes may be of interest to some utilities.

2. Position with respect to the monitoring device: Events on the feeder being

monitored (down stream of the monitoring device) are of most interest to

users. However, monitoring devices can also record data corresponding to

events that happened on non-monitored locations such as adjacent feeders,

transmission system or bus. However, data corresponding to events on non-

monitored location will only contain partial information needed to diagnose

the event cause. These will have usable voltage measurements but not cur-

rent measurements.

Clearly, it is hard to evaluate the performance of FLCA based on overall accu-

racy of labeling all event categories. This is because, from a user perspective,

accuracy of correctly labeling some events may carry more weighting than that
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Table 7.8: Legend of color codes used in confusion matrix (Table 7.6)

other categories. For this reason, the confusion matrix is color coded. For this rea-

son, classification accuracies and misclassification rates within each color coded

region will be presented and analyzed separately. Overall accuracy will also be

presented. Each color represents a degree of usefulness of correctly labeled data

or the perceived cost of misclassified data. The degree of usefulness of correctly

labeled data and the perceived cost of misclassified data are highly subjective and

will depend on both the user and utility practices. The color codes presented in

the confusion matrix is based on the author’s perspective. Table 7.8 presents a leg-

end that associates each color code with a degree of importance and also describes
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the region in the confusion matrix that the color code represents.

Percentage classification accuracy, percentage false positives and percentage

false negatives, were calculated for color coded regions (7.8) within the confusion

matrix. The following paragraphs, outline the method used for computing these

values.

Percentage classification accuracy for a class M can be calculated using the

following equations:

PcntCAM =
TPM

TPM + MCM
× 100 (7.1)

MCM = FNM + FPM (7.2)

where, PcntCAM represents the percentage accuracy for a class M, TPM represents

true positives for a class M, MCM represents misclassification involving class M,

FNM represents false negatives for a class M and FPM represent false positives

for a class M. Consider any instance of event data E for which FLCA assigned a

class A, such that A ∈ U, where U is the set of all class labels. The labeling of

instance E by FLCA is counted towards true positives (TPM) for class M, M ∈ U

if A = M and if M is indeed the correct class label for E. The labeling of instance E

by FLCA is counted towards false negative (FNM) for class M if A 6= M and if M is

indeed the correct class label for E. The labeling of instance E by FLCA is counted

towards false negative (FPM) for class M if A = M but M is not the correct class

label for E.

Equation 7.1 can be further generalized to calculate classification accuracy for

a region Rcm ⊂ U in the confusion matrix, where Rcm represents a subset of valid

classes that can be assigned to an event instance E. The following equations were
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used for calculating percentage classification accuracy for a region Rcm:

PcntCARcm =
TPRcm

TPRcm + MCRcm

× 100 (7.3)

TPRcm = ∑
i∈Rcm

TPi (7.4)

MCRcm = FNRcm + FPRcm (7.5)

where, PcntCARcm represents the percentage accuracy for a region Rcm, MCRcm

represents misclassification involving class labels in the region Rcm, TPRcm repre-

sents true positives for a the region Rcm, FNRcm represents false negatives for a

the region Rcm and FPRcm represent false positives for a the region Rcm. Consider

any instance of event data E for which FLCA assigned a class A, such that A ∈ U ,

where U is the set of all class labels. The labeling of instance E by FLCA is counted

towards true positives (TPRcm) for region Rcm if A ∈ Rcm and if A is indeed the

correct class label for E. The labeling of instance E by FLCA is counted towards

false negative (FNRcm) for region Rcm if the correct class label for E is M, M ∈ Rcm

but A 6= M. The labeling of instance E by FLCA is counted towards false positive

(FPRcm) for region Rcm if A ∈ Rcm but A is not the correct class label for E.

The following equation were used for calculating percentage false negatives

PcntFNRcm and percentage false positives PcntFPRcm for a region Rcm:

PcntFNRcm =
FNRcm

TPRcm + MCRcm

× 100 (7.6)

PcntFPRcm =
FPRcm

TPRcm + MCRcm

× 100 (7.7)

In the confusion matrix7.6, all cells that do not have diagonal lines are true pos-

itives. Cells that correspond to true positives appear in shades of green. Shades of
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Table 7.9: Analysis of classification accuracy

green also represent the degree of usefulness from user’s perspective. Darker the

shade of green, more useful a true positive is. For example, correct classification

of abnormal events on monitored feeder is most useful. Hence, these appear in

the darkest shade of green. Table 7.8 lists the degree of usefulness associated with

each shade of green. It also describes what true positives in the color coded region

represent.

For a given region, cells with upward diagonals � count toward false nega-

tive and cells with downward diagonals � count towards false positives. Cells

with both downward and upward diagonal count toward both false positive and

false negatives. Cells belonging to the same region have the same color. Cells

are color coded in different shades starting from red to white. Red represents the

most expensive misclassification from a user’s perspective, and white represents

the least expensive misclassification. For example, labeling normal events as ab-

normal events on monitored feeder may be perceived as an expensive false alarm.

Hence, this region of false positives is coded in red and has an upward diagonal.

Table 7.8 lists the perceived cost of misclassification associated with each color

coded region. It also describes what false positives or false negatives in the color

coded region represent.

7.3.1.2 Analysis of classification accuracy and misclassification rates

Table 7.9 presents percentage classification accuracy, percentage false positives
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and percentage false negatives. Equations 7.3-7.7 were used to calculate these

values for each color coded regions within the confusion matrix.

Percentage classification accuracy is the proportion of all correct identification

(true positives) for a data set expressed as a percentage. Percentage classification

accuracy is traditionally used as a measure of classification accuracy for classifi-

cation algorithm. Computing overall classification accuracy in this manner, does

not provide insight into whether or not FLCA classified certain important but rel-

atively infrequent events correctly.

High classification accuracy on normal system events would easily mask the

classification accuracy achieved in events of interest that are relatively infrequent.

For example, ignoring events that FLCA did not label, FLCA had a classification

accuracy of 95.3% for the chosen data window of one week. This is a high classifi-

cation accuracy given the complex nature of the classification problem. Classifica-

tion accuracy was also computed separately for regions considered being of high,

medium and low usefulness. It can be seen in the Table7.9 that the classification

accuracy drops to 89% for the region of high usefulness. This region represents

correct classification of abnormal events on monitored feeder. While 89% classifi-

cation rate on the important events looks low, it should be noted that all of them

involved the misclassification of low current, single phase, generic arcing events.

Moreover, IPSERS did not report any of these false positives on generic arcing

events to users. This is because, IPSERS does not report generic arcing events to

users, unless, IPSERS detected multiple such events on the same feeder within a

short period that involve the same phases. Higher level reporting algorithms help

filter raw classification data and present only important and useful information to

the user. They also help to avoid false alarms. Computing classification accuracy

based on regions did help to uncover a possible area for improvement of FLCA.
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I.e., improving the identification of low current generic arcing events that FLCA

confused with single phase motor starts. A 9.1% false positive percentage was

computed for the region of high cost (coded in red and downward diagonal line).

All these false positives were due to FLCA labeling motor starts as generic arcing

events. A 1.8% false negative was computed for the region of high misclassifica-

tion cost. This was due to FLCA labeling a single instance of generic arcing event

as a motor start.

FLCA achieved a high classification accuracy of 97.8 for the region of medium

usefulness. This region corresponds to the correct identification of normal ca-

pacitor bank switching on monitored feeder and inrush transients on monitored

feeder. Correct identification of capacitor operations is helpful in determining

the health of capacitor banks on a feeder. IPSERS does not report Individual ca-

pacitor operations to users, but it reports excessive operation of capacitor banks.

However, in the case of excessive capacitor bank operations (several hundreds

to thousands within a week), occasional misclassification does not significantly

affect what IPSERS reports to the user. Hence normal capacitor bank switching

was assigned to the region of medium importance where some error is tolerable.

Inrush transients are not typically reported to users unless the reclosing of sub-

station circuit breaker caused the inrush. Some users may also be interested in

inrushes caused by the closing of automatic line reclosers. However, these cor-

respond to a small percentage of the total number of inrush transients that occur

on a feeder. Majority of the inrush transients are not of much importance as they

caused by switching of loads. For this reason, inrushes were also assigned to the

region of medium importance. False positives and false negatives for this region

(coded in orange) also carry a medium cost. It can be seen that here too all the

misclassification were due to FLCA misclassifying motor starts.
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All events on non-monitored feeder and some events on the monitored feeder

such as motor starts, and load switching carry the least importance as they are

never reported to the user. They are classified and ignored. Hence these events

were assigned to the region of low importance. The classification accuracy for

this region was computed to be 93.6%. Even though this is is not a high classifi-

cation accuracy, some amount of misclassification in this region is tolerable as it

does not affect the results presented to users. This is also the reason why most

false positives or false negatives in this region also carry a low cost (regions coded

blue through white). The only exception are the false positives and false negatives

corresponding to overcurrent events on non-monitored feeder. Overcurrents on

non-monitored feeder cause temporary dips in line voltage and can have some

value in terms of power quality. For this reason, misclassification related to over-

currents on non-monitored feeder were classified as normal events on monitored

feeder were assigned a medium cost (region coded in yellow). A total of 3 false

negatives corresponding to a relatively low 1.7 % false negative percentage was

computed for this region.

The above analysis of classification accuracy did not include the 41% of total

events that FLCA processed, but did not label. This could be considered equiva-

lent to FLCA labeling them as being unknown but normal evens. If the analysis

includes the events that FLCA did not label, the overall accuracy, drops drasti-

cally from 95.3% to 68.2%. However, the revised 68.2% classification accuracy can

be misleading. This is because, almost all events that FLCA did not label cor-

responded to events of low importance. The only exception were a few generic

arcing events that had low current magnitudes. Further, most of the events that

FLCA did not label involved events of low magnitudes that were hard to dis-

tinguish from ambient noise even during manual analysis. FLCA was designed
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Table 7.10: Phase identification performance of FLCA

to ignore events that did not have large enough magnitudes that meet sensitiv-

ity thresholds. This was done to decrease false alarms caused by normal system

variations. For this reason, the events that FLCA did not label were added to

the region of low importance and the classification accuracy and misclassification

rates were presented separately. When monitoring units have sensitive trigger-

ing, it could cause a large number of non labeled events. This could cause almost

continuous stream of data containing minor system variations. It would, how-

ever, be beneficial if FLCA could label these as normal system variations; this is a

deficiency of FLCA that needs to be addressed in the future.

Another attribute of FLCA output label is phase information. The confusion

matrix did not include phase information to simplify analysis. Table 7.10 shows

classification accuracy for phase identification by FLCA. Only events with cor-

rectly labeled event categories were used to calculate the accuracy of phase iden-

tification. This is because, for wrongly labeled events, phase identification will

not be beneficial. FLCA was able to achieve relatively high accuracy of correctly

identifying phases involved during an event. FLCA achieved overall accuracy of

96% for the data window used. FLCA assigned all of the events of high impor-

tance (abnormal events on monitored feeder) correct phase labels. Most of the

errors in phase identification were associated with events of low importance on

non-monitored feeder.

Based on this performance analysis using one week data window, it can be

seen that FLCA has good overall classification accuracy. Classification accuracy
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for most abnormal events was also very good. However, some areas of improve-

ment, such as reducing the confusion between generic arcing events and motor

starts were also identified. The percentage of non labeled events can also be re-

duced. The data window of 1609 events used for this analysis was about 0.81%

of all events that FLCA processed in that year. It is difficult to judge the overall

performance of the entire system based on the performance of FLCA on a one a

relatively small data window. Instead of using FLCA’s performance, it would be

more appropriate to judge the performance of the system based on what IPSERS

ultimately reported to the user. For this reason, classification performance of re-

porting algorithms will be analyzed next.

7.3.2 Classification Performance of Reporting Algorithms

In contrast to FLCA, reporting algorithms label and report a much reduced

subset of events. For example, in the year 2011 reporting algorithms processed

115055 events labeled by FLCA but reported only 1056 events, i.e., IPSERS re-

ported only about 1% of the events that FLCA labeled. This is not surprising

because, most of the event labels generated by FLCA correspond to normal sys-

tem behavior. Reporting algorithms were designed to detect and report a very

small subset comprising of abnormal events. As the number of events labeled

and reported by reporting algorithms are relatively small, accuracy evaluation of

reporting algorithms was done using data from to a one year window. From the

user’s perspective, classification accuracy of reporting algorithm directly reflect

the overall accuracy of IPSERS. This is because; it is the data generated by re-

porting algorithms that IPSERS presented to the user in a user friendly format.

IPSERS did not report individual classification results of FLCA. However, the sys-

tem does provide a user interface through which users may access classification
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Table 7.11: Confusion matrix of capacitor related problems reported to users based
on one year of data

information generated by FLCA for individual waveform files.

Tables 7.11 and 7.12 show classification results of reporting algorithms in the

form of a confusion matrix. These results correspond to events that IPSERS re-

ported to users during a one year data window starting January 1, 2011. For sim-

plifying analysis, two confusion matrices are presented. The first one for showing

classification performance on capacitor related problems (Table 7.11) and the sec-

ond for showing classification performance for non-capacitor related problems

(Table 7.12). Each column in the confusion matrix represents event type reported
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Table 7.12: Confusion matrix of non-capacitor related problems reported to users
based on one year of data. Legend: ‘Rec.’ implies reclose, ‘Mis.’ implies miscoor-
dination or conductor slap.
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IPSERS while each row in the confusion matrix represents the actual class (i.e., the

class assigned manually based on visual analysis of waveform data). It should be

noted that for many event categories such as but not limited to, repetitive over-

currents and cable failure precursors, it is not possible to determine the event

category based on manual analysis alone. On most cases, feedback from utility

personnel through field investigation is required. However, only a small fraction

of the events that IPSERS reports get investigated. Manual event labels represent

the author’s best estimate of event cause; for most cases, these do not represent

actual results of field investigation. Values along the diagonal represent the num-

ber of instances where manual analysis and reporting algorithms agree. Values

on off diagonal elements represent the number of instances where reporting al-

gorithms misclassified. The bottom most row manually labeled as ‘Non Event’

stands for normal events that IPSERS should not have reported. The confusion

matrices used to show the overall performance of IPSERS was not color coded.

This is because, all events that IPSERS reports to the users are considered impor-

tant. An equal weight was assigned to all reported events.

The overall accuracy of IPSERS was found to be very good. Out of 1056 events

that IPSERS reported, there were only 7 instances where IPSERS reported a nor-

mal event as an abnormal event. This is a false positive rate of 0.66%. There were

8 instances where there was some confusion between abnormal categories and

all these instances were within sub-categories of overcurrent related events. Thus,

there were a total of 15 misclassifications, resulting in an overall high classification

accuracy of 98.6%. Table 7.11 shows that there was only a singe instance where

IPSERS reported a capacitor related problem as a result of misclassification. This

corresponds to classification accuracy of 98.2% for capacitor related problems. The

detailed description and parameters reported for capacitor related problems can
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be found in in Table 7.4. Table 7.12 shows the performance of IPSERS in reporting

non capacitor related problems. The detailed description and parameters reported

for capacitor related problems can be found in Tables 7.3 and 7.5. There were

a total of 6 false alarms where IPSERS reported a normal event as an abnormal

non-capacitor related event. This corresponds to a false positive rate of 0.60% for

non-capacitor related events. The majority of the false positives were a result of

FLCA classifying reclose transients as overcurrents. There was one instance where

IPSERS reported an unknown but normal event as generic arcing. There were a

total of 8 instances where there was some confusion among non-capacitor related

problems. Thus, there were a total of 14 misclassifications, resulting in a overall

classification accuracy of 98.6% for non-capacitor related problems. Most of the

misclassification were a result of IPSERS either failing to identify a reclose oper-

ation or falsely identifying normal variation as a reclose operation. Clearly, im-

proving identification of inrush transients is one area, which would help making

IPSERS even more accurate. Another area that would help improve classification

accuracy of IPSERS is accurate identification of generic arcing events. The need to

improve identification accuracy for generic arcing events was also inferred form

the classification results of FLCA.

Good accuracy rate on reported events is necessary to gain the confidence of

utility personnel. This would help DFA-IPSERS to be integrated into day to day

operations. A few reported abnormal events such as excessive capacitor opera-

tions, failing switch or clamp, conductor slap and some repetitive overcurrents

have triggered an investigation or corrective actions. These instances are proof to

both the potential usefulness and the success of DFA-IPSERS. Next section pro-

vides real world examples where utility companies either benefited or could have

benefited from IPSERS.
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Table 7.13: List of individual interruptions

7.4 DFA-IPSERS Case Studies

The following case studies (organized in a chronological order) provide ex-

amples of a variety of failures and failure precursors. Utilities involved in these

cases had no other means to inform them that underlying failures were develop-

ing, or to help them fix problems after they occurred, other than the classification

and reporting provided through the DFA-IPSERS. DFA-IPSERS used only signals

acquired at the substation for reporting and classification.

7.4.1 Case Study 1: Tree Limb Burns Down Line, Causing Outage

In November 2004, repetitive overcurrent faults caused a three-phase pole-top

recloser on a feeder at one of Pickwick Electric Cooperative’s substation to trip

multiple times. Since the faults did not persist, none of them caused the recloser

to lockout until the recloser had tripped 17 times over a period of two days before
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Figure 7.5: A second fault tripped recloser twice without causing a lock out

finally locking out. Table 7.13 lists the individual interruptions that began at 6:57

AM on November 2 and continued till 6:19 AM on November 3. Figure 7.5 shows

the RMS phase current the DFA monitoring unit measured at the substation dur-

ing one of the initial episodes that caused the recloser to trip twice. Figure 7.6

shows the final episode of overcurrent where the overcurrent became persistent

causing the recloser to lock out. Investigation revealed a broken tree limb that had

burned down a span of line putting 140 customers out of service for 62 minutes

while the crew repaired the line. The tree limb also explained the intermittent na-

ture of the fault. The crew found that a fork in the broken tree limb had hung on

the phase conductor. The limb pulled the phase conductor down to within about

two feet of the neutral conductor. The fork was in continuous contact with the

phase conductor. Contact with the neutral occurred a few feet farther along the

limb, causing the intermittent faults.
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Figure 7.6: Current waveforms from final instance of fault that caused the recloser
to lock out

Pickwick participates in the DFA project sponsored by EPRI. A DFA Prototype

at the substation recorded each fault as they happened. Because a pole-top re-

closer operated, instead of the substation breaker, Pickwick had no indication of

a problem until the lights-out calls from customers. Moreover, in 2004, automatic

reporting through DFA-IPSERS was not available. Figure 7.7 shows alert items

IPSERS generated after processing of waveform files recorded during the recur-

rent fault episodes. All the faults that were manually identified in Table 7.13 have

also been identified automatically by DFA-IPSERS. From the automatic alerts gen-

erated by DFA-IPSERS the following observations can be made:

1. On a majority of the faults, the interrupting device was also correctly iden-

tified as being a three-phase automatic recloser. For each instance, IPSERS

correctly computed a reclose interval of 2.1 seconds (circled in green) and
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Figure 7.7: Screen capture of automatic alert items generated through offline pro-
cessing of recorded waveform files corresponding to overcurrent episodes in case
study 1
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reported an estimated load loss (circled in orange).

2. On all the faults, IPSERS correctly identified the faulted phase as C. IPSERS

also reported correct estimates for fault currents and fault durations.

3. The similarity of the individual fault episodes also caused the reporting al-

gorithms to cluster and generate recurrent fault related alerts (highlighted

in orange). A majority (13 out of 14) faults became a part of some recur-

rent fault cluster. Ideally, IPSERS should have clustered all the faults into

one recurrent fault cluster. Because of the nonlinear and dynamic nature of

the phenomenon that caused these faults, some variations in fault magni-

tude and duration were observed across individual episodes. This resulted

in more than one cluster. However, a recurrent fault alert with five or six

similar faults within a few hours would easily draw the attention utility per-

sonnel.

IPSERS would have presented the above information to utility personnel in a near

real-time fashion had DFA-IPSERS been active in 2004. However, the first ver-

sion of DFA-IPSERS became active only in 2008. If real-time reporting had been

available to operations personnel, Pickwick confirmed that they would have dis-

patched a crew after the first few faults around 1:00 AM on November 3. Using

information reported by DFA framework, Pickwick personnel believe that they

would have located the source of the problem within a few hours. They would

have also had time to take remedial action, and potentially avoided the line burn

down and the outage [115].
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7.4.2 Case Study 2: Misoperating Capacitor Controllers

There are instances when a problem can be introduced as a result of routine

maintenance. One such example happened on August 9, 2004. Pickwick Elec-

tric Cooperative performed annual maintenance on some of its capacitor banks

on feeders monitored by DFA prototype units. This included testing the banks

and replacing their controllers. At 13:21 on the same day, one bank began switch-

ing on and off repetitively. By the end of the day, it had cycled 22 times. DFA

monitoring unit was recording the capacitor switching operations. A prototype

FLCA algorithm was classifying the waveforms automatically. However, auto-

matic reporting through DFA-IPSERS was not available then. Shortly after the

capacitor began cycling, TAMU personnel notified Pickwick and Pickwick dis-

patched a crew to fix the problematic bank. The crew made a simple change to

the bank’s controller settings and corrected the problem less than 24 hours after

it began. Without the information provided through DFA framework, the bank

would have continued to operate excessively for an indefinite time until the next

maintenance cycle or until it caused a problem. It is difficult to predict the effects

of prolonged misoperation if Pickwick had allowed the condition to persist.

Another utility company, TXU Electric Delivery also participates in the DFA

project and has a DFA prototype monitoring unit installed at one of its substations.

Unlike Pickwick, one of TXU’s primary objectives in the DFA project was to doc-

ument the consequences of faults and other anomalous behavior without taking

remedial action based on information provided by DFA framework. This would

enable them and others to quantify the benefits of anticipating and preventing

these problems, and create a valuable body of information that did not exist pre-

viously. In January 2004, a capacitor bank on one of TXU’s feeders monitored by
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DFA prototype unit began to misoperate. During early January, it switched on and

off an average of 28 times per day, similar to the 22 operations Pickwick experi-

enced the day their problem began. Over the next month, the problem worsened.

By the middle of February 2004, the bank had switched more than 3,000 times in

a period of less than two months. On February 16, the bank’s phase-A capacitor

finally failed, and the capacitor bank started to operate under an unbalanced con-

dition. The average number of daily operations increased further. On February

29 the problem further worsened. The internal contacts of the bank’s phase-B oil

switch failed to make a good connection. This was because of the excessive wear

and tear they had accumulated during the past two months. This poor connec-

tion caused contact arcing and severe voltage transients. However, TXU received

no reports of customer problems during this period. For the next four days, the

controller continued to switch the bank on and off many times. Whenever the ca-

pacitor switch closed, the switch arced internally and caused repetitive transients

on all feeders connected to the affected bus. On March 4, the phase B capacitor

finally failed in an open-circuit condition, removing the problem from the system.

The entire sequence and the field findings after the entire sequence of events was

documented in detail [116].

DFA-IPSERS was not available during the period described above. However,

to show the effectiveness of DFA-IPSERS, IPSERS was used to process the data

recorded during the entire sequence offline. Figure7.8 shows the resulting auto-

matic alerts that IPSERS generated . The entire sequence described above can also

be seen in the alert items automatically generated by IPSERS. The bottom most

line item reports the excessive operations till February 16 (circled in orange). The

alert line item also shows that all the three phases switched (under phases col-

umn). IPSERS also estimated capacitor bank size information and displayed it
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Figure 7.8: Screen capture of automatic alert items generated through offline
processing of recorded waveform files corresponding to misoperating capacitor
banks in case study 2
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under the comments column. On February 16th, the phase A bank failed. Hence,

IPSERS marked the individual operations that followed as unbalanced (shown as

an expanded list) but still clustered them under excessive operations (circled in

red). The excessive operations also possibly caused another capacitor bank on an

adjacent feeder to misbehave (highlighted in yellow). The capacitor switch con-

tact started to degrade rapidly due to excessive operations. Hence, they started to

arc, and this caused the arcing switch related alert item (highlighted in red) to be

generated. TXU Electric Delivery did not take remedial actions for the purpose of

documenting the failure. Hence, it did not take advantage of the information pro-

vided by DFA framework. If DFA-IPSERS were integrated into daily operations

of a utility, then DFA-IPSERS would have made the same information available to

utility personnel in a near real-time fashion. IPSERS would have reported thou-

sands of operations well before the first failure on February 16th. This would have

most likely made utility personnel to take remedial actions. Such remedial actions

would have avoided the sequence of events that ultimately lead to the failure of

capacitor bank on March 4.

7.4.3 Case Study 3: Prevented Outage Caused by Failing External Transformer

Bushing

On December 11, 2005 07:39:58 a DFA monitoring unit recorded a fault of ap-

proximately 2,400 RMS amps (Figure 7.9) . The fault had lasted about two cycles,

before a single-phase poletop recloser tripped then reclosed two seconds later.

The fault did not persist after the reclose and hence there were no outages or

customer complaints. The utility company was unaware that anything had hap-

pened, except for automatic classifications provided by FLCA through from the

DFA framework.
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Figure 7.9: Single phase fault cleared by a single phase poletop recloser

Another fault occurred two days later on December 13, 08:21:05. It was also

on the same phase and approximately, produced the same current level as the

first fault. The same single-phase recloser operated after two cycles and reclosed

two seconds later. Similar to the previous occurrence, there were no outages or

customer complaints, and the utility had no indication of the fault, except for in-

formation from the DFA. Alerted to the two nearly identical faults classified by

FLCA, utility personnel searched for the cause the next day. A two-man crew

found the problem in less than one hour. They found a poletop service trans-

former with a damaged bushing possibly caused by a squirrel. The conclusion

was that the animal caused the first short circuit (December 11). The poletop re-

closer cleared the fault properly. However, the short circuit arc across the trans-

former bushing caused permanent damage to the bushing and resulted in the later

fault on December 13.

After finding the damaged transformer bushing, the utility put replacement of

the transformer on its work list. However, before the repair could be made, the

fault recurred on December 18, prompting the utility to expedite the repair. The
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utility knew of this third fault too through classification information provided by

DFA. The fault did not recur after the utility made the replacement. This entire se-

quence and the remedial action taken by the utility were documented [76, 117].

This case illustrates several ways in which the utility benefited from both the

DFA framework, and the classification results provided by FLCA in the follow-

ing ways:

1. Notification that a problem was developing: Without the classification re-

sults provided by DFA framework, the utility had no other indication that

a problem existed. No other device indicated a problem and there were no

customer complaints.

2. Locating the problem: Locating such a fault is challenging, especially when

it is intermittent fault that does not cause customer calls. The utility’s feeder

was long and geographically dispersed. This made the problem even more

difficult. However, the utility was able to combine the fault current charac-

teristics with the utility’s fault current map and known recloser placements

to locate the problem with a two-man crew in less than one hour.

3. Avoided customer complaints: The utility detected and repaired an incipient

failure, avoiding events that could have caused customer complaints.

4. Prioritizing utility action: Notification of the third fault through the DFA

framework caused the utility to take expedited action to replace the dam-

aged transformer before any further damage could happen.

When this case was documented, automatic reporting through DFA-IPSERS was

not available. Only automatic classification results of FLCA were available through

a graphical user interface, which is part of DFA framework. The utility user still
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Figure 7.10: Screen capture of automatic alert items generated through offline
processing of recorded waveform files corresponding to repetitive overcurrent
episodes documented in case study 3

had to open and view individual waveform files that FLCA had marked as over-

currents, and check if they were recurrent overcurrents. Other information such as

overcurrent magnitude, duration and protective device information had to be in-

ferred through manual analysis of the waveforms. Automatic reporting through

DFA-IPSERS automates this whole process and makes it both efficient and less

error prone. Utility users can now quickly access all the required information ei-

ther through a web interface or email. IPSERS was made to process waveform

files recorded during the recurrent fault episodes. Figure 7.10 shows the resulting

automatic alerts that IPSERS generated.. The first line item in Figure 7.10 corre-

sponds to a recurrent fault cluster (highlighted in red). Reporting algorithms au-

tomatically clustered the three overcurrents that happened over a period of 9 days

and presented them as an alert to draw the attention of utility users. The recurrent

fault cluster can be expanded to view the individual faults. IPSERS clearly identi-

fied the operated device as a single phase recloser (highlighted in green). IPSERS

also estimated and reported fault current magnitudes (highlighted in yellow) and
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fault durations (highlighted in orange). IPSERS reported other useful information

such as load loss (highlighted in blue) and reclose interval (highlighted in gray)

too. Equipped with this information, utility personnel can locate the fault in a

timely fashion.

This is another example that shows how classification and reporting algo-

rithms developed as a part of this research can be effective tools for utility person-

nel. The next three case studies presents examples where DFA-IPSERS was online

and helped utility companies to prevent or diagnose problems on their feeders.

7.4.4 Case Study 4: Prevented Vegetation Related Outage

Pickwick Electric Cooperative (PEC) used DFA-IPSERS to avoid an impend-

ing vegetation related outage caused by tree encroachment in an overhead line.

DFA-IPSERS provided information that enabled PEC to find and remove the en-

croachment before it caused an outage. Other than the information provided by

DFA-IPSERS, PEC had no other indication that a problem existed.

During a rainy period in July 2010, the DFA-IPSERS reported four faults that

resulted in momentary operation of a single-phase line recloser. Figure 7.11 shows

RMS waveforms of fault current recorded during the four faults. Reporting algo-

rithms also clustered the four individual faults, due to their similar nature. DFA-

IPSERS presented them as recurrent fault alert to utility users at PEC. Figure 7.12

shows a screen capture of the alert items reported to users at PEC. No customers

experienced a sustained outage, due to momentary nature of the faults. Hence, no

one reported the interruptions to PEC. PEC located the line recloser at a remote

point on the feeder. The line recloser did not have the capability of reporting its

operations either. As a result, PEC had no indication of the ongoing problem other

than what DFA-IPSERS reported.
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Figure 7.11: RMS waveforms of fault currents recorded during repetitive faults

Figure 7.12: Screen capture of automatic alert items reported to users
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Figure 7.13: RMS waveforms of fault currents from the two identical faults

Alerts generated by DFA-IPSERS (Figure 7.12) provided the characteristics of

individual fault such as fault magnitude and duration, plus valuable protective

device information that enabled PEC to narrow the search area and find the en-

croachment a few hours after the fourth fault. Targeted tree trimming resolved the

problem, without any customer complaints. This case was documented in [118].

PEC has been involved with DFA project for several years. This is one of many

instances where PEC has benefited from using automatic reporting through the

DFA framework.

7.4.5 Case Study 5: Avoided Outage by Detecting and Locating Incipient Failure

On September 28, 2011, one one of the feeders monitored by DFA, DFA-IPSERS

reported a recurrent fault that included two identical faults that happened 18 days

apart. Figure 7.13 shows RMS fault currents recorded during these faults. Fault

location on this circuit was challenging because, the circuit had 139 circuit miles.

Figure 7.14 shows the circuit map of the affected feeder. The utility had no knowl-

308



Figure 7.14: Circuit map showing the affected feeder that had 139 miles of expo-
sure
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Figure 7.15: Screen capture of recurrent fault reported to users

edge of these faults other than what DFA-IPSERS reported. Figure 7.15 shows a

screen capture of the recurrent fault reported to utility users. The recurrent fault

alert generated by DFA-IPSERS clearly showed the following information:

1. The faults were located downstream of a single phase recloser protecting

Phase C.

2. There was an estimated load interruption of 19-20%.

3. The recloser had a 2 second open interval.

4. The fault current estimate was 510Amps.

Utility users used the above information and compared it to the system model.

As a result, they narrowed down the search are to an area a bank of single phase

reclosers (marked as R in Figure 7.14) were protecting. Utility personnel chose

this recloser bank because, the system model indicated that the reclosers had a

two second open interval, and a 23% load beyond them. They concluded that

the location of the problem that caused the recurrent faults was downstream of

the identified recloser bank (Figure 7.14, highlighted with blue border). This nar-

rowed down the search area by 74%.

Utility personnel initially patrolled downstream of recloser bank R and found

cracked dead-end bells close to the recloser bank, but their circuit model estimated
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Figure 7.16: Picture of failing arrester

a fault current of 1086Amps at this location and hence concluded that the cracked

dead-end bells were not the cause of recurrent faults. Then, the utility personnel

used the fault current estimates reported by DFA-IPSERS and targeted an area

that matched this area, based on their circuit model. This drastically reduced the

search area to about 1% of total circuit miles (Figure 7.14, highlighted by an oval

and zoomed). This search area corresponded to 4 spans on either side of a tee. Af-

ter searching this area, utility personnel found a failing lightning arrester (Figure

7.16). They replaced the failing arrester and possibly avoided further interrup-

tions and outage to 53 customers.

This case study showed an example where automatic alerts generated by DFA-

IPSERS and the system model, together helped detect an incipient failure and

avoided a possible outage.
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7.4.6 Case Study 6: Detected and Helped Locate Fault-induced Conductor Slap

Fault-induced conductor slap, or clash, occurs when electromagnetic forces re-

sulting from fault currents cause sufficient movement of conductors to cause them

to touch one another, or come close enough for flashover [119]. One typical sce-

nario involves a phase-to-phase fault at some point on an overhead feeder. The

fault may cause substantially large and equal fault currents to flow in opposite

directions, in two parallel phase conductors. The fault currents will flow over the

entire length between the substation and the fault. Such parallel conductors car-

rying currents in opposite directions experience electromagnetic forces that push

them away from each other. Significant fault currents can cause the conductors to

move a substantial distance away from each other. On the return swing, conduc-

tors may contact each other, or come close enough to cause flashover.

There are several scenarios in which a conductor slap may cause either a mid-

point recloser located between the initial fault and the substation, or the circuit

breaker, to operate[119, 76]. Conductor slaps that result in the breaker opera-

tion are especially serious because, they have the potential to lockout the circuit

breaker. Breaker lockouts could cause a larger number of customers to experi-

ence an outage than the outage the initial fault would have caused. Figure 7.17

shows an one-line diagram of such typical scenario. Multiple utilities have used

DFA-IPSERS to identify and locate conductor-slap events. If, left uncorrected,

conductor-slaps may recur and continue to cause unnecessary breaker or recloser

operations. This will not only degrade system components but also cause outages

that affect utility reliability indices. Currently, other than DFA-IPSERS, no other

system exist that is cable of automatically detecting and reporting conductor-slap

related interruptions. Following paragraphs describe how a utility company de-
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Figure 7.17: One-line diagram of a typical fault induced conductor slap scenario

tected and fixed conductor slap, using the information provided by DFA-IPSERS.

On November 6, 2011, a customer reported a pole fire on one of the feeders

that DFA was monitoring. Utility crew responded and arrived at the location pic-

tured in Figure 7.18 . However, they did not find the pole fire. About the same

time when the customer reported a pole fire, a fault on the same circuit (but not

near the pole fire) caused a mid-point line recloser to trip. Normally, the mid-

point recloser should have tripped and isolated the fault. However, the substation

breaker tripped too and locked out ht entire circuit. The circuit’s self-healing sys-

tem did not respond properly to avoid the outage either. Utility personnel were

uncertain if the ‘pole fire’ was related to the fault elsewhere on the circuit. They

could not explain why the breaker operated either; that was until DFA-IPSERS

reported the initial fault and breaker lockout with information such as the protec-

tive device operation sequence and fault current magnitudes. DFA-IPSERS also

automatically recognized the conductor slap event and sent an email along with

RMS current waveforms. Figure 7.19 shows a screen capture of conductor slap
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Figure 7.18: Picture of the pole where a pole fire was reported

Figure 7.19: Screen capture of conductor slap alert
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Figure 7.20: RMS current waveforms explaining the sequence of operations

and breaker lockout alerts that DFA-IPSERS reported. Figure 7.20 clearly shows

the first fault that caused a mid-point recloser operation. It also shows the two

subsequent faults that fault induced conductor slap caused.

Utility personnel used fault current estimates provided by DFA-IPSERS as in-

puts to their system model. The system model put the location of conductor slap

within few pole spans of initially reported pole fire. With the knowledge, that

conductor slap was the cause of breaker lockout, utility personnel conducted the

search again near the reported pole fire. Their search identified arced wires, con-

sistent with conductor slap (Figure 7.21 ). Conductor slap also explained the ‘pole

fire’ reported by the customer.
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Figure 7.21: Pictures of the location of conductor slap and arced conductors
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7.5 Chapter Summary

In this chapter, a fuzzy logic based, Intelligent Power System Event Reporting

System (IPSERS) was presented. Classification performance of the Fuzzy Logic

based Classification Algorithm (FLCA) and reporting algorithms were analyzed

in detail. Finally, several case studies that documented the benefits of IPSERS were

provided. These case studies showed real examples where IPSERS either helped,

or could have helped utility companies to detect, locate and fix components that

are failing or have already failed.

317



8. CONCLUSIONS

8.1 Overview

The solution presented in this dissertation changes how power utility compa-

nies monitor the health of distribution feeders, and how they respond to problems

on distribution feeders. Prior to this research, utility companies lacked the neces-

sary tools to notify them of apparatus on their feeders that have either failed or

were in the process of failing. On most occasions, utility companies are unaware

of a problem unless it is either reported by a customer, or it caused an outage. To

remedy this situation, this research has produced a framework for intelligently

monitoring and reporting problems on distribution feeders. By reporting prob-

lems in near real-time, and presenting relevant information to utility personnel,

this research has provided utility personnel with much needed tools to locate and

fix problems on distribution feeders, in a timely fashion.

8.2 Conclusions

With regard to the goals set forth in this dissertation, the results of this project

can only be described as an unqualified success. A new, on-line, non-intrusive,

classification system was developed for identifying, and reporting normal and

abnormal power system events occurring on a distribution feeder based on their

underlying cause, using signals acquired at the distribution substation. Analysis

of the classification accuracy of the classification system, and real world examples

of utility companies benefiting from this research, have provided incontrovert-

ible evidence of success. As a part of developing the classification and reporting

system, the following research goals were achieved:

318



1. Developing a fuzzy logic based expert system: A fuzzy logic based classi-

fier (FLCA) was developed for classifying power system event data. FLCA

is a fuzzy hierarchical classifier that is both modular and scalable. A cus-

tom fuzzy inference engine that supports a hierarchical structure, and is best

suited for power system event classification was also developed for use with

FLCA. FLCA and the custom inference engine were described in detail in

Chapter 6. The classification accuracy of FLCA was analyzed, and the proof

for the effectiveness of FLCA in classifying power system events was pro-

vided in Chapter 7.

2. Identifying characteristic event signatures: Characteristic features for power

system events caused by low current arcing, overcurrents, misoperating or

failing capacitor banks were identified. Algorithms were developed to ex-

tract these event specific features. Event specific features and algorithms to

extract these features were presented in Chapter 5.

3. Developing RMS shape analysis algorithm: The Fuzzy Dynamic Time Warp-

ing (FDTW) based RMS shape analysis algorithm was developed to detect

shapes and extract shape based features from root mean square (RMS) cur-

rent, voltage and power waveforms. FDTW and shape based features were

explained in Chapter 4.

4. Identifying and computing important parameters: Event-specific parame-

ters that aid in locating the root-cause of an event were identified, and al-

gorithms for extracting these parameters were developed. Parameters re-

ported for each event category were summarized in Chapter 7. Case studies

that document how these reported parameters helped utility companies find

the physical location of failed or failing components, were also presented in
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Chapter 7.

5. Intelligent reporting to avoid information overload: IPSERS, an intelligent

reporting framework for processing raw classification information gener-

ated by the fuzzy classifier, and reporting events of interest in a timely and

user friendly manner was developed. IPSERS was described in Chapter 7.

The effectiveness of IPSERS was proved through the analysis of classifica-

tion accuracies and case studies presented in Chapter 7.

6. Design of efficient classification algorithms: In order to report problems on

distribution feeders to utility personnel in a timely fashion, all components

of the expert system classifier were designed to be efficient and operate in

soft real-time.

8.3 Future Research

There is a lot of scope for improving and extending this research. The follow-

ing are suggested research directions:

1. This research uses data collected from distribution substation only. It does

not take advantage of measurements made from multiple points on a distri-

bution feeder, when such measurements are available. Distributed measure-

ments can possibly be used to provide better location information for events

recorded on distribution feeders. The relative value of using distributed data

measurements has not been evaluated.

2. The scope of this research was limited to radial distribution feeders. Ideas

presented in this research can be extended to low and medium voltage net-

works , looped feeders and transmission systems.
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3. The intelligent reporting framework developed as apart of this research is a

stand-alone system. For the system to be even more effective, considerable

work remains to be done in seamlessly integrating the reporting framework

into day-to-day utility operations.

4. New failure signatures for power system components are being identified

and documented on a regular basis using data collected by DFA monitoring

units. In order to detect these new failure signatures, classification algo-

rithms need to be extended and updated on a regular basis.

5. There is still some room for improving the classification accuracy and ac-

curacy of parameters reported by algorithms that were developed for this

research.

In summary, this research provides a system framework to detect, locate, and

possibly prevent failures on distribution feeders. It is hoped that this and future

work will have a serious impact on detecting and mitigating failures on distribu-

tion feeders, reducing the safety hazards and economic impact they produce and

thereby improving power quality and reliability.
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