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ABSTRACT

Structured population models have been used to model density of individuals over

time and other factors such as age, mass, developmental stage and space. Mass is a

particularly useful measure of condition of a population. For example, large individu-

als tend to reproduce more offspring and survive better than smaller ones. Traditional

models of mass as a continuous structure parameter do not introduce a separate par-

tial differential equation (PDE) for mass; rather they model the population as being

subdivided into classes parameterized by mass and then number density is written as

a function of spatial location, time and mass. Our approach to modeling mass depen-

dent population dynamics introduces mass as a dependent variable. In particular, we

developed a new PDE for mass where mass is a function of spatial location and time.

We constructed a spatiotemporal population dynamics model to track density and

average mass of the population at location x and time t and the model will be called

as density and mass model. Our model provides an insight into the identification of

key processes (reproduction, growth, mortality) controlling populations over various

space and time. We developed a finite difference scheme for the numerical solution to

the system of PDEs arising from our modeling effort. Then the model is applied to

brown shrimp in the Gulf of Mexico to understand their spatiotemporal dynamics of

density and mass.

To derive a density and mass model, we start with conservation laws for biomass

and number density. Then, we define average mass and derive the system of coupled

parabolic and hyperbolic PDEs for spatial movement of individuals in a population.

Then, birth, growth and death processes are added to derive the final system of PDEs

to include spatial movements, birth, growth and death of individuals. Then, we impose
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fishing to some locations to investigate fishery yield.

Among the issues studied in the application of the general theory to brown shrimp

in the Gulf of Mexico are: (1) investigate how the mobility of species affects the yield

with multiple fishing zones and network of marine protected areas (MPAs), (2) test the

efficacy of MPAs under multiple fishing zones, and (3) investigate how mass dependent

mortality influences density and mass of a population. Calculating yield is critically

important for helping the fishers to earn a better profit and keeping the population

sustainable.

The results show that (1) to obtain a maximum sustainable biomass yield (MSBY),

it is crucial to consider the speed or mobility of species under consideration before

MPAs are designed, (2) when a network of MPAs are designed along the coastline,

the fishing rate at MSBY increases with the number of marine protected areas and

(3) small MPAs are very effective in producing a sustainable biomass yield for a low

mobile species.
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NOMENCLATURE

BVP Boundary Value Problem

FDM Finite Difference Method

IVP Initial Value Problem

ODE Ordinary Differential Equation

PDE Partial Differential Equation

TPWD Texas Parks and Wildlife Department

NMFS National Marine Fisheries Service

ICES International Council for the Exploration of the Sea

FAO Food and Agriculture Organization (United Nations)

NMFS National Marine Fisheries Service
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1. INTRODUCTION

1.1 Structured Population Models

Structured population models are used for modeling changes in the density of

individuals over time and other factors such as age, mass, developmental stage, and

space. For example, the McKendrick partial differential equation (also called von

Foerster partial differential equation) is written in the form

∂P

∂t
+
∂P

∂a
+ µ(a)P = 0 (1.1)

where P = P (a, t) is the population density of age a at time t. It has been widely used

in epidemiology and population study. In these models births are handled through a

boundary condition with respect to age a variable,

P (0, t) =

∫ ω

0

m(a, t)P (a, t) da (1.2)

where m(a, t) is the birth rate which varies with age and time, ω denotes the maximum

attainable age. It is important to note that integral type boundary conditions involve

a lot of data storage. Initial age distribution is given by,

P (a, 0) = P0(a). (1.3)

Here, time and age are independent variables, µ(a) is the instantaneous death rate for

individuals of age a at time t. Instantaneous rates are the per capita rates.

Keyfitz and Keyfitz [34] discuss the solution of (1.1) and compare it to Thompson-

Cole difference equation, Lotka’s integral equation, and Leslie matrix. It has been
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shown that with small intervals of age and time all four forms of age structured model

(two discrete and two continuous) are identical. Kot [37] discusses about each of these

models and also makes a note of similarities. Each of the four models possesses: 1)

a characteristic equation, 2) a dominant eigenvalue which helps to track population

growth rate, and 3) a positive right eigenvector which leads to a stable age distribution

[37].

The method of characteristics to solve the partial differential equation (1.1) sub-

jected to conditions (1.2) and (1.3) leads to the Lotka’s integral equation. The reader

is directed to references [34,37] for the proof. In particular, the Lotka’s integral equa-

tion involves a compact operator; as a consequence, it is characterized by a discrete

spectrum of eigenvalues, and the solution can be expressed as a superposition of eigen-

functions [34]. It is necessary to note that, this is not true for a partial differential

equation on an unbounded region, the boundary condition (1.2) has the remarkable

property of making the problem compact. If the operator is compact, there exits a

dominant eigenvalue λ such that 0 ≤ λ
′
< λ, that is, a dominant eigenvalue which is

strictly larger in absolute values than any other eigenvalues. The corresponding right

eigenvector is positive. The ecological application of eigenvalues and eigenvectors are

discussed in [37].

However these forms can include only one dependent variable (population density)

and two independent variables (time and age); but one might want to model a popula-

tion with more than one dependent variable. Suppose we want to keep track of mass in

addition to density and also want to keep track of time and space. Here density is the

number of individuals per unit domain and mass means mass (weight) per individual.

This is common in fishery management, for example. This incorporates four variables:

two independent variables (time and space) and two dependent variables (density and

mass). Here, we propose to develop a model for temporal change in population that

2



utilizes two densities (number density and biomass density) as dependent variables.

We call the model, a density and mass model.

A population’s structure is very important in understanding its dynamics. For

example, the performance of a population in two different locations might be very

different if one group consisted of nearly all juveniles while the other group consisted

of nearly all mature adults. Mass is a particularly useful measure of condition of a

population. Furthermore, large individuals may reproduce more offspring than smaller

ones. Figure 1.1 shows how size affects the reproduction of vermilion-rockfish and the

data was obtained from NOAA Technical Report [41, 48]. Larger vermilion-rockfish

produced 88% more offspring compared to smallest vermilion-rockfish. Difference in

size between largest and the smallest was found to be around 9 inches, but this pro-

duced a huge difference in young individuals. In Figure 1.1, each offspring represents

100,000 young individuals. This example illustrates the importance of size structure.

Juvenile growth and mortality effects on white shrimp population dynamics were

studied in [3]. It also indicates the importance of population structure. A population

model to calculate the annual population growth rate Ry between two consecutive

years y and y + 1 was developed,

Ry = S0 S1 S2 S3 S4 f4. (1.4)

Here Si is the survivor ship of stage i over the duration of time spent in that stage and

f4 is the annual per-capita fecundity. Life cycle of shrimp is divided into five stages:

egg/larvae, early juveniles, late juveniles, bay sub-adult and offshore adult. Fecundity

is the rate of production of offsping per adult. This model incorporates vital rates

(growth, mortality, fecundity) for each life stage of shrimp and how juvenile growth

and mortality rates affects the growth rate of entire stock has been explored. The
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Figure 1.1: Vermilion-rockfish reproduction. Reprinted with permission from [41].

results suggest that changes in the juvenile growth and mortality rates had a greater

impact on adult stock size compared to fishing pressure on the entire stock [3].

Unfortunately, their model omits any space variable. However, spatial distribution

can be critically important because different fishery management strategies (e.g. catch

control and effort control) are implemented among different locations. Catch (harvest)

is the total number (or weight) of fish caught by fishing operations. Effort is the

amount of time and fishing intensity used to harvest fish; effort units include gear size,

boat size.

1.2 Traditional Model in Population Dynamics

The standard approach of modeling mass in population dynamics is to introduce it

as a structure parameter subject to its own evolution law. The mass parameter can be
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modeled as being discrete, leading to compartmental type model or continuous, leading

to partial differential equation. Mass as a continuous structure parameter within a

spatially heterogenous population model is traditionally modeled through equations

of the form

∂n(t, x, w)

∂t
+
∂(γ(t, x, w)n(t, x, w))

∂w
= −∇.(n(t, x, w)v(t, x, w))− δ(t, x, w), (1.5)

in which n,w, γ and δ denote number density, mass, growth law and death law, respec-

tively, and v is a velocity vector field modeling spatial transport. Births are handled

through an initial condition with respect to the mass variable. Initial conditions are

of the form

n(t, wb) =

∫ ∞
wb

β(t, w)n(t, w) dw (1.6)

n(0, w) = n0(w), for wb ≤ w, (1.7)

where β(t, w) is the fecundity for individuals with the mass ‘w’ and ‘wb’ is the birth

mass.

When mass is modeled as a structure parameter, the dimensionality of the partial

differential equation (1.5) is increased by one over the corresponding model without

mass structure. This is computationally expensive. An alternative approach is to

introduce mass as a additional dependent variable. For this, we need to add an ad-

ditional partial differential equation with the same space time dimensionality as the

corresponding model without mass dependence. It is computationally less expensive

to create a mass dependent population dynamics model from a mass independent

one by adding mass as an additional dependent variable rather than as an additional

independent one.
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In a recent (May 5th 2016) article by TPWD News Media [80], Coastal Fisheries

Division for TPWD decided to close state’s shrimp season to shrimpers in Gulf con-

tingent on sampling results of average size and density of brown shrimp. Every year,

the Gulf of Mexico commercial shrimp season for both Texas and federal waters is

closed for two months to give little shrimp time to grow to a larger and valuable

size before being harvested. Despite of all these efforts to improve shrimp industry,

Texas shrimpers are making very little profit these days. This calls for a better under-

standing of spatiotemporal dynamics of a population and thus modeling population

abundance and mass of brown shrimp over different spatial and temporal scales makes

it an exciting research opportunity.

1.3 A Brief Introduction to Ecology

Ecology is one among the many branches of Biology. The term Ecology was first de-

fined by German zoologist Ernst Haeckel as “Haushaltslehre de Nature” which means

the study of the economics of nature [40]. Literature survey helps us to know that

there are different definitions of Ecology [24]. Four of the prevalent definitions will

be listed in this discussion. The first of it is the Haeckelian form cited above. The

second definition considers ecology to be the scientific study of the distribution and

abundance of organisms [2]. The third definition was by American Biologist Eugene

P. Odum who defined Ecology to be the study of nature and ecosystem. The fourth

is the circular definition which says “a population is composed of a number of indi-

viduals which are connected to the rest of the population” [25]. Due to vast material

and ever lasting difference of opinion in its definition, this subject can be classified

into a wide variety of branches depending upon the level of complexity (low to high),

organism under study (animals, plants, microbes), spatial scale under study (global,

landscape). A few of them are listed here namely theoretical ecology, conservation
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ecology, behavioral ecology, marine ecology, population ecology, human ecology, evo-

lutionary ecology, systems ecology. Despite the variation in the definition, there is a

general agreement on the subject matter. In its most basic form, it can be grouped

into study of abundance, environment, evolution, distribution of species.

While modeling a population one needs to make a note of amount of fluctuation

in a population. Nisbet and Gurney discuss ecological and mathematical stability [59]

and define ecologically stable population to be the one which is sustainable for more

generations and when the population is not ecologically stable it is not sustainable for

many generations. Estimating the mean time τE which drives the population extinct,

helps to discuss ecological stability. However, for knowing the effect of a vital processes

- birth, death, growth in a population, it is always good to define stability index η,

η = ln τE. (1.8)

It is important to note that stability index is defined in terms of logarithmic value

of mean time because it is the order of magnitude which is used to understand effect

of “stabilizing” [59]. In most of the realistic models in population dynamics, birth

and death rates change with the density in a nonlinear fashion. It is customary that

population dynamics models involve nonlinear equations of some type say: ODE, PDE,

Difference Equation, Integro DE. Our interest lies in population ecology. Ecological

research is distinctly interdisciplinary and mathematics have played an important role

in the development of theoretical ecology [23,54,59].

1.4 Dissertation Outline

The rest of this dissertation is organized as follows: In Chapter 2, we discuss our

approach of mass dependent population dynamics model and derive the density and

mass model. Starting with conservation laws for biomass and number density, we
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define average mass (mass per individual) and derive the growth model. We add a

spatial transport term to the system of ODEs derived and hence obtain the system of

coupled nonlinear PDEs.

We consider a mass dependent transport coefficient in Chapter 3. Therefore the

system of coupled nonlinear parabolic and hyperbolic PDE constructed in Chapter

2 yields a system of coupled nonlinear reaction diffusion-hyperbolic PDEs to track

density and mass of a population at location x and time t.

We start with brief history of FDM in Chapter 4, we discuss how this method will

be used for density and mass model. The density and average mass of a population is

then the solution of a partial difference equation evaluated at a discrete point in space

x and time t. In particular, we develop an explicit finite difference scheme for the

numerical solution to the system of coupled nonlinear partial differential equations.

This numerical method has been chosen because it is simple to implement, flexible in

modeling so many processes and parameters in the model and also the explicit method

speeds our computations.

In Chapter 5 we apply the density and mass model to Gulf of Mexico brown shrimp

fishery. We examine three major aspects: 1) Marine protected areas (size/number of

protected areas/fishing zones) 2) Instantaneous and Sustainable biomass yield 3) Mass

dependent mortality and reproduction.

In the final Chapter 6, we give some concluding remarks and ideas for future work.
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2. DERIVATION OF THE SPATIOTEMPORAL POPULATION DYNAMICS

MODEL TO TRACK DENSITY AND MASS OF A POPULATION

2.1 Mass Dependent Population Dynamics Model

Our approach to introduce a measure of mass, besides a structure parameter model,

is to track number density, n(x, t), and biomass density, ρ(x, t), of a population. We

define number density n(x, t) to be the number of individuals in a population per unit

domain. In 1-D the domain is a unit length and in 2-D, domain is unit area. Biomass

density ρ(x, t) is defined as the total biomass per unit domain. We define the measure

of mass through

w(x, t) =
ρ(x, t)

n(x, t)
, (2.1)

which is the average mass per creature at location x at time t. While constructing any

population dynamics model, it is necessary to write down the conservation laws. The

beauty of conservation laws is that they allow for interactions between a system and

the universe outside of the system, that is, they allow for growth, decline, immigration,

emigration, accretion, ablation, etc. So we now look into brief history of these laws in

the following Subsection.

2.1.1 Conservation Laws

The history of conservation laws dates back to the end of 18th-century when

Antoine-Laurent de Lavoisier a French scientist and chemist was the first to intro-

duce the law of conservation of mass. This means mass can be neither created nor

destroyed in chemical reactions. This was a foundation for all different types of con-

servation laws used in today’s contemporary scientific world [76]. Population models

in ecology, epidemiology and mathematical biology may also involve the conservation
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law. But existence of general laws in these models are always debated. This is very im-

portant point to be noted while constructing models. Turchin makes a comment that

none of the laws which he discusses in his paper [82] are new, rather ecologists have

been using this law and this dates back to the days of Lotka, Volterra and Gause [37].

In simple words, conservation law means “ What goes in must come out”. The number

of individuals in a population can change due to four factors: birth, death, immigra-

tion and emigration. In a closed system, we disregard immigration and emigration.

So we now start by writing the law of conservation: The rate of change of number of

individuals in a population can be represented mathematically by the equation

dN

dt
= B(N)−D(N), (2.2)

where N is the total number of individuals in a population, B(N) is the birth rate

or the reproduction rate, (that is, the rate at which individuals are born into the

population) and D(N) is the death rate, (that is, the rate which brings down the

population due to death). This law will be used in the derivation of density and mass

model which will be discussed in the following Subsection.

2.1.2 Density and Mass Conservation

In a continuum approach to modeling a population with spatial effects, movement

must be understood at the population level. That is, population density spreads

throughout a region rather than the motion of members of the population. Such a

population spread is often modeled through a diffusive process. A convenient way to

include this effect is through introduction of a velocity function, v(t, x) for a population

defined on region R which describes movement of the population around the region.

In particular, a population density u(t, x) spread is said to be diffusive if the velocity

vector of the population density is proportional to the negative density gradient, that

10



is, v(t, x) can be constitutively written as

u(t, x)v(t, x) = −µ∇u(t, x) (2.3)

where µ is the diffusion coefficient. Thus, the constitutive choice in expression (2.3)

means that the population move in the direction of maximum decrease of number of

individuals [84].

Tracking both number n(x, t) and biomass ρ(x, t) densities, and the assumption of

diffusive transport lead to two natural choices for the velocity vector field v, namely

v = −µ∇ρ
ρ

(2.4)

or

v = −µ∇n
n

(2.5)

where µ denotes the transport coefficient.

One might model the number density n(x, t) as follows

∂n

∂t
+∇.(nv) + (D −B) = 0. (2.6)

This equation says how number density changes due to diffusive transport, birth and

death. In addition to the birth and death rates, growth of an individual affects the

biomass density. Let G be the growth rate function, that is, the rate at which an

individual grows which accounts for the change in the average mass. The conservation

law for biomass density and biomass ρ(x, t) is given by

∂ρ

∂t
+∇.(ρv) + w(D −B)− nG = 0, (2.7)
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where D is the death rate, B is the birth rate and G is the growth rate functions.

Equation (2.7) is the conservation law for biomass density and this says how biomass

evolves due to transport, birth, death and growth.

2.2 Density and Mass Model

Rewriting definition of average mass (2.1), we get an expression for biomass density

ρ(x, t),

ρ(x, t) = n(x, t) w(x, t). (2.8)

Now differentiate (2.8) with respect to t,

ρ′(x, t) = n′(x, t)w(x, t) + n(x, t)w′(x, t). (2.9)

Using the equations (2.8),(2.9) in (2.7) and (2.6), we get

n′w + nw′ + (n∇w + w∇n).v + wn(∇.v) + w(D −B) = nG (2.10)

n′ = −(D −B)− (∇n).v − n∇.v (2.11)

By eliminating n′ in the above two equations (2.10) and (2.11), we have

− w(D −B)− w(∇n).v − wn(∇.v)+

nw′ + (n∇w + w∇n).v + wn(∇.v) + w(D −B) = nG. (2.12)

After simplifying the above equation, we get the following PDE for average mass

w′ + v.∇w = G. (2.13)
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This equation says how average mass of a population changes due to movement and

growth. We now list all the four fundamental number density - average mass - biomass

density relations derived above,

ρ′ +∇.(ρv) + w(D −B) = nG (2.14)

n′ +∇.(nv) + (D −B) = 0 (2.15)

w′ + v.∇w = G (2.16)

w =
ρ

n
. (2.17)

We are interested in tracking number density and average mass of a population. Ap-

parently, our choice for velocity vector v, would be

v = −µ
n
∇n. (2.18)

Then we rewrite (2.15) and (2.16) as

n′ −∇.(µ∇n) = B −D (2.19)

w′ +∇w.(−µ
n
∇n) = G. (2.20)

Further, taking µ to be a constant results in

n′ − µ∆n = B −D (2.21)

w′ − µ(
∇n.∇w

n
) = G. (2.22)

Henceforth, we refer to number density and average mass as density and mass re-

spectively. Both of these terms still retain their definitions: density is the number of
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individuals per unit domain and mass means mass per individual (average mass). The

above system of equations, although obtained after several simplifying assumptions,

are still very complicated to analyse. Equation (2.21) is a parabolic partial differ-

ential equation whereas equation (2.22) is a first order hyperbolic partial differential

equation. Here B, D and G denote the birth, death and growth processes, which are

functions of density n and mass w. Parabolic and hyperbolic PDEs have different

qualitative properties. Setting B−D = 0, (2.21) becomes the classical diffusion equa-

tion, which sets as an example for heat conduction model based upon Fourier’s law of

heat flow. Regardless of the initial state, solutions to the heat equation are infinitely

smooth and converge to a spatially uniform distribution as t→∞.

Now when G = 0, equation (2.22) becomes a first order homogeneous hyperbolic

PDE

w′ + v.∇w = 0. (2.23)

Suppose v is constant. There now exists a closed form solution. Let us consider the

one dimensional counterpart of the above equation, namely

∂w

∂t
+ v

∂w

∂x
= 0. (2.24)

Suppose mass w at a location x and time t is given by an arbitrary function f ,

w(x, t) = f(x− vt) (2.25)
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where v is a constant. Then differentiating with respect to t and x, we get

∂w

∂t
= −vf ′(x− vt) (2.26)

∂w

∂x
= f ′(x− vt). (2.27)

The above expressions satisfies equation (2.24) and (2.25) is considered as a general

solution of equation (2.24). To see this, we shall introduce the characteristic coordi-

nates

ξ = x− vt, (2.28)

η = x+ vt (2.29)

so that

x =
1

2
(ξ + η), (2.30)

t =
η − ξ

2v
. (2.31)

Also we write w(x, t) = w̃(η, ξ). Then

∂w

∂t
=
∂w̃

∂η

∂η

∂t
+
∂w̃

∂ξ

∂ξ

∂t
= v

∂w̃

∂η
− v∂w̃

∂ξ
, (2.32)

∂w

∂x
=
∂w̃

∂η

∂η

∂x
+
∂w̃

∂ξ

∂ξ

∂x
=
∂w̃

∂η
+
∂w̃

∂ξ
. (2.33)

Since w is assumed to be the solution, we have

∂w

∂t
+ v

∂w

∂x
= 0. (2.34)
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Now using (2.32) and (2.33) in (2.34), we get

v
∂w̃

∂η
− v∂w̃

∂ξ
+ v

∂w̃

∂η
+ v

∂w̃

∂ξ
= 0. (2.35)

This implies that

∂w̃

∂η
= 0, (2.36)

hence w̃ is independent of variable η. Thus w̃ is a function of ξ only and we can write

w̃ = w̃(ξ) (2.37)

= w̃(x− vt). (2.38)

Also for t = 0, it follows that

w(x, 0) = f(x). (2.39)

This is called a wave profile. As time progresses, this wave profile moves to the right.

When velocity of the wave is negative, the equation takes the form

∂w

∂t
− v∂w

∂x
= 0, (2.40)

whose general solution is given by

w(x, t) = f(x+ vt). (2.41)

As time t increases wave profile moves to left. Thus the one dimensional hyperbolic

equation has solutions which are necessarily travelling waves. This property is also

shared by higher dimensional first order PDEs. Thus when v is constant, the solutions
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of hyperbolic PDE

w′ + v.∇w = 0 (2.42)

are travelling waves in higher dimensions. When v is nonconstant but a function

v = v(x), a similar method of solutions again leads to travelling solutions. However,

the assumption v = v(x) can lead to what are known as shocks. This means a dramatic

change in the mass of species over a small time period, i.e. a singularity in the gradient

of mass w.

The seemingly simple system of partial differential equations (2.21), (2.22) is in

fact quite complicated to analyze. Very little known about its mathematical prop-

erties, if its inherited from parabolic - like first equation (2.21) or hyperbolic - like

second equation or if its behavior entirely different from either type. We would like to

investigate if the system develops shocks or are its solutions smooth function of x for

all time t. Indeed, its equlibria correspond to the solutions of the system

n′ = 0 (2.43)

w′ = 0. (2.44)

This gives a coupled system of PDEs in the spatial variable x,

µ∆n = B −D (2.45)

µ(
∇n.∇w

n
) = G. (2.46)

Such systems can have multiple solutions. Among the possible solutions are the spa-
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tially homogeneous ones,

B(n,w) = D(n,w) (2.47)

G(n,w) = 0. (2.48)

These are indeed the equlibria for system of ODEs. Also it is not known if these are

the only solutions of the spatially dependent equlibrium equations (2.45) and (2.46).

Nevertheless, in spite of lack of well developed theory for the system (2.21), (2.22), it

still offers an attractive approach to modeling mass and space dependent population

dynamics.

2.3 Derivation of Growth Model

To derive the growth model, we first assume spatially uniform distributions, that is,

n(t) and w(t) are functions of time only where n(t) denotes the number of individuals

and w(t) denotes the mass per individual. Let ρ(t) := n(t)w(t) denote the biomass

density. We now discuss the mathematical representations of nonlinear birth B(n,w),

death D(n,w) and growth G(n,w) processes,

B(n,w) = β

(
w

wm

)
n
(

1− ρ

K

)
(2.49)

D(n,w) = d n (2.50)

G(n,w) = ψ (wm − w)
(

1− ρ

K

)
(2.51)

where β, d and ψ are instantaneous birth, death and growth rates that can be functions

of mass w. Here wm is the characteristic mass defined as the “maximum mass” an

individual can attain. Before the carrying capacity K is defined, it is important to

know the meaning of the term “parent stock”. In fisheries “parent stock” means
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spawning stock biomass and according to the definition of ICES [22] this means total

weight of all sexually mature fish in the stock. The carrying capacity in the parent

stock K is the total biomass per unit domain. Nonlinear birth function (2.49) says

how the number of individuals in a population changes due to instantaneous birth

rate β which is modified by density dependence and mass. Density dependent death is

given by (2.50). The mathematical representation for nonlinear growth function (2.51)

shows how mass changes due to instantaneous growth rate ψ. Also it is important to

note that this is von Bertalanffy type of growth equation [75], the rate of growth of an

individual declines with its maximum mass (that is, mass is capped by the maximum

mass the environment can support).

2.3.1 Conservation Laws for Spatially Uniform Distribution

The model to track number of individuals takes the form

n′(t) = B(n(t), w(t))−D(n(t), w(t)). (2.52)

Equation (2.52) says how number of individuals changes due to birth and death at

time t. The growth equation for mass w(t) is derived considering how the biomass ρ(t)

evolves due to birth, death and growth. To that end, we consider the biomass balance

ρ′(t) = n(t)G(n(t), w(t)) + wb B(n(t), w(t))−D(n(t), w(t)) w, (2.53)

where wb denote the birth mass. Differentiating biomass density ρ(t)

ρ(t) = n(t) w(t) (2.54)
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with respect to time t, one gets

ρ′(t) = n′(t)w(t) + n(t)w′(t). (2.55)

Rewriting the above expression for change in the mass w′(t), we have

w′(t) =
ρ′(t)

n(t)
− n′(t)w(t)

n(t)
. (2.56)

Now using expression for change in number of individuals (2.52) and change in biomass

(2.53) in (2.56) and after doing some algebra, we get the growth model

w′(t) = G(n(t), w(t)) +
B(n(t), w(t))

n
(wb − w). (2.57)

One can augment (2.52) and (2.57) with spatial transport terms to obtain the system

of partial differential equations to track density and mass of a population at a space

variable x and time t

n′ − µ∆n = B(n,w)−D(n,w) (2.58)

w′ − µ
(
∇n.∇w

n

)
=
B(n,w)

n
(wb − w) +G(n,w). (2.59)

The coupled nonlinear system of PDEs (2.58) and (2.59) arising from our modeling

effort will be henceforth referred to as the density and mass model. As a first step

to understanding our model, we reduce the model to 1-D system of coupled nonlinear
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parabolic-hyperbolic partial differential equations

∂n

∂t
= µ

(
∂2n

∂x2

)
+B(n,w)−D(n,w) (2.60)

∂w

∂t
= µ

1

n

(
∂n

∂x

) (
∂w

∂x

)
+
B(n,w)

n
(wb − w) +G(n,w), (2.61)

where n(x, t), w(x, t) are the density, mass of a population respectively. Here B(n,w),

D(n,w) and G(n,w) are the nonlinear birth, death and growth terms defined above

(2.49) - (2.51). Also µ is the transport coefficient, and wb is the mass at birth.

Equation (2.60) gives density of the population at a location x and time t. It

is controlled by three processes: transport, reproduction and mortality. The first

term describes diffusion: random motion of a population. The second term represents

density dependent reproduction and the last term denotes the density dependent death.

The mass of a population at a location x and time t is given by (2.61) and is controlled

by three processes: transport, reproduction and growth . The first term describes

transport of a population. The second term represents change in mass due to birth

mass and reproduction (negative sign signifies as birth increases the mass goes down

i.e individuals are born with a smaller size). The third term captures change in the

mass due to growth and also shows mass is capped.

The PDE system is difficult to analyze, but the ODE system is tractable. In

the next chapter, we briefly discuss a theoretical analysis of the spatially constant

equilibria.
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3. DENSITY AND MASS MODEL WITH MASS DEPENDENT TRANSPORT

COEFFICIENTS

3.1 Governing System of Partial Differential Equations

The assumption that the transport coefficient depends on the mass applied to the

system of coupled nonlinear parabolic (2.60) and hyperbolic (2.61) PDE discussed in

Section 2.3 yields a system of coupled nonlinear reaction diffusion-hyperbolic PDEs

to track density and mass of a population at location x and time t. For illustrative

purposes, we consider a mass dependent transport coefficient µ = µ1(w) of the form:

µ = µ1

(
1− w

wm

)
(3.1)

giving rise to the system of partial differential equations

∂n

∂t
= µ1

(
1− w

wm

)(
∂2n

∂x2

)
− µ1

∂n

∂x

∂w

∂x
+B(n,w)−D(n,w) (3.2)

∂w

∂t
= µ1

(
1− w

wm

)
1

n

(
∂n

∂x

) (
∂w

∂x

)
+
B(n,w)

n
(wb − w) +G(n,w) (3.3)

where n(x, t), w(x, t) are the density and mass of a population, respectively at a spatial

variable x and time t, all other quantities are as previously defined. The constitutive

choice (3.1) means when mass approaches the maximum mass, that is, when the species

grows to its maximum size, diffusive transport gets shuts down, that is, the system is

driven to equilibrium. Now substituting the nonlinear functions B(n,w), D(n,w) and

G(n,w) from Section 2.3 in above reaction-diffusion and hyperbolic system of partial
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differential equations (3.2) and (3.3),

∂n

∂t
= µ1

(
1− w

wm

)(
∂2n

∂x2

)
− µ1

∂n

∂x

∂w

∂x
+ β

(
w

wm

)
n
(

1− ρ

K

)
− d n (3.4)

∂w

∂t
= µ1

(
1− w

wm

)
1

n

(
∂n

∂x

) (
∂w

∂x

)
+ β

(
w

wm

)(
1− ρ

K

)
(wb − w)

+ ψ (wm − w)
(

1− ρ

K

)
. (3.5)

Our assumption is that the system under consideration is closed in the sense that indi-

viduals in a population are being isolated from the outside world. The mathematical

condition arising from this biological property is that there is no flux of any individuals

through the boundary [84]. Thus, for a closed ecosystem, the system of PDEs must

be augmented by initial conditions,

n(x, 0) = n0(x), w(x, 0) = w0(x), (3.6)

and no-flux boundary conditions,

nx(t, a) = 0, nx(t, b) = 0 (3.7)

wx(t, a) = 0, wx(t, b) = 0, (3.8)

where [a, b] is the domain length. Equation (3.4) helps to track density of the popula-

tion at location ‘x’ and time ‘t’. It is controlled by four processes: diffusion, transport,

reproduction and mortality. The first term in the right hand side of equation (3.4) de-

scribes diffusion, that is, random motion of species with a mass dependent coefficient.

The second term of equation (3.4) shows how transport brings in change in density.

Density dependent reproduction and death are represented by the third and the fourth
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term of equation (3.4) respectively.

The mass of species at location x and time t is given by (3.5) and is controlled by

three processes: transport, reproduction and growth. The first term in the right hand

side of equation (3.5) describes transport of species with mass dependent coefficient.

The second term of equation (3.5) represents change in mass due to reproduction

(negative sign signifies as birth increases the average mass goes down). The third

term of equation (3.5) captures change in the average mass due to growth, and it

shows average mass is capped by the mass which the environment can support.

We now discuss the dimensions of the variables and the parameters in the above

system. Number density n(x, t) is the total number of individuals per unit domain

length with dimensions N
L

. In one-dimension the domain is a unit line, and in two-

dimensions, the domain is a unit area. Average mass w(x, t) is mass per individual

with dimensions KG
N

. The carrying capacity in the parent stock ‘K’ is the total biomass

per unit domain length with dimensions KG
L

.

Parameters ψ, β and d are maximum instantaneous individual per capita average

growth rate with dimensions 1
T

, maximum instantaneous per capita birth rate with

dimensions 1
T

and natural instantaneous per capita mortality rate with dimensions 1
T

.

The transport coefficient is given by µ with dimensions L2

T
. In order to reduce the

number of parameters, we shall non-dimensionalize the system of reaction-diffusion

(3.4) and hyperbolic (3.5) equations. To rescale time t, one can choose

t =
t̃

β
, t =

t̃

d
, t =

t̃

ψ
. (3.9)

Our choice is

t =
t̃

β
. (3.10)
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We define Lm, a constant used to rescale the spatial variable x. We introduce the

following non-dimensionalization

ñ =
n

Km

, w̃ =
w

wm
t̃ = βt, x̃ =

x

Lm
(3.11)

where wm is the characteristic mass defined as the “maximum mass individual can

attain” and Km is the characteristic density, say

Km =
K

wm
. (3.12)

Using dimensionless variables, (3.11) and (3.12) in system of partial differential equa-

tions (3.4) and (3.5), and dropping the tildes on the dimensionless variables,

∂n

∂t
= a (1− w)

∂2n

∂x2
− a∂n

∂x

∂w

∂x
+ n w(1− nw)− bn (3.13)

∂w

∂t
= a(1− w)

1

n

(
∂n

∂x

) (
∂w

∂x

)
+ w(1− nw) (Wb − w) + c (1− nw)(1− w) (3.14)

where n is density, w is mass of the population, Wb is the non-dimensional birth mass

Wb =
wb
wm

. (3.15)

The dimensionless ratios of transport, death, growth rates are given by

a =
µ

β Lm
2 , b =

d

β
, c =

ψ

β
, (3.16)

respectively.

In the following Section, we present a very brief theoretical analysis of the governing

system of differential equations, (3.13) and (3.14). The PDE system is difficult to
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analyze, but the ODE counterpart is tractable. We now include an analysis of the

spatially constant equilibria.

3.2 Theoretical Analysis of the Spatially Uniform Density and Mass Model

The spatially uniform density and mass model discussed in Chapter 2, Section 2.3

will be considered here. The system of ordinary differential equations to track density

and mass of a population are given by equations (2.52) and (2.57), respectively

n′(t) = B(n(t), w(t))−D(n(t), w(t)), (3.17)

w′(t) = G(n(t), w(t)) +
B(n(t), w(t))

n
(wb − w). (3.18)

The corrresponding dimensionless system of ordinary differential equations is

dn

dt
= n w(1− nw)− bn (3.19)

dw

dt
= c (1− nw) (1− w) + w(1− nw) (Wb − w) . (3.20)

Here n is the density, w is the mass per individual (average mass). Here dimensionless

ratio b takes two forms. In the non-fishing domain, b will be defined as bn,

bn =
d

β
. (3.21)

where d is the natural instantaneous per capita mortality rate, and β is the maximum

instantaneous per capita birth rate. On the fishing domain, b is defined as bf , where

bf =
d+ f

β
(3.22)
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where f is the instantaneous fishing mortality rate. Also

c =
ψ

β
, Wb =

wb
wm

. (3.23)

To find all the equilibria of system of ODEs (3.19) and (3.20), we set the right

hand side of the above system to zero.

nw(1− nw)− bn = 0 (3.24)

c (1− nw) (1− w) + w(1− nw) (Wb − w) = 0 (3.25)

After doing a little bit of algebra, we have two sets of equilibrium points (n∗, w∗).

(n∗, w∗) = (0, 0) (3.26)

(n∗, w∗) =

(
1− b

w∗

w∗
,
−(c−Wb)±

√
(c−W 2

b ) + 4c

2

)
(3.27)

3.2.1 Condition for Positive Equilibria, Yield, and an Expression for Maximum

Sustainable Fishing Rate

In the present Subsection, some important conditions to obtain the positive equi-

libria for the system of ODEs (3.19) and (3.20) will be discussed. To that end, we get

an expression for maximum sustainable fishing rate. In order to analyse the spatial

equilibrium points, we have the following theorem,

Theorem 3.2.1. (1) The system of ordinary differential equations (3.19) and (3.20)

has a positive equilibrium if the following condition hold,

b

w∗
≤ 1, (3.28)
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where w∗ is the equilibrium average mass and b is the non dimensional ratio. Biolog-

ically this means, mass should always be greater than the non dimensional ratio b for

the system to have positive equlibria. One can substitute,

b =
d+ f

β
(3.29)

in the above condition (3.28) and get an expression

βw∗ − d ≥ f. (3.30)

The upper bound of fishing rate f in the expression (3.30), for which one obtains a

positive stable equilibrium, will be defined as the maximum fishing rate, denoted as

fmax, that is,

βw∗ − d = fmax. (3.31)

(2) Indeed, the above expression (3.31) turns out to be the condition for biomass yield

at equilibrium to be positive, that is,

Y = f n∗ w∗ > 0. (3.32)

Here yield is the catch in weight. It is measured in tons. In fisheries, catch and yield

are often used interchangeably. Substituting the equilibrium point for density n∗, in

the expression (3.32), we get

Y = f

(
1− b

w∗

w∗

)
w∗. (3.33)

Using the dimensionless ratio b from equation (3.29) in the expression for biomass
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yield (3.33) and simplifying we get

Y =
f

βw∗
(
(βw∗ − d)− f

)
. (3.34)

From equation (3.34), it is clear that the condition for biomass yield to be positive, is

βw∗ − d ≥ f. (3.35)

Equation (3.35) is same as (3.30).

Our aim is to find an expression for maximum sustainable fishing rate fS for which

we get maximum sustainable biomass yield (MSBY), in turn, this allows to harvest

a marine population sustainably. The sustainable fishing rate means the fishing rate

at which number (weight) of fish in a stock that can be taken out by fishing without

reducing the stock biomass, assuming that environmental conditions remain the same

[63].

MSBY is the maximum catch in weight that can be caught without depleting the

population. So, we consider the expression (3.22) for dimensionless ratio b. Before

deriving an expression for maximum sustainable fishing rate fS, we list the possible

definitions of fishing rates which will be used in this dissertation.

1) f is the instantaneous fishing mortality rate.

2) fmax is the maximum fishing rate that gives a positive stable equilibrium.

3) fS is the fishing rate that gives MSY in biomass, under a ODE model.

4) f
′
S is the fishing rate within a fishing zone which gives MSBY, (over the entire

space) in a PDE model.

MSBY occurs when

dY

df
= 0, (3.36)
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that is,

dY

df
= 1− d

βw∗
− 2f

βw∗
= 0. (3.37)

Solving the equation (3.37) for f ,

f =
βw∗ − d

2
. (3.38)

Therefore, MSBY occurs when condition (3.38) holds. When fishing rate f satisfies

condition (3.38), we have sustainability. Using expressions (3.31) and (3.37), we define

maximum sustainable fishing rate fS,

fS =
βw∗ − d

2
=
fmax

2
< fmax. (3.39)

Figure 3.1: Maximum sustainable biomass yield at maximum sustainable fishing rate
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4. FINITE DIFFERENCE METHOD FOR A SYSTEM OF COUPLED

NONLINEAR REACTION-DIFFUSION AND HYPERBOLIC PDES

Finite difference method (FDM) is one of the simplest and oldest approximation

approaches to solve the ODEs and PDEs. In this method we use the calculus of finite

differences to develop an approximation formula. The theoretical foundation for this

method is based on the Taylor’s series expansion.

This method was used by L. Euler in 1768 to solve differential equations in one di-

mension of space and extended to two dimensions by C. Runge in 1908. In 1928, FDM

was further established in a fundamental theoretical paper by Courant, Friedrichs,

Lewy [16]. Around 1950’s, with the emergence of computer the FDM was used to

solve time-dependent problems. Since then, FDM has been extensively used to study

significant problems in scientific and engineering fields.

Shortly after British Researchers Crank and Nicolson briefly described methods of

evaluating numerical solutions of PDE [17], John Von Neumann came up with a more

meticulous treatment in an article [14]. He established Von Neumann stability analysis

(also known as Fourier stability analysis) which is used to check the stability of finite

difference schemes when applied to linear PDEs. Therefore these two decades (1950s

and 1960s) were the intense period of development of the finite difference theory for

general initial value problems and parabolic problems. Around the same time, the

concept of stability was explored in the Lax equivalence theorem [43] and the Kreiss

matrix lemmas [77]. Further major contributions regarding stability and apriori es-

timates are given by Douglas, Lees, Samarskii, Widlund and others [81]. Starting

with work by Friedrichs [19], Lax [44], and Wendroff [85] for hyperbolic equations, and

particularly for nonlinear conservation laws, the FDM has continually played a major
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role up until now. Error analysis for the elliptic partial differential equations was first

worked by Gerschgorin [20]. In the 1950’s and 1960’s a large number of works on sys-

tems associated with finite difference approximation of second-order elliptic equations,

for example, the five-point scheme were developed [67], [74]. Over the past six decades,

theories have been established with regard to accuracy, stability and convergence of

finite difference scheme for differential equations.

Partial differential equations act as a bridge between applied mathematics and

pure mathematics [7]. Empirically, most PDEs are studied computationally. There

are two ways to approach this. The first approach is based on the classical numerical

analysis. In this method, error estimates of an approximation problem are obtained

on a finite dimensional space, with more rigorous arguments. The second approach is

based purely on computations, in which one might compute the solution of a simplified

model without worrying much about the mathematical analysis. There is always an

uncertainity and controversies about the validity of the computational results partic-

ularly when the result is difficult to analyze theoretically, for example, estimating the

optimal harvesting rate that helps to harvest a population sustainably.

In summary, the history reveals the fact that there has been a vast development

of mathematical methods to analyze and solve the PDEs arising in different areas

of science. Computational methodologies acts as an important experimental tool to

spark off conjectures for analytic arguments, and the study of numerical simulations

serves as a source of suggestions for rigorous treatment of PDEs [7]. Thus, the triad

of methodologies, theoretical, experimental and computational, helps us to solve some

of the most difficult and fundamental problems in mathematics.
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4.1 Implemention of Finite Difference Method

In order to implement FDM, one must generate a mesh with grid points (xi, tj),

where we want to find an approximate solutions. Then, we replace the derivative

terms in a partial differential equation by divided difference formulae at each grid

point, producing a system of algebraic equations. The numerical solution of these

algebraic equations are discrete equations; this is the characteristic part of numerical

analysis of partial differential equations. Finally, the error analysis can be done by

analysing stability, consistency, convergence for the given partial differential equation

and error analysis in the numerical results is done by using grid convergence technique.

4.2 Finite Difference Approximations

Suppose we want to approximate f ′(x). Using the definition of derivative we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (4.1)

We discretize the domain of a given function f(x) with a set of points xi, i = 0, 1, 2, N

and define the sequence of xi values in terms of mesh size h, that is,

xi+1 = xi + h. (4.2)

Then the definition (4.1) at a discrete point xi can be written as

f ′(xi) = lim
h→0

f(xi + h)− f(xi)

h

=
fi+1 − fi

h
(4.3)

where h is sufficiently small. This formula uses the forward difference approximation

and hence the name forward Euler approximation [69]. Similarly there are two other
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difference approximations. Backward Euler and Central difference approximations [69]

are given by

f ′(xi) = lim
h→0

f(xi)− f(xi − h)

h

=
fi − fi−1

h
, (4.4)

f ′(xi) = lim
h→0

f(xi + h)− f(xi − h)

h

=
fi+1 − fi−1

2h
(4.5)

respectively. Now the obvious question is “which is a better approximation?” To

answer this question and also to analyze the error in the difference approximation, one

might have to use a Taylor’s series. The Taylor series expansion of function f about

the point xi is given by

f(xi + h) = f(xi) + hf ′(xi) +
1

2
h2f ′′(xi) +

1

6
h3f ′′′(xi) +O(h4). (4.6)

Here O(·) is the big O notation. It is important to note that Taylor’s series expansions

are valid when f is sufficiently smooth. Now rearranging the terms in the above series,

we get

f(xi + h)− f(xi)

h
− f ′(xi) =

1

2
hf ′′(xi) +

1

6
h2f ′′′(xi) +O(h3). (4.7)

The error in forward Euler approximation is given by this expression (4.7). The ex-

pression in the right hand side of the above expression can be referred to as truncation

error, which is the error obtained by truncating the series. Similarly, we can derive

truncation errors for backward Euler and central difference approximations. Expand-
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ing the function values of f about the point xi, we get

f(xi − h) = f(xi)− hf ′(xi) +
1

2
h2f ′′(xi)−

1

6
h3f ′′′(xi) +O(h4) (4.8)

which on rearranging gives the truncation error for backward Euler,

f(xi)− f(xi − h)

h
− f ′(xi) = −1

2
hf ′′(xi) +

1

6
h2f ′′′(xi) +O(h3). (4.9)

The truncation error for forward and backward Euler approximations are proportional

to h and hence these approximations are referred to as first order approximations.

Now combining equations (4.6) and (4.8) , we get

f(xi + h)− f(xi − h) = 2hf ′ +
1

3
h3f ′′′(xi) +O(h5). (4.10)

This can be further reduced in the form,

f(xi + h)− f(xi − h)

h
− f ′(xi) =

1

6
h2f ′′′(xi) +O(h4) (4.11)

This shows that the truncation error is proportional to h2 and hence the approxima-

tion is referred to as second order approximation. Now we illustrate finite difference

approximation using two examples.

Example 1: We now briefly discuss finite difference formulation for second order

non-homogeneous Dirichlet problem. Suppose u : Ω̄ → R for a bounded domain

Ω = (0, 1) ⊂ R. Here Ω̄ = Ω ∪ ∂Ω, where ∂Ω is the boundary.

−u′′ + c u(x) = f(x) (4.12)

u(0) = α, u(1) = β (4.13)
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Equations (4.12) and (4.13) together represent 1D-BVP, where c ∈ R, f(x) is any

given function of x, defined on Ω̄, c ≥ 0. Here

xi = ih, 0 ≤ i ≤ N + 1, (4.14)

is the grid point and

h =
1

N + 1
(4.15)

is the mesh width (distance between any two grid points xi and xi+1), N is an integer.

At each of these grid points, we attempt to compute a numerical value of the solution

U0, U1, U2, ..., UN , UN+1 (4.16)

where Ui is the approximation to the solution u(xi). Now using the boundary condi-

tions from equation (4.13),

U0 = α, UN+1 = β. (4.17)

We now have N unknowns to compute: U1, U2, ..., UN . By replacing the second order

derivative by central difference approximation, we obtain

Ui+1 − 2Ui + Ui−1
h2

+ c Ui = Fi (4.18)

where Ui = u(xi) and Fi = f(xi). The example discussed above gives an essence of

the finite difference scheme. The reader is directed to references [69, 78] for different

types of finite difference schemes for both ODEs and PDEs.

Example 2: In this illustration, we consider a one dimensional parabolic PDE, which
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is a time dependent problem. We want to find u : [0, T ]× Ω̄→ R such that

∂u

∂t
− ∂2u

∂x2
+ c u(x, t) = f(x, t), x ∈ (0, 1), t ≥ 0 (4.19)

u(0, t) = u(1, t) = 0, t ≥ 0 (4.20)

u(x, 0) = u0(x), x ∈ (0, 1) (4.21)

Under limiting conditions, one obtains two point BVP (4.12). We formulate a grid

with grid points (xi, tn) , where

xi = ih, tn = nk. (4.22)

Here h = ∆x is the mesh spacing on the spatial axis x and k = ∆t is the time step.

Suppose Un
i is the numerical approximation to the solution u(xi, tn) at the grid point

(xi, tn),

Un
i ≈ u(xi, tn). (4.23)

Then using forward difference approximation for time derivative and central difference

approximation for space derivative, we get

Un+1
i − Un

i

k
=
Un
i+1 − 2Un

i + Un
i−1

h2
+ c Un

i + F n
i , (4.24)

where F n
i = f(xi, tn). We refer to the above forward time central space approximation

as the finite difference scheme for given PDEs (4.19). Now rearranging scheme (4.24),

Un+1
i = Un

i +
k

h2
(
Un
i+1 − 2Un

i + Un
i−1
)

+ c k Un
i + kF n

i . (4.25)
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Using the above equation (4.25), one can compute Un+1
i explicitly using the values

from the previous time step and hence the name an explicit method. For the sake of

simplicity, we set c = 0 and f = 0 in equation (4.19). Then the PDE (4.19) reduces to

∂u

∂t
=
∂2u

∂x2
(4.26)

The corresponding scheme for (4.26) is

Un+1
i = Un

i +
k

h2
(
Un
i+1 − 2Un

i + Un
i−1
)
. (4.27)

We now briefly discuss the local truncation error of explicit method (4.27). To that

end, we discuss the convergence analysis of finite difference scheme for a linear partial

differential equation. Local truncation error is the discrepancy one obtains when the

discretized solution is replaced by the true solution in the finite difference formula.

Then the local truncation error is given by

τni = τ(xi, tn), (4.28)

where

τ(x, t) =
u(x, t+ k)− u(x, t)

k
− 1

h2
(u(x− h, t)− 2u(x, t) + u(x+ h, t)). (4.29)

For a smooth function u(x, t), using Taylor’s series expansion of u with respect to t

(keeping x fixed),

u(x, t+ k) = u(x, k) + kut +
1

2
k2utt + ....+O(kn). (4.30)
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Rearranging, we get

u(x, t+ k)− u(x, t)

k
= ut +

1

2
kutt +

1

6
k2uttt + ..... (4.31)

Similarly one can expand u(x − h) and u(x + h) (using Taylor’s series) with respect

to x (fixing t),

(u(x− h, t)− 2u(x, t) + u(x+ h, t)) = h2
(
uxx +

1

2
h4uxxxx + ....

)
. (4.32)

Then using equations (4.30) and (4.32) in (4.29),

τ(x, t) =
(
ut +

1

2
kutt +

1

6
k2uttt + ....

)
−
(
uxx +

1

2
h2uxxxx + ....

)
(4.33)

Now using equation (4.26)

ut = uxx (4.34)

and the derivative of (4.26) with respect to t,

utt = utxx = uxxxx (4.35)

in (4.33) we have the local truncation error

τ(x, t) =

(
1

2
k − 1

12
h2

)
uxxxx +O(k2 + h4). (4.36)

This method is second order accurate in space and first order accurate in time, since

O(h2 + k). There are several important results and estimates for equation (4.19) with

applications in the field of biology [36].
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So from the two illustrations, one can infer that the finite difference scheme results

from an approximation of a given equation using a Taylor expansion. The discussion

of local truncation error leads to the concept of consistency. The notion of consistency

helps one to understand how well a finite difference scheme approximates an equation.

A finite difference method is said to be consistent if τ(x, t)→ 0 as k, h→ 0. To analyze

stability of the numerical scheme, one must define a norm on RN :

‖u‖p =
( N∑
j=1

|uj|p
) 1
p . (4.37)

Note: p = 1 is L1 norm, p = 2 is L2 norm, and p =∞ is L∞ norm.

We now discuss the consistency, stability and convergence for general class of linear

partial differential equations [78],

F (∂x, ∂t)u = g(x, t). (4.38)

For the uniqueness of solution for (4.38), one needs to specify the initial conditions.

Thus the initial conditions are of the form,

u(x, 0) = u0(x). (4.39)

Definition 1. Given a partial differential equation (4.38) and the corresponding

finite difference scheme, Fh,kU = g, we say that the scheme is consistent with the PDE

if for any smooth function φ(x, t)

Fφ− Fh,kφ→ 0 as h, k → 0. (4.40)

Here, F is the continuous operator (with partial derivatives) and Fh,k is the dis-
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crete operator (with finite differences). We now discuss the concept of stability for a

homogeneous initial value problem, i.e. g = 0 in (4.38). We define the stability region

as any bounded nonempty region of the first quadrant of R2.

Definition 2. A finite difference scheme Fh,kU
n
i = 0 for a first order equation is stable

in a stability region if there is an integer J such that for T > 0 , there is a constant

CT such that

‖Un‖p ≤ CT

N∑
j=0

∥∥U j
∥∥
p
. (4.41)

for all n with 0 ≤ nk ≤ T , p represents the norm (L1, L2, L∞- norm).

Interpretation: The above norm inequality express the idea that the norm of the

solution at any time t, is limited in the amount of the growth that can occur. Hence

stability.

Definition 3. A one-step finite difference scheme approximating a partial differential

equation (4.38) is a convergent scheme if for any solution to the partial differential

equation, u(x, t), and solutions to the finite difference scheme, Ui
n, such that Ui

0

converges to u0(x) as ih converges to x, then Ui
n converges to u(x, t) as (ih, nk)

converges to (x, t) as h, k converge to zero. It is also important to note that the

concept of stability is closely related to concept of well-posedness for initial value

problems (IVPs) for PDEs.

Definition 4. The initial value problem for a first order partial differential equation

Fu = 0 is well posed if for each positive T there is a constant CT such that

‖Un‖p ≤ CT
∥∥U0

∥∥
p
. (4.42)

hold for all initial data. Here the constant CT is independent of the solution.

The significance of the four definitions discussed above is seen in the Lax-Richtmeyer
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equivalence theorem, which is the fundamental theorem of finite difference schemes for

IVPs, and finds its importance in characterization of convergent schemes [78].

Theorem 4.2.1. The Lax-Richtmeyer Equivalence Theorem. A consistent

finite difference scheme for a PDE for which the IVP is well posed is convergent if and

only if it is stable.

It is important to note that with the help of algebraic calculations, it is easy

to verify the consistency and stability of the finite difference schemes. So using the

equivalence part of the theorem, one can conclude the difficult result, convergence. In

this work, we propose a finite difference based numerical implementation of the density

and mass model developed in Chapter 2.

4.3 Formulation of Finite Difference Scheme

To construct the finite-difference method, we need to discretize the domain [0, T ]×

Ω. Here Ω = [a, b], a one dimensional domain. We introduce equidistributed grid

points corresponding to a spatial step size h and to a time step k,

h =
1

N + 1
, k =

1

M + 1
(4.43)

where M,N are integers, and define the grid points by

(xi, tj) = (ih, jk), i = 0, 1, 2, ...N + 1, j = 0, 1, 2...,M + 1. (4.44)

Let n(x, t) and w(x, t) denote the exact solution of the system of equations (3.13) and

(3.14). Then we denote the approximate solution at a point (xi, tj) by (ni,j, wi,j).

Now we refer to scheme (4.46) as the forward time and central space because for-

ward difference and central difference approximations are used for the partial derivative
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terms

∂n

∂t
and

∂2n

∂x2
, (4.45)

respectively in equation (3.4).

ni, j+1 − ni, j
k

= a (1− wi, j)
ni+1, j − 2ni, j + ni−1, j

h2

− a
(ni+1, j − ni, j

h

)(wi+1, j − wi, j
h

)
+ ni, jwi, j (1− ni, jwi, j)− b ni, j. (4.46)

Finite difference scheme (4.46) is used to track density of a population at a location x

and time t. Now grouping the terms we get unknown density at the (i, j + 1)th mesh

point in terms of known values along the jth time level. This is called an explicit

formula. Note: To calculate the values at the first time level, we have used the initial

values at t = 0. The above scheme (4.46) can be further rewritten

ni, j+1 = zni, j + a r (1− wi, j) (ni+1, j − 2ni, j + ni−1, j)

− a r(ni+1, j − ni, j)(wi+1, j − wi, j) + k ni, jwi, j(1− ni, jwi, j). (4.47)

Here a, b are the dimensional less rates defined previously in Section 3.2,

a =
µ

β Lm
2 , b =

d

β
(4.48)

and

r =
k

h2
, z = 1− b1, (4.49)

where

b1 =
kd

β
. (4.50)
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Finite difference scheme (4.52) is referred as the forward time and forward space be-

cause forward difference approximations are used for the partial derivative terms

∂w

∂t
and

∂w

∂x
, (4.51)

respectively in (3.5).

wi, j+1 − wi, j
k

= a (1− wi, j)
1

ni, j

(ni+1, j − ni, j
h

)(wi+1, j − wi, j
h

)
+ wi, j (1− ni, jwi, j) (Wb − wi, j) + c (1− ni, jwi, j)(1− wi, j) (4.52)

Finite difference scheme (4.52) is used to track mass of a population at a location x and

time t. Now grouping the terms, one can find the mass at the (i, j + 1)th mesh point

in terms of known values along the jth time level. This is also an explicit formula.

Note: To calculate the values at the first time level, we have used the initial values at

t = 0. This scheme (4.52) can further be simplified,

wi, j+1 = wi, j + r a (1− wi, j)
1

ni, j
(ni+1, j − ni, j)(wi+1, j − wi, j)

+ k wi, j(1− ni, jwi, j) (Wb − wi, j) + c1(1− ni, jwi, j)(1− wi, j). (4.53)

Here a, c denote the dimensionless rates defined previously in Section 3.2,

a =
µ

β Lm
2 , c =

ψ

β
(4.54)

and

r =
k

h2
, c1 =

kψ

β
. (4.55)

We have developed a finite difference scheme for the numerical solution to the
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system of coupled nonlinear partial differential equations arising from the modeling

effort. In the following chapter, we will apply density and mass model to brown shrimp

population in the Gulf of Mexico and demonstrate the use of the model.
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5. APPLICATION OF DENSITY AND MASS MODEL TO GULF OF MEXICO

BROWN SHRIMP FISHERY

Humans have fished for a long time, but over the past seven decades fisheries have

grown at a much faster rate to meet the world’s growing demand for seafood. Before

the invention of technology for refrigeration, fishers caught a small amount of fish

and preserved them using salting and drying, but with additional improvements in

technology of processing and distribution, catch rates have increased [32,65].

Fishery science started around the second half of 19th century when the fluctuations

of fish stocks brought severe economic and political pressure in Europe [30,45,56]. So,

scientists were hired in many countries to study population fluctuations. At the end of

19th century, scientists focused on tagging fish and study their migration patterns [13],

earlier studies focus on understanding “where a fish was released ” and “where it was

recaptured”, but the study provided a little information in between. In the early 20th

century, a Norwegian scientist, Johan Hjort used a year class model and showed that

changes in the survival rates cause fluctuations in abundance [32, 64]. But due to

increased number and efficiency of fishing vessels, the fish caught became smaller and

less abundant [32]. It is important to note that, efficiency of a year class model will be

much more noticeable when the fishery is dependent on older year classes (four years)

than younger year classes (two years) [70]. Later the halt in fishing during World war

I resulted in bigger fish and higher catch [32, 53]. This provides some information on

how scientists studied fluctuation of fish population, in the past.

The major breakthrough in finding the fluctuation of a fish population, came in the

second half of 20th century when scientists from United states, England and Canada

developed models (Surplus production models, yield-per-recruit models, age structured
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models) capturing dynamics of fish population [32, 35]. These models helped us to

understand more about the potential causes of fish fluctuation and the effects of fishing

pressure on fish abundance.

There has always been a boom and bust cycles in fisheries with many species [32,38].

This might be due to overexploitation when “ too many fishers are chasing too few

fish” [32] or it could be a part of natural fluctuations [39]. Fisheries are not always

stable because as new stocks are exploited, fishers try to compete for more catch

and profit. Environmental variability drives natural fluctuations in fish populations.

For example, variations of the coupled ocean/atmosphere system known as El Nino-

Southern Oscillation (ENSO) [4]. Within a few decades, fisheries may collapse due to

overfishing [31,32,86]. Therefore, it is important to fish a population sustainably.

5.1 Shrimp Fisheries

According to a recent FAO report [11], the world’s shrimp catch was estimated to

be about 3.4 million tons per year, with Asia being its leading contributor (55% of

the world catch). In light of its economic value, shrimp is one of the most important

internationally traded fishery product. Shrimping industry provides jobs to millions

of people across the globe (Table 6 in [11]).

There are two main types of shrimp fisheries that are operated in the United States

of America, warm-water shrimp fisheries (Gulf of Mexico and southeast Atlantic coast)

and the cold-water shrimp fisheries (northeast and northwest of United States of Amer-

ica). Gulf of Mexico shrimp fisheries target three major species of penaeid shrimp-

brown shrimp (Farfantepenaeus aztecus), white shrimp ((Litopenaeus setiferus), pink

shrimp (Farfantepenaeus duorarum).

Penaeid shrimp (warm water shrimps) are short-lived, essentially an annual crop,

and have an ever changing size distribution with respect to its location [10]. Brown
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shrimp is the most important species harvested in the United States, and about 96%

percent of the brown shrimp harvested in the United States in 2014 came from Gulf

of Mexico, mainly from Texas and Louisiana [18,21]. Shrimp fisheries are the highest

valued fisheries in the southeastern United States (brown shrimp landings in 2014, 105

million pounds, valued at more than 305 million dollars). According to a recent 2015

stock assessment [28], the brown shrimp stock in the South Atlantic is not overfished

and is not subject to overfishing.

5.1.1 Life History of Brown Shrimp (Farfantepenaeus aztecus)

Brown Shrimp spawn in deep waters (18-137m) throughout the year, with a major

peak from February to March. Typically female lay 500,000 to 1 million eggs during its

life time [18]. The eggs hatch within 24 hours of being fertilized [42]. The larval stage

of Brown Shrimp lasts about 10-15 days. During this stage they are free-floating and

thus cannot swim, but they control their vertical location within water column. When

they grow about 2.5 mm long, they become opportunistic omnivores, feeding planktons

and detritus. In the final larval stage, they are carried inshore to salt marshes and

estuaries by tides and/or ocean currents.

The larvae primarily move at night, and are helped by incoming tides. Mortality

at the postlarval stage is relatively high compared to later lifestages [51]. Over a 4-6

week period, the postlarvae transform to their juvenile stage [42]. Juvenile shrimp

are vulnerable to size-dependent predation by fishes, birds, and other juvenile shrimp.

Mortality from predation is thought to be one of the most prominent factor in regu-

lation of recruitment of shrimp to fishery [51], but other factors may also control the

recruitment [79].

Once they reach their sub-adult stage (50-66 mm), the shrimp begin to migrate

offshore and become adults. As adults, shrimp live offshore 18-55 m below the surface
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and are demersal. They are most active at dusk and during the night. Like sub-adults,

adults are omnivorous predators [42]. Brown shrimp are able to reproduce when they

reach about 140 mm long. Most individuals die due to predation, other natural causes,

or harvesting. Although some survive up to 2.5 years [42], a majority of them live up

to approximately one year. Shrimp at all life stages serve as forage for pinfish, spotted

seatrout, red drum, Atlantic croaker, southern flounder [52]. As a side note, brown

shrimp’s growth depends on factors such as water temperature and salinity [18].

5.2 Marine Protected Areas

The global perception of dwindling marine resources is triggering a call for more

effective mechanisms to protect and conserve marine population [47, 55]. This has

stimulated interest in and debate of the potential utility of “marine protected areas

(MPAs)” as a tool for fisheries management. MPAs is one of the tools that has been

increasingly used to protect and conserve marine population [61].

There are many different types of marine protected areas (MPAs) and marine

reserve is one of them. Marine protected areas (MPAs) in the United States are

defined as “any area of the marine environment that has been reserved by federal,

state, territorial, tribal, or local laws or regulations to provide lasting protection for

part or all of the natural and cultural resources therein”, and are managed by the

NOAA MPA Center [61]. Marine reserves is considered as a subset of marine protected

areas [66], where in restrictions on some or all fishing activities are imposed. The term

“marine reserve” means an area where some or all fishing are prohibited for a long

period of time [61,66]. This is also referred to as “no-take” reserve.

In the U.S., more than 1,700 MPAs have been established [50,61], 41 % of all U.S.

waters are in some form of MPA , while 3 % of all U.S. waters are highly protected

marine reserves (no-take MPAs), to protect sensitive species and habitats [50, 62].
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The majority of these MPAs focus on conserving critical marine habitat for fish and

rebuilding stocks.

Our focus, in this dissertation will be on marine protected areas (MPAs) and how

it could be used for protecting migratory species such as brown shrimp.

5.2.1 Background: Theoretical Studies on Marine Protected Areas

Literature on marine protected areas (MPAs) is abundant and has been growing

very fast. Presently, studies on MPAs tend to focus on two main issues: benefits from

establishing MPAs (in and outside the protected area) and the design of MPAs [60].

Even though the theoretical [5, 15, 33, 73] and empirical studies [6, 83] suggest that

MPAs will benefit conservation of species, the debate on benefits of MPAs on the

fisheries yields has been only discussed for little more than two decades [46].

Sanchirico and Wilen [73] consider a theoretical model with the density-dependent

growth, and their results suggest that a protected area may increase the number of indi-

viduals of the population, in some cases may increase the sustainable yield. Movement

of individuals from MPAs to fishing zones is termed “spillover” in fisheries. “Spillover”

refers to the movement of adults and juveniles from MPAs into neighbouring fished

areas, and the extent to which this occurs is dependent on the size of the zones, habi-

tat configuration within them, and the abundance and mobility of the species [49].

Sanchirico and Wilen [73] also emphasise that when the spillover effect is significant,

the MPAs could increase number of individuals outside the protected area.

Empirical studies of MPAs need a large amount of population data over different

spatial and temporal scales, but such data are rarely available. This makes theoretical

studies on marine protected areas very important. Berezansky [5] discusses the benefits

of a theoretical modelling of MPAs, using a delay-differential model, and gives some

insights into the type of fisheries data that should be collected in order to design
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MPA. In a more recent article, Christou [15] uses Bioeconomic Ricker’s model and

concludes that greater profits under the optimal harvesting strategy was observed when

the convergence to the optimal equilibrium solution was fast. Studies on theoretical

bioeconomic models suggest that, increase in the average size of catch will result in an

increase in demand value, and hence the higher market prices per unit of weight [68,73].

5.3 Parameters for Density and Mass Model

We now would like to demonstrate the utility of density and mass model developed

in Chapter 2, of this dissertation. It is interesting to investigate how the migratory

movement of brown shrimp population from MPAs to fishing zone affect the yield

in the fishing area and whether the model is able to predict sustainability of brown

shrimp outside the MPA. To answer these questions, one might have to parameterize

the model and numerically simulate the model. The parameters for the model and

their sources are shown in Tables 5.1 and 5.2.

Table 5.1: Instantaneous per capita rates for brown shrimp population

Per capita rates

Symbol Description Value Note

d Natural instantaneous per capita mortality rate 3.3 [58]

β Maximum instantaneous per capita birth rate 14 [58]

ψ Maximum instantaneous per capita average growth rate 27 [12]

To calculate d, we have used a monthly natural mortality rate of 0.275 which was

multiplied by 12 to obtain the annual rate [58]. For β , figure 10 from [58] was used.

We fitted the Beverton-Holt curve, and obtained the maximum slope (0.96 ∗ 106), and
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finally took the natural log to convert from the finite rate to instantaneous rate. The

value for ψ, we used data, daily rate of 0.074 g per day in [12] and was multiplied by

365 to convert to annual rate.

Table 5.2: List of parameters in the density and mass model

Parameter values

Symbol Description Value Note

K Total biomass of parent stock per unit length 6 ∗ 107 [27]

t Time 1 Life cycle of shrimp 365 days

x Domain length 1 Horizontal distance along the shore

Lm Constant 0.1 Used to non-dimensionalize x

Now in the following section, we apply the density and mass model to brown shrimp

population in Gulf of Mexico. In this dissertation, we will use three scenarios as a tool

to demonstrate the use of density and mass model. First, we investigate the effects of

marine protected areas on density and mass in and ouside the protected areas. Second,

is to examine Instantaneous biomass yield and Sustainable biomass yield. In the third

scenario, the importance of mass dependent per capita mortality and reproduction

rates will be discussed.

5.4 Scenario 1: Marine Protected Areas

In this scenario, we divide the coastal line into discrete zones of marine protected

areas and fishing zones. In this section, we assume 40% of the entire domain length is

fishing zone under all models. Here the domain length is equivalent to the coastal line.

Now having fixed the total fishing area to be 40 %, we start to allocate the network of

MPAs. Starting with one fishing zone in the center, fishing zones spread like a wave
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reaching the ends of coastline, making up to 2i fishing zones where i = 0, 1, 2, 3, 4, with

equal width in each zone. The remaining 60% of domain length will be considered as

the marine protected area. Except for the two fishing zone scenario, MPAs are equally

distributed. Starting with there are two MPAs in one fishing zone scenario, MPAs

spread like waves and reach corners of the coastal line, making (2i − 1) MPAs, where

i = 2, 3, 4. The Table 5.3 shows the number and width of each fishing zone, number

and width of MPAs.

Table 5.3: Number and width of fishing zone, and MPAs

Fishing Zones MPAs

Number Width Number Width

1 4 2 3

2 2 3 2.5/1

4 1 3 2

8 0.5 7 0.86

16 0.25 15 0.4

We assume a hypothetical situation where density and mass of brown shrimp pop-

ulation is distributed by an initial profile as shown in Figures 5.1 and 5.2, respectively,

along one dimensional coastal line.
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Figure 5.1: Hypothetical initial density of brown shrimp population distributed along
coastal line

Figure 5.2: Hypothetical initial mass of brown shrimp population distributed along
coastal line

In the following Subsection, we track the density and mass of brown shimp popula-
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tion, in and outside marine protected areas under different diffusive transport rates. It

is interesting to investigate how the diffusive transport of population from the MPAs

to the fishing zone affect the density and mass of the population. Table 5.4, shows

different transport rates, used for numerical simulation.

Table 5.4: Low, medium and high diffusive transport rates

Diffusive Transport Rate µ1 Value

Low transport 0.001

Medium transport 0.01

High transport 0.1

5.4.1 Results for Density and Mass in and outside Marine Protected Areas

Figures 5.3 and 5.4 depict asymptotic density and mass at large time T = 100,

respectively in 2i fishing zones where i = 0, 1, 2, 3, 4, with a maximum sustainable

fishing rate under the ODE model, fS = 2.1. The value for fS was calculated using

the equation (3.39) (Section 3.2). In this numerical computation, we have used β = 14,

µ1 = 0.001 (Tables 5.1, 5.4) and let d = 1.5, ψ = 2.5. It is important to note that the

qualitative results are the same when the values in the Table 5.1 were used for d and

ψ, instead.

It is clear from the Figure 5.3 that the fishing pressure in the fishing zones brings

down the numerical value of density and result can be compared to the results under

the different diffusive transport rates µ1 (Table 5.4). This result is in agreement with

the real world situation that fishing pressure bring down the fish stocks [8] along the

coastal line. From the Figure 5.3, it can be observed that density in MPAs have a high
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Figure 5.3: Asymptotic density of brown shrimp population with a transport rate
µ1 = 0.001 under 2i fishing zones where i = 0, 1, 2, 3, 4

Figure 5.4: Asymptotic mass of brown shrimp population with a transport rate µ1 =
0.001 under 2i fishing zones where i = 0, 1, 2, 3, 4
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density gradient. Mathematically this is due to 1) the lower transport rate and 2) fish-

ing rate is zero in MPAs, and ecologically this is due to a fewer number of individuals

being transported from MPAs to fishing zones because of low mobility. Extremely low

mobility is almost equivalent to sedentary fish in MPAs [33].

Mass aymptotes faster (compared to density) and remains constant (Figure 5.4),

can be explained by the faster growth due to von Bertanffy type growth term in

G(n,w), expression (2.51).

Figures 5.5 and 5.6 depict asymptotic density and mass, respectively, at large

time T = 100, in 2i fishing zones where i = 0, 1, 2, 3, 4, with a maximum sustainable

fishing rate under the ODE model, fS = 2.1. The value for fS was calculated using

equation (3.39) (Section 3.2). The values for β = 14, µ1 = 0.01 were chosen from

Tables 5.1, 5.4, respectively. We let d = 1.5, ψ = 2.5 because the qualitative results

are the same when the values in the Table 5.1 were used for d and ψ, instead. The

transport rate µ1 for medium mobile species is 0.99% more than transport rate µ1 for

low transport. One can notice from the Figure 5.5 that the fishing pressure in the

respective fishing zone brings down the numerical value of density and result can be

compared to Figure 5.3. Higher aymptotic density in the fishing zones in Figure 5.5 can

be observed; mathematically this is due to the effect of 1) higher transport rate (higher

by 0.99%) and 2) lower gradient term in the marine protected areas and ecologically

this is due to more spillover from MPAs.
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Figure 5.5: Asymptotic density of brown shrimp population with a transport rate
µ1 = 0.01 under 2i fishing zones where i = 0, 1, 2, 3, 4

Figure 5.6: Asymptotic mass of brown shrimp population with a transport rate µ1 =
0.01 under 2i fishing zones where i = 0, 1, 2, 3, 4
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Figures 5.7 and 5.8 depict asymptotic density and mass at large time T = 100,

respectively in 2i fishing zones where i = 0, 1, 2, 3, 4 with a maximum sustainable

fishing rate under the ODE model, fS = 2.1. The value for fS was calculated using

equation (3.39) (Section 3.2). In the numerical computations, we have used β = 14,

µ1 = 0.1 (Tables 5.1, 5.4) and let d = 1.5, ψ = 2.5. The transport rate µ1 for highly

mobile species is 9.9% more than transport rate µ1 for medium transport. It is clear

from the Figure 5.7 that the fishing pressure in the zone brings down the numerical

value of density, and the result can be compared to Figure 5.5 where aymptotic density

in the fishing zones is less when compared to the asymptotic density in the fishing zones

for high transport Figure 5.7. One can observe that effect of gradient term in the MPAs

almost smooths out due to the high transport rate, and ecologically this is due to a

large number of individuals in MPAs being transported to the fishing zones due to

high mobility.

Figure 5.7: Asymptotic density of brown shrimp population with a transport rate
µ1 = 0.1 under 2i fishing zones where i = 0, 1, 2, 3, 4
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Figure 5.8: Asymptotic mass of brown shrimp population with a transport rate µ1 =
0.1 under 2i fishing zones where i = 0, 1, 2, 3, 4

It is important to note that, mass approaches its asymptotic limit faster (compared

to density) and remains constant (Figures 5.6, 5.8). This can be explained by the

faster growth of shrimp and the von Bertanffy type growth term in the definition

of nonlinear growth term G(n,w), expression (2.51). The importance of mass in

the density and mass model will be discussed later with Scenario 3, mass dependent

mortality and reproduction.

The numerical results for density and mass of brown shrimp population from Sce-

nario 1 will be used to explore biomass yield, which is more important for fisheries

management. In particular, we try to investigate two different types of yield - Instan-

taneous and Sustainable biomass yield. Instantaneous and Sustainable biomass yield

will be calculated for different transport rates (Table 5.4).
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5.5 Scenario 2: Examine Instantaneous Biomass Yield and Sustainable Biomass

Yield in Multiple Fishing Zones

In this section of the dissertation, we investigate Instantaneous biomass yield under

multiple fishing zones and a network of MPAs. This section focuses on sustainability

of fisheries yield.

Instantaneous biomass yield is the rate of change of catch (in weight) at each

instant of time t. Sustainable biomass yield or the Equilibrium yield is the amount

of biomass or harvested sustainably (i.e. asymptotic number density is positive) [63].

The following Algorithm presents a detailed description of calculation of Instantaneous

biomass yield. The numerical solution for the density and mass model will be referred

as solution matrix, that is, density matrix n(t, x) and mass matrix w(t, x). The column

of a solution matrix represents the discrete points on the spatial domain (coastal line)

and row of a matrix represents the time steps.

Algorithm 5.5.1 1. From the solution matrices for density n(t, x) and mass w(t, x),

we extract the columns where fishing takes place.

2. Multiply each cell of the extracted columns by the corresponding fishing rate i.e.

f . Now we name the new matrix products as yield matrix.

3. Using the trapezoidal rule, yield matrix is integrated over x first, producing a

column vector. The integral limits are the end points of corresponding fishing

zone where the fishing happens.

4. Sum all integrated values (row wise), we get a column matrix of Instantaneous

biomass yield.

We use the Algorithm 5.5.1 to calculate the sustainable biomass yield. The asymptotic

value of Instantaneous biomass yield is defined to be the Sustainable biomass yield.
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5.5.1 Instantaneous Biomass Yield in One Fishing Zone

Figure 5.9 shows how coastline is divided into fishing zone and marine protected

areas. From Figure 5.10, it can be observed that instantaneous biomass yield is a

monotonically decreasing function of time as a result of the fishing with a maximum

sustainable fishing rate under the ODE model, fS = 2.1, (Section 3.2). Highest yield is

observed in the case of higher transport rate µ1, due to movement of individuals from

MPAs to the fishing zone. As time progresses, instantaneous biomass yield approaches

a constant value, which means that the yield is sustainable asymptotically.
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Figure 5.9: One fishing zone enclosing 40 % of total coastline area
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Table 5.5: Instantaneous biomass yield for brown shrimp versus time in one fishing
zone with low, medium, high transport rates

Large time Instantaneous biomass yield

T Low Mobility Medium Mobility High Mobility

0 12.460001 12.460001 12.460001

2 7.737512 8.782985 9.771424

5 6.183391 7.074208 8.300134

10 4.319390 5.033029 6.655392

15 3.395595 4.096425 5.800939

20 2.928754 3.662593 5.4200210

40 2.340181 3.247472 5.174263

Figure 5.10: Instantaneous biomass yield versus time for brown shrimp with one fishing
zone
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5.5.2 Instantaneous Biomass Yield in Two Fishing Zones

Figure 5.11 shows how the coastline is divided into two fishing zones and three

marine protected areas. From Figure 5.12, it can be observed that instantaneous

biomass yield is monotonically decreasing function of time as a result of the fishing

with a maximum sustainable fishing rate under the ODE model, fS = 2.1, (Section

3.2). Secondly, one can observe the effects of higher yield when the transport rate

µ1 is increased. Table 5.6 shows by how much yield varies moving from low to high

transport rate.
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Figure 5.11: Two fishing zones enclosing 40 % of total coastline area
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Table 5.6: Instantaneous biomass yield for brown shrimp versus time in two fishing
zones with low, medium, high transport rates

Large time Instantaneous biomass yield

T Low Mobility Medium Mobility High Mobility

0 20.796579 20.796579 20.796579

2 11.4059000 12.564359 14.113224

5 7.007028 8.347334 10.062939

10 4.461925 5.671389 7.297823

15 3.531309 4.717470 6.273090

20 3.089448 4.326083 5.872871

40 2.575297 4.037324 5.628824

Figure 5.12: Instantaneous biomass yield versus time for brown shrimp with two fishing
zones
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5.5.3 Instantaneous Biomass Yield in Four Fishing Zones

Figure 5.13 shows how the coastline is divided into four fishing zones and three

marine protected areas. From Figure 5.14, it can be observed that instantaneous

biomass yield is monotonically decreasing function of time as a result of the fishing

with a maximum sustainable fishing rate under the ODE model , fS = 2.1, , (Section

3.2). Secondly, one can observe the effects of higher yield when the transport rate

µ1 is increased. Table 5.7 shows by how much yield varies moving from low to high

transport rate.
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Figure 5.13: Four fishing zones enclosing 40 % of total coastline area
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Table 5.7: Instantaneous biomass yield for brown shrimp versus time in four fishing
zones with low, medium, high transport rates

Large time Instantaneous biomass yield

T Low Mobility Medium Mobility High Mobility

0 12.284309 12.284309 12.284309

2 7.934292 9.202337 10.566509

5 6.427927 7.975846 9.3814400

10 4.643667 6.2742270 7.7447660

15 3.763726 5.4115880 6.888909

20 3.336219 5.0346960 6.5406260

40 2.889256 4.7861840 6.33943300

Figure 5.14: Instantaneous biomass yield versus time for brown shrimp with four
fishing zones
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5.5.4 Instantaneous Biomass Yield in Eight Fishing Zones

Figure 5.15 shows how coastline is divided into four fishing zones and three marine

protected areas. From Figure 5.16, it can be observed that instantaneous biomass

yield is monotonically decreasing function of time only for a low transport, with a

maximum sustainable fishing rate under the ODE model , fS = 2.1, , (Section 3.2).

Yield is highest for high mobile species. After long time T = 20, instantaneous biomass

yield tries to converge moving from medium to high transport. Table 5.8 shows by

how much yield varies moving from low to high transport rate.
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Figure 5.15: Eight fishing zone enclosing 40 % of total coastline area
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Table 5.8: Instantaneous biomass yield for brown shrimp versus time in eight fishing
zones with low, medium, high transport rates

Large time Instantaneous biomass yield

T Low Mobility Medium Mobility High Mobility

0 10.690953 10.690953 10.690953

2 7.565422 9.788532 10.905982

5 6.8061480 9.209346 9.7385110

10 5.629434 7.641112 8.180111

15 4.9204340 6.762810 7.337824

20 4.558384 6.402698 6.982928

40 4.256985 6.200277 6.982928

Figure 5.16: Instantaneous biomass yield versus time for brown shrimp with eight
fishing zones
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5.5.5 Instantaneous Biomass Yield in Sixteen Fishing Zones

Figure 5.17 shows how the coastline is divided into sixteen fishing zones and fifteen

marine protected areas. From Figure 5.18, it can be observed that instantaneous

biomass yield is monotonically decreasing function of time only for a low and high

transport, with a maximum sustainable fishing rate under the ODE model, fS = 2.1,

(Section 3.2). Secondly, one can observe the yield is highest for high mobile species,

Table 5.9. After long time T = 20, instantaneous biomass yield converges moving

from medium to high transport.
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Figure 5.17: Sixteen fishing zones enclosing 40 % of total coastline area
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Table 5.9: Instantaneous biomass yield for brown shrimp versus time in sixteen fishing
zones with low, medium and high transport rates

Large time Instantaneous biomass yield

T Low Mobility Medium Mobility High Mobility

0 11.956791 11.956791 11.956791

2 8.017647 10.140599 10.810734

5 7.808805 9.4227910 9.579765

10 6.859864 7.835784 7.95802600

15 6.1252320 6.9780760 7.097355

20 5.783410 6.6201000 6.733254

40 5.573617 6.4017030 6.507208

Figure 5.18: Instantaneous biomass yield versus time for brown shrimp with sixteen
fishing zones
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The results for instantaneous biomass yield, suggest that when we establish a

network of marine protected areas along a coastline, starting from two MPAs in one

fishing zone Scenario to fifteen MPAs in sixteen fishing zones Scenario, yield is always

higher for a species with higher transport rate from the protected areas. The result

is true for 2i fishing zones where i = 0, 1, 2,( Figures 5.10, 5.12 , 5.14). Figures 5.16

and 5.18 suggest the convergence of yield for eight to sixteen zones when moving

from medium to high transport. That is, yield converges as the number of fishing

zones increase. The results for instantaneous biomass yield from the above discussion

provides an insight to design of MPAs, it is crucial to consider the speed or mobility

of species under consideration before MPAs are designed.

Results from the Scenario 1 suggest that with increase in the number of reserves,

instantaneous biomass yield increases, which is consistent with several other existing

results [47, 57]. Neubert [57], concludes no-take marine reserves are always part of

an optimal harvest designed to maximize yield. Lubchenco and the authors in [47],

analyze a large amount of literature from three major aspects (1) theoretical reserve

design, (2) data used to parameterize the reserve models, and (3) practical application

of reserve design, and conclude that networks of reserves is vital for longterm fishery

and conservation benefits.

In this Section 5.5, how instantaneous biomass yield varies over time, under mul-

tiple fishing zones was observed. In the following Subsection we calculate sustainable

biomass yield. An important aspect of sustainability, is “the assurity of the fish pop-

ulations for the future”.

5.5.6 Sustainable Biomass Yield with Different Mobility Rates

In this Subsection we present results for sustainable biomass yield of brown shrimp

population with different mobility rates from marine protected areas. In particular,
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effect of MPAs on fisheries harvest will be explored. In fisheries, Maximum sustain-

able yield (MSY) is calculated, and fishery management policy is often determined

based on MSY. MSY is the maximum catch that can be caught without depleting the

population. Though the goal might be to optimize the yield, it is always ideal to set

the yield below the MSY to take precautionary approach. To ensure a sustainable

harvesting, there must be a balance between birth, death, and growth.

We define high intensity fishing rate fI ,

fI =
fS(

Fishingarea
Totalarea

) =
fS
0.4

, (5.1)

where fS is the maximum sustainable fishing rate without any movement of individuals

over space.

The fishing rate within a fishing zone which gives MSBY, (over the entire space)

in a PDE model is denoted by f
′
S . We have chosen a wide range of fishing rates f

′
S,

0 ≤ f
′

S ≤ 2 fI , (5.2)

including fishing rates below fS, at fS, and above fS, where fS is the maximum

sustainable fishing rate fS (equation 3.39).

From the Figure 5.19, it can be observed that for a lower transport rate, with 2i

fishing zones, where i = 0, 1, 2, the yield declines with increase in the fishing rate and

with increase in the number of fishing zones. It is necessary to note that when we

increase the number of fishing zones, the size of fishing zone becomes smaller. This,

in turn, reduces the size of MPAs (Table 5.3). Whereas for 2i fishing zones, where

i = 3, 4, yield goes up and is sustainable, with increase in the fishing rate and with

increase in the number of fishing zones. Our numerical results for low transport rate
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suggest that in a multiple fishing zone scenario with a network of MPAs, small MPAs

(width 0.4) is effective in producing sustainable yield for low mobile species. Our

results are consistent with the study in reef habitats [71], where many species are

relatively sedentary (low mobility). They conclude relatively small protected areas

can provide good protection.

Maximum sustainable biomass yield (MSBY) in absence of marine protected areas

occur at a maximum sustainable fishing rate , fS = 2.1, as discussed in Section 3.2. But

when a network of marine protected areas are designed along the coastline, Figure 5.19

shows that the fishing rate at MSBY increases with the increase in number of fishing

zones and number of marine protected areas. This suggests that fishing rate outside

the MPA should be adjusted to reach MSBY.

Table 5.10: Sustainable biomass yield for brown shrimp with low mobility from MPAs
for wide range of fishing rates

Fishing rates Sustainable biomass yield for brown shrimp

One Zone Two Zones Four Zones Eight Zones Sixteen Zones

0.7 1.730568 1.734707 1.741538 1.784138 1.842206

1.4 2.795469 2.815708 2.847701 3.033704 3.267429

2.1 3.205285 3.262787 3.348913 3.804634 4.325931

2.8 2.980892 3.116243 3.303159 4.174506 5.073841

3.5 2.178531 2.477112 2.830268 4.245470 5.570251

4.2 1.129321 1.657743 2.187961 4.136744 5.873084

4.9 0.670693 1.147688 1.706765 3.955198 6.034800

5.6 0.548144 0.913793 1.417482 3.764675 6.099261

10.5 0.348950 0.501663 0.7949210 2.956080 5.725805
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Figure 5.19: Sustainable biomass yield for low mobile species

The results for the medium transport rate suggest that fishing rate at MSBY under

the PDE model changes. That is, the maximum sustainable fishing rate fS at MSBY

occurs, gets shifted from 2.1 in one fishing zone scenario to 5.6 in eight fishing zones

scenario. Secondly, it can be observed from figure 5.20, sustainable yield declines with

increase in fishing rates under 16 fishing zones. The results from [83] suggest that

for a relatively mobile species, large number of small MPAs are not effective. Our

result also suggest the same. It is clear, and possibly expected, that the transport of

individuals from the marine protected area to the fishing zones is adding number of

individuals at a faster rate for medium mobile species. This accounts for MSBY in

2i fishing zones, where i = 0, 1, 2, 3, for medium transport species (compared to low

transport species).
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Table 5.11: Sustainable biomass yield for brown shrimp with medium mobility from
MPAs for wide range of fishing rates

Fishing Rates Sustainable biomass yield for brown shrimp

One Zone Two Zones Four Zones Eight Zones Sixteen Zones

0.7 1.753978 1.777618 1.806458 1.878390 1.90050

1.4 2.899695 3.004482 3.1247600 3.40311700 3.478412

2.1 3.471653 3.732666 4.0106430 4.607401 4.7456000

2.8 3.533471 4.038750 4.534864 5.52656700 5.714287

3.5 3.210255 4.027124 4.78123000 6.1971890 6.3970720

4.2 2.723971 3.819868 4.8377000 6.6558620 6.8069750

4.9 2.307941 3.529529 4.7819960 6.93779000 6.957522

5.6 2.030675 3.232480 4.670519 7.075454 6.862914

10.5 1.431415 2.015941 3.8268200 5.9360760 1.684389

Figure 5.20: Sustainable biomass yield for medium mobile species
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Figure 5.21 depicts the sustainable yield for highly mobile species. The maximum

sustainable fishing rate at MSBY is shifted from 4.9 in one fishing zone scenario to

5.6 in eight fishing zones scenario. Secondly, it can be observed from figure 5.21,

sustainable yield declines at a higher fishing rate (f > fI), with increase in number of

fishing zones and large number of small MPAs, for 2i fishing zones, where i = 2, 3, 4.

Again our results are consistent with results from [83], for a relatively mobile species,

large number of small MPA’s are not effective.

Table 5.12: Sustainable biomass yield for brown shrimp with high mobility from MPAs
for wide range of fishing rates

Fishing Rates Sustainable biomass yield for brown shrimp

One Zone Two Zones Four Zones Eight Zones Sixteen Zones

0.7 1.823057 1.853153 1.890472 1.919047 1.911459

1.4 3.191918 3.303016 3.445484 3.549009 3.515612

2.1 4.161546 4.386079 4.688360 4.896255 4.814192

2.8 4.797125 5.144227 5.643471 5.967356 5.809044

3.5 5.170131 5.624508 6.335924 6.769108 6.502180

4.2 5.351554 5.877973 6.791159 7.308557 6.895842

4.9 5.404406 5.957286 7.034499 7.593034 6.992606

5.6 5.378536 5.913185 7.090663 7.630203 6.795569

10.5 4.773903 4.786750 4.043021 2.024522 0.239171
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Figure 5.21: Sustainable biomass yield for highly mobile species

The numerical results from Scenario 2 suggest that for a low mobile species when

(1) fishing rate is increased and (2) increasing the number of fishing zones (decreasing

the size of fishing zones/MPAs) (Table 5.3), yield is sustainable. On the other hand

for a medium and high mobile species at higher fishing rate (f > fI), yield declines

with (1) increase in fishing rate and (2) increase in the number of fishing zones. So this

suggests that there is a need to identify the mobility of species before implementing

MPA. The result also gives insight on the size of MPAs relative to mobility of species.

Results from [57] suggest that the optimal harvesting strategy is a spatial “chat-

tering control” with infinite sequences of reserves alternating with areas of intense

fishing. These results are inconsistent with the results in above discussion (Section

5.2). Results from Scenario 2, suggest that sustainable yield increase/decrease with

the increase in the fishing rate.
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Kaplan [33] uses a stage structure model and compares the change in average indi-

vidual biomass with the change in individual lifetime reproduction due to increasing

reserve area. The author concludes that maximum sustainable yield (MSY) increases

with size of MPAs. Our results from Scenario 2 suggest that for the medium and high

transport species, for i = 1, 2, 4 , in 2i fishing zones, MSBY increases with large MPAs.

Kaplan [33] also discusses many other modeling studies on how MPAs affect fish-

eries harvest [26, 29]. A few of them will be discussed here, since the results from

these models can be compared with the results from Scenario 2. (1) Hastings [29] uses

a simple two stage (source and sink) model and he suggests that MSY is same with

and without reserves in simple models. (2) Hart [26] suggests that MSY changes with

implementation of reserves. That is, when size structure is added to model, harvesting

rate can be changed to maximize yield. Our model includes size structure, network of

MPAs and suggests that yield changes with and without reserves.

In this section, the effects of marine protected areas (MPAs) on fisheries harvest

was investigated. The density and mass model and vital rates - transport , mortal-

ity, growth, reproduction, were used to determine the best harvesting strategy that

produces Maximum Sustainable Biomass Yield (MSBY) with a network of MPAs.

5.5.7 Sustainable Biomass Yield for a Wide Range of Fishing Rates

In this Subsection, we use the numerical results obtained in the above Subsections

5.4.1, 5.5.2-5.5.6 to determine the harvest rate that produces MSBY under different

diffusive transport rates. One might often see large scale fluctuations in fish population

and fisheries stock collapse [56]. There may be several factors for such collapse: for

example, environmental conditions, and high harvesting rates. One of major reason

for collapse is high harvesting rate. Hence it is crucial to apply a harvest rate that

ensures the sustainability of a population. The results from the scenario 2 indicates

79



the importance of knowing the spatial explicit harvesting strategies.

From the Figures 5.22 - 5.30, it can be observed that how sustainable biomass yield

varies with respect to number of fishing zones, for a fixed value of fishing rate under

different diffusive transport rates. In particular, figure 5.30, suggests that population

collapses with increase in the number of fishing zones under high fishing rate when

the species are highly mobile. Tables 5.10, 5.11, 5.12 were used to plot sustainable

biomass yield versus fishing zone for a fixed value of fishing rate.

Figure 5.22: Sustainable biomass yield for fishing rate f=0.7
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Figure 5.23: Sustainable biomass yield for fishing rate f=1.4

Figure 5.24: Sustainable biomass yield for fishing rate f=2.1
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Figure 5.25: Sustainable biomass yield for fishing rate f=2.8

Figure 5.26: Sustainable biomass yield for fishing rate f=3.5
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Figure 5.27: Sustainable biomass yield for fishing rate f=4.2

Figure 5.28: Sustainable biomass yield for fishing rate f=4.9
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Figure 5.29: Sustainable biomass yield for fishing rate f=5.6

Figure 5.30: Sustainable biomass yield for fishing rate f=10.5
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5.5.8 Discussion Leading to a Conjecture

Conjecture 1. For a low mobile species, when (1) fishing rate is increased and

(2) increasing the number of fishing zones, biomass yield is sustainable. However, for

a medium and high mobile species, when fishing at higher rate (f > fI), biomass

yield declines with (1) increase in fishing rate and (2) increase in the number of fishing

zones.

Ecological reasoning. Transport of species from MPA to fishing zone sustains

the population in fishing zone.

There is significant positive effect of protected areas on abundance, size, and density

inside the MPA [48, 72]. When low mobile species are inside the MPA, they tend to

remain inside. Then the time spent inside the protected area is more, they have more

opportunity to grow larger and larger individuals reproduce more offspring [48], adding

sustainability of the population in the case of low mobile species.

For medium and high mobile species at higher fishing rates (f > fI), the biomass

yield declines with increase in the fishing rate, increase in the number of fishing zones

due to low asymptotic density (in and outside MPA) compared to low mobile species,

(Figures 5.5 and 5.7). This can be explained by species movement, species move in

and out of MPA at a faster rate. Due to the faster movement, chances of being caught

by fishers are more. In turn there are fewer fish in the protected area.

The main result of this Section 5.5, suggest that -“low mobile species show sus-

tainability ” with the increase in the number of fishing zones under high fishing rate

(f > fI), and large number of small protected areas.

In the following section, we would like to investigate mass dependent natural mor-

tality in our model. Mortality of smaller individuals are more when they are young.

But as they grow, natural mortality decreases.

85



5.6 Scenario 3: Mass Dependent - Mortality and Birth

To understand the trade-off between density and mass of brown shrimp in Gulf

of Mexico, we make two important biological processes, mortality and reproduction,

mass dependent. Importance of mass was discussed in Chapter 1 of this dissertation.

Mass in this study means the average mass, as defined previously in Chapter 2, Section

2.1.

Mass dependent mortality tells us that the chance of survival is higher with increase

in mass. Studies show that in many of the marine species survival rate of larger

individuals are more than the smaller ones [1]. Birth affects the number of individuals

in a population. In the case of mass dependent birth rate, instantaneous birth rate is a

function of average mass. Mass dependent birth incorporates an important biological

process that birth increases with body mass, i.e. larger individuals tend to produce

more offspring.

We would like to see the effect of these two types of mass dependence on density and

mass of brown shrimp population. To understand the mass dependency, we consider

three cases given in Table 5.13.

Table 5.13: Mass dependent/Constant per capita rates

Case Natural mortality d Instantaneous birth rate β

I d(w) β(w)

II d(w) β

III d β(w)
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We define mass dependent natural mortality as

d(w) = dmin + (wm − w)
dmax − dmin
wm −Wb

. (5.3)

Here wm is the “maximum mass” an individual can attain, and Wb is the non dimen-

sional birth mass,

Wb =
wb
wm

, (5.4)

where wb is the birth mass. dmin and dmax are the minimum and maximum natural

mortality rates, respectively. Initially, we assume a low initial mass in a population,

that is, a population consists of small individuals. Mathematically this means, when

w is close to Wb, then mass dependent mortality d(w) takes dmax as its value. Eco-

logically, natural mortality is often higher when an individual is smaller in size [51].

But when an individual grows in size, that is when w approches wm, mass dependent

mortality d(w) approaches dmin. The nonlinear reaction diffusion-hyperbolic PDE will

be used for examining the mass dependent rates.

∂n

∂t
= µ1

(
1− w

wm

)(
∂2n

∂x2

)
− µ1

∂n

∂x

∂w

∂x
+B(n,w)−D(n,w) (5.5)

∂w

∂t
= µ1

(
1− w

wm

)
1

n

(
∂n

∂x

) (
∂w

∂x

)
+
B(n,w)

n
(wb − w) +G(n,w) (5.6)

We consider a scenario where there is high birth rate (β), high initial density (n). We

assume that the mass (w) is bounded below by birth mass (wb) and bounded above

by maximum mass (wm).
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Table 5.14: Parameters for Scenario 3

Parameters Value

Transport rate (µ) 0.01

Maximum instantaneous per capita birth rate (β) 42

Mass dependent natural mortality (d) d(w)

Minimum natural mortality (dmin) 0.5

Miximum natural mortality (dmax) 10

Maximum instantaneous per capita average growth rate(ψ) 1.5

Harvesting rate (f) 3.37

Birth mass (wb) 0.01

Maximum mass (wm) 0.2

The mass dependent natural mortality d(w) in the above Table (5.14) is given by

expression (5.3).

Table 5.15: Dimension less ratio of rates

Dimensional ratios Value

a =
µ

Lm2

β
0.0238

b = d
β

varies with w

b1 = d+f
β

varies with w

c = ψ
β

0.0357

The non-trivial equilibrium points of equations (5.5) and (5.6) for density and mass
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are given by,

(n∗, w∗) =

(
1− b

w∗

w∗
,
−(c−Wb)±

√
(c−W 2

b ) + 4c

2

)
. (5.7)

Here dimensionless ratio b in the equilibrium value for density n∗ takes two forms.

In the non-fishing domain, b takes the form bn,

bn =
d(w)

β
. (5.8)

On the fishing domain, b takes the form bf ,

bf =
d(w) + f

β
. (5.9)

Also

c =
ψ

β
, Wb =

wb
wm

. (5.10)

5.6.1 Numerical Results

Figure 5.31 shows how the density and mass varies in different time levels, for

mass-dependent mortality and birth rates. Fishing pressure in the center (3, 7) of the

domain brings down the number of individuals in that area. The numerical value of

density, goes down by 50% (for time units T = 0 to T = 10) this is due to the high

mass-dependent natural mortality, during the period of time individuals are small in

size. As time progresses, individuals grow in size and attain its maximum mass wm,

which is the asymptotic mass in the numerical results. For large time (T = 100),

density and mass reach their asymptotic values.

Figure 5.32 shows how the density and mass vary with time under mass dependent

mortality and constant birth rates. Fishing pressure in the center of the domain (3, 7)
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brings down the density in that area. The numerical results are similar to the previous

results of mass dependent mortality. Density goes down by 50% in the first 10 time

units. It can also be observed from the figure 5.32, mass asymptotes faster, under

constant birth rate.

One can observe from the figure 5.33 how the density and mass varies with time

under constant mortality and mass dependent birth rates. Fishing pressure brings

down the density in the center of the domain. The effect of constant mortality can be

observed in the figure 5.33 by comparing density at T = 10 to the previous two cases (I,

II) of mass dependent natural mortality models. A fewer individuals die when constant

mortality rates are included. The speed at which mass reaches its asymptotic value

under this case is slower than the previous two cases (I, II). At large time T = 100,

density and mass reach their asymptotic values.

Now we compare how the mass dependent and constant per capita rates affect

the instantaneous biomass yield of brown shrimp population. The numerical results

for instantaneous biomass yield over time is given in figure 5.34. It can be observed

from the Figure 5.34 that instantaneous biomass yield is different. The speed at which

density and mass reaches its asymptotic value under (1) case III is slowest (mass

independent mortality) and (2) case II is fastest (mass independent reproduction) (3)

case I is moderate (mass dependent reproduction and mortality). In turn, this drives

the system (5.5) and (5.6) to equilibrium at different speeds (Figures 5.31, 5.32, 5.33)

and hence the instantaneous biomass yield Figure 5.34.
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Figure 5.31: Mass dependent mortality and birth rates.
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Figure 5.32: Mass dependent mortality and constant birth rates.
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Figure 5.33: Constant mortality and mass dependent birth rates.
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Figure 5.34: Instantaneous biomass yield for mass dependent/constant per capita rates
versus time

To discuss the results for Scenario 3, we assume the actual answer to a problem is

the numerical solution for mass dependent - mortality and birth, case I and compare

this result with case II and case III, using the terms underestimate and overestimate.

When both mortality and birth are mass dependent, case I, instantaneous biomass

yield continues to go down until large time T = 10. This is due to the mass dependent

natural mortality d(w). When the individuals are smaller they die with higher rate.

During later period T = 10 to T = 60, instantaneous biomass yield increases due to

mass dependent birth β(w) because average mass becomes larger, and larger individ-
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uals produce more offspring which brings up the biomass. This in turn increases the

instantaneous biomass yield.

An underestimate is an estimate that is lower than the actual answer to a problem.

For the case II, when instantaneous birth rate β is constant, instantaneous biomass

yield reaches the equilibrium faster and is underestimated because mass independent

birth assumes mass does not affect per capita birth. This contradicts the example

of Vermilion-rockfish in Chapter 1. An overestimate is an estimate that is greater

than the actual answer to a problem. When natural mortality d is assumed to be a

constant, case III, instantaneous biomass yield is monotonically decreasing function

of time and is overestimated because mass independent death says individuals die at

a constant rate, which contradicts the results from [1,51].

Sustainable biomass yield is highest for case I, where both mortality and birth

have mass dependency. It can be observed from the Figure 5.34, that instantaneous

biomass yield goes down for case II at a faster rate than case I. The slower declining

instantaneous biomass yield for case I (compared to case II) can be explained due to

1) higher body mass (mass dependent birth), and 2) lower mortality as body mass

increases (mass dependent mortality).

The results from Scenario 3 suggest that mass independent per capita rates, either

underestimate or overestimate the instantaneous biomass yield. So mass dependent

per capita rates estimates the instantaneous biomass yield, more conservatively. So

results from our model gives insights to mass dependent per capita rates, which are

critically important for understanding the sustainability of a marine population.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation focussed on constructing a spatiotemporal population dynam-

ics model to track density and average mass of a population at location x and at

time t and apply it to a brown shrimp population in Gulf of Mexico. The system of

equations resulting from our modeling approach, that is, coupled nonlinear reaction-

diffusion equation and first-order nonlinear hyperbolic transport equation are quite

complicated to analyze. There is very little known about its mathematical proper-

ties, if its inherited from reaction-diffusion equation or hyperbolic equation or if its

behavior entirely different from either type. The spatially dependent coupled system

of PDEs can have multiple solutions. The solutions of spatially homogeneous system

were discussed in Chapter 3, which are indeed the equilibria for system of ODEs. Con-

sequently, a finite difference scheme for the numerical solution to the system of coupled

nonlinear PDEs was developed. In particular, key processes controlling populations

like reproduction, growth, mortality and transport over various spatial and temporal

scales were considered.

Three different diffusive transport rates (low, medium, high) were used to explore

how the mobility of species from MPAs to fishing zone affects (1) the density and

average mass of a population in and outside the protected areas and (2) instantaneous

biomass yield and sustainable biomass yield in the fishing zone. High density gradient

term was observed for low mobile species in the MPA due to (1) lower transport rate

and (2) fewer number of individuals being transported from the MPA to the fishing

zone. However a low density gradient term (for higher number of fishing zones) was

observed in the scenario with high mobile species due to (1) high transport rate and
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(2) a large number of individuals in MPAs being transported to the fishing zones.

The numerical results for instantaneous biomass yield suggests that when we es-

tablish a network of marine protected areas along a coastline, starting from two MPAs

in one fishing zone scenario to fifteen MPAs in sixteen fishing zones scenario, instan-

taneous biomass yield is always higher for a species with high mobility when fishing

with maximum sustainable fishing rate fS. Sustainability was captured when the

model was tested for wide range of fishing rates with multiple fishing zones and a

network of MPAs. The numerical results suggest that, for a low mobile species, when

1) fishing rate is increased and 2) increasing the number of fishing zones, biomass yield

becomes sustainable. However, for a medium and high mobile species, when fishing at

higher fishing rates (f > fI), biomass yield declines with increase in the fishing rate.

So this suggests that there is a need to identify the mobility of species before MPA

implementation.

Spatially explicit harvesting strategy was explored. Suppose that MSY for a spa-

tially uniform distribution (ODE models) occur at the fishing rate fS. When a spatially

explicit harvesting strategies are considered, MSBY does not occur at fS. The results

shows that depending on the number of fishing zones, MSBY fishing rate is different.

So this suggests that, when MPAs are introduced, the fishing rates should be adjusted

to reach the MSBY. The numerical results shows population collapses for large number

of fishing zones, fishing at higher fishing rates (f > fI) , and high transport rate.

Mortality rates of marine organisms are different between different life stages [9]. It

has also been demonstrated that as shrimp grows, there is low vulnerability of juveniles

due to predation [51]. We investigated mass dependent mortality and reproduction

and discussed how it affects density and mass. The numerical solutions show that

sustainable biomass yield was high with mass dependent rates than mass independent

rates. Thus results from our model suggest mass dependent per capita rates are
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critically important for understanding the sustainability of a marine population.

From the discussion of results, one can get a general understanding of how a net-

work of MPAs affects fisheries harvests, but studies on how vital rates dynamics, birth,

growth, mortality, transport are likely to increase or decrease the value of MPAs as a

management tool is lacking [33]. New modeling approaches are insightful by predicting

the fishing effort and designing network of MPAs and studying how these key factors

can be used to balance population sustainability and yield.

6.2 Future Work

While this dissertation has demonstrated the use of creating 1D spatio-temporal

population dynamics model, many opportunities for extending the scope of this dis-

sertation remains open. This section presents some of these directions. By extending

the present 1D model to a 2D model, one could investigate consistency and stability

of the numerical scheme, estimate errors in numerical solutions using grid convergence

technique. Other research directions would be to test the system of coupled PDEs for

the existence of global attractor.

The present model can be used to study density and mass fluctuations with changes

in the birth, death, growth transport rates for different fish populations. To test the

utility of the model, one could compare the numerical results of the model with the field

data available. It is interesting to study the model for different fish species by varying

the transport rates and investigate sustainable biomass yield in multiple fishing zones

when networks of MPAs have been established. The idea of dividing the coastal line

into multiple fishing zones and creating a network of MPAs can be used to explore the

competition model, that is, when two or more different species compete for resources.
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