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ABSTRACT 

Climate plays an influential part in decision making by farmers by influencing 

the need and effectiveness of some inputs such as pesticides as well as expected yields.  

We look at the effect of climate variables and GMO incidence on pesticide expenditures 

for the subcategories of herbicides, fungicides, and insecticides and find that pesticide 

usage is affected by changes in the climate with differing effects by crop and pesticide 

type.  Additionally, we find evidence that increased incidence of GMO crops decreases 

pesticide expenditures. This study adds to the literature by analyzing climate and GMO 

effects by pesticide subcategories and considering fungicides, herbicides and 

insecticides. 

Longer term ocean related decadal climate variability (DCV) also has the 

potential to influence climate plus crop yields. Forecasts of DCV events can provide 

farmers with altered expectations of crop yields plus the opportunity to alter their crop 

mixes and input usage to account for the expected effects on yields. We look at the yield 

effect of the negative and positive phases of DCV phenomena covering the Pacific 

Decadal Oscillation (PDO), the Tropical Atlantic Gradient (TAG), and the West Pacific 

Warm Pool (WPWP). We find that phase combinations across these phenomena have 

significant associations with climate outcomes and in turn, indirect effects on yields. In 

turn, this is work is used to investigate the value of DCV information and the nature of 

adaptations. We found initial estimates suggesting that both the use of forecasts that 

permit a conditional probability of future phase combinations occurring and perfect 
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information on next year’s DCV phase can significantly increase agriculture consumer 

and producer welfare. This is a new result that is an estimate of the US national value of 

releasing DCV forecasts and accompanying yield information.  
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1. INTRODUCTION

Agriculture is highly dependent upon the climate. Farmers generally rely on 

historical climate trends to plan for what crops to produce and what inputs to use. 

However there are several reasons why relying on the past to predict the future could 

either become misleading or be improved upon. First of all, there is evidence that 

anthropogenically induced climate change is altering temperature and precipitation 

patterns along with agricultural performance throughout the US and the globe (IPCC 

2013, 2014). Additionally, ocean related variations like El Nino Southern Oscillation 

(ENSO) or Decadal climate variability (DCV) can also have significant impacts on the 

climate and agriculture (Adams et al. 1999; Mantua et al. 1997; Mantua and Hare 2002; 

Miller and Schneider 2000; Nigam et al. 1999; Miller and Schneider 2000). 

Climatic alterations can affect agricultural production in a couple of ways. Many 

of the inputs required in crop production are temperature and rain dependent. For 

instance, the amount of pesticides required to maintain yields may change as pests 

respond to alterations in the climate and as climate alterations reduce the persistence of 

chemicals (Walker and Eagle 1983; Bailey 2004).  This potentially is a cost of climate 

change and an adaptation measure farmers can use. 

Furthermore, ocean-induced climate variability such as ENSO and DCV can lead 

to changes in precipitation, temperature and the incidence of extreme events and can 

thus directly and indirectly influence agricultural production. Longer term ocean 
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variations that occur at the decadal or inter-decadal scale are referred to as decadal 

climate variability (DCV) phenomena. Three of the main influencing DCV phenomena 

are the Pacific Decadal Oscillation (PDO), the Tropical Atlantic gradient (TAG), and the 

West Pacific Warm Pool (WPWP) (Mehta et al 2012, Huang 2015).  

These phenomena have the potential to alter climate conditions during spring, 

summer, and fall months through changes such as prolonged droughts and wet periods 

with PDO (Mantua et al. 1997; Nigam et al. 1999; Mantua and Hare 2002;), extreme 

rainfall events and flooding connected with TAG (Mehta et al. 2012), and larger 

amounts of precipitation along with warmer ocean temperatures resulting in higher water 

salinity levels with WPWP ( Lukas and Lindstrom 1991; Huang and Mehta, 2004; Good 

et al. 2009; Murphy et al. 2010).  

As crop yields can be directly and indirectly impacted by DCV phenomena with 

differing impacts depending on the geographical region, there may be significant value 

to farmers and policy makers of increased information about the occurrence of these 

events and their consequences. For instance, determining welfare changes resulting from 

these DCV phase combination events can give policy makers an indication of the value 

of efforts to release DCV phase information plus anticipate expected economic 

fluctuations in the agricultural sector. Further, through the investigation of yield, 

changes resulting from increased levels of information on DCV phenomena may allow 

farmers to alter crop mix and input usage decisions.   

This dissertation contains three essays that address economic considerations in 

the relationships between agriculture and the climate. Essay one examines the impacts of 
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climate variables and GMO incidence on herbicide, insecticide, and fungicide 

expenditures and thus provides estimates of adaptation employed and the damages 

induced through pests and climate change. We utilize the Just and Pope production 

function (Just and Pope 1978) to econometrically determine the effect of climate and 

GMO variables on both average pesticide expenditures by category and the variance of 

those expenditures.  

Essay two looks at how ocean variability in the form of decadal climate 

variability (DCV) impacts crop yields in the US. This is done using a hierarchal model 

following Ding (2014) and Huang (2015) whereby both the direct and indirect effects of 

DCV on crop yields are determined to find the total effect of the phenomena. Essay three 

uses the DCV yield effects found in essay two to determine the value of DCV phase 

combination forecasts using an economic optimization model. 

 

 

 

 

 

 

 

 

 

 



4 

 

2. AN ANALYSIS OF CLIMATE IMPACTS ON HERBICIDE, 

INSECTICIDE, AND FUNGICIDE EXPENDITURES 

 

2.1 Introduction 

Climate change has become a major topic in the last 25 years. It has the potential 

to not only alter crop yields and variability through changes in precipitation and 

temperature, but also to alter the incidence of pathogens, weeds, fungi, and insects along 

with the effectiveness of already utilized chemical treatments (van Maanen and Xu 

2003; Bloomfield et al. 2006).  Changes in pest populations can occur through changes 

in pest biology, life span, range and abundance present in a region for a particular crop 

(Coakley et al. 1999; Brasier 1996). Additionally, climate factors have been found to 

alter the effectiveness of pesticides resulting in the need for additional applications 

and/or alternative chemical treatments (Bloomfield et al. 2006). Consequently, climate 

change through changes in pests and pesticide effectiveness can impact both the total 

quantity of pesticides and costs.  

Additionally, pesticide usage can also be influenced by the emergence of insect 

resistant and herbicide tolerant GMO crops in addition to stacked gene varieties. Insect 

resistant crops are created to be toxic to insects and thus require fewer insecticide 

treatments, while herbicide tolerant crops are intended to be able to withstand chemical 

treatments targeted to weeds. Stacked gene varieties have some combination of these 

traits. 
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This essay analyzes the effect of climate and GMO incidence on expenditures for 

three pesticide subgroups: fungicides, herbicides, and insecticides. Subsequently, an 

examination will be done on climate change induced changes in future pesticide 

expenditures by class.  

2.2 Literature Review on Relation between Pests, Pesticide Usage and Climate 

Change 

 

A number of studies have investigated climate and climate change influences on 

pests and pesticide costs and cost variability. Chen and McCarl (2001) examine the 

effects of climate change on pesticide expenditures finding that pesticide expenditures 

rise with increased temperatures and precipitation for the majority of crops. However, 

the effects of increased temperature and precipitation on cost variability was found to be 

more dependent on the crop. These changes in pesticide expenditures are expected to 

decrease the benefits of climate change for the US by $100 million (Sohngen and 

McCarl 2004).  Additionally, the potential benefits of climate change can be offset by 

increasing external costs from pesticide use such as through increased environmental and 

health costs (Koleva et al. 2011). The following subsections reviews findings on ways 

that climate change is altering pests and pesticide use. 

2.2.1 Persistence   

One way in which the climate influences herbicide, insecticide, and fungicide use 

is through alterations in the effectiveness and duration of chemicals; hereafter referred to 

as chemical persistence. Walker and Eagle (1983) and Bailey (2004) have found 
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evidence that increases in temperature have decreasing persistence of some herbicides, 

insecticides, and fungicides plus increased the number of times that farmers apply 

chemicals. Bailey (2004) in the UK finds that isoproturon (an herbicide used in weed 

control) persistence reductions can mainly be attributed to warming temperatures and 

also argue that most other soil-active herbicides would be expected to display similar 

results. Similarly, Ahmad et al. (2003) found that the herbicide clopyralid dissipates and 

loses effectiveness under higher temperatures. Additionally, several studies have found 

increased degradation rates for some insecticides and fungicides associated with warmer 

temperatures and increased rainfall (Nokes and Young 1992; Garcia-Cazorla and Xirau-

Vayreda 1994; and Lichtenstein and Schulz 1959). 

The amount and intensity of rainfall can also impact the need for multiple 

applications (Cabras et al. 2001; Willis et al. 1996; McDowell et al. 1984; McDowell et 

al., 1987; Pick et al. 1984). For example, Cabras et al. (2001) found that the 

effectiveness from the fungicides mancozeb and folet are reduced by post application 

rainfall. Pick et al. (1984) found that the timing of chemical applications in relation to 

rainfall is crucial to maximize chemical concentration on crops. This implies that two 

adaptation measures to changes in precipitation patterns may be to alter chemical 

compound usage to more rainfast chemicals and to alter when the chemicals are applied 

relative to rainfall forecasts to minimize washoff. However, multiple studies have found 

that while increased amounts of total rainfall will lead to higher concentrations of 

chemical washoff, it is actually prolonged lower intensity rainfalls that lead to greater 

chemical washoff (Willis et al. 1996; McDowell et al. 1984; McDowell et al. 1987).  
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2.2.2 Pathogen and Pest Incidence and Biology 

Climate change also has the potential to increase the incidence of pests and crop 

diseases as well as the susceptibility of the crops to the diseases (van Maanen and Xu 

2003). Temperature, precipitation, and humidity are all key factors that influence the 

incidence of pathogens and pests (van Maanen and Xu 2003; Hardwick 2006). Walker 

and Barnes (1981) argue pest abundance is influenced by moisture content and the soil 

temperature in fields. Therefore, examining climate in relation to the incidence of 

pathogens and pests can yield insight on future pathogen and pest patterns and the ways 

farmers might handle the changes. While increased atmospheric CO2 can serve as a 

fertilizer for crops, in some cases the benefits are even higher for weeds (Wolfe et al. 

2008; Ziska 2003). For instance, several studies have found that weeds have a higher 

tolerance to herbicides under higher levels of CO2 (Ziska et al. 1999; Ziska and Goins 

2006).  

Some studies indicate that new chemicals may also need to be developed because 

the crop tolerance to chemicals may be reduced by climate change (Sanders et al. 1993). 

However, some cropping practices such as rotating crops and altering cropping dates can 

lessen the climate change pest effect (Juroszek and von Tiedemann 2013). 

Warming winter months can also have an impact on the lifespan of disease 

causing pathogens. In most instances, pathogens and pests die out by winter months due 

to cooler temperatures. However, as winters become shorter and less severe this can 

cause less disease and pest die off, and thus total incidences would rise (Harvell et al. 

2002). Additionally, the incidence and severity of crop diseases, fungal infestations, and 
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insects has been found to increase with rising temperatures and increased humidity 

(Coakley et al. 1999; Brasier 1996). 

2.3 Models and Methods 

It is assumed that farmers will alter chemical applications to reduce losses from 

increased pest incidence to the point at which the marginal cost of additional application 

equals the marginal damages from the pests. Therefore, farmers’ changes in pesticide 

expenditures can be considered a proxy for the changes in costs induced by altered pest 

populations. In order to analyze climate effects on economic losses from changes in pest 

populations and thus pesticide subgroup expenditures along with their variability, we 

will utilize the function presented by Just and Pope (1978) as used by Chen and McCarl 

(2001). The basic structure of the function is outlined in equation 1:  

𝑦𝑖,𝑡 = 𝑓(𝑋𝑖,𝑡, 𝛼) + ℎ(𝑋𝑖,𝑡, 𝛽)𝜀𝑖,𝑡                                                                    (1) 

Here, 𝑦𝑖,𝑡 represents the average expenditure on a pesticide subgroup per acre for 

state i in year t. 𝑋𝑖,𝑡 represents the set of independent variables including a time trend 

variable, variables related to GMO crops when applicable, and the climate change 

variables of average temperature and total average precipitation over the cropping season 

as well as the number of days with temperatures at or above 90°F, the number of days 

with temperature less than or equal to 0°F, and the number of days with at least one inch 

of precipitation. The expected effect of the set of dependent variables on the average 

expenditure on a pesticide subgroup per acre is found through the estimation of 
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𝑓(𝑋𝑖,𝑡, 𝛼). The expected effect on variability in expenditures is found through the 

estimation of ℎ(𝑋𝑖,𝑡, 𝛽)  with 𝜀𝑖,𝑡 representing the error term. 

The nonlinear nature of the Just and Pope function lends itself to maximum 

likelihood estimation, however convergence is not always attainable. This proved to be 

the case for several of the desired estimations in this study, thus an alternative multiple 

staged method of estimation suggested by Just and Pope (1978) and applied by Buccola 

and McCarl (1986) and McCarl and Rettig (1983) among others is utilized here. In the 

first stage of estimation, initial parameter values are estimated for 𝑓(𝑋, 𝛼) by simply 

regressing 𝑌 on 𝑋 as shown in equation 2: 

𝑦𝑡 = 𝑓(𝑋𝑖,𝑡, 𝛼1) +  𝑢1𝑖,𝑡                                                                            (2) 

 From this estimation, we get an initial set of errors 𝑢1 which when combined with 

equation (1) can be expressed: 

  𝑢1𝑖,𝑡 = ℎ(𝑋𝑖,𝑡, 𝛽1)𝜀1𝑖,𝑡                                                                                  (3)     

In order to estimate the marginal risk effects of the climate variables on pesticide 

expenditures, Just and Pope (1979) suggest that ℎ(𝑋𝑖,𝑡, 𝛽1)𝜀1𝑖,𝑡 take the following form: 

ℎ(𝑋𝑖,𝑡, 𝛽)𝜀𝑖,𝑡 =  𝛽0
1𝑋1𝑖,𝑡

𝛽1
1

𝑋2𝑡
𝛽2

1

… 𝑋𝑛𝑖,𝑡
𝛽𝑛

1

𝜀𝑖,𝑡                                                       (4)     

We use this form in order to employ an OLS regression whereby the logged absolute 

value of the estimated errors found from the equation 2 are regressed on the logged 

values of 𝑋 as shown in equation 5 

𝑙𝑛|𝑢̂1𝑖,𝑡| = ln 𝛽0 +  𝛽1𝑙𝑛𝑋1𝑖,𝑡 + 𝛽2𝑙𝑛𝑋2𝑖,𝑡 + ⋯ +  𝛽𝑛𝑙𝑛𝑋𝑛𝑖,𝑡 + 𝑙𝑛|𝑒𝑖,𝑡|        (5) 
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where 𝑙𝑛|𝑢̂1𝑖,𝑡| is the logged absolute value of the estimated error term from equation 2 

and 𝑙𝑛|𝑒𝑖,𝑡| is the resulting error term. 

The estimates of 𝛼1 and 𝛽1 from the first round of estimations are consistent but 

asymptotically inefficient (Just and Pope 1979).  In order to get estimates of 𝛼 that are 

both consistent and asymptotically efficient, we deflate 𝑓(𝑋𝑖,𝑡, 𝛼1) by 𝑋1𝑖,𝑡
−𝛽̂1

1

𝑋2𝑖,𝑡
−𝛽̂2

1

… 𝑋𝑛𝑖,𝑡
−𝛽̂𝑛

1

 

as suggested in Just and Pope (1979) and used in McCarl and Rettig (1983) and Buccola 

and McCarl (1986), among others. Therefore, the second round of estimated parameters 

are given by 

𝑌

ℎ̂(𝑋𝑖,𝑡, 𝛽̂1)
=

𝑓(𝑋𝑖,𝑡, 𝛼2)

ℎ̂(𝑋𝑖,𝑡, 𝛽̂1)
+ 𝑢2𝑖,𝑡                                                        (6) 

where ℎ̂(𝑋𝑖,𝑡, 𝛽̂1) is the estimated value of ℎ(𝑋𝑖,𝑡, 𝛽1) and 𝑢2𝑖,𝑡 is the error term resulting 

from the second round of estimations. The resulting parameter values are consistent and 

asymptotically efficient except for the constant term. Following Harvey (1976) and Just 

and Pope (1979), the appropriate constant can be found by multiplying 𝛽̂1 by 𝑒−0.6502. 

 This second round of estimations again produces an estimated error term, 𝑢2 

which is used in the reestimation of equation 5. This process is repeated until 𝑓(𝑋𝑖,𝑡, 𝛼) 

and ℎ(𝑋𝑖,𝑡, 𝛽) converge. For the purposes of this paper, the final parameter value 

estimates come from the third round of estimation. 

2.4 Data 

The pesticide expenditure data used in this study is found from combining 

pesticide cost and use data. Average application levels by state by individual chemical 
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are drawn from the United States Department of Agriculture’s National Agricultural 

Statistics Service (USDA NASS) Quickstats 2.0 database. Additionally, data on national 

price indices for fungicides, herbicides, and insecticides were obtained from USDA 

NASS Quickstats 2.0 database with the price index expressed relative to 2011 dollars.  

For all three subgroups, the data range is from 1990 to 2012. Average expenditure by 

chemical per acre is then computed by multiplying the average national price for the 

chemical subgroup for the year by the average application of that chemical subgroup per 

acre for the state. Then, the individual average chemical expenditures are aggregated 

within the herbicide, insecticide, and fungicide subgroups based on use. This results in 

an estimate of the average expenditure on herbicide, insecticide, and fungicide 

applications per acre within each state per year. This aggregation into subgroups rather 

than estimating by chemical is done to avoid issues with switching between chemicals as 

time and climate, pest resistance, and other factors effecting pesticide application 

evolves. 

Climate data by states is drawn from the National Climate Data Center Climate 

Data Online (NCDC CDO) database. This data includes average monthly precipitation 

totals (averaged across stations) over the cropping season and the average temperature 

across March to September for all crops except for winter wheat for which the average is 

computed from October to April. The final averages are found by averaging across all of 

the weather stations in each state and are measured in tenths of an inch and tenths of a 

degree Fahrenheit respectively. Additionally, the total number of days with temperatures 

of at least 90°F, the number of days with temperatures less than or equal to 0°F, and the 
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number of days with at least one inch of precipitation are also included and drawn from 

the NCDC CDO database. 

The data on GMO crops is drawn from USDA NASS which provides estimates 

on percent planted of genetically engineered (GE) crop varieties by state for corn, cotton, 

and soybeans. In particular, the percent planted of insect-resistant, herbicide-tolerant, 

stacked gene varieties, and all GE varieties is given for the years of 2000-2012.  

2.5 Results 

2.5.1 Overview of Results 

A total of 11 regression equations are estimated in this study, one for each 

pesticide subgroup expenditure for each of the examined crops (corn, cotton, soybeans, 

spring wheat, winter wheat and potatoes) for the cases where the data on a pesticide 

group was available for a crop. Table 1 shows the functional forms selected for each 

case with the selection based on fit and plausibility as well as whether the variable on the 

percentage of GMO crops produced was included in the estimation. 

 

Table 1. Functional Forms and Included Variables for Estimation 

Crop Pesticide Subgroup Includes GMO? Form 

Corn Herbicide Yes Linear in all variables 

Corn Insecticide No Quadratic in DP10 & TPCP 

Cotton Herbicide No Linear in all variables 

Cotton Insecticide No Quadratic in DT90, DT00, DP10, 

TPCP, & MNTM 

Potatoes Fungicides No Quadratic in DT90, DT00, DP10, 

TPCP, & MNTM 

Potatoes Herbicides No Linear in all variables 

Potatoes Insecticides No Quadratic in DT90, DT00, & MNTM 

Soybeans Herbicides Yes Quadratic in DT90, DT00, & MNTM 

Soybeans Insecticides No Quadratic in DP10 & TPCP 

Spring Wheat Herbicides No Linear in all variables 

Winter Wheat Herbicides No Linear in all variables 
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Table 2. Summary of Climate Effects for Average Pesticide Expenditures by Class and Crop 

 DT90 DT00 DP10 TPCP MNTM GMO 

Corn Herbicide  – 

(–) 

–  

(–) 

+ 

(+) 

– 

(+) 

– 

(+) 

– 

(–) 

Corn Insecticide + 

(–) 

– 

(+) 

+ Q – 

(+) 

– Q + 

(+) 

– 

(+) 

 

Cotton Herbicide – 

(–) 

– 

(–) 

+ 

(+) 

– 

(+) 

+ 

(+) 

 

Cotton Insecticide – Q + 

(–) 

+ Q – 

(–) 

- Q + 

(+) 

+ Q – 

(+) 

+ Q – 

(–) 

 

Potato Fungicide + Q – 

(–) 

– Q + 

(–) 

+ Q – 

(–) 

– Q + 

(–) 

– Q – 

(+) 

 

Potato Herbicide + 

(+) 

–  

(+) 

–  

(–) 

–  

(+) 

– 

(+) 

 

Potato Insecticide + Q – 

(–) 

– Q + 

(–) 

+ 

(+) 

–  

(+) 

+ Q – 

(+) 

 

Soybean Herbicide – Q + 

(+) 

– Q + 

(–) 

+ 

(–) 

–  

(–) 

– Q + 

(–) 

– 

(+) 

Soybean Insecticide + 

(+) 

–  

(–) 

– Q + 

(+) 

– Q + 

(+) 

– 

(+) 

 

Spring Wheat Herbicide –  

(–) 

+ 

(+) 

–  

(–) 

+ 

(+) 

+ 

(+) 

 

Winter Wheat Herbicide –  

(–) 

+ 

(–) 

–  

(–) 

–  

(–) 

+ 

(–) 

 

Note: “-” denotes a negative effect, “+” a positive effect, “– Q +” a quadratic effect that is initially decreasing then increasing, 

“+ Q –” a quadratic effect that is initially increasing then decreasing, and “– Q –” a quadratic effect that is decreasing at a 
decreasing rate. Symbols in parenthesis are the effect on variance. 

 

 

Table 2 summarizes the effect found on average expenditures and their variance. 

Our findings show that in many cases average chemical expenditures are significantly 

increased by climate and that the variance in expenditures significantly decreases with 

time, we also find significant effects from the GMO variables.   As was expected, the 

number of days with temperatures at or below 0°F decreases average expenditures and 

their variance for most crops implying pest incidence and damages are reduced by 

extreme cold conditions (as argued in Wollenweber et al. 2003). Additionally, the 

number of 90°F plus days has a mix of negative and positive effects on average 

expenditures with mainly negative effects on average herbicide expenditures and mainly 

positive effects on average insecticide expenditures likely due to differences in how 
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insect and weed populations respond to hot days. Additionally, increases in high 

temperature days decrease the variance of expenditures in the majority of cases. As will 

be discussed in later sections, one surprising finding is that the number of days with at 

least one inch of precipitation has an overall positive effect on average expenditures 

while the total cumulative precipitation effects are mostly negative. The effects of 

average temperatures vary by crop and pesticide class, but increase the variance of 

expenditures in most cases. Finally, for the crops cases with GMO information, we find 

that increased percentages of GMO crops decreases corn and soybean herbicides 

expenditures overall and significantly decrease the variance in corn herbicide 

expenditures giving evidence of decreased need for chemical applications. The following 

sections discuss these effects in greater detail. The estimated effects on mean 

expenditures are provided in tables 3 and 4, and the estimated effects on the variance in 

expenditures are provided in tables 5 and 6. 
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Table 3. Estimates for Average Effects on Pesticide Expenditures for Corn, Cotton, and Potatoes 

 Corn Corn Cotton Cotton Potatoes Potatoes Potatoes 

 Herbicide Insecticide Herbicide Insecticide Fungicide Herbicide Insecticide 

Adj R-sq 0.9356 0.7403 0.9313 0.7966 0.8494 0.8901 0.6075 

DT90 -1.35801* 

(0.172) 

0.08869 

(0.736) 

-0.15656 

(0.822) 

-0.57822 

(0.893) 

14.15175 

(0.379) 

4.05713** 

(0.077) 

17.25305 

(0.491) 

DT902    0.0467* 

(0.167) 

-0.7755** 

(0.058) 

 -0.37249 

(0.553) 

DT00 -3.65161 

(0.79) 

-1.6426 

(0.727) 

-663.838 

(0.49) 

9352.25*** 

(0.013) 

-60.60661 

(0.294) 

-26.035*** 

(0.001) 

-192.72*** 

(0.027) 

DT002    -79227.9*** 

(0.017) 

5.294464 

(0.457) 

 13.52393* 

(0.2) 

DP10 6.90494 

(0.412) 

11.47911* 

(0.132) 

26.25076*** 

(0.0) 

-1.69944 

(0.94) 

166.6394*** 

(0.046) 

-16.72243* 

(0.101) 

14.48563 

(0.694) 

DP102  -0.9436* 

(0.147) 

 0.65786 

(0.686) 

-16.3695*** 

(0.052) 

  

TPCP -1.76746 

(0.385) 

-1.00591 

(0.95) 

-1.58002** 

(0.067) 

114.3358*** 

(0.042) 

-220.9777* 

(0.119) 

-1.459532* 

(0.112) 

-0.6244774 

(0.878) 

TPCP2  0.0014 

(0.952) 

 -0.16947*** 

(0.038) 

0.31706* 

(0.121) 

  

MNTM -8.74411 

(0.56) 

-0.86539 

(0.345) 

2.3956 

(0.315) 

964.1433** 

(0.06) 

-1.65486 

(0.999) 

-2.682274 

(0.247) 

1849.637** 

(0.088) 

MNTM2    -0.73723** 

(0.06) 

-0.00215 

(0.998) 

 -1.42472** 

(0.086) 

GMO -15.659*** 

(0.001) 

      

DATE 0.18719 
(0.465) 

-0.0531*** 
(0.006) 

0.21224*** 
(0) 

0.07614 
(0.407) 

0.304*** 
(0.025) 

0.03246 
(0.363) 

-0.05163 
(0.721) 

CONS -30125.46 

(0.47) 

11469.56 

(0.047)*** 

-42960.9*** 

(0) 

-349356.1** 

(0.053) 

-19700.35 

(0.953) 

-3786.38 

(0.561) 

-588897.1* 

(0.107) 

Values in parenthesis are p-values. *** implies p-value ≤ 0.05; ** implies p-value ≤ 0.1; * implies p-value ≤ 0.2 
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Table 4. Estimates for Average Effects on Pesticide Expenditures for Soybeans, Spring Wheat, and Winter Wheat 

 Soybeans Soybeans Spring Wheat Winter Wheat 

 Herbicide Insecticide Herbicide Herbicide 

Adj R-sq 0.9025 0.6535 0.8978 0.7883 

DT90 -4.4463** 

(0.056) 

0.87096*** 

(0) 

-3.53817** 

(0.051) 

-6.87199* 

(0.111) 

DT902 0.05987*** 

(0.018) 

   

DT00 -0.3926 

(0.988) 

-6.88058* 

(0.103) 

11.84707* 

(0.107) 

2.84232*** 

(0.046) 

DT002 1.3198 

(0.594) 

   

DP10 1.50296 

(0.808) 

-4.70749 

(0.32) 

-15.2524* 

(0.148) 

-27.43073*** 

(0.008) 

DP102  0.25265 

(0.397) 

  

TPCP -3.60471* 

(0.127) 

-7.60707* 

(0.195) 

1.87003*** 

(0.001) 

-0.78783 

(0.435) 

TPCP2  0.01054 

(0.219) 

  

MNTM -3141.585*** 

(0.022) 

-0.06479 

(0.938) 

1.74192 

(0.432) 

4.2719** 

(0.051) 

MNTM2 2.35593*** 
(0.024) 

   

GMO -0.25718 

(0.901) 

   

DATE 0.30313* 
(0.103) 

0.00119 
(0.936) 

0.09654*** 
(0.004) 

0.14767*** 
(0) 

CONS 988105.6*** 

(0.041) 

1184.734 

(0.714) 

-20781.96*** 

(0) 

-31072.94*** 

(0) 

Values in parenthesis are p-values. *** implies p-value ≤ 0.05; ** implies p-value ≤ 0.1; * implies p-value ≤ 0.2 

 

Table 5. Estimates for Average Effects on Pesticide Expenditures for Corn, Cotton, and Potatoes 

 Corn Corn Cotton Cotton Potatoes Potatoes Potatoes 

 Herbicide Insecticide Herbicide Insecticide Fungicide Herbicide Insecticide 

Adj R-sq 0.9977 -0.0240 -0.0415 -0.0863 -0.0170 -0.0891 0.0485 

ln(DT90) -0.161*** 

(0) 

-0.09613 

(0.336) 

-0.11426 

(0.584) 

-0.09618 

(0.584) 

-0.5222** 

(0.061) 

0.09051 

(0.779) 

-0.09974 

(0.717) 

ln(DT00) -0.012*** 

(0.05) 

0.01418 

(0.465) 

-0.01725 

(0.801) 

-0.00571 

(0.927) 

-0.0544** 

(0.092) 

0.01888 

(0.667) 

-0.02919 

(0.43) 

ln(DP10) 0.1575*** 

(0) 

0.11352 

(0.307) 

0.0040256 

(0.986) 

0.10247 

(0.614) 

-0.32415* 

(0.147) 

-0.04516 

(0.858) 

0.05 

(0.829) 

ln(TPCP) 0.59672 

(0.342) 

0.05554 

(0.976) 

3.17174 

(0.337) 

1.529669 

(0.601) 

-1.43378 

(0.656) 

0.26821 

(0.959) 

3.93283 

(0.29) 

ln(MNTM) 12.3172** 

(0.066) 

7.72076 

(0.364) 

6.363287 

(0.591) 

-7.77794 

(0.595) 

7.53484 

(0.538) 

10.76639 

(0.546) 

24.01372* 

(0.128) 

ln(GMO) -0.168*** 

(0.012) 

      

ln(DATE) -6.2501** 

(0.094) 

-4.10648 

(0.377) 

4.86682 

(0.459) 

3.42448 

(0.673) 

-3.21305 

(0.623) 

-5.87922 

(0.517) 

-14.602** 

(0.088) 

Values in parenthesis are p-values. *** implies p-value ≤ 0.05; ** implies p-value ≤ 0.1; * implies p-value ≤ 0.2 
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Table 6. Estimates for Average Effects on Pesticide Expenditures for Soybeans, Spring Wheat, and  

               Winter Wheat 

 Soybeans Soybeans Spring Wheat Winter Wheat 

 Herbicide Insecticide Herbicide Herbicide 
Adj R-sq -0.1127 -0.1241 0.9792 0.9759 

ln(DT90) 0.019 

(0.909) 

0.11846 

(0.733) 

-0.11256 

(0.502) 

-0.03573 

(0.841) 

ln(DT00) -0.01429 

(0.607) 

-0.02622 

(0.725) 

0.2002* 

(0.108) 

-0.11337 

(0.385) 

ln(DP10) -0.01276 

(0.945) 

0.42291 

(0.496) 

-0.31621** 

(0.068) 

-0.05844 

(0.73) 

ln(TPCP) -0.78734 

(0.856) 

1.07848 

(0.831) 

3.23573*** 

(0.036) 

-0.9009 

(0.648) 

ln(MNTM) -20.38097 

(0.601) 

16.49591 

(0.539) 

3.23573* 

(0.134) 

-1.39738 

(0.823) 

ln(GMO) 0.7465 

(0.35) 

   

Ln(DATE 10.94436 

(0.624) 

-9.40995 

(0.551) 

-8.07904** 

(0.1) 

1.60063 

(0.634) 
Values in parenthesis are p-values. *** implies p-value ≤ 0.05; ** implies p-value ≤ 0.1; * implies p-value ≤ 0.2 

 

 

2.5.2 Expenditures on Herbicides for Corn Production 

Average per acre herbicide expenditure for corn production does not appear to be 

significantly influenced by most of the climate variables. The parameter for the number 

of days with temperature of at least 90°F is significant at the 20% confidence level and 

shows a negative relationship between this variable and expenditures on herbicides for 

corn per acre. This could potentially be attributed to high temperatures being 

unconducive to weed growth and increased seed dormancy (Forcella et al. 1992).  While 

the majority of the climate variables do not significantly explain changes in corn 

herbicide expenditures, the increasing prevalence of herbicide tolerant crops appears to 

be a driving factor for reducing herbicide expenditures. According to the estimation 

results, a one percentage point increase in the percentage of planted corn utilizing 
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herbicide tolerant corn is expected to decrease the average per acre expenditures on 

herbicides per acre by $15.66. 

Most of the climate variables influence herbicide expenditure variability. The 

number of 90°F plus temperature days and the number of 0°F or less days significantly 

reduce the variability in expenditures with a 1% increase in the number of 90°F plus 

days decreasing variability by 0.16% and the number of 0°F  or less days decreasing 

variability by 0.012%. This implies that while extreme temperatures are unconducive to 

crop growth (Wollenweber et al. 2003), it appears to lead to reduced risk in herbicide 

input purchases. 

Even though extreme temperature events reduce the variability in expenditures 

for corn herbicides, increases in average temperature increase variability with a 1% 

increase in temperature leading to a 12.32% increase in variability. Assuming a 

continuation in this pattern, this implies that in the near future (IPCC 2013) we can 

expect to experience increases in variability in the need for corn weed control all else 

equal, which will likely increase input risk faced by farmers. Additionally, an increase in 

the number of annual heavy rainfall events will also likely increase the variability in 

expenditures with a 1% increase in the number of wet days leading to a 0.158% increase 

in the variability. As current finding indicate that the world will likely experience higher 

frequencies of extreme precipitation events under climate change (IPCC 2013), farmers 

will also likely experience increased production risk as a result. 
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Finally as could be expected, the prevalence of GMO corn varieties appears to 

significantly reduce the variability in expenditures with a 1% increase in the percentage 

of GMO crops planted decreasing the variability in expenditures by 0.16% on average. 

2.5.3 Expenditures on Insecticides for Corn Production 

Within the climate variables, expenditures on insecticides for corn production 

appear to be most influenced by the number of days with precipitation of at least one 

inch.  An increase in the number of days with at least one inch of rain is expected to 

increase the per acre expenditures by approximately $11.48. It is interesting to note here 

that while the number of days with heavy rainfall appears to increase expenditures, the 

parameter on the total rainfall over the cropping year is not significant. This implies that 

it is the severity of rainfall events, and not total rainfall over time that has a greater 

impact on insecticide expenditures. This is supported by the Mayo (1984) study which 

finds that while insecticide chemical retention on corn leaves decreases with total 

rainfall and irrigation, heavy rainfall events result in severe decreases. Therefore, heavy 

rainfall events may prompt farmers to reapply insecticides and increase costs.       

2.5.4 Expenditures on Herbicides for Cotton Production 

The precipitation related variables, the number of days with precipitation of at 

least one inch and the total average precipitation for the state over the cropping year, 

appear to have a significant effect on cotton herbicide expenditures. Interestingly, the 

two variables have opposite effects on expenditures. A one percent increase in the 

number of days with at least one inch of precipitation increases average per acre 
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expenditures by $26.25. A one tenth of an inch increase in total precipitation over the 

cropping year is expected to decrease expenditures by $15.80. Therefore, these findings 

show that it is likely increases in the concentration of rainfall, not the total amount of 

rainfall over a cropping year, is the force that increases expenditures.  

This finding again could reflect more wash off under extreme events it may also 

reflect the growing stage of the cotton when the rainfall occurs. It is possible that if the 

crops are large enough, more of the precipitation can be captured for the cotton plants 

than for the weeds. If increased total precipitation increases cotton yields to a greater 

extent than it increases weed growth, potentially fewer herbicides would need to be 

applied as average harvest yields could remain unchanged despite increases in weeds. 

2.5.5 Expenditures on Insecticides for Cotton Production 

Expenditures on cotton production have a significant relationship with some of 

both precipitation and temperature variables. The number of days with temperature less 

than or equal to 0°F is expected to increase the average expenditure per acre up to the 

point where the average number of days is 0.059, beyond which expenditures are 

expected to decrease.  While this expenditure peak may seem strange, it is important to 

recall that cotton is primarily grown in the southern U.S., so the number of days with 

temperature below zero over the cropping year averaged across stations within a state is 

generally zero or close to zero and the incidence of multiple cold days may suppress 

insect populations.   

The average temperature over the cropping season also has a quadratic 

relationship with average expenditures with expenditures increasing as average 
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temperatures over the cropping season reach 65.39°F and then decreasing for average 

temperatures beyond this.  Total precipitation over the cropping year also has a quadratic 

relationship with expenditures on insecticides for cotton production. Expenditures per 

acre are expected to increase as average precipitation rises to approximately 33.73 

inches, at which point expenditures are expected to fall. For the majority of the cotton 

growing states, total rainfall over the cropping year is well above 33.73. Most climate 

projections to the end of the century for the cotton growing regions of the United States 

show expected decreases in annual precipitation (Walsh et al. 2014), so cotton farmers 

will likely experience an increased need for insecticide applications.  

2.5.6 Expenditures on Fungicides for Potato Production 

Both of the precipitation related variables are significant for the expenditures on 

fungicides for potato production. Similar to the results for cotton production, increases in 

the number of days with precipitation of at least one inch are expected to increase 

average potato fungicide expenditures, while increases in the total precipitation over the 

cropping season leads to decreases in average expenditures, both with a quadratic 

relationship (increasing at a decreasing rate and decreasing at an increasing rate, 

respectively). However, expenditures begin to rise as total precipitation reaches 

approximately 34.84 inches, which is above the average cumulative precipitation levels 

in potato growing regions. Future climate projections show that towards the end of this 

century, the potato growing region is expected to see a decline in total precipitation 

during summer months, but increases during winter months (Walsh et al. 2014). As this 



22 

 

study does not include a seasonal breakdown, it is uncertain how fungicide expenditures 

will change in the future. 

2.5.7 Expenditures on Herbicides for Potato Production 

All climate variables except for the average temperature over the cropping season 

are significant at an 88 percent confidence level or greater for potato herbicide 

expenditures. Increases in the number of days with at least one inch of rain along with 

total precipitation over the cropping season are expected to decrease potato fungicide 

expenditures which runs counter to some previous studies (Phene et al. 1979). One 

additional day with at least one inch of rain decreases per acre expenditures by $16.72 

per acre and an additional tenth of an inch of total precipitation is expected to decrease 

expenditures by $1.46. However, as this region may see some seasonal increases as well 

as decreases in precipitation (Walsh et al. 2014), it is unclear how the need for herbicides 

for potatoes will progress throughout the century.  

Perhaps due to the location of most potato growing states, we see that increases 

in the number of days with a temperature of at least 90°F is expected to increase 

expenditures on herbicides, while an increase in the number of days with a temperature 

less than or equal to 0°F are expected to decrease expenditures. This is likely attributed 

to the extreme cold killing off weeds, while warmer temperatures, which do not occur 

often in potato growing regions, implies better growing conditions for some of the 

weeds. Many climate models predict increases in high temperatures implying likely 

increases in weed populations and need for herbicide applications on potato crops (IPCC 

2013). 
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2.5.8 Expenditures on Insecticides for Potato Production 

The number of days with temperature of less than or equal to 0°F has a 

significant negative impact on potato insecticide expenditures. This is likely indicative 

of decreased incidence and lifespans of insects under low temperatures. Additionally, 

this study also finds that increases in average temperature over the growing season are 

expected to increase expenditures, which is in line with intuition as warmer temperatures 

tend to be more favorable for insect populations. 

From the abovementioned findings, it can be expected that with the predicted 

increases in temperature due to climate change, farmer will likely see an increase in 

insect populations and therefore a need for increased insecticide usage. 

2.5.9 Expenditures on Herbicides for Soybean Production 

Expenditures on soybean herbicides are significantly impacted by the average 

cropping year temperature and the number of 90°F plus days. Both of these climate 

factors have initial negative relationships but quadratic effects. Expenditures are 

expected to decrease until the number of hot days reaches 37.13 days and also as the 

average temperature over the cropping season approaches 66.67°F then decreases 

thereafter. Soybeans are mainly grown in the Midwest United States with the top 

growing states having on average 19.22 hot days and mean cropping year temperatures 

of 65.8°F. If climate prediction models are correct that the United States could see at 

least a one degree increase in average temperatures over the next 25 years (IPCC 2013), 

and this would cause increased herbicide expenditures; however, if more extreme high 
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temperatures are also experienced simultaneously, it is unclear how the need for 

herbicides will progress.  

Unlike many of the other crops, the variance in expenditures on both herbicides 

and insecticides for soybean production are not significantly influenced by the climate 

variables. Additionally, the percentage of herbicide tolerant soybeans do not do not 

appear to significantly influence herbicide expenditures which is contrary to the widely 

held notion that increases in herbicide tolerant crops will necessarily lead to increased 

applications as farmers would not be as concerned about targeting only weeds.  

2.5.10 Expenditures on Insecticides for Soybean Production 

Expenditures on insecticides for soybean production are influenced by both 

temperature and precipitation variables. The number of hot days with temperatures at or 

above 90°F has a positive influence on expenditure per acre, while the number of cold 

days with temperature less than or equal to 0°F appears to have a negative influence. 

This can likely be attributed to insects thriving under warmer temperatures, and being 

killed off or failing to hatch under colder temperatures.  

Surprisingly, average cropping year temperature does not significantly influence 

soybean insecticide expenditures. This could potentially be attributed to a growing 

spread between high and low temperatures across the cropping year. Additionally, it is 

surprising to see that the prevalence of GMO soybean crops does not have any 

discernable effect. 
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2.5.11 Expenditures on Herbicides for Spring Wheat Production 

Expenditures on herbicides per acre for spring wheat mainly seem to be 

influenced by the number of hot days with temperatures at or above 90°F and the total 

precipitation over the cropping season. This study finds that an additional hot day is 

expected to lower expenditures by approximately $3.54. It is likely the case that harsher 

high temperatures are detrimental to weeds rendering a reduced need for herbicide 

applications. If temperatures continue to increase and more extreme temperature is 

experienced in the spring wheat growing regions of the US, there is potential for 

reductions in herbicide expenditures. 

Additionally, a tenth of an inch increase in total precipitation over the cropping 

year is expected to increase expenditures per acre by $1.87. The main spring wheat 

producing states are expected to experience increases in total precipitation over the 

coming century according to many climate change models which implies potential 

increases in weed presence and the need for further herbicide applications (Walsh et al. 

2014). 

The variance in expenditures on herbicides for spring wheat is also found to be 

influenced by climate. A one percent increase in the number of days with at least one 

inch of precipitation leads to 0.32% decrease in variance in the expenditures on spring 

wheat herbicides. Additionally, it appears that a one percent increase in total 

precipitation over the cropping year is expected to increase the variance by 

approximately 3.24%. This implies that with current projections of increases in 

precipitation in spring wheat growing states, spring wheat farmers can expect both the 
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need for higher expenditures on herbicides as well as increased risk when making 

production decisions. 

2.5.12 Expenditures on Herbicides for Winter Wheat Production 

Expenditures on winter wheat herbicides are influenced by the number of cold 

days with temperature less than or equal to 0°F, the number of days with at least one 

inch of precipitation, and the average temperature over the cropping year. The number of 

days with temperature less than or equal to 0°F  and the average temperature over the 

cropping year both have a positive effected on herbicide expenditures per acre for winter 

wheat. This is surprising because one would not normally expect that simultaneously 

both increased cold days and warmer temperatures would be expected to increase 

expenditures. Also, one additional day with at least one inch of precipitation is expected 

to decrease expenditures by $27.43 per acre on average. As more extreme precipitation 

events are expected in the future under many climate change scenarios, but temperatures 

are expected to continue rising, it is unclear how expenditures on herbicides for winter 

wheat will progress in the future.  

2.6 Conclusions 

Here we find that climate affects pesticide expenditures by class in turn reflecting 

effects on pest populations and incidence. The exact nature of the impacted depends 

upon the regions of incidence and pesticide class. Additionally, advancements in GMO 

crops also have the potential to reduce the need for pesticide applications as is seen in 

the case of herbicides for corn production.  
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In this study we found significant effects from both the climate and GMO 

variables investigated. Increases in both high and low temperature extremes showed 

potential for reducing average and variance in chemical expenditures likely through 

inhibiting pest population growth.  We also found that extreme rainfall events, rather 

than total rainfall, are more likely to increase average expenditures due to chemical 

wash-off. Additionally, the effect on average expenditures from average temperatures 

are crop and chemical type dependent, but in most cases the effect on variance is 

positive. However, increased percentages of GMO crops significantly decreases average 

and variance in pesticide expenditures for corn herbicides presenting some evidence of 

decreased need for chemical applications.  

Future trends in pest populations and the need for pesticide applications will 

depend upon the degree to which certain climate factors change relative to other climate 

factors. For instance, in the case of herbicide applications for winter wheat, the average 

temperature over the cropping year and the number of days with at least one inch of rain 

have opposite effects on average expenditures on herbicides per acre, so future trends in 

these expenditures will be dependent upon which climate factor has a stronger change 

relative to the other. Overall, however, it appears that climate change will cause 

expenditures on pesticides to increase over the coming century. 
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3. THE EFFECT OF DECADAL CLIMATE VARIABILITY ON U.S. 

CROP YIELDS 

 

3.1 Introduction  

Ocean-induced climate variability has been found to lead to changes in 

precipitation, temperature and the incidence of extreme events in turn influencing 

agricultural production (Adams et al. 1999). There are longer term ocean variations that 

occur at the decadal or inter-decadal scale referred to as decadal climate variability 

(DCV) phenomena which have such effects. Three of the main DCV phenomena are the 

Pacific Decadal Oscillation (PDO), the Tropical Atlantic gradient (TAG), and the West 

Pacific Warm Pool (WPWP) (Grossmann and Klotzbach 1999; Huang, 2015; Mantua 

and Hare 2002; Partin et al. 2007).  

PDO, TAG, and WPWP have the potential to alter climate conditions during 

spring, summer, and fall months. PDO has been linked to both occurrences of prolonged 

droughts and wet periods. Additionally, PDO has been known to persist longer than a 

typical decadal phase with it lasting as much as 20 to 30 years (Mantua et al., 1997; 

Nigam et al., 1999; Miller and Schneider, 2000; Mantua and Hare, 2002). TAG has been 

connected with extreme rainfall events and flooding (Mehta et al., 2012).  WPWP has 

been associated with larger amounts of precipitation along with warmer ocean 

temperatures resulting in higher water salinity levels (Good et al., 2009; Murphy et al., 

2010; Lukas and Lindstrom, 1991; Huang and Mehta, 2004).  
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The yield and climate effects of the above three ocean-related DCV phenomena 

will be examined in this study. These phenomena are characterized as exhibiting either a 

positive or negative phase as discussed in Huang (2015), Ding (2014), and Jithitikulchai 

(2014). Jointly, there are eight possible phase combinations that can exist at any time: 

PDO+TAG+WPWP+, PDO+TAG+WPWP-, PDO+TAG-WPWP+, PDO-

TAG+WPWP+, PDO+TAG-WPWP-, PDO-TAG+WPWP-, PDO-TAG-WPWP+, and 

PDO-TAG-WPWP-. These will be used in characterizing the joint phase combination of 

the DCVs.  

This study will examine the effect of DCV combinations on both climate and 

crop yields. In terms of climate we will examine the number of 90℉ plus days, the 

number of days with temperatures less than or equal to 0℉, the number of days with at 

least one inch of precipitation, the total cumulative precipitation, and the mean 

temperature over the spring and winter cropping seasons. In terms of crops the study will 

examine effect on corn, cotton, hay, sorghum, soybeans, spring wheat, and winter wheat 

yields for the US.  

While other studies such as Jithitikulchai (2014), Huang (2015), and Ding 

(2014), among others, have studied the impact of DCV on crop yields, this study will 

add to the literature by examining a more inclusive set of climate variables and crops at 

the US national scale.  Additionally provide US yield change estimates for the Section 4 

study on the value of DCV information. This study follows the regional studies of Ding 

(2014) and Huang (2015) who examined the effects of DCV on yields in the the 

Edwards Aquifer region and Missouri River Basin respectively plus Jithitikulchai (2014) 
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also looked at the impacts of DCV phenomena at a US national and regional scale. The 

study presented here contributes in that it does a detailed study at the US level following 

the methods in Huang and Ding while including more crops and climate variables 

adjusted for cropping season relative to Jithitikulchai (2014). The yield estimation for 

this study is done utilizing the hierarchical linear mixed-effects model (LMM) developed 

by Laird and Ware (1982).  

The examination of DCV effects on yields is done in two stages following 

Jithitikulchai (2014), Huang (2015), and Ding (2014) whereby first the effect of DCV 

phenomena on climate conditions is found, then the effect of the climate conditions on 

crop yields is estimated and finally the total effect of DCV on crop yields by region is 

derived. 

3.2 Data 

This study utilizes crop yield, weather, and DCV data from 1950 to 2010. Corn, 

sorghum, soybean, spring wheat, and winter wheat yields in bushels per acre, cotton 

yields in pounds per acre, and hay yields in tons per acre along with acres planted in 

thousands of each of these crops are derived from the National Agricultural Statistic 

Services (NASS) Quick Stats database for all of the states for which USDA reports acres 

in the US.  

The weather variables for the number of 90℉ plus days (DT90), the number of 

0℉ or less days (DT00), the number of days with at least one inch of precipitation 

(DP10), the total cumulative precipitation over the cropping season (TPCP), and the 

mean monthly temperature in degrees Fahrenheit (MNTM) were obtained from the 
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National Oceanic and Atmospheric Administration’s (NOAA) National Climate Data 

Center’s Climate Data Online (NCDC CDO) database. Each variable’s value was 

averaged across the weather stations within the state and summed (or averaged for 

MNTM) over the cropping season (March to September for corn, cotton hay, sorghum, 

and spring wheat; October to April for winter wheat). Information on the positive and 

negative phase combinations for PDO, TAG, and WPWP comes from Fernandez Cadena 

(2013). Table 7 shows the years displaying the various phase combinations and table 8 

displays the average and variance in crop yields under the phase combinations. 

 

Table 7. DCV Phase Combination Years 

PDO-TAG-WPWP- 1965, 1971, 1972, 1974, 1975, 1989, 1991, 1994, 2008 

PDO-TAG-WPWP+ 1959, 1963, 1968, 1973, 1999, 2000, 2009 

PDO-TAG+WPWP- 1955, 1966, 1967, 2001 

PDO-TAG+WPWP+ 1950, 1951, 1952, 1953, 1954, 1956, 1961, 1962, 1964, 1969, 1970, 1990, 

2007, 2010 

PDO+TAG-WPWP- 1977, 1984, 1985, 1986, 1993 

PDO+TAG-WPWP+ 1988, 1995, 1996, 2002, 2003 

PDO+TAG+WPWP- 1976, 1978, 1979, 1980, 1982, 1983, 1987, 1992, 1997, 2006 

PDO+TAG+WPWP+ 1957, 1958, 1960, 1981, 1998, 2004, 2005 
Source: Fernandez Cadena (2013) 

 

Table 8. Mean and Variance in Yields Under DCV  

 
PDO-TAG-

WPWP- 

PDO-
TAG-

WPWP+ 

PDO-
TAG+ 

WPWP- 

PDO-
TAG+ 

WPWP+ 

PDO+ 
TAG-

WPWP- 

PDO+ 
TAG-

WPWP+ 

PDO+ 
TAG+ 

WPWP- 

PDO+ 
TAG+ 

WPWP+ 

Corn 
(Bu/acre) 

93.9 
(1224.2) 

92.6 
(1995.8) 

73.9 
(1619.6) 

64.1 
(1690.5) 

100.3 
(891.2) 

117 
(1019.8) 

103 
(1012.1) 

90.6 
(2242.1) 

Cotton 

(lbs/acre) 

608.8 

(69957.3) 

626.7 

(70989) 

535.2 

(60930) 

516.4 

(72602) 

602.8 

(59550.5) 

679.9 

(60750.4) 

611 

(67830.9) 

634.9 

(76895.1) 

Hay 

(ton/acre) 

2.35 

(0.85) 

2.26 

(0.95) 

2.06 

(0.72) 

1.88 

(0.71) 

2.48 

(0.93) 

2.57 

(1.16) 

2.46 

(0.93) 

2.25 

(0.98) 

Sorghum 

(Bu/acre) 

55.4 

(324.6) 

54 

(366.7) 

49.4 

(487.3) 

40.5 

(493.1) 

57.9 

(304.2) 

60.2 

(386.6) 

56.4 

(324.4) 

51.7 

(481.9) 

Soybeans 
(Bu/acre) 

28.3 
(48) 

28.1 
(84.6) 

24.8 
(62.7) 

22.9 
(74.8) 

28.3 
(44.1) 

31.2 
(43.5) 

28.9 
(60.4) 

28.6 
(88.4) 

Spring 

Wheat 
(Bu/acre) 

37.9 

(243.6) 

37.1 

(340.9) 

30.7 

(219.5) 

28.8 

(249.2) 

43.5 

(281.7) 

44.9 

(372.7) 

43.3 

(325.8) 

37.8 

(324.4) 

Winter 

Wheat 

(Bu/acre) 

40 
(258.9) 

40.3 
(293.9) 

35.1 
(227.4) 

31.2 
(219.4) 

41.7 
(231.1) 

47.6 
(280.4) 

43.1 
(237.5) 

40 
(300.9) 

Variances are reported in parenthesis. 
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3.3 Models and Methods  

Numerous studies have investigated climate impacts on crop yields for various 

crops and regions (Cabas et al., 2010; Chen et al., 2004; Mehta et al., 2012; Lobell and 

Asner, 2003; Dilley, 1997). Most studies in this area focus on either climate change or El 

Niño Southern Oscillation (ENSO) impacts on crop yields, with few studies looking at 

impacts from DCV phenomena. However, the results from both climate change and 

ENSO studies can give an indication of expected results when studying impacts from 

DCV phenomena. As an example, Chen et al. (2004) find that in general, crop yields 

increase with increased precipitation and decrease with increased temperature. However, 

when investigating how precipitation and temperature affect yield variability, the effects 

are more crop specific. For instance, the study finds that increased rainfall decreases 

corn and cotton yield variability, however it is increased for sorghum. Therefore, when 

examining DCV impacts on crop yields at a national scale, we would expect to observe 

similar patterns. 

3.3.1  Basic Framework 

Because ocean-related DCV phenomena affect temperature and precipitation and 

in turn those items affect crop yields, estimation is done in two levels (Baron and Kenny 

1986; Ding 2014; Huang and McCarl 2014; Huang 2015). In the first stage of 

estimation, the effect of the DCV phase combinations on the climate variables is 

estimated. Then in the second stage, the direct effect of the DCV phase combinations 

and the climate variables on crop yield is examined. Finally the estimates from the first 

stage and the second stage are combined to determine the total marginal effect of each of 
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the DCV phase combinations on crop yields.  The exact methods used here follow the 

stps used in Huang and McCarl (2014) but are implemented at a national scale.  

In particular, suppose we have a set of climate variables 𝑊 = (𝑤1, … , 𝑤𝑘). The 

mean of the climate variable 𝑤𝑘 is expressed by the function 𝑔𝑘 as shown in the equation 

4. Each year between 1950 and 2010 is associated with a phase combination of which 

there are eight. We will examine how the climate variables are influenced by DCV 

phenomena by including dummy variables for phase combinations expressed by 𝐷𝑙 in 

the models. Technological progress in yields will be accounted for by the time trend 𝑇. 

𝑤𝑘 = 𝑔𝑘(𝐷, 𝑇; 𝜃𝑘) + 𝜖𝑘                                                                           (4)        

  In equation 5, 𝑦  is the crop yield with the average yield represented by the 

function 𝑓. State level crop yield data for corn, cotton, hay, sorghum, soybeans, spring 

wheat, and winter wheat are used. This equation shows yields both directly influenced 

by DCV phenomena through the variable D, and indirectly influenced by DCV 

phenomena through the climate variables W. 

𝑦 = 𝑓(𝐷, 𝑊, 𝑇; 𝜃𝑌) + 𝜖𝑌                                                                    (5) 

Following Huang (2015) the climate variables include the number of days with 

temperatures above 90℉ (DT90), the number of days with temperatures below 0℉ 

(DT00), the number of days with precipitation of at least one inch (DP10), the total 

monthly precipitation (TPCP) and the mean monthly temperature (MNTM).  Yield are 

drawn from USDA data for the US states 𝑖 = 1, … , 𝑚 are examined that grow the 

applicable crops. There are 𝑛𝑗  observations for each state for each crop and the 
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observations for weather are found by averaging across the station observations within 

the state.  

3.3.2  Estimation 

For the first stage of estimation, I examined the impact of the DCV phase 

combinations each of the climate variables DT90, DT00, DP10, TPCP, and MNTM for 

both the spring and winter cropping seasons. In order to do this, I first created seven 

dummy variables for PDO-TAG-WPWP-, PDO-TAG-WPWP+, PDO-TAG+WPWP-, 

PDO-TAG+WPWP+, PDO+TAG-WPWP-, PDO+TAG-WPWP+, and PDO-

TAG+WPWP+ with PDO+TAG+WPWP+ being the base case. The effect of the DCV 

phase combinations on the weather variables beyond the base case were estimated using 

clustered standard errors with state fixed effects.  Equation 6 shows the climate equation 

at time t with 𝑊𝑘 denoting one of the k climate variables (DT90, DT00, DP10, TPCP, or 

MNTM) for either the spring or winter cropping season.  

𝑊𝑘,𝑡

=  𝛼𝑘
0 + 𝛼𝑘

1("𝑃𝐷𝑂 − 𝑇𝐴𝐺 − 𝑊𝑃𝑊𝑃 − ")𝑡 + 𝛼𝑘
2("𝑃𝐷𝑂 − 𝑇𝐴𝐺 − 𝑊𝑃𝑊𝑃 + ")𝑡

+ 𝛼𝑘
3("𝑃𝐷𝑂 − 𝑇𝐴𝐺 + 𝑊𝑃𝑊𝑃 − ")𝑡 +  𝛼𝑘

4("𝑃𝐷𝑂 − 𝑇𝐴𝐺 + 𝑊𝑃𝑊𝑃 + ")𝑡

+  𝛼𝑘
5("𝑃𝐷𝑂 + 𝑇𝐴𝐺 − 𝑊𝑃𝑊𝑃 − ")𝑡 +  𝛼𝑘

6("𝑃𝐷𝑂 + 𝑇𝐴𝐺 − 𝑊𝑃𝑊𝑃 + ")𝑡

+  𝛼𝑘
7("𝑃𝐷𝑂 − 𝑇𝐴𝐺 + 𝑊𝑃𝑊𝑃 + ")𝑡 + 𝛼𝑘

8𝑌𝑒𝑎𝑟𝑡

+  𝜀𝑘
𝑡                                                                                                                       (6) 

In the second stage of estimation, I found the effects of the climate variables 

mentioned above along with the direct effect of the DCV phase combinations on crop j 

yield per acre in location i at time t as shown in equation 7:  
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𝑌𝑖𝑒𝑙𝑑𝑖,𝑗,𝑡 =  𝛽𝑗
0

+  𝛽𝑗
1

𝑌𝑖𝑒𝑙𝑑𝑖,𝑗,𝑡−1 + 𝛽𝑗
2

𝑌𝑒𝑎𝑟𝑡 + 𝛽𝑗
3

𝑌𝑒𝑎𝑟2
𝑡 + 𝛽𝑗

4
𝐷𝑇90𝑖,𝑡

+ 𝛽𝑗
5

𝐷𝑇902
𝑖,𝑡 +  𝛽𝑗

6
𝐷𝑇00𝑖,𝑡 + 𝛽𝑗

7
𝐷𝑇002

𝑖,𝑡 + 𝛽𝑗
8

𝐷𝑃10𝑖,𝑡

+ 𝛽𝑗
9
𝐷𝑃102

𝑖,𝑡 + 𝛽𝑗
10

𝑇𝑃𝐶𝑃 + 𝛽𝑗
11

𝑇𝑃𝐶𝑃2
𝑖,𝑡 +  +𝛽𝑗

12
𝑀𝑁𝑇𝑀

+ 𝛽𝑗
13

𝑀𝑁𝑇𝑀2
𝑖,𝑡 + 𝛽𝑗

14
𝑃𝑙𝑎𝑛𝑡𝑒𝑑 𝐴𝑐𝑟𝑒𝑠𝑖,𝑗,𝑡

+ 𝛽𝑗
15

("𝑃𝐷𝑂 − 𝑇𝐴𝐺 − 𝑊𝑃𝑊𝑃 − ")𝑡

+ 𝛽𝑗
16

("𝑃𝐷𝑂 − 𝑇𝐴𝐺 − 𝑊𝑃𝑊𝑃 + ")𝑡

+ 𝛽𝑗
17

("𝑃𝐷𝑂 − 𝑇𝐴𝐺 + 𝑊𝑃𝑊𝑃 − ")𝑡

+  𝛽𝑗
18

("𝑃𝐷𝑂 − 𝑇𝐴𝐺 + 𝑊𝑃𝑊𝑃 + ")𝑡

+  𝛽𝑗
19

("𝑃𝐷𝑂 + 𝑇𝐴𝐺 − 𝑊𝑃𝑊𝑃 − ")𝑡

+  𝛽𝑗
20

("𝑃𝐷𝑂 + 𝑇𝐴𝐺 − 𝑊𝑃𝑊𝑃 + ")𝑡

+  𝛽𝑗
21

("𝑃𝐷𝑂 − 𝑇𝐴𝐺 + 𝑊𝑃𝑊𝑃 + ")𝑡 + 𝛽𝑗
22

𝑌𝑒𝑎𝑟𝑡

+  𝜖𝑗
𝑡                                                                                        (7) 

Lagged yields are included in the estimations of corn, cotton, hay, soybeans, spring 

wheat and winter wheat to correct for stationarity issues, but was not included in the 

sorghum estimation as stationarity was not an issue for that case. Additionally, the 

number of planted acres (Planted Acres) is included in the estimations of corn, cotton, 

sorghum, soybeans, and winter wheat to account for potential plant population density 

effects (Lyon, 2009) and any other potential effects from planting scale. Squared time 

and climate variables are also included as previous studies have determined quadratic 

relationships between climate attributes and crop yields (Mendelsohn et al. 1994; 

Schlenker and Roberts 2009; Huang 2015). 
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 The total marginal effect of the DCV phase combinations includes both their 

direct effect and indirect effect arising through the alteration of the climate variables and 

the climate effects on yields. As shown in equations 4 and 5, the climate variables are a 

function of the DCV phase combination and the crop yields are a function of both the 

climate variables and the DCV phase combination. Therefore, given that the DCV phase 

combinations are dummy variables that can take on a value of zero or one, the total 

marginal effect of the DCV phase combination l = 1,…,7 can be calculated by: 

𝑇𝐸𝑗,𝑙 = 𝛽𝑗
4

𝛼1
𝑙 + 𝛽𝑗

5
(𝛼1

𝑙
)2 + 𝛽𝑗

6
𝛼2

𝑙 + 𝛽𝑗
7

(𝛼2
𝑙
)2 + 𝛽𝑗

8
𝛼3

𝑙 + 𝛽𝑗
9
(𝛼3

𝑙
)2 + 𝛽𝑗

10
𝛼4

𝑙

+ 𝛽𝑗
11

(𝛼4
𝑙
)2 + 𝛽𝑗

12
𝛼5

𝑙 + 𝛽𝑗
13

(𝛼5
𝑙
)2 +  𝛽𝑗

𝑙+14
             (8) 

where there is a distinct total marginal effect for each crop and phase combination.  

3.4 Results 

The methodology used in this study considers both the direct and indirect effects 

of the phase combinations on yields. Indirectly, the phase combinations affect the 

climate variables which in turn affect crop yields, but there is also the potential that the 

phase combinations could directly impact crop yields. Therefore, the total effects of the 

phase combinations involve both types of effects. In order to find the total effects of 

DCV phase combinations on crop yields, we integrate both the effects of DCV on each 

of the climate variables and the climate variables effects on the crop yields along with 

the direct effects of DCV. Table 9 and 10 show the results of the DCV effects on the 

weather variables.  Table 11 shows the regression results for the effect of climate and 

DCV phase combinations on crop yields per acre and table 12 shows the total effect of 

the DCV phase combinations on yields. 
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Table 9. Regression Results for the Effect of DCV Phase Combinations on Spring Cropping Season 

Climate Variables 

Climate Var. 

(Overall R-sq) 
DT90_S 

(0.0121) 
DT00_S 

(0.0151) 
DP10_S 

(0.0029) 
TPCP_S 

(0.2342) 
MNTM_S 

(0.3285) 

PDO-TAG-WPWP- -1.3711*** 

(0.017) 

0.1006 

(0.257)     

0.5851*** 

(0.000)    

-0.7216*** 

(0.000)    

-0.616*** 

(0.000)    

PDO-TAG-WPWP+ 1.9801*** 

(0.000) 

-0.4029*** 

(0.000)    

0.2168*** 

(0.009)    

-2.0077***    

(0.000) 

-0.2355*** 

(0.000)    

PDO-TAG+WPWP- 1.2397* 

(0.166) 

-0.0608 

(0.553)    

-0.1126* 

(0.191)    

-2.9275***    

(0.000) 

3.4241*** 

(0.000)    

PDO-TAG+WPWP+ 4.7537*** 

(0.000) 

0.2084** 

(0.062)    

0.1884** 

(.060)    

-2.9077***    

(0.000) 

0.2503*** 

(0.000)    

PDO+TAG-WPWP- 2.2319*** 

(0.001) 

-0.0570 

(0.552)    

0.2568*** 

(0.033)    

-2.1203*** 

(0.000)      

-0.3956*** 

(0.000)   

PDO+TAG-WPWP+ 5.6969 ***   

(0.000) 

0.5667*** 

(0.001)    

0.3359***    

(0.001) 

-2.2395*** 

(0.000)    

4.3757*** 

(0.000)    

PDO+TAG+WPWP- 1.684*** 

(0.000)    

0.0228    

(0.706) 

0.2142*** 

(0.005)    

-2.5099*** 

(0.000)    

-0.7447*** 

(0.000)    

Year -0.0917*** 

(0.000)    

-0.0124*** 

(0.000)     

0.0008   

(0.715)  

0.0493*** 

(0.000)    

0.0532*** 

(0.000)    

Constant 213.2648*** 

(0.000)    

25.4347*** 

(0.000)    

3.6984    

(0.412) 

-62.7247***    

(0.000) 

-39.5294*** 

(0.000)    
Values in parenthesis are p-values. *** implies p-value ≤ 0.05; ** implies p-value ≤ 0.1; * implies p-value ≤ 0.2 

 

Table 10. Regression Results for the Effect of DCV Phase Combinations on Winter Cropping Season 

Climate Variables 

Climate Var. 

(Overall R-sq) 

DT90_W 

(0.0111) 

DT00_W 

(0.0141) 

DP10_W 

(0.0048) 

TPCP_W 

(0.0934) 

MNTM_W 

(0.2140) 

PDO-TAG-WPWP- -0.40461 

(0.272)    

2.2426*** 

(0.000)    

0.4929*** 

(0.001)    

0.8026***    

(0.000) 

0.4697*** 

(0.000)    

PDO-TAG-WPWP+ 0.7721***    

(0.011) 

2.1191***    

(0.000) 

0.3573***    

(0.000) 

-0.7983*** 

(0.000)    

0.4861*** 

(0.000)    

PDO-TAG+WPWP- 0.979***    

(0.030) 

0.5618*    

(0.134) 

-0.6373***    

(0.000) 

-2.7953***    

(0.000) 

2.4745*** 

(0.000)    

PDO-TAG+WPWP+ 2.8188***    

(0.000) 

0.7821***    

(0.001) 

0.4733***   

(0.000) 

-0.0621 

(0.615)    

1.0745*** 

(0.000)     

PDO+TAG-WPWP- 1.856948***    

(0.000) 

4.407***    

(0.000) 

0.3217***    

(0.010) 

-0.6806***      

(0.000) 

-0.0283*** 

(0.000)    

PDO+TAG-WPWP+ 3.2756***     

(0.000) 

1.3997***    

(0.000) 

0.1204    

(0.297) 

-1.0574***    

(0.000) 

4.3455*** 

(0.000)    

PDO+TAG+WPWP- 0.5302*** 

(0.034)    

1.7476*** 

(0.000)      

0.6599***    

(0.000) 

0.6196*** 

(0.000) 

0.3429*** 

(0.000)    

Year -0.0574***    

(0.000) 

-0.0586*** 

(0.000)    

0.004*    

(0.119) 

0.0193***   

(0.000) 

0.0228*** 

(0.000)    

Constant 133.1786***    

(0.000) 

124.5138***     

(0.000) 

-1.1931    

(0.814) 

-7.3829***     

(0.009) 

2.9483*** 

(0.000)    
Values in parenthesis are p-values. *** implies p-value ≤ 0.05; ** implies p-value ≤ 0.1; * implies p-value ≤ 0.2 
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Table 11. Regression Results for the Effect of Climate and DCV Phase Combinations on Crop Yields per Acre 

CROP 

(Overall R-sq) 
Corn 

(0.7761) 
Cotton 

(0.5241) 
Hay 

(0.8302) 
Sorghum 

(0.3490) 
Soybeans 

(0.7169) 
Spring Wheat 

(0.7421) 
Winter Wheat 

(0.8059) 

Yieldt-1 0.526*** 

(0.000) 

0.318*** 

(0.000)    

0.6895*** 

(0.000)    

 0.239***    

(0.000) 

0.649***    

(0.000) 

0.5596***    

(0.000) 

Year 5.0073    

(0.425) 

-402***    

(0.000) 

0.5848 ***   

(0.000) 

56.676***    

(0.000) 

-2.88918    

(0.268) 

0.7569    

(0.867) 

5.6779***    

(0.035) 

Year
2 

-0.001    

(0.509) 

0.103***     

(0.000) 

-0.0001***    

(0.000) 

-0.014***   

(0.000) 

0.0008    

(0.237) 

-0.0001 

(0.901)    

-0.0015***    

(0.045) 

DT90_S -0.6*** 

(0.000)    

-1.3242*    

(0.122) 

-0.0083***    

(0.000) 

-0.304***    

(0.000) 

-0.21*** 

(0.000)    

-0.27***    

(0.008) 

 

DT90_S
2
 0.002***  

(0.000)   

0.0049*    

(0.162) 

0.00002***    

(0.000) 

0.001***    

(0.000) 

0.001***    

(0.000) 

0.0019**    

(0.097) 

 

DT90_W       -0.0795***    
(0.01) 

DT90_W
2
       0.001***    

(0.000) 

DT00_S -0.4099    

(0.229) 

35.41***    

(0.025) 

-0.003    

(0.66) 

0.2442    

(0.625) 

-0.47***    

(0.004) 

-0.555**    

(0.083) 

 

DT00_S
2
 -0.0033  

(0.906)   

0.4888    

(0.946) 

.0004567    

(0.432) 

-.0054679    

(0.39) 

0.0164*    

(0.199) 

0.071*** 

(0.009)    

 

DT00_W       -0.1225***     

(0.004) 

DT00_W
2
       0.0016***     

(0.006) 

DP10_S 3.331***    

(0.033) 

11.1072    

(0.236) 

0.0507*** 

(0.000)    

3.8665***    

(0.000) 

1.324***   

(0.000) 

2.634***    

(0.021) 

 

DP10_S
2
 -0.133**    

(0.083) 

-0.4011    

(0.352) 

-0.0019***     

(0.048) 

-0.174***      

(0.000) 

-0.05***    

(0.005) 

-0.25***    

(0.005) 

 

DP10_W       0.0669    

(0.686) 

DP10_W
2
       -0.0091    

(0.142) 

TPCP_S -2.04***    

(0.000) 

-8.74***    

(0.014) 

-0.0091***    

(0.02) 

-1.56***    

(0.000) 

-0.46***    

(0.000) 

-1.6815 

(0.183)    

 

TPCP_S
2
 0.0382***    

(0.000) 
0.13783*** 

(0.005)    
0.0003***    

(0.000) 
0.0167***    

(0.000) 
0.008***   
(0.000) 

0.0318*    
(0.102) 

 

TPCP_W       0.8153***    

(0.027) 

TPCP_W
2
       -0.0153***    

(0.015) 

MNTM_S 2.7692*** 

(0.000)    

21.968***    

(0.004) 

0.0619*** 

(0.000)    

0.638*    

(0.18) 

1.049***    

(0.000) 

6.3031 

(0.853)     

 

MNTM_S
2
 -0.02***    

(0.001) 

-0.17***    

(0.014) 

-0.0003***    

(0.000) 

-0.008***    

(0.087) 

-0.003*    

(0.17) 

-0.0492    

(0.85) 

 

MNTM_W       2.3482    

(0.571) 

MNTM_W
2
       -0.0254 

(0.557)    

Planted Acres 0.0016**    

(0.059) 

-0.014**     

(0.093) 

 0.0023***    

(0.032) 

0.001***    

(0.015) 

 -0.0001    

(0.848) 

PDO-TAG-

WPWP- 

-0.0289    

(0.969) 

-6.2896    

(0.705) 

-0.005    

(0.740) 

-1.566***    

(0.045) 

-0.203    

(0.385) 

-1.52***    

(0.017) 

-1.105***    

(0.026) 

PDO-TAG-

WPWP+ 

0.3036  

(0.615)    

-0.4212   

(0.974) 

-0.0145    

(0.377) 

1.3625***    

(0.019) 

-0.413*    

(0.166) 

-1.548**    

(0.094) 

-1.217 ***   

(0.007) 

PDO-TAG+ 
WPWP- 

1.4991**    
(0.081) 

-21.278*    
(0.115) 

0.0167757    
(0.349) 

1.0379    
(0.267) 

-0.1372    
(0.656) 

0.0983    
(0.9) 

-0.9834***    
(0.008) 

PDO-TAG+ 
WPWP+ 

0.8506    
(0.273) 

-8.0994    
(0.524) 

-.0097563 
(0.484)    

1.9357***    
(0.014) 

-0.4792*    
(0.108) 

0.7924    
(0.272) 

-0.7457**    
(0.065) 

PDO+TAG-

WPWP- 

-2.1**    

(0.07) 

-9.2857    

(0.506) 

-0.0236    

(0.24) 

-2.5495***    

(0.042) 

-0.6475*    

(0.135) 

-0.4084    

(0.766) 

-1.8925***    

(0.000) 

PDO+TAG-

WPWP+ 

-4.31***    

(0.000) 

-58.2***    

(0.004) 

-0.042*** 

(0.032)     

-5.569***    

(0.000) 

-1.31***    

(0.004) 

-1.646**    

(0.081) 

-1.9464***    

(0.001) 

PDO+TAG+ 

WPWP- 

-0.5996    

(0.488) 

-28.182*    

(0.104) 

-0.0204    

(0.266) 

-4.141***    

(0.000) 

- 0.507*    

(0.195) 

1.380756     

(0.308) 

0.6262    

(0.258) 

Constant -5835.04    

(0.348) 

392247***       

(0.000) 

-585.5***    

(0.000) 

-56868***    

(0.000) 

2636.988    

(0.308) 

-1105.22    

(0.827) 

-5935.2***    

(0.026) 

Values in pnthesis are p-values. *** implies p-value ≤ 0.05; ** implies p-value ≤ 0.1; * implies p-value ≤ 0.2 
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Table 12. Total Effect of DCV Phase Combinations on Crop Yields 

 PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG-

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

Corn 2.4278 3.5977 15.9242 5.5308 0.8363 9.6856 2.3615 

Cotton -1.7546 -1.8983 73.7053 106.7677 -0.9757 71.5185 -20.8807 

Hay 0.0039 -0.0035 0.2337 0.0039 -0.0332 0.206 -0.0457 

Sorghum -0.3016 4.544 -1.3362 6.1234 0.8734 0.37171 -0.2837 

Soybeans 0.4814 0.3602 4.45 -2.2313 -0.1427 3.2564 -0.4486 

Spring 

Wheat 

-2.4225 0.7468 25.5071 6.6669 0.9009 28.0157 0.4907 

Winter 

Wheat 

0.4334 -1.0322 2.0816 1.4162 -3.1536 6.0098 1.7168 

 

 

3.4.1  PDO-TAG-WPWP- Effect on Climate Variables 

The phase combination where PDO, TAG, and WPWP are all in their negative 

phases has a mixture of effects on spring/summer and fall/winter weather variables. For 

the spring cropping season (March through September), this phase combination lowers 

the number of high heat days, the average temperature, and the total precipitation. On the 

other hand, for the winter cropping season (October to April), the phase combination 

increases the number of cold days, total precipitation, and overall temperature. Both 

cropping seasons show an increased number of days with at least one inch of 

precipitation during years with this phase combination. Spring seasons have experience 

decreased temperatures and more concentrated rainfall events while winter exhibit 

increased temperatures, and increased extreme cold days while also seeing increases in 

overall precipitation. 
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3.4.2  PDO-TAG-WPWP+ Effect on Climate Variables 

The phase combination characterized by negative PDO and TAG phases along 

with a positive WPWP phase has significant effects on all climate variables examined 

for both the spring/summer and winter cropping seasons. The number of  90℉ plus days 

increases under the PDO-TAG-WPWP+ years for both cropping seasons, however 

temperatures this high are rare during the fall winter cropping seasons regardless of the 

DCV phase combination. Similarly, the number of 0℉ or less days decrease for the 

spring cropping seasons and increase for the winter cropping season with few of these 

days occurring during the spring cropping season. Essentially, the winter cropping 

season has more extreme high and low temperature days during years with this phase 

combination. Increases in heavy rainfall events occur with this phase combination for 

both the spring and winter cropping seasons, however total precipitation decreases for 

both. The average temperature over the cropping season decreases for the spring, but 

increases for the winter. 

3.4.3  PDO-TAG+WPWP- Effect on Climate Variables 

The phase combination characterized by negative phases of PDO and WPWP and 

positive phase of TAG has very little effect on spring cropping season climate extremes; 

however this phase combination leads to increased high temperature days and decreased 

heavy rainfall days during the winter cropping season. For both spring and winter 

cropping seasons, increased temperatures in conjunction with decreased rainfall lead to 

overall hotter and drier conditions for years experiencing this phase combination. 
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3.4.4  PDO-TAG+WPWP+ Effect on Climate Variables 

The phase combination characterized by positive TAG and WPWP phases and a 

negative PDO phase has significant effects on extreme climate variables during both the 

spring and winter cropping season. Increased number of days with temperatures of at 

least 90℉ and the number of days with temperature less than or equal to 0℉ are 

experienced with this combination as well as increased number of days with at least one 

inch of precipitation and the mean temperature over the year. Surprisingly though, the 

total cumulative precipitation for the spring cropping season is reduced on average 

during these events.  

3.4.5  PDO+TAG-WPWP- Effect on Climate Variables 

The phase combination where TAG and WPWP are both in negative phases 

while PDO is in a positive phase increases climate extreme during these events. 

Increased number of days with at least 90℉ are experienced for both the spring and 

winter cropping seasons with increased number of days with temperatures less than or 

equal to 0℉ experienced during the winter cropping season. Additionally, for both 

cropping seasons, increased number of days with at least one inch of precipitation is 

experienced on average during these events. Despite the increased number of hot days 

and heavier rainfall days, the total cumulative precipitation and the average temperatures 

over both cropping seasons are decreased during these events implying that wider 

swings in the climate variables.  
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3.4.6  PDO+TAG-WPWP+ Effect on Climate Variables 

Similar to some of the aforementioned phase combination events, the phase 

combination characterized by positive phases of PDO and WPWP and the negative 

phase of TAG leads to increased extreme temperature events for both the spring and 

winter cropping seasons. While both increased numbers of 90℉ plus days as well as 

increased number of days with temperatures at or less than 0℉ are experienced on 

average, the average temperature for both cropping seasons increase during these events. 

Conversely, the total cumulative precipitation over each of the types of seasons decrease 

on average relative to the base case year average with only the spring cropping season 

experiencing significant increases in the number of days with at least one inch of 

precipitation. 

3.4.7  PDO+TAG+WPWP- Effect on Climate Variables 

The phase combination whereby PDO and TAG are in positive phases while 

WPWP is in a negative phase has differing effects on both total rainfall and average 

temperatures for the spring and winter cropping seasons. Both the spring and winter 

cropping seasons are characterized by increased numbers of  90℉ plus days and days 

with at least one inch of rainfall. The spring cropping season experiences decreases in 

total cumulative precipitation and average temperatures, while the winter cropping 

season experiences increases in the number of 0℉ or less days, total precipitation, and 

average temperature.  
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3.4.8  Corn Yields 

Corn yields are both directly and indirectly influenced by some of the DCV 

phase combinations. Directly, PDO-TAG+WPWP- phase combination has a significant 

positive effect on corn yields per acre. However, PDO+TAG-WPWP- and PDO+TAG-

WPWP+ both have significant negative direct effects on corn yields per acre beyond the 

base case with the latter phase combination reducing yields by 4.307 bushels per acre on 

average.  

The number of 90℉ plus days, the number of days with at least one inch of 

precipitation, total cumulative rainfall for the year, average yearly temperatures all 

significantly influence corn yields and are also influenced by the phase combinations. 

The number of 90℉ plus days decreases yields until there are approximately 150 hot 

days. PDO-TAG+WPWP+, PDO+TAG-WPWP-, PDO+TAG-WPWP+, and 

PDO+TAG+WPWP- phase combinations contribute to increased hot days, and 

therefore, indirectly reduce corn yields through this climate variable. However, PDO-

TAG-WPWP- phase combination has a negative impact on the number of hot days. 

Increases in average temperatures up to 64.12℉ increase corn yields, but decreases 

yields at higher average temperatures. The PDO-TAG+WPWP-, PDO-TAG+WPWP+, 

and PDO+TAG-WPWP+ phase combinations contribute to increases in average 

temperature beyond the base case with the remaining phase combinations reducing 

temperatures.  

The number of days with at least one inch of precipitation increases corn yields 

up to approximately 12 rainy days over the cropping season. All of the phase 
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combination except for PDO-TAG+WPWP- lead to increased rainy days beyond the 

PDO+TAG+WPWP+ case and therefore indirectly contribute to increased corn yields 

through increased rainy days. Total cumulative rainfall over the cropping season can 

have both a negative and positive impact on corn yields. It has a negative marginal effect 

for total precipitation less than 26.6 inches and a positive marginal effect beyond this. 

While the US average total precipitation is over 30 inches for all phase combinations, as 

little as 15.6 inches of total rainfall in a corn growing state has been recorded. All DCV 

phase combinations examined show significant reductions in total rainfall beyond the 

base case and may therefore either indirectly increase or decrease yields through changes 

in total precipitation. 

On average, all of the DCV phase combinations have a positive total effect on 

corn yields per acre beyond the PDO+TAG+WPWP+ base case. The PDO-

TAG+WPWP- phase combination has the largest total effect with 15.92 bushels per acre 

increases in corn yield. The PDO+TAG-WPWP- phase combination has the smallest 

total effect with increases of only 0.8363 bushels per acre.  

3.4.9  Cotton Yields 

Only the PDO+TAG-WPWP+ phase combination has a significant effect on 

cotton yields per acre at the 90% confidence level. While some of the DCV phase 

combinations contribute indirectly to changes in cotton yields, the PDO+TAG-WPWP+ 

directly influences cotton yields by reducing yields by 58.18 pounds per acre below the 

PDO+TAG+WPWP+ base case average.  
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Cotton yields are less effected by extreme weather than are corn yields, as only 

the number of days with temperatures less than or equal to 0℉ having a significant 

positive marginal effect on yields among the climate variables related to extremes. The 

PDO-TAG+WPWP+ and PDO+TAG-WPWP+ years are characterized by increases in 

the number of cold days which can indirectly lead to increased cotton yields while the 

PDO-TAG-WPWP+ phase combination reduces the number of cold days potentially 

indirectly decreasing yields. Additionally, the average temperature over the cropping 

season has a positive marginal effect on cotton yields up to 65.46℉ and a negative 

marginal effect beyond this. Again, the PDO-TAG+WPWP-, PDO-TAG+WPWP+, and 

PDO+TAG-WPWP+ phase combinations lead to increases in average temperature 

beyond the PDO+TAG+WPWP+  case with the other phase combinations reducing 

average temperatures.  

As is the case with corn yields, the total cumulative precipitation over the year 

has a negative marginal effect on cotton yields up to 31.7 inches and a positive marginal 

effect beyond this amount. The base case DCV phase combination has a greater amount 

of cumulative precipitation than the other phase combinations, but due to the quadratic 

relationship between cumulative precipitation and cotton yields, it is difficult to 

determine whether this phase combination would have a greater indirect effect than the 

other phase combinations on cotton yields. 

The PDO-TAG+WPWP-, PDO-TAG+WPWP+, and PDO+TAG-WPWP+ phase 

combinations all have positive total effects on cotton yields per acre beyond the base 

case with the PDO-TAG+WPWP+ phase combination leading to increases of 106.77 
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pounds per. The other four phase combinations have an overall negative total effect on 

cotton yields below the base case with the lowest yielding events expected to occur 

during the PDO+TAG+WPWP- phase combination years with yields decreased by 20.88 

pounds per acre below the base case.     

3.4.10  Hay Yields 

The climate variables and DCV phenomena exhibit similar effects to hay yields 

as they do to corn yields. The main difference is that only the PDO+TAG-WPWP+ 

phase combination has a significant effect on hay yields beyond the 

PDO+TAG+WPWP+ base case. This case directly lowers yields by about 0.04 tons per 

acre.      

The number of 90℉ plus days, the number of days with at least one inch of 

precipitation, total cumulative rainfall for the year, and average yearly temperatures all 

have a significant influence on hay yields. The number of 90℉ plus days decreases 

yields until there are approximately 214 hot days implying that in the majority of cases, 

the marginal effect is negative. PDO-TAG+WPWP+, PDO+TAG-WPWP-, PDO+TAG-

WPWP+, and PDO+TAG+WPWP- phase combinations contribute to increased hot days, 

and therefore, indirectly reduced hay yields. However, PDO-TAG-WPWP- phase 

combination has a negative impact on the number of hot days. Increases in average 

temperatures up to 91.87℉ increase hay yields, implying that in most cases, the 

marginal effect is positive. The PDO-TAG+WPWP-, PDO-TAG+WPWP+, and 

PDO+TAG-WPWP+ phase combinations contribute to increases in average temperature 

beyond the base case with the remaining phase combinations reducing temperatures.  
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The number of days with at least one inch of precipitation increases hay yields up 

to approximately 18.25 rainy days over the cropping season. All of the phase 

combination except for PDO-TAG+WPWP- lead to increased rainy days beyond the 

PDO+TAG+WPWP+ case and therefore indirectly contribute to increased hay yields 

through increased rainy days. Total cumulative rainfall over the cropping season can 

have both a negative and positive impact on hay yields. It has a negative marginal effect 

for total precipitation less than 17.56 inches and a positive marginal effect beyond this. 

While the US average total precipitation is over 30 inches for all phase combinations, as 

little as 15.6 inches of total rainfall in a corn growing state has been recorded. However, 

in most cases the marginal effect will be positive. All DCV phase combinations 

examined show significant reductions in total rainfall beyond the base case and may 

therefore either indirectly increase or decrease yields through changes in total 

precipitation. 

The PDO-TAG-WPWP-, PDO-TAG+WPWP-, PDO-TAG+WPWP+, 

PDO+TAG-WPWP+ phase combinations all have positive total effects on cotton yields 

per acre beyond the base case with the PDO-TAG+WPWP- phase combination leading 

to increases of 0.234 tons per acre. The other three phase combinations have an overall 

negative total effect on hay yields below the base case with the lowest yielding events 

expected to occur during the PDO+TAG+WPWP- phase combination years with yields 

decreased by 0.046 tons per acre below the base case. 
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3.4.11  Sorghum Yields 

The climate variables and DCV phenomena exhibit similar effects for sorghum 

yields as they do to corn and hay yields except that the average cropping season 

temperature does not have a significant impact on sorghum yields. Additionally, all 

DCV phase combinations apart from the PDO-TAG+WPWP- phase combination have 

significant direct effects on sorghum yields with the PDO-TAG-WPWP+ and PDO-

TAG+WPWP+ phase combinations having positive direct effects. The PDO-

TAG+WPWP+ phase combination has the largest positive direct effect and the 

PDO+TAG+WPWP- phase combination has the largest negative direct effect on 

sorghum yields.       

The number of 90℉ plus days, the number of days with at least one inch of 

precipitation, and total cumulative rainfall for the year all have significant influences on 

hay yields. The number of 90℉ plus days decreases yields until there are approximately 

144.9 hot days implying that in the majority of cases, the marginal effect of hot days on 

sorghum yields is negative. PDO-TAG+WPWP+, PDO+TAG-WPWP-, PDO+TAG-

WPWP+, and PDO+TAG+WPWP- phase combinations contribute to increased hot days, 

and therefore, indirectly reduced sorghum yields. However, PDO-TAG-WPWP- phase 

combination has a negative impact on the number of hot days.  

The number of days with at least one inch of precipitation increases sorghum 

yields up to approximately 11.12 rainy days over the cropping season which is above the 

cropping season totals for most states historically. All of the phase combination except 

for PDO-TAG+WPWP- lead to increased rainy days beyond the PDO+TAG+WPWP+ 
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case and therefore indirectly contribute to increased sorghum yields through increased 

rainy days. Total cumulative rainfall over the cropping season can have both a negative 

and positive impact on sorghum yields. It has a negative marginal effect for total 

precipitation less than 46.62 inches which is above most cropping season totals. All 

DCV phase combinations examined show significant reductions in total rainfall beyond 

the base case and may therefore either indirectly increase or decrease yields through 

changes in total precipitation. 

The PDO-TAG-WPWP+, PDO-TAG+WPWP+, PDO+TAG-WPWP-, and 

PDO+TAG-WPWP+ phase combinations all have positive total effects on sorghum 

yields per acre beyond the base case with the PDO-TAG+WPWP+ phase combination 

leading to increases of 6.12 bushels per acre. The other three phase combinations have 

an overall negative total effect on sorghum yields below the base case with the lowest 

yielding events expected to occur during the PDO-TAG+WPWP- phase combination 

years with yields decreased by 1.34 bushels per acre below the base case. 

3.4.12  Soybean Yields 

The DCV phenomena exhibit similar direct effects for soybean yields as they do 

to hay yields in that only the PDO+TAG-WPWP+ phase combination has a significant 

effect on hay yields beyond the PDO+TAG+WPWP+ base case. For soybean yields, this 

phase combination directly lowers yields by about 1.31 bushels per acre.      

The number of 90℉ plus days, the number of days with temperatures less than or 

equal to 0℉, the number of days with at least one inch of precipitation, total cumulative 

rainfall for the year, and average yearly temperatures all have a significant influence on 
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soybean yields. The number of 90℉ plus days decreases yields until there are 

approximately 139.69 hot days implying that in the majority of cases, the marginal effect 

is negative. PDO-TAG+WPWP+, PDO+TAG-WPWP-, PDO+TAG-WPWP+, and 

PDO+TAG+WPWP- phase combinations contribute to increased hot days, and 

therefore, indirectly reduced soybean yields. However, PDO-TAG-WPWP- phase 

combination has a negative impact on the number of hot days. Additionally, the number 

of cold days has a negative marginal effect on soybean yields. The PDO-TAG+WPWP+ 

and PDO+TAG-WPWP+ years are characterized by increases in the number of cold 

days which can indirectly lead to increased soybean yields while the PDO-TAG-

WPWP+ phase combination reduces the number of cold days potentially indirectly 

decreasing yields. Also, average cropping season temperature has a positive marginal 

effect on soybean yields. The PDO-TAG+WPWP-, PDO-TAG+WPWP+, and 

PDO+TAG-WPWP+ phase combinations contribute to increases in average temperature 

beyond the base case with the remaining phase combinations reducing temperatures.  

The number of days with at least one inch of precipitation increases hay yields up 

to approximately 14.72 rainy days over the cropping season. All of the phase 

combination except for PDO-TAG+WPWP- lead to increased rainy days beyond the 

PDO+TAG+WPWP+ case and therefore indirectly contribute to increased hay yields 

through increased rainy days. Total cumulative rainfall over the cropping season can 

have both a negative and positive impact on hay yields as well. There is a negative 

marginal effect for total precipitation less than 29.35 inches and a positive marginal 

effect beyond this. As the US average total precipitation is over 30 inches for all phase 
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combinations, it is unclear if the marginal effect will be negative or positive in many 

instances. All DCV phase combinations examined show significant reductions in total 

rainfall beyond the base case and may therefore either indirectly increase or decrease 

yields through changes in total precipitation. 

The PDO-TAG-WPWP-, PDO-TAG-WPWP+, PDO-TAG+WPWP-, 

PDO+TAG-WPWP+ phase combinations all have positive total effects on soybean 

yields per acre beyond the base case with the PDO-TAG+WPWP- phase combination 

leading to increases of 4.45 bushels per acre. The other three phase combinations have 

an overall negative total effect on soybean yields below the base case with the lowest 

yielding events expected to occur during the PDO-TAG+WPWP+ phase combination 

years with yields decreased by 2.23 bushels per acre below the base case. 

3.4.13  Spring Wheat Yields 

The PDO-TAG-WPWP-, PDO-TAG-WPWP+, and PDO+TAG-WPWP+ 

phenomena all exhibit significant negative direct effects on spring wheat yields beyond 

the base case of PDO+TAG+WPWP+. While all three of these combinations have a 

similar direct impact on spring wheat yields, the PDO-TAG-WPWP+ phase combination 

has the largest yield reduction with 1.55 bushels per acre attributed to the direct effect. 

The number of 90℉ plus days, the number of days with temperatures less than or 

equal to 0℉, and the number of days with at least one inch of precipitation all have a 

significant influence on spring wheat yields, but unlike most other crops, total 

cumulative rainfall for the year and average yearly temperatures do not have a 

significant marginal effect on spring wheat yields. The number of 90℉ plus days 
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decreases spring wheat yields until there are approximately 70.75 hot days. PDO-

TAG+WPWP+, PDO+TAG-WPWP-, PDO+TAG-WPWP+, and PDO+TAG+WPWP- 

phase combinations contribute to increased hot days, and therefore, indirectly reduced 

hay yields. However, PDO-TAG-WPWP- phase combination has a negative impact on 

the number of hot days. Additionally, the number of cold days has a negative marginal 

effect on soybean yields until there are 3.89 cold days, and there is a positive marginal 

effect beyond this. This is a reasonable finding as spring wheat tends to be grown in the 

northern regions of the US. The PDO-TAG+WPWP+ and PDO+TAG-WPWP+ years 

are characterized by increases in the number of cold days which can indirectly lead to 

increased spring wheat yields while the PDO-TAG-WPWP+ phase combination reduces 

the number of cold days potentially indirectly decreasing yields.  

The number of days with at least one inch of precipitation increases hay yields up 

to approximately 5.32 rainy days over the cropping season. All of the phase combination 

except for PDO-TAG+WPWP- lead to increased rainy days beyond the 

PDO+TAG+WPWP+ case and therefore indirectly contribute to increased spring wheat 

yields through increased rainy days.  

All DCV phase combinations have positive total effects on spring wheat yields 

per acre beyond the base case except for the PDO-TAG-WPWP- phase combination 

which leads to yield decreases of 2.42 bushels per acre. The PDO+TAG-WPWP+ phase 

combination has the largest positive effect on yields beyond the base case with increases 

28.02 bushels per acre expected during these years. 
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3.4.14  Winter Wheat Yields 

All of the DCV phenomena apart from the PDO+TAG+WPWP- phase 

combination exhibit significant negative direct effects on winter wheat yields beyond the 

base case of PDO+TAG+WPWP+. The PDO+TAG-WPWP+ phase combination has the 

largest yield reduction with 1.95 bushels per acre attributed to the direct effect. 

The number of 90℉ plus days, the number of days with temperatures less than or 

equal to 0℉, and the total cumulative precipitation over the cropping season all have a 

significant influence on winter wheat yields. The number of 90℉ plus days decreases 

winter wheat yields until there are approximately 39.3 hot days. All DCV phase 

combinations contribute to increased hot days except for PDO-TAG-WPWP- (which 

does not have a significant effect) and therefore, these phase combinations indirectly 

contribute to reduced winter wheat yields. Additionally, the number of cold days has a 

negative marginal effect on soybean yields until there are 38.78 cold days, which is 

above the average number of cold days in most instances. Therefore, the marginal effect 

of cold days is expected to be negative. All phase combinations are characterized by 

increases in the number of cold days which can indirectly lead to increased winter wheat 

yields.  

The amount of total cumulative precipitation is expected to increase winter wheat 

yields up to approximately 26.59 inches over the cropping season. The PDO-TAG-

WPWP- and PDO+TAG+WPWP- phase combinations increase total precipitation while 

the PDO-TAG-WPWP+, PDO-TAG+WPWP-, PDO+TAG-WPWP-, and PDO-TAG-

WPWP- phase combinations reduced total precipitation from the base case. Therefore, 
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the indirect effect of the DCV phase combinations on winter wheat yields through 

changes in total precipitation are highly dependent on the phase combination observed. 

The PDO-TAG-WPWP-, PDO-TAG+WPWP-, PDO-TAG+WPWP+, 

PDO+TAG-WPWP+, and PDO+TAG+WPWP- phase combinations all have positive 

total effects on winter wheat yields. The PDO+TAG-WPWP+ phase combination has the 

largest effect with increase yields of 6.01 bushels per acre above the base case seen on 

average during these years. The PDO-TAG-WPWP+ and PDO+TAG-WPWP- phase 

combinations both reduce yields with PDO+TAG-WPWP- reducing yields by 3.15 

bushels per acre below base yields. 

3.5 Conclusions 

Through the investigation of DCV impacts on climate and the direct impact on 

corn, cotton, hay, sorghum, soybeans, spring wheat, and winter wheat yields, we are able 

to determine the total effect of these phase combinations on crop yields. Across most 

crops, the PDO+TAG-WPWP+ phase combination has the largest direct effect on yields. 

However, the PDO-TAG+WPWP-, PDO-TAG+WPWP+, and PDO+TAG-WPWP+ 

have overall the largest effect on crops beyond the base case. These findings give an 

indication of how yields are expected to change under these scenarios and thus provide 

useful information that farmers can use when making planting decisions.  

Future research could examine other crops such as potatoes and some fruits 

commonly grown in the US and extend the years included in the dataset. Also, future 

work will be examining regional differences in DCV effects on yields. These extensions 

to this work should provide a more complete understanding of these effects on US 
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agriculture as a whole. The following essay utilizes the findings of this work to 

determine the value of DCV information to the US agricultural sector. 
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4. THE VALUE OF DCV INFORMATION ON U.S. AGRICULTURE 

 

4.1 Introduction 

Decadal climate variability (DCV) phenomena phase combinations have both 

direct and indirect effects on crop yields as shown in the previous section.  Through the 

examination of the Pacific Decadal Oscillation (PDO), the Tropical Atlantic Gradient 

(TAG), and the West Pacific Warm Pool (WPWP) phase combinations, we were able to 

determine the degree to which these phase combination affect climate variables and in 

turn, their total effect on crop yields in the US.  

While these finding are relevant for farmers making planning decisions, more 

can be gleaned from this information that can be useful in a policy making setting. 

Firstly, determining the value of the total consumer and producer surplus, welfare 

changes resulting from these DCV phase combination events can give policy makers an 

indication of expected economic returns from providing such information. Further, 

through the investigation of welfare changes resulting from increased levels of 

information on DCV phenomena allowing farmers to make optimal growing decisions, 

policy makers can be provided more information to see the value of potentially increased 

levels of effort to improve forecasts and disseminate yield information. 

Three ocean-related DCV phenomena are examined in this study: PDO, TAG, 

and WPWP. As discussed in the previous section, these phenomena are characterized as 

exhibiting either a positive or negative phase as discussed in Ding (2014), Jithitikulchai 
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(2014) and Huang (2015). Jointly, there are eight possible phase combinations that might 

exist at any time: PDO+TAG+WPWP+, PDO+TAG+WPWP-, PDO+TAG-WPWP+, 

PDO-TAG+WPWP+, PDO+TAG-WPWP-, PDO-TAG+WPWP-, PDO-TAG-WPWP+, 

and PDO-TAG-WPWP-. These will be used in characterizing the state of the DCV.  

Farmers have several ways in which to adapt to DCV climate effects including 

changing crop mix and management practices. However, farmers need knowledge of the 

expected climate and yield changes resulting from DCV in order to adapt crop mix and 

practices appropriately.  

From a practical standpoint, knowledge of DCV phenomena can be valuable to 

farmers if climate phenomena and yield impacts are foreseeable. If farmers are given 

information on DCV phenomena and their climate/yield implications sufficiently in 

advance of the time when climate sensitive decisions are made, they can alter their 

practices in order to increase profitability. Several studies have examined the value of 

increased ocean related climate information and have found potential for significant 

gains in welfare. For example, in an ENSO context we have Solow et al. (1998), Mjelde 

and Hill (1999), Chen and McCarl (2000), Chen et al. (2002), Letson et al. (2005), and 

Hill et al. (2000) and for DCV we have Kim and McCarl (2005), Huang and McCarl 

(2014) and Ding (2014). 

Using the yield effects from DCV phenomena found in section 3, this study finds 

consumers and producers surplus welfare benefits of DCV information for the US 

following the work of Huang (2015) and Ding (2014) and the stochastic model used in 

Chen and McCarl (2000), and Chen et al. (2002). We examine how expected welfare 
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changes between the uninformed case where farmers make decisions based on a 

historical probability distribution of phase combinations and yields, a conditional case 

where farmers receive information on next year’s phase combination and yields given 

this year’s combination, and a perfect case where the farmers have perfect knowledge of 

next year’s phase combination as in Ding (2014) and Huang (2015) byt at a US national 

level. This study will add to the literature by giving a national estimate of the value of 

information for DCV forecasts. Previous studies have looked at various aspects around 

the effect of DCV phase combinations on observed regional crop yields (Mehta et al., 

2012; Ding 2014; Huang, 2015; and others), but this study will be unique in that it 

examines yields and welfare at a national scale enabling us to find more informative 

effects from DCV phenomena and a national level value of information on these events.   

The value of information on ocean related climate phenomena has been 

researched in multiple contexts, the value of ENSO information being one of the most 

commonly researched. Adams et al. (2003) investigated the value of an early warning 

system for three phase ENSO events for the Mexican agricultural sector and found 

potential benefits of the system to be around $10 million annually. For the US, Solow et 

al. (1998) found the value of perfect ENSO prediction to be around $323 million. Ding 

(2014) examined the value of DCV forecasts for the Edward’s aquifer region and found 

that the value of perfect information for just this region is around $40.25 million 

annually, while Fernandez Cadena (2013) examined the Missouri River Basin and found 

the value of perfect DCV information to be 5.2 billion dollars on average over 10 years 

and Huang found xxx. These studies, among others, give evidence that an examination 
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of welfare benefits from increased forecasting ability and distribution of this information 

at the US national scale of DCV phenomena could be beneficial to policy makers 

considering the value of spending on increased technology in this area. 

4.2 Model and Methods 

In order to estimate the value of DCV phase information, we examine how 

agricultural decisions and welfare will vary with and without a priori information on 

phase combinations.  This will be done following the regional scale DCV approaches in 

Ding (2014) and Huang (2015) and the national ENSO approach in Adams et al. (1995) 

and others. It is assumed that the DCV phase combinations are the only stochastic 

component of the model and all climate variables take on the corresponding mean 

values. Following Huang (2015), three cases are looked at: the uninformed (base) case 

where the probability of each phase combination is determined by its historical 

probability 𝑝𝑖, the conditional case whereby the expectation of next year’s phase 

combination is conditional on this year’s phase combination and based on observed 

historical transitions, and the perfect case where farmers have perfect information on 

next year’s phase combination. That is, in the uninformed case societal producers and 

consumers are seeking to maximize their expected welfare 𝑊𝑜 given historical 

probabilities of DCV phase combinations 𝑖 (𝑖 = 1, … 𝑆; 𝑆 = 8). The probabilities are 

derived based on the relative incidence of phase combinations over a 50 year period as in 

equation 9: 

𝑊𝑜 = max
𝑥

∑ 𝑝𝑖(𝑊𝑖(𝒙))

𝑠

𝑖=1

                                                        (9) 
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where 𝑊𝑖 is the welfare in thre form of consumer plus producer surplus  that arises when 

phase combination I arises 𝒙 are decision variables that are set before the phase 

combianation is known using the stochastic model as explained in Chen and McCarl.  

In the conditional case, 𝑝𝑖 is replaced with 𝜋𝑗𝑖 from equation 11 where 𝑗 is the last year’s 

DCV phase combination: 

𝜋𝑗𝑖 = Pr(𝐷𝐶𝑉𝑡 = 𝑖|𝐷𝐶𝑉𝑡−1 = 𝑗)                                         (10) 

Showing the probability of reaching state I given this year we are in state jso that the 

expected welfare from providing conditional DCV probabilities 𝑊1 is found from:  

𝑊𝑗
1 = max

𝒙𝑖

∑ 𝜋𝑗𝑖 (𝑊𝑖𝑖𝑗(𝒙𝒋))

𝑠

𝑖=1

                                                (11) 

𝑊1 =  ∑ 𝑝𝑗𝑊𝑗
1

𝑆

𝑗=1

                                                                        (12) 

and the expected welfare from having perfect forecasting ability of DCV phase 

combinations 𝑊2 is: 

𝑊𝑖
2 = max

𝒙𝑖

 (𝑊𝑖(𝑥𝑖)                                                                     (13) 

𝑊2 =  ∑ 𝑝𝑖𝑊𝑖
2

𝑆

𝑖=1

                                                                          (14) 

The value of information can then be thought of as the difference in maximized welfare 

(consumer plus producer surplus) between the uninformed case and either the 

conditional information case or the perfect information case.  

This will be done by using the stochastic version of the agricultural part of the 

Forest and Agricultural Sector Optimization Model (FASOMGHG) which is a nonlinear 



61 

 

dynamic optimization model that maximizes the net present value of total welfare 

associated with the US forest and agricultural sector (Adams et al., 2005) as originally 

discussed in Lambert et al. (1995) and as used for ENSO phenomena in Chen and 

McCarl (2000).  

In this model, the total welfare is defined as the sum of expected consumer and 

producer surplus. Subjected to a set of supply demand balances and restricted resources, 

the model maximizes the sum of consumer and producer surplus across a number of 

possible stochastic yield outcomes in order to simulate competitive market equilibrium 

(Adams et al. 2005). Therefore, the value of the objective function for the model is the 

sum of consumer and producer surplus. As this is a stochastic model, it maximizes the 

expected sum of consumer and producer surplus given different states of nature. 

Additionally, the model derives factor demand schedules considering demand for output, 

different production possibilities, and input supply already available (Adams et al. 

2005). 

FASOM allows us to consider 63 production regions and 11 market regions 

within the US. Table 13 shows the market regions and states/sub state region considered 

in this model. In order to account for potential regional differences in DCV effects, 

region specific total effects are considered. Table 14 through 23 show regional effects of 

DCV phenomena found using the methods outlined in essay two.  While considering 

region specific total effects is beneficial in that it allows us to more accurately determine 

the effects for a given location, one drawback is that our sample sizes are severely 

reduced with smaller regions considered. 
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Table 13. Regions in FASOMGHG 

Regions States and Subregions  

Corn Belt (CB) Illinois north and south, Indiana north and south, 

Iowa northeast, west central and south, Missouri, 

Ohio Northwest, Northeast and South 

Northern Plains (NP) Kansas, Nebraska, North Dakota, South Dakota 

Lake States (LS) Michigan, Minnesota, Wisconsin  

Northeast (NE) Connecticut, Delaware, Maine, Maryland, 

Massachusetts, New Hampshire, New Jersey, 

New York, Pennsylvania, Rhode Island, Vermont, 

West Virginia  

Pacific Northwest - East Side (PNWE) Oregon and Washington (West of Cascade 

Mountains)  

Pacific Northwest - West Side (PNWW) Oregon and Washington (East of Cascade 

Mountains) 

Pacific Southwest (PSW) California north and south 

Rocky Mountains (RM) Arizona, Colorado, Idaho, Montana, Eastern 

Oregon, Nevada, New Mexico, Utah, Eastern 

Washington, Wyoming 

South Central (SC) Alabama, Arkansas, Kentucky, Louisiana, 

Mississippi, Oklahoma, Tennessee, Eastern Texas 

Southeast (SE) Virginia, North Carolina, South Carolina, 

Georgia, Florida 

Southwest (SW) Western and Central Oklahoma, Texas (High 

Plains, Rolling Plains, Central Blacklands, 

Edwards Plateau, Coastal Bend, South and Trans 

Pecos) 
Source: Adams et al. (2005) 

 

Table 14. Corn Belt Total Effects on Yield  

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn 39.505 45.755 -96.8346 39.4982 59.5498 -162.47 74.3759 0 

Cotton NA NA NA NA NA NA NA NA 

Hay -15.2693 2.6148 119.678 22.0437 -1.9061 141.4178 -14.4295 0 

Sorghum -55.6573 -14.8237 354.137 35.9426 -41.0944 433.5322 -71.3676 0 

Soybeans 10.3092 3.1817 -66.5231 -5.5316 8.5717 -85.4906 13.0523 0 

Spring 

Wheat 
NA NA NA NA NA NA NA NA 

Winter 

Wheat 
12.4306 -13.9882 -73.0843 -30.6758 1.4074 -130.004 -8.272 0 
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Table 15. Northern Plains Total Effects on Yield 

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn 
-

39.5109 
1.7244 254.1332 32.3509 -13.3842 300.4318 -31.223 0 

Cotton NA NA NA NA NA NA NA NA 

Hay -5.0141 -2.5055 23.9158 -0.5234 -3.6918 30.6175 -6.7126 0 

Sorghum 
-

51.8514 
0.6587 328.181 39.0814 -17.2554 384.0681 -46.3096 0 

Soybeans 
-

20.3555 
-4.6176 114.8565 6.0201 -11.6224 125.7211 -24.1531 0 

Spring 

Wheat 

-

62.2209 
-22.9667 318.8011 5.6871 -38.2708 393.0301 -76.9423 0 

Winter 

Wheat 
20.2141 39.4101 179.1817 45.1067 3.8277 261.8892 10.6119 0 

 

Table 16. Lake States Total Effects on Yield 

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn 26.5361 17.894 -136.066 17.1952 16.7271 -179.7242 39.5457 0 

Cotton NA NA NA NA NA NA NA 0 

Hay -5.701 -2.6189 28.8453 -2.6064 -4.1228 36.5673 -7.5961 0 

Sorghum NA NA NA NA NA NA NA 0 

Soybeans 25.1898 2.9731 -169.341 -2.1944 9.242 -202.9899 25.6355 0 

Spring 

Wheat 
NA NA NA NA NA NA NA 0 

Winter 

Wheat 
44.9258 51.4346 232.4805 43.1289 3.4984 379.1328 35.0619 0 

 

Table 17. Northeast Total Effects on Yield 

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn -27.467 -7.9122 153.1013 8.319 -11.2217 178.9678 -25.5461 0 

Cotton NA NA NA NA NA NA NA 0 

Hay -0.2455 -0.2722 0.9128 -0.2391 -0.2606 1.3642 -0.3742 0 

Sorghum -3533.7 -850.64 18707.33 -518.51 -2715.29 23854.12 -4849.49 0 

Soybeans -5.652 -4.1106 32.3626 -2.1756 -6.3906 38.5224 -10.8006 0 

Spring 

Wheat 
NA NA NA NA NA NA NA NA 

Winter 

Wheat 
2.9541 5.6926 30.5312 8.4563 0.5837 37.9005 1.231 0 
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Table 18. Pacific Northwest Total Effects on Yield 

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn -148.85 -81.0364 703.2578 -64.6256 -106.722 924.4058 -189.977 0 

Cotton NA NA NA NA NA NA NA NA 

Hay 0.2071 -0.2032 -3.5213 -0.2551 0.144 -3.7941 0.357 0 

Sorghum NA NA NA NA NA NA NA NA 

Soybeans NA NA NA NA NA NA NA NA 

Spring 

Wheat 
NA NA NA NA NA NA NA NA 

Winter 

Wheat 
47.8386 54.8823 311.5709 98.1921 7.008 522.7398 34.5381 0 

 

Table 19. Pacific Southwest Total Effects on Yield 

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn 
-

21.5603 
1.1207 197.8596 29.8778 -1.4517 223.4634 -25.093 0 

Cotton -190.5 313.5 1958.84 946.7468 191.025 2182.9504 28.055 0 

Hay -2.2294 -1.0852 11.0679 0.6197 -1.8326 13.3862 -2.9653 0 

Sorghum 76.5691 60.4421 -230.16 38.5524 85.8043 -332.0612 120.179 0 

Soybeans 45.293 51.2878 -98.19 76.6414 68.0854 -163.6154 80.492 0 

Spring 

Wheat 
NA NA NA NA NA NA NA NA 

Winter 

Wheat 
11.6412 10.5963 43.0076 36.4459 0.352 94.5799 12.3032 0 

 

Table 20. Rocky Mountain Total Effects on Yield 

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn -72.0547 -27.97 372.5 -2.8237 -48.7561 460.1487 -87.0028 0 

Cotton 806.651 504.471 -3903.9 586.806 679.596 -5133.74 1186.3676 0 

Hay -1.9261 -0.7596 10.1109 -4.3E-05 -1.2464 12.6685 -2.2993 0 

Sorghum 284.7624 132.3631 -1489.6 57.7875 202.6168 -1900.74 367.5333 0 

Soybeans NA NA NA NA NA NA NA NA 

Spring 

Wheat 
14.6731 3.9811 -106.31 -2.9564 14.7564 -133.663 27.4479 0 

Winter 

Wheat 
1.4328 1.5012 7.4723 2.316 -0.0461 12.6544 1.0404 0 
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Table 21. South Central Total Effects on Yield 

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn -168.015 -64.4558 1043.289 225.459 -121.544 1309.52 -222.33 0 

Cotton 961.386 762.266 -2522.731 -585.82 877.276 -3873.032 1298.97 0 

Hay -0.1068 -0.3046 0.5441 -0.1431 -0.4298 0.8547 -0.5097 0 

Sorghum -50.5095 -31.5854 246.9777 47.5998 -46.8254 328.6498 -77.925 0 

Soybeans 11.062 5.2969 -32.0157 -8.6306 5.5929 -43.8664 11.9381 0 

Spring 

Wheat 
NA NA NA NA NA NA NA NA 

Winter 

Wheat 
-6.7925 -6.0642 -32.4591 -23.979 -2.2496 -57.3253 -3.6866 0 

 

Table 22. Southeast Total Effects on Yield 

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn 45.6915 24.1356 -165.0841 -42.1482 26.2128 -241.21 59.0863 0 

Cotton -1197.1 -397.701 6950.2 1641.613 -622.568 8644.854 -1304.8 0 

Hay -1.35 -0.83 7.0191 1.2607 -1.5388 9.2524 -2.1435 0 

Sorghum -24.129 -13.6107 111.0438 19.0226 -21.5598 133.5057 -36.757 0 

Soybeans -7.5346 1.197 67.7718 16.8681 -2.4891 77.6573 -5.8249 0 

Spring 

Wheat 
NA NA NA NA NA NA NA NA 

Winter 

Wheat 
-1.6396 -17.0698 -81.5064 -35.9633 -9.5651 -109.175 1.1666 0 

 

Table 23. Southwest Total Effects on Yield 

 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Corn 104.724 35.0073 -541.1858 -164.713 -157.664 -683.254 
113.627

8 
0 

Cotton 353.167 406.84 -1113.938 -28.7485 -156.663 -1729.56 675.085 0 

Hay 2.8078 1.4477 -12.2799 -3.1484 -3.1983 -15.8855 3.292 0 

Sorghum 15.7305 32.8237 50.5082 39.2816 25.5115 53.2313 33.7608 0 

Soybeans 62.8415 32.8074 -271.2953 -70.0499 -72.8297 -358.447 76.322 0 

Spring 

Wheat 
NA NA NA NA NA NA NA 0 

Winter 

Wheat 
-34.404 -32.6783 -167.7432 -122.748 1.277 -296.21 -25.449 0 
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In order to determine the welfare benefits of information on DCV phase 

combinations, we calculated the percentage change in average crop yields for each state 

from each of the phase combinations relative to the base case of PDO+TAG+WPWP+ 

using the regional total effects calculated. This information along with the conditional 

probabilities of the phase combinations are incorporated into FASOM to compute the 

welfare changes induced by increased information. Table 24 shows frequency based 

probabilities and 25 shows the conditional probabilities for the DCV phase 

combinations. 

 

Table 24. Historical Frequency Based Probabilities of DCV Events 

PDO-TAG-WPWP- 0.14754 

PDO-TAG-WPWP+ 0.11475 

PDO-TAG+WPWP- 0.06447 

PDO-TAG+WPWP+ 0.22951 

PDO+TAG-WPWP- 0.08197 

PDO+TAG-WPWP+ 0.08197 

PDO+TAG+WPWP- 0.16393 

PDO+TAG+WPWP+ 0.11475 
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Table 25. Conditional Probabilities of DCV Events as Observed Historically 

 PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

PDO-

TAG-

WPWP- 

0.2 0.3 0.1 0.1 0 0.1 0.2 0 

PDO-

TAG-

WPWP+ 

0.25 0.125 0.125 0.375 0 0 0 0.12 

PDO-

TAG+ 

WPWP- 

0 0.25 0.25 0.25 0 0.25 0 0 

PDO-

TAG+ 

WPWP+ 

0.25 0.0833 0.0833 0.5 0 0 0 0.0833 

PDO+ 

TAG-

WPWP- 

0.2 0 0 0 0.4 0 0.4 0 

PDO+ 

TAG- 

WPWP+ 

0.2 0 0 0 0 0.4 0.2 0.2 

PDO+ 

TAG+ 

WPWP- 

0 0 0 0.1 0.3 0.1 0.3 0.2 

PDO+ 

TAG+ 

WPWP+ 

0 0.2857 0 0.1429 0 0 0.2857 0.2857 

 

4.3 Results 

For both the conditional and perfect information cases, our findings show that 

there are positive welfare gains to be made by increasing information on DCV 

phenomena. Our initial estimates using uniform probabilities in lieu of historically 

observed probabilities for 𝑝𝑖 indicate that that the use of conditional probabilities when 

farmers are making planning decisions can increase welfare by about $3.52 billion 

annually. Additionally, perfect information on the DCV phase combination for the year 

can induce welfare gains of about $3.54 billion annually.  
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The potential welfare gains from increased information on DCV phase occurs 

because farmers are able to make adaptive, better performing planting decisions. 

Knowing which crops will see gains and losses in yields with the different phenomena 

gives the farmers an opportunity to move adjust acreage to different crops. Table 26 and 

27 show summaries of some of the main acreage changes from the base case of no DCV 

information to the conditional and perfect information cases. Some regions did not show 

any significant changes in acres grown of the crops investigated under the scenarios. 

However, in the regions discussed below, potential economic gains can be made by 

adjusting crop acres grown. 
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Table 26. Changes in Acres Planted Under Conditional Information 

Region Crop 

PDO-

TAG-

WPWP- 

PDO-

TAG-

WPWP+ 

PDO-

TAG+ 

WPWP- 

PDO-

TAG+ 

WPWP+ 

PDO+ 

TAG-

WPWP- 

PDO+ 

TAG- 

WPWP+ 

PDO+ 

TAG+ 

WPWP- 

PDO+ 

TAG+ 

WPWP+ 

Lake 

States 
Corn -72.98 0 -5817.77 -72.98 0 0 0 -72.98 

Lake 

States 

Soy-

beans 
-37.23 0 -2968.34 -37.23 0 0 0 -37.23 

Lake 

States 

Spring 

Wheat 
-14.07 0 -1121.73 -14.07 0 0 0 -14.07 

Lake 

States 
Hay -36.94 0 12387.1 -36.94 0 0 0 -36.94 

Plains 

(SW, 

NP) 

Cotton -0.97 0 235.775 -0.97 0 0 0 -0.97 

Plains 

(SW, 

NP) 

Corn 7.796 0 -1878.74 7.796 0 0 0 7.769 

Plains 

(SW, 

NP) 

Soy- 

beans 
6.977 0 -1687.08 6.977 0 0 0 6.977 

Plains 

(SW, 

NP) 

Winter 

Wheat 
2.212 0 -534.88 2.212 0 0 0 2.212 

Plains 

(SW, 

NP) 

Spring 

Wheat 
9.279 0 -2243.85 9.279 0 0 0 9.279 

Plains 

(SW, 

NP) 

Sor-

ghum 
-1.31 0 315.89 -1.31 0 0 0 -1.31 

Plains 

(SW, 

NP) 

Hay 560.638 0 -13533.9 560.638 0 0 0 560.638 

North 

East 
Corn 196.047 0 1906.14  196.047 0 0 0 196.047 

North 

East 

Soy-

beans 
125.64 0 1221.5 125.635 0 0 0 125.635 

North 

East 
Hay 95.264 0 -3657.3 95.264 0 0 0 95.264 
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Table 27. Changes in Acres Planted Under Perfect Information 

Region Crop 

PDO-

TAG-
WPWP- 

PDO-

TAG-
WPWP+ 

PDO-

TAG+ 
WPWP- 

PDO-

TAG+ 
WPWP+ 

PDO+ 

TAG-
WPWP- 

PDO+ 

TAG- 
WPWP+ 

PDO+ 

TAG+ 
WPWP- 

PDO+ 

TAG+ 
WPWP+ 

Western 

(PNW, 
PSW, 

RM) 

Cotton -43.32 0 -1.67 -43.32 0 0 0 -43.32 

Western  

(PNW, 
PSW, 

RM) 

Corn -148.78 0 -5.73 -148.78 0 0 0 -148.78 

Western 
(PNW, 

PSW, 

RM) 

Winter 

Wheat 
-428.19 0 -16.49 -428.19 0 0 0 -428.19 

Western 

(PNW, 

PSW, 

RM) 

Spring 

Wheat 
-321.48 0 -12.38 -321.48 0 0 0 -321.48 

Western 

(PNW, 

PSW, 
RM) 

Hay 1562.039 0 60.166 1562.039 0 0 0 1562.039 

Western 

(PNW, 
PSW, 

RM) 

Sorghum -19.45  0 -0.75 -19.45 0 0 0 -19.45 

Plains 

(SW, NP) 
Cotton -29499.1 0 -2850.06 -29499.1 0 0 0 -29499.1 

Plains 

(SW, NP) 
Corn -21491.2 0 -3639.43 -21491.2 0 0 0 -21491.2 

Plains 

(SW, NP) 
Soybeans -6097.86 0 -1778.06 -6097.86 0 0 0 -6097.86 

Plains 

(SW, NP) 

Winter 

Wheat 
-7098.28 0 -1772.91 -7098.28 0 0 0 -7098.28 

Plains 

(SW, NP) 

Spring 

Wheat 
52556.73 0 3388.556 52556.73 0 0 0 52556.73 

Plains 

(SW, NP) 
Sorghum -8574.7 0 -1004.96 -8575.47 0 0 0 -8575.47 

Plains 

(SW, NP) 
Hay 104120.6 0 16253.22 104120.6 0 0 0 104120.6 

Midwest 

(CB, LS)  
Cotton 258.316 0 9.95 258.316 0 0 0 258.316 

Midwest 

(CB, LS) 
Corn 86901.21 0 3347.253 86901.21 0 0 0 86901.21 

Midwest 

(CB, LS) 
Soybeans 63872.99 0 2460.254 63872.99 0 0 0 63872.99 

Midwest 

(CB, LS) 

Spring 

Wheat  
4151.985 0 159.926 4151.985 0 0 0 4151.985 

Midwest 

(CB, LS) 
Sorghum 3290.975 0 126.761 3290.975 0 0 0 3290.975 

Midwest 
(CB, LS) 

Hay -175326 0 -6753.18 -1175326 0 0 0 -1175326 

Midwest 

(CB, LS) 
Corn -48.62 0 -1238.63 -48.62 0 0 0 -48.62 

Northeast Soybeans -31.16 0 -793.77 -31.16 0 0 0 -31.16 

Northeast Hay 14977.54 0 6156.218 14977.54 0 0 0 14977.54 
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4.3.1 Adaptation with Conditional Information 

When provided DCV phase combination probabilities conditional on the last 

observed phase combination, profit maximizing farmers in some regions will choose to 

switch acres to and away from certain crops while not changing practices for others. It is 

expected that with this type of increased information, net total corn acres grown would 

increase by about 131,000 acres when the previous year’s phase combination was either 

PDO-TAG-WPWP-, PDO-TAG+WPWP+, or PDO+TAG+WPWP+. The Lake States 

region is expected to divert approximately 73,000 acres away from corn while the Plains 

and North East regions are expected to increase corn acres by about 8,000 and 196,000 

acres respectively. However, if the previous year’s DCV phase combination was PDO-

TAG+WPWP-, it is expected that a net of 5.8 million acres will be diverted from corn. 

The Lake States and Plains regions account for 5.8 and 1,9 million acres diverted 

respectively, while the North East region would optimally increase corn acres by 1.9 

million acres. 

Changes in acres devoted to cotton are not as large as those for corn under the 

case of conditional information, with little to no change in acreage in most cases. 

However, when the previous year’s phase combination was PDO-TAG+WPWP-, it is 

expected that 236,000 additional acres beyond the base case will be devoted to cotton 

with the bulk of this change occurring in the Plains region of the US. 

Large increases in land devoted to hay are expected with this set of information 

when the previous year’s phase combinations are PDO-TAG-WPWP-, PDO-

TAG+WPWP+, or PDO+TAG+WPWP+ with a net increase of 619,000 acres grown. 
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The Plains and North East regions are expected to increase acres devoted to hay by 

561,000 acres and 95,000 acres respectively, while the Lake States region is expected to 

decrease acres by 37,000 acres.  When experiencing the PDO-TAG+WPWP- phase 

combination in the previous year, net acres devoted to hay are expected to decrease by 

4.8 million acres. The Lake States region is expected to increase hay acres by 12.4 

million acres whereas the Plains and North East regions are expected to decrease hay 

acres by 13.5 and 3.7 million acres respectively.  

As is the case with cotton, acres devoted to sorghum are only expected to change 

significantly when the previous year had a PDO-TAG+WPWP- phase combination. In 

this case, net acres devoted to sorghum are expected to rise by 316,000 acres with the 

only change in acreage occurring in the Plains region. 

Acres devoted to soybeans are only expected to rise by approximately 95,000 

acres with this increased DCV information when the previous year’s phase combination 

was either PDO-TAG-WPWP-, PDO-TAG+WPWP+, or PDO+TAG+WPWP+ The 

North East region accounts for the majority of this change with 126,000 acres moved to 

soybean production. The Lake States and Plains regions are expected to move 37,000 

acres away from and 7,000 acres to soybean production respectively. When the previous 

year’s phase combination was PDO-TAG+WPWP-, 3.4 million acres are expected to be 

diverted from soybean production. The Lake States and Plains regions are expected to 

account for the majority of this diversion with 2,968 acres diverted in the Lake States 

and 1.7 million acres diverted in the Plains. Conversely, the North East region is 

expected to increase acres devoted to soybeans by 1.2 million acres. 
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Acres devoted to both spring wheat and winter wheat are only expected to 

significantly change when the previous year’s DCV phase combination was PDO-

TAG+WPWP-. In this case acres devoted to spring wheat are expected to decrease by 

3.4 million acres occurring in the Lake States and Plains regions. Acres devoted to 

winter wheat are expected to decrease by 535,000 acres in the Plains region only. 

4.3.2 Adaptation with Perfect Information 

When provided perfect information on the coming year’s DCV phase 

combination, profit maximizing farmers in some regions will choose to switch acreages 

to and away from certain crops while not changing practices for others. Acres are 

changed to a greater extent in the case of perfect information than the case of conditional 

information as farmers are able to more optimally maximize profits under growing 

conditions that are certain.  

Acres devoted to corn production increase significantly when the coming year’s 

DCV phase combination is known to be either PDO-TAG-WPWP-, PDO-

TAG+WPWP+, or PDO+TAG+WPWP+ with increases in acres grown of about 65.1 

million acres. The majority of this increase can be attributed to shifts toward growing 

corn in the Midwest region of 86.9 million acres. The Western, Plains, and North East 

regions are all expected to decrease acres devoted to corn with decreases of 149,000 

acres, 21.5 million acres, and 49,000 acres respectively. When the PDO-TAG+WPWP- 

phase combination is expected for the coming year, a net decrease of 1.5 million corn 

acres grown are expected. The Plains and North East regions are expected to account for 

the majority of this decrease with 3.6 million acres being diverted from corn in the 
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Plains region and 1.2 million acres being diverted in the North East region. However, in 

this case the Midwest is expected to increase corn acres by 3.3 million acres. 

When the PDO-TAG-WPWP-, PDO-TAG+WPWP+, PDO+TAG+WPWP or 

PDO-TAG+WPWP- phase combinations are expected for the coming year, net cotton 

acres planted are expected to decrease. Acres planted of cotton under PDO-TAG-

WPWP-, PDO-TAG+WPWP+, or PDO+TAG+WPWP+ conditions are expected to 

decrease by 29.3 million acres on net with the majority of this decrease occurring in the 

Western and Plains regions. The Midwest, however, is expected to increase acres planted 

by 258,000 acres. When the coming DCV phase combination is known to be PDO-

TAG+WPWP-, a total of 2.9 million acres are expected to be diverted from cotton with 

2.9 million of these acres being diverted in the Plains region.    

Hay production is expected to see large changes in acres grown when perfect 

DCV forecasting is available to farmers. When it is known that either the PDO-TAG-

WPWP-, PDO-TAG+WPWP+, or PDO+TAG+WPWP+ phase combinations are going 

to occur, a net of 54.7 million acres are diverted from hay production. While on net, the 

acres grown of hay are expected to decrease, only the Midwest region is expected to 

divert hay acres with 175,326 acres diverted. The Western, Plains, North East, and 

Midwest regions are expected to increase hay acres by 1,562 acres, 104,121 acres, and 

14,977 acres respectively. When a PDO-TAG+WPWP- year is expected, total hay acres 

in the US are expected to increase by 15,716 acres with the majority of this increase 

occurring in the Western, Plains, and North East regions, while the Midwest region is 

expected to divert acres away from hay under these conditions as well.  
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Sorghum production is expected to experience the smallest change in acres 

grown in absolute terms relative to the other crops investigated when farmers are 

provided perfect information of the coming DCV phase combination. When it is known 

that either the PDO-TAG-WPWP-, PDO-TAG+WPWP+, or PDO+TAG+WPWP+ phase 

combinations are going to occur in the coming year, approximately 5,303 acres are 

diverted from sorghum production with the majority of this decrease occurring in the 

Plains region with 8,575 acres diverted. The Midwest region, on the other hand, is 

expected to increase acres planted of sorghum by about 3,291 acres. Full knowledge of a 

coming PDO-TAG+WPWP- year also decreases acres devoted to sorghum, but by a 

lesser extent with only 879 acres expected to be diverted. The majority of the diverted 

acres are expected to occur in the Plains region with 1,005 and acres expected to move 

away from sorghum. The Midwest is expected to increase the number of acres devoted 

to sorghum by 127 acres. 

Acres devoted to soybean production are expected to increase by 57,744 acres 

when PDO-TAG-WPWP-, PDO-TAG+WPWP+, or PDO+TAG+WPWP+ years are 

anticipated. The majority of this increase can be attributed to the Midwest region with 

increases of 63,872 acres expected. The Plains and North East regions, however, are 

expected to move 6,097 acre and 31 acres respectively away from soybean production. 

The net change in acres devoted to soybeans during PDO-TAG+WPWP- years are only 

expected to decrease by 112 acres. This is because the 2,460 acre increase in the 

Midwest is largely cancelled out by the decreased soybean acres in the Plains and North 

East regions. 



76 

 

Changes in spring wheat and winter wheat acres are expected to move in 

opposite directions from each other for all DCV phase phenomena for which there are 

significant changes. Spring wheat acres are expected to increase by 56,387 acres, while 

winter wheat acres are expected to decrease by 7,526 acres under PDO-TAG-WPWP-, 

PDO-TAG+WPWP+, and PDO+TAG+WPWP+ years. Additionally, under PDO-

TAG+WPWP- years, spring wheat acres are expected to increase by 3,536 acres while 

winter wheat acres are expected to decrease by 1,789 acres on net. The Western region 

contributes to decreases in acres for both types of wheat under all scenarios experiencing 

changes. However, the Plains and Midwest regions increases spring wheat acres for all 

cases, however the Plains region decreases winter wheat acres planted under all DCV 

phase combinations. 

4.4 Conclusions 

Through the investigation of DCV effects on crop yield, we were able to 

investigate the value of information on DCV phase combinations and some of the 

changes in growing decisions that would likely be made under more certain growing 

conditions. We found that the use of conditional probabilities when farmers are making 

planning decisions can increase welfare by approximately $3.52 billion annually. 

Additionally, perfect information on the DCV phase combination for the year has 

potential to lead to welfare gains of about $3.54 billion annually. 

These welfare gains are made possible by farmers’ ability to adjust their growing 

patterns according to the expected weather changes induced by the DCV phenomena. 

We found greater changes in acres grown of the crops examined under the case of 
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perfect information. As expected, we found that regions respond differently to the DCV 

information. The finding of this study suggest that increased spending on more accurate 

DCV forecasts and the distribution of information on DCV and its impacts on weather 

and crops to farmers could be warranted given the potential increases in welfare from 

farmers being able to make optimal growing decisions.  

As this study did not consider DCV effects on all crops grown in the US, we do 

not know how these phenomena will affect other crop yields and livestock production. 

Therefore, more crops will need to be considered in future work to fully analyze 

farmers’ optimal adaptation decisions.  Further, DCV phenomena may have different 

regional effects in larger states that should be considered to get the most accurate 

welfare estimates.  

Future research in this area will look at percentage change in crop acres and 

further adaptation measures including pesticide usage, irrigation, and tilling changes 

among other potential adaptation measures. Mjelde and Hill (1999) and Cabrera et al. 

(2007) also found that considering catastrophic crop insurance can reduce the value of 

improved forecasts, so a consideration of different types of crops insurance will be 

looked at in future research as well. DCV event strength might also be considered in 

future work as studies such as Chen et al. (2002) have found that including more details 

on the event strength can close to double the impact on welfare. Additionally, future 

research will consider a larger set of crops and more detailed regional analysis to better 

determine land use changes under increased forecasting ability at a US national scale.   



78 

 

5. CONCLUSSIONS 

 

 Farmers rely on climate forecasts in order to crop mix and management 

decisions. Climate factors such as heavy rainfall events and temperature extremes have 

the potential to influence the need for pesticide usage by altering pest incidence and 

chemical effectiveness (Walker and Eagle 1983; Bailey 2004; Nokes and Young 1992; 

Garcia-Cazorla and Xirau-Vayreda 1994; Lichtenstein and Schulz 1959; Ahmad et al. 

2003). Therefore, chemical expenditures can be considered climate dependent and are 

another effect of climate change.  

In Section 2, we looked at the effect of climate variables and GMO incidence on 

herbicide, insecticide, and fungicide expenditures.  The results reveal significant effects 

from both climate phenomena and GMO usage. While previous studies have examined 

climate effects on pesticide usage, this study adds to the literature by examining effects 

at on pesticide expenditures for the three main subcategories of pesticides plus including 

GMOs. We found that increases in temperature extremes have potential for reducing 

average chemical expenditures and their variance likely through hindering pest 

population growth.  We also found evidence that extreme rainfall events, rather than 

total rainfall, are likely to increase average expenditures due to chemical wash-off. 

Additionally, increased percentages of GMO crops significantly decreases average corn 

herbicide expenditures and their variance  presenting some evidence of decreased need 

for chemical applications as GMO crops become more prevalent in agriculture. 
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 While the climate may alter crop yields and the need for certain inputs, ocean 

related DCV phenomena can influence crop yields both directly and indirectly through 

their effects on climate variables. Increased forecasting ability of DCV events can give 

farmers the opportunity to alter their crop mixes and inputs to account for the expected 

resulting climate effects and any other potential effect on yields resulting from the 

phenomena. 

In Section 3, we were able to find the total effect of DCV phase combinations on 

crop yields. For most of the cops examined, the PDO+TAG-WPWP+ phase combination 

has the largest direct effect on yields. However, the PDO-TAG+WPWP-, PDO-

TAG+WPWP+, and PDO+TAG-WPWP+ have overall the largest effect on crops 

beyond the base case. We used these findings in Section 4 to investigate the national 

value of information on DCV phase combinations and some of the changes in planting 

decisions that would likely be made under more certain growing conditions. While 

previous studies have examined this value at a regional scale, this study adds to the body 

of work in this area by providing a national assessment for the value of information on 

the combined PDO, TAG, and WPWP phenomena. We found that the use of conditional 

probabilities can increase welfare by approximately $3.52 billion annually. Additionally, 

perfect information on the DCV phase combination for the year has potential to lead to 

welfare gains of about $3.54 billion annually.  

These welfare gains can be attributed to farmers’ ability to adjust their crop mix 

and management according to the expected weather and yield changes induced by the 

DCV phenomena. We found that under the case of perfect information, farmers choose 
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to alter acres devoted to certain crops to a greater degree. As expected, we found 

regional differences in responses to DCV information. Overall, the finding of this study 

suggest that increased spending on more accurate DCV forecasts and the distribution of 

information on DCV and its impacts on weather and crops to farmers could be 

beneficial.  

Future work in these areas will include examining the effects of DCV 

phenomena on pesticide expenditures and examining a more complete set of crops and 

adaptation measures to determine the welfare benefits of broader scoped DCV 

information. This study could benefit from considering how DCV affects inputs such as 

fertilizer, pesticide, and water usage among other inputs as well as crop yields. This 

future work is warranted because, for example, as seen in Section 2 there is evidence that 

climate variables impact mean and variability of pesticide expenditures and in Section 3 

we found evidence of DCV effect on climate variables. Additionally, future work will 

incorporate these finding with climate change scenarios to find the net present value of 

increased DCV forecasting capability. 
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