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ABSTRACT 

 

Due to the nature of bitumen and the inability to flow at reservoir conditions, it 

becomes necessary to alter the original state by imparting heat into the reservoir, thus 

lowering the viscosity to produce the fluid. The heat introduction is achieved through the 

utilization of steam assisted gravity drainage (SAGD) as well as solvent steam assisted 

gravity drainage (S-SAGD). However, the presence of three distinct fluid phases (oil, 

steam, and water) in the reservoir during steam injection has implications for the effective 

modeling of the complex fluid dynamics. Inherent complexity as a result of introducing a 

third phase (steam) in conjunction with temperature dependencies results in the inability 

to generate a comprehensive three phase relative permeability capable of adequately 

representing flow in the reservoir at all domains.  

In this study, experimental oil recovery data for two SAGD experiments, three S-

SAGD experiments and one hot water flood are empirically modelled by manipulating 

relative permeabilities. Addition of a solvent during the steam injection (S-SAGD) takes 

advantage of a miscibility component with the bitumen in conjunction with the thermal 

mechanism of enhanced oil recovery which results in incremental recovery of bitumen 

along with a minimization of the environmental footprint. The two SAGD experiments 

are differentiated by different types of clay content while the three S-SAGD experiments 

vary due to the different solvent and injection strategy utilized during the experiment. The 

analytical approach implemented allows for the representation of fluid flow in the 

reservoir by achieving a pseudo-two phase relative permeability that results in comparable 
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performance to the experiments. The assumption of a waterflood through the application 

of fractional flow theory allowed for the negation of the steam phase in the model and so 

two-phase flow was established. The sensitivity of the relative permeability curves to 

temperature change results in the inability to formulate a generic three-phase curve and so 

the pseudo-two phase curve is valuable for the analysis of the relative permeability 

behavior for different SAGD scenarios. 
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NOMENCLATURE 

fw    Fractional Flow of Water 

fwf    Fractional Flow of Water at Flood Front Saturation 

fiw   Fractional Flow of Water at Interstitial Water Saturation 

fwf
̀    Slope of the Fractional Flow Curve 

fw2   Fractional Flow of Water at xD = 1 

krw   Permeability of Rock to Water 

kro   Permeability of Rock to Oil 

Np   Stock Tank Oil Displaced, bbl 

SAGD   Steam Assisted Gravity Drainage 

S-SAGD  Solvent Steam Assisted Gravity Drainage 

Sw   Water Saturation, Fraction 

SwD   Normalized Water Saturation 

Siw   Initial Water Saturation, Fraction 

Sor    Residual Oil Saturation, Fraction 

𝑆𝑤
̅̅̅̅     Average Water Saturation in the Linear System 

Sw2   Water Saturation at xD = 1 

tD2  Dimensionless Time required to Propagate Saturation to the Outlet 

µw    Viscosity of Water, cP 

µo   Viscosity of Oil, cP  
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1. INTRODUCTION  

 

As petroleum engineers continue to pioneer into the frontier of unconventional 

reservoirs, the effective characterization of the flow dynamics correspondingly becomes 

more integral to success. Increasing demand of energy worldwide in conjunction with 

diminishing conventional resources corresponds to a necessity to identify viable sources 

of hydrocarbons that are capable of bolstering production (EIA 2015). Dependency on 

hydrocarbons as a source of energy will continue to grow parallel to the demand until 

renewable resources such as wind or solar power become a viable option. This dependency 

of worldwide energy generation on fossil fuels has been documented as has the increase 

in energy demand. The Organization of the Petroleum Exporting Countries world oil 

report in 2013 stated that the demand for energy will increase by 52% with a staggering 

80% of that being supplied by fossil fuels even until the year 2035 (Abdul-Hamid 2013). 

Therefore, the efficient extraction of hydrocarbons from unconventional sources is 

essential to the future of the industry. The time of conventional reservoirs is primarily 

coming to an end in developed nations as we have preferentially produced and exhausted 

these resources and so the necessity to access the potential of unconventional resources 

continues to grow (Deffeyes 2004; Meyer and Attanasi 2003). The expansive potential of 

the unconventional reserves necessitates that more emphasis be placed on effectively 

producing this resource.  

Reservoirs can be unconventional due to the fluid characteristics, rock properties, 

and the environmental conditions of the reservoir location. The transmission of fluid 
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through rock is highly sensitive and dependent on the fluid properties and so heavy oil 

with low API gravity and high viscosity results in bitumen as an unconventional resource 

due to the very poor mobility (Schmoker and Klett 1999; Stabell 2005). Heavy oils and 

bitumen offer a vast source of reserves that could greatly bolster petroleum production as 

bitumen alone accounts for over 30% of the world’s oil reserves with over 1.7 trillion 

barrels of that being contained in the Alberta, Canada reservoirs (Alboudwarej et al. 2006; 

Hein and Marsh 2008). The mobility of bitumen is very low due to high viscosity and so 

flow can only be attained by imparting energy in the form of heat or by diluting the fluid 

with lighter molecular solvents (Good et al. 1994; Nasr et al. 2003). Steam processes such 

as steam flooding or steam assisted gravity drainage (SAGD) are two of the most 

commonly applied and reliable thermal enhanced recovery methods to make the heavy oil 

economically viable. The fluid properties of heavy oil in the Peace River formation of 

Canada prevent the flow of hydrocarbons as the buoyant force is unable to overcome the 

viscous forces (Good et al. 1994). The steam assisted gravity drainage process accounts 

for this by imparting heat into the reservoir thereby lowering the viscosity. Two horizontal 

wells are drilled approximately five meters apart and are located at the bottom of the 

formation. The well located on top is continuously injecting steam into the reservoir so 

that a steam chamber is generated. This configuration of two horizontal wells in 

conjunction with continuous injection of steam maximize both the volume of steam in 

contact with the reservoir as well as the time of contact making SAGD a more effective 

method than steam flooding for bitumen reservoirs. The steam propagates both vertically 

and laterally until the steam reaches the overburden at which point the steam is forced in 
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the lateral direction. The rising steam imparts heat to the reservoir and condenses at the 

boundary of the steam chamber where the now lighter oil and condensate can then flow 

into the production well located below the injector (Butler et al. 1981; Nasr et al. 2000). 

This is illustrated in Fig 1 which depicts a cross sectional view of a SAGD well pair where 

the flow of fluid is shown with arrows.  

 

 

Figure 1- Schematic of the SAGD process 

 

 

 

However, inherent to any enhanced oil recovery process that utilizes steam is a 

very low efficiency. Generation of steam at the surface results in SAGD being a very 

energy intensive technique that is accompanied by large CO2 emissions. To increase 

effectiveness of the SAGD process and reduce the required steam, the solvent steam 

assisted gravity drainage (S-SAGD) technique was proposed (Nasr et al. 2003). Vast 



 

4 

 

quantities of steam required to adequately heat the reservoir can diminish the economics 

of the project while simultaneously increasing the environmental impact and so solvents 

are injected along with the steam in solvent steam assisted gravity drainage (S-SAGD). 

By coupling the advantages of steam and the miscibility of solvents the quantity of steam 

generated on the surface can be minimized and bitumen recovery can be maximized. 

Incremental recovery of bitumen as a function of the utilization of steam assisted gravity 

drainage is associated with a very large environmental footprint with a ratio of 

approximately 85 kg CO2 per barrel of oil produced achieved in Canada (ECCC 2013). 

Anthropogenic activities are anticipated to increase CO2 production from 30 Gtons in 2010 

to approximately 55 Gtons/year in 2050  and so conscious efforts to decrease the 

environmental footprint are currently being made as the industry becomes more aware of 

the detrimental impact and effect of greenhouse gases (Marchal et al. 2011). The process 

is very energy intensive as steam must be generated at the surface and so Canadian CO2 

emissions are projected to be .73 Gton in 2020 with Alberta being directly responsible for 

37% of the total (Bachu 2016; ECCC 2013). Efficiency of the overall process is 

considerably lower than ideal which is addressed through the combination of thermal and 

miscibility techniques. By introducing a solvent to the steam, the quantity of water 

necessary to enhance recovery is diminished by diluting the bitumen with considerably 

lighter molecules. Solvent steam assisted gravity drainage (S-SAGD) encompasses both 

aspects of miscibility and heat dissipation and effectively resolves the inadequacies of the 

SAGD process. Therefore, S-SAGD offers a means of enhancing the bitumen recovery 

while negating the inefficiency and environmental footprint of the SAGD process.  
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The foundation of oil displacement specific to the SAGD process is the 

introduction of heat energy into the reservoir. The utilization of steam for enhanced oil 

recovery is associated with four different mechanisms of increasing the displacement of 

fluid which are thermal expansion, viscosity reduction, changes in wettability, and 

reduction of oil water interfacial tension (Prats 1982). Altering the state of the bitumen to 

more water wet allows for a relative increase in the capability of the fluid to flow when 

injecting steam which is gaseous water. Relative to the other two mechanisms identified, 

both the wettability and the viscosity reduction are the most significant when considering 

the overall bitumen displacement efficiency. Furthermore, as the density of the crude oil 

or bitumen increases, the impact of wettability and viscosity are observed even more 

significantly. This relationship is evidenced by the fact that viscosity variation as a 

function of temperature is governed by the power law and most of the fluids in the 

reservoir exhibit shear thinning behavior. Viscosity experiences an inverse and nonlinear 

relationship with temperature where an increase in temperature accordingly results in a 

decrease in viscosity.  

Along with the degree of viscosity reduction experienced with the increase in 

temperature is a shift to a more water-wet state. Wettability describes the rocks affinity to 

preferentially retain a certain fluid and so a strongly-oil wet system would be expected to 

have a higher residual oil saturation. By manipulating the state of the reservoir to a more 

water-wet state the oil production can be maximized as the system retains water and allows 

for the oil to more readily flow (Sharma and Mohanty 2013; Yousef et al. 2011; 

Zendehboudi et al. 2011). Therefore, the temperature increase achieved through the SAGD 
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process can help to counteract and reduce the impact of wettability as well as alter the 

wettability to a more water-wet state (Anderson 1987a, 1987b; Sola and Rashidi 2008; 

Squier et al. 1962). In high asphaltene composition reservoirs such as bitumen reservoirs, 

the precipitation and deposition of asphaltenes plays a vital role in wettability alteration 

(Kar et al. 2016). The polarity of asphaltenes has implications for the wettability as a result 

of their interaction with reservoir clays. Wettability alterations can be quantified through 

the utilization of contact angle measurements (Unal et al. 2015) but the adaptation of this 

information into a useful model is only possible through relative permeability 

measurements. Two-phase water-oil relative permeability curves are provided in Fig 2 to 

highlight the important points affecting flow in porous media. The shape of the curve 

along with the endpoints govern the relative flow and transmission of fluids in the 

reservoir. Observing Fig 2 and according to Anderson and Craig, a relative permeability 

curve can be diagnosed as water-wet when the blue circle falls between 20-25% water 

saturation along with an intersection represented by the red circle of more than 50% water 

saturation (Craig 1971). 
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Figure 2 - Schematic representation of water-oil relative permeabilities (Morte and 

Hascakir 2016) 

 

 

Temperature dependent three phase relative permeability curves are necessary for 

the adequate representation of the flow in the reservoir. However, the experimental 

relationship that has been identified is not well understood and the dependency of relative 

permeability on temperature is therefore hard to model (Kumar and Do 1990). 

Accordingly, three phase relative permeability models are exponentially more difficult 

which results in the inability to formulate a universally acceptable model of three phase 

permeability that is capable of effectively characterizing the fluid dynamics of all three 

phases (Ahmadloo et al. 2009). Both the end-points as well as the liquid-gas relative 

permeability curve contain a temperature dependency that must be accounted for in order 

to address all facets of flow in the reservoir at varying time intervals (Akhlaghinia et al. 
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2013; Closmann and Seba 1983; Denney 1999; Edmondson 1965; Maini and Okazawa 

1987; Poston et al. 1970; Sinnokrot 1969; Weinbrandt et al. 1975). This temperature 

dependency necessitates a model capable of handling simulation parameters that vary with 

temperature which, intuitively, results in much more complicated models and flow 

dynamics so most simulation studies ignore their importance altogether by assuming two 

phase flow (Ahmadloo et al. 2009; Corey et al. 1956; Hascakir and Kovscek 2010; 

Leverett and Lewis 1941; Li and Horne 2003; Naar and Wygal 1961; Zhao et al. 2005). 

Therefore, interpolation of two-phase data to account for three phase flow has 

gained notoriety in the petroleum experimentalist community as a means of negating the 

steam interaction (Dietrich and Bondor 1976; Svirsky et al. 2004). This simplification to 

purely an interpolation of two-phase data to account for three-phase flow has resulted in 

little success with a minimal degree of confidence (Ahmadloo et al. 2009). Various models 

are valid only in certain domains and no single available three-phase predictive models 

can be considered a reliable and comprehensive tool for accurate prediction of isoperms 

(Ahmadloo et al. 2009). Simulation studies have been conducted in an attempt to 

numerically and empirically formulate three phase relative permeability curves through 

the use of history matching (Deng et al. 2010; Khaledi et al. 2015; Lei et al. 2010; Wang 

2010) but these studies don’t reflect the presence of asphaltenes deposition, clay 

migration, and temperature dependencies. The presence of steam in the reservoir affects 

both the oil-water and liquid-gas relative permeability curves as a function of temperature 

and movement of the solid phase, namely reservoir fines and asphaltenes (Al Bahlani and 

Babadagli 2008; Fatemi et al. 2012; Good et al. 1997; Hascakir and Kovscek 2010; Li and 
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Horne 2003; Zhao et al. 2005). Solvent co-injection with steam accordingly increases the 

complexity even more due to the potential interactions between asphaltenes causing 

precipitation, clay migration, and emulsion formation. Careless adoption of interpolated 

curves or relative permeability curves established from analogs can lead to erroneous 

production as a result of the inherent heterogeneity realized in any reservoir (Lei et al. 

2010). Generic approaches to reservoir analysis would produce poor results due to the 

heterogeneity and so unique analysis is required for each reservoir.  

Experimental procedures are useful in validating the viability of any process but 

an upscaling in the form of simulation is eventually required to characterize years of fluid 

flow.  Evolution of any process for incremental oil recovery will eventually require 

utilization of simulation where decades of production can be realized on a manageable 

timescale (Mendoza et al. 1999). Introduction of heat to the reservoir through the SAGD 

process has been proven viable and effective and therefore optimization or forecasting is 

now required. Expansion of the SAGD performance to estimate future trends is dependent 

on the relative permeability curves which necessitate that the impact of temperature and 

three fluid phases be considered (Blunt 2002; Kumar and Do 1990; Lo and Mungan 1973; 

Nakornthap and Evans 1986). Fluid flow in the reservoir is a direct function of the relative 

permeability and the sensitivity of simulation to these curves requires high degree of 

confidence in their capability of representing flow (Kumar and Do 1990). To achieve any 

confidence in the simulation result the generated model inputs must be valid. Therefore, 

relative permeability curves are an integral component of any simulation but the complex 

interactions in the reservoir make formulating these curves difficult (Baker 1988; Sato and 
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Aziz 1987; Stone 1970; Wang 2010). The ability of one fluid to flow preferentially in 

regard to the other will play a major role in the production profile of the reservoir and so 

adequate characterization of relative permeability as a function of saturation is integral to 

successful simulation. Therefore, understanding and optimizing the ability of oil to flow 

relative to water enables more incremental recovery. Pertinent to any reservoir simulation 

is the idea of balancing the cost effectiveness of representing flow on a macroscopic 

proportion by analyzing the reservoir using the simplest method.  Utilizing the simplest 

element size that produces results that are still representative of the overall flow would 

prevent the use of generic analogs as a means of formulating curves. 

The simplest way to calculate relative permeability curves while remaining 

representative of overall fluid flow is through the fractional flow theory established by 

Buckley and Leverett (Buckley and Leverett 1942). Frontal advance theory is founded on 

the law of conservation of mass and essentially is an application of this concept. Flow 

through a finite volume element can be expressed in terms of a total flow rate. This flow 

rate can be mathematically defined as the summation of the flow rates of the individual 

phases in the reservoir assuming immiscibility. Denoting the total flow rate in terms of the 

fraction of water allows for the tracking of the accumulation of water per unit of time. 

Mass balance then dictates that the incremental water accumulation in the reservoir must 

correspond to the same oil production. Conventional analysis using this theory enables the 

calculation of the waterflooding performance in terms of cumulative recovery factor as a 

function of time by starting with known relative permeability curves. Also, reverse 

engineering can be applied where known cumulative oil recoveries are used to calculate 
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the relative permeability ratios (Johnson et al. 1959; Jones and Roszelle 1978). 

Implementation and adaptation of this theory have allowed for the extension to other EOR 

techniques but the heat introduction associated with thermal EOR has prohibited any 

successful modification for thermal operations (Dholkawala et al. 2007; Pope 1980; Walsh 

and Lake 1989; Wangen 1993). Fractional flow theory is derived on the basis of linear 

displacement and isothermal conditions with no mass transfer between the fluids. Hence, 

many assumptions made in the derivation of this theory have to be relaxed through 

modification to enable the use of this theory specific to the SAGD and S-SAGD processes. 

The overall oil displacement efficiency in any enhanced oil recovery (EOR) 

process is evaluated on the basis of both a macroscopic as well as a microscopic scale that 

when determined together form the foundation of the sweep efficiency (Green and 

Willhite 1998). The governing phenomenon of the microscopic displacement consists of 

capillary forces, viscous forces, phase trapping, and the mobilization of trapped phases 

and can be represented through a parameter defined as the capillary number (Melrose 

1974). The capillary number is a ratio of the viscous force to the capillary force and 

describes the ability of the fluid to overcome capillary retention to flow oil. Capillary 

dominated flow results in a smaller capillary number as well as the relative inability to 

flow the fluid through the pore throat (Fulcher Jr et al. 1985; Pope et al. 2000). Capillary 

number can be examined and introduced to any performance evaluation in the form of 

relative permeability curves (Anderson 1986; Donaldson et al. 1969; Li and Horne 2003). 

Therefore, the relative permeability is an integral modeling parameter and highly affects 

the performance estimation of any recovery process (Sato and Aziz 1987; Stone 1970). 
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Fractional flow achieved in accordance with the utilization of a waterflood corresponds to 

the macroscopic component of the overall displacement efficiency. The macroscopic 

displacement will be characterized using the parameter of mobility ratio which represents 

the ability of the injected phase to flow relative to the in-situ phase. Ideally the mobility 

ratio will be around unity which would imply that the oil is equally capable of flowing in 

the reservoir in regards to the water so a piston-like displacement can be achieved. 

In this study, the proposed analytical model consists of a pseudo two-phase relative 

permeability that utilizes both Buckley-Leverett and Corey functions along with 

waterflooding techniques to negate the temperature dependency as well as the liquid-gas 

relative permeability (Buckley and Leverett 1942; Corey 1954). By implementing a 

reverse engineering approach to the waterflood design the problem of simply interpolating 

two-phase flow data to generate three-phase flow is addressed as the relative permeability 

curves are manipulated according to laboratory data and not interpolated. 
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2. RESEARCH STATEMENT 

   

 

Dependencies of three phase relative permeability on temperature associated with 

the introduction of heat energy to the reservoir prohibit the utilization of conventional 

three phase relative permeability curves. By introducing a pseudo two phase relative 

permeability curve that is capable of adequately representing overall bitumen flow the 

ability to forecast production is established. Assuming that all experiments are 

waterflooding projects allows for the regression of the three fluid phase relative 

permeability to a pseudo two phase. Modifications to conventional fractional flow theory 

address deviances from the original derivation and extend the applicability of this theory 

to both SAGD and S-SAGD processes. To establish a unique solution the generated 

pseudo two phase relative permeability simultaneously matches both the oil recovery 

attained in the laboratory as well as the breakthrough. Through the implementation of the 

reverse engineering approach of this study a pseudo two phase relative permeability is 

analytically generated that results in comparable recovery to the actual three phase fluid 

flow realized in the lab. Simplification allows for the analysis of very complex problems 

that have numerous different dependencies and all simplifications or assumptions made in 

this study are validated through the exemplary match of analytical and experimental 

cumulative bitumen production.  

 

 

 



 

14 

 

3. PROCEDURE 

 

3.1 Analytical Model 

The simplification of the flow to a pseudo-two phase model using waterflooding 

techniques has value in the ability to simulate complex flow while still being adequate in 

representing the overall fluid dynamics. Fractional flow theory is then applicable and the 

pseudo relative permeability curves can be manipulated in order to match experimental 

recovery. The theoretical recovery is a function of a waterflooding design and the 

mechanism of recovery is the sweep of the water front. At the foundation of fractional 

flow theory is the law of conservation of mass which dictates that any mass of injected 

fluid must equate to the same mass of fluid produced. Essentially, pore volumes of water 

are injected into the reservoir and replace the oil that is initially in the pores. The injected 

water propagates through the reservoir in a displacement front and effectively pushes the 

oil to the producing well. This is represented through the fractional flow model where the 

parameter Sw-av is used in order to account for the lack of a piston like displacement. An 

increase in average water saturation of the reservoir relative to the initial water saturation 

reflects a comparable volume of bitumen being mobilized from the pore space. By 

manipulating the relative permeability of oil and water, a model can be formulated that is 

able to effectively characterize the fluid dynamics in the reservoir as they pertain to 

cumulative recovery. All experiments are assumed to be waterflooding which enables the 

simplification of the relative permeabilities to a two phase thus negating the contribution 

of the liquid-gas relative permeability curve. This pseudo two phase relative permeability 
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assumes that only water and oil are present in the reservoir but through this crucial 

simplification, the recovery of the oil can be simulated and validated.  

The implementation of the waterflooding design for the purpose of establishing 

two phase flow requires that requisite and essential assumptions be made. In conventional 

waterflooding, the portion of the reservoir that experiences three phase flow is 

insignificant and the gas, if present, is dissolved in the water due to the pressure increase 

caused by the oil bank (Craig 1971; Leverett and Lewis 1941). This results in the ability 

to have a high degree of confidence in accounting for only two phase flow in the reservoir. 

By treating the steam processes as purely a waterflood, the reservoir can be simplified to 

a pseudo two phase problem (Spillette and Nielsen 1968). Derivations of the 

waterflooding techniques proposed by Buckley-Leverett were created on the foundation 

of one dimensional, incompressible and isothermal flow with no mass transfer between 

the phases (Buckley and Leverett 1942). The deviance of SAGD from the isothermal 

nature of the Buckley and Leverett model is addressed by extrapolating the viscosity into 

the domain of the experiment using the viscosity profile. The viscosity is then constant at 

the steam temperature and the model reflects a waterflood at a constant temperature 

associated with the steam.  Immiscibility between all the phases allows for the enhanced 

oil recovery mechanism to be purely a function of the physical displacement by the piston-

like waterfront that propagates through the reservoir. However, by definition with solvent 

steam assisted gravity drainage there is a component of miscibility that enables the dilution 

of the oil by lowering the relative amount of heavy hydrocarbons (Butler 1985; Gates 

2007). The disparity is addressed through utilization of the bulk oil in the proposed model 
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as well as in all of the conducted experiments. Any mass transfer will be contained within 

the bulk phase of the oil and so consistently reporting all parameters and recoveries in 

terms of bulk oil will normalize any miscibility issues. Therefore, adequate representation 

of the fluid flow is established as both the experiments and the analytical model will 

pertain to the bulk oil produced. Primary assumptions of incompressible flow are pivotal 

to the derivation of fractional flow theory as volumetric flow of the fluids is the foundation 

of the displacement (Craig 1971). The piston-like displacement is defined in terms of the 

volumetric displacement as the water essentially pushes the oil in the form of an oil bank 

in front of the water as it propagates through the reservoir (Willhite 1986). The 

compressible nature of the bitumen prohibits the use of purely a volumetric balance and a 

material balance must therefore be introduced. The Law of Conservation of mass states 

that matter is neither created or destroyed and so defining the material balance in terms of 

the mass of each produced and injected fluid enables the model to account for the 

compressibility of the bitumen. Implementation of a mass balance along with reporting all 

recoveries in terms of the bulk oil addresses deviances from the primary assumptions 

required to derive the theoretical model employed in this work. Relaxation of many of the 

assumptions made for the derivation of fractional flow theory enable the extension of the 

theory to the domain of the SAGD and S-SAGD techniques. 

However, the model has to be calibrated and tuned to encompass the novelty of 

the application to SAGD. Extremely high viscosity relative to the injected water during a 

waterflood will lead to poor sweep efficiency. Significant disparity between the viscosity 

of the displacing fluid and the displaced fluid illustrated by a poor mobility will result in 
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preferential flow of the less viscous fluid to the producing well. Mobility ratios of larger 

than one will generate a non-uniform displacement profile that is associated with early 

water breakthrough. The channel created will allow for the water to cut through the 

bitumen filled porous media and bypass the intended sweeping of the oil. Once 

established, the channel will conduct the large majority of the water and there will be 

significant decrease in the cumulative production. So, the time of breakthrough of the 

experiments must also be matched simultaneously with the cumulative oil production to 

establish a more comprehensive and unique model. Time of breakthrough can be identified 

by analyzing the oil flow rate for each individual experiment. Finite flow area of the 

reservoir dictates that when water breakthrough is achieved, more flow area is being 

occupied by water and therefore less oil will be produced. By this logic, the time of 

breakthrough would be when the oil flow rate reaches a peak and begins to decrease as 

more water is being produced. Identifying the time of breakthrough is illustrated in Fig 3 

where the dashed red line denotes the maximum oil flow rate which directly precedes a 

substantial decrease in oil flow. The time of breakthrough can then be directly related to 

the water saturation at breakthrough as a function of a mass balance which accounts for 

the mass of water injected and the mass of produced oil. By simultaneously matching both 

the cumulative recovery factor of the bitumen and the time of breakthrough, any concerns 

of the model being non-unique are addressed. The relative permeability curves are unique 

as a function of matching two different parameters simultaneously. 
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Figure 3 - Oil rate and cumulative oil recovery factor 

 

 

 

Fractional flow theory requires that the water breakthrough be analytically 

matched in conjunction with the cumulative recovery in order to produce the same flow 

profile in the reservoir. Conservation of mass dictates that any injection of steam must 

equate to the same production of mass and so by keeping the injection rate constant the 
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water saturation can be tracked as it propagates through the reservoir with respect to time. 

By calculating the pore volume associated with the reservoir which is modeled with an 

experimental cylinder, the saturation can be found as a function of the differential between 

injected water and produced oil. The chamber utilized to experimentally conduct the 

SAGD process is illustrated by Fig 4 below.  

 

 

 
Figure 4 - Volumetric extent of the SAGD chamber 

 

 

The volumetric extent of the chamber can be mathematically calculated and, with the 

knowledge of porosity, the pore volumes of water injected can be found. Tracking fluid 

injection and production with respect to pore volumes allows for the normalization of the 

mass balance and allows for the definition of the remaining fluid in the pore space. Both 

the initial water and oil saturation were experimentally defined and so the mass of the oil 

produced can be subtracted from the mass of the initial oil to define the residual oil 
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saturation. As the water front essentially forces the oil to the production well with a piston-

like displacement the pore volume must be replaced in order to maintain pressure and so 

the water saturation of the reservoir increases in accordance with increasing bitumen 

production. Knowledge of the pore volume as well as the initial oil saturation enables the 

calculation of the original oil in place. Oil is displaced from the pore space by the water 

and so the oil saturation decreases with time while the water saturation increases with 

time. To account for the compressibility of the oil, the differential of the mass of the 

produced bitumen and the injected mass of water are tracked which allows for the 

definition of water saturation at any time. Defining the mass of oil and water in the pore 

space accounts for the change in volume experienced while altering temperature.  

As a function of injected pore volumes for the theoretical model, the cumulative 

recovery can be found and defined to be comparable to the experimental recovery. 

Minimizing the difference in theoretical and experimental recovery provides the best 

possible match and by extension a relative permeability curve that is capable of 

representing cumulative recovery. The generated relative permeability curve is unique to 

the reservoir in question which in the case of this study is the Peace River reservoir in 

Canada but the proposed methodology and model can serve as an analog. The 

characterization of the reservoir with the pseudo-two phase relative permeability allows 

for the simulation of cumulative recovery as a function of saturation and by extension 

time. However, the complicated fluid dynamics in the reservoir on a more localized scale 

are not represented with this model as, by definition with steam assisted gravity drainage, 

there is steam in the reservoir which would necessitate a three-phase model. 
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Conventional waterflooding models generate cumulative recovery as a function of 

time by starting with relative permeability curves but the reverse engineering model 

implemented in this study allows for the generation of relative permeability curves as a 

function of cumulative recovery. Inherent to three phase relative permeability curves is 

the inability to formulate a generic mathematical model that is viable. Therefore, the 

analytical model is repeated for all three different processes and the recovery is matched 

for each case. The reverse engineering approach utilized allows for a unique relative 

permeability curve to be analytically established for a specific reservoir and steam process 

by utilization of the Buckley-Leverett model based on fractional flow theory. (Willhite, 

1986) The hyperbolic degree of the curve in conjunction with the starting point are 

analytically manipulated in order to minimize the difference between the experimental 

results and the theoretical results by use of a solver function. Good match between the 

analytical model and experimental results will be indicative of the fact that the formulated 

model is capable of effectively characterizing the fluid dynamics in the reservoir as they 

pertain to cumulative recovery. The overall sweep efficiency can then be characterized by 

defining both the mobility ratio which is representative of the macroscopic sweep as well 

as the capillary number which is representative of the microscopic sweep efficiency. 

Therefore, the model that is built is valid as a means of matching production and can be 

used to forecast production. 

The governing equation for fractional flow or frontal advance theory is shown 

below as Eqn 1 where the location of the water saturation (𝑥𝑆𝑤
) is described on the basis 

of injection rate (𝑞𝑡), the cross sectional area (𝐴), the average porosity (∅), and the 
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fractional flow of water (𝑓𝑤). The equation describes the velocity of the waterfront as it 

propagates through the reservoir. 

𝑑𝑥𝑆𝑤

𝑑𝑡
=

𝑞𝑡

𝐴∅
(

𝜕𝑓𝑤

𝜕𝑆𝑤
)

𝑆=𝑆𝑤

…………………………….……………….…………….. Eqn. 1 

Conventional frontal advance theory describes the oil production as a function of time that 

would be achieved with known relative permeability curves. The reverse engineering 

waterflood implemented in this study is described below to empirically generate pseudo 

relative permeability curves. The first step involves calculating the dimensionless time of 

the experiments. Dimensionless time (𝑡𝐷) is a parameter that is used to normalize the time 

(𝑡 ) in terms of the injection rate (𝑞𝑡) which allows for the direct comparison of all 

experiments and can be seen in Eqn 2. Dimensionless time at breakthrough is simply the 

reciprocal of the derivative of the fractional flow of water. 

𝑡𝐷 =
𝑡𝑞𝑡

𝑉𝑝
………………………………………………………..….…………….. Eqn. 2 

Incremental oil production is dictated by conservation of mass where any retention of 

water in the pore space corresponds to an equal amount of oil production. The pore space 

must be filled to maintain pressure so by replacing the pore volume that was initially filled 

with bitumen by water, the oil production is increased and the residual oil saturation is 

accordingly decreased. Eqn 3 mathematically represents this concept by relating the 

difference in average (𝑆𝑤
̅̅̅̅ ) and initial water saturation (𝑆𝑖𝑤) and multiplying the delta 

function by the pore volume (𝑉𝑝). Ideally, the fluid front would be completely piston-like 

and uniform but in reality the fractional flow of water is not 100%. Therefore, the water 

saturation at the point of breakthrough is a function of time and is referred to as average 
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water saturation. The average water saturation accounts for the lack of an instantaneous 

and step-wise evolution of the displacement front and takes into consideration any retained 

water. A representative element approach enables the definition of a numerical value 

defined to be the water saturation as a function of the cumulative oil production (𝑁𝑝) 

which was established by the bench-scale experiments conducted in the lab. 

𝑁𝑝 = (𝑆𝑤
̅̅̅̅ − 𝑆𝑖𝑤) ∗ (𝑉𝑝)………………………………………...…………….... Eqn. 3 

Once both the dimensionless time (𝑡𝐷2) and the average water saturation (𝑆𝑤
̅̅̅̅ ) are known, 

the fractional flow of water (𝑓𝑤2) can be calculated as is shown in Eqn 4. This parameter 

is indicative of the fraction of water flowing in the water front at a specified location in 

the reservoir and is utilized to characterize the piston-like quality of the displacement 

front. 

𝑆𝑤
̅̅̅̅ = 𝑆𝑤2 + 𝑡𝐷2(1 − 𝑓𝑤2)…………………………………………......…......…. Eqn.4 

Injection of steam, represented by water in this model, propagates throughout the reservoir 

is the form of a displacement front which effectively sweeps the oil from the inlet to the 

outlet or production well. Preferential flow of water established due to the much lower 

viscosity when compared to the oil will result in a non-uniform displacement front and 

water fingering. Water will bypass the more viscous oil and create a dominant flow 

channel that will deviate from the front behavior and flow directly to the outlet. The time 

at which injected water reaches the production well is referred to as water breakthrough 

and is associated with diminishing return as a result of the poor sweep of oil. The water 

will preferentially flow through the generated channel and the water front that is pushing 

the oil bank with a piston-like behavior will be abandoned. Breakthrough is 
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mathematically equivalent to the tangent of the fractional flow of water as a function of 

saturation at initial conditions and breakthrough conditions which is evidenced by Eqn 5. 

By differentiating the fractional flow profile the dimensionless time at breakthrough can 

be determined as it is mathematically defined at the reciprocal of the parameter 𝑓𝑤𝑓′. 

𝑓𝑤𝑓′ =
𝑓𝑤𝑓−𝑓𝑖𝑤

𝑆𝑤𝑓−𝑆𝑖𝑤
………………...……………………………………..….……… Eqn. 5 

Fractional flow of the water can be described on the foundation of the continuity equation 

coupled with Darcy’s Law which is the governing equation for fluid transmission through 

porous media (Bear 2013; Ingham and Pop 1998; Whitaker 1986). Derivation of the 

fractional flow equation of water shown as Eqn 6 requires the flow characteristics of the 

fluid which can be represented by the relative permeabilities and viscosities.  

𝑓𝑤 =
(

𝑘𝑟𝑤
µ𝑤

)

(
𝑘𝑟𝑜
µ𝑜

+
𝑘𝑟𝑤
µ𝑤

)
 ……………………………………………..…...…………..….. Eqn. 6 

To conduct a theoretical waterflood it is necessary to normalize the water saturation to 

account for the residual oil as well as the interstitial water which is shown by Eqn 7. 

Normalization of the water saturation enables the tracking of the waterfront as it displaces 

the oil bank to the producing well and provides the means of comparing the performance 

of the different experiments. 

𝑆𝑤𝐷 =
𝑆𝑤−𝑆𝑖𝑤

1−𝑆𝑜𝑟−𝑆𝑖𝑤
……………………………………………………………..….. Eqn. 7 

Simulation of flow in the reservoir requires that the ability of the fluids to flow relative to 

each other by adequately defined. Complex dynamics and interactions as a function of 

temperature and pressure result in preferential fractional flow of one fluid in regard to the 

other and so the relative permeability is determined as a function of the normalized water 
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saturation in conjunction with the Corey exponents and weighting factors. Eqn 8 is the 

mathematical definition of the oil relative permeability curve and Eqn 9 is for the flow of 

water relative to the oil. Parameters A and B are the weighting factors that establish the 

initial permeability to oil at the irreducible water saturation as well as the final 

permeability to water at the residual oil saturation and the parameters m and n are the 

Corey exponents indicative of the hyperbolic degree of the relative permeability curves. 

Manipulation of all four parameters simultaneously provides control of all aspects of the 

curve where both the slope and intercept of the exponential curve can be manipulated in 

order to match the experimental curve established. 

𝑘𝑟𝑜 = 𝐴 ∗ (1 − 𝑆𝑤𝐷)𝑚……………………………………………………....…. Eqn. 8 

𝑘𝑟𝑤 = 𝐵 ∗ (𝑆𝑤𝐷)𝑛………………………………………...………………......... Eqn. 9 

A flow chart of the reverse engineering waterflood is illustrated in Fig 5 which 

summarizes the above process. The manipulation of the Corey exponents contains a nested 

loop as can be seen by the figure where both the breakthrough and the cumulative recovery 

have to be solved simultaneously. This nested loop essentially renders the process unique 

where only one solution can be obtained that satisfies both of the conditions. 
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Figure 5 - Flow chart of the reverse engineering waterflood 

 

 

 

3.2 Experimental Model 

Characterization of any enhanced oil recovery process requires experimental work 

to establish the validity and viability of the technical aspects of the petroleum recovery 

(Closmann and Seba 1983; Maini and Okazawa 1987). Therefore, six experiments were 

previously conducted on a Peace River bitumen sample from Alberta, Canada  to 

determine the enhanced bitumen production as a function of the introduction of heat to the 

reservoir (Morrow et al. 2014; Mukhametshina and Hascakir 2014; Mukhametshina et al. 

2014). To formulate a representative sample the Peace River lithology was simulated by 

homogeneously mixing 15% by weight clay with 85% by weight Ottawa sand which 

resulted in a porosity of 32% (Bayliss and Levinson 1976; Hamm and Ong 1995). The 
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pore space was then filled with 84% bitumen (8.8 °API and 54,000 cP) with the remaining 

volume being taken up by distilled water (Svrcek and Mehrotra 1989). The identified 

values of porosity and initial oil saturation were provided from literature as being 

representative of the reservoir properties in Peace River. The six experiments conducted 

consisted of a hot water flood (HW1), two steam assisted gravity drainage (SAGD), and 

three solvent steam assisted gravity drainage processes (S-SAGD). The various 

experiments were performed with the intention of adequately defining the cumulative 

recovery as a function of the introduction of heat into the reservoir.  

The HW1 experiment denoted E1 is differentiated from the SAGD experiments by 

the temperature. The SAGD experiments were performed at 165 °C at a constant pressure 

of 75 psig to ensure a steam quality of 100% was maintained while HW1 was performed 

at 155°C. Both experiments E2 and E3 were SAGD and are differentiated by the type of 

clay utilized. SAGD1 (E2) used only Kaolinite as the clay component while SAGD2 (E2) 

used a mixture of 90% Kaolinite and 10% illite. The last three experiments are S-SAGD1, 

S-SAGD2, and S-SAGD3 which are represented by E4, E5, and E6 respectively. The first 

S-SAGD experiment was performed with the solvent component being n-Hexane which 

is asphaltene insoluble. Experiment E5 was performed with co-injection of n-Hexane and 

Toluene where the presence of Toluene serves as an asphaltene soluble component (Badre 

et al. 2006). The last experiment utilized a cyclic injection of n-Hexane and Toluene as 

opposed to co-injection. Table 1 contains a summary of the important parameters 

associated with the experiments that were conducted along with the differentiating 

parameters involved in each. The cumulative oil recovery reported in Table 1 mimics the 
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oil that the wellhead would see and thus contains both clay and water-in-oil emulsions. To 

make Buckley-Leverett valid and relax the assumption of no mass transfer between the 

phases, all bitumen recovery reported in the analytical model is in terms of bulk oil and so 

everything produced in the oil phase is attributed to the oil production. Important to 

recognize is the fact that production on a field scale with bitumen contains oil with clay 

and emulsions before going to the separator which is mirrored by presenting recoveries in 

bulk oil.  The identified experiments will be used as a means of establishing fluid flow in 

the reservoir and will enable the generation of unique relative permeability curves capable 

of matching the bitumen recovery. The reservoir was considered to be pervasively filled 

with the bitumen at the saturation discussed above as a result of the homogenous mixing 

that was conducted. 

Table 1 - Summary of the experimental conditions and results 

 

*Clay1 contains kaolinite and Clay2 contains kaolinite-illite mixture (Kar et al. 2015) 
 

The vast difference and discrepancy in the recoveries of the two SAGD 

experiments as evidenced in Table 1 is a function of the different clay content in the 

Parameter, unit 
Experiments 

E1 E2 E3 E4 E5 E6 

1. Type of Clay Clay 1 Clay 1 Clay 2 Clay 2 Clay 2 Clay 2 

2. Operating Pressure, psig 75 75 75 75 75 75 

3. Operating Temp, °C 155 165 165 165 165 165 

4. Hot water inj rate, g/min 18 - - - - - 

5. Steam inj rate, g/min - 18 18 18 18 18 

6. Solvent inj rate, ml/min - - - 2 1+1 2/2 

7. Experimental time, hours 13.45 12 12 9 9 9 

8. Cum Recovery wt% 12.5 46.5 31.5 35.6 44.4 44.9 

9. Produced Oil Viscosity @ 

Room Temp (cP) 
54,152 52,466 50,113 34,105 3,556 3,667 
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experiments (Unal et al. 2015). The presence of purely kaolinite corresponded to a much 

greater and more efficient recovery relative to SAGD2 which contained both kaolinite and 

illite. Accordingly, the much lower residual oil fraction of SAGD2 can be attributed to the 

much more water-wet state achieved as a result of the absence of the pore bridging 

associated with the illite clay (Unal et al. 2015). The pore bridging effect realized as a 

result of the illite clay for SAGD2 is illustrated in Fig 6 which definitively shows a 

decrease in permeability for the case of SAGD2. The presence of the illite component of 

the clay mixture interacted primarily with the oil phase which increased the oil-wetness 

and produced significantly less oil (Mukhametshina and Hascakir 2014; Unal et al. 2015).  

 

 
Figure 6 - Images of the two clay types used in the previously conducted 

experiments 

 

 
 
 

The inability of bitumen to readily flow in the natural state of the reservoir is due 

to the incredibly high viscosity which is defined as the ability of the fluid to resist flow 

(Chen and Ito 2012; Evans 1937; Islam and Chakma 1989). Viscosity is directly dependent 

on the temperature of the sample where an increase in temperature corresponds to an 
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exponential decrease in viscosity. Effective and comprehensive experimental 

characterization of the bitumen sample required viscosity profiles with varying 

temperature which can offer insight into the flow capability of the oil at certain time as a 

byproduct of the advancement of the steam chamber. Energy is introduced into the 

reservoir and the steam chamber propagates throughout the reservoir so the viscosity is 

altered as a function of temperature and by extension time. The identified relationship is 

illustrated in Fig 7 and is useful in the ability to extrapolate the viscosity into the 

temperature domain associated with steam processes. The mathematical formula given as 

Eqn 10 describes the original bitumen and is defined using an exponential curve which is 

corroborated by the literature (Evans 1937). The SAGD experiments generated slightly 

different viscosity profiles which are attributed to the injection of steam instead of hot 

water which is evidenced by Eqn 11 and Eqn 12. 

 

 
Figure 7 - Viscosity variation as a function of temperature for the original bitumen 
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µ = (3 ∗ 1010) ∗ 𝑇−4.15 …………………………………………………....…. Eqn. 10 

µ = (3 ∗ 1010) ∗ 𝑇−4.14 ……………………………...…….…………………. Eqn. 11 

µ = (3 ∗ 1010) ∗ 𝑇−4.152 ……………………………………..……..……...… Eqn. 12 

The dissipation of heat energy to the reservoir and the direct dependency on time 

were accounted for by manipulating the original bitumen viscosity of 54,000 cP  at 

reservoir conditions by considering the established correlations described in Eqn 10, Eqn 

11, and Eqn 12 (Mukhametshina et al. 2014). Associated with the addition of the solvent 

component into the steam is a much different viscosity profile as the exponential decrease 

is not solely a function of temperature but also the miscibility of the solvent. Fig 8 shown 

below definitively illustrates two curves where S-SAGD2 contains toluene and S-SAGD1 

only contains hexane. The solubility power of toluene is much greater relative to hexane 

as it is capable of dissolving asphaltenes which are defined as being soluble in aromatics. 

Asphaltene precipitation increases the viscosity as the particles aggregate and flocculate 

into large clusters and so the increased solubility power of toluene intuitively results in 

much greater viscosity reduction. The relationship of viscosity and temperature as a 

function of the introduction of the solvents can be seen in Eqn 13, Eqn 14, and Eqn 15 

where there is a marked difference in the viscosity of the experiments that utilize toluene. 

The miscibility obtained with the presence of toluene creates a much more favorable 

mobility ratio and an enhanced flow capability. 
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Figure 8 - Viscosity profile of the S-SAGD experiments 

 

 

 

µ = (9 ∗ 109) ∗ 𝑇−3.856 ……………………………………………...……….. Eqn. 13 

µ = (2 ∗ 108) ∗ 𝑇−3.39 ..………………………….………………………….… Eqn. 14 

µ = (1 ∗ 108) ∗ 𝑇−3.281 ………………………………………...…………….. Eqn. 15 
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4. RESULTS & DISCUSSION 

 

 

 

Sound reservoir management practices include and revolve around the concept of 

extending the life of the reservoir while maintaining profitability. Maximizing the 

economics of any project require consideration of the time value of money where incentive 

might be given to produce more oil sooner at the expense of the overall recovery. 

However, increasing initial recovery may have implications in regard to pressure depletion 

and decrease in the expected cumulative recovery. Therefore, it becomes necessary and 

vital to accurately determine the production decline of any reservoir to optimize the 

economics and formulate the most logical production strategy. The model generated in 

this study is capable of representing three phase flow in the reservoir through a pseudo 

two phase waterflood enabling production forecasting of any reservoir that undergoes 

enhanced oil recovery with steam processes. Simplification of any process while still 

being representative of the overall flow is necessary to maximize efficiency as well as to 

model complex problems. The experiments themselves experience three phase fluid flow 

and all concerns that are associated with three phase fluid flow and so by matching this 

bitumen recovery, the analytical model essentially addresses any issues or concerns by 

extension. 

Localized flow and fluid transmission through the porous medium consists of three 

phases where oil, liquid water, and steam are flowing simultaneously but by assuming that 

fractional flow is valid and treating the experiment as a waterflood the steam phase is 

negated. Inherent complexity associated with the effective simulation of the SAGD 
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process requires that simplifications be made that enable representation of flow instead of 

a direct physical model. This study essentially is a means of greatly simplifying the flow 

of bitumen in the reservoir experiencing three phase flow to a much more manageable 

scale. The viability and validity of the model is not a function of any physical model 

presented but rather the great match of cumulative bitumen production versus time of the 

analytical and experimental model. Simulation of very complex processes through 

simplification is valid and this study is an attempt at achieving that same idea specific to 

the SAGD process. Therefore, the proposed model is not capable of modeling the complex 

interactions of the local flow phenomenon and retention but the overall flow established 

by the pseudo two-phase relative permeability results in comparable oil production as a 

function of time. The scope of the analytical model encompasses only the cumulative 

recovery of the bitumen but this is a pivotal component of any sound reservoir 

management strategy. Project evaluation is an integral component of petroleum 

engineering and so this model is valuable in characterizing the reservoir in terms of a 

decline curve through forecasting. Experimental cumulative recovery and the dependency 

on time is required for this model due to the nature of the history match and so a core from 

the reservoir in question is required so that the steam assisted gravity drainage process can 

be conducted in the lab. 

As is illustrated in Fig 9, the pseudo two phase relative permeabilities that were 

generated are more than adequate at matching experimental recovery for the SAGD 

experiments (Morte and Hascakir 2016). The comparable recovery realized with the 

waterflooding technique results in a high degree of confidence in the efficacy of the 
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permeability model. The generated relative permeability is unique to the Peace River 

formation but the applicability of the model can be extended to any reservoir where three 

phases are present. The viability of simplifying the technique to a waterflood with a pseudo 

two phase relative permeability is evident in Fig 9 which definitively shows that the 

experimental recovery and the analytical recovery are the same (Morte and Hascakir 

2016). Also, the dependency on time was able to be adequately represented which results 

in the ability to confidently estimate cumulative recovery at all time. The red curve which 

illustrates SAGD1 achieved the largest recovery due to the presence of purely kaolinite 

clay which can be credited for the more water wet state achieved relative to SAGD2. The 

hot water flood experienced substantially less bitumen production because, by definition, 

the fluid injected was not steam but only water and the heat exchange capacity of the water 

is much less than steam. Immiscibility between the water and the oil in conjunction with 

the lesser heat exchange capacity is recognized as the contributing factor to the large 

disparity between bitumen recoveries. For all six scenarios identified the fit of cumulative 

recovery as a function of time are exact matches which is indicative of an effective relative 

permeability model. The comparable production established results in the ability to 

confidently estimate the cumulative recovery for these steam processes in a Peace River 

reservoir.  
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Figure 9 - Cumulative recovery factor match of SAGD experiments by the 

analytical model (Morte and Hascakir 2016) 

 

 
 

Comparison of the base SAGD case which contained the illite component of clay 

and the S-SAGD experiments offers significant discrepancy in cumulative oil recovery. 

Miscibility of the solvent and the oil generated an increase in flow potential of the bitumen 

where an incremental recovery of approximately eight weight percent for S-SAGD1 and 

thirteen weight percent for the other two S-SAGD experiments was realized. The presence 

of toluene in both S-SAGD2 and S-SAGD3 increased the cumulative oil recovery as a 

result of the increase in solubility power and the much greater viscosity reduction. The 

model proposed in this study was performed on the S-SAGD experiments to bolster the 

scope and potential influence of the model to include solvent steam processes and results 

can be seen in Fig 10 below (Morte and Hascakir 2016). Good match between the 
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analytical and experimental model is once again indicative of a representative pseudo two 

phase relative permeability curve that is capable of establishing comparable production. 

Therefore, the applicability of the model can be extended to include the solvent steam 

assisted gravity drainage process which encompasses miscibility and mass transfer 

between phases.  

 

 

 
Figure 10 - Cumulative recovery factor match S-SAGD experiments by the 

analytical model (Morte and Hascakir 2016) 

 
 

 

The hyperbolic nature of relative permeability curves inherent to any reservoir that 

has been identified in research is also evident in the generated curves in Fig 11 and Fig 12 

for all six steam processes (Juanes and Patzek 2004; Morte and Hascakir 2016). Therefore, 

the pseudo-two phase relative permeability is governed by a similar empirical relationship 
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as the conventional relative permeability curves. The relationship in regard to the overall 

shape of the curves is equivalent to what would be anticipated by curves established for a 

regular waterflood.  However, the slope of the curve changes as a function of the increase 

in recovery relative to each specific process. The impartation of heat to the oil corresponds 

to a lesser hyperbolic degree where oil is able to flow at higher water saturations which 

can be definitively seen in Fig 11 (Morte and Hascakir 2016). Also, upon inspection of 

the generated curves, there is an incremental increase in the initial permeability to oil that 

corresponds to an increase in overall recovery factor. Intuitively this makes sense as there 

would be an increase in recovery associated with an enhanced capability of oil to flow at 

the outset of the experiment. By maximizing the relative permeability to oil at the 

beginning of the experiment, the decline to zero relative permeability to oil with respect 

to the continuous injection of water can be delayed enabling more oil to flow at higher 

water saturations. SAGD1 had the highest cumulative recovery along with the lowest 

slope of the oil curve which effectively delays the preferential flow of water until a higher 

water saturation was reached. The change in wettability in conjunction with the decrease 

in viscosity associated with the introduction of heat into the reservoir decreases the slope 

of the oil curve and increases the initial oil permeability. The worst experiment in terms 

of cumulative recovery was HW1 which experienced the largest slope and lowest initial 

oil permeability where the flow of water to oil occurred much more quickly. Accordingly, 

the SAGD experiments were conducted at a much higher temperature and correspondingly 

achieved an increase in permeability of oil to water illustrated in Fig 11 (Morte and 

Hascakir 2016).  
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Figure 11 - Empirically generated relative permeability curves for HW1, SAGD1, 

and SAGD2 (Morte and Hascakir 2016) 

 
 

 

The intersection of the water and oil curves can offer insight into the nature of the 

wettability type of the reservoir and therefore has an effect on the flow capability of the 

sample. According to Craig’s rule of thumb, the sample can be considered to be water-wet 

when the intersection occurs at a water saturation of greater than 50% (Craig 1971). 

Alternatively, the sample can be classified as oil wet in nature when the intersection is less 

than a value of 50% water saturation. Fig 11 depicts the identified intersection as a blue, 

yellow, and red dot which represent the HW1, SAGD2, and SAGD1 experiments 

respectively. All samples are shown to be oil wet in nature which is corroborated by the 

experimental findings but the red dot, SAGD1, is shown to favor a more water wet state 

than the blue and yellow dots (Kar et al. 2016; Mukhametshina and Hascakir 2014). The 
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kro value is highest for SAGD1 which is indicative of better overall performance by 

SAGD1 and describes the enhanced ability of bitumen to flow during this experiment at 

the initial water saturation. The wettability is reflected in the cumulative recovery of each 

experiments where a more water wet nature is associated with an incremental increase in 

recovery. The relative permeability at the endpoints for each of the processes can be seen 

in Table 2 and represents the ability of each fluid to flow at the residual oil saturation and 

the initial water saturation. Also provided in Table 2 are the Corey exponents that were 

utilized to produce the pseudo two phase relative permeability curves as seen in both Fig 

11 and Fig 12 (Morte and Hascakir 2016). The parameters m and n account for the 

hyperbolic slope of the curve while the parameters A and B account for the end points so 

that all facets of flow are described by the parameters which can be seen in Eqn 8 and Eqn 

9. The ability of oil to flow at the beginning of the experiment is predicated on the 

reduction of the viscosity and the initial displacement of the injected water. The 

relationship identified shows a distinct increase in kro with respect to increasing cumulative 

recovery for every experiment except S-SAGD3 where the discrepancy was a result of the 

cyclic injection of solvents. 

Table 2 - Endpoints of the generated relative permeabilities for all six experiments  

EXP 
krow @ Sw = 

Siw 

krw @ Sw = 

1-Soirw 

Sw @ 

Intersection 
A B m n 

HW1 0.47 0.97 0.245 0.47 0.33 2.31 3.92 

SAGD1 0.88 0.65 0.458 0.88 0.35 1.15 6.46 

SAGD2 0..61 0.92 0.325 0.61 0.34 1.94 5.34 

S-SAGD1 0.67 0.61 0.372 0.67 0.41 1.72 5.56 

S-SAGD2 0.81 0.93 0.395 0.81 0.78 1.43 5.72 

S-SAGD3 0.52 1 0.331 0.52 0.94 2.3 3.7 
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Upon inspection of the S-SAGD curves illustrated in Fig 12 it is evident that there 

is some disparity in the established trends (Morte and Hascakir 2016). Discrepancy in the 

wettability of S-SAGD3 is attributed to the nature of the injection of the steam and solvent. 

Unique to this experiment was a cyclic injection of the solvent while simultaneously 

injecting steam. Switching between the toluene and the n-Hexane produced a viscosity 

profile that consisted of essentially an average of the two curves identified earlier with S-

SAGD1 and S-SAGD2. The model was incapable of adequately capturing the cyclic 

nature of the experiment as there would be a different relative permeability associated with 

each individual injection of solvent. The proposed relative permeability curve for S-

SAGD3 illustrated in Fig 12 is able to represent the overall oil recovery as was evident in 

Fig 10 but at the expense of the identified trends when compared to the other experiments 

(Morte and Hascakir 2016). However, the comparable recovery between the analytical 

model and the experimental model still results in a high degree of confidence in the 

generated curve as the discrepancy is attributed and explained by the cyclic injection of 

the solvents. 
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Figure 12 - Empirically generated relative permeability curves for the S-SAGD 

experiments (Morte and Hascakir 2016) 
 

 
 

The increase in cumulative recovery realized by the SAGD experiments is a function of 

both impartation of energy in the form of heat along with a delayed breakthrough. SAGD1 

experienced a water breakthrough at a saturation fraction much higher than the other two 

experiments which can be seen in Table 3. Table 3 summarizes the important results of 

the analytical model proposed in this study. The parameter Swf represents the water 

saturation at breakthrough and the displacement of oil by water was intuitively more 

effective if the saturation of water is higher. The higher water saturation of SAGD1 means 

that more oil was displaced and produced. The parameter fwf in Table 3 represents the 

fraction of water of the displacement front. Ideally, the value would be one where a 
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uniform and piston like displacement is achieved. Therefore, the closer fwf is to one the 

more optimum the displacement front will be. The introduction of heat and the temperature 

dependency of the steam processes is accounted for by the change in viscosity of 54,000 

cP at reservoir conditions to the domain of the specific steam process. The manipulation 

of viscosity allows for the negation of the liquid-gas relative permeability and essentially 

is required to enable the utilization of the pseudo-two phase relative permeability. The 

presence of the toluene is evident in viscosity values that are approximately four times 

lower than the viscosity achieved with the SAGD experiments. The mass balance allows 

for the definition and calculation of the residual oil recovery of the analytical models and 

the assumption of only two phases in the pore space dictates that the remaining volume be 

pervasively filled with water. Establishing the density of the bitumen enables the 

definition of the remaining bitumen in the pore space in terms of volume instead of mass 

at steam temperatures. The water saturation is then the difference between one and the 

residual oil fraction. The table also contains the fractional flow parameters of fwf and Swf 

which summarize the fractional flow of all of the experiments. The two parameters define 

the piston-like displacement of the front at breakthrough as well as the water saturation at 

breakthrough. 
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Table 3 - Summary of the analytical model results 

Experiments 

Cumulative 

Oil Recovery, 

wt % 

Oil Viscosity 

@ Exp. 

Cond., cP 

Residual 

oil, 

fraction 

Residual 

water, 

fraction 

fwf Swf 

HW1 12.5 24.4 0.7 0.3 0.85 0.225 

SAGD1 46.5 19.8 0.49 0.51 0.92 0.44 

SAGD2 31.4 18.6 0.63 0.37 0.89 0.3 

S-SAGD1 35.6 25.3 0.55 0.45 0.86 0.34 

S-SAGD2 44.4 6.1 0.52 0.48 0.84 0.39 

S-SAGD3 44.9 5.3 0.52 0.48 0.81 0.325 

 

Due to the finite flow area, any increase in water production necessitates a decrease 

in oil production and so the delay of water breakthrough results in higher cumulative 

recovery for SAGD1. This is illustrated in Fig 13 where the higher values of Swf and fwf 

are indicative of later breakthrough (Morte and Hascakir 2016). The less than ideal 

mobility ratio evidenced by the relatively early breakthrough for HW1 is attributed to the 

much lower recovery and is shown by the far left position of the curve in Fig 13 (Morte 

and Hascakir 2016).  The parameter Swf denotes the water saturation at breakthrough and 

so a higher water saturation at breakthrough is directly related to more bitumen produced 

as cumulative recovery is a function of the difference in water saturations at any location 

behind the water front. The parameter fwf describes the fraction of pore space occupied by 

water at the time of breakthrough of the displacement front where increasing values 

correspond to more piston-like displacement.  
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Figure 13 - Fractional flow curve of the HW1, SAGD1, and SAGD2 experiments 

(Morte and Hascakir 2016) 

 

 

 

 Also, the same methodology was applied to the solvent steam assisted gravity 

drainage experiments where the fractional flow is depicted in Fig 14. The results identify 

a similar trend as was identified above where the greater recovery corresponds to a shift 

in the fractional flow curve to the left. However, the experiment S-SAGD3 once again 

strays from the identified trend due to the cyclic injection of the solvents. The fractional 

flow of S-SAGD3 experiences a different shape with a decrease in the slope of the curve 

relative to the other two S-SAGD experiments. The good fit that was depicted in Fig 10 

necessitates that this fractional flow be representative of the actual flow and Fig 14 allows 

for the extension of the model to encompass the fractional flow of solvent steam processes 

as well (Morte and Hascakir 2016). 
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Figure 14 - Fractional flow curve of the S-SAGD experiments (Morte and Hascakir 

2016) 

 

 

 

Macroscopic sweep of the bitumen by the propagation of the steam is the 

governing phenomenon behind the incremental increase in recovery. This volumetric 

displacement is represented by the mobility ratio which describes the ability of the 

displacing fluid to effectively push the displaced fluid and can be seen in Eqn 16.  

𝑀 =
µ𝑜𝑘𝑟𝑤

µ𝑤𝑘𝑟𝑜
 ……………………………………………...………………….….. Eqn. 16 

By taking into consideration the viscosity of the fluids and relating them in terms of a ratio 

the mobility ratio is able to characterize the relative ability to flow. A ratio of one is ideal 

where the viscosity of the fluids are the same and so there will be little bypassing of the 

displaced fluid and a more uniform front will be established. Fig 15 illustrates the 
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identified relationship where the cumulative recovery is shown to increase with a 

decreasing mobility ratio (Dyes et al. 1954; Morte and Hascakir 2016). The viscosity of 

the bitumen is much greater than the viscosity of the water and so the mobility ratio for all 

six experiments is greater than one but the trend identified definitively shows the increase 

in production corresponding to the reduction in mobility ratio. Characterizing the recovery 

in terms of the mobility ratio is a means of illustrating the volumetric sweep capability of 

all of the experiments and shows a distinct correlation. Macroscopic displacement 

efficiency increases as heat is introduced and viscosity is lowered and the cumulative 

recovery accordingly increases. 

 

 

 
Figure 15 - Mobility ratio vs cumulative recovery factor for all experiments (Morte 

and Hascakir 2016) 
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Incremental recovery of bitumen is attributed to the viscosity reduction achieved 

by the impartation of heat but an extenuation of that is the delayed breakthrough. The 

parameter Swf denotes the water saturation at the time of breakthrough and Fig 16 

definitely shows a direct corollary between this parameter and cumulative recovery factor. 

As the mobility ratio decreases, there is less viscous fingering and less bypassing of oil 

and so the displacement front is more uniform and piston-like. The lack of channeling due 

to preferential flow of the less viscous water is evident in the identified figure. The pore 

space is filled with only bitumen and water in this model and so the higher water saturation 

at the time of breakthrough must directly equate to a higher produced quantity of bitumen. 

The water essentially replaces the bitumen in the pore space as continuous injection is 

performed and the mass of water injected must be equal to the mass of the oil produced 

until breakthrough. At which point, the water will begin to flow preferentially to the 

producer as a function of the lower viscosity and bypass the unswept region of the 

bitumen. Therefore, by delaying breakthrough the experiment effectively delays the 

preferential production of water and maximizes the quantity of oil produced as a result of 

the mass balance of injected water. 
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Figure 16 - Water saturation at breakthrough vs cumulative recovery factor for all 

experiments  

 

 

 To effectively characterize all facets of flow in the reservoir, it becomes necessary 

to represent the pore scale displacement. The modified capillary number is a quantitative 

measurement of the ability of the viscous forces to overcome the capillary force and can 

be seen in Eqn 17. Modified capillary where 𝑣 is the interstitial velocity, µ𝑤 is the viscosity 

of the water, µ𝑜 is the viscosity of the oil, 𝑆𝑜𝑖 is the initial oil saturation, 𝑆𝑜𝑟 is the residual 

oil saturation, 𝜎𝑜𝑤 is the interfacial tension between the oil and water, and 𝜃 is the contact 

angle is utilized to show the efficacy of the experiments in mobilizing bitumen on a pore 

scale as opposed to the macroscopic scale. 

𝑁𝑐𝑎
′ =

𝑣µ𝑤

(𝑆𝑜𝑖−𝑆𝑜𝑟)𝜎𝑜𝑤cos (𝜃)
∗ (

µ𝑤

µ𝑜
)

.4
 ……………………..………………...……….. Eqn. 17 
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Dominating capillary force will result in trapping of the bitumen by the Jamin effect and 

this retention of bitumen will reduce the overall recovery (Hao et al. 2008; Li et al. 1999). 

Therefore, we would expect to see an increase in capillary number correlating to an 

increase in the cumulative bitumen recovery which is depicted in Fig 17 (Morte and 

Hascakir 2016). As the capillary force decreases relative to the viscous forces by the 

introduction of heat, the bitumen flows more readily and the capillary retention is 

minimized. The microscopic displacement efficiency increases due to the introduction of 

heat which changes the wettability but also due to changes in interfacial tension as a result 

of the injection of solvents. 

 

 

 
Figure 17 - Modified capillary number vs cumulative recovery factor for all 

experiments (Morte and Hascakir 2016) 
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5. CONCLUSIONS 

 

 

An analytical approach was utilized to empirically obtain pseudo two phase 

relative permeability curves for HW, SAGD, and S-SAGD experiments. Six bench-scale 

experiments conducted in lab were used as a means of establishing a cumulative recovery 

profile that was matched by the analytical model. Utilization of fractional flow theory and 

considering the experiments as waterflooding negates the steam phase and the temperature 

dependency associated with it. By implementing a linear waterflood as the mechanism of 

recovery the three phase relative permeability is regressed to a pseudo two phase. 

Modifications to the original fractional flow theory allow for the relaxation of primary 

assumptions thereby extending the applicability to SAGD and S-SAGD. By manipulating 

the viscosity into the domain of the SAGD process, the waterflood reflects an isothermal 

displacement at the steam temperature. The temperature dependency is therefore 

introduced in the manipulation of viscosity for all six of the experiments. The match of 

recoveries results in confidence in the model and establishes that the empirically generated 

pseudo two phase relative permeabilities are capable of representing overall fluid flow in 

terms of bitumen. By extension, the model is then able to forecast bitumen production 

which is an invaluable tool to any project management decision. 

The generated relative permeability curves are effectively able to match a large 

range of bitumen recoveries which renders this a resilient model. Corresponding to an 

increase in the cumulative recovery factor is a relative decrease in the hyperbolic slope of 

relative permeability to oil with a simultaneous increase in the slope of the relative 
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permeability to water. This relationship allows for the flow of oil at higher water 

saturations and accordingly a greater recovery factor. Delayed water breakthrough as a 

result of the increase in the fractional flow of water along with a more piston like 

displacement front corresponded to better performance. Overall displacement efficiency 

consists of both a microscopic and macroscopic displacement which was represented by 

modified capillary number and mobility ratio respectively. Both facets of flow in the 

reservoir correlated well with expected trends from published data which suggests a 

comprehensive model.  

The novelty of the research is the capability of forecasting production generated 

by the implementation of steam assisted gravity drainage or solvent steam assisted gravity 

drainage while negating the dependency of temperature for the relative permeability 

curves. Dependencies of three phase relative permeability on temperature associated with 

the introduction of heat energy to the reservoir prohibit the utilization of conventional 

three phase relative permeability curves. By introducing a pseudo two phase relative 

permeability curve that is capable of adequately representing overall bitumen flow we 

establish the ability to forecast production. Project selection is a major component of any 

sound reservoir management strategy and so knowing future production is necessary to 

maximize economics. Through the implementation of the reverse engineering approach of 

this research we analytically generate a pseudo two phase relative permeability that results 

in comparable recovery to the actual three phase fluid flow realized in the lab.  
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