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ABSTRACT

The main objective of this dissertation is to present a new exact optimization

method, the Slim Branch and Price (SBP) method, which is an improvement over

the traditional Branch and Price (B&P) framework. SBP can be used to solve a

large class of combinatorial optimization problems that can be solved by B&P type

algorithms and that have binary master problems with fixed support (i.e., the sum of

the variables in any feasible solution is fixed). This is an important class of problems

as it includes several classical and fundamental problems. Towards this objective, this

dissertation develops three algorithms to solve an interesting optimization problem,

the Hamiltonian p-median problem (HpMP), which is a generalization of the well-

known traveling salesman problem. In HpMP, the target is to find p cycles that

partition a given undirected graph with the objective of minimizing the total sum

of the costs of these p cycles.

This dissertation is divided into three main parts with the objective of showing the

superiority of SBP over B&P while using HpMP as a running example. Towards this

objective, the first part presents a B&P algorithm for HpMP, the second part presents

SBP and how it can be tailored to solve HpMP, and finally, the third part explains

how the preprocessing techniques developed for integer programs can dramatically

enhance the performance of SBP.

In the first part, we devise a Branch and Price algorithm that is able to solve

instances with up to 318 nodes (within acceptable optimality gaps). To achieve

this, we modified the set partitioning formulation of HpMP—a minor modification

yet with significant algorithmic and computational advantages. Furthermore our

computational results demonstrate that the practical complexity of HpMP and the
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performance of the algorithms to solve it strongly depend on the value of p. In

addition, in order to solve the pricing problem we make contributions on a couple

of problems that are important on their own right: 1) we develop a new efficient

algorithm to find the least cost cycle in undirected graphs with arbitrary edge costs

and no negative cycles; and 2) we develop an algorithm to find the most negative

cycle in undirected graphs with arbitrary edge costs. Finally, we prove that for every

value of p, HpMP is NP-hard even when restricted to Euclidean graphs.

In the second part, we present SBP method which is an improvement over tra-

ditional B&P in the case of binary master problems with fixed support. The main

advantage in SBP is that the branching tree has only one main branch with sev-

eral leaves. In addition, we show that all the problems defined on the leaves can

be merged to form a larger problem that can be solved very fast without further

branching. We illustrate the computational advantage of SBP over B&P on HpMP.

In particular, within one hour time limit, SBP can solve to optimality instances with

up to 200 nodes; whereas B&P can solve to optimality instances with up to 127

nodes.

In the third part, we exploit the reduced cost fixing preprocessing technique to

enhance the performance of B&P. To this end, we develop a heuristic based on k-opt

moves to find good feasible solutions for HpMP. We also introduce two separation

algorithms to improve the linear programming relaxation of the natural variable

space model of HpMP. Using these upper and lower bounds, reduced cost fixing was

then implemented to reduce the graph size by deleting the edges that cannot be

in any optimal solution. We compared the computational times reported by SBP

with preprocessing versus those reported by SBP without preprocessing. The former

algorithm performed better than the latter algorithm in 88.3% of the test instances.
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1. INTRODUCTION

1.1 Background and Motivation

In this dissertation, first, a combinatorial optimization algorithm, called Slim

Branch and Price, is developed and its applications are discussed. Secondly, solu-

tion methods for an important optimization problem, called Hamiltonian p-median

problem, are investigated. These methods include Branch and Price, Slim Branch

and Price, and Slim Branch and Price with preprocessing.

1.1.1 Slim Branch and Price

The vast majority of the state-of-art successful exact algorithms for hard combi-

natorial optimization problems can be classified within either the branching frame-

work or the cutting plane framework. On one hand, important examples of branching

algorithms include Branch and Bound algorithms and Branch and Price (B&P) algo-

rithms. On the other hand, pure cutting plane algorithms and Benders decomposition

are important algorithms in the cutting plane framework. Some of the widely used

effective methods combine ideas from these two frameworks as evident in Branch and

Cut algorithms and Branch and Price and Cut.

B&P has been extensively used to solve several problems in many realms of

operations research. Successful implementations of B&P in the areas of assignment,

scheduling, vehicle routing, graph coloring, cutting stock, and multicommodity flow

problems had been developed.

B&P was first presented by [8] to solve large scale optimization problems. B&P

starts by formulating the respective problem as a problem with an exponential num-

ber of variables. This problem is called the master problem. This master problem

is usually in the form of a set partitioning or covering problem with one or more

1



auxiliary constraints.

B&P starts by considering only a small subset of the set of all variables in the

master problem to define a restricted master problem (RMP) from the master prob-

lem. Next, the linear programming (LP) relaxation of the RMP is solved and using

its dual solution, a pricing problem is constructed. In minimization problem, the

pricing problem entails finding a variable with negative reduced cost. If no such

variable exists, then the optimal solution of the RMP’s LP relaxation is also optimal

for the master problem. Otherwise, a new variable (having a negative reduced cost) is

added to the RMP and the RMP’s LP relaxation is resolved. Branching starts when

there are no variables with negative reduced cost and the solution of the RMP’s LP

relaxation is fractional. These same steps are applied (on possibly a slightly modified

RMP and pricing problem) at each subsequent node in the branching tree until the

optimal integer solution is found.

Many optimization problems were successfully solved using B&P and the litera-

ture discussing B&P algorithms is huge. Here, we outline some of the recent B&P

successful implementations. Our literature review is not exhaustive, but our main

aim is to show the wide applicability of B&P in diverse areas of applications.

Recent B&P algorithms were devised to solve the examination–timetabling prob-

lem [50], the maximum edge biclique packing problem on unbalanced bipartite graphs

[1], maritime inventory routing [25], multi-trip vehicle routing problem with time

windows and limited duration [24], genome rearrangement problems [29], the pickup

and delivery problem with cross-docking [42], tramp ship routing and scheduling

[48], weekly tour scheduling problem for postal service workers [11], kidney exchange

problem with long chains [20], robust airline crew pairing problem [36], distance

constrained multiple vehicle traveling purchaser problem [9], optimal allocation of

emergency medical resources in a mass casualty incident [44], robust graph coloring
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problem [5], the electricity production planning problem [39], two-echelon capaci-

tated vehicle routing problem [41], the vehicle scheduling problem for fleets with

alternative fuel vehicles [2], multi-skill project scheduling problem [35], among other

problems.

The main objective of this dissertation is to present a new exact optimization

method, the Slim Branch and Price (SBP) method, which is an improvement over

the traditional Branch and Price framework. SBP can be used to solve a large class

of combinatorial optimization problems that can be solved by B&P type algorithms

and that have binary master problems with fixed support (i.e., the sum of the vari-

ables in any feasible solution is fixed). This is an important class of problems as

it includes several classical and fundamental problems such as capacitated vehicle

routing problem [7] and its variants, parallel machine scheduling [4] and its variants,

capacitated p-median problem [32] and its variants, balanced disjoint rings problem

[45], k-clustering problem [22], and political districting problem [34].

1.1.2 Hamiltonian p-median Problem

Another important optimization problem that has fixed binary support is the

Hamiltonian p-median problem (HpMP) which is a generalization of the Traveling

Salesman Problem (TSP) and was first presented by [10]. The target in HpMP is to

find p cycles that partition a given undirected graph such that each node lies on

exactly one cycle with the objective of minimizing the total sum of the costs of the p

cycles. When the number of cycles p is not pre-specified, the problem is known as the

two-matching problem and is solvable in polynomial time [18]. HpMP is equivalent

to TSP when p is set to 1, and thus HpMP is, in general, NP-hard [21]. It was proved

that for every value of p, HpMP is NP-complete [13] .

HpMP has many real life applications which are detailed as follows. In the hu-

3



manitarian logistics context, cycles represent the relief distribution routes through

shelters or temporary evacuee locations and their connections along with travel times

given as edge weights. Large relief shipments are typically dropped off at some node

on each cycle and later distributed to the shelters via trucks. In our case, we form

the routes (cycles) independent of any fixed drop-off locations set a priori to form-

ing routes. Once the cycles are formed, any suitable node on a cycle is a potential

drop-off location. This indeed provides great flexibility in changing conditions in

emergency situations.

The HpMP also has application in scheduling jobs on parallel machines with

sequence dependent set-up times. The relationship between the TSP and scheduling

jobs with sequence dependent set-up times is well known [6]. Expanding on this

relation, defining nodes as jobs and edges with setup times for switching job-to-

job in an underlying network, HpMP seeks to optimally group nodes (jobs) into

cycles and find a sequence of jobs for each group to be processed on a machine.

Minimizing the total cycles-length corresponds to minimizing the total setup time

required. Furthermore, [6] reviews TSP approaches for several flow-shop scheduling

problems where each stage in the flow-shop includes a single machine. In [6], it

is mentioned that an area in which no similar approaches are available is flexible

flow-shop scheduling in which parallel processing at each stage is motivated by the

availability of multiple machines. Thus, the HpMP is a step towards addressing this

more general and relevant environment in today’s manufacturing practice. A similar

application may appear in the design of patrol routes and surveillance where a set

of critical locations (facilities, intersections, hot crime spots etc.) needs to be visited

periodically (e.g. [12], [38], [14]). Such patrol routes can be implemented for public-

safety in cities and rural areas or overnight security services; in addition, these patrol

routes are also relevant in military applications and border security.
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Although HpMP has many applications as mentioned, only a limited number of

(heuristic or exact) algorithms have been developed to solve it. The first effort to

solve it heuristically was presented by [10]. They developed two formulations for

HpMP and also several heuristics to solve it on directed graphs. Although they com-

pared the output solution among the different heuristics, no results on the optimality

gaps were reported.

Both [19] and [26] conducted a polyhedral study of the HpMP for their three-

index model formulation and for the natural variable space formulation, respectively.

In [21], both theoretical and computational comparisons among seven new and

existing formulations for HpMP were conducted. They successfully solved instances

up to 40 nodes, but all the models had difficulty solving larger instances to optimality

within the one hour time limit. Moreover, even the performance of the best model

(the natural variable space formulation) deteriorated as the value of p increased even

for instances with as few as 20 nodes. They also compared theoretically the relative

tightness of the seven models and showed that both the set partitioning formulation

and the natural variable space formulation have the tightest linear programming

relaxations (however, the relative tightness of these two formulations was not com-

parable). They did not present any computational results for the set partitioning

formulation. They pointed out that it requires column generation and left it as future

research.

Similar problems to HpMP have been previously studied in the literature. In [30],

a variant of the HpMP where p is an upper bound on the number of required cycles

was presented. Another variant of HpMP was presented in [45], in which, in addition

of specifying a predetermined number of cycles p, the formed cycles are required to

be balanced in the sense that each cycle must pass through at least L and at most

U nodes. Another variant was presented by [15] in which the number of cycles p is
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not fixed but instead an upper bound on the number of nodes per cycle is imposed.

This dissertation is divided into three main parts. In the first part, we present a

B&P algorithm to solve HpMP. In the second part, we present the SBP method and

illustrate how it can be used to solve the HpMP. Finally, the third part presents the

effect of implementing preprocessing techniques on the performance of SBP.

1.2 Contributions and Dissertation Organization

Next, we provide our motivation and contributions in each chapter of the disser-

tation separately.

In chapter 2, we develop and implement a B&P algorithm to solve HpMP. To

this end, this chapter includes several contributions on modeling, methodology, and

computational aspects:

1. We modified the set partitioning formulation of HpMP proposed by [21] without

affecting the tightness of the LP relaxation. This simple modification greatly

simplifies the pricing problem, thus effectively allowing us to solve larger in-

stances;

2. We developed a new efficient algorithm to find the shortest cycle in an undi-

rected graph with arbitrary edge costs and no negative cycles;

3. We developed an algorithm to find the most negative cycle in an undirected

graph with arbitrary edge costs;

4. Computationally, the proposed algorithm for solving the HpMP outperformed

the previously presented algorithms as it successfully solves instances up to 318

nodes, as opposed to other exact algorithms which only solved instances up to

100 nodes;
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5. Since the proof in [13] only applies to general, incomplete graphs, we refined it

to establish that for every value of p, HpMP is NP-hard even when restricted

to Euclidean graphs;

6. We showed that the practical complexity of HpMP and the performance of the

algorithms to solve it substantially depend on the relation between p and p2m

(the number of cycles in the minimum weight two-matching optimal solution).

Contributions 2 and 3 are relevant to our discussion because these two problems arise

when solving the pricing problem. However, these two problems are important on

their own right.

In chapter 3, we first present SBP method and its implementation in general

and later we develop its specialization to solve HpMP. The computational results of

SBP are compared with those obtained by the B&P algorithm presented in chapter

2. This comparison demonstrates the improved performance provided by the SBP

in all of our test instances.

The new slim branching scheme is motivated by the following observations:

1. The traditional variable branching results in unbalanced branching tree in

which the 0-branch often results in minimal improvement in the optimal ob-

jective value of the RMP’s LP relaxation [46].

2. The solutions of the two children nodes in B&P branching tree are usually very

close to the solution of their corresponding parent.

3. Most of the successful branching strategies implemented in B&P are based on

exploiting the specific structure of the studied problem [46].

Observations 1 and 2 have the implication that most traditional branching strate-

gies spend a lot of time examining a small portion of the feasible region. This results
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in poor computational performance due to large branching tree. In SBP, we prevent

these drawbacks as follows:

1. Although the branching strategy in SBP leads to an unbalanced tree, it guaran-

tees that the problem defined at any left child node is easy and can be fathomed

quickly without further branching.

2. The newly defined branching scheme guarantees that the optimal solution of the

right child node differs significantly from the optimal solution of the parent’s

problem by the introduction of an inequality that sets an upper bound on the

summation of the variables whose values are not zero in the parent’s optimal

solution. We refer to this inequality as the exploration inequality.

3. The branching scheme in SBP is not problem specific with the only require-

ment that the master problem has fixed binary support. SBP can be readily

implemented to solve several applications provided that a pricing oracle that

prevents the formation of specific columns (i.e., variables) is available.

In chapter 4, we use a well-known preprocessing technique, called the reduced

cost fixing, for binary programs to further improve the performance of SBP when

solving HpMP. To enhance the performance of reduced cost fixing technique, we

suggest new approaches for improved lower and upper bounds. For the former,

we present two new separation algorithms for a subset of constraints previously

suggested for a natural variable model of HpMP [21]. For the latter, we present a

heuristic based on k-opt moves to find a feasible solution for HpMP. Implementing our

enhanced preprocessing technique enabled us to reduce the problem size by deleting a

considerable number of edges in the original graphs, and thus allowed better solutions

of equivalent, but significantly smaller size problems. Computational experiments
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comparing the performance of SBP with and without preprocessing are presented to

illustrate the significant improvements obtained.

In chapter 5, we present the concluding remarks and future research directions.
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2. A BRANCH AND PRICE ALGORITHM FOR SOLVING THE

HAMILTONIAN P-MEDIAN PROBLEM∗

2.1 Introduction

The Hamiltonian p-median problem (HpMP) is a generalization of the Traveling

Salesman Problem (TSP) and was first presented by [10]. The target in HpMP is to

find p cycles that partition a given undirected graph such that each node lies on

exactly one cycle with the objective of minimizing the total sum of the costs of the p

cycles. When the number of cycles p is not pre-specified, the problem is known as the

two-matching problem and is solvable in polynomial time [18]. HpMP is equivalent

to TSP when p is set to 1, and thus HpMP is, in general, NP-hard [21]. We next

show that for every value of p, HpMP is NP-hard for Euclidean graphs.

Proposition 2.1.1. For every value of p, HpMP is NP-hard for Euclidean graphs.

Proof. We perform a polynomial time reduction of TSP on Euclidean graphs to

HpMP. Consider a Euclidean graph G = (V,E) with edge lengths ce for all edges

e ∈ E and let H be the sum of the |V | highest edge lengths in G. Construct a new

complete graph G′ = (V ′, E ′) by creating p copies of G and connecting the nodes in

different copies with edges of length (p+ 1)H to obtain G′. Clearly, the construction

of G′ from G can be done in polynomial time. Note that G′ is also Euclidean.

Next, we show that the TSP instance on G has an optimal solution of value Z

if and only if the HpMP instance on G′, given a specific value of p, has an optimal

solution of value pZ. Suppose that an optimal TSP solution on graph G has a value

*Part of the material in this chapter is reprinted by permission, A. M. Marzouk, E. Moreno-
Centeno, and H. Üster, A Branch and Price Algorithm for Solving the Hamiltonian p-median
Problem, INFORMS Journal on Computing, 28(4):674-686, 2016. Copyright 2016, the Institute
for Operations Research and the Management Sciences, 5521 Research Park Drive, Suite 200,
Catonsville, Maryland 21228 USA.
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of Z. This implies that there exists a feasible solution of HpMP on G′, which is

comprised of p copies of G, of value pZ. The optimality of this value stems from two

facts. First, no optimal solution to the HpMP on G′ can contain any of the edges

with length (p+ 1)H as any such solution has a total length that is greater than pZ

(since (p+ 1)H is strictly greater than pZ). Second, when restricted to each copy of

G in G′ (as none of the edges connecting two copies can be selected in any optimal

solution), the least length cycle in each copy is the TSP tour of value Z. Thus, by

considering the p copies, the optimal solution of HpMP for a specific value of p is

pZ. Next, suppose that an optimal HpMP solution on G′ has a value of pZ. This

implies that none of the edges with length (p + 1)H is selected since pZ is strictly

less than (p+ 1)H. Thus, by considering only one copy of G in G′, the TSP solution

on this subgraph is readily available and equals to Z as G′ (after deleting the edges

with length (p+ 1)H) is equivalent to p disconnected copies of G.

In this chapter, we present a B&P algorithm to solve HpMP. To this end, we

start by presenting the set partitioning model for HpMP followed by formulating the

pricing problem. Next, we present the algorithms used to solve the pricing problem.

We end this chapter by presenting the computational results and conclusions.

2.1.1 Problem Formulation

Before presenting the set partitioning formulation for HpMP, we give a formal

definition of the HpMP and the notation used. Given an undirected graph G =

(V,E) with edge cost dij ≥ 0 for all edges (i, j) ∈ E, and a positive integer p, find

p simple cycles such that each node i ∈ V is contained in exactly one cycle and the

sum of the costs of these cycles is minimum. Note that since the graph is undirected,

each cycle should pass through at least three nodes.

Let xk be a binary variable that represents whether the cycle k is in the optimal
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solution. The cost of the cycle k is denoted by ck and is calculated by summing the

costs of the edges in the cycle. The coefficients aik denote which nodes are included

in cycle k (i.e., aik is 1 if cycle k passes through node i, and is 0 otherwise). The set

of all cycles in G is denoted by K. Note that the size of K is exponential.

HpMP can be formulated as a set partitioning problem with an additional con-

straint enforcing that a feasible solution must have exactly p cycles (constraint

(2.1c)):

(Master Problem) minimize
∑
k∈K

ckxk (2.1a)

subject to
∑
k∈K

aikxk = 1 ∀i ∈ V (2.1b)

∑
k∈K

xk = p (2.1c)

xk ∈ {0, 1} ∀k ∈ K (2.1d)

Constraints (2.1b) imply that every node i ∈ V must be covered by exactly one

cycle/variable. The objective (2.1a) is to minimize the sum of the costs of the p

selected cycles. As opposed to the set partitioning formulation presented in [21],

the cycles in set K need not be the least cost Hamiltonian cycles; specifically K

contains every simple cycle passing through at least three nodes. Henceforth, the

terms column and variable are used interchangeably.

2.1.2 Contributions

The main goal in this chapter is to develop and implement a B&P algorithm to

solve HpMP. To this end, this chapter includes several contributions on modeling,

methodology, and computational aspects: 1) we modified the set partitioning formu-

lation of HpMP proposed by [21]. Specifically, we removed the condition that the
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columns in the set partitioning formulation be least cost Hamiltonian cycles, and thus

allowed every simple cycle to be a valid column. Note that this formulation change

does not affect the tightness of the LP relaxation (in [21], it is reported that the set

partitioning formulation had the tightest LP bounds). However, this simple modifica-

tion greatly simplifies the pricing problem, thus effectively allowing us to solve larger

instances; 2) we developed a new efficient algorithm to find the shortest cycle in an

undirected graph with arbitrary edge costs and no negative cycles; 3) we developed

an algorithm to find the most negative cycle in an undirected graph with arbitrary

edge costs; 4) computationally, the proposed algorithm for solving the HpMP out-

performed the previously presented algorithms as it successfully solves instances up

to 318 nodes, as opposed to other exact algorithms which only solved instances up

to 100 nodes; 5) since the proof in [13] only applies to general, incomplete graphs,

we refined it to establish that for every value of p, HpMP is NP-hard even when

restricted to Euclidean graphs; and 6) we showed that the practical complexity of

HpMP and the performance of the algorithms to solve it substantially depend on

the relation between p and p2m (the number of cycles in the 2-matching optimal

solution). Contributions 2 and 3 are relevant here because these two problems arise

when solving the pricing problem. However, these two problems are important on

their own right.

The structure of this chapter is as follows: the solution methodology and the

pricing problem are discussed in Section 2.2. The test instances and the computa-

tional results compared to those of the best IP model in [21] are reported in Section

2.3; finally Section 2.4 presents the conclusions.
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2.2 Solution Approach

In this section, a B&P approach is presented to solve the set partitioning formu-

lation of the HpMP. For this purpose, we first give an overview of this approach and

then the details are presented in the next subsections.

This method starts by considering only a small subset, K ′, of the set of all simple

cycles in G, K, to define a restricted master problem (RMP) from Problem 2.1.

Next, the linear programming (LP) relaxation of the RMP is solved and using its

dual solution, a pricing problem is constructed. As we discuss below, the pricing

problem entails finding a cycle with negative reduced cost on an undirected graph

with arbitrary edge weights. If no such cycle exists, then the optimal solution of

the RMP’s LP relaxation is also optimal for Problem 2.1. Otherwise, a new cycle

(having a negative reduced cost) is added to the RMP and the RMP’s LP relaxation

is resolved. Branching starts when there are no cycles with negative reduced cost

and the solution of the RMP’s LP relaxation is fractional. These same steps are

applied (on a slightly modified RMP and pricing problem) at each subsequent node

in the branching tree until we get the optimal integer solution.

2.2.1 Initialization

To form an initial RMP, the first step in any B&P algorithm is to populate

the initial set K ′ with a set of variables (i.e., simple cycles) such that the RMP

has a feasible solution. In our problem, we devise the following simple approach to

find an initial solution efficiently. The idea is to initialize the RMP with a set of

artificial columns having an arbitrary high cost. Specifically, given N = |V | and p,

the first column will contain nodes 1, . . . , bN/pc, the second column will have nodes

bN/pc + 1, . . . , 2bN/pc and so on. Note that the last column may contain a larger

number of nodes. For those columns whose nodes visited in canonical order do form
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a cycle in the given graph, the arbitrary high cost is replaced by the cost of the

respective canonical cycle.

2.2.2 Pricing Problem

This subsection defines the pricing problem associated with the RMP. Let µi for

i = 1, . . . , |V | be the dual variables associated to constraints (2.1b) and let µ0 be the

dual variable for constraint (2.1c). Note that since constraints (2.1b) and (2.1c) are

equality constraints, all of these dual variables can be positive or negative (i.e., can

be arbitrary real numbers).

In the RMP, as in Problem 2.1, each column represents a cycle, k, that passes

through a set of nodes; the ith element in the column is 1 if cycle k passes through

node i ∈ V and is 0 otherwise (this information is encoded in the parameter aik).

This is true for the first |V | elements in the column, whereas the last element (i.e.,

the coefficient in constraint (2.1c)) is always one. Thus, in the pricing problem, we

define a new binary variable yi, i ∈ V such that yi equals one if the cycle passes

through node i and yi equals zero otherwise. Cycle k also passes through a set of

edges and thus a binary variable tij is defined for each edge (i, j) ∈ E and will have

a value of one if cycle k passes through edge (i, j) and a value of zero otherwise.

Hence, the cost of any cycle can be written as
∑

(i,j)∈E dijtij.

Thus, the objective function in the pricing problem, which corresponds to calcu-

lating the reduced cost of a column, can be written as minimize Z =
∑

(i,j)∈E dijtij−∑
i∈V µiyi− µ0 and the constraints of the pricing problem enforce the consistency of

tij and yi forming a simple cycle. Now, since any node in a simple cycle has exactly

two adjacent edges, the objective function of the pricing problem can be rewritten

as minimize Z =
∑

(i,j)∈E(dij − µi
2
− µj

2
)tij − µ0.

Next, we give an alternative, more natural definition of the pricing problem.
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Given an undirected graph G′ = (V,E) with edge weights wij = dij − µi
2
− µj

2
(note

that these weights can be positive or negative) and an arbitrary real number µ0, a

column with a negative reduced cost corresponds to a cycle whose total weight minus

µ0 is negative. To solve the pricing problem, one might be tempted to ignore µ0, find

the cycle with minimum weight, and add −µ0 to the minimum weight found. Then

depending on the result of this sum being negative or positive, either add the cycle

to the RMP or determine that the optimal solution of the RMP’s LP relaxation has

been found, respectively. However, since the undirected graph G′ possibly has edges

with negative weights, the solution approach outlined above is not practical since

finding the most negative cycle is NP-hard [3]. Therefore, Section 2.2.3 presents

a practical approach to solve the pricing problem. This approach hinges on the

following remarks:

a) while finding the most negative cycle is NP-hard, determining whether a given

undirected graph has a negative cycle is solvable in polynomial time [49];

b) if the graph has no negative cycle, then finding the cycle with the smallest weight

is also solvable in polynomial time as discussed in Section 2.2.3.1; and

c) when solving the pricing problem, one may settle for finding a negative reduced

cost cycle (or determine if no such cycle exists) instead of striving to find the

cycle with the most negative reduced cost.

2.2.3 Solving the Pricing Problem

As mentioned before, solving the pricing problem entails determining whether a

simple cycle, C, with negative reduced cost exists, where the reduced cost of a cycle

is Z =
∑

(i,j)∈C wijtij − µ0. Notice that the pricing problem’s objective function

comprises two parts: the cycle’s total weight, W =
∑

(i,j)∈C wijtij, and µ0. Based
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on this observation, depending on whether G′ has a negative cycle and the sign of

µ0, we consider four cases (described below) when solving this problem. In [49],

two algorithms for solving the undirected negative weight cycle detection problem

were presented. The first algorithm is based on b-matching while the second is

based on T-join with time complexities of O((|V |+|E|)2 log (|V |+ |E|)) and O(|V |3),

respectively. Although the worst case complexity of the latter algorithm is better,

the computational results reported in [49] showed that the b-matching algorithm

performs better in practice for complete graphs with less than 400 nodes. In addition,

note that our algorithms need to find the negative cycles explicitly but the T-join

algorithm only detects their presence and does not identify them. For these reasons,

hereafter, we will use UNWCD to refer to undirected negative weight cycle detection

algorithm based on b-matching. For completeness, the pseudo-code of the UNWCD

based on b-matching is given in §A.1 in the Appendix. Briefly, this algorithm works

as follows: the input graph is transformed to an auxiliary graph such that detecting

whether the input graph has a negative cycle is equivalent to finding the minimum

weight perfect matching in the auxiliary graph. Based on the edges in this perfect

matching, one can easily find one or more negative cycles or conclude that no negative

cycle exists. An important property that we exploit later is that if the output of the

algorithm is more than one cycle, the cycles will necessarily be node-disjoint.

Case 1: G′ has no negative cycle and µ0 ≤ 0. In this case, we have an optimal

solution to the LP relaxation of the RMP because the least-weight cycle in G′

has a nonnegative total weight and thus subtracting µ0 cannot lead to a cycle

with negative reduced cost.

Case 2: G′ has a negative cycle and µ0 ≥ 0. In this case, the negative-weight cycle

found by UNWCD has a negative reduced cost since subtracting a nonneg-
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ative µ0 from the (negative) total weight results in a negative reduced cost.

Therefore, this cycle can be added to the RMP.

Case 3: G′ has no negative cycle and µ0 > 0. In this case, deciding whether there

exists a cycle with negative reduced cost depends on whether there exists a

cycle whose total weight, W , is less than µ0 (i.e., Z = W − µ0 < 0). Section

2.2.3.1 presents an algorithm to determine whether G′ has such a cycle; then,

if such a cycle exists it is added to the RMP, otherwise an optimal solution to

the RMP’s LP relaxation was found.

Case 4: G′ has a negative cycle and µ0 < 0. This case can be divided into two

subcases:

a) The total weight of the negative cycle detected by UNWCD is less than µ0.

This implies that Z < 0 and the cycle is added to the RMP as it has a

negative reduced cost.

b) The total weight of the negative cycle detected by UNWCD is greater than

or equal to µ0. That is, this cycle has a nonnegative reduced cost; however,

as this cycle may not be the most negative cycle, we cannot conclude that

we have an optimal LP solution to the RMP. Section 2.2.3.2 describes a

strategy to find a cycle such that Z < 0 (then this cycle is added to the

RMP) or determine that no such cycle exists (then we conclude that we

have an optimal LP solution to the RMP).

2.2.3.1 Algorithm to Solve the Problem Arising in Case 3

Given an undirected graph G′ = (V,E) with arbitrary edge weights wij where

G′ has no negative cycles and given a positive number µ0, the problem is to find a
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cycle whose total weight, W , is less than µ0 or determine that no such cycle exists.

This subsection describes two algorithms to solve this problem:

Algorithm 1’s strategy is to find the least-weight cycle and then compare its

weight to µ0. In [3], an algorithm to find the least-weight path between any two nodes

in undirected graphs with arbitrary edge weights when the graph has no negative

cycle is presented. Thus, to find the least-weight cycle, one can run the algorithm in

[3] for every pair of nodes i, j ∈ V , after deleting the edge (i, j), and then add the

edge weight joining nodes i and j to close the cycle. The complexity of the algorithm

to find the least-weight path is O(|V |6) [3]. Thus, finding the least-weight cycle has

a complexity of O(|V |8).

One may be tempted to improve the complexity from O(|V |8) to O(|V |7) by

running the algorithm in [3] only for every single node i by splitting node i into two

nodes. However, this strategy is incorrect because it does not guarantee that the

formed cycle passes through at least three nodes.

Algorithm 2, given below, is a correct O(|V |(|V | + |E|)2 log (|V |+ |E|)) algo-

rithm to solve our problem. The main idea of this algorithm is to transform G′ to a

new graph G′′ by incorporating µ0 in such a way that the existence of a cycle whose

weight is less than µ0 in G′ is equivalent to the existence of a negative cycle in G′′.

Algorithm 2

For each node i ∈ V , perform the following operations:
Step 1: Create G′′i as an exact copy of G′.
Step 2: Subtract 0.5µ0 from all the edges incident to node i in G′′i .
Step 3: Run UNWCD on G′′i
Step 4: If UNWCD finds a negative cycle in G′′i , quit and return such cycle.
If after processing all nodes, no negative cycle was found, then report that there
exists no cycle whose weight is less than µ0.
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Lemma 2.2.1 establishes the correctness of Algorithm 2, and Lemma 2.2.2 gives

its complexity.

Lemma 2.2.1. There exists at least one G′′i that contains a negative cycle if and

only if the weight of the least-weight cycle in G′ is less than µ0.

Proof. The result follows from the following observation. If a cycle C passes through

node i ∈ V , then the weight of C in G′′i , WC(G′′i ), equals the weight of C in G′,

WC(G′), minus µ0. That is, WC(G′′i ) = WC(G′)− µ0 if cycle C passes through node

i ∈ V .

Lemma 2.2.2. The complexity of Algorithm 2 is O(|V |(|V |+ |E|)2 log (|V |+ |E|)).

Proof. Algorithm 2 runs UNWCD once for every node in G′. Since UNWCD’s

complexity is O((|V | + |E|)2 log (|V |+ |E|)) [49], the complexity of Algorithm 2 is

O(|V |(|V |+ |E|)2 log (|V |+ |E|)).

We conclude this subsection with the following two remarks:

Remark 1 Instead of terminating Algorithm 2 once a negative cycle is found

(and adding the cycle to the RMP), one can iterate through all the nodes. Doing so

enables us to add to the RMP several cycles with negative reduced costs at once; or

only adding to the RMP the cycle with the most negative reduced cost. Our exper-

imental tests show that these two modifications are less efficient than the approach

in Algorithm 2.

Remark 2 Algorithm 2 can be modified to find the least cost cycle in any given

undirected graph, G′, with arbitrary edge costs and no negative cycles. This mod-

ification is as follows. (1) Let M = F + ε where F is the cost of the edge having

the largest cost in G′ and ε > 0. (2) Set µ0 = M |V | and run Algorithm 2 for each

node i ∈ V . (3) Compare the costs of the cycles found (one cycle for each value
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of i ∈ V ) to find the least cost cycle. This modified algorithm is correct because:

a) if UNWCD finds exactly one cycle in a graph, then this cycle must be the least

cost cycle; b) by subtracting 0.5M |V | from the edges incident to node i to form G
′′
i ,

UNWCD will necessarily find a negative cycle passing through node i since the cost

of the least cost cycle cannot be greater than M |V |; and c) in any of the resulting G
′′
i ,

UNWCD cannot find more than one cycle since G′ originally had no negative cycles

and the only difference between G′ and any of the G
′′
i ’s is in the costs of the edges

incident to node i (i.e., all the negative cycles, if any, pass through node i in G
′′
i , and

thus, since UNWCD’s output is restricted to node-disjoint cycles, it will output the

most negative cycle from these cycles—an example illustrating this property is given

in Figure A.1 in Appendix A). Clearly, the complexity of the modified Algorithm 2

is still O(|V |(|V |+ |E|)2 log (|V |+ |E|)).

2.2.3.2 Algorithm to Solve the Problem Arising in Case 4

In case 4, we need to solve the following problem: Given an undirected graph

G′ = (V,E) with arbitrary edge weights wij for every edge (i, j) ∈ E, find a negative

cycle in G′ whose weight is less than µ0 or determine that none exists. The core of

our algorithm to solve this problem is the integer program (IP) given in Problem

(2.2). This IP selects a set of simple cycles whose sum of weights is minimum, each

cycle’s weight is negative and none of these cycles is contained in a given set Q. (Our

algorithm uses Q to exclude the simple cycles whose sum of weights is less than µ0

but the weight of each cycle is greater than or equal µ0.)

(IP for Case 4) minimize T =
∑

(i,j)∈E

wijyij (2.2a)

subject to
∑

∀(i,j)∈δ(v)

yij = 2zv ∀v ∈ V (2.2b)
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∑
∀(i,j)∈q

yij ≤ |q| − 1 ∀q ∈ Q (2.2c)

yij ∈ {0, 1} ∀(i, j) ∈ E (2.2d)

zv ∈ {0, 1} ∀v ∈ V (2.2e)

In this model, the value of the binary variable yij is one if edge (i, j) is selected

in the optimal solution, and is 0 otherwise. The value of the binary variable zv

is one if node v ∈ V is included in one of the selected cycles. In the constraints

(2.2b), δ(v) denotes the set of edges incident to node v ∈ V ; these constraints imply

that if node v ∈ V is selected, then exactly two of the edges incident to v must be

selected; whereas if node v is not selected, then none of its incident edges can be

selected. Consequently, constraints (2.2b) enforce the solution to form only simple

cycles. In the constraints (2.2c), |q| denotes the number of edges in cycle q ∈ Q;

these constraints prohibit the formation of any cycle in Q. Note that Problem (2.2)

requires exponential time in the worst case.

Algorithm 3, given below, uses Problem (2.2) to find a cycle in G′ whose weight

is less than µ0 or conclude that none exists:

Note that the cardinality of Q may become exponential during Algorithm 3.

However, in practice the size of Q is relatively small. This is because, as shown in

our computational results, for the vast majority of the instances, Algorithm 3 solves

at most three IPs to find a cycle that is more negative than µ0 or to conclude that

none exists.

Lemma 2.2.3. Algorithm 3 is correct and terminates in a finite number of steps.

Proof. Clearly, when the algorithm reaches the stopping condition in step 3, its

output is correct. The stopping condition in step 4 is correct because T ∗ being
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Algorithm 3

Input: G′ = (V,E), a weight wij for all edges (i, j) ∈ E, and a negative number, µ0.
Output: A cycle or set of cycles such that the weight of each cycle is less than µ0

or conclude that no such cycle exists.
Step 1: Let Q be an empty set.
Step 2: Solve Problem (2.2).
Step 3: If one or more of the cycles in the optimal solution to Problem (2.2) has
weight less than µ0, then return these cycle(s) and quit. Otherwise, continue to step
4.
Step 4: If the sum of the weights of the cycles in the optimal solution of Problem
(2.2), T ∗, is greater than or equal to µ0, then report that no negative cycle in G′ has
weight less than µ0 and quit. Otherwise, continue to step 5.
Step 5: (T ∗ < µ0 but no cycle in the optimal solution has a weight less than µ0).
Update the set Q by adding to it all the cycles in the optimal solution of Problem
(2.2), and go to step 2.

greater than or equal to µ0 implies that G′ does not contain a cycle whose weight is

less than µ0. This implication follows from these observations: 1) all of the cycles in

Q have weight that is greater than or equal to µ0 (see step 5), and 2) the existence of

a negative cycle whose weight is less than µ0 contradicts the optimality of T ∗. Now,

the operations performed in step 5 only prevent cycles whose weight is greater than

or equal to µ0 from being selected in future iterations; therefore these operations do

not affect the correctness of the algorithm and thus we conclude that Algorithm 3 is

correct. To see that Algorithm 3 must terminate in a finite number of steps, we first

note that if Q were to contain all of the negative cycles in G′, then T ∗ would equal

0, and thus the termination condition of step 4 would be met. Now since in each

iteration, step 5 adds at least one cycle to Q and G′ has a finite number of cycles, it

follows that Algorithm 3 terminates in a finite number of iterations.

Remark 3 Algorithm 3 can be modified to find the most negative cycle in undi-

rected graph with arbitrary edge costs. The modification is as follows. First, define
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Q as an empty set and let S be zero. Second, solve Problem (2.2) and add all the

cycles in the optimal solution to Q. Finally, let S be the cost of the most negative

cycle found so far in Q. Repeat the last two steps until either T ∗ is greater than or

equal to S or T ∗ is zero (in which case, the graph contains no negative cycles except

those already contained in Q). After the stopping condition is met, if S is less than

zero, then it is the cost of the most negative cycle (which can easily be extracted

from Q); otherwise S is equal to zero and the graph has no negative cycles.

2.2.4 Branching Strategy

In a B&P framework, after finding an optimal solution to the LP relaxation of the

RMP at a branching-tree node, if at least one of the variables (cycles) is not integer,

we have to apply branching. For our problem, a natural choice is to branch on the

cycles, i.e., pick a cycle k having a fractional xk value and create two branches: one

with xk = 1 and the other with xk = 0. We did not adopt this approach because

in the zero branches, the efficient algorithms for solving cases 2 and 3 (described in

Section 2.2.3) will no longer be efficient; specifically, the problems that would need

to be solved in cases 2 and 3 on any branching-tree node preceded by one or more

zero branches become NP-hard.

Therefore, instead of branching on the cycles, we branch on the edges. This

branching rule is inspired by the one used by [16] to solve the crew scheduling problem

which in turn is a specialization of the branching rule proposed by [40] to solve the

same problem. The following lemma proves the correctness of our branching rule.

Lemma 2.2.4. If the solution to the RMP’s LP relaxation is fractional, then there

exists an edge (u, v) such that 0 <
∑

j∈S(u,v) xj < 1 where S(u, v) = {j | xj > 0 and

cycle j has edge (u, v)} .

Proof. Let cycle t be a cycle with fractional xt value. Assume that cycle t has k
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nodes, and refer as ni to the ith node of cycle t; specifically cycle t is n1n2 . . . nknk+1

where nk+1 = n1. First, since xt is fractional, we have
∑

j∈S(ni,ni+1)
xj > 0 for every

i = 1, . . . , k. Thus, we only need to prove that
∑

j∈S(ni,ni+1)
xj < 1 for at least one

i = 1, . . . , k. For the sake of contradiction, assume that

∑
j∈S(ni,ni+1)

xj = 1,∀i = 1, . . . , k. (2.3)

Define the set of cycles R(u) = {j | xj > 0 and cycle j has node u}. From constraint

(2.1a) in the RMP, we have

∑
j∈R(ni)

xj = 1, ∀i = 1, . . . , k. (2.4)

Equation (2.4) can be rewritten as

∑
j∈R(ni)∩S(ni,ni+1)

xj +
∑

j∈R(ni)\S(ni,ni+1)

xj = 1,∀i = 1, . . . , k. (2.5)

As S(ni, ni+1) ⊆ R(ni), equation (2.5) is equivalent to

∑
j∈S(ni,ni+1)

xj +
∑

j∈R(ni)\S(ni,ni+1)

xj = 1,∀i = 1, . . . , k. (2.6)

The first term in equation (2.6) equals 1 by our assumption (equation (2.3)), therefore

we have that
∑

j∈R(ni)\S(ni,ni+1)
xj = 0,∀i = 1, . . . , k. This, in turn, implies that any

cycle j, such that xj > 0, passing through node ni must pass through edge (ni, ni+1);

equivalently R(ni) ⊆ S(ni, ni+1). Since this is true for every node ni, i = 1, . . . , k,

we conclude that

R(ni) = S(ni, ni+1),∀i = 1, . . . , k. (2.7)
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A similar argument shows that

R(ni) = S(ni−1, ni),∀i = 2, . . . , k + 1. (2.8)

From equations (2.7) and (2.8), we conclude that

S(ni−1, ni) = S(ni, ni+1), ∀i = 2, . . . , k. (2.9)

On the other hand, by the uniqueness of cycle t (the optimal basis of the RMP’s

LP relaxation has no duplicate cycles), t is the only cycle that passes through edges

(n1, n2), (n2, n3), . . . , (nk, nk+1) (i.e., ∩ki=1S(ni, ni+1) = {t}). This fact and equation

(2.9) imply that S(ni, ni+1) = {t}, ∀i = 1, . . . , k. Thus, equation (2.3) can be writ-

ten as
∑

j∈{t} xj = 1, ∀i = 1, . . . , k; implying that xt = 1, which contradicts the

fractionality of xt.

Based on this lemma, after selecting an edge (u, v) such that 0 <
∑

j∈S(u,v) xj < 1,

we branch on edge (u, v) as follows:

0-branch In this branch, we need to add the constraint
∑

j∈γ(u,v) xj ≤ 0 where

γ(u, v) contains all cycles that include edge (u, v). This is equivalent to ensuring

that the solutions found on this branching node and its successors do not

contain a cycle passing through edge (u, v). Instead of adding this constraint

explicitly, it can be implicitly enforced by: 1) deleting all cycles in the RMP

that have edge (u, v), and 2) removing the edge (u, v) from graph G so that

the pricing problem does not generate any new cycles having edge (u, v).

1-branch In this branch we need to add the constraint
∑

j∈γ(u,v) xj ≥ 1. This is

equivalent to ensuring that the solutions found on this branching node and

its successors must contain a cycle passing through edge (u, v). In contrast to

the 0-branch, in the 1-branch, we add explicitly this constraint to the RMP.
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Therefore, we also need to modify the pricing problem accordingly as follows:

let λuv be the dual variable associated with the newly added constraint. Then,

the objective function of the pricing problem becomes the minimization of Z =∑
ij∈E,ij 6=uv(dij−

µi
2
− µj

2
)tij+(duv− µu

2
− µv

2
−λuv)tuv−µ0 which can alternatively

be written as the minimization of Z =
∑

ij∈E(dij − µi
2
− µj

2
)tij − λuvtuv − µ0.

Therefore, the only difference of the pricing problem in this 1-branch with

respect to the root node’s pricing problem (described in Section 2.2.2) is that

the weight of edge (u, v) is duv− µu
2
− µv

2
−λuv. As such, the algorithms described

in Sections 2.2.3.1 and 2.2.3.2 can also be used to solve the pricing problems

arising during the branching strategy.

We conclude this section with the following remark: in our computational results

we found that using the best-bound strategy (i.e., branching on the node with the

lowest RMP’s LP relaxation objective value) outperformed the breadth-first and

depth-first strategies, especially in large instances.

2.3 Computational Results

In this section, we present the computational results of our B&P algorithm. The

algorithm was tested on 30 instances from the TSPLIB available from http://www.

iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/. Selected in-

stances are complete graphs with number of nodes ranging from 17 nodes to 318

nodes. Following the convention adopted in the TSP literature, the edge costs are

rounded to the nearest integer. We compared the performance of our B&P algorithm

to that of solving the first IP model given in [21].∗ We chose to compare against this

model because computational results in [21] showed that this was the most efficient

∗Since the original code was not available, we used our own implementation, in which, a sequence
of IP models was solved with successive additions of integral cuts to enforce the formation of exactly
p cycles.
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and effective model among the seven models they tested. For completeness, this

model is presented in §A.2 in the Appendix, and hereafter, we refer to this model as

the natural variable space model (NVM). For each instance, both algorithms were

tested for all possible values of the number of required cycles, p.

Both algorithms were run on a computer with an Intel Core i7 processor and

32 GB of memory. Implementations were coded and compiled on Visual Studio

C++ using standard template library and standard subroutines. Linear and integer

programs were solved using CPLEX 12.4 invoked in C++ using Concert Technology.

A time limit of one hour is set in all our tests.

As previously discussed, in our B&P implementation we detect negative weight

cycles in undirected graphs using the b-matching-based algorithm by [49]. This

algorithm performed better than the T-join-based approach for our test instances

(i.e., complete graphs with less than 400 nodes). We solved the matching problem

using blossomV which is one of its fastest implementations. BlossomV was developed

by [28] and is available online at http://pub.ist.ac.at/~vnk/software.html.

In the remainder of this section, the computational results comparing the perfor-

mances of B&P and NVM approaches are organized as follows. Section 2.3.1 presents

the computational times or optimality gaps at the one hour time limit for small and

medium size TSP instances with up to 127 nodes. Section 2.3.2 compares the qual-

ity of the root node LP lower bounds obtained by B&P to that of NVM. Section

2.3.3 summarizes several performance parameters of the B&P algorithm and gives an

overall comparison of B&P and NVM. Encouraged by the performance of the B&P

algorithm reported in Sections 2.3.1 to 2.3.3, we further tested its performance on

larger instances with up to 318 nodes. The computational times (or optimality gaps)

are reported in Section 2.3.4.
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2.3.1 Comparison of B&P and NVM Computational Times

Tables 2.1, 2.2, and 2.3 presents the total computational times (in seconds) for our

B&P algorithm and for NVM. Specifically, Table 2.1 compares the performances of

B&P and NVM for small size instances. Tables 2.2 and 2.3 compare the performance

of B&P and NVM for medium size instances when p is small (i.e., p ≤ 20), and p is

large (i.e., p > 20), respectively.

In Tables 2.1-2.3, the first column in the table has the graph name, and the top

row contains the p value (i.e., the required number of cycles). In all of the tables

(both, in this chapter and in the appendix), we adopt the following conventions:

(1) The entries for the p value corresponding to the number of cycles in the mini-

mum weight 2-matching problem, p2m, are marked with a bullet (•). For example,

the optimal solution of the minimum weight 2-matching problem in graph swiss42

contains 7 cycles; (2) italic red numbers signify the instances in which NVM outper-

formed our B&P algorithm; (3) blue bold numbers signify the instances in which our

B&P algorithm outperformed NVM; and (4) empty cells indicate that the instance

is infeasible (i.e., the instances in which p > |V |
3

for complete graphs).

In Tables 2.1-2.3, whenever an instance was not solved within the time limit,

instead of reporting its runtime, we report the optimality gap attained at the one

hour time limit. The optimality gap is calculated as 100 × ZIP−ZLB

ZIP
% where ZIP is

the value of the best feasible solution found and ZLB is the value of a valid lower

bound. In some instances, B&P failed to solve the LP relaxation at the root node

to optimality within the one hour time limit. In these cases, the minimum weight 2-

matching solution value was used as a lower bound (this is valid as it is a relaxation of

the HpMP). Finally, for those instances where B&P did not find an optimal solution

within the time limit, we obtained a feasible solution by solving the integral restricted
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master problem to optimality. Since the number of generated columns was small,

the restricted master problem was solved quickly using CPLEX, specifically, for all

our instances, it took less than 5 seconds.

The results from Tables 2.1-2.3 show a clear correlation between the number

of cycles in the 2-matching solution and the performance of the B&P and NVM

approaches. In general, we observe that the B&P algorithm outperforms NVM for

p values that are greater than p2m + 3, whereas NVM performs better whenever p

is less than or equal to p2m + 3. Based on the results in Tables 2.1-2.3, we divide

the instances based on varying p values into three subsets and make the following

observations:

• Instances with p < p2m − 3: These instances are challenging for both B&P

and NVM. But, NVM performs better than B&P in terms of the number

of instances solved to optimality and in the average optimality gap for the

unsolved instances. Specifically, from these 107 instances, NVM succeeded in

finding the optimal solution for 67 instances with an average running time of

138 seconds. On the other hand, B&P found the optimal solution for only

5 instances in 468 seconds, on average. For the unsolved instances by NVM,

the average optimality gap was 6.1%, whereas B&P’s average optimality gap

for its unsolved instances was 64%. The performance of the B&P algorithm

deteriorates as p approaches one. For instances with optimality gaps greater

than 50%, the B&P algorithm failed to solve even the root node to optimality

after the one hour time limit. Thus, the 2-matching solution value was used

as lower bound. Moreover, in most of these cases, B&P also failed to find a

feasible solution other than the initial solution provided to start the column

generation. A explanation of the reason of this poor performance is provided
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in subsection 2.3.3.

• Instances with p2m − 3 ≤ p ≤ p2m + 3: There are 124 such instances; on

these, the performance of NVM is excellent. Specifically, NVM solved 120

instances to optimality with an average computational time of 47 seconds,

whereas the B&P solved only 66 to optimality with an average time of 433

seconds. In contrast, B&P outperformed NVM in terms of the average opti-

mality gap for the respective unsolved instances. Specifically, for the unsolved

instances by NVM, the average optimality gap was 32%, whereas the gap was

23% for the unsolved instances by B&P. Moreover, interestingly, for the four in-

stances that NVM failed to solve, B&P solved three of them to optimality and

in the remaining one B&P’s gap was 0.1% whereas NVM’s gap was 19%. The

overall good performance of NVM in these instances is because NVM added

only a small number of cuts to find the optimal solutions of these instances—the

reason behind this phenomenon is explained in Section 2.3.3.

• Instances with p > p2m + 3: There are 250 such instances; on these, B&P

outperforms NVM in terms of both the computational time for the solved

instances and the optimality gaps for the unsolved ones. Specifically, B&P

found the optimal solution for 201 instances with average computational time

of 508 seconds, whereas NVM found the optimal solutions for only 42 instances

with average computational time of 323 seconds. Moreover, if B&P failed to

find an optimal solution of an instance within the time limit, it provided a very

good feasible solution. Specifically, the average optimality gap for the unsolved

instances by B&P was 2%, whereas the average optimality gap for the unsolved

instances by NVM was 38%. Again, Section 2.3.3 explains the reason behind

B&P’s good performance in these instances.
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Ins. Alg./p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

gr17
B&P 21 16 5 •

NVM 1 0 0 •

gr21
B&P • 92 12 3 11 3 5

NVM • 0 0 0 1 1 567

gr24
B&P 14 • 3 4 26 18 5

NVM 0 • 0 0 12 40 522

fri26
B&P 34 14 17 23 5 • 2

NVM 0 0 1 0 0 • 0

swiss42
B&P 1848 2.9% 1803 684 509 • 26 15 6 5 24 20 30

NVM 3 1 0 0 1 • 0 1 2 2 44 2387 43%

dantzig42
B&P 6.1% 278 167 325 310 294 • 4 19 14 22 1305 4%

NVM 5 1 0 0 0 1 • 0 2 11 102 69% 73%

gr48
B&P 98% 1.3% 1.2% 3303 • 190 218 162 77 99 23 11 11 113 196

NVM 11 2 0 0 • 6 226 19% 18% 22% 25% 31% 37% 33% 40%

hk48
B&P 85% 975 2029 107 • 25 10 75 10 78 61 38 15 14 206

NVM 3 0 1 0 • 0 1 4 2 129 2280 52% 57% 59% 62%

eil51
B&P 98% • 0.3% 381 213 96 480 67 228 38 242 89 15 13 16 804

NVM 4 • 0 0 1 1 237 397 20% 20% 24% 29% 34% 38% 46% 45%

berlin52
B&P 78% 79% 1.7% 3508 540 • 32 274 32 12 64 39 60 60 235 311

NVM 1 0 1 1 0 • 1 24 2 2 67 2082 54% 55% 55% 54%

brazil58
B&P 89% 89% 89% 90% 2.7% 1.4% 1% 403 0.1% 18 • 9 19 50 91 305 223 198

NVM 30 48 158 56 8 8 4 2 1 0 • 1 104 65% 66% 69% 70% 74%

Table 2.1: Computational times (in sec) for the small TSPLIB instances (all feasible values of p).
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Ins. Alg./p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

st70
B&P 99% 99% 4% 99% 2.3% 1.6% 1.4% 1.4% 3347 214 103 • 14 10 12 37 36 116 94

NVM 67 72 95 78 15 7 5 4 0 0 0 • 1 2 2 4 35 26% 25%

eil76
B&P 98% • 0.1% 1044 425 141 0.2% 35 77 63 92 166 66 124 256 70 197 79 1005

NVM 1 • 0 1 4 14 69 25 64 57 404 19% 19% 19% 21% 26% 27% 28% 31%

pr76
B&P 61% 60% 62% 65% 66% 2.3% • 0.1% 0.1% 2719 0.1% 0.1% 0.3% 0.6% 146 190 108 184 29

NVM 5% 6% 353 72 6 1 • 82 2601 24% 30% 30% 35% 36% 38% 38% 41% 43% 44%

gr96
B&P 56% 54% 58% 60% 47% 62% 61% 0.3% • 0.1% 0.1% 0.8% 350 0.1% 0.2% 1.7% 3% 501 405

NVM 210 56 26 40 16 10 3 1 • 22 492 221 446 24% 25% 27% 27% 29% 29%

rat99
B&P 96% 96% 96% • 96% 96% 201 168 146 350 744 467 423 925 459 1932 681 484 833

NVM 3 0 2 • 1 0 1 2 4 60 13% 14% 14% 14% 14% 15% 15% 19% 17%

rd100
B&P 99% 99% 99% 99% 99% 99% 2.1% 1.8% 1.8% 1.3% 3309 1900 • 1178 162 148 260 3529 0.4%

NVM 2% 3% 5% 7% 57 67 134 17 9 8 4 1 • 1 4 61 1104 26% 31%

kroA100
B&P 93% 93% 93% 93% 93% 93% 9.5% 3.4% 2.9% 0.8% 1.5% • 0.4% 1.3% 0.7% 101 209 331 427

NVM 3% 5% 7% 10% 9% 8% 859 118 55 5 0 • 21 18 1417 7 125 25% 25%

kroB100
B&P 91% 91% 91% 91% 91% 91% 91% 91% 2.9% 3.1% 0.6% 0.6% 0.8% 1.3% 0.2% 1.1% 0.1% 0.1% •

NVM 5% 5% 4% 5% 5% 7% 2813 363 40 12 6 12 17 8 4 3 1 1 •

kroD100
B&P 92% 92% 92% 92% 92% 92% 92% 6.4% 92% 2% 5.2% 92% • 0.2% 0.1% 28 42 559 876

NVM 2% 7% 119 38 29 12 2 1 1 1 1 3 • 4 2 14 240 19% 19%

lin105
B&P 98% 98% 98% 98% 98% 98% 97% 98% 12% 6.3% 1.4% 1.4% 1.2% 0.9% 0.3% 0.9% 3.1% 0.8% •

NVM 10% 11% 7% 3% 3% 3% 5% 8% 10% 11% 14% 1530 168 6 5 1 2 5 •

gr120
B&P 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 1.3% • 0.4% 0.1% 0.1% 542 1062

NVM 2% 4% 4% 5% 7% 7% 9% 186 80 10 16 0 1 • 4 32 19% 19% 20%

bier127
B&P 81% 81% 81% 81% 81% 81% 82% 81% 0.5% 0.5% • 0.1% 0.1% 0.1% 86 262 177 291 590

NVM 4% 6% 804 140 160 31 14 3 1 3 • 1 1 2 1 29 1633 36% 39%

Table 2.2: Computational times (in sec) for the medium TSPLIB instances and smaller values of p.
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Ins Alg./p 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

st70
B&P 456 2348 2.1%

NVM 26% 29% 37%

eil76
B&P 37 34 31 1021 1140

NVM 31% 34% 39% 42% 45%

pr76
B&P 38 30 169 829 359

NVM 45% 46% 46% 48% 47%

gr96
B&P 483 3488 0.2% 0.2% 0.1% 1667 1809 0.4% 1.6% 2.6% 5% 4.5%

NVM 31% 31% 31% 31% 37% 37% 39% 49% 51% 55% 61% 67%

rat99
B&P 135 956 509 445 533 415 740 1009 1045 1199 377 3062 0.5%

NVM 16% 16% 19% 21% 22% 24% 24% 24% 25% 26% 31% 37% 57%

rd100
B&P 705 0.1% 252 164 51 349 456 590 486 306 0.1% 0.1% 3.1%

NVM 31% 36% 36% 41% 43% 45% 44% 48% 52% 53% 57% 59% 63%

kroA100
B&P 112 809 1140 545 129 325 1444 1428 1355 2500 0.5% 2.4% 2.7%

NVM 27% 26% 25% 24% 23% 19% 27% 27% 31% 34% 43% 49% 51%

kroB100
B&P 1.5% 0.1% 0.1% 57 109 0.2% 138 48 48 124 883 3483 2.8%

NVM 11 2 1 1 45 20% 24% 24% 25% 30% 43% 47% 53%

kroD100
B&P 884 657 560 278 182 223 336 3594 905 1248 1887 0.5% 1.6%

NVM 22% 24% 25% 25% 31% 36% 36% 35% 36% 43% 48% 49% 53%

lin105
B&P 689 726 588 733 0.3% 147 43 1863 1022 0.4% 788 0.4% 1.5% 3.4% 4.7%

NVM 2 3 17 99 39% 111 136 46% 47% 48% 47% 47% 49% 55% 58%

gr120
B&P 110 97 256 1919 134 125 764 2229 1004 481 602 883 562 87 108 1677 1424 0.1% 0.7% 2.1%

NVM 22% 21% 22% 25% 25% 24% 26% 30% 31% 32% 33% 33% 36% 37% 44% 48% 50% 57% 62% 62%

bier127
B&P 156 476 95 104 232 101 125 101 218 1374 826 432 0.1% 2.3% 13% 11% 2.1% 2.2% 5.3% 0.2%

NVM 40% 39% 43% 43% 46% 47% 48% 50% 52% 52% 55% 56% 57% 58% 58% 58% 61% 63% 64% 64%

Table 2.3: Computational times (in sec) for the medium TSPLIB instances and larger values of p.

34



2.3.2 LP Lower Bound Comparison for B&P and NVM Based on Root Solutions

This subsection presents a comparison of the computational times and the quality

of the optimal solutions of the LP relaxation at the root node for B&P and NVM.

The comparison for the small size instances is shown in Table 2.4; while Tables 2.5,

and 2.6 present the results for medium size instances when p ≤ 20 and p > 20,

respectively.

In Tables 2.4-2.6, the root gap percentage is defined as 100× ZBFS−ZLP

ZBFS
%, where

ZBFS represents the best feasible solution found, as obtained in the previous sub-

section, by any of the two algorithms, and ZLP represents the optimal value of the

LP relaxation at the root node of the tested algorithm. We decided to use ZBFS for

a better comparison of the tightness of the LP relaxation of both algorithms since

this prevents any effect of the upper bound found by a specific algorithm on the root

gap percentage. However, using ZBFS makes the results in this subsection incom-

parable to these given in the previous subsection. As before, if column generation

failed to solve the root node to optimality within the time limit, ZLP is set to be the

value of the minimum weight 2-matching problem (which is a valid lower bound).

It is important to note that, to calculate the LP lower bounds at the root node for

NVM, we employed the separation algorithms presented in [21]. Since the original

code is not available, for easiness of implementation, we implemented the root node

algorithm in Matlab. Since this Matlab implementation solved all of the root nodes

in less than 2 seconds, using Matlab instead of C++ had no effect on the algorithm

performance.

Analogously to Section 2.3.1, we divide the instances based on varying p values

into three subsets and make the following observations:

• Instances with p < p2m − 3: There are 107 such instances; for these, B&P
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provides better LP lower bounds for 78 instances, whereas NVM provides better

LP bounds for 29 instances. The average root gap percentage was 3.82% for

B&P with average computational time of 3397 seconds, whereas the average

root gap was 4.28% for NVM with average time is less than one second.

• Instances with p2m − 3 ≤ p ≤ p2m + 3: There are 124 such instances; for

these, B&P provides better LP lower bounds for 120 instances, whereas NVM

provides better LP bounds for 2 instances. The average root gap percentage

was 0.27% for B&P with average computational time of 1289 seconds, whereas

the average root gap was 1.24% for NVM with average time of less than one

second.

• Instances with p > p2m + 3: There are 250 such instances; for all of these

instances, B&P provides better LP lower bounds than those provided by NVM.

The average root gap percentage was 0.74% for B&P with average computa-

tional time of 76 seconds, whereas the average root gap was 4.5% for NVM

with average time of less than 2 seconds.

In summary, the results in Tables 2.4-2.6 clearly show that the LP relaxation

at the root node is tighter when using the B&P algorithm in 448 out of the 481

instances. Moreover, in the 31 instances where NVM’s root gap outperformed B&P’s

root gap, it was because B&P was not able to solve the root node’s LP relaxation to

optimality (thus the minimum-weight 2-matching value was used as a lower bound).

The average root gap percentage (for the 481 runs) was 1.3% when using the B&P

algorithm, whereas this gap increased to 3.63% when using the NVM. In contrast,

NVM was much faster in solving the root node.
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Ins Alg./p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

gr17

BP root % 0 0 0 •
BP root time 17 13 4 •
NVM root % 4.24 1.02 0 •
NVM root time 1 1 0 •

gr21

BP root % 2.04 1.34 0 1.36 0 0

BP root time 6 2 2 4 2 5

NVM root % 2.36 2.39 1.78 3.77 2.67 8.39

NVM root time 0 0 1 1 1 1

gr24

BP root % 0 • 0 0 0.55 0.39 0

BP root time 14 • 3 4 4 3 5

NVM root % 0.61 • 0.20 1.01 3.28 4.93 7.02

NVM root time 0 • 0 1 1 1 1

fri26

BP root % 0 0 0.77 0.11 0 • 0

BP root time 23 11 8 5 5 • 2

NVM root % 1.48 1.54 2.76 1.46 0.68 • 0.56

NVM root time 0 0 0 0 0 • 1

swiss42

BP root % 0 2.86 0.02 0.33 0.49 • 0.08 0.08 0 0 0.08 0.08 0.04

BP root time 1331 431 489 38 10 • 9 8 6 5 10 10 16

NVM root % 2.39 2.56 1.42 1.18 1.34 • 1.34 1.66 1.9 2.29 3.3 4.37 6

NVM root time 0 0 0 0 0 • 1 1 1 1 1 1 1

dantzig42

BP root % 2.27 0 0.06 0.12 0.03 0.86 • 0 0.15 0.10 0.15 3.38 11.85

BP root time 3600 278 40 21 18 22 • 4 9 11 9 10 19

NVM root % 3.03 1.08 1.08 1.08 0.93 1.54 • 1.08 1.99 2.58 3.46 8.56 19.47

NVM root time 0 0 1 1 1 1 • 1 1 1 1 1 1

gr48

BP root % 6.92 0 1.09 0.76 • 1.01 1.16 1.11 0.78 0.67 0.11 0 0 0.55 1.12

BP root time 3600 3402 2487 74 • 12 15 13 14 17 17 11 11 19 25

NVM root % 2.24 1.77 1.47 0.77 • 1.57 2.41 3.19 3.73 4.51 4.83 5.58 6.86 9.42 12.42

NVM root time 0 0 0 0 • 1 1 1 1 1 1 1 1 1 1

hk48

BP root % 1.43 0.76 0.19 0 • 0.07 0 0.34 0 0.37 0.38 0.13 0 0 1.96

BP root time 3600 3600 3487 3303 • 12 10 13 10 11 13 14 15 14 24

NVM root % 0.77 0.64 0.65 0.20 • 0.15 0.16 0.84 0.85 1.69 2.18 2.67 3.3 4.25 8.03

NVM root time 0 1 0 0 • 0 1 1 1 1 1 1 1 1 1

eil51

BP root % 0.95 • 0.71 0.48 0.42 0.27 0.56 0.31 0.47 0.13 0.66 0.37 0 0 0 2.76

BP root time 3600 • 37 26 27 22 16 23 19 14 20 25 15 13 16 34

NVM root % 1.06 • 0.83 0.83 1.07 1.3 2 2.23 2.91 3.14 4.25 4.69 5.13 6.19 7.24 11.57

NVM root time 0 • 0 1 1 1 1 1 1 1 1 1 1 1 1 1

berlin52

BP root % 0.6 0.04 0.28 0.19 0.06 • 0.06 0.42 0.07 0 0.11 0.10 0.10 0.32 0.66 0.85

BP root time 3600 3600 3600 68 47 • 17 15 14 12 11 16 17 21 41 55

NVM root % 0.28 0 0.29 0.24 0.08 • 0.25 0.78 0.6 0.69 1.3 1.86 2.45 3.58 5.76 8.15

NVM root time 1 1 0 0 0 • 1 1 1 1 1 1 1 1 1 1

brazil58

BP root % 6.33 5.97 5.12 3.09 1.85 1.42 1.01 0 0.11 0 • 0 0 0.16 0.39 0.90 1.20 2.01

BP root time 3600 3600 3600 3600 3600 3600 3600 403 446 18 • 9 19 25 13 14 22 33

NVM root % 2.12 5.45 5.34 3.52 2.44 2.11 1.85 1.45 1.27 0.87 • 1.01 1.53 2.3 3.14 4.35 5.64 7.68

NVM root time 1 1 1 1 1 0 0 0 0 1 • 3 4 4 5 6 7 8

Table 2.4: Performance of B&P and NVM at the respective root node for the small TSPLIB instances
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Ins Alg./p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

st70

BP root % 5.16 4.14 3.55 2.95 2.19 1.53 1.42 1.11 0 0 0 • 0 0.32 0 0.11 0.04 0.16 0.16
BP root time 3600 3600 3600 3600 3600 3600 3600 3600 3347 168 103 • 14 22 12 19 26 23 26
NVM root % 3.31 3.21 2.96 2.62 2.06 1.54 1.50 1.25 0.52 0.40 0.24 • 0.24 0.72 0.56 1.03 1.34 1.97 2.58
NVM root time 1 1 1 1 2 1 1 1 1 1 1 • 1 1 1 1 1 1 1

eil76

BP root % 0.37 • 0 0.04 0.07 0.11 0.15 0 0 0 0 0.14 0.05 0.09 0.27 0.03 0.26 0.23 0.20
BP root time 3600 • 311 85 64 64 58 35 57 45 57 76 47 43 42 49 59 44 44
NVM root % 0.19 • 0 0.18 0.34 0.53 0.68 0.65 0.8 0.96 1.11 1.43 1.56 1.88 2.37 2.47 3.1 3.55 3.97
NVM root time 0 • 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

pr76

BP root % 7.15 7.91 2.74 2.35 0.41 0.19 • 0.36 0.44 0.54 0.67 0.71 0.89 1.06 0.18 0.28 0.17 0.14 0
BP root time 3600 3600 3600 3600 2498 2987 • 58 43 53 36 44 60 77 65 63 59 32 29
NVM root % 8.79 9.59 4.58 4.29 2.84 2.38 • 2.45 2.74 3.07 3.46 3.79 4.24 4.69 4.13 4.51 4.83 5.25 5.57
NVM root time 1 1 0 0 0 1 • 1 1 1 1 1 1 1 1 1 1 1 1

gr96

BP root % 2.68 1.59 1.11 0.92 0.66 0.37 0.19 0.01 • 0.12 0.26 0.19 0.18 0.47 0.67 1.98 3.12 0.13 0.06
BP root time 3600 3600 3600 3600 3600 3600 3600 3600 • 126 139 85 111 108 86 94 85 86 80
NVM root % 2.59 1.7 1.47 1.37 1.17 0.93 0.79 0.64 • 0.75 0.96 0.99 1.09 1.51 1.84 3.26 4.54 1.77 1.87
NVM root time 1 1 1 1 1 1 1 1 • 1 1 1 1 1 1 1 1 1 1

rat99

BP root % 0.33 0.08 0.17 • 0.25 0.17 0.07 0.06 0.02 0.04 0.23 0.21 0.19 0.24 0.20 0.31 0.26 0.19 0.17
BP root time 3600 3600 3600 • 272 134 109 107 99 111 86 98 82 80 108 115 85 91 105
NVM root % 0.58 0.42 0.50 • 0.42 0.42 0.42 0.50 0.58 0.75 1.16 1.48 1.8 2.2 2.52 3 3.31 3.62 4.01
NVM root time 0 0 0 • 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

rd100

BP root % 3.7 4.41 5.84 8.5 1.19 1.06 1.04 0.57 0.29 0.16 0 0.01 • 0 0 0.01 0.03 0.19 0.53
BP root time 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 1145 2415 • 349 82 104 70 71 93
NVM root % 5.26 6.51 7.91 10.51 2.93 2.92 3.02 2.68 2.47 2.36 2.26 2.21 • 2.21 2.23 2.29 2.39 2.63 3.04
NVM root time 1 1 1 1 0 0 0 0 0 0 0 0 • 0 1 1 1 1 1

kroa100

BP root % 7.28 8.75 10.23 12.88 11.77 9.94 3.00 2.23 1.67 0.85 0.29 • 0.25 0.20 0.69 0.01 0.10 0.26 0.18
BP root time 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 • 2179 62 70 55 72 93 54
NVM root % 4.92 7.19 8.78 12.13 11.26 9.59 2.83 2.39 2.3 1.51 1.04 • 1.31 1.36 1.98 1.49 1.77 2.17 2.45
NVM root time 1 1 1 1 1 1 1 1 1 1 1 • 1 1 1 1 1 1 1

krob100

BP root % 6.96 7.03 5.94 6.46 6.79 8.1 1.32 1.02 0.5 0.62 0.5 0.47 0.49 0.35 0.13 0.18 0.00 0.00 •
BP root time 3600 3600 3600 3600 3600 3600 3600 3600 1984 3600 3600 3600 3600 3600 2987 3600 3215 3474 •
NVM root % 7.47 7.9 6.72 7.52 7.91 9.27 2.61 2.38 2.16 2.08 2 2.01 2.05 1.91 1.79 1.75 1.63 1.6 •
NVM root time 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 •

krod100

BP root % 3.33 8.35 1.73 1.11 0.82 0.55 0.26 0.06 0.02 0.07 0.09 0.15 • 0.1 0.07 0 0 0.15 0.21
BP root time 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 • 320 370 28 42 62 77
NVM root % 4.11 9.62 2.53 2.27 2.09 2.06 1.79 1.62 1.58 1.63 1.65 1.71 • 1.66 1.63 1.74 1.88 2.19 2.47
NVM root time 1 1 1 1 1 1 0 0 0 0 1 2 • 1 2 2 2 2 2

lin105

BP root % 12.05 13.64 9.67 5.31 5.24 4.69 6.28 8.9 12.41 6.26 1.44 1.43 0.69 0.3 0.22 0.38 0.49 0.51 •
BP root time 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 475 179 88 •
NVM root % 10.29 12.66 9.04 5.12 5.22 4.81 6.56 9.27 12.83 6.82 2.09 2.19 1.46 1.07 1.00 0.84 0.91 0.98 •
NVM root time 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 2 2 2 •

gr120

BP root % 3.59 4.98 4.78 5.48 7.34 7.69 9.59 9.23 0.42 0.27 0.22 0.07 0.03 • 0.12 0.22 0.46 0.13 0.12
BP root time 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 • 3600 3600 3600 213 220
NVM root % 3.6 4.92 4.93 5.68 7.59 7.99 9.92 9.61 0.86 0.74 0.69 0.54 0.5 • 0.59 0.69 0.93 0.96 1.11
NVM root time 1 1 1 1 1 1 1 1 1 1 1 1 1 • 2 2 2 2 2

bier127

BP root % 5.36 7.14 8.65 1.67 1.35 0.93 0.66 0.36 0.09 0.1 • 0.04 0.03 0.07 0 0.02 0.02 0.02 0.02
BP root time 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 • 3600 3600 3600 86 147 184 129 127
NVM root % 4.52 7.15 8.75 1.53 1.43 1.13 0.92 0.74 0.48 0.48 • 0.42 0.42 0.46 0.46 0.54 0.63 0.72 0.81
NVM root time 1 1 1 1 1 1 1 1 1 1 • 1 1 2 2 2 2 2 2

Table 2.5: Performance of B&P and NVM at the respective root node for the medium TSPLIB instances and p ≤ 20
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Ins Alg./p 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

st70

BP root % 0.69 1.73 4.51
BP root time 27 31 51
NVM root % 3.93 5.96 10.16
NVM root time 1 1 1

eil76

BP root % 0 0 0 0.69 0.84
BP root time 37 34 31 40 65
NVM root % 4.23 4.81 5.7 7.22 8.98
NVM root time 1 1 1 1 1

pr76

BP root % 0 0 0.23 0.71 0.80
BP root time 38 30 34 49 46
NVM root % 6.04 6.61 7.46 8.76 10.06
NVM root time 1 1 1 1 1

gr96

BP root % 0.06 0.25 0.48 0.66 0.71 0.54 0.44 1.01 1.99 3.31 6.03 5.90
BP root time 88 60 53 67 77 87 63 114 66 84 80 143
NVM root % 2.04 2.44 2.94 3.39 3.7 3.86 4.28 5.4 6.94 8.96 12.52 13.71
NVM root time 1 1 1 1 1 1 1 1 1 1 1 1

rat99

BP root % 0.06 0.09 0.10 0.10 0.10 0.14 0.14 0.17 0.17 0.24 0.20 0.50 1.41
BP root time 93 91 83 86 80 123 128 81 104 74 106 99 156
NVM root % 4.31 4.77 5.22 5.67 6.11 6.63 7.13 7.7 8.27 8.97 9.58 10.66 12.43
NVM root time 1 1 1 1 1 1 1 1 1 1 1 1 1

rd100

BP root % 0.13 0.11 0.03 0.01 0 0.10 0.21 0.24 0.20 0.19 0.42 0.61 4.22
BP root time 97 83 81 87 51 77 82 72 87 101 75 79 69
NVM root % 2.73 2.8 2.8 2.86 2.94 3.35 3.83 4.23 4.57 4.96 5.63 6.32 10.52
NVM root time 1 1 1 1 1 1 1 1 1 1 1 1 1

kroa100

BP root % 0.09 0.20 0.32 0.18 0.09 0.19 0.43 0.56 0.56 0.78 1.59 3.78 4.35
BP root time 82 65 67 55 55 80 122 64 102 88 77 72 119
NVM root % 2.79 3.31 3.84 4.12 4.44 4.95 5.64 6.22 6.71 7.41 8.78 11.59 13.1
NVM root time 1 1 1 1 1 1 1 1 1 1 1 1 1

krob100

BP root % 0.27 0.07 0.11 0 0.12 0.40 0.10 0 0 0.02 0.69 0.95 3.87
BP root time 3600 958 3600 57 58 48 64 48 48 76 76 96 111
NVM root % 1.84 1.7 1.68 1.69 2.18 2.81 2.88 3.13 3.6 4.21 5.67 7.22 11.28
NVM root time 1 1 1 1 1 1 1 1 1 1 1 1 1

krod100

BP root % 0.25 0.23 0.24 0.12 0.05 0.09 0.11 0.38 0.43 0.47 0.73 1.55 2.87
BP root time 69 59 69 46 85 67 66 69 93 69 68 88 97
NVM root % 2.73 2.92 3.15 3.29 3.49 3.79 4.12 4.72 5.2 5.75 6.53 7.95 10.28
NVM root time 2 2 2 2 2 2 2 2 2 2 2 2 2

lin105

BP root % 0.27 0.28 0.27 0.25 0.52 0.07 0 0.48 0.36 0.67 0.52 1.09 3.72 4.57 9.17
BP root time 38 49 52 39 57 48 43 77 52 74 58 94 72 122 207
NVM root % 0.84 0.92 0.98 1.09 1.48 1.16 1.21 1.83 2.02 2.71 2.93 4 7.16 9.21 16.35
NVM root time 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

gr120

BP root % 0 0 0.01 0.16 0 0 0.13 0.33 0.30 0.23 0.19 0.20 0.09 0 0 0.15 0.17 0.36 1.08 1.05
BP root time 110 97 156 137 134 125 161 168 175 175 167 155 118 87 108 126 159 166 156 323
NVM root % 1.15 1.38 1.65 2.04 2.12 2.38 2.78 3.25 3.48 3.69 3.96 4.26 4.45 4.66 5.04 5.79 6.43 7.25 8.63 9.72
NVM root time 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

bier127

BP root % 0.02 0.02 0 0 0.02 0 0 0 0 0.18 0.15 0.13 0.33 2.62 13.24 10.35 2.36 2.85 5.54 0.63
BP root time 152 149 95 104 173 101 125 101 119 174 111 145 129 191 132 173 146 192 211 210
NVM root % 0.9 1.01 1.09 1.19 1.34 1.46 1.61 1.84 2.1 2.53 2.8 3.14 3.73 6.39 17.15 15 8.08 9.19 12.33 8.43
NVM root time 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 2.6: Performance of B&P and NVM at the respective root node for the medium TSPLIB instances and p > 20
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2.3.3 Detailed Performance Statistics

The results in Sections 2.3.1 and 2.3.2 suggest a correlation between the per-

formance of B&P and the value of p as a function of its proximity to p2m. This

subsection discusses and explains the reasons for this phenomenon. Our discussion

is based on Table 2.7 which shows the averages of several performance statistics of

B&P for small and medium size TSPLIB instances. These averages were calculated

using the data in Tables A.1-A.6, which, for completeness, are provided in §A.3 in

the Appendix.

For every value of p as a function of its proximity to p2m (as given in the first

column of Table 2.7), Table 2.7 provides the average number of times B&P called the

pricing problem (#PS), the average ratio of the number of occurrences of cases 2,

3, or 4 to #PS (columns entitled C2%, C3%, and C4%, respectively), the average

number of columns generated by B&P (#COL), the average size of the set Q defined

in Algorithm 3 (|Q|), and finally, the average number of iterations required before

quitting Algorithm 3 (#SP). The statistics for case 1 were not reported since, by

definition, it is invoked at most once. Moreover, Table 2.7 also contains a summary

of important results from Tables 2.1-2.3 and Tables 2.4-2.6. Specifically, columns 9 to

14 in Table 2.7 provide the average B&P root gap percentage (BPR%), the average

B&P root time (BP RT), the average NVM root gap percentage (NVMR%), the

average NVM root time (NVM RT), the average B&P total time (BP TT), and

the average NVM total time (NVM TT).

Table 2.7 explains the good performance of the B&P algorithm when p is greater

than p2m + 3 and its poor performance for p less than or equal to p2m + 3. On

one hand, when p is greater than p2m + 3, Algorithm 3 (used to solve the NP-hard

problem arising in case 4) is rarely invoked, whereas case 3 arises, on average, in
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Table 2.7: Performance statistics for B&P and NVM as a function of the proximity
of p to p2m

p C2% C3% C4% #PS #COL |Q| #SP
BP
R%

BP
RT

NVM
R%

NVM
RT

BP
TT

NVM
TT

p2m − 18 50 0 50 76 82 36 12 9.51 3600 8.88 1 3600 3600

p2m − 17 36 0 64 49 64 19 5 10.34 3600 10.28 1 3600 3600

p2m − 16 31 0 69 286 346 10 2 7.81 3600 7.88 1 3600 3600

p2m − 15 46 0 54 515 1008 19 3 5.89 3600 6.32 1 3600 3600

p2m − 14 50 0 50 621 1167 15 2 6.02 3600 6.57 1 3600 3600

p2m − 13 58 0 42 595 1224 42 9 5.46 3600 5.89 1 3600 3600

p2m − 12 47 0 53 305 629 57 16 3.92 3600 4.69 1 3600 3443

p2m − 11 58 0 42 201 429 97 21 5.70 3600 5.85 1 3600 2633

p2m − 10 56 0 44 409 807 33 8 5.62 3420 5.35 1 3600 2029

p2m − 9 57 0 43 618 1184 21 3 5.64 3600 5.96 1 3600 2021

p2m − 8 53 0 47 486 903 23 4 4.39 3600 4.85 1 3600 1214

p2m − 7 58 0 42 714 1386 16 2 3.34 3600 3.92 1 3600 908

p2m − 6 57 0 43 803 1416 15 2 3.08 3600 3.85 1 3600 659

p2m − 5 57 0 43 713 1196 15 2 1.19 2989 2.13 0 3024 311

p2m − 4 56 0 43 580 1022 20 4 1.21 2957 1.64 0 3187 32

p2m − 3 54 1 45 565 967 13 2 0.42 2514 1.59 1 2636 9

p2m − 2 57 2 41 506 875 15 2 0.23 1861 1.14 1 2615 1

p2m − 1 61 2 37 676 1051 14 2 0.23 1880 0.89 1 2109 1

p2m • • • • • • • • • • • • •
p2m + 1 72 16 12 685 1051 10 2 0.26 663 1.00 1 1739 7

p2m + 2 69 22 9 718 1091 10 2 0.27 441 1.27 1 1509 168

p2m + 3 71 28 1 626 928 4 1 0.25 547 1.57 1 1123 770

p2m + 4 65 34 1 528 807 5 1 0.23 47 1.94 1 308 784

p2m + 5 57 43 0 921 1232 4 1 0.41 53 2.63 1 1080 1605

p2m + 6 56 44 1 623 896 4 1 0.86 55 3.59 1 1029 2457

p2m + 7 52 48 0 573 824 3 0 0.38 56 2.99 1 626 3211

p2m + 8 52 48 0 362 625 1 0 0.35 63 2.99 1 749 3379

p2m + 9 52 48 0 566 850 2 0 0.33 64 3.54 1 558 3400

p2m + 10 42 58 0 453 684 0 0 0.66 69 4.61 1 745 3600

p2m + 11 53 47 0 299 574 0 0 0.16 70 3.26 1 323 3600

p2m + 12 47 53 0 464 721 0 0 0.26 76 3.82 1 1187 3600

p2m + 13 40 60 0 544 789 0 0 0.79 82 4.82 1 1281 3600

p2m + 14 34 66 0 521 748 0 0 0.87 85 5.13 1 1393 3600

p2m + 15 36 64 0 510 745 0 0 1.20 103 5.59 1 1182 3600

p2m + 16 39 61 0 377 614 0 0 0.33 90 4.86 1 702 3600

p2m + 17 35 65 0 397 637 0 0 0.41 83 5.45 1 1469 3600

p2m + 18 33 67 0 441 657 0 0 0.64 96 5.61 1 2110 3600

p2m + 19 34 66 0 373 573 0 0 1.64 78 7.16 1 1974 3600

p2m + 20 36 64 0 300 505 0 0 1.32 95 7.01 1 1384 3600

p2m + 21 29 71 0 386 592 0 0 1.47 100 7.18 1 2063 3600

p2m + 22 22 78 0 385 536 0 0 1.93 137 8.53 1 2101 3600

p2m + 23 30 70 0 337 587 0 0 4.59 126 10.70 2 2736 3600

p2m + 24 25 75 0 419 639 1 1 3.87 144 10.63 2 2748 3600

p2m + 25 28 72 0 366 599 0 0 1.22 181 8.92 2 2800 3600

p2m + 26 30 70 0 322 556 0 0 1.53 149 9.39 2 1989 3600

p2m + 27 19 81 0 388 558 0 0 3.02 155 11.50 2 3331 3600

p2m + 28 16 84 0 549 660 0 0 1.02 183 10.43 2 3600 3600
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61% of the total calls to the pricing problem, and algorithm 2 (used to handle case

3) has polynomial time complexity. On the other hand, when p is less than or equal

to p2m + 3, case 4 arises, on average, in 42% of the total calls to the pricing problem.

Even though B&P has a good performance when p is greater than p2m + 3, its

performance starts deteriorating as p increases and more markedly as p approaches

|V |
3

. This is because the tightness of the root node’s LP relaxation deteriorates as

p approaches |V |
3

(see Table 2.7). Consequently, the size of the B&P tree increases

substantially as p approaches |V |
3

(this is clearly shown in Tables A.1-A.6 in §A.3).

Next, we present an explanation for the dominance of occurrence of case 4 (com-

pared to case 3) when p < p2m and vice versa when p > p2m. To this end, given

a graph G and the number of required cycles, p, let F (p) be the optimal objective

value of the HpMP on graph G. Figure 2.1 shows the plot of F (p) versus p for

graphs brazil58 and swiss42. This figure illustrates a nice property that we noticed

when solving the HpMP on different graphs, that is, in general, F (p) is monoton-

ically increasing or decreasing on large intervals of p values. For example, the top

graph in Figure 2.1 shows that for graph brazil58, F (p) is monotonically decreasing

on 1 ≤ p ≤ 12 and is monotonically increasing on 12 ≤ p ≤ 19, also the bottom

graph in Figure 2.1 shows that for graph swiss42, F (p) is monotonically decreasing

for 1 ≤ p ≤ 5 and is monotonically increasing on 7 ≤ p ≤ 14. Thus, on one hand,

when solving HpMP with p < p2m and F (p) is monotonically decreasing on [1, p], the

constraint
∑
k∈K

xk = p in Problem 2.1 is equivalent to
∑
k∈K

xk ≤ p. Thus, its dual vari-

able, µ0, is less than or equal to zero (as Problem 2.1 is a minimization problem) and,

consequently, case 3 will never occur. On the other hand, when solving HpMP with

p > p2m and F (p) is monotonically increasing on [p, b |V |
3
c], the constraint

∑
k∈K

xk = p

in Problem 2.1 is equivalent to
∑
k∈K

xk ≥ p. Accordingly, µ0 ≥ 0 and, consequently,

case 4 will never occur. Evidently, not all graphs have this perfect monotonic be-
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havior, however, this monotonicity is rarely violated. Accordingly, Table 2.7 shows

some rare occurrences for cases 3 and 4 where p < p2m and p > p2m, respectively.

The graph in Figure 2.1 also suggests an explanation for the good performance

for NVM in the instances where p2m − 3 ≤ p ≤ p2m + 3. In particular, the objective

value of these instances was relatively close to their respective 2-matching objective

value. Thus, in general, since the core of the NVM is the 2-matching constraints, a

smaller number of cuts to enforce the formation of exactly p cycles had to be added

to these instances when compared to the instances where p < p2m−3 or p > p2m+3.

In summary, Table 2.7 shows that the average computational time for B&P is

smaller when p > p2m + 3, whereas the average time for NVM is smaller when

p ≤ p2m + 3. It also shows that the values of BPR% and NVMR% are close when

p < p2m − 3, and they grow apart as p increases. Specifically, the average ratio of

NVMR% to BPR% is 1.14 for instances with p < p2m−3, this ratio increases to 4.57

for instances with p2m − 3 ≤ p ≤ p2m + 3, and increases again to 7.73 for instances

with p > p2m + 3. Finally, judging by #COL, it seems that the B&P had trouble

generating enough columns for very small p values (i.e., p2m− 18 and p2m− 17), this

results in the poor values of the root gap percentage for these instances.

2.3.4 Larger Instances Results

The results in the previous subsections motivated us to test our B&P algorithm

on larger instances for p values greater than p2m + 3. We tested the algorithm on

seven complete graphs with 150, 159, 200, 262, 299, and 318 nodes under varying

values of p resulting in 273 instances. Table 2.8 presents the optimality gaps for

different values of p where all these gaps were obtained at one hour time limit.

Table 2.8 shows the results of these 273 instances. We observed that, in 16% of

these instances the optimality gap (OG) was less than 0.1%, in 37% of the instances
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Figure 2.1: The optimal value of HpMP tends to be monotonically decreasing for
p < p2m and monotonically increasing for p > p2m. This behavior has implications
in the performance of the algorithms to solve the HpMP. The top figure is for graph
brazil58; whereas the bottom figure is for graph swiss42.
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the OG was less than 0.5%, in 47% of the instances the OG was less than 1%, in 78%

of the instances the OG was less than 5%, and in 87% of the instances the OG was

less than 10%. Moreover, ten instances (2 instances from graph u159 and 8 instances

from krob200) were solved to optimality and their computational times were 3381,

829, 3522, 1503, 2640, 2513, 3027, 2549, 3489, and 3378 seconds, respectively.

Table 2.8: Optimality gaps of B&P for large instances with p > p2m + 3

kroa150 u159 kroa200 krob200 gil262 pr299 lin318

p gap% p gap% p gap% p gap% p gap% p gap% p gap% p gap%

25 2.86 22 0.12 35 0.17 35 0.57 35 0.27 30 0.26 81 1.76 63 0.61

26 0.50 23 0.05 36 0.23 36 3.63 36 5.93 31 2.97 82 0.16 64 0.27

27 0.36 24 0.06 37 1.74 37 1.66 37 16.59 32 15.20 83 0.35 65 0.25

28 0.33 25 0.08 38 0.29 38 0.93 38 1.71 33 16.37 84 1.71 66 0.32

29 0.25 26 0 39 0.88 39 1.24 39 0.05 34 28.09 85 4.07 67 0.66

30 0.39 27 0.01 40 0.95 40 0.40 40 4.50 35 1.44 86 2.41 68 1.08

31 0.18 28 0.18 41 0.12 41 0.04 41 0.57 36 1.37 87 0.07 69 0.84

32 0.09 29 0.15 42 0.16 42 0.08 42 0.36 37 1.87 88 1.38 70 0.55

33 0.06 30 0.01 43 0.07 43 0.01 43 14.78 38 3.87 89 0.94 71 0.57

34 0.11 31 0.04 44 0.03 44 0.14 44 0.71 39 1.84 90 2.78 72 0.46

35 0.05 32 0.10 45 0.08 45 0.02 45 12.03 40 9.07 91 5.46 73 0.25

36 0.11 33 0.19 46 0.11 46 0.08 46 0.20 41 2.15 92 1.38 74 0.16

37 0.14 34 0.03 47 0.48 47 0.04 47 3.90 42 6.05 93 5.05 75 0.31

38 1.44 35 0.09 48 1.21 48 0.09 48 0.77 43 2.94 94 3.14 76 0.03

39 0.18 36 0.31 49 0.08 49 0.04 49 2.39 44 12.34 95 8.99 77 0.34

40 1.29 37 0.13 50 0.28 50 0 50 1.62 45 1.70 96 6.52 78 1.21

41 1.73 38 0.04 51 1.79 51 0.04 51 1.96 46 3.43 97 4.77 79 4.50

42 1.17 39 0 52 0.67 52 0 52 1.75 47 2.89 98 5.38 80 3.10

43 0.17 40 0.04 53 0.48 53 0 53 0.68 48 2.86 99 7.33 81 1.83

44 1.06 41 0.27 54 2.06 54 0 54 1.78 49 4.41 82 4.29

45 1.26 42 0.44 55 0.93 55 0 55 1.05 50 2.53 83 0.31

46 2.36 43 0.26 56 1.36 56 0 56 0.26 51 4.65 84 3.60

47 4.89 44 0.63 57 2.46 57 0 57 1.56 52 5.03 85 1.79

48 2.18 45 2.65 58 8.57 58 0 58 0.09 53 3.11 86 12.30

49 7.35 46 0.43 59 6.19 59 0.04 54 59.33 87 5.48

50 8.71 47 1.00 60 23.93 60 0.11 55 11.97 88 11.21

48 0.88 61 1.06 56 18.42 89 4.24

49 2.28 62 0.27 57 2.10 90 14.01

50 3.56 63 0.36 58 15.34 91 5.18

51 3.4 64 0.48 59 19.18 92 13.92

52 12.9 65 1.17 60 17.54 93 13.33

53 8.47 66 0.94 61 7.07 94 11.45

67 0.88 62 2.22 95 9.96

68 0.88 63 3.05 96 8.82

69 0.47 64 2.46 97 12.45

70 1.23 65 33.71 98 11.68

71 0.21 66 1.66 99 11.39

72 0.12 67 2.93 100 6.08

73 0.81 68 11.80 101 9.79

74 1.22 69 4.16 102 13.71

75 0.58 70 21.27 103 10.09

76 0.38 71 1.81 104 14.31

77 0.71 72 18.39 105 14.82

78 0.33 73 1.22 106 28.52

79 10.37 74 6.44

80 2.85 75 0.56

81 0.71 76 1.05

82 2.45 77 0.72

83 10.19 78 1.60

84 5.19 79 0.04

85 3.49 80 0.07
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2.4 Conclusions

In this chapter, we studied the Hamiltonian p-median problem (HpMP) which

is a generalization of the Traveling Salesman Problem (TSP). We developed a B&P

algorithm to solve the HpMP and compared our computational results to those of

the NVM presented in [21].

This chapter includes several contributions on modeling, methodology, and com-

putational aspects: 1) we modified the set partitioning formulation of HpMP pro-

posed by [21]; 2) we developed a new efficient algorithm to find the shortest cycle in

an undirected graph with arbitrary edge costs and no negative cycles; 3) we developed

an algorithm to find the most negative cycle in an undirected graph with arbitrary

edge costs; 4) computationally, the proposed algorithm for solving the HpMP out-

performed the previously presented algorithms as it successfully solves instances up

to 318 nodes, as opposed to other exact algorithms which solved instances up to

100 nodes; 5) we proved that for every value of p, the HpMP is NP-hard even when

restricted to Euclidean graphs; and 6) we showed that the practical complexity of

HpMP and the performance of the algorithms to solve it substantially depend on

the relation between p and p2m (the number of cycles in the 2-matching optimal

solution), furthermore, we were able to explain the reason for the good performance

of B&P when p is greater than p2m + 3 and the reason for the good performance of

NVM when p is between p2m − 3 and p2m + 3, inclusive.

The comparison of the computational results of our B&P algorithm and NVM

from [21] presents an interesting strategy when solving the HpMP. We start by

solving the minimum weight two-matching problem to find p2m. If the value of the

required cycles p is close to p2m, (i.e., p2m − 3 ≤ p ≤ p2m + 3), using the first IP

model in [21] is recommended. If p > p2m + 3, it is much faster to solve HpMP
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using the proposed B&P algorithm. Both algorithms perform poorly, especially in

larger instances, whenever p < p2m − 3 and further research is needed to solve these

instances.

Finally, we note that [30] presented a variant of HpMP in which p is the upper

limit on the number of required cycles. Here we define a new variant of HpMP

in which the number of cycles is required to be at least p. Our B&P algorithm

can be used to solve both of these HpMP variants. Interestingly, when solving the

newly defined variant, our algorithms are guaranteed to solve the pricing problem

in polynomial time. This is because by changing the equality constraint (2.1c) to

a greater than or equal constraint, the dual variable of the modified constraint is

always nonnegative, and therefore only cases 2 and 3 arise when solving the pricing

problem.
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3. THE SLIM BRANCH AND PRICE METHOD WITH AN APPLICATION

TO THE HAMILTONIAN P-MEDIAN PROBLEM

3.1 Introduction

In this chapter, we propose a new exact optimization method, the Slim Branch

and Price (SBP), that can be used to solve a large class of combinatorial optimization

problems: those that are amenable to be solved by Branch and Price type algorithms

and that have binary master problems whose solutions must have a pre-specified

number of non-zero variables. This is a large and important class of problems as

it includes several classical and fundamental problems such as capacitated vehicle

routing problem and its variants [7], parallel machine scheduling [4] and its variants,

capacitated p-median problem [32] and its variants, balanced disjoint rings problem

[45], Hamiltonian p-median problem [33], k-clustering problem [22], and political

districting problem [34].

The vast majority of the state-of-art successful exact algorithms for hard combina-

torial optimization problems can be classified within either the branching framework

or the cutting plane framework. On one hand, important examples of branching

algorithms include Branch and Bound algorithms and Branch and Price (B&P) al-

gorithms. On the other hand, pure cutting plane algorithms and Benders decompo-

sition are important algorithms in the cutting plane framework. Some of the most

effective methods combine ideas from these two frameworks as evident in Branch and

Cut algorithms and Branch, Price and Cut. This chapter presents the Slim Branch

and Price method which borrows ideas and improves upon these frameworks. The

herein proposed SBP method can be interpreted within each of these two optimiza-

tion frameworks as shown in the next two paragraphs.
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From a branching framework perspective, the core idea of the SBP method is to

improve the traditional branching scheme of B&P with the objective of exploring the

problem’s feasible region more efficiently and effectively. Specifically, the branching

scheme in SBP involves splitting the feasible region of the current node into two

parts: the first part (the exploration node) contains all the feasible solutions that

are distant from the optimal solution of the LP relaxation of the current node;

whereas the second part (the resolution node) contains all the feasible solutions that

are close to the current node’s optimal LP solution. The objective of creating the

exploration node is to explore effectively the feasible region; specifically, it expedites

the exploration of the entirety of the feasible region. Meanwhile, the objective of

creating the resolution node is to efficiently find the best integer feasible solution

in the neighborhood of the current node’s optimal LP solution. It is important to

remark that the resolution problem can be solved exactly extremely fast and without

further branching or column generation. Consequently, the branching tree generated

by SBP consists of one one main (exploration) branch and several (resolution) leaf

nodes; thus creating the slim branching tree shown in Figure 3.1 from which the

name of the method originated.

From a cutting plane perspective: given the optimal LP solution at an exploration

node, the core idea of the SBP method is to add a linear inequality that is violated

by this optimal LP solution and that significantly improves the optimal LP bound

obtained from the next exploration node. However, in contrast to pure cutting plane

algorithms, the cut added by SBP is invalid because, in addition to cutting the

current optimal LP solution, it may excise a subset of the feasible region that could

contain the optimal integer solution. Thus, adding a sequence of these aggressive

but invalid cuts results in expedited improved LP bounds at exploration nodes but it

also results in excising several feasible regions that may contain the optimal integer
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solution(s) to the problem. Therefore, in order to guarantee the exactness of SBP,

as explained in the branching framework earlier, one needs to solve the resolution

problems where the feasible region of each resolution problem corresponds to each of

these excised regions. Alternatively, one may generate and solve a single resolution

problem whose feasible region is the union of all the aforementioned excised feasible

regions. We show later that this merged resolution problem can be solved extremely

fast without the need of further branching or column generation.

Finally, we remark that there is a tradeoff between the aggressiveness of the added

cut (the improvement on the LB bounds in the exploration nodes) and the easiness

of the resolution problem(s).

This chapter is organized as follows. Section 3.2 presents the Slim Branch and

Price method; whereas Section 3.3 presents an implementation of SBP to solve the

HpMP. Finally, Section 3.4 compares the computational results of SBP for HpMP

versus those of the traditional B&P algorithm developed in Chapter 2.

3.2 Slim Branch & Price

This section describes the proposed Slim Branch & Price (SBP) method which is

an improvement over traditional B&P in the case of binary master problems having

fixed binary support (i.e., the summation of the variables in any feasible solution is

fixed). This improvement is achieved by replacing the traditional branching scheme

in B&P by a branching tree having one main branch and several leaves as shown in

Figure 3.1. We refer to the nodes forming the main branch as exploration nodes

and to the leaf nodes as resolution nodes. The following two paragraphs give an

overview of SBP while the ensuing subsections describe SBP in detail.

We call exploration procedure the process of solving the exploration nodes consti-

tuting the main branch in the branching tree. The feasible region of each exploration
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Figure 3.1: The Slim Branch & Price tree is composed of one main branch and
several leaves. Here, Jt is the set of non-zero variables in the optimal LP solution
of exploration node t. L is an algorithmic parameter balancing the aggressiveness
of the exploration inequality and the easiness of the resolution problem(s). Section
3.2.2 explains the meaning of the dashed lines.
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node is a subset of its parent’s feasible region through the inclusion of exploration

inequality. Adding a sequence of these inequalities results in an expedited increase

in the value of the optimal solution of the LP relaxation of the restricted master

problem (RMP) in the main branch. The availability of a good upper bound (pro-

vided by a heuristic or by solving the resolution nodes as discussed later) can greatly

accelerate the termination of the exploration procedure.

We call resolution procedure the process of solving the resolution nodes that are

represented as leaves in Figure 3.1. As discussed later, these problems, individually

or collectively, are much easier to solve than the RMP and any optimization solver

can quickly solve them exactly without the need of further branching or column gen-

eration. The importance of the resolution procedure is twofold: first, it guarantees

the exactness of SBP; and second, the optimal solutions provided by solving the reso-

lution nodes are valid upper bounds which can be used to accelerate the termination

of the exploration procedure.

This remainder of this section gives a detailed presentation of SBP which is

organized as follows. Section 3.2.1 presents the mathematical formulation of the

RMP that is solvable using SBP. Section 3.2.2 presents the branching strategy in

SBP. Sections 3.2.3 and 3.2.4 present the exploration and resolution procedures for

the proposed SBP, respectively. Finally, Section 3.2.5 describes the different search

strategies that can be used in SBP.

3.2.1 Master Problem in SBP

SBP can be applied to any optimization problem whose master problem has only

binary variables and has fixed support (i.e., the number of columns with non-zero

values in any feasible solution is fixed). Problem 3.1 presents a generic RMP which

generalizes all the problems that can be solved using SBP. Without loss of generality,
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we only consider minimization problems throughout our discussion in this section.

Let T be the total number of exploration nodes solved until a stopping criterion is

achieved, Ct be the set of columns generated prior and including exploration node

t = 0, . . . , T , and C−1 be the set of columns used to initialize column generation.

(RMP) minimize
∑
j∈C−1

cjxj (3.1a)

subject to
∑
j∈C−1

aijxj = si, ∀i ∈H1 (3.1b)

∑
j∈C−1

bkjxj ≥ tk, ∀k ∈H2 (3.1c)

∑
j∈C−1

xj = p (3.1d)

xj ∈ {0, 1}, j ∈ C−1. (3.1e)

The distinctive characteristic of this RMP is the cardinality constraint (3.1d)

which implies that the number of columns with non-zero values in any feasible solu-

tion is fixed and equal to p. Note that RMP contains as special cases the following

two important classes of master problems: master problems that comprise, in addi-

tion to the cardinality constraint, only a block of set partitioning constraints or only

a block of set covering constraints. These two special structures are the backbone of

most master problems in the real life applications mentioned above.

In SBP, the root node is solved using column generation. Just like in B&P, in

order to solve the LP relaxation of RMP at the root node, C−1 is used to initialize

the column generation procedure. If available, RMP can be initialized using any

heuristic integer solution; otherwise, artificial columns with high costs are used.

The LP relaxation of RMP is then solved, and using the dual variables, the pricing

problem is formulated and solved to generate a set of columns with negative reduced

53



costs. This process is repeated until no such column is available. Branching starts

when the optimal solution at the root node is fractional; otherwise, an optimal integer

solution is readily obtained. For further details, we refer the reader to [8].

3.2.2 Branching in Slim Branch and Price

The main difference between the proposed SBP and traditional B&P is in the

adopted branching scheme. Let Jt, t = 0, . . . , T be the set of columns with non-zero

values in the optimal LP solution at exploration node t and L be an algorithmic

parameter whose value is strictly less than p. After solving exploration node t (Et),

we then use the inequality

(Exploration Inequality t)
∑
j∈Jt

xj ≤ L (3.2)

to force the feasible region of the next exploration node (Et+1) to be distant from

the current node’s optimal LP solution. Complementarily, we use the inequality

(Resolution Inequality t)
∑
j∈Jt

xj ≥ L+ 1 (3.3)

to force the feasible region of the corresponding resolution node (Rt) to be close to

the current node’s optimal LP solution. This is shown in Figure 3.2. With a slight

abuse of notation, we let Rt refer to both the tth resolution node and its associated

resolution problem; the same applies for Et.
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Figure 3.2: Splitting the feasible region between exploration and resolution problems.

Next, we explain the effect of adding the exploration inequality (3.2) on the opti-

mal LP relaxation of an exploration node. Consider Et and Et+1 on the main branch

where the only difference between these nodes is that Et+1 includes the exploration

inequality
∑
s∈Jt

xs ≤ L. This exploration inequality and the cardinality constraint

(3.1d) imply that the summation of the values of the newly added variables (not in

Jt: variables with a zero value in the optimal LP solution of Et or newly generated

variables) when solving Et+1 has to be at least p − L. This implies that as L de-

creases (recall that L < p), the exploration inequality forces node Et+1 to explore a

subset of the feasible region that is further away from the current LP solution at Et

(see Figure 3.2). Section 3.2.3 gives the details for the approach used to solve the

exploration nodes.

Next, we present the reason for the easiness of the resolution problems Rt, t =

0, . . . , T when compared to solving the RMP, and consequently allowing us to solve

them exactly as integer programs without the need of further branching or column
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generation. The resolution inequality
∑
s∈Jt

xs ≥ L+ 1 and the cardinality constraint

(3.1d) enforce the optimal integer solution of Rt to include at most p − (L + 1)

columns different from the columns already in Jt. For example, if L = p − 1, only

the columns in Jt can be non-zero in the optimal integer solution of Rt, and thus,

no more columns need to be generated. While if L = p − 2, at most one column

outside of Jt will be needed to get the p pre-specified columns in the optimal integer

solution of Rt. Thus, most of the columns forming an optimal solution are already

known, therefore Rt is much easier to solve compared to RMP. Clearly, the difficulty

of Rt increases as L decreases.

It is important to clarify that Rt does not include any of the exploration inequal-

ities from its predecessors. Specifically, Rt includes only the tth resolution inequality

(3.3); whereas all the preceding t exploration inequalities are discarded in formulat-

ing Rt. Figure 3.1 depicts this fact by using dashed lines to connect the resolution

node to its parent. Discarding these t exploration inequalities is a secondary reason

for the easiness of the resolution problem, and most importantly allows us to com-

bine all the resolution nodes and solving them as a single integer program. Section

3.2.4 presents some guidelines for formulating and solving the resolution problems

without the need of using the pricing problem to generate the very few columns that

are needed in addition to the columns in Jt.

Finally, we want to remark that the value of L plays an important role in SBP

as it balances the aggressiveness of the exploration inequality and the easiness of

the resolution problem as depicted in Figure 3.2. The closer the value of L to p,

the easier the resolution problems (as fewer extra columns need to be formed) but

the slower the increase in the objective value of the LP relaxation at the exploration

nodes.

The most important aspect to consider when selecting the value of L is to obtain
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a resolution problem that can be solved quickly. To this end, for each value of L,

a model or algorithm is developed to obtain at most p − (L + 1) new columns in

addition to using at least L+1 of the columns in Jt. As mentioned earlier, the cases

with L = p− 1 and L = p− 2 lead to very easy resolution problems. In general, we

recommend setting the value of L close (but not extremely close) to p. Section 3.3.3

explains examples of resolution problems formulations for HpMP for two different

values of L: L = p− 2, and L = p− 3.

3.2.3 Solving an Exploration Problem

This section explains how to formulate and solve each of the exploration problems

of any optimization problem that is amenable to be solved with SBP. The only differ-

ence between the root-node problem, E0, and the subsequent exploration problem,

Et,∀t = 1, . . . , T , is the inclusion of the exploration inequalities. We give below the

generic formulation of the RMP of exploration node t+ 1 followed by the derivation

of the associated pricing problem.

(Et+1) minimize
∑
j∈Ct

cjxj (3.4a)

subject to
∑
j∈Ct

aijxj = si, ∀i ∈H1 (3.4b)

∑
j∈Ct

bkjxj ≥ tk, ∀k ∈H2 (3.4c)

∑
j∈Ct

xj = p (3.4d)

∑
j∈Jk

xj ≤ L ∀k ∈ {0, . . . , t} (3.4e)

xj ∈ {0, 1} ∀j ∈ Ct (3.4f)

To derive the pricing problem associated with Problem 3.4, let αi,∀i ∈ H1 and
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βk,∀k ∈ H2 be the dual variables associated with constraints (3.4b) and (3.4c),

respectively, and let µ0 be the dual variable associated with constraint (3.4d). Note

that the constraints (3.4e) are the exploration inequalities which only include the

columns generated previously (during E0 to Et); consequently, the dual variables

of these constraints are not needed in the pricing problem. With this in mind, the

objective function of the pricing problem is

min
ai,i∈H1;bk,k∈H2

Z = c̄−

(∑
i∈H1

aiαi +
∑
k∈H2

bkβk + µ0

)
(3.5)

where ai is related to the ith constraint in H1, b
k is related to the kth constraint in H2,

and c̄ is the cost of the column to be generated. As in traditional B&P, the optimal

values of ai and bk will be the coefficients of the generated column in constraints

(3.4b) and (3.4c), respectively; whereas the value of c̄ will be the coefficient of the

generated column in the objective function (3.4a).

The constraints in the pricing problem depend on the specific problem at hand.

In general, constraints are needed to enforce the generated columns to be consistent

with the underlying structure of the problem (e.g. columns must form cycles in

HpMP, paths in parallel machine scheduling, cycles starting and ending at the depot

in vehicle routing problem). Moreover, due to constraints (3.4e), the pricing problem

must also include constraints to prevent the regeneration of the columns in J0∪. . .∪

Jt (but we do not need analogous constraints for the already generated columns not

in J0∪. . .∪Jt). Note that the structure of these regeneration-prevention constraints

also depends on the specifics of the problem studied (e.g. regeneration of cycles can

be prevented using a form of subtour elimination constraints).

We end this section with a remark about the effect of the parameter L on solving

the LP relaxation of exploration node Et+1. As L decreases (moves away from p), the
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LP relaxation of Et provides better lower bounds because the exploration inequalities

are more aggressive. However, as L decreases, the difficulty of Et+1 increases slightly

because increasing the aggressiveness of the exploration inequalities (3.4e) decreases

the amount by which the already generated columns in J0∪ . . .∪Jt can contribute

to the fixed support (3.4d), and consequently more columns may need to be generated

to obtain the optimal LP solution to problem Et+1.

3.2.4 Solving a Resolution Problem

This section provides some guidelines for formulating and solving the resolution

problems of any optimization problem that is amenable to be solved with SBP.

Solving each resolution problem Rt, left child in the branching, entails searching for

an optimal integer solution in the neighborhood of the current LP solution of its

corresponding exploration node Et. Here, it is important to note two distinctions

between SBP and B&P: 1) Rt is solved exactly without further branching; and 2) in

order to facilitate solving it, Rt does not include any of the preceding t exploration

inequalities whereas each node in B&P includes the branching constraints added

to all its predecessors. Moreover, compared to traditional B&P, discarding these

inequalities not only makes the resolution problem easier to solve to optimality but it

also may improve the quality of the upper bound (integer feasible solution) obtained.

Formulating the resolution problem heavily depends on the studied optimization

problem, and therefore it is not possible to give an explicit generic formulation (except

for the case when L = p− 1, whose formulation is given below). However, regardless

of the studied problem, the formulation of the resolution problem must adhere to

the following guidelines. First, the formulation of Rt should include a constraint

that enforces the feasible solutions of Rt to contain at least L+ 1 columns from Jt.

Second, the formulation of Rt should include one variable for each column in Jt
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and all the natural space variables for the studied optimization problem (e.g. edges

in HpMP and vehicle routing problem). These natural space variables are used to

form the remaining (at most) p− (L+ 1) columns (e.g. cycles in HpMP and vehicle

routing problem, paths in parallel machine scheduling). The objective is that this

formulation can then be solved exactly without any calls to the pricing oracle using

any off-the-shelf solver.

Even though we are not giving an explicit generic formulation for the resolution

problem, we believe that it is relatively straightforward to develop the resolution

problem’s formulation for any given problem. To this end, one approach is to adapt

the formulation and solution strategies for HpMP (given in Section 3.3.3) to the

problem of interest.

Clearly, when L = p − 1, the formulation of Rt does not require natural space

variables because only the columns in Jt are used in any feasible solution of Rt.

Since the cardinality of Jt is, in general, small, this problem is usually very easy

to solve (took less than one second in all of our computational experiments). The

generic formulation for Rt when L = p− 1 is:

minimize
∑
j∈Jt

cjxj (3.6a)

subject to
∑
j∈Jt

aijxj = si, ∀i ∈H1 (3.6b)

∑
j∈Jt

bkjxj ≥ tk, ∀k ∈H2 (3.6c)

∑
j∈Jt

xj = p (3.6d)

xj ∈ {0, 1} ∀j ∈ Jt (3.6e)
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3.2.4.1 Solving Several Resolution Problems at Once

Here, we explain how to combine resolution problems Ra to Rb and solve them

collectively for any a, b such that 0 ≤ a < b ≤ T . This property will be exploited in

the search strategies given in Section 3.2.5. Since we are discarding the exploration

inequalities in the resolution problems’ formulation, we can formulate a merged res-

olution problem whose feasible region is a superset of the union of all the feasible

regions of individual resolution problems. The formulation and solution strategies of

the merged resolution problem are identical to those of the individual resolution prob-

lems; the only difference is that the merged formulation includes all of the columns in

Ja∪ . . .∪Jb whereas the individual resolution problems Ra to Rb use only columns

Ja, . . . ,Jb, respectively. Consequently, the merged resolution problem can also be

solved exactly using any off-the-shelf solver without calls to the pricing oracle. More-

over, since the merged resolution problem is a relaxation of each of the individual

resolution problems, by solving it, one may even obtain a better feasible integer so-

lution to the studied optimization problem (i.e., stronger upper bound) than those

obtained by solving each individual resolution problem.

3.2.5 SBP Search Strategies

Based on the order in which the exploration and the resolution nodes are solved

as well as whether the resolution nodes are solved individually or collectively, we

define three general search strategies for SBP.

3.2.5.1 First Strategy

The first strategy alternates between solving an exploration node Et and solv-

ing a resolution node Rt. The bold numbers beside the nodes in Figure 3.3 show

the order in which the nodes are solved. Since the resolution nodes are solved to
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optimality, the lower bound and the upper bound (the incumbent solution) may be

updated after solving each exploration and resolution nodes, respectively. Therefore,

the termination conditions for this search strategy are: (1) The LP solution to an

exploration node has a higher objective value than the incumbent solution (in which

case the incumbent solution is optimal). (2) If an exploration node is infeasible and

there is an incumbent solution, then this solution is optimal. (3) If an exploration

node is infeasible and there is no incumbent solution, then the problem instance is

infeasible. Found at the end of this section, Lemma 3.2.1 proves that the number of

exploration nodes is always finite.
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Figure 3.3: The first strategy alternates between solving an exploration node Et and
a resolution node Rt.
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3.2.5.2 Second Strategy

Given an integer parameter u ≥ 2, the second strategy alternates between solving

u exploration nodes and solving u resolution nodes as a single merged resolution

problem as explained in the end of Section 3.2.4. The bold numbers beside the

nodes in Figure 3.4 show the order in which the nodes are solved when u = 2. Like

in the first strategy, the upper bound may be updated every time a merged resolution

problem is solved. However, the lower bound cannot be updated after solving each

exploration problem; it can only be updated (1) after solving a merged resolution

problem (in which case the lower bound is provided by the latest-solved exploration

problem); and (2) after solving Eku for k = 0, . . . , bT
u
c. The termination conditions

of this strategy are the same as those of the first strategy.

3.2.5.3 Third Strategy

The objective in this strategy is to accelerate the termination of the exploration

procedure (and consequently of the whole algorithm) by solving only a reduced ver-

sion of the resolution problems; solving such reduced problems provides, in an ex-

pedited manner, high quality (improving) upper bounds. This search strategy is

motivated by these two observations: 1) although the individual resolution problems

can be solved very fast, solving them repeatedly adds up to a non trivial amount of

time; whereas 2) the individual resolution problems in the case when L = p− 1 can

be solved significantly faster than the resolution problems when L < p − 1. There-

fore, we split Rt into two disjoint problems: the first easier problem, R
′
t, uses only

the columns in Jt to find an optimal p columns (this corresponds to a resolution

problem when L = p− 1); while the second problem, R
′′
t , uses at most p− 1 columns

from Jt when selecting an optimal p columns. The specific constraints included in

R
′
t and R

′′
t are given in Figure 3.5. Note that strictly speaking, when splitting the
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Figure 3.4: Second strategy (shown for u = 2). The second strategy alternates
between solving u exploration nodes and u resolution nodes as a single merged res-
olution problem.

resolution problem Rt into the two subproblems, the problem R
′
t should contain a

constraint of the form
∑
j∈Jt

xj = p as opposed to the constraint given in Figure 3.5

(
∑

j∈J0∪...∪Jt

xj = p). With this modification, one may get stronger upper bounds

when solving to optimality R
′
t while incurring only an insignificant overhead.

Figure 3.5 shows the order in which this strategy traverses the branching tree.

Specifically, this strategy starts by alternating between solving an exploration node

Et and solving R
′
t until either the LP solution of an exploration node is greater than

or equal to an incumbent solution or an exploration node is infeasible. Then, the

strategy concludes by solving a single merged resolution problem which combines
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Figure 3.5: The third strategy alternates between solving an exploration node Et
and the simpler resolution problem R

′
t. The strategy concludes by solving the harder

resolution problems R
′′
t for t = 1, . . . , T as a single merged resolution problem.

all the individual R
′′
t problems to possibly obtain a better upper bound (than that

obtained by solving the easier resolution problems R
′
t) to declare as an optimal

solution; otherwise, the best upper bound provided by solving the individual R
′
t

problems is an optimal solution.

Like in the first two strategies, the upper bound (and the corresponding incum-

bent solution) may be updated every time a (reduced) resolution problemR
′
· is solved.

Unlike the first two strategies, the LP solutions at the exploration nodes do not give
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valid lower bounds because the nodes R
′′
t are open (and, since we will solve them to

optimality at once, we do not even calculate their LP solutions when they are first

created). Therefore, before the algorithm’s termination, the only valid lower bound

is provided by the LP solution of the root node, E0.

We end this section by presenting a lemma that proves that, regardless of the

upper bound quality or availability, the exploration procedure terminates in a finite

number of steps (i.e., the number of exploration nodes, and therefore, the number of

resolution nodes, is finite).

Theorem 3.2.1. The number of exploration nodes is finite.

Proof. The proof uses the following three facts: 1) the number of columns in the

master problem is finite; 2) the pricing problem explicitly prevents regeneration of

the already generated columns; and 3) the exploration inequalities restrict Jt+1

for 0 ≤ t ≤ T − 1 from containing more than L columns from any of the subsets

J0, . . . ,Jt. From (1), it follows that the cardinality of Jt is finite for every 0 ≤

t ≤ T , while (2), (3), and the fixed support (equation (3.4d)) imply that all of the

sets Jt for 0 ≤ t ≤ T are distinct from each other. Therefore, since the subsets Jt

for 0 ≤ t ≤ T have finite cardinality and are distinct, there is only a finite number

of such subsets. Consequently, since there is a one-to-one correspondence between

exploration nodes and subsets Jt for 0 ≤ t ≤ T , the result then follows.

3.3 Solving Hamiltonian p-median Problem Using Slim Branch & Price

This section explains how the third search strategy of SBP is used to solve the

HpMP. In Section 3.3.1, we present the RMP for HpMP and then briefly explain how

column generation can be used to solve the root node. In Section 3.3.2, we explain

how the exploration procedure in SBP is implemented to solve the main branch
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nodes for HpMP. Finally, the procedure to solve the combined resolution problem(s)

for HpMP is presented in Section 3.3.3 .

3.3.1 Solving the Root Node’s Linear Relaxation

Recall that a detailed discussion of this column generation algorithm is presented

in Chapter 2. The RMP for HpMP can be stated as follows:

minimize
∑
k∈C−1

ckxk (3.7a)

subject to
∑
k∈C−1

aikxk = 1 ∀i ∈ V (3.7b)

∑
k∈C−1

xk = p (3.7c)

xk ∈ {0, 1} ∀k ∈ C−1 (3.7d)

In column generation, our target is to find columns with negative reduced cost to

add to the RMP. By defining another graph G′ = (V,E) with edge weights dij−µi
2
−µj

2

where µi,∀i = 1, . . . , |V | are the dual variables associated to constraints (3.7b), we

already established (in Chapter 2) that finding a column with a negative reduced

cost in G is equivalent to finding a cycle in G′ with total weight that is less than µ0

where µ0 is the dual variable for constraint (3.7c). Section 2.2.3 presents a detailed

explanation of how the pricing problem was solved.

3.3.2 Exploration Procedure for HpMP

Exploration procedure entails solving the exploration nodes which constitute the

main branch in SBP tree. We start by presenting the mathematical formulation for

any exploration problem Et for HpMP, followed by a discussion of formulating and

solving the pricing problem.
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The procedure starts by solving the first exploration node (i.e., E0), which is the

root node, as explained in Section 3.3.1. The exploration problem Et+1, t ≥ 0 can

then be formulated as follows:

(Et+1) minimize
∑
k∈Ct

ckxk (3.8a)

subject to
∑
k∈Ct

aikxk = 1, ∀i ∈ V (3.8b)

∑
k∈Ct

xk = p (3.8c)

∑
k∈Jj

xk ≤ L ∀j ∈ {0, . . . , t} (3.8d)

xk ∈ {0, 1} ∀k ∈ Ct (3.8e)

Let µi,∀i ∈ V be the dual variables associated with constraints (3.8b), and let

µ0 be the dual variable associated with constraint (3.8c). As mentioned in Chapter

2, solving the pricing problem entails finding a cycle in G′ whose weight is less than

µ0 or conclude that none exists. The IP used to solve the pricing problem can be

formulated as:

(IP-Pricing Problem) minimize Z =
∑

(i,j)∈E

(dij −
µi
2
− µj

2
)yij (3.9a)

subject to
∑

(i,j)∈δ(i)

yij = 2zi, ∀i ∈ V (3.9b)

∑
(i,j)∈E

yij ≥ 3 (3.9c)

∑
∀(i,j)∈q

yij ≤ |q| − 1, ∀q ∈J (3.9d)

yij ∈ {0, 1} ∀(i, j) ∈ E (3.9e)
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zi ∈ {0, 1} ∀i ∈ V (3.9f)

The variable yij is binary with value of 1 if the edge (i, j) is in the optimal solution;

and zero otherwise. The constraints (3.9b) and (3.9c) ensure that the variables yij

in any feasible solution form at least one cycle (recall that δ(i) is the set of incident

edges to node i ∈ V ). On the other hand, the constraints (3.9d) prevent regenerating

the already generated columns in the set J = J0 ∪ . . . ∪Jt.

Algorithm 4, given below, uses Problem 3.9 to find a cycle in G′ whose weight is

less than µ0 or conclude that none exists:

Algorithm 4 Solving the Pricing Problem

1: Input: G′ = (V,E), a weight dij − µi
2 −

µj
2 for all edges (i, j) ∈ E, and a number, µ0.

2: Output: A cycle or set of cycles such that the weight of each cycle is less than µ0 or

conclude that no such cycle exists.

3: Set Stop=0.

4: repeat

5: Solve Problem 3.9. Let the cycles in the optimal solution be C1, . . . , Cs with weights

W1, . . . ,Ws. Note that Z∗ =
s∑
i=1

Wi.

6: if at least one Wi, ∀i = 1, . . . , s is less than µ0 then

7: return cycle(s) with Wi less than µ0. Set Stop=1.

8: else if Z∗ ≥ µ0 then

9: return no cycle has Wi less than µ0. Set Stop=1.

10: else

11: add C1, . . . , Cs to J .

12: end if

13: until Stop=1
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3.3.3 Resolution Procedure for HpMP

Preliminary experimental results show that when solving the HpMP, SBP has the

best performance when L = p− 2 and L = p− 3. Thus, following this observation,

our discussion will be divided into two main sections.

3.3.3.1 Resolution Procedure for L = p− 2

In this case, the resolution node t will contain the constraint
∑
k∈Jt

xk ≥ L + 1 =

p − 1. Hence, we divide our discussion into two main parts. In the first part,

we explain how the resolution problem, termed Rp
t
∗, which includes the constraint∑

k∈Jt

xk = p is formulated and solved; whereas in the second part, we present the

resolution problem, termed Rp−1
t
†, which includes the constraint

∑
k∈Jt

xk = p− 1.

After solving the exploration node t, the corresponding resolution problem, Rp
t ,

can be formulated as follows:

(Rp
t ) minimize

∑
k∈J

ckxk (3.10a)

subject to
∑
k∈J

aikxk = 1, ∀i ∈ V (3.10b)

∑
k∈J

xk = p (3.10c)

xk ∈ {0, 1} ∀k ∈J (3.10d)

Thus, Rp
t requires finding a local optimal integer solution of HpMP by using as

variables just the columns in J = J0∪ . . .∪Jt. If a feasible solution for Rp
t exists,

then it is clearly an upper bound for HpMP. Since the number of columns in J is

∗This is the same as R
′

t presented earlier but the notation is slightly changed to facilitate expo-
sition specific to HpMP below.
†Analogous to R

′′

t
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usually small, solving Rp
t is easy and can readily be solved using any integer solver.

For this reason and because no starting feasible solution is available, we solve the

corresponding Rp
t after solving each exploration node Et (as mentioned in the third

search strategy in Section 3.2.5).

Next, we present the formulation of Rp−1
t below and then present an algorithm

to solve it.

(Rp−1
t ) minimize

∑
∀e∈E

deye +
∑
k∈Jt

ckxk (3.11a)

subject to
∑
∀e∈δ(i)

ye +
∑
k∈Jt

2aikxk = 2, ∀i ∈ V (3.11b)

∑
k∈Jt

xk = p− 1 (3.11c)

∑
e∈E

ye ≥ 3 (3.11d)

xk ∈ {0, 1} ∀k ∈Jt (3.11e)

ye ∈ {0, 1} ∀e ∈ E (3.11f)

We restrict the feasible region of Rp−1
t to select exactly p−1 columns (cycles) from

Jt by using constraint (3.11c). The remaining one cycle is obtained by employing

natural variable ye which is a binary variable whose value is one if edge e ∈ E is in

the cycle, and zero otherwise. The constraints (3.11b) are extended two matching

constraints which ensure that each node i ∈ V is covered by either exactly one

cycle from Jt or exactly two edges that are incident to node i. Constraints (3.11d)

ensure that at least one extra undirected cycle (not in Jt) is selected. Note that

the variables ye may form more than one cycle yielding a solution to Problem 3.11

having more than p cycles. This situation will be discussed later in this subsection
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and again in 3.3.3.2.

As mentioned earlier, we adopt the third search strategy which entails combining

the individual Rp−1
t into one resolution problem, Rp−1. The feasible region of each

Rp−1
t is a subset of the feasible region of Rp−1. The collective resolution problem

Rp−1 can then be formulated as follows:

(Rp−1) minimize
∑
∀e∈E

deye +
∑
k∈J

ckxk (3.12a)

subject to
∑
∀e∈δ(i)

ye +
∑
k∈J

2aikxk = 2, ∀i ∈ V (3.12b)

∑
k∈J

xk = p− 1 (3.12c)

∑
e∈E

ye ≥ 3 (3.12d)

xk ∈ {0, 1} ∀k ∈J (3.12e)

ye ∈ {0, 1} ∀e ∈ E (3.12f)

Clearly, the only difference between Problems 3.11 and 3.12 is in extending the

cycles xk to include all the cycles that are non-zero in the optimal LP solution of all

the exploration nodes solved in the main branch. The feasible region of Rp−1 contains

all the optimal solutions of each individual Rp−1
t , if one exists. Since the variables ye

may form more than one cycle in the optimal solution of Rp−1, Algorithm 5 is used

to guarantee that we get exactly p cycles (i.e., one cycle via ye’s and p − 1 cycles

from J ).
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Algorithm 5

1: Input: G = (V,E), a cost dij ,∀(i, j) ∈ E, set of cycles J with lengths ck,∀k ∈ J ,

and a positive number p.

2: Output: Upper bound for HpMP for the given value of p.

3: repeat

4: Solve Problem 3.12. Let y∗e and x∗k be its optimal solution.

5: Let Y := {e ∈ E|y∗e = 1} and X := {k ∈J |x∗k = 1}
6: Let NC be the number of cycles formed by the edges in Y .

7: Add
∑
e∈Y

ye ≤ |Y | − 1 to Problem 3.12.

8: until NC = 1

9: return The p− 1 cycles in X and the single cycle formed by the edges in Y .

3.3.3.2 Resolution Procedure for L = p− 3

In this case, the resolution node t will thus contain the constraint
∑
k∈Jt

xk ≥

L+1 = p−2. We refer to these resolution problems as Rp−2
t . Again, as we adopt the

third search strategy, we combine the individual Rp−2
t to form one merged resolution

problem, Rp−2. We divide solving the resolution problem into three steps. In the

first step, we solve the resolution problem which includes the constraint
∑
k∈Jt

xk =

p; whereas in the second step, we solve the resolution problem which includes the

constraint
∑
k∈Jt

xk = p−1; and finally, in the third step, we explain how the resolution

problem (which includes the constraint
∑
k∈Jt

xk = p − 2) is formulated and solved.

The first two steps were explained in Section 3.3.3.1. Next, we provide the details of

the mathematical formulation and the algorithm for the third step.

The collective resolution problem Rp−2 can be formulated as follows:

(Rp−2) minimize
∑
∀e∈E

m=2∑
m=1

demyem +
∑
k∈J

ckxk (3.13a)

73



subject to
∑
∀e∈δ(i)

ye1 +
∑
k∈J

2aikxk = 2zi, ∀i ∈ V (3.13b)

∑
∀e∈δ(i)

ye2 = 2(1− zi), ∀i ∈ V (3.13c)

∑
k∈J

xk = p− 2 (3.13d)

∑
e∈E

yem ≥ 3, ∀m ∈ {1, 2} (3.13e)

xj ∈ {0, 1} ∀j ∈J (3.13f)

yem ∈ {0, 1} ∀e ∈ E,m = 1, 2 (3.13g)

We devise Algorithm 6 (given below) to guarantee that exactly p cycles are even-

tually obtained when solving Rp−2.

Algorithm 6 Solving Rp−2

1: Input: G = (V,E), a cost de1 = de2 = de, ∀e ∈ E, set of cycles J with lengths

ck,∀k ∈J , and a positive number p.

2: Output: Upper bound for HpMP for the given value of p.

3: repeat

4: Solve Problem 3.13. Let y∗e1, y
∗
e2, and x∗k be its optimal solution.

5: Let Y1 := {e ∈ E|y∗e1 = 1}, Y2 := {e ∈ E|y∗e2 = 1} and X := {k ∈J |x∗k = 1}
6: Let NC1 and NC2 be the number of cycles formed by the edges in Y1 and Y2, resp.

7: if NC1 6= 1 then

8: Add
∑
e∈Y1

ye1 ≤ |Y1| − 1 and
∑
e∈Y1

ye2 ≤ |Y1| − 1 to Problem 3.13.

9: end if

10: if NC2 6= 1 then

11: Add
∑
e∈Y2

ye1 ≤ |Y2| − 1 and
∑
e∈Y2

ye2 ≤ |Y2| − 1 to Problem 3.13.

12: end if

13: until (NC1 = 1 and NC2 = 1)

14: return The p− 2 cycles in X , the single cycle via Y1, and the single cycle via Y2.
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3.4 Computational Results

This section presents the computational results of the proposed SBP method

when used in solving the HpMP. We specifically compared the performance of the

SBP method when L = p − 2 and L = p − 3 to that of the B&P algorithm im-

plemented in Chapter 2. The algorithm was tested on 18 complete graphs from

the TSPLIB available from http://www.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95/tsp/. The size of the selected graphs ranges from 58 nodes to

200 nodes. The edge costs are rounded to the nearest integer as is the common

convention in the TSP literature.

All algorithms were run on a machine with an Intel Core i7 processor and 32 GB

of memory. Implementations were coded and compiled on Visual Studio C++ using

standard template library and standard subroutines. Linear and integer programs

were solved using CPLEX 12.4 invoked in C++ using Concert Technology. The time

limit for all the test instances is set to one hour.

Tables 3.1-3.3 show the running times (in seconds) for the three aforementioned

algorithms when solving HpMP. In case an algorithm failed to find an optimal so-

lution within the one hour time limit, the optimality gap (in percentage) is then

reported. The optimality gap (OG) is defined as OG = BFS−LB
BFS

∗ 100% where BFS

is the best feasible solution and LB is the lower bound. As discussed earlier, the

feasible solution is provided via solving exactly the resolution nodes. In the case

where L = p − 3, the merged resolution problem is, in general, more difficult to

solve than when L = p − 2 and the time limit may be reached without finishing

solving the resolution problem. In this case, by relaxing constraint (3.13d) to be a

greater than or equal inequality and solving Problem 3.13, we obtain a lower bound

for the resolution problem. The minimum of the lower bound provided by the last
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exploration node and the lower bound provided by the relaxation of the resolution

problem yields a valid lower bound for HpMP.

In all the tables in this chapter, the following convention is adopted:

1. The columns with heading graph-p represent the graph name followed by the

required number of cycles, p.

2. The columns with heading B&P present the computational results for the

B&P algorithm presented in Chapter 2.

3. The columns with heading SBPp-2 present the computational results for the

SBP method when L = p− 2.

4. The columns with heading SBPp-3 present the computational results for the

SBP method when L = p− 3.

Tables 3.1-3.3 show the computational results for the 333 test instances. For

any instance, the blue, purple, and red numbers represent the best, the second best,

and the worst performing algorithm, respectively. We only provide computational

results for the instances with p > p2m + 3 where p2m is the number of cycles in the

minimum weight two matching problem. This is because, as shown in Section 2.3.3,

using the column generation framework is not recommended when solving HpMP

for p ≤ pm + 3 due to the increasing difficulty of the pricing problem. Therefore,

since the core of SBP is the column generation framework and our main objective is

to compare the computational performance of our proposed slim branching tree and

that of the traditional branching tree in B&P, we focused on the p values that are

greater than p2m + 3 in our computational experiments.

We next give some detailed comparison between each pair of the three compared

algorithms. In Sections 3.4.1 and 3.4.2, we compare the performance of B&P and
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the SBP method when L = p − 2 and L = p − 3, respectively. In Section 3.4.3, we

compare the performance of SBP when L = p− 2 and SBP when L = p− 3. Finally,

Section 3.4.4 presents the performance profile for the three tested algorithms.

3.4.1 Comparison of B&P and SBPp-2

Tables 3.1-3.3 show that SBPp-2 performed better in 80.2% of the instances;

whereas B&P performed better in 9.3% of the instances. Both algorithms had the

same computational times (or OG) in 10.81% of the instances (of these instances,

92% provided an integer solution when solving the LP relaxation at the root node—

since the two algorithms use the same procedure to solve the root node, the two

algorithms had the same computational times).

SBPp-2 found the optimal solution for 66 instances (i.e., 19.8%) that B&P failed

to solve to optimality within the one hour time limit; whereas B&P succeeded in

accomplishing that in only two instances. For the instances that both algorithms

failed to solve to optimality within the time limit, the average OG for SBPp-2 was

0.53%; whereas B&P has an average OG of 2.42%.

SBPp-2 was at least two times faster than B&P in 32.4% of the instances; at least

three times faster than B&P in 21.6% of the instances, at least four times faster

than B&P in 15.3% of the instances; and at least five times faster in 12.3% of the

instances.

3.4.2 Comparison of B&P and SBPp-3

Tables 3.1-3.3 show that SBPp-3 performed better than B&P in 76.6% of the

instances; whereas B&P performed better in 13.5% of the instances. Both algorithms

had the same computational times (or OG) in 9.9% of the instances; except for

one instance, these are the instances that are solved at the root node without any

branching required.
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SBPp-3 found the optimal solution for 90 instances (i.e., 27%) that B&P failed to

solve to optimality within the one hour time limit; whereas B&P found the optimal

solution for 6 instances (i.e., 1.8%) that SBPp-3 failed to solve to optimality. For the

instances that both algorithms failed to solve to optimality within the time limit,

the average OG for SBPp-3 was 0.98%; whereas B&P has an average OG of 2.93%.

SBPp-3 was at least two times faster than B&P in 39.9% of the instances; at least

three times faster than B&P in 30% of the instances, at least four times faster than

B&P in 21% of the instances; and at least five times faster in 14.1% of the instances.

3.4.3 Comparison of SBPp-2 and SBPp-3

Tables 3.1-3.3 show that SBPp-3 performed better than SBPp-2 in 51.4% of the

instances; whereas SBPp-2 performed better in 39% of the instances. Both algorithms

had the same computational times (or OG) in 9.6% of the instances.

SBPp-3 found the optimal solution for 25 instances (i.e., 7.51%) that SBPp-2 failed

to solve to optimality within the one hour time limit; whereas SBPp-2 solved only

seven instances that are unsolved by SBPp-3 in the one hour time limit. For the

instances that both algorithms failed to solve to optimality within the time limit,

the average OG for SBPp-3 was 0.99%; whereas SBPp-2 has an average OG of 0.66%.

SBPp-3 was at least two times faster than SBPp-2 in 5.7% of the instances; and

at least three times faster than SBPp-2 in 2.1% of the instances.

3.4.4 Performance Profile

Figure 3.6 presents the performance profile for B&P, SBPp-2, and SBPp-3. The

performance profile is constructed based on the approach proposed in [17]. Specifi-

cally, let ni be the number of instances, P be the set of instances, na be the number

of algorithms studied, and A be the set of algorithms. For each i ∈P and a ∈ A ,
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Table 3.1: Computational Results for graphs brazil58, eil76, pr76, gr96, rat99, rd100,
kroa100, and krob100. (Solution times in seconds or optimality gaps in percentage:
the best in blue, the second best in purple, and the worst in red.)

graph-p B&P SBPp-2 SBPp-3 graph-p B&P SBPp-2 SBPp-3 graph-p B&P SBPp-2 SBPp-3

brazil58-15 50 38 37 gr96-13 0.8% 697 1143 rd100-17 148 117 207

brazil58-16 91 42 38 gr96-14 350 895 1603 rd100-18 260 502 244

brazil58-17 305 57 40 gr96-15 0.1% 1708 1491 rd100-19 3529 1504 850

brazil58-18 223 61 56 gr96-16 0.2% 0.11% 1156 rd100-20 0.4% 840 599

brazil58-19 198 94 77 gr96-17 1.7% 3531 827 rd100-21 705 447 437

st70-16 12 12 12 gr96-18 3% 392 617 rd100-22 0.1% 290 245

st70-17 37 32 48 gr96-19 501 314 405 rd100-23 252 188 205

st70-18 36 31 36 gr96-20 405 128 157 rd100-24 164 141 91

st70-19 116 28 41 gr96-21 483 144 155 rd100-25 51 51 51

st70-20 94 33 36 gr96-22 3488 323 338 rd100-26 349 206 190

st70-21 456 54 55 gr96-23 0.2% 737 392 rd100-27 456 208 221

st70-22 2348 129 158 gr96-24 0.2% 1008 633 rd100-28 590 302 183

st70-23 2.1% 717 383 gr96-25 0.1% 675 578 rd100-29 486 382 257

eil76-6 425 155 105 gr96-26 1667 543 373 rd100-30 306 263 240

eil76-7 141 93 96 gr96-27 1809 244 406 rd100-31 0.1% 612 319

eil76-8 0.2% 218 215 gr96-28 0.4% 1804 1135 rd100-32 0.1% 298 282

eil76-9 35 35 35 gr96-29 1.6% 0.32% 2670 rd100-33 3.1% 0.86% 0.89%

eil76-10 77 77 77 gr96-30 2.6% 0.56% 2886 kroa100-17 107 105 102

eil76-11 63 63 63 gr96-31 5% 0.67% 0.66% kroa100-18 209 257 275

eil76-12 92 92 92 gr96-32 4.5% 1.5% 1.6% kroa100-19 331 601 540

eil76-13 166 96 116 rat99-9 168 609 294 kroa100-20 427 298 211

eil76-14 66 56 71 rat99-10 146 107 284 kroa100-21 112 182 149

eil76-15 124 72 88 rat99-11 350 379 594 kroa100-22 809 406 212

eil76-16 256 104 72 rat99-12 744 381 316 kroa100-23 1140 821 431

eil76-17 70 70 70 rat99-13 467 373 241 kroa100-24 545 260 275

eil76-18 197 99 94 rat99-14 423 398 258 kroa100-25 129 248 149

eil76-19 79 104 78 rat99-15 925 540 300 kroa100-26 325 457 267

eil76-20 1005 92 105 rat99-16 459 395 287 kroa100-27 1444 786 661

eil76-21 37 37 37 rat99-17 1932 716 376 kroa100-28 1428 1089 554

eil76-22 34 34 34 rat99-18 681 422 278 kroa100-29 1355 1060 524

eil76-23 31 31 31 rat99-19 484 264 206 kroa100-30 2500 1158 662

eil76-24 1021 87 113 rat99-20 833 255 218 kroa100-31 0.5% 1943 976

eil76-25 1140 110 175 rat99-21 135 127 232 kroa100-32 2.4% 0.67% 0.68%

pr76-11 2719 2115 627 rat99-22 956 146 207 kroa100-33 2.7% 1.9% 2%

pr76-12 0.1% 3072 849 rat99-23 509 187 265 krob100-23 0.1% 136 184

pr76-13 0.1% 3584 881 rat99-24 445 168 299 krob100-24 57 57 57

pr76-14 0.3% 0.18% 961 rat99-25 533 166 222 krob100-25 109 141 125

pr76-15 0.6% 0.33% 1005 rat99-26 415 166 232 krob100-26 0.2% 219 231

pr76-16 146 146 146 rat99-27 740 209 247 krob100-27 138 116 127

pr76-17 190 252 211 rat99-28 1009 269 297 krob100-28 48 48 48

pr76-18 108 244 209 rat99-29 1045 167 230 krob100-29 48 48 48

pr76-19 184 175 221 rat99-30 1199 187 283 krob100-30 124 63 120

pr76-20 29 29 29 rat99-31 377 214 220 krob100-31 883 170 197

pr76-21 38 38 38 rat99-32 3062 181 237 krob100-32 3483 297 332

pr76-22 30 30 30 rat99-33 0.5% 597 438 krob100-33 2.8% 1.8% 2%

pr76-23 169 150 92

pr76-24 829 195 144

pr76-25 359 137 115
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Table 3.2: Computational Results for graphs kroc100, kroe100, lin105, gr120,
bier127, and u159. (Solution times in seconds or optimality gaps in percentage:
the best in blue, the second best in purple, and the worst in red.)

graph-p B&P SBPp-2 SBPp-3 graph-p B&P SBPp-2 SBPp-3 graph-p B&P SBPp-2 SBPp-3

kroc100-16 3600 0.31% 1905 gr120-19 542 3547 2732 u159-24 0.06% 1135 706

kroc100-17 0.12% 1206 563 gr120-20 1062 1478 1051 u159-25 0.08% 842 706

kroc100-18 436 209 189 gr120-21 110 110 110 u159-26 3381 1122 677

kroc100-19 2281 313 291 gr120-22 97 97 97 u159-27 0.01% 1803 871

kroc100-20 0.2% 519 390 gr120-23 256 248 287 u159-28 0.18% 1270 732

kroc100-21 0.47% 635 480 gr120-24 1919 470 483 u159-29 0.15% 1288 738

kroc100-22 0.14% 452 315 gr120-25 134 134 134 u159-30 0.01% 1211 984

kroc100-23 1574 236 242 gr120-26 125 125 125 u159-31 0.04% 2154 1363

kroc100-24 0.01% 340 303 gr120-27 764 389 465 u159-32 0.1% 0.02% 2311

kroc100-25 0.15% 917 625 gr120-28 2229 1609 817 u159-33 0.19% 2547 1946

kroc100-26 0.3% 1790 1125 gr120-29 1004 1362 855 u159-34 0.03% 1477 1208

kroc100-27 0.29% 2462 1168 gr120-30 481 1067 677 u159-35 0.09% 1818 1311

kroc100-28 0.25% 1539 1149 gr120-31 602 594 551 u159-36 0.31% 2405 1318

kroc100-29 0.3% 2262 933 gr120-32 883 510 646 u159-37 0.13% 2480 1873

kroc100-30 2.26% 1283 816 gr120-33 562 366 554 u159-38 0.04% 1388 863

kroc100-31 2.8% 1474 659 gr120-34 87 87 87 u159-39 829 903 733

kroc100-32 1.91% 2262 785 gr120-35 108 108 108 u159-40 0.04% 1024 792

kroc100-33 6.07% 2.25% 2.7% gr120-36 1677 360 443 u159-41 0.27% 1631 910

kroe100-15 454 198 221 gr120-37 1424 362 427 u159-42 0.44% 1906 2094

kroe100-16 538 394 261 gr120-38 0.1% 509 405 u159-43 0.26% 2596 1830

kroe100-17 0.04% 1242 415 gr120-39 0.7% 1109 2071 u159-44 0.63% 0.17% 0.22%

kroe100-18 3547 398 215 gr120-40 2.1% 1262 1073 u159-45 2.65% 0.25% 0.44%

kroe100-19 250 156 153 bier127-15 0.1% 912 786 u159-46 0.43% 0.38% 0.39%

kroe100-20 114 73 144 bier127-16 86 86 86 u159-47 1% 0.65% 0.71%

kroe100-21 97 97 97 bier127-17 262 350 312 u159-48 0.88% 0.56% 0.67%

kroe100-22 331 133 185 bier127-18 177 167 198 u159-49 2.28% 0.93% 1.12%

kroe100-23 2017 417 380 bier127-19 291 280 247 u159-50 3.56% 1% 1.12%

kroe100-24 531 299 267 bier127-20 590 543 333 u159-51 3.4% 1.85% 1.93%

kroe100-25 3479 354 220 bier127-21 156 156 313 u159-52 12.9% 1.97% 2.34%

kroe100-26 547 159 142 bier127-22 476 475 362 u159-53 8.47% 3.65% 4.25%

kroe100-27 1930 354 232 bier127-23 95 95 95

kroe100-28 1178 275 250 bier127-24 104 104 104

kroe100-29 468 127 162 bier127-25 232 375 376

kroe100-30 380 231 199 bier127-26 101 101 101

kroe100-31 1640 177 272 bier127-27 125 125 125

kroe100-32 0.24% 414 366 bier127-28 101 101 101

kroe100-33 2.6% 47 52 bier127-29 218 218 218

lin105-23 588 259 200 bier127-30 1374 630 502

lin105-24 733 274 292 bier127-31 826 498 389

lin105-25 0.3% 1099 476 bier127-32 432 515 406

lin105-26 147 126 144 bier127-33 0.1% 1123 1023

lin105-27 43 43 43 bier127-34 2.3% 0.43% 0.44%

lin105-28 1863 300 334 bier127-35 13% 0.72% 0.66%

lin105-29 1022 149 248 bier127-36 11% 0.38% 0.37%

lin105-30 0.4% 473 321 bier127-37 2.1% 0.4% 0.42%

lin105-31 788 229 251 bier127-38 2.2% 0.37% 0.38%

lin105-32 0.4% 830 971 bier127-39 5.3% 0.06% 1364

lin105-33 1.5% 0.14% 2826 bier127-40 0.2% 1921 0.25%

lin105-34 3.4% 0.61% 2858

lin105-35 4.7% 0.61% 0.55%
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Table 3.3: Computational Results for graphs kroa150, kroa200, and krob200. (Solu-
tion times in seconds or optimality gaps in percentage: the best in blue, the second
best in purple, and the worst in red.)

graph-p B&P SBPp-2 SBPp-3 graph-p B&P SBPp-2 SBPp-3

kroa150-23 0.36% 0.21% 3540 krob200-41 0.04% 0.16% 0.25%

kroa150-24 0.24% 0.08% 2230 krob200-42 0.08% 0.20% 0.31%

kroa150-25 2.86% 0.25% 0.23% krob200-43 0.01% 0.11% 0.19%

kroa150-26 0.50% 0.21% 0.09% krob200-44 0.14% 0.06% 0.57%

kroa150-27 0.36% 0.07% 3200 krob200-45 0.02% 0.06% 0.66%

kroa150-28 0.33% 0.23% 0.2% krob200-46 0.08% 0.06% 0.19%

kroa150-29 0.25% 0.21% 0.07% krob200-47 0.04% 0.04% 0.19%

kroa150-30 0.39% 0.07% 2494 krob200-48 0.09% 0.10% 0.19%

kroa150-31 0.18% 0.01% 2486 krob200-49 0.04% 0.04% 2853

kroa150-32 0.09% 3067 2159 krob200-50 3522 3354 3150

kroa150-33 0.06% 2773 3130 krob200-51 0.04% 0.02% 0.17%

kroa150-34 0.11% 0.03% 2639 krob200-52 1503 502 1610

kroa150-35 0.05% 2390 1586 krob200-53 2640 2298 0.18%

kroa150-36 0.11% 2938 2009 krob200-54 2513 2377 0.85%

kroa150-37 0.14% 2587 2746 krob200-55 3027 2944 0.85%

kroa150-38 1.44% 0.06% 2232 krob200-56 2549 1548 0.27%

kroa150-39 0.18% 0.15% 0.12% krob200-57 3489 1354 0.62%

kroa150-40 1.29% 0.25% 0.45% krob200-58 3378 0.14% 0.38%

kroa150-41 1.73% 0.20% 0.31%

kroa150-42 1.17% 0.13% 0.19%

kroa150-43 0.17% 0.07% 0.21%

kroa150-44 1.06% 0.06% 0.95%

kroa150-45 1.26% 0.19% 0.51%

kroa150-46 2.36% 0.42% 0.63%

kroa150-47 4.89% 0.65% 0.77%

kroa150-48 2.18% 1.05% 1.22%

kroa150-49 7.35% 2.93% 2.85%

kroa150-50 8.71% 3.82% 3.89%

kroa200-40 0.95% 0.13% 3236

kroa200-41 0.12% 1.04% 3422

kroa200-42 0.16% 0.04% 0.09%

kroa200-43 0.07% 0.13% 2358

kroa200-44 0.03% 0.09% 1843

kroa200-45 0.08% 3170 0.2%

kroa200-46 0.11% 0.10% 2590

kroa200-47 0.48% 0.21% 0.19%

kroa200-48 1.21% 0.03% 3220

kroa200-49 0.08% 0.03% 2887

kroa200-50 0.28% 0.09% 0.03%

kroa200-51 1.79% 0.07% 0.56%

kroa200-52 0.67% 0.02% 0.18%

kroa200-53 0.48% 0.56% 0.21%

kroa200-54 2.06% 0.08% 0.2%

kroa200-55 0.93% 0.17% 0.55%

kroa200-56 1.36% 1.67% 0.55%

kroa200-57 2.46% 0.25% 2.89%

kroa200-58 8.57% 0.41% 8.74%

kroa200-59 6.19% 0.72% 2.22%

kroa200-60 23.93% 0.64% 2.85%
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define the performance ratio as

ri,a =
ti,a

min{ti,a : a ∈ A }
(3.14)

where ti,a is a performance measure. In our case, the performance measure is the

computational time if an instance is solved to optimality by at least one of the

algorithms within the one hour time limit; the computational time is set to 3600 if

an algorithm failed to solve an instance. If all the studied algorithms failed to solve

an instance to optimality, the performance measure is the OG. Finally, define

ρa(τ) =
|{i ∈P} : ri,a ≤ τ}|

ni
∗ 100% (3.15)

as the percentage of instances that an algorithm a ∈ A has a performance ratio that

is within τ ∈ R of the best possible ratio.

The top graph in Figure 3.6 presents the performance profile for the three algo-

rithms for the instances that are solved to optimality by at least one algorithm. The

top graph in Figure 3.6 shows that SBPp-3 has the best performance in 65.8% of the

test instances. SBPp-2 has the second best performance and was the best algorithm

in 40.4%. Finally, B&P comes last and it was the best algorithm in 17.6% of the

instances. Tables 3.1-3.3 show that this 17.6% (in which B&P has good performance)

is occurring in the instances that are solved at the root node. For these instances,

all the three algorithms have the exact performance.

When the value of τ is greater that four, the performances of SBPp-2 and SBPp-3

are almost identical. In other words, the computational time required to solve any

instance using SBPp-2 is at most four times the computational time required to solve

the same instance using SBPp-3. Clearly, SBPp-2 and SBPp-3 performed better than
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B&P.

The bottom graph in Figure 3.6 presents the performance profile for the three

algorithms for the instances that are not solved to optimality by any of the three

algorithms. The bottom graph in Figure 3.6 shows that SBPp-2 has the best perfor-

mance in 68.9% of the test instances. SBPp-3 has the second best overall performance

and was the best algorithm in 23%. Finally, B&P comes last and it was the best

algorithm in only 9.8% of the instances.

The reason for the better OG provided by SBPp-2 over those provided by SBPp-3

for the unsolved instances is next explained. In one hand, in SBPp-3, after exhausting

the one hour in solving the exploration nodes, only the relaxation of the combined

resolution problem Rp−2 was solved in order to provide a valid lower bound. On the

other hand, in SBPp-2, even after exhausting the one hour in solving the exploration

nodes, Rp−1 was solved to optimality in all these instances. This is due to the fact

that Rp−1 (used in SBPp-2) can be solved in at most five seconds; whereas solving

Rp−2 (used in SBPp-3) can take considerably longer time.

In summary, we conclude that SBPp-3 has the best overall performance. It is

important to stress that there is no practical difference in OG provided by SBPp-3

and SBPp-2 (i.e., 0.33%) for the instances that are not solved to optimality by both

algorithms.
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Figure 3.6: Performance profiles for B&P, SBPp-2, SBPp-3: the top figure shows the
performance profile using the computational times using the instances which at least
one algorithm solved to optimality; the bottom figure shows the performance profile
using the optimality gaps using the instances which all algorithms failed to solve to
optimality.
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4. REDUCED COST FIXING IN SBP WITH APPLICATION TO HPMP

In recent years, one of the reasons that helped in improving the performance of

integer program solvers was the efficient implementation of preprocessing techniques.

These techniques include deleting redundant constraints, changing variable bounds,

changing the coefficients in the constraint matrix, among other techniques (e.g. [43],

[27], [47]). In this chapter, we focus on the reduced cost fixing technique which is

used to fix the values of a subset of variables optimally in any binary program in

a preprocessing stage [37]. In order to implement reduced cost fixing, we need to

obtain a feasible solution to the problem at hand and a tight lower bound. In this

chapter, we explain how reduced cost fixing can be used to enhance the performance

of SBP when solving the HpMP.

As the first ingredient in reduced cost fixing, NVM (natural variable space model)

provides the tightest LP relaxation lower bound for HpMP among the seven studied

formulations [21]. However, NVM formulation has exponential number of constraints

which are difficult to separate. While the separation of these constraints is NP-hard

as shown in [21], we circumvent this difficulty by only separating a subset of these

constraints that performs efficiently in practice.

The second ingredient needed to implement reduced cost fixing is a good feasible

solution as an upper bound. We develop a new effective heuristic based on k-opt

moves to find a good feasible solution for HpMP.

The following lemma from [37] formalizes the reduced cost fixing technique.

Lemma 4.0.1 (Reduced cost fixing). Let c̄ij be the reduced cost of nonbasic xij

obtained after solving the LP relaxation of NVM, also let ZLP and Z∗ be the lower

and upper bounds of NVM, respectively. If ZLP + c̄ij > Z∗, then set xij = 0.
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Based on our experimental results when solving the HpMP, we noticed that

HpMPs on complete graphs are more difficult to solve and require more compu-

tational time than similar size problems on incomplete graphs. Thus, deleting the

edges that cannot be in an optimal solution has a good impact on the time required

to solve HpMP. For this purpose, we propose the use of reduced cost fixing to delete

such edges [37]. In our setting, this technique can be used to delete some variables

by fixing the values of some decision variables to zero.

After getting a tighter lower bound by implementing the separation algorithms

presented in Section 4.1 and a good feasible solution by implementing k-opt as ex-

plained in Section 4.2, one can implement reduced cost fixing presented in Lemma

4.0.1. This implies setting the values of the edges having reduced cost value that is

greater than the difference between the upper and lower bounds to zero, thus delet-

ing such edges from the graph. Then, SBP method presented in Section 3.3 can be

implemented on the resulting graph. In Section 4.3, we present the computational

results for the SBP with reduced cost fixing technique.

4.1 Lower Bound for HpMP

Before we present the generalized natural variable space model (GNVM) which is

used to find the lower bound used in reduced cost fixing, we first define the notation

used. Let P be a partition of set of vertices V into m subsets given as {S1, . . . , Sm}

and let P l
m be the set of partitions of size m such that the cardinality of each

Si, i = 1, . . . ,m is greater than or equal to l. For a partition P , define EP as the set

of edges straddling pairs of subsets Sv and Sw (i.e., EP = {(i, j) ∈ E : i ∈ Sv, j ∈

Sw;Sv 6= Sw;Sv, Sw ∈ P}), and Cp = {C ⊂ E : |C| = |V | and the edges in C form

at most p cycles}.
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Now, the mathematical formulation of GNVM is given by:

(GNVM) minimize H =
∑

(i,j)∈E

cijxij (4.1a)

subject to
∑

∀(i,j)∈δ(v)

xij = 2 ∀v ∈ V (4.1b)

∑
(i,j)∈EP

xij ≥ 1 + u ∀P ∈P3
p+u (4.1c)

∑
(i,j)/∈C

xij ≥ 1 + u ∀C ∈ Cp−u (4.1d)

xij ∈ {0, 1} ∀(i, j) ∈ E (4.1e)

In this model, xij equals one if edge (i, j) is in the optimal solution, and is zero

otherwise. In the constraints (4.1b), δ(v) denotes the set of edges incident to node

v ∈ V , these constraints imply that exactly two of the edges incident to v must be

selected.

Constraints (4.1c) enforce that, for each partition P of graph G with p+u subsets,

at least 1 + u edges from EP should be selected in order to eventually obtain the

target p cycles. These constraints prevent the formation of more than p cycles. For

example, if the number of cycles in the solution is four and the number of required

cycles is two, then the sum of the edges in EP is greater than or equal to three.

Observe that these constraints are the generalization of the cut set constraints for

the TSP which can be obtained by setting p = 1 in (4.1c).

Constraints (4.1d) ensure that, for each partition of graph G into p− u subsets,

at least 1 + u additional edges are needed in any feasible solution to get p cycles.

These constraints prevent the formation of less than p cycles. For example, if the

number of cycles in the solution is two and the number of required cycles is five, then

the sum of the edges not in C (i.e., all the edges E after excluding the edges forming
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these two cycles) is greater than or equal to four.

In [21], the authors proved that NVM has the tightest LP bound at the root node,

they also showed that identifying the most violated constraints (4.1c) and (4.1d) is

NP-hard. Thus, finding a separation algorithm for these constraints is challenging.

Although, the authors in [21] provide separation algorithms for constraints (4.1c)

and (4.1d), they concluded that the performance of their separation algorithms was

not satisfactory. Therefore, we develop two new efficient separation algorithms for

constraints (4.1c) and (4.1d) which are critical to obtain a tighter lower bound, ZLP .

The idea in the two new separation algorithms is to identify the partitions of

V having more or less than p cycles that violate constraints (4.1c) and (4.1d), re-

spectively. The first separation algorithm, presented in Algorithm 7, requires solving

TSP using LKH heuristic in [23]; whereas the second separation algorithm, presented

in Algorithm 8, entails solving the minimum weight 2-matching problem [18].

Algorithm 7 LKH separation

1: Input: G = (V,E), a cost dij ,∀e ∈ E, and a positive number p.

2: Output: Lower bound for HpMP for the given value of p, and the reduced cost for

each (i, j) ∈ E.

3: repeat

4: Solve the LP relaxation of GNVM to get the optimal solution x∗ij .

5: Construct G∗ = (V,E) with edge costs dij = −x∗ij .
6: Run LKH heuristic on G∗ to get the tour C.

7: Add the constraint
∑

(i,j)/∈C
xij ≥ p to GNVM.

8: until
∑

(i,j)/∈C
x∗ij ≥ p

9: return Optimal LP solution of GNVM and the reduced cost of each edge (i, j) ∈ E.

Separation Algorithm 7 is based on LKH heuristic which can be used to find a
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feasible TSP tour (i.e., the output of LKH is one cycle). Thus, the value of p − u

is one in constraints (4.1d) and can be written as
∑

(i,j)/∈C
xij ≥ p,∀C ∈ C1. The

idea in this algorithm is to find the minimum value of the left hand side of the

latter inequality. This is equivalent to finding the maximum value of
∑

(i,j)∈C
xij since∑

(i,j)∈C
xij = |E| −

∑
(i,j)/∈C

xij. This is achieved by using LKH heuristic to find the

minimum weight TSP tour on G∗ with edge costs dij = −x∗ij.

Algorithm 8 Two-matching separation

1: Input: G = (V,E), a cost dij ,∀e ∈ E, and a positive number p.

2: Output: Lower bound for HpMP for the given value of p, and the reduced cost for

each (i, j) ∈ E.

3: while True do

4: Solve the LP relaxation of GNVM to get the optimal solution x∗ij .

5: Construct G∗ = (V,E) with edge costs dij = −x∗ij .
6: Solve the minimum weight two-matching problem on G∗ to get p2m cycles.

7: Use the minimum weight two-matching optimal solution to identify EP or C.

8: if p2m > p and
∑

(i,j)∈EP

x∗ij < 1 + p2m − p then

9: Add the constraint
∑

(i,j)∈EP

xij ≥ 1 + p2m − p to GNVM.

10: else if p2m < p and
∑

(i,j)/∈C
x∗ij < 1 + p− p2m then

11: Add the constraint
∑

(i,j)/∈C
xij ≥ 1 + p− p2m to GNVM.

12: else break

13: end if

14: end while

15: return Optimal LP solution of GNVM and the reduced cost of each edge (i, j) ∈ E.

Separation Algorithm 8 is based on the minimum weight two-matching solution

which is used to find p2m cycles whose sum of costs is minimum. Based on the value

of p2m, we may have either a violated constraint (4.1c) or a violated constraint (4.1d).
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On one hand, if p2m is greater than p, then we may have a violated constraint

(4.1c). In order to test whether there exists a violated constraint, we start by replac-

ing p + u by p2m in constraints (4.1c) to get
∑

(i,j)∈EP

xij ≥ 1 + p2m − p, ∀P ∈ P3
p2m

.

Next, we want to find the minimum value of the left hand side of the latter inequal-

ity. This is equivalent to finding the maximum value of
∑

(i,j)/∈EP

xij since
∑

(i,j)∈EP

xij =

|E| −
∑

(i,j)/∈EP

xij. This is achieved by using the two-matching algorithm to find the

minimum weight two-matching on G∗ with edge costs dij = −x∗ij.

On the other hand, if p2m is less than p, then we may have a violated constraint

(4.1d). In order to test whether there exists a violated constraint, we start by

replacing p−u by p2m in constraints (4.1d) to get
∑

(i,j)/∈C
xij ≥ 1+p−p2m, ∀C ∈ Cp2m .

Next, we want to find the minimum value of the left hand side of the latter inequality.

This is equivalent to finding the maximum value of
∑

(i,j)∈C
xij since

∑
(i,j)∈C

xij = |E| −∑
(i,j)/∈C

xij. This is achieved by using the two-matching algorithm to find the minimum

weight two-matching on G∗ with edge costs dij = −x∗ij.

4.2 Upper Bound for HpMP

Our heuristic is based on k-opt local search algorithm as motivated by the suc-

cessful implementation of k-opt for solving the TSP reported in [23] and [31]. We

first give a definition of k-opt moves for HpMP and then present how k-opt can be

used to find good feasible solutions for HpMP for different values of p.

Definition 4.2.1 (k-opt for HpMP). Let F be a set of q cycles, q 6= p, that partition

the graph G = (V,E). Then, k-opt+ (k-opt−) for HpMP exchanges k edges from F by

another k edges in E \ F in such a way that q is increased (or decreased) by exactly

one cycle.

Note that this definition is slightly different than that presented in TSP literature

since HpMP has an extra parameter, p, which has to be considered. For k-opt heuris-
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tic, an algorithm that quickly provides a starting solution, F , is needed. Moreover,

in our computational study presented in Chapter 2 to solve HpMP, we observed that

the optimal solutions for p and p+1 cycles differ in only a small subset of edges. That

is, the solutions that deviate from the required number of cycles may still contain

majority of the edges in the optimal solution. Thus, k-opt heuristic seems promising

to convert an initial feasible solution to one that is close to optimal.

We employ two efficient algorithms to obtain two starting solutions. The first one

is blossomV which provides the optimal two-matching solution in polynomial time

[28] . The second one is LKH algorithm which provides a TSP solution [23]. Both

algorithms are very fast and require less than one second to solve complete graphs

with 200 nodes.

Based on the starting solution, we now can implement k-opt+ (k-opt−) moves

to increase (or decrease) the number of cycles by one iteratively until reaching the

target number of cycles, p. Specifically, on one hand, if the starting feasible solution

has p2m cycles (i.e., the 2-matching optimal solution), the k-opt+ or k-opt− is applied

|p − p2m| times to get a feasible solution with p cycles. On the other hand, if the

starting feasible solution has one cycle (i.e., TSP), then the k-opt+ is applied p− 1

times to increase the number of cycles to p.

Clearly, different algorithms are needed for different values of k in k-opt. A

straightforward implementation of k-opt, based on exhaustive enumeration, has com-

plexity O(|V |k). This complexity can be improved by discarding some cases that

cannot increase (or decrease) the number of cycles by exactly one as discussed later.

This improvement results in a significant speed up of the algorithm compared to

exhaustive enumeration. Next, we give an overview of the 2-opt+ and 2-opt− algo-

rithms by emphasizing the different cases arising from deleting exactly two edges,

and then discarding the impossible subsets of cases.
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2-opt+: It is applied when p is greater than the starting number of cycles. There

are two cases when deleting two edges from a solution, namely, either the two edges

lie on the same cycle or on two different cycles. Here, the second case is not possible

since no two edges can then be added to increase the number of cycles. Thus, the

second case is discarded and this improves the computational time considerably.

2-opt−: It is applied when p is less than the starting number of cycles. Again,

there are two cases, either the two edges lie on the same cycle or on two different

cycles. Here, the first case is not possible since no two edges can then be added to

decrease the number of cycles by one. Thus, the first case is discarded.

Clearly, more cases are expected when implementing the 3-opt moves. Since we

focus only on instances where p > p2m + 3, we next explain the three main cases

observed in 3-opt+. Specifically, these include: (i) one edge is deleted from three

different cycles, (ii) one edge is deleted from a cycle and two edges are deleted from

another cycle, and (iii) three edges are deleted from the same cycle.

As shown in Figure 4.1, in the first case, we cannot form four cycles by deleting

an edge from three different cycles. Thus, this case is discarded. Also, in the second

case, as shown in Figure 4.2, we cannot get three cycles by deleting two edges from

one cycle and an edge from another cycle by using three new (i.e., edges that do not

form any of the changed cycles) edges. Thus, the second case can also be discarded.

Note that the only way to form three cycles in this case is by reusing the single

deleted edge from a cycle (i.e., the deleted edge in the rightmost cycle in Figure

4.2). Based on the previous discussion, the only case that should be considered is

the third case. Hence, discarding the first two cases allowed us to implement 3-opt+

more efficiently.
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Figure 4.1: Case (i): one edge is deleted from three different cycles.

Figure 4.2: Case (ii): two edges are deleted from one cycle and one edge from another.

Similar ideas can be used to speed up the higher k-opt moves although the number

of possible cases considerably increases. In practice, the computational times for 2-

opt, 3-opt, and 4-opt were very satisfactory.

From our preliminary tests, the closeness of p to p2m or one is the most important

factor in selecting which starting feasible solution to use. In other words, if p is closer

to p2m than to one, then the 2-matching solution, in general, provides better feasible

solution for HpMP with p cycles, and vice versa. Our preliminary tests show that the

two aforementioned starting solutions (i.e., TSP heuristic and two-matching optimal

solution) give satisfactory results.

4.3 Computational Results

This section presents the computational results of the proposed SBP method

after applying the reduced cost fixing technique when solving the HpMP. We refer
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to this algorithm as SBPp-2
+ . We specifically compare the performance of the SBPp-2

+

method to the B&P algorithm presented in Chapter 2 and to SBPp-2 algorithm

presented in Chapter 3. The algorithm was tested on 18 complete graphs from

the TSPLIB available from http://www.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95/tsp/. The size of the selected graphs ranges from 58 nodes to

200 nodes. The edge costs are rounded to the nearest integer as is the common

convention in the TSP literature.

All algorithms were run on a machine with an Intel Core i7 processor and 32 GB

of memory. Linear and integer programs were solved using CPLEX 12.4 invoked in

C++ using Concert Technology. The time limit for all the test instances is set to

one hour.

Tables 4.1-4.3 show the computational running times in seconds when solving

HpMP for the three aforementioned algorithms. In case an algorithm failed to find

an optimal solution within the one hour time limit, the optimality gap (in percentage)

is then reported. The optimality gap (OG) is defined as OG = BFS−LB
BFS

∗100% where

BFS is the best feasible solution and LB is the lower bound. For any instance, the

blue, purple, and red numbers represent the best, the second best, and the worst

performing algorithm, respectively.

In all the tables in this chapter, the following convention is adopted:

1. The columns with heading graph-p represent the graph name followed by the

required number of cycles, p.

2. The columns with heading B&P present the computational results for the

B&P algorithm presented in Chapter 2.

3. The columns with heading SBPp-2 present the computational results for the

SBP method when L = p− 2 presented in Chapter 3.
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4. The columns with heading SBPp-2
+ present the computational results for the

SBP method when L = p − 2 and the reduced cost fixing technique is imple-

mented.

Sections 4.3.1 presents a comparison of the performance of B&P and the SBPp-2
+

method; whereas Section 4.3.2 presents a comparison of the performance of SBPp-2

and SBPp-2
+ . Finally, Section 4.3.3 presents the performance profile for the three

tested algorithms.

4.3.1 Comparison of B&P and SBPp-2
+

Tables 4.1-4.3 show that SBPp-2
+ performed better than B&P in 94.6% of the

instances; whereas B&P performed better in 5.1% of the instances. Both algorithms

had the same computational times in one instance.

SBPp-2
+ found the optimal solution for 87 instances (i.e., 26.1% of the instances)

that B&P failed to solve to optimality within the one hour time limit; whereas B&P

never found the optimal solution if SBPp-2
+ failed to find it within the one hour time

limit. For the instances that both algorithms failed to solve to optimality within the

time limit, the average OG for SBPp-2
+ was 0.55%; whereas B&P has an average OG

of 2.89%.

SBPp-2
+ was at least two times faster than B&P in 52.9% of the instances; at least

three times faster than B&P in 40.8% of the instances, at least four times faster

than B&P in 32.7% of the instances; and at least five times faster in 25.8% of the

instances.

4.3.2 Comparison of SBPp-2 and SBPp-2
+

Tables 4.1-4.3 show that SBPp-2
+ performed better than SBPp-2 in 88.3% of the in-

stances; whereas SBPp-2 performed better in 9.31% of the instances. Both algorithms

had the same computational times in eight instances.
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SBPp-2
+ found the optimal solution for 21 instances (i.e., 6.3% of the instances)

that SBPp-2 failed to solve to optimality within the one hour time limit; whereas

SBPp-2 succeeded in accomplishing that in only one instance. For the instances that

both algorithms failed to solve to optimality within the time limit, the average OG

for SBPp-2
+ was 0.54%; whereas SBPp-2 has an average OG of 0.64%.

SBPp-2
+ was at least two times faster than SBPp-2 in 30% of the instances; at least

three times faster than SBPp-2 in 12.9% of the instances, at least four times faster

than SBPp-2 in 6.6% of the instances; and at least five times faster in 3% of the

instances.

4.3.3 Performance Profile

Figures 4.3 presents the performance profile for the three tested algorithms. The

same technique explained in Chapter 3 is used to construct the performance profiles.

Specifically, the top graph in Figure 4.3 shows the performance profile for B&P,

SBPp-2, and SBPp-2
+ using the instances that are solved to proven optimality by at

least one of the aforementioned algorithms. In this case, the performance measure

ti,a is taken to be the computational time (in seconds). If an algorithm failed to

find the instance optimal solution within one hour, we set ti,a to 3600. In contrast,

the bottom graph in Figure 4.3 shows the performance profile for B&P, SBPp-2,

and SBPp-2
+ using the instances that the three algorithms failed to solve to proven

optimality within one hour. In this case, the performance measure ti,a is taken to be

OG.

The top graph in Figure 4.3 shows that SBPp-2
+ has the best performance and

it was the best algorithm in 91% of the instances. SBPp-2 has the second best

performance and it was the best algorithm in 5% of the instances. Finally, B&P

comes last and it was the best algorithm in only 4% of the instances.
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Table 4.1: Computational Results for graphs brazil58, eil76, pr76, gr96, rat99, rd100,
kroa100, and krob100. (Solution times in seconds or optimality gaps in percentage:
the best in blue, the second best in purple, and the worst in red.)

graph-p B&P SBPp-2 SBP
p-2
+ graph-p B&P SBPp-2 SBP

p-2
+ graph-p B&P SBPp-2 SBP

p-2
+

brazil58-15 50 38 12 gr96-13 0.8% 697 613 rd100-17 148 117 38

brazil58-16 91 42 21 gr96-14 350 895 250 rd100-18 260 502 280

brazil58-17 305 57 29 gr96-15 0.1% 1708 1346 rd100-19 3529 1504 875

brazil58-18 223 61 35 gr96-16 0.2% 0.11% 3512 rd100-20 0.4% 840 734

brazil58-19 198 94 77 gr96-17 1.7% 3531 2467 rd100-21 705 447 383

st70-16 12 12 11 gr96-18 3% 392 304 rd100-22 0.1% 290 246

st70-17 37 32 11 gr96-19 501 314 200 rd100-23 252 188 95

st70-18 36 31 10 gr96-20 405 128 81 rd100-24 164 141 63

st70-19 116 28 12 gr96-21 483 144 88 rd100-25 51 51 47

st70-20 94 33 18 gr96-22 3488 323 218 rd100-26 349 206 180

st70-21 456 54 29 gr96-23 0.2% 737 646 rd100-27 456 208 182

st70-22 2348 129 90 gr96-24 0.2% 1008 894 rd100-28 590 302 284

st70-23 2.1% 717 657 gr96-25 0.1% 675 628 rd100-29 486 382 453

eil76-6 425 155 21 gr96-26 1667 543 284 rd100-30 306 263 134

eil76-7 141 93 32 gr96-27 1809 244 203 rd100-31 0.1% 612 292

eil76-8 0.2% 218 46 gr96-28 0.4% 1804 1149 rd100-32 0.1% 298 251

eil76-9 35 35 22 gr96-29 1.6% 0.32% 0.05% rd100-33 3.1% 0.86% 0.6%

eil76-10 77 77 24 gr96-30 2.6% 0.56% 0.62% kroa100-17 107 105 43

eil76-11 63 63 16 gr96-31 5% 0.67% 0.65% kroa100-18 209 257 118

eil76-12 92 92 19 gr96-32 4.5% 1.5% 1.61% kroa100-19 331 601 253

eil76-13 166 96 34 rat99-9 168 609 278 kroa100-20 427 298 93

eil76-14 66 56 53 rat99-10 146 107 298 kroa100-21 112 182 103

eil76-15 124 72 62 rat99-11 350 379 143 kroa100-22 809 406 194

eil76-16 256 104 52 rat99-12 744 381 51 kroa100-23 1140 821 361

eil76-17 70 70 41 rat99-13 467 373 75 kroa100-24 545 260 149

eil76-18 197 99 59 rat99-14 423 398 73 kroa100-25 129 248 119

eil76-19 79 104 61 rat99-15 925 540 205 kroa100-26 325 457 183

eil76-20 1005 92 63 rat99-16 459 395 159 kroa100-27 1444 786 314

eil76-21 37 37 32 rat99-17 1932 716 337 kroa100-28 1428 1089 477

eil76-22 34 34 22 rat99-18 681 422 177 kroa100-29 1355 1060 506

eil76-23 31 31 29 rat99-19 484 264 140 kroa100-30 2500 1158 319

eil76-24 1021 87 86 rat99-20 833 255 126 kroa100-31 0.5% 1943 2241

eil76-25 1140 110 149 rat99-21 135 127 80 kroa100-32 2.4% 0.67% 0.81%

pr76-11 2719 2115 1304 rat99-22 956 146 73 kroa100-33 2.7% 1.9% 1.66%

pr76-12 0.1% 3072 2264 rat99-23 509 187 89 krob100-23 0.1% 136 221

pr76-13 0.1% 3584 3514 rat99-24 445 168 106 krob100-24 57 57 25

pr76-14 0.3% 0.18% 0.18% rat99-25 533 166 106 krob100-25 109 141 36

pr76-15 0.6% 0.33% 0.33% rat99-26 415 166 122 krob100-26 0.2% 219 73

pr76-16 146 146 122 rat99-27 740 209 89 krob100-27 138 116 109

pr76-17 190 252 213 rat99-28 1009 269 193 krob100-28 48 48 42

pr76-18 108 244 191 rat99-29 1045 167 187 krob100-29 48 48 42

pr76-19 184 175 163 rat99-30 1199 187 213 krob100-30 124 63 51

pr76-20 29 29 22 rat99-31 377 214 128 krob100-31 883 170 153

pr76-21 38 38 30 rat99-32 3062 181 213 krob100-32 3483 297 215

pr76-22 30 30 30 rat99-33 0.5% 597 429 krob100-33 2.8% 1.8% 0.81%

pr76-23 169 150 84

pr76-24 829 195 131

pr76-25 359 137 154
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Table 4.2: Computational Results for graphs kroc100, kroe100, lin105, gr120,
bier127, and u159. (Solution times in seconds or optimality gaps in percentage:
the best in blue, the second best in purple, and the worst in red.)

graph-p B&P SBPp-2 SBP
p-2
+ graph-p B&P SBPp-2 SBP

p-2
+ graph-p B&P SBPp-2 SBP

p-2
+

kroc100-16 3600 0.31% 3548 gr120-19 542 3547 3529 u159-24 0.06% 1135 248

kroc100-17 0.12% 1206 945 gr120-20 1062 1478 1052 u159-25 0.08% 842 204

kroc100-18 436 209 130 gr120-21 110 275 81 u159-26 3381 1122 332

kroc100-19 2281 313 187 gr120-22 97 247 93 u159-27 0.01% 1803 322

kroc100-20 0.2% 519 305 gr120-23 256 282 138 u159-28 0.18% 1270 444

kroc100-21 0.47% 635 429 gr120-24 1919 470 286 u159-29 0.15% 1288 513

kroc100-22 0.14% 452 439 gr120-25 134 225 101 u159-30 0.01% 1211 468

kroc100-23 1574 236 208 gr120-26 125 239 112 u159-31 0.04% 2154 1357

kroc100-24 0.01% 340 287 gr120-27 764 389 235 u159-32 0.1% 0.02% 2097

kroc100-25 0.15% 917 490 gr120-28 2229 1609 106 u159-33 0.19% 2547 1895

kroc100-26 0.3% 1790 782 gr120-29 1004 1362 670 u159-34 0.03% 1477 795

kroc100-27 0.29% 2462 859 gr120-30 481 1067 502 u159-35 0.09% 1818 957

kroc100-28 0.25% 1539 1018 gr120-31 602 594 296 u159-36 0.31% 2405 1553

kroc100-29 0.3% 2262 772 gr120-32 883 510 413 u159-37 0.13% 2480 1118

kroc100-30 2.26% 1283 1021 gr120-33 562 366 321 u159-38 0.04% 1388 691

kroc100-31 2.8% 1474 1237 gr120-34 87 364 232 u159-39 829 903 655

kroc100-32 1.91% 2262 2377 gr120-35 108 224 228 u159-40 0.04% 1024 566

kroc100-33 6.07% 2.25% 2.23% gr120-36 1677 360 351 u159-41 0.27% 1631 688

kroe100-15 454 198 41 gr120-37 1424 362 313 u159-42 0.44% 1906 1332

kroe100-16 538 394 226 gr120-38 0.1% 509 500 u159-43 0.26% 2596 1232

kroe100-17 0.04% 1242 731 gr120-39 0.7% 1109 1220 u159-44 0.63% 0.17% 2768

kroe100-18 3547 398 288 gr120-40 2.1% 1262 1843 u159-45 2.65% 0.25% 0.04%

kroe100-19 250 156 116 bier127-15 0.1% 912 95 u159-46 0.43% 0.38% 0.16%

kroe100-20 114 73 24 bier127-16 86 252 46 u159-47 1% 0.65% 0.23%

kroe100-21 97 97 27 bier127-17 262 350 116 u159-48 0.88% 0.56% 0.28%

kroe100-22 331 133 91 bier127-18 177 754 100 u159-49 2.28% 0.93% 0.82%

kroe100-23 2017 417 232 bier127-19 291 529 115 u159-50 3.56% 1% 0.95%

kroe100-24 531 299 172 bier127-20 590 543 144 u159-51 3.4% 1.85% 1.52%

kroe100-25 3479 354 212 bier127-21 156 371 131 u159-52 12.9% 1.97% 2.07%

kroe100-26 547 159 102 bier127-22 476 475 146 u159-53 8.47% 3.65% 3.45%

kroe100-27 1930 354 198 bier127-23 95 221 65

kroe100-28 1178 275 168 bier127-24 104 194 74

kroe100-29 468 127 71 bier127-25 232 375 170

kroe100-30 380 231 57 bier127-26 101 195 95

kroe100-31 1640 177 77 bier127-27 125 199 86

kroe100-32 0.24% 414 217 bier127-28 101 213 106

kroe100-33 2.6% 47 97 bier127-29 218 204 101

lin105-23 588 259 57 bier127-30 1374 630 459

lin105-24 733 274 61 bier127-31 826 498 354

lin105-25 0.3% 1099 658 bier127-32 432 515 187

lin105-26 147 126 24 bier127-33 0.1% 1123 1105

lin105-27 43 66 18 bier127-34 2.3% 0.43% 0.48%

lin105-28 1863 300 58 bier127-35 13% 0.72% 0.63%

lin105-29 1022 149 35 bier127-36 11% 0.38% 0.38%

lin105-30 0.4% 473 103 bier127-37 2.1% 0.4% 0.42%

lin105-31 788 229 59 bier127-38 2.2% 0.37% 0.31%

lin105-32 0.4% 830 240 bier127-39 5.3% 0.06% 0.06%

lin105-33 1.5% 0.14% 0.08% bier127-40 0.2% 1921 1881

lin105-34 3.4% 0.61% 0.26%

lin105-35 4.7% 0.61% 0.62%

98



Table 4.3: Computational Results for graphs kroa150, kroa200, and krob200. (Solu-
tion times in seconds or optimality gaps in percentage: the best in blue, the second
best in purple, and the worst in red.)

graph-p B&P SBPp-2 SBPp-2
+ graph-p B&P SBPp-2 SBPp-2

+

kroa150-23 0.36% 0.21% 0.05% krob200-41 0.04% 0.16% 0.10%

kroa150-24 0.24% 0.08% 0.01% krob200-42 0.08% 0.20% 0.19%

kroa150-25 2.86% 0.25% 0.15% krob200-43 0.01% 0.11% 0.21%

kroa150-26 0.50% 0.21% 0.11% krob200-44 0.14% 0.06% 0.03%

kroa150-27 0.36% 0.07% 0.07% krob200-45 0.02% 0.06% 3574

kroa150-28 0.33% 0.23% 0.16% krob200-46 0.08% 0.06% 0.02%

kroa150-29 0.25% 0.21% 0.08% krob200-47 0.04% 0.04% 0.03%

kroa150-30 0.39% 0.07% 0.01% krob200-48 0.09% 0.10% 0.10%

kroa150-31 0.18% 0.01% 0.11% krob200-49 0.04% 0.04% <0.01%

kroa150-32 0.09% 3067 2965 krob200-50 3522 3354 2444

kroa150-33 0.06% 2773 2678 krob200-51 0.04% 0.02% 0.02%

kroa150-34 0.11% 0.03% 0.02% krob200-52 1503 502 395

kroa150-35 0.05% 2390 2250 krob200-53 2640 2298 2048

kroa150-36 0.11% 2938 1749 krob200-54 2513 2377 2157

kroa150-37 0.14% 2587 1876 krob200-55 3027 2944 2765

kroa150-38 1.44% 0.06% 2005 krob200-56 2549 1548 1354

kroa150-39 0.18% 0.15% 2895 krob200-57 3489 1354 1140

kroa150-40 1.29% 0.25% 0.03% krob200-58 3378 0.14% 0.11%

kroa150-41 1.73% 0.20% 3519

kroa150-42 1.17% 0.13% 2406

kroa150-43 0.17% 0.07% 2303

kroa150-44 1.06% 0.06% 2192

kroa150-45 1.26% 0.19% 3361

kroa150-46 2.36% 0.42% 0.29%

kroa150-47 4.89% 0.65% 0.66%

kroa150-48 2.18% 1.05% 1.10%

kroa150-49 7.35% 2.93% 3.41%

kroa150-50 8.71% 3.82% 3.81%

kroa200-40 0.95% 0.13% 1581

kroa200-41 0.12% 1.04% 2553

kroa200-42 0.16% 0.04% 0.21%

kroa200-43 0.07% 0.13% 1259

kroa200-44 0.03% 0.09% 2453

kroa200-45 0.08% 3170 0.16%

kroa200-46 0.11% 0.17% 0.25%

kroa200-47 0.48% 0.21% 2563

kroa200-48 1.21% 0.03% 2175

kroa200-49 0.08% 0.03% 2471

kroa200-50 0.28% 0.09% <0.01%

kroa200-51 1.79% 0.07% 3185

kroa200-52 0.67% 0.02% <0.01%

kroa200-53 0.48% 0.56% 0.01%

kroa200-54 2.06% 0.08% 3340

kroa200-55 0.93% 0.17% 0.12%

kroa200-56 1.36% 1.67% 0.25%

kroa200-57 2.46% 0.25% 0.26%

kroa200-58 8.57% 0.41% 0.33%

kroa200-59 6.19% 0.72% 0.44%

kroa200-60 23.93% 0.64% 0.85%
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Again, for the instances that the three algorithms failed to solve to optimality, the

bottom graph in Figure 4.3 shows that SBPp-2
+ has the best performance and it was

the best algorithm in 71% of the instances. SBPp-2 has the second best performance

and it was the best algorithm in 31% of the instances. Finally, B&P comes last and

it was the best algorithm in only 8% of the instances.

In summary, we conclude that SBPp-2
+ has the best overall performance among

the three tested algorithms for all the test instances.
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Figure 4.3: Performance profiles for B&P, SBPp-2, SBPp-2
+ : the top figure shows the

performance profile using the computational times using the instances which at least
one algorithm solved to optimality; the bottom figure shows the performance profile
using the optimality gaps using the instances which all algorithms failed to solve to
optimality.
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5. CONCLUDING REMARKS

5.1 Summary of Contributions and Conclusions

The main objective of this dissertation is to present a new exact optimization

method, the Slim Branch and Price (SBP) method, which is an improvement over the

traditional B&P framework. SBP can be used to solve a large class of combinatorial

optimization problems that can be solved by B&P type algorithms and that have

binary master problems with fixed support (i.e., the sum of the variables in any

feasible solution is fixed). This is an important class of problems as it includes

several classical and fundamental problems. We tested our proposed method on an

interesting problem that falls into the aforementioned category. This problem is

known as HpMP and is a generalization of the well-known TSP.

In order to test SBP, since there was no B&P algorithm presented in the literature

to solve HpMP, we started by developing a B&P algorithm to solve HpMP, then we

presented the SBP method and tested it on the same instances of HpMP, finally, we

used reduced cost fixing preprocessing technique to improve the performance of SBP.

In Chapter 2 of the dissertation, we developed a B&P algorithm to solve the

HpMP and compared our computational results to those of the NVM presented in

[21]. Several contributions on modeling, methodology, and computational aspects

were also presented. Specifically, 1) we modified the set partitioning formulation of

HpMP proposed by [21]; 2) we developed a new efficient algorithm to find the short-

est cycle in an undirected graph with arbitrary edge costs and no negative cycles; 3)

we developed an algorithm to find the most negative cycle in an undirected graph

with arbitrary edge costs; 4) computationally, the proposed algorithm for solving the

HpMP outperformed the previously presented algorithms as it successfully solves in-
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stances up to 318 nodes, as opposed to other exact algorithms which solved instances

up to 100 nodes; 5) we proved that for every value of p, the HpMP is NP-hard even

when restricted to Euclidean graphs; and 6) we showed that the practical complexity

of HpMP and the performance of the algorithms to solve it substantially depend on

the relation between p and p2m (the number of cycles in the 2-matching optimal

solution), furthermore, we were able to explain the reason for the good performance

of B&P when p is greater than p2m + 3 and the reason for the good performance of

NVM when p is between p2m − 3 and p2m + 3, inclusive.

The comparison of the computational results of our B&P algorithm and NVM

from [21] presents an interesting strategy when solving the HpMP. We start by

solving the minimum weight two-matching problem to find p2m. If the value of the

required cycles p is close to p2m, (i.e., p2m − 3 ≤ p ≤ p2m + 3), using the NVM

presented in [21] is recommended. If p > p2m + 3, it is much faster to solve HpMP

using the proposed B&P algorithm. Both algorithms perform poorly, especially in

larger instances, whenever p < p2m − 3 and further research is needed to solve these

instances.

Finally, we note that [30] presented a variant of HpMP in which p is the upper

limit on the number of required cycles. Here we define a new variant of HpMP

in which the number of cycles is required to be at least p. Our B&P algorithm

can be used to solve both of these HpMP variants. Interestingly, when solving the

newly defined variant, our algorithms are guaranteed to solve the pricing problem

in polynomial time. This is because by changing the equality constraint (2.1c) to

a greater than or equal constraint, the dual variable of the modified constraint is

always nonnegative, and therefore only cases 2 and 3 arise when solving the pricing

problem.

In Chapter 3 of the dissertation, we presented the Slim Branch and Price (SBP)
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method. The main advantage in SBP is that the branching tree has only one main

branch with several leaves. We refer to the nodes forming the main branch as ex-

ploration nodes and to the leaf nodes as resolution nodes. The main function of

the exploration nodes is to explore new portions of the feasible regions effectively;

whereas the main function of the resolution nodes is to find efficiently optimal integer

solutions in the close neighborhood of the current LP solution.

SBP can be interpreted as a branching framework or as a cutting plane framework.

As a branching framework, the core idea of the SBP method is to improve the

traditional branching scheme of B&P with the objective of exploring the problem’s

feasible region more efficiently and effectively. As a cutting plane framework, after

obtaining the optimal solution of the LP relaxation at any node, SBP adds a linear

inequality (i.e., exploration inequality) that is violated by this optimal LP solution.

However, this cut is invalid because it may excise a subset of the feasible region that

may contain the optimal integer solution. Adding a sequence of these aggressive (but

invalid) cuts results in excising several feasible regions that may contain the optimal

solution(s). To guarantee the exactness of SBP, we generate a resolution problem

whose feasible region is the union of the aforementioned excised feasible regions.

The parameter L, used to construct the exploration inequalities, plays an im-

portant role in the performance of SBP and it balances the aggressiveness of the

exploration inequality and the easiness of the resolution problem. The value of L is

primarily selected to guarantee the easiness of the resolution problem. In general,

we recommend selecting L values that is close (but not extremely close) to the value

of the fixed support, p. We presented two implementations of SBP using L = p− 2

and L = p − 3 when solving HpMP. We refer to these implementations as SBPp-2

and SBPp-3, respectively.

We showed that SBPp-3 has the best performance and it was the best algorithm in
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62% of the instances among the three tested algorithms (B&P, SBPp-2, and SBPp-3).

SBPp-2 has the second best performance and it was the best algorithm in 45% of

the instances. Finally, B&P comes last and it was the best algorithm in only 18%

of the instances. Note that the majority of this 18% (in which B&P had good

performance) was occurring in the instances that were solved at the root node. For

these instances, all the three algorithms had the exact performance and this explains

why the percentages do not add up to 100%.

In Chapter 4, we implemented reduced cost fixing to improve the performance of

SBP. Reduced cost fixing is a preprocessing technique that helps in reducing the size

of the problem by fixing optimally the values of a subset of the problem variables.

In order to fix these values, we need to calculate lower and upper bounds to HpMP.

In order to calculate a lower bound to HpMP, we developed two efficient separa-

tion algorithms for a subset of constraints in the generalized natural variable space

model for HpMP. These separation algorithms provided us with better lower bounds

than those reported in [21].

In order to calculate an upper bound for HpMP, we developed a new heuristic

based on k-opt moves to obtain good feasible solutions for HpMP. This was moti-

vated by the good performance of k-opt in TSP literature [23]. The quality of the

feasible solutions was very good and the implementation of k-opt was very fast. After

calculating the lower and upper bounds, reduced cost fixing was implemented and

helped in deleting a considerable number of edges.

We illustrated the computational advantage of SBP with reduced cost fixing,

which we refer to as SBP+, over SBP without reduced cost fixing on the HpMP.

Specifically, we compared the performance of SBPp-2
+ and SBPp-2 by fixing the value

of L to p− 2. As expected, SBPp-2
+ provided better computational times in most of

the test instances. It also allowed us to solve to optimality several instances that
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SBPp-2 failed to solve in the one hour time limit.

We also showed that SBPp-2
+ has the best performance and it was the best algo-

rithm in 87% of the instances among the three tested algorithms. SBPp-2 has the

second best performance and it was the best algorithm in only 11% of the instances.

Finally, B&P comes last and it was the best algorithm in only 5% of the instances.

It is important to note that SBP method performed better than B&P in spite

of changing the structure of the pricing problem used in B&P. Specifically, recall

that we showed in Chapter 2 that the pricing problem in B&P when solving HpMP

for p > p2m + 3 was solved using polynomial algorithms except for rare occasions

when case 4 is invoked. But, after adding the exploration inequalities, these efficient

algorithms are no longer valid. Instead, the pricing problem was always solved as an

IP model in SBP. Despite this fact, the performance of SBP was much better than

that of B&P as the advantage of adding the exploration inequalities surpassed the

increased complexity of the pricing problem.

In summary, we showed that B&P can solve to optimality HpMP instances with

up to 127 nodes; whereas the NVM presented in [21] solved instances with up to

40 nodes within the one hour time limit. Next, we illustrated the computational

advantage of SBP over B&P when solving HpMP. In particular, within one hour

time limit, SBP can solve to optimality instances with up to 200 nodes; whereas

B&P can solve to optimality instances with up to 127 nodes. Finally, we showed

that the reduced cost fixing technique can greatly enhance the performance of SBP.

5.2 Future Research

We plan to use SBP to solve other problems such as parallel machine scheduling [4]

and its variants, capacitated p-median problem [32] and its variants, balanced disjoint

rings problem [45], k-clustering problem [22], and political districting problem [34].
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The main challenge in this line of research is modifying the pricing problems used

in B&P to prevent the formation of certain columns. Another challenge is finding

a formulation for the resolution problem in order to achieve good computational

results.

Another interesting direction is generalizing SBP to solve any master problem

by relaxing the condition of fixed binary support imposed in this dissertation. One

way to achieve that is through the introduction of auxiliary columns. Adding such

columns would guarantee that the selected number of columns will always be a fixed

number. This generalization would allow us to solve all the applications for B&P

presented in Section 1.1.1.

Another research direction is studying the effect of adding cutting planes in the

SBP method and this gives rise to Slim Branch and Cut, and Price method. In

particular, clique inequalities, wheel inequalities, and other cutting planes can be

added to SBP without changing the structure of the pricing problem developed for

SBP. Specifically, since the pricing problem in SBP already includes a mechanism to

prevent the regeneration of the already generated columns, the implementation of

any cutting plane would be straightforward with the only possible change in the set

of the prohibited columns.
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APPENDIX A

A.1 UNWCD Based on b-matching Algorithm (Adapted from [49])

Input: G′ = (V,E), a weight wij for all edges (i, j) ∈ E.
Output: A negative cycle or set of node-disjoint negative cycles or conclude that
no negative cycle exists.
Step 1: Set G∗ = G′. Add a zero weight loop (i, i) for each i ∈ V (G∗) and set bi = 2.
Step 2: Insert two nodes k and l in the middle of each edge (i, j) ∈ E(G∗), i 6= j. Let
the weights of edges (i, k) and (l, j) be wij/2 and zero for edge (k, l). Set bk = bl = 1.
Step 3: Split each node i ∈ V (G∗) with bi = 2 into i′ and i′′. While splitting,
replace each edge (i, j) by two edges (i′, j) and (i′′, j) having the same weight as
(i, j). Replace loop (i, i) by (i′, i′′) with same weight.
Step 4: Find a minimum weight perfect matching in G∗, M . If the cost of M is less
than zero, go to step 5; otherwise, go to step 6.
Step 5: Conclude that G′ has a negative cycle. Use M to return one or more
negative cycles and quit.
Step 6: Return that G′ has no negative cycle and quit.

The figure below illustrates that if all of the negative cycles on a given graph

pass through one node, then UNWCD will only detect and output the most negative

among these cycles.
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Figure A.1: The original graph G′ is on the left (note it has three negative cycles,
all passing though node a). The graph G∗ is on the right. The bold lines represent
the edges in M . The negative cycle detected is a-b-c-a with total cost -6.
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A.2 Natural Variable Space Model (NVM) ([21])

We give the natural variable space model as presented in [21]. To this end, some

terminology is first defined. Let P be a partition of set of vertices V into m subsets

given as {S1, . . . , Sm} and let P l
m be the set of partitions of size m such that the

cardinality of each Si, i = 1, . . . ,m is greater than or equal to l. For a partition

P , define EP as the set of edges straddling pairs of subsets Sv and Sw (i.e., EP =

{(i, j) ∈ E : i ∈ Sv, j ∈ Sw;Sv 6= Sw;Sv, Sw ∈ P}), and Cp = {C ⊂ E : |C| = |V |

and the edges in C form at most p cycles}.

Now, the mathematical formulation of the natural variable space is given by:

(NVM) minimize H =
∑

(i,j)∈E

cijxij (A.1a)

subject to
∑

∀(i,j)∈δ(v)

xij = 2 ∀v ∈ V (A.1b)

∑
(i,j)∈EP

xij ≥ 2 ∀P ∈P3
p+1 (A.1c)

∑
(i,j)/∈C

xij ≥ 2 ∀C ∈ Cp−1 (A.1d)

xij ∈ {0, 1} ∀(i, j) ∈ E (A.1e)

In this model, xij equals one if edge (i, j) is in the optimal solution, and is zero other-

wise. In the constraints (A.1b), δ(v) denotes the set of edges incident to node v ∈ V ,

these constraints imply that exactly two of the edges incident to v must be selected.

Constraints (A.1c) prevent the formation of more than p cycles; whereas constraints

(A.1d) prevent the formation of fewer than p cycles. The separation algorithms for

constraints (A.1c) and (A.1d) are provided in [21].
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A.3 Detailed Performance Statistics of B&P

Ins. Stat./p 2 3 4 5 6 7 8 9 10 11 12 13 14

gr17

case 2 % 34 37 58 •
case 3 % 0 0 0 •
case 4 % 66 63 42 •
pricing steps 148 84 36 •
no columns 168 111 59 •
branching nodes 1 1 1 •
Av set Q size 4 5 6 •
Av Alg. 3 iter. 3 3 3 •

gr21

case 2 % 48 52 85 58 66 26

case 3 % 17 34 15 34 34 74

case 4 % 34 14 0 7 0 0

pricing steps 829 184 46 149 41 65

no columns 872 226 83 179 67 82

branching nodes 31 7 1 7 1 1

Av set Q size 5 6 0 6 0 0

Av Alg. 3 iter. 2 3 0 2 0 0

gr24

case 2 % 65 • 76 71 48 40 28

case 3 % 0 • 24 29 52 60 72

case 4 % 35 • 0 0 0 0 0

pricing steps 227 • 63 56 198 111 106

no columns 267 • 103 91 222 132 122

branching nodes 1 • 1 1 19 9 1

Av set Q size 4 • 0 0 0 0 0

Av Alg. 3 iter. 2 • 0 0 0 0 0

fri26

case 2 % 54 59 55 42 67 • 45

case 3 % 0 0 7 24 0 • 55

case 4 % 46 41 38 34 33 • 0

pricing steps 327 111 141 152 58 • 58

no columns 383 160 198 208 104 • 90

branching nodes 1 1 3 3 1 • 1

Av set Q size 5 6 7 7 7 • 0

Av Alg. 3 iter. 2 2 2 2 2 • 0

swiss42

case 2 % 49 34 33 42 45 • 72 85 70 79 52 56 22

case 3 % 0 3 0 6 8 • 15 15 30 21 48 44 78

case 4 % 51 63 67 51 47 • 12 0 0 0 0 0 0

pricing steps 1488 863 735 608 897 • 266 148 81 73 122 79 125

no columns 1774 1078 905 749 1041 • 364 241 164 154 202 145 172

branching nodes 1 3* 3 5 9 • 5 3 1 1 3 5 3

Av set Q size 7 6 5 8 8 • 9 0 0 0 0 0 0

Av Alg. 3 iter. 2 2 2 2 2 • 2 0 0 0 0 0 0

dantzig42

case 2 % 52 49 64 48 71 27 • 89 50 70 38 48 40

case 3 % 0 0 4 3 1 7 • 11 50 30 62 52 60

case 4 % 48 51 31 49 28 66 • 0 0 0 0 0 0

pricing steps 2148 744 315 510 155 1182 • 63 123 89 130 294 324

no columns 2529 949 470 667 275 1316 • 166 201 172 209 705 822

branching nodes 1* 1 5 9 3 32 • 1 7 3 5 49 52*

Av set Q size 6 8 8 7 9 8 • 0 0 0 0 0 0

Av Alg. 3 iter. 2 3 2 2 2 2 • 0 0 0 0 0 0

Table A.1: Performance Statistics of B&P for graphs with 17 to 42 nodes.
(*) represents the instances that are not solved to optimality.
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Ins. Stat./p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

gr48

case 2 % 36 58 55 47 • 52 36 30 37 41 57 51 52 21 10
case 3 % 0 0 0 16 • 47 64 70 63 59 43 49 48 79 90
case 4 % 64 42 45 36 • 1 0 0 0 0 0 0 0 0 0
pricing steps 11 792 453 954 • 367 512 572 240 355 143 85 102 209 412
no columns 16 1110 684 1178 • 520 611 646 336 473 230 177 196 259 396
branching nodes 1* 1* 2* 29 • 21 45 47 15 19 3 1 1 23 55
Av set Q size 66 7 6 6 • 5 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 22 3 3 2 • 2 0 0 0 0 0 0 0 0 0

hk48

case 2 % 72 51 40 62 • 75 84 60 55 40 41 46 59 59 10
case 3 % 0 0 2 0 • 25 16 40 45 60 59 54 41 41 90
case 4 % 28 49 59 38 • 0 0 0 0 0 0 0 0 0 0
pricing steps 18 746 818 290 • 203 92 281 101 300 220 114 94 94 392
no columns 28 1028 1104 474 • 379 227 432 216 423 335 207 208 197 468
branching nodes 1* 1 7 1 • 5 1 15 1 15 11 7 1 1 53
Av set Q size 62 7 7 8 • 11 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 21 2 2 2 • 2 0 0 0 0 0 0 0 0 0

eil51

case 2 % 64 • 57 62 72 59 57 57 45 58 49 52 71 64 39 11
case 3 % 0 • 9 22 28 41 43 43 55 42 51 48 29 36 61 89
case 4 % 36 • 34 16 0 0 0 0 0 0 0 0 0 0 0 0
pricing steps 2066 • 2570 2362 674 541 1424 358 871 204 831 345 90 108 150 509
no columns 2414 • 2887 2621 854 685 1588 468 991 323 934 448 204 212 227 564
branching nodes 1* • 31* 51 15 15 50 11 41 5 35 9 1 2 4 35
Av set Q size 6 • 6 7 0 0 4 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 2 • 2 2 0 0 2 0 0 0 0 0 0 0 0 0

berlin52

case 2 % 46 44 46 35 40 • 81 60 75 72 60 44 37 36 27 19
case 3 % 0 0 2 4 4 • 19 35 25 28 41 56 63 64 73 81
case 4 % 54 56 53 61 55 • 0 5 0 0 0 0 0 0 0 0
pricing steps 1260 1387 1032 1232 623 • 186 575 174 61 200 105 168 162 258 351
no columns 1446 1813 1403 1499 865 • 385 752 324 180 335 225 272 268 329 368
branching nodes 1* 1* 4* 11 9 • 5 17 5 1 9 7 11 11 43 67
Av set Q size 7 7 9 9 10 • 0 12 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 2 2 2 2 2 • 0 3 0 0 0 0 0 0 0 0

brazil58

case 2 % 38 36 54 60 52 65 68 74 40 76 • 73 60 42 25 16 24 17
case 3 % 0 0 0 0 0 0 0 0 0 0 • 28 40 58 75 84 76 83
case 4 % 62 64 46 40 48 35 32 26 60 24 • 0 0 0 0 0 0 0
pricing steps 21 105 832 728 456 343 221 138 169 82 • 40 53 88 151 362 281 268
no columns 26 130 1257 1087 721 598 435 327 368 261 • 175 178 204 254 422 336 300
branching nodes 1* 1* 1* 1* 1* 1* 1* 1 5* 1 • 1 1 7 13 63 39 27
Av set Q size 41 8 9 10 10 11 13 14 9 16 • 0 0 0 0 0 0 0
Av Alg. 3 iter. 14 3 2 2 2 2 3 3 2 3 • 0 0 0 0 0 0 0

Table A.2: Performance Statistics of B&P for graphs with 48 to 58 nodes.
(*) represents the instances that are not solved to optimality.

117



Ins. Stat./p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

st70

case 2 % 55 71 44 40 37 52 54 48 61 80 61 • 98 53 95 68 69 45 50
case 3 % 0 0 0 0 0 0 0 0 0 0 0 • 1 21 5 32 31 55 50
case 4 % 45 29 56 60 63 48 46 52 39 20 39 • 1 26 0 0 0 0 0
pricing steps 20 7 1148 870 679 376 287 271 228 128 145 • 91 317 56 62 105 167 152
no columns 26 15 1748 1434 1140 743 630 572 490 374 384 • 322 566 256 234 289 340 320
branching nodes 1* 1* 1* 1* 1* 1* 1* 1* 1 1 1 • 1 11 1 3 3 11 9
Av set Q size 55 122 14 15 16 16 17 14 13 19 15 • 18 16 0 0 0 0 0
Av Alg. 3 iter. 19 31 2 2 2 2 2 3 3 3 2 • 2 3 0 0 0 0 0

eil76

case 2 % 50 • 81 81 84 84 84 79 87 85 87 62 73 59 47 55 41 55 54
case 3 % 0 • 1 18 16 16 16 21 13 15 13 38 27 41 53 45 59 45 46
case 4 % 50 • 19 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pricing steps 1125 • 1515 1284 699 904 961 369 324 262 425 598 324 408 554 251 438 335 384
no columns 1320 • 2143 1870 1162 1322 1365 655 634 546 714 851 569 628 764 437 634 545 604
branching nodes 1* • 1* 7 3 8 6* 1 2 3 4 11 5 7 21 3 15 9 11
Av set Q size 7 • 10 9 7 0 2 0 0 0 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 3 • 2 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0

pr76

case 2 % 38 56 50 51 43 38 • 53 52 50 47 45 59 57 42 62 42 47 66
case 3 % 0 0 0 0 0 0 • 27 29 49 52 55 41 39 58 38 58 53 34
case 4 % 62 44 50 49 57 62 • 20 19 1 0 0 0 4 0 0 0 0 0
pricing steps 680 1527 1234 1251 1011 938 • 2386 2594 4991 4780 4593 4987 4189 621 536 333 273 110
no columns 783 2130 1715 1740 1444 1307 • 2758 2984 5255 4992 4743 5139 4363 804 729 497 453 270
branching nodes 1* 1* 1* 1* 2* 2* • 26* 32* 94 106* 109* 117* 92* 7 11 5 9 1
Av set Q size 6 13 14 13 15 15 • 15 15 15 18 0 0 15 0 0 0 0 0
Av Alg. 3 iter. 2 2 2 2 2 2 • 2 2 2 2 0 0 2 0 0 0 0 0

gr96

case 2 % 36 27 60 34 52 47 50 47 • 56 63 87 70 56 57 68 72 70 61
case 3 % 0 0 0 0 0 0 0 0 • 7 11 12 30 43 38 31 28 30 39
case 4 % 64 73 40 66 48 53 50 53 • 37 26 2 0 2 5 0 0 0 0
pricing steps 275 64 1039 79 1094 1014 1040 975 • 1340 1684 434 463 2670 2527 498 370 512 405
no columns 295 77 1845 103 1834 1680 1673 1537 • 1961 2389 856 819 3147 2993 820 668 823 676
branching nodes 1* 1* 1* 1* 1* 1* 1* 2* • 4* 10* 2* 5 59* 45* 4* 5* 9 5
Av set Q size 6 10 14 11 18 19 20 20 • 21 20 18 0 17 23 8 10 0 0
Av Alg. 3 iter. 2 3 2 3 2 2 2 2 • 2 2 2 0 3 3 2 2 0 0

rat99

case 2 % 42 56 70 • 75 89 96 93 99 92 57 37 54 38 43 39 31 42 40
case 3 % 0 0 0 • 0 3 3 3 0 7 42 63 46 62 57 61 69 58 60
case 4 % 58 44 30 • 25 9 1 4 1 2 0 0 0 0 0 0 0 0 0
pricing steps 57 39 1453 • 980 547 477 405 361 237 533 779 537 1229 738 804 1011 589 788
no columns 68 51 2455 • 1864 1305 1117 1022 899 721 1061 1189 1007 1655 1104 1123 1337 872 1069
branching nodes 1* 1* 1* • 1* 1* 1 1 1 1 14 29 13 47 27 41 45 19 27
Av set Q size 14 20 12 • 11 11 11 2 7 5 18 0 2 0 0 5 5 0 0
Av Alg. 3 iter. 4 4 2 • 2 2 3 1 3 2 3 0 1 0 0 2 3 0 0

rd100

case 2 % 43 33 62 58 54 47 40 39 38 45 45 58 • 71 92 87 73 57 62
case 3 % 0 0 0 0 0 0 0 0 0 0 0 0 • 1 4 13 27 42 34
case 4 % 57 67 38 42 46 53 60 61 62 55 55 42 • 28 4 0 0 1 5
pricing steps 7 18 1189 1065 991 823 745 717 659 571 536 457 • 588 298 345 658 2688 880
no columns 10 26 2163 2029 1845 1551 1412 1337 1211 1078 1027 903 • 1073 741 770 1063 3129 1263
branching nodes 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1 1 • 2 1 3 9 52 14*
Av set Q size 106 33 17 18 19 20 21 23 22 21 19 19 • 23 21 0 0 24 24
Av Alg. 3 iter. 34 9 2 2 2 2 2 2 2 2 2 2 • 2 2 0 0 2 3

Table A.3: Performance Statistics of B&P for graphs with 70 to 100 nodes for p ≤ 20.
(*) represents the instances that are not solved to optimality.
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Ins. Stat./p 21 22 23 24 25 26 27 28 29 30 31 32 33

st70

case 2 % 95 68 69 45 50
case 3 % 5 32 31 55 50
case 4 % 0 0 0 0 0
pricing steps 56 62 105 167 152
no columns 256 234 289 340 320
branching nodes 1 3 3 11 9
Av set Q size 0 0 0 0 0
Av Alg. 3 iter. 0 0 0 0 0

eil76

case 2 % 47 55 41 55 54
case 3 % 53 45 59 45 46
case 4 % 0 0 0 0 0
pricing steps 554 251 438 335 384
no columns 764 437 634 545 604
branching nodes 21 3 15 9 11
Av set Q size 0 0 0 0 0
Av Alg. 3 iter. 0 0 0 0 0

pr76

case 2 % 42 62 42 47 66
case 3 % 58 38 58 53 34
case 4 % 0 0 0 0 0
pricing steps 621 536 333 273 110
no columns 804 729 497 453 270
branching nodes 7 11 5 9 1
Av set Q size 0 0 0 0 0
Av Alg. 3 iter. 0 0 0 0 0

gr96

case 2 % 57 68 72 70 61 40 30 21 18 16 18 11
case 3 % 38 31 28 30 39 60 70 79 82 84 82 89
case 4 % 5 0 0 0 0 0 0 0 0 0 0 0
pricing steps 2527 498 370 512 405 630 512 504 499 415 401 509
no columns 2993 820 668 823 676 848 678 604 584 481 489 491
branching nodes 45* 4* 5* 9 5 31 31 92* 96* 93* 84* 70*
Av set Q size 23 8 10 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 3 2 2 0 0 0 0 0 0 0 0 0

rat99

case 2 % 43 39 31 42 40 47 41 40 30 33 38 20 12
case 3 % 57 61 69 58 60 53 59 60 70 68 62 80 88
case 4 % 0 0 0 0 0 0 0 0 0 0 0 0 0
pricing steps 738 804 1011 589 788 291 212 272 346 320 239 370 544
no columns 1104 1123 1337 872 1069 514 431 485 545 516 445 480 536
branching nodes 27 41 45 19 27 7 7 8 23 19 17 90 71*
Av set Q size 0 5 5 0 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 0 2 3 0 0 0 0 0 0 0 0 0 0

rd100

case 2 % 92 87 73 57 62 46 52 39 34 32 22 21 14
case 3 % 4 13 27 42 34 54 48 61 66 68 78 79 86
case 4 % 4 0 0 1 5 0 0 0 0 0 0 0 0
pricing steps 298 345 658 2688 880 318 321 310 276 192 435 486 548
no columns 741 770 1063 3129 1263 627 633 579 531 431 635 657 626
branching nodes 1 3 9 52 14* 15 17 21 19 11 55* 71* 72*
Av set Q size 21 0 0 24 24 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 2 0 0 2 3 0 0 0 0 0 0 0 0

Table A.4: Performance Statistics of B&P for graphs with 70 to 100 nodes for p > 20.
(*) represents the instances that are not solved to optimality.
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Ins. Stat./p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

kroa100

case 2 % 38 59 43 32 52 51 50 48 24 52 48 • 65 62 68 75 66 51 43
case 3 % 0 0 0 0 0 0 0 0 0 0 0 • 7 2 31 25 33 49 57
case 4 % 63 41 57 68 48 49 50 52 76 48 52 • 28 35 1 1 0 0 0
pricing steps 8 27 7 60 925 898 959 824 800 756 775 • 404 405 187 166 252 325 262
no columns 12 35 16 86 1770 1740 1812 1599 1554 1418 1533 • 890 912 567 509 632 679 585
branching nodes 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* • 3* 2* 3* 3 7 13 15
Av set Q size 52 32 73 15 18 17 19 19 13 19 19 • 21 19 8 20 4 0 0
Av Alg. 3 iter. 14 8 14 3 2 2 2 2 2 2 2 • 3 2 2 2 2 0 0

krob100

case 2 % 65 34 23 51 51 54 52 60 63 73 74 88 80 92 74 85 72 80 •
case 3 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •
case 4 % 35 66 77 49 49 46 48 40 37 27 26 12 20 8 26 15 28 20 •
pricing steps 17 65 74 988 944 939 811 623 646 397 302 242 291 203 250 241 239 192 •
no columns 21 86 84 1954 1864 1847 1594 1289 1320 965 794 649 719 574 648 639 617 548 •
branching nodes 1* 1* 1* 1* 1* 1* 1* 1* 2* 1* 1* 1* 1* 1* 2* 1* 1* 2* •
Av set Q size 66 14 10 16 17 20 21 20 17 20 18 13 17 15 16 16 26 22 •
Av Alg. 3 iter. 22 4 3 2 2 2 2 2 2 3 2 2 2 2 3 4 3 4 •

krod100

case 2 % 50 83 36 62 51 61 60 56 67 83 91 91 • 97 98 74 76 44 44
case 3 % 0 0 0 0 0 0 0 0 0 0 0 0 • 2 1 26 24 56 56
case 4 % 50 17 64 38 49 39 40 44 33 17 8 9 • 1 1 0 0 0 0
pricing steps 12 6 28 783 99 880 689 703 483 307 219 231 • 118 107 113 107 346 344
no columns 18 15 42 1709 145 1802 1578 1554 1184 918 747 715 • 529 512 486 463 726 691
branching nodes 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* • 1* 1* 1 1 21 26
Av set Q size 114 255 20 11 18 16 18 18 17 17 5 14 • 4 19 0 0 0 18
Av Alg. 3 iter. 38 51 4 2 3 2 2 2 2 2 2 3 • 2 4 0 0 0 4

lin105

case 2 % 34 38 39 40 49 58 61 54 57 65 56 56 57 74 61 64 88 77 •
case 3 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 •
case 4 % 66 63 61 60 51 42 39 46 43 35 44 44 43 26 39 36 12 10 •
pricing steps 134 32 497 42 297 838 664 724 570 469 426 303 287 209 341 215 83 272 •
no columns 142 42 608 62 469 1811 1484 1620 1314 1191 1020 813 773 698 847 639 423 714 •
branching nodes 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 2* 8* 5* 1* 9* •
Av set Q size 7 24 10 22 12 19 21 21 21 20 21 19 20 26 10 13 37 35 •
Av Alg. 3 iter. 3 6 2 4 2 2 2 2 2 2 2 2 2 4 3 4 3 6 •

gr120

case 2 % 63 30 83 86 75 70 71 65 66 73 72 81 86 • 79 77 66 81 84
case 3 % 0 0 0 0 0 0 0 0 0 0 0 0 1 • 19 22 34 19 16
case 4 % 38 70 17 14 25 30 28 35 34 27 28 19 13 • 2 0 0 0 0
pricing steps 8 30 6 948 1205 998 892 927 882 774 861 736 665 • 1318 2098 3014 1329 2923
no columns 14 39 17 2071 2447 2134 2039 1946 1874 1636 1707 1502 1386 • 2116 3031 3910 2125 3934
branching nodes 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* • 5* 13* 29* 6 13
Av set Q size 88 23 243 15 16 18 19 19 20 20 20 20 20 • 26 5 0 5 0
Av Alg. 3 iter. 24 5 48 2 2 2 2 2 2 2 2 2 2 • 2 2 0 2 0

bier127

case 2 % 31 54 63 76 79 76 65 61 69 74 • 74 71 87 97 82 77 67 56
case 3 % 0 0 0 0 0 0 0 0 0 0 • 1 2 8 3 18 23 33 44
case 4 % 69 46 38 24 21 24 35 39 31 26 • 25 27 4 1 0 0 0 0
pricing steps 245 384 8 1602 1103 968 1009 949 1147 1229 • 1263 1060 359 352 506 324 367 484
no columns 277 425 18 2936 2208 2080 2120 2048 2355 2345 • 2348 2094 1056 1078 1263 921 894 1035
branching nodes 1* 1* 1* 1* 1* 1* 1* 1* 1* 1* • 2* 2* 2* 1 5 3 5 7
Av set Q size 10 9 91 18 18 19 23 22 22 23 • 25 25 22 9 15 0 0 0
Av Alg. 3 iter. 4 2 17 2 2 2 2 2 2 2 • 2 2 2 1 2 0 0 0

Table A.5: Performance Statistics of B&P for graphs with 100 to 127 nodes for p ≤ 20.
(*) represents the instances that are not solved to optimality.

120



Ins. Stat./p 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

kroa100

case 2 % 42 34 33 34 45 34 22 18 22 19 22 19 11
case 3 % 58 66 67 66 55 66 78 82 78 81 78 81 89
case 4 % 0 0 0 0 0 0 0 0 0 0 0 0 0
pricing steps 175 487 632 308 116 210 465 524 481 411 418 352 471
no columns 461 771 899 555 344 458 646 698 660 572 568 478 541
branching nodes 11 35 53 29 5 13 61 73 67 83 79* 89* 84*
Av set Q size 0 0 0 0 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 0 0 0 0 0 0 0 0 0 0 0 0 0

krob100

case 2 % 97 78 97 78 55 64 38 41 66 40 17 19 13
case 3 % 1 11 1 22 45 35 62 59 34 60 83 81 87
case 4 % 2 12 2 0 0 1 0 0 0 0 0 0 0
pricing steps 122 276 92 83 125 165 172 76 62 75 323 365 443
no columns 468 663 438 396 431 503 435 309 297 298 484 494 521
branching nodes 1* 3* 1* 1 3 4* 5 1 1 3 47 91 80*
Av set Q size 5 25 5 0 0 4 0 0 0 0 0 0 0
Av Alg. 3 iter. 3 4 2 0 0 2 0 0 0 0 0 0 0

krod100

case 2 % 34 42 44 51 48 48 29 24 31 28 19 20 16
case 3 % 66 58 56 49 52 52 71 76 69 72 81 80 84
case 4 % 0 0 0 0 0 0 0 0 0 0 0 0 0
pricing steps 492 351 516 266 188 127 256 505 296 366 460 457 441
no columns 808 684 874 574 475 407 517 737 527 618 650 639 560
branching nodes 35 21 23 9 7 7 15 45 23 33 80 81* 86*
Av set Q size 0 0 0 0 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 0 0 0 0 0 0 0 0 0 0 0 0 0

lin105

case 2 % 66 61 57 63 46 58 73 30 34 31 28 23 23 16 8
case 3 % 34 39 43 34 51 42 27 70 66 69 72 77 77 84 92
case 4 % 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0
pricing steps 300 305 177 229 598 165 94 555 358 517 300 421 432 500 631
no columns 717 699 505 577 967 496 390 819 622 767 554 628 599 620 677
branching nodes 11 11 7 9 52* 5 1 69 33 66* 29 64* 65* 61* 52*
Av set Q size 0 0 0 37 23 0 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 0 0 0 6 3 0 0 0 0 0 0 0 0 0 0

gr120

case 2 % 84 82 78 70 74 66 46 43 43 61 39 49 45 73 67 33 24 28 22
case 3 % 16 18 22 30 26 34 54 57 57 39 61 51 55 27 33 67 76 72 78
case 4 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pricing steps 359 428 573 2957 409 303 819 1363 1000 592 688 696 566 223 165 447 351 418 445
no columns 861 846 1051 3705 830 666 1254 1829 1425 1009 1027 1163 952 609 519 785 629 710 643
branching nodes 1 1 3 27 1 1 17 35 23 9 15 15 11 1 1 33 35* 45* 43*
Av set Q size 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Av Alg. 3 iter. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bier127

case 2 % 71 60 75 73 65 55 67 64 55 29 34 35 27 23 23 21 24 22 19 19
case 3 % 29 40 25 27 35 45 33 36 45 71 66 65 73 77 77 78 76 78 81 81
case 4 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pricing steps 286 465 263 207 275 241 166 140 183 468 447 298 393 364 320 467 412 405 406 554
no columns 850 1026 759 691 716 650 598 513 593 797 806 634 692 621 565 730 682 666 635 784
branching nodes 3 9 1 1 3 1 1 1 5 31 19 9 37* 40* 37* 39* 42* 37* 37* 39*
Av set Q size 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
Av Alg. 3 iter. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

Table A.6: Performance Statistics of B&P for graphs with 100 to 127 nodes for p > 20.
(*) represents the instances that are not solved to optimality.
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