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ABSTRACT

In various situations, there is a need to estimate the number of active Wi-Fi enabled 

devices, like smartphones, within a specific area. This thesis offers one possible approach 

to accomplish this task. It focuses on estimating the number of devices in a certain area 

based on monitoring and processing Wi-Fi metadata, which includes a received signal 

strength indicator. To accomplish this goal, four sensing devices are placed at the corners 

of a rect-angular area. These sensing devices observe and record local data traffic, along 

with the received signal strength associated with each packet. For each sensing device, 

two types of frontends are considered, namely directional and isotropic antennas. Each 

sensing device retrieves the received signal strength indicators and the media access 

control addresses from the 802.11 frames packets transmitted by nearby active wireless 

devices. The es-timator takes the received signal strength indicators as input and infers the 

number of active Wi-Fi devices inside the area of interest. Two algorithms, bayesian and 

maximum-likelihood, are employed for estimation purposes. Overall performance is used 

to compare and contrast the systems implemented with directional antennas and isotropic 

antennas, re-spectively. Theoretical and experimental results both hint at performance 

improvements when using directional antennas, when compared to standard isotropic 

antennas.
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NOMENCLATURE

RSSI Received Signal Strength Indicator

MAC Media Access Control

NUC Intel’s Next Unit of Computing device

BMSE Bayesian Mean Square Error

MSE Mean Square Error
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1. INTRODUCTION

Occupancy estimation refers to the problem to estimate the number of people inside a

certain area. This topic has attracted lots of interests for years due to its importance. There

are several potential applications that can benefit from occupancy estimation. In smart

building automation systems, using knowledge of the level of occupancy, it is possible to

optimize the energy cost over the control of temperature and ventilation. This can result in

a large amount of energy saving [1, 2]. In navigation systems, providing road occupancy

traffic information will allow users to find out the best route to the destination. In [3],

the author proposed a road monitoring system that encompass UMTS and GPRS data

collection. Under an emergency circumstance, a proper occupancy estimation may help

the government guide the evacuation of crowds.

In recent years, the number of Wi-Fi access points and the number of Wi-Fi client de-

vices have been increasing dramatically. This growth in Wi-Fi infrastructure leads to large

amounts of data being transmitted over wireless networks. Cisco Systems predicts in their

Visual Network Index that 55 percent of total mobile data traffic will be offloaded onto

fixed networks through Wi-Fi access points and femtocells by 2020 [4]. This means Wi-Fi

is increasingly becoming a prime data source since Wi-Fi signals can tell us about our en-

vironment. A lot of attention is drawn into this area, with topics such as self-localization,

source localization and occupancy estimation [5, 6].

At the same time, we have witnessed the rapid development of mobile technology

which is fuelled by a large amount of smartphone users. Smartphone supports real-time

communication and information access, with an advanced mobile operating system that

combines features of a personal computer and other features useful for mobile use. Smart-

phones are influencing human activity significantly. The global smartphone penetration
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rate has grown fast over past years. According to eMarketer’s prediction in [7], smart-

phone user penetration as percentage of total global population will be 34.64 percent by

2019. In the U.S., 197.4 million people owned smartphones (79.3 percent mobile market

penetration) during the three months ending in December 2015 according to comScore’s

report [8]. This rapid development demands an improved manufacturing process. As the

result, mass production involved in smartphone technology have decreased the cost of

smartphone components. This fact makes smartphones price-friendly to users. Notably

smartphone operation systems also play important roles in mobile devices. For instance,

Android system provides the manufacturer a tool to produce multi-platform applications

for smartphones. This makes the development procedure cheaper and it gets devices in the

hands of more people. Overall, the continuous growth in mobile technology attracts more

attention into this field.

1.1 The Wireless Environment

In this work, we are interested in the occupancy estimation based on Wi-Fi activity of

the users. A good understanding of the wireless channel is key to analyze communication

systems. With this in mind, we will discuss important concepts in channel modeling like

path loss, shadow fading and multipath propagation. Path loss refers to the attenuation

in the transmitted signal while propagating from the transmitter (Tx) to the receiver (Rx).

Received signal power is a function of the distance between Tx and Rx. The simplest

path loss model is used for unobstructed line-of-sight (LOS) signal path in free space

propagation. Under this model, the received signal is given by

PR = PTGTGR
λ2

4πd2
(1.1)

where PT is the transmitted power, GT and GR are the transmit and receive antenna

gains, respectively, λ is the transmitted carrier wavelength, and d is the distance between

2



Tx and Rx. Thus, the received power falls off proportional to the ratio of wavelength over

distance squared. This also establishes the relation between path loss and wave length: a

shorter wave length implies a higher path loss. Though simple, the free space path loss

model is of limited value in real environments. Therefore, we need to take more factors

into consideration.

In the previous path loss model, we assume the path loss to be constant if the distance

is given. However in reality, the presence of obstacles like buildings and trees between

transmitter and receiver may bring random variations in path loss. This effect is due to

changes in scattering, reflecting and diffracting surfaces in the propagation environment

and it is called shadowing [9]. Considering shadowing, the received signal power becomes

PR = PTGTGRS (1.2)

where PL and S correspond to the path loss and the shadow fading factor,respectively.

Above, S is a random variable. Experiment results show that a log-normal distribution

function provides a good match to the empirical probability density function (PDF) of the

shadow fading component [10]. Therefore, the pdf of S can be approximated as the pdf of

a Gaussian random variable when S is expressed in the logarithmic (dB) domain:

fSs(s) =
1√
2πσs

exp

(
− s2

2σ2
s

)
(1.3)

where σs is the standard deviation of shadowing. Typically σs is between 5-10 dB.

Multipath fading occurs as a result of signal reflections, diffractions, and/or scattering

on objects before reaching the destination. Multiple copies of the signal may arrive at dif-

ferent phases. Multipath fading may also cause inter-symbol interference. Compared with

shadowing fading, multipath fading is a short-term factor that generally causes smaller

effects to the signal power. Therefore, the multipath fading is also called small-scale fad-
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ing. Some model such as Rayleigh fading and Ricean fading can be used for multipath

fading [9]. Rayleigh fading is a reasonable model when there are many objects in the envi-

ronment that scatter the radio signal before it arrives at the receiver. However, when a LOS

exists or a strong reflected path, termed specular component, also arrives at the receiver,

the fading is more appropriately modeled by a Rician distribution [11]. Several different

models such as Okumura, Hata, Walfish-Ikegami have been proposed to model different

environments like urban, rural and indoor areas [11].

Current literature on occupancy estimation is largely based on either images or RF

signals. Approaches based on cameras use captured images to estimate the number of

people in a crowded scene [12, 13, 14]. Still, in such camera-based approaches, estimation

accuracy can be affected by many factors such as brightness and image resolution. In

addition, camera-based approaches typically lead to high deployment cost, which makes

it inconvenient to deploy in reality. On the other hand, occupancy estimation based on RF

signals is more promising. This category encompasses several methods. Passive infrared

sensor is one of the common technologies used in the past few years. In [15], the authors

propose an occupancy estimation system which is able to adjust with movement of the

people inside the building. They shows that about 5% more energy can be saved by using

smart occupancy sensor as compared to non-adapting fixed time-delay sensors. In [16],

an indoor occupancy estimation using ultrasonic chirps is proposed. The author shows

that the average error in percentage to the maximum capacity of the room is around 5%.

Yet, this option is an active sensing system; if multiple transducers are placed in the same

room, they can interfere with one another.

Other methods involved Bluetooth [17] and Wi-Fi [18]. However, the short trans-

mission range limits the performance of Bluetooth-based methods. A research compared

Wi-Fi and Bluetooth approaches [19]. In their work, the authors stipulate that Wi-Fi has

advantage over Bluetooth in monitoring people, due to shorter discovery time and higher
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detection rates. According to their results, more than 90% of scanned unique MAC ad-

dresses in all places are Wi-Fi addresses; the popularity of using Wi-Fi devices is therefore

significantly higher than that of Bluetooth devices, which means occupancy estimation

using Wi-Fi is much more convenient in practice. In [20], the author proposes FCC, a

device-Free Crowd Counting approach based on channel state information measurements.

In [21], the author develops a new approach for estimating the total number of people

walking in an area with only Wi-Fi power measurements between a pair of stationary

transmitter/receiver antennas. In this latter case, they do not need the measurement of

channel state information.

In this thesis, we are interested in estimating the number of active devices in a fixed

area using Wi-Fi metadata. Modern mobile devices equipped with Wi-Fi modules transmit

Wi-Fi messages periodically. Therefore, this provides a means to estimate occupancy by

passively listening to Wi-Fi packets. More specifically, by deploying Wi-Fi monitoring

devices in an area of interest, it is possible to detect Wi-Fi transmissions. Each acquired

Wi-Fi packet contains a unique MAC address. This information can be augmented by the

received signal strength indicator (RSSI) of the captured signal. In the current context,

the MAC address serves as a device identifier, whereas the RSSI provides partial informa-

tion about the physical distance between the transmitter and the monitoring device. This

information is helpful in inferring the device location status. The existence of pcap, an

application programming interface for capturing network traffic, and wireshark, a network

protocol analyzer, makes the Wi-Fi traffic analysis straightforward.

In the research, we focus on occupancy estimation based on Wi-Fi packets and we ana-

lyze the benefits associated with using directional antennas. On the one hand, we are going

to introduce two stochastic estimation schemes. One is a Bayes estimation scheme and the

other is a maximum likelihood scheme. On the other hand, we will investigate the benefits

of using directional antennas in monitoring devices. Because the radiation pattern of an
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antenna will influence the RF propagation, it is naturally to think of the potential impacts it

brings to use directional antennas. We employ numerical simulations to compare the per-

formance of different schemes corresponding to sensing devices with directional antennas

and isotropic antennas. In simulations, we assume that four sensing devices are located in

the four corners of a rectangular target area. The training RSSI values are assumed to obey

free-space path loss model as well. Our results indicate that, when directional antennas

are employed, the error rate decreases considerably. In addition, our findings are further

supported through outdoor experimentation. The testbed is implemented in a line-of-sight

environment, with four sensing devices deployed at the corners of the area of interest.

The remainder of this thesis is organized as follows. In Section 2, we explain our prob-

lem formulation and develop a probability model. In Section 3, we propose two algorithms

for occupancy estimation. These schemes are evaluated through numerical simulations in

Section 4. We then discuss experimental results, along with description of experiment

setup in Section 5. Finally, we offer concluding remarks in Section 6.
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2. SYSTEM MODEL AND PROBLEM FORMULATION

Wi-Fi based occupancy estimation is attractive because it only require simple sensing

devices. Meanwhile, it can benefit from local Wi-Fi network and the high penetration rate

of smartphones. The existence of tools like pcap and wireshark makes monitoring Wi-Fi

environments a straightforward task. In this thesis, we extract the RSSI and MAC address

for the purpose of occupancy estimation. As discussed above, the RSSI is related to the

distance between the Rx and Tx. Thus, we can estimate the location information based on

RSSI values. Still, RSSI does not depend only on distance; some other factors like noise

and fading can also influence it. As such, a proper wireless channel model is needed to

take care of this situation.

2.1 Wireless Channel Model

A common wireless environment can be express as

r(t) = g(d)s(t) + w(t),

where r(t) represents the received signal; the function g(d) is the power gain which is

related to several factors including the mean path loss, shadow fading and antenna gain;

s(t) denotes the sent signal; and w(t) is noise. Herein, we adopt the log-normal channel

model. So, the expected received power for a given distance between transmitter and

receiver can be expressed as

Pd[dBm] = A+B log10(d) + Ls +Ga, (2.1)

where A is a combination of the transmitted signal power and average path loss and

B represents the path loss coefficient. Component Ls is a Gaussian random variable that
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captures shadowing. Finally, Ga is the antenna gain. We note that the mean of Ls can

be added in A; thus, we assume Ls is a zero mean random variable, Ls ∼ N (0, σ2
s ).

Parameter σs is the variance of the shadowing component. In the logarithmic domain, the

probability density function of Ls can be written as

fLs(ℓ) =
1√
2πσs

exp

(
− ℓ2

2σ2
s

)
.

Its variance can be estimated using the sampled data. An unbiased estimator for the

variance is given by [22]

σ2
s =

1

N − 1

N∑
1

(lk − µs)
2,

where N is the sample size, lk forms the data set, and points are expressed in the

logarithmic domain [23, 24].

In a practical setting, we need to estimate the wireless channel parameters A and B.

To do so, we use the method of least squares, which minimizes the sum of the squares of

the offsets. Consider the linear least squares problem given by

f(x, β) =
m∑
j=1

βjϕj(x),

where ϕj is a function of x and β is the parameter vector to be estimated. Letting

matrix M be defined as

Mij =
∂f(xi,β)

∂βj

= ϕj(xi),

the least squares estimate for β becomes

β̂ = (MTM)−1MTy.
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For the least square problem defined in Section 2.1, we get

argmin
a,b

∥∥∥∥∥∥∥∥∥∥


...

pij −Gi(ϕij)

...


︸ ︷︷ ︸

y

−


...

...

1 log10(dij)

...
...


︸ ︷︷ ︸

M

a
b


∥∥∥∥∥∥∥∥∥∥

2

.

Then, the estimator of A and B is given as

A
B

 =
(
M tM

)−1
M ty.

The variance of Ls, the shadow fading component, is computed by normalizing the

residual error

σ2
s =

1

N − 1
yT (I −M(MTM)−1MT )y.

2.2 Problem Formulation

Consider a scenario where several wireless devices are randomly positioned nearby an

area of interest. To simplify the problem, we assume the area to be rectangular shape. Four

RF monitoring devices are located at the corners of this region. Each monitoring device

has information concerning its own location and orientation. The radiation pattern of the

antenna attached to each monitoring device is known as well. In our system model, all of

the monitoring devices are connected to the Internet and send the captured data to a process

center for inference. Several wireless clients carried by users are randomly located near

this area, they can be inside or outside the area of interest. The wireless clients transmit

data packets periodically and, consequently, they can be easily detected by the monitoring

devices. Since each wireless client has a unique MAC address, the packets transmitted
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At

Ao

Figure 2.1: The periphery of the target area is delineated by the dashed line. The squares at
the corners of the target area denote the locations of the monitoring devices, each equipped
with a directional antenna. Clients within the zone of interest are in black, whereas outside
agents appear in white. The objective is to estimate the occupancy within target area.

from different clients can be distinguished. Throughout, we use At to represent the target

area and Ao to represent its complement. A notional diagram of the framework is shown

in Fig. 2.1.

In this thesis, we assume the wireless clients are quasi-static and each client is equipped

with an isotropic antenna. Thus, the orientation of the wireless clients does not matter. For

convenience, we use a single vector to denote the locations of the wireless clients:

U = (U1, . . . ,Una), (2.2)

where na is the number of the detected clients. We also assume that the signal cap-

tured by a monitoring device comes from a line-of-sight path. Therefore, signal strength

subscribes to a free-space transmission model. The received signal strength from client j

to sensing device i can be expressed using the log-normal channel model

Pij[dBm] = A+B log10(dij) + Lij +Gi(ϕij), (2.3)

10



where A and B are the mean decay parameters, dij is the Euclidean distance between

the client j and sensing device i. This distance is equal to

dij = d(si,uj) =
√

(u1j − s1i)2 + (u2j − s2i)2.

Variable Lij represent shadow fading and parameter Gi(·) is the antenna gain function

of the sensing device. Parameter ϕij denotes the angle of the signal transmission direction,

which can be expressed as

ϕij = ∠(si,uj) = atan2(u2j − s2i, u1j − s1i).

The shadow fading components {Lij} are assumed to be independent and identically

distributed log-normal random variables. In the logarithmic domain, the corresponding

probability density function becomes

fLij
(ℓ) =

1√
2πσs

exp

(
− ℓ2

2σ2
s

)
, (2.4)

where σs is the standard deviation of shadowing.

The observed information from the four sensing devices form a power matrix P =

(P1, . . . ,Pna). The vector element Pj = (P1j, P2j, P3j, P4j) contains the signal strength

of the wireless client j detected by four sensing devices. We assume that the number and

locations of the wireless clients located inside the area of interest form a Poisson point

process with intensity λt. Therefore, the probability that rt wireless clients lie inside the

target area is equal to

Pr(Rt = rt) =
(λtAt)

rt

rt!
e−Atλt rt = 0, 1, . . .

where Rt is the number of clients inside and At is the area of the target region. Sim-
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ilarly, we can write the probability that ro wireless clients are located outside the target

area as

Pr(Ro = ro) =
(λoAo)

ro

ro!
e−Aoλo ro = 0, 1, . . .

where Ro is the number of clients outside, Ao is the area of the complement of target

region, and λo is a Poisson intensity parameter. The inference task is to estimate occupancy

based on the power matrix data set P, which is collected by the sensing devices.
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3. ESTIMATION SCHEMES

In this section, we introduce the two estimation schemes employed in this thesis. A

Bayes estimation scheme and a maximum likelihood estimation algorithm are considered

and they are applied under different scenarios. If the estimation process is applied repeti-

tively over time, then acquired data can be employed to gain accurate estimates for λt and

λo. In other words, λt and λo are considered known. In such scenarios, Bayes estimation is

employed. On the other hand, if the occupancy estimation is applied to an area of interest

once, then we can use a classic framework such as maximum likelihood estimation.

3.1 Bayes Estimation

In the Bayes estimation scheme, we assume the Poisson intensity parameters λt and λo

are known. Our objective is to estimate the number of clients inside the target area based

on observed data P. First, we need to get the posterior distribution of Rt, given P,

Pr
(
Rt = rt|P = p

)
=

∫
{u:Rt(u)=rt,Ro(u)=ro}

fU|P
(
u|p

)
du

=

∫
{u:Rt(u)=rt,Ro(u)=ro}

fP|U
(
p|u

)
fU(u)

fP
(
p
) du

(3.1)

where U is the location vector containing the random positions of the wireless clients.

The location vector includes lots of information. For example, the size of U is the number

of active wireless clients. According to the location vector, we can get the number of wire-

less clients inside or outside the target area. Thus, Rt and Ro can be viewed as functions

of U. Because the outside and inside Poisson processes are independent, the distribution

of U can be written as

13



fU(u) =
1

A
Rt(u)
t

(λtAt)
Rt(u)

(Rt(u))!
e−Atλt

1

A
Ro(u)
o

(λoAo)
Ro(u)

(Ro(u))!
e−Aoλo

=
λ
Rt(u)
t

(Rt(u))!

λ
Ro(u)
o

(Ro(u))!
e−Atλt−Aoλo .

(3.2)

For a wireless client j, the distribution of the received power vector Pj given a specific

location uj is equal to

fPj |Uj
(pj|uj) =

ns∏
i=1

fLij
(pij − A−B log10(dij)−Gi(ϕij))

=
1

(2πσ2
s )

ns
2

ns∏
i=1

e
−

(pij−A−B log10(dij)−Gi(ϕij))
2

2σ2
s

=
(
2πσ2

s

)−ns
2 e

−
∑ns

i=1
(pij−A−B log10(dij)−Gi(ϕij))

2

2σ2
s .

(3.3)

The conditional distribution of P given U = u, is then

fP|U
(
p|u

)
=

na∏
j=1

fPj |Uj
(pj|uj). (3.4)

With the conditional distribution of P given U = u and the distribution of U, we can

compute the marginal distribution of P,

fP
(
p
)
=

∫
{u:Rt(u)+Ro(u)=na}

fP|U
(
p|u

)
fU(u)du

=
∑

(rt,ro):rt+ro=na

∑
{I⊂[na]:|I|=rt}

λrt
t λ

ro
o

rt!ro!
e−Atλt−Aoλo

∏
j∈I

IAt(j)
∏
j∈Ic

IAo(j),

where the integral components are defined by
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IAt(j) =

∫
At

fPj |Uj
(pj|uj)duj (3.5)

IAo(j) =

∫
Ao

fPj |Uj
(pj|uj)duj. (3.6)

Finally the posterior distribution of Rt, conditional on the gathered data is given by

Pr
(
Rt = rt|P = p

)
=

∑
{I⊂[na]:|I|=rt}

λrt
t λ

ro
o e−Atλt−Aoλo

rt!ro!fP(p)

∏
j∈I

IAt(j)
∏
j∈Ic

IAo(j).

Computing this conditional distribution of Rt given P may appear difficult as it entails

taking sums over subsets of {1, . . . , na}. However, by using generating functions, the

posterior distribution can be calculated more efficiently [25].

The mean of the posterior distribution of Rt condition upon P is the Bayes estimator,

R̂t

(
p
)
= E

[
Rt|P = p

]
=

na∑
rt=0

rt Pr
(
Rt = rt|P = p

)
. (3.7)

We adopt the Bayesian mean squared error (BMSE) to evaluate the performance of the

estimator,

BMSE
[
R̂t

]
= E

[(
R̂t (P)−Rt

)2
]
. (3.8)

This BMSE can be approximated by taking the average over samples,

BMSE
[
R̂t

]
≈ 1

M

M∑
m=1

(
R̂

(m)
t

(
P(m)

)
−R

(m)
t

)2

. (3.9)
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3.2 Maximum Likelihood Estimation

In this section, we assume the Poisson intensity parameters λt and λo are unavailable.

For this scenario, we employ a classical approach and adopt maximum-likelihood estima-

tion [26]. The distribution of U can be written as

fU (u;λt, λo) =
λ
Rt(u)
t

(Rt(u))!

λ
Ro(u)
o

(Ro(u))!
e−Atλt−Aoλo . (3.10)

The likelihood function is a function with two parameters, λt and λo

L
(
λt, λo;p,u

)
= fP,U

(
p,u;λt, λo

)
= fP|U

(
p|u

)
fU (u;λt, λo) . (3.11)

By computing the integral over U, we can get the marginal likelihood function

L
(
λt, λo;p

)
=

∫
{u:Rt(u)+Ro(u)=na}

fP|U
(
p|u

)
fU (u;λt, λo) du

= e−Atλt−Aoλo
∑

(rt,ro):rt+ro=na

λrt
t λ

ro
o

rt!ro!

∑
{I⊂[na]:|I|=rt}

∏
j∈I

IAt(j)
∏
j∈Ic

IAo(j).
(3.12)

This results in a two-dimensional optimization for maximizing the likelihood. But, we

can simplify it to a one-dimensional optimization problem by the following property,

max
λt,λo

L
(
λt, λo;p

)
= max

α
L
(
na

At

α,
na

Ao

(1− α);p

)
(3.13)

where α within the interval [0, 1]. Under this property, we can rewrite the likelihood

function in terms of α as
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L
(
na

At

α,
na

Ao

(1− α);p

)
=

∑
(rt,ro):rt+ro=na

e−nanna
a

rt!ro!

(
α

At

)rt (1− α

Ao

)ro ∑
{I⊂[na]:|I|=rt}

∏
j∈I

IAt(j)
∏
j∈Ic

IAo(j).

(3.14)

At this point, we can use standard numerical methods to get the values of λt and λo that

maximize the likelihood function. Once λt and λo are obtained, the maximum likelihood

estimator can be calculated as

R̂t

(
p
)
= Eλ̂t,λ̂o

[
Rt|P = p

]
=

na∑
rt=0

rt Pr
(
Rt = rt|P = p; λ̂t, λ̂o

)
.

(3.15)

We adopt the mean squared error (MSE) to evaluate the performance of our estimator,

MSE
[
R̂t

]
= E

[(
R̂t (P)−Rt

)2
]
. (3.16)

This mean squared error can be approximated by taking the average over samples

numerically,

MSE
[
R̂t

]
≈ 1

M

M∑
m=1

(
R̂

(m)
t

(
P(m)

)
−R

(m)
t

)2

. (3.17)
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4. NUMERICAL SIMULATION SETUP AND RESULTS

In this section, we introduce our simulation setup, including the directional antenna

model, the parameters of the channel and how we generate RSSI samples. The simulation

results will be shown after that. The simulation code is written in Python. In the simulation

framework, the set up consists of four monitoring devices placed at the corners of the area

of interest. All antennas attached to monitoring devices are pointing towards the center of

the area of interest. The target area is considered to be a square of dimension 6 m Œ 6 m

inscribed in a larger square of dimension 10 mŒ10 m. The two square areas share a same

center point. Again, we use At to denote the target area, while Ao denotes its complement.

We call the inside region the target area, and we refer to its complement as the outside

region in the following text.

4.1 Antenna Characteristic

To analyze the effect of radiation characteristics of the sensing antennas on the esti-

mation, isotropic antennas and directional antennas are considered. The antenna gain of

the isotropic antennas are zero in all directions. For the directional antennas, we adopt the

3GPP antenna model in [27]. The directional antenna gains obey the following formula,

Gi(ϕij) = −min

{
12

(
ϕij − θi
θ3dB

)2

, Gfloor

}
−Gavg

where θi is the pointing direction of the antenna that is attached to monitoring device i.

Parameter θ3dB is the 3 dB beam-width of the radiation pattern. Variable Gfloor is a nom-

inal attenuation floor. And, Gaverage is a normalization factor, which equal to the average

gain over ∈ (−180◦, 180◦],
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Figure 4.1: This graph depicts normalized antenna radiation patterns. The pointing direc-
tion is set to 0◦ and Gfloor = 20 dB.
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∫ 180

−180

10
− 1

10
min

{
12

(
ϕij−θi
θ3dB

)2
,Gfloor

}
360

dϕij

 .

The antenna radiation pattern for various 3 dB beam-widths is shown in Fig. 4.1.

4.2 Channel Characteristic

As mentioned in Section 2.1, the channel model we adopt is the log-normal path loss 

model. The received signal power can be expressed as

P [dBm] = A+B log10(d) + L+G(ϕ). (4.1)

In this equation, the physical parameters are based on regulation issued by the Federal

Communications Commission (FCC) and on the profiles of typical wireless environments.

According to the Friis transmission equation [28], we have
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A = Pt + 20 log10

(
3× 108

fcarrier

)
− 20 log10(4π)

where Pt is the mobile devices transmission power, which is set to 20 dBm. The fre-

quency fcarrier is that of the Wi-Fi signal wave, 2.462 GHz [29]. Accordingly, A is equal

to −20.27 dBm. We set the path-loss parameter B to -20 dBm, which is the coefficient as-

sociated with free-space. The logarithmic σs, which represents variation in shadow fading,

is set to 2.0 dBm.

4.3 Generating Data Set

As mentioned above, the inference task is based on the received power matrix, which

is collected by the monitoring devices. In the simulation, we generate the sample data ac-

cording to the antenna gain model and the channel model discussed above. The parameter

values we use to create the data set are summarized in Table 4.1.

Table 4.1: System parameters used during simulations.

Physical Parameters Values
Nominal Power A = −20.27 dBm
Free-Space Loss parameter B = −20 dBm
Logarithmic Standard Deviation σs = 2.0 dBm
3 dB Beam-width (directional) θ3dB = 90◦

Antenna Floor Gfloor = 20 dB

We generate the numerical data set as follows. We denote the location of the four

monitoring devices as {si} where i ∈ {1, 2, 3, 4}. First, we set a certain value λ, which

represents the aggregate Poisson rate across the two monitored regions (inside region and

outside region) equal to 32. The splitting parameter between the two regions is α. Thus,
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λt = α
λ

At

λo = (1− α)
λ

Ao

where λt is the Poisson rate of the inside region and λo is the Poisson rate of the outside

region. Once λt and λo are determined, rt the number of devices inside and ro the number

of devices outside are established using Poisson trials,

Rt ∼
(Atλt)

k

k!
e−Atλt Ro ∼

(Aoλo)
k

k!
e−Aoλo .

Each of the Rt = rt devices inside the target area is independently assigned a location

according to a uniform distribution. Likewise, each of the Ro = ro devices outside is

independently assigned a location according to another uniform distribution. Therefore,

we obtain the location vector U = u of the wireless clients. For each of the wireless

clients, a collection of four received signal strength corresponding to the four monitoring

devices is computed according to (4.1). The shadow fading component L is generated

following a log-normal distribution whose standard deviation σs = 2.0 dBm. Finally,

we get the sequence of power vectors p = (p1, . . . ,pna), where vector pj corresponding

to wireless client j contains four power strength received by four monitoring devices,

respectively.

4.4 Performance Analysis

The proposed estimators act on observation vector p.
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4.4.1 Bayes Estimation

We first consider the performance of the Bayes estimation framework introduced in

Section 3.1. As is discussed in the previous section, the Poisson rate of the combined two

regions λ, the Poisson rate of inside region λt and the Poisson rate of outside region λo

have the following relation along with the splitting parameter α,

λt = α
λ

At

λo = (1− α)
λ

Ao

.

In the simulation results, the area of the inside region At is equal to 36, and the area of

the outside region Ao is equal to 64. We can plot performance results as a function of the

splitting coefficient α. The vertical axis represents the BMSE of the Bayes estimator. The

black curve in Fig. 4.2 shows the BMSE when the Bayes estimator operates on the data

collected using isotropic antennas. The red curve in Fig. 4.2 corresponds to four directional

antennas located at the four corners of the target area and pointing directly to the center.

These antennas have a 3 dB beam-width of θ3dB = 90◦ and a nominal attenuation floor of

Gfloor = 20 dB. Every point is obtained by averaging over fifty thousand trials.

According to Fig. 4.2, systems with directional antennas perform better than systems

with isotropic antennas.

To further compare the performances, we introduce confidence intervals. A confidence

level refers to the percentage of all possible samples that can be expected to include the

true population parameter [30]. Suppose we use the same sampling method to select dif-

ferent samples and to compute a different interval estimate for each sample. Some interval

estimates would include the true population parameter and some may not. A 95% confi-

dence level means that 95% of the intervals would include the true parameter. Generally,

the confidence interval is computed as below. Select a confidence level which describes
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Figure 4.2: This graph shows the Bayesian mean squared error as functions of splitting
parameter under the scheme of 3.1. The black line corresponds to the performance of the
system equipped with isotropic antennas, whereas the red line corresponds to the perfor-
mance of systems equipped with directional antennas.

the uncertainty of a sampling method. Compute

γ = 1− (confidence level/100).

Find the critical probability p∗

p∗ = 1− γ/2.

Express the critical value as a t-statistic by using the degree of freedom and the critical

probability, where the degree of freedom is equal to

df = N − 1

and N is the sample size. The standard error SE is given as
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SE =
σ√
N

where σ is the standard deviation of the sample. The margin of error is the product of

the critical value t∗ and SE. The confidence interval is expressed as

Confidence interval = µ± Margin of error

where µ is the mean of the sample. In this simulation, we analyze the absolute differ-

ence between the true number of target devices rt and the estimated result r̂t. The confi-

dence intervals of |rt − r̂t| corresponding to isotropic antennas and directional antennas

are summarized in Table 4.2. The result is based on fifty thousand samples.

Table 4.2: Confidence interval of |rt − r̂t| for the simulated Bayes scheme.

Antenna type Confidence interval Confidence level
Directional 1.412411± 0.002166 95%
Isotropic 2.454623± 0.003450 95%

To make the result more straightforward, we use a Gaussian kernel density estimation

to plot the approximation of the probability density function of |rt − r̂t|. The horizontal

axis represents value for |rt − r̂t|.

Comparing the PDF curves in Fig. 4.3 and Fig. 4.4, the distribution of the error occurs

in system with directional antennas appears closer to zero. This result, along with fact that

the BMSE of directional systems is smaller, shows that systems with directional antennas

perform better. This performance improvement results from the directional antennas being

more discriminating than the isotropic antennas.
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Figure 4.3: This graph shows the approximation probability density function of |rt −
r̂t| corresponding to the system equipped with directional antennas under the scheme of
Section 3.1.

Figure 4.4: This graph shows the approximation probability density function of |rt −
r̂t| corresponding to the system equipped with isotropic antennas under the scheme of
Section 3.1.
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Figure 4.5: This figure shows the mean squared error as functions of splitting parameter
under scheme of Section 3.2. The black line corresponds to the performance of a system
equipped with isotropic antennas, whereas the red line corresponds to the performance of
a system with directional antennas.

4.4.2 Maximum Likelihood Estimation

In this section, we look into the maximum likelihood estimation framework mentioned

in Section 3.2. We use the average mean squared error to evaluate the performance of our

estimator. As before, the total Poisson rates is set to be 32 and the curves are functions of

splitting coefficient α.

The black curve in Fig. 4.5 shows the MSE when the maximum likelihood estimator

operates on data collected using isotropic antennas. The red curve in Fig. 4.5 corresponds

to the scenario where the estimator operates on data collected by directional antennas.

The four directional antennas are located at the four corners of the target area, and they are

pointing directly towards the center. These antennas have a 3 dB beam-width of θ3dB =

90◦ and a nominal attenuation floor of Gfloor = 20 dB. Every point is obtained by averaging

over fifty thousand trials. The MSE is smaller for systems using directional antennas.
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Figure 4.6: This graph shows the approximation probability density function of |rt − r̂t|
corresponding to system equipped with directional antennas under scheme of 3.2.

The confidence interval of the absolute error |rt − r̂t| corresponding to the isotropic

antennas and the directional antennas are summarized in Table 4.3.

Table 4.3: Confidence interval of |rt − r̂t| for simulation corresponding to the Maximum
likelihood scheme.

Antenna type Confidence interval Confidence level
Directional 2.080484± 0.002809 95%
Isotropic 4.972427± 0.006020 95%

Comparing the PDF curves in Fig. 4.6 and Fig. 4.7, we see that the distribution of

the error for systems with directional antennas appears closer to zero. This result, along

with the fact that the MSE for the directional systems is smaller, shows that directional

antennas outperform isotropic antennas within this context. Again, these results indicate

that the information obtained from the directional antennas is more discriminating than the
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Figure 4.7: This graph shows the approximation probability density function of |rt − r̂t|
corresponding to system equipped with isotropic antennas under scheme of 3.2.

that gathered by isotropic antennas.
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5. EXPERIMENTAL IMPLEMENTATION

To complement the numerical findings based on our theoretical framework, we take 

an experimental implementation to assess the two schemes proposed in this thesis. The 

RSSI data set is collected during this experiment. This information is also used to provide 

statistical evidence for the wireless channel model adopted throughout. This model is used 

to determine the characteristics of the environment. The system is designed to work on 

the 2.4 GHz ISM radio band, which is used by Wi-Fi technology. In this experiment, all 

the wireless clients are connected to a wireless access point. This section details the way 

the experimental components are designed, and it explains the analysis of the gathered 

information.

5.1 Monitoring Devices

Every sensing device takes the form of a Next Unit of Computing (NUC) by IntelTM,

and runs the Ubuntu 14.04 (GNU/Linux) operating system. Wireless monitoring is en-

abled through an AlfaTM AWUS036NHA wireless interface with a detachable antenna. The

AtherosTM chipset is able to listen to transmission packets on a channel if monitoring mode

is turned on. The sub-miniature version A (SMA) antenna connectors are used to attach

either isotropic antennas or directional antennas. Each monitoring device is equipped with

one directional antenna and one isotropic antenna. Wooden sticks are also employed to

fix the two antennas attached to a monitoring devices, and they are positioned at different

heights to reduce the interactions and the coupling effect between the two antennas. The

radiation pattern of the directional antenna is shown in Fig. 5.1.

A sniffing software built on the pcap application programming interface captures and

filters wireless packets. For filtering, we employ a hash table for removing the duplicates

in the detected MAC addresses. The software creates a local database to store the MAC
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Figure 5.1: This graph depicts the directional antenna radiation pattern.

addresses and the RSSI values extracted from the wireless packets observed by the system.

Finally the local database is sent to a central server for processing. The monitoring device

we used during experiment is shown in Fig. 5.2.

5.2 Wireless Clients

In our experiment, the wireless clients are AndroidTM smartphones. All the wireless

clients connect to a same local access point and send packets periodically, which makes

them detectable by monitoring software. For the purpose of evaluating the performance

of our estimators, not only do we need RSSI values, but we also need a ground truth (i.e.,

the true locations of the wireless clients). To this end, we employ a custom app that logs

GPS coordinates and time. Throughout the experiment, the wireless clients periodically

transmit the GPS information collected by their app to a central server. MAC addresses

and time stamps are subsequently employed to match locations to power vectors at the

center server, yielding a data set for performance evaluation.
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Figure 5.2: This picture shows a custom monitoring device used in this experiment.

5.3 Experimental Samples

The experimental samples are divided into two categories: one is for monitoring de-

vices with isotropic antennas, the other is for monitoring devices with directional antennas.

Each category contains about 400 power and location vectors. Each power vector is in this

form, p = (p1, . . . ,p4), where pi is the power received by monitoring device i. Since

there are four monitoring devices, we have almost 3200 distinct data points.

Experimental trials are then conducted as follows. First we generate rt the number of

clients inside and ro the number of clients outside according to Poisson process.

λt = α
λ

At

λo = (1− α)
λ

Ao

.
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Then, rt entries are selected uniformly from clients in At, and ro entries are selected

uniformly from clients in Ao. The two collections of entries are combined into a single

vector p, which acts as input to the estimator. At last, the estimates are compared to the

ground truth.

5.4 Channel Parameters

Channel parameters A and B can vary depending on the wireless environment. This

experiment is conducted on widely open parking lot. Figure offers a satellite image view

of the experiment site. The parameters are obtained by using the least squares method

mentioned in Section 2.1. The parameters for the the isotropic systems are A = −41.68,

B = −16.07 and σs = 7.91 dBm. Similarly, the parameters for the systems with direc-

tional antennas are A = −34.72, B = −17.11 and σs = 8.31 dBm.

5.5 Experiment Results

5.5.1 Performance of Bayes Estimation

The experimental results for the Bayes estimation scheme are shown in Fig. 5.4. The

horizontal axis represents the splitting parameter α. The vertical axis corresponds to the

BMSE. Each point is averaged over 10,000 trials.

The confidence intervals of |rt−r̂t| corresponding to isotropic antennas and directional

antennas are summarized in Table 5.1.

Table 5.1: Confidence interval corresponding to |rt − r̂t| for the experimental Bayes
scheme.

Antenna type Confidence interval Confidence level
Directional 3.317535± 0.010430 95%
Isotropic 3.331094± 0.010274 95%
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Figure 5.3: This figure highlights the site used for the experiments, and it marks the loca-
tions of the mobile agents.
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Figure 5.4: This figure depicts the experimental Bayesian mean squared error as a func-
tion of Poisson splitting coefficient α. The red line represents systems with directional
antennas, whereas the black line represents system with isotropic antennas.

33



Figure 5.5: This graph shows the approximate probability density function for |rt − r̂t|
corresponding to a system equipped with directional antennas under the scheme of Sec-
tion 3.1.

The approximate probability density functions corresponding to systems with direc-

tional antennas and isotropic antennas are shown in Fig. 5.5 and Fig. 5.6.

In this case, using directional antennas does not bring an obvious benefit. The BMSE

of the systems with directional antennas and that of the systems with isotropic antennas

are very close. This phenomena may be caused by the inaccuracy of the GPS information.

Small location errors may bring large estimation errors, especially when using directional

antennas.

5.5.2 Performance of Maximum Likelihood Estimation

Experimental curves for the Bayes estimation scheme are shown in Fig. 5.7. The

horizontal axis corresponds to the splitting parameter α. The vertical axis is the BMSE.

Each point is obtained by averaging over 10,000 trials.

The confidence intervals of |rt − r̂t| corresponding to the isotropic antennas and direc-
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Figure 5.6: This graph shows the approximate probability density function for |rt− r̂t| cor-
responding to a system equipped with isotropic antennas under the scheme of Section 3.1.
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Figure 5.7: This figure depicts the experimental Bayesian mean squared error as a func-
tion of Poisson splitting coefficient α. The red line represents systems with directional
antennas, whereas the black line represents systems with isotropic antennas.
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Figure 5.8: This graph shows the approximate probability density function of |rt − r̂t|
corresponding to systems equipped with directional antennas under the scheme of Sec-
tion 3.2.

tional antennas are summarized in Table 5.2.

Table 5.2: Confidence interval associated with |rt − r̂t| for the experimental maximum
likelihood estimation scheme.

Antenna type Confidence interval Confidence level
Directional 5.881027± 0.016484 95%
Isotropic 7.144900± 0.019182 95%

The approximate probability density functions corresponding to systems with direc-

tional antennas and isotropic antennas are shown in Fig. 5.8 and Fig. 5.9.

In this case, the systems with directional antennas perform better, which implies that

directional antennas are collectively more discrimination.
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Figure 5.9: This graph shows the approximate probability density function of |rt− r̂t| cor-
responding to systems equipped with isotropic antennas under the scheme of Section 3.2.
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6. CONCLUSION

In this thesis, we report two algorithms corresponding to different application scenarios

for occupancy estimation using Wi-Fi monitoring. We utilize NUCs with sensing anten-

nas as monitoring devices. We assess the performance of the estimators for isotropic and

directional antennas through numerical simulations and prototyping. Our results indicate

that it is possible to accurately estimate the number of active agents within a prescribed

area by deploying sensing devices about the area of interest. Furthermore, performance is

generally enhanced by the careful shaping of antenna radiation patterns. That is, the perfor-

mance of a monitoring system can be enhanced by employing a configuration that strongly

discriminates between wireless agents that are located within and outside the target area.

In general, a more discriminating configuration yields considerable improvements over a

generic setup with isotropic antennas.

This work can be extended for future research. Potential problems include tracking

occupancy over time, and estimate the density of people using non-uniform distributions.

It would also be interesting to use reconfigurable antennas to acquire very discriminating

information about active devices for wireless inference. Finally, a pragmatic goal would

be to implement such a monitoring system indoors, where multipath fading exists and

tracking the location of a particular device can be very challenging. This information

could then be used to dynamically adapt Wi-Fi access points to changing network traffic

conditions.
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